]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - block/blk-core.c
block: Let blk_drain_queue() caller obtain the queue lock
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/task_io_accounting_ops.h>
29#include <linux/fault-inject.h>
30#include <linux/list_sort.h>
31#include <linux/delay.h>
32#include <linux/ratelimit.h>
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/block.h>
36
37#include "blk.h"
38#include "blk-cgroup.h"
39
40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43
44DEFINE_IDA(blk_queue_ida);
45
46/*
47 * For the allocated request tables
48 */
49static struct kmem_cache *request_cachep;
50
51/*
52 * For queue allocation
53 */
54struct kmem_cache *blk_requestq_cachep;
55
56/*
57 * Controlling structure to kblockd
58 */
59static struct workqueue_struct *kblockd_workqueue;
60
61static void drive_stat_acct(struct request *rq, int new_io)
62{
63 struct hd_struct *part;
64 int rw = rq_data_dir(rq);
65 int cpu;
66
67 if (!blk_do_io_stat(rq))
68 return;
69
70 cpu = part_stat_lock();
71
72 if (!new_io) {
73 part = rq->part;
74 part_stat_inc(cpu, part, merges[rw]);
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
77 if (!hd_struct_try_get(part)) {
78 /*
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
81 *
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
85 */
86 part = &rq->rq_disk->part0;
87 hd_struct_get(part);
88 }
89 part_round_stats(cpu, part);
90 part_inc_in_flight(part, rw);
91 rq->part = part;
92 }
93
94 part_stat_unlock();
95}
96
97void blk_queue_congestion_threshold(struct request_queue *q)
98{
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110}
111
112/**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122{
123 struct backing_dev_info *ret = NULL;
124 struct request_queue *q = bdev_get_queue(bdev);
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129}
130EXPORT_SYMBOL(blk_get_backing_dev_info);
131
132void blk_rq_init(struct request_queue *q, struct request *rq)
133{
134 memset(rq, 0, sizeof(*rq));
135
136 INIT_LIST_HEAD(&rq->queuelist);
137 INIT_LIST_HEAD(&rq->timeout_list);
138 rq->cpu = -1;
139 rq->q = q;
140 rq->__sector = (sector_t) -1;
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
143 rq->cmd = rq->__cmd;
144 rq->cmd_len = BLK_MAX_CDB;
145 rq->tag = -1;
146 rq->ref_count = 1;
147 rq->start_time = jiffies;
148 set_start_time_ns(rq);
149 rq->part = NULL;
150}
151EXPORT_SYMBOL(blk_rq_init);
152
153static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
155{
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
160
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
165 }
166
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
169
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
172
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
175
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
179}
180
181void blk_dump_rq_flags(struct request *rq, char *msg)
182{
183 int bit;
184
185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 rq->cmd_flags);
188
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
194
195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
196 printk(KERN_INFO " cdb: ");
197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201}
202EXPORT_SYMBOL(blk_dump_rq_flags);
203
204static void blk_delay_work(struct work_struct *work)
205{
206 struct request_queue *q;
207
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
210 __blk_run_queue(q);
211 spin_unlock_irq(q->queue_lock);
212}
213
214/**
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
218 *
219 * Description:
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
223 */
224void blk_delay_queue(struct request_queue *q, unsigned long msecs)
225{
226 queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 msecs_to_jiffies(msecs));
228}
229EXPORT_SYMBOL(blk_delay_queue);
230
231/**
232 * blk_start_queue - restart a previously stopped queue
233 * @q: The &struct request_queue in question
234 *
235 * Description:
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
239 **/
240void blk_start_queue(struct request_queue *q)
241{
242 WARN_ON(!irqs_disabled());
243
244 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
245 __blk_run_queue(q);
246}
247EXPORT_SYMBOL(blk_start_queue);
248
249/**
250 * blk_stop_queue - stop a queue
251 * @q: The &struct request_queue in question
252 *
253 * Description:
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
262 **/
263void blk_stop_queue(struct request_queue *q)
264{
265 cancel_delayed_work(&q->delay_work);
266 queue_flag_set(QUEUE_FLAG_STOPPED, q);
267}
268EXPORT_SYMBOL(blk_stop_queue);
269
270/**
271 * blk_sync_queue - cancel any pending callbacks on a queue
272 * @q: the queue
273 *
274 * Description:
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
279 * that the callbacks might use. The caller must already have made sure
280 * that its ->make_request_fn will not re-add plugging prior to calling
281 * this function.
282 *
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
285 * and blkcg_exit_queue() to be called with queue lock initialized.
286 *
287 */
288void blk_sync_queue(struct request_queue *q)
289{
290 del_timer_sync(&q->timeout);
291 cancel_delayed_work_sync(&q->delay_work);
292}
293EXPORT_SYMBOL(blk_sync_queue);
294
295/**
296 * __blk_run_queue - run a single device queue
297 * @q: The queue to run
298 *
299 * Description:
300 * See @blk_run_queue. This variant must be called with the queue lock
301 * held and interrupts disabled.
302 */
303void __blk_run_queue(struct request_queue *q)
304{
305 if (unlikely(blk_queue_stopped(q)))
306 return;
307
308 q->request_fn(q);
309}
310EXPORT_SYMBOL(__blk_run_queue);
311
312/**
313 * blk_run_queue_async - run a single device queue in workqueue context
314 * @q: The queue to run
315 *
316 * Description:
317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318 * of us.
319 */
320void blk_run_queue_async(struct request_queue *q)
321{
322 if (likely(!blk_queue_stopped(q)))
323 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
324}
325EXPORT_SYMBOL(blk_run_queue_async);
326
327/**
328 * blk_run_queue - run a single device queue
329 * @q: The queue to run
330 *
331 * Description:
332 * Invoke request handling on this queue, if it has pending work to do.
333 * May be used to restart queueing when a request has completed.
334 */
335void blk_run_queue(struct request_queue *q)
336{
337 unsigned long flags;
338
339 spin_lock_irqsave(q->queue_lock, flags);
340 __blk_run_queue(q);
341 spin_unlock_irqrestore(q->queue_lock, flags);
342}
343EXPORT_SYMBOL(blk_run_queue);
344
345void blk_put_queue(struct request_queue *q)
346{
347 kobject_put(&q->kobj);
348}
349EXPORT_SYMBOL(blk_put_queue);
350
351/**
352 * __blk_drain_queue - drain requests from request_queue
353 * @q: queue to drain
354 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
355 *
356 * Drain requests from @q. If @drain_all is set, all requests are drained.
357 * If not, only ELVPRIV requests are drained. The caller is responsible
358 * for ensuring that no new requests which need to be drained are queued.
359 */
360static void __blk_drain_queue(struct request_queue *q, bool drain_all)
361 __releases(q->queue_lock)
362 __acquires(q->queue_lock)
363{
364 int i;
365
366 lockdep_assert_held(q->queue_lock);
367
368 while (true) {
369 bool drain = false;
370
371 /*
372 * The caller might be trying to drain @q before its
373 * elevator is initialized.
374 */
375 if (q->elevator)
376 elv_drain_elevator(q);
377
378 blkcg_drain_queue(q);
379
380 /*
381 * This function might be called on a queue which failed
382 * driver init after queue creation or is not yet fully
383 * active yet. Some drivers (e.g. fd and loop) get unhappy
384 * in such cases. Kick queue iff dispatch queue has
385 * something on it and @q has request_fn set.
386 */
387 if (!list_empty(&q->queue_head) && q->request_fn)
388 __blk_run_queue(q);
389
390 drain |= q->nr_rqs_elvpriv;
391
392 /*
393 * Unfortunately, requests are queued at and tracked from
394 * multiple places and there's no single counter which can
395 * be drained. Check all the queues and counters.
396 */
397 if (drain_all) {
398 drain |= !list_empty(&q->queue_head);
399 for (i = 0; i < 2; i++) {
400 drain |= q->nr_rqs[i];
401 drain |= q->in_flight[i];
402 drain |= !list_empty(&q->flush_queue[i]);
403 }
404 }
405
406 if (!drain)
407 break;
408
409 spin_unlock_irq(q->queue_lock);
410
411 msleep(10);
412
413 spin_lock_irq(q->queue_lock);
414 }
415
416 /*
417 * With queue marked dead, any woken up waiter will fail the
418 * allocation path, so the wakeup chaining is lost and we're
419 * left with hung waiters. We need to wake up those waiters.
420 */
421 if (q->request_fn) {
422 struct request_list *rl;
423
424 blk_queue_for_each_rl(rl, q)
425 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
426 wake_up_all(&rl->wait[i]);
427 }
428}
429
430/**
431 * blk_queue_bypass_start - enter queue bypass mode
432 * @q: queue of interest
433 *
434 * In bypass mode, only the dispatch FIFO queue of @q is used. This
435 * function makes @q enter bypass mode and drains all requests which were
436 * throttled or issued before. On return, it's guaranteed that no request
437 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
438 * inside queue or RCU read lock.
439 */
440void blk_queue_bypass_start(struct request_queue *q)
441{
442 bool drain;
443
444 spin_lock_irq(q->queue_lock);
445 drain = !q->bypass_depth++;
446 queue_flag_set(QUEUE_FLAG_BYPASS, q);
447 spin_unlock_irq(q->queue_lock);
448
449 if (drain) {
450 spin_lock_irq(q->queue_lock);
451 __blk_drain_queue(q, false);
452 spin_unlock_irq(q->queue_lock);
453
454 /* ensure blk_queue_bypass() is %true inside RCU read lock */
455 synchronize_rcu();
456 }
457}
458EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
459
460/**
461 * blk_queue_bypass_end - leave queue bypass mode
462 * @q: queue of interest
463 *
464 * Leave bypass mode and restore the normal queueing behavior.
465 */
466void blk_queue_bypass_end(struct request_queue *q)
467{
468 spin_lock_irq(q->queue_lock);
469 if (!--q->bypass_depth)
470 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
471 WARN_ON_ONCE(q->bypass_depth < 0);
472 spin_unlock_irq(q->queue_lock);
473}
474EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
475
476/**
477 * blk_cleanup_queue - shutdown a request queue
478 * @q: request queue to shutdown
479 *
480 * Mark @q DYING, drain all pending requests, destroy and put it. All
481 * future requests will be failed immediately with -ENODEV.
482 */
483void blk_cleanup_queue(struct request_queue *q)
484{
485 spinlock_t *lock = q->queue_lock;
486
487 /* mark @q DYING, no new request or merges will be allowed afterwards */
488 mutex_lock(&q->sysfs_lock);
489 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
490 spin_lock_irq(lock);
491
492 /*
493 * A dying queue is permanently in bypass mode till released. Note
494 * that, unlike blk_queue_bypass_start(), we aren't performing
495 * synchronize_rcu() after entering bypass mode to avoid the delay
496 * as some drivers create and destroy a lot of queues while
497 * probing. This is still safe because blk_release_queue() will be
498 * called only after the queue refcnt drops to zero and nothing,
499 * RCU or not, would be traversing the queue by then.
500 */
501 q->bypass_depth++;
502 queue_flag_set(QUEUE_FLAG_BYPASS, q);
503
504 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
505 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
506 queue_flag_set(QUEUE_FLAG_DYING, q);
507 spin_unlock_irq(lock);
508 mutex_unlock(&q->sysfs_lock);
509
510 /* drain all requests queued before DYING marking */
511 spin_lock_irq(lock);
512 __blk_drain_queue(q, true);
513 spin_unlock_irq(lock);
514
515 /* @q won't process any more request, flush async actions */
516 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
517 blk_sync_queue(q);
518
519 spin_lock_irq(lock);
520 if (q->queue_lock != &q->__queue_lock)
521 q->queue_lock = &q->__queue_lock;
522 spin_unlock_irq(lock);
523
524 /* @q is and will stay empty, shutdown and put */
525 blk_put_queue(q);
526}
527EXPORT_SYMBOL(blk_cleanup_queue);
528
529int blk_init_rl(struct request_list *rl, struct request_queue *q,
530 gfp_t gfp_mask)
531{
532 if (unlikely(rl->rq_pool))
533 return 0;
534
535 rl->q = q;
536 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
537 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
538 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
539 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
540
541 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
542 mempool_free_slab, request_cachep,
543 gfp_mask, q->node);
544 if (!rl->rq_pool)
545 return -ENOMEM;
546
547 return 0;
548}
549
550void blk_exit_rl(struct request_list *rl)
551{
552 if (rl->rq_pool)
553 mempool_destroy(rl->rq_pool);
554}
555
556struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
557{
558 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
559}
560EXPORT_SYMBOL(blk_alloc_queue);
561
562struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
563{
564 struct request_queue *q;
565 int err;
566
567 q = kmem_cache_alloc_node(blk_requestq_cachep,
568 gfp_mask | __GFP_ZERO, node_id);
569 if (!q)
570 return NULL;
571
572 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
573 if (q->id < 0)
574 goto fail_q;
575
576 q->backing_dev_info.ra_pages =
577 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
578 q->backing_dev_info.state = 0;
579 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
580 q->backing_dev_info.name = "block";
581 q->node = node_id;
582
583 err = bdi_init(&q->backing_dev_info);
584 if (err)
585 goto fail_id;
586
587 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
588 laptop_mode_timer_fn, (unsigned long) q);
589 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
590 INIT_LIST_HEAD(&q->queue_head);
591 INIT_LIST_HEAD(&q->timeout_list);
592 INIT_LIST_HEAD(&q->icq_list);
593#ifdef CONFIG_BLK_CGROUP
594 INIT_LIST_HEAD(&q->blkg_list);
595#endif
596 INIT_LIST_HEAD(&q->flush_queue[0]);
597 INIT_LIST_HEAD(&q->flush_queue[1]);
598 INIT_LIST_HEAD(&q->flush_data_in_flight);
599 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
600
601 kobject_init(&q->kobj, &blk_queue_ktype);
602
603 mutex_init(&q->sysfs_lock);
604 spin_lock_init(&q->__queue_lock);
605
606 /*
607 * By default initialize queue_lock to internal lock and driver can
608 * override it later if need be.
609 */
610 q->queue_lock = &q->__queue_lock;
611
612 /*
613 * A queue starts its life with bypass turned on to avoid
614 * unnecessary bypass on/off overhead and nasty surprises during
615 * init. The initial bypass will be finished when the queue is
616 * registered by blk_register_queue().
617 */
618 q->bypass_depth = 1;
619 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
620
621 if (blkcg_init_queue(q))
622 goto fail_id;
623
624 return q;
625
626fail_id:
627 ida_simple_remove(&blk_queue_ida, q->id);
628fail_q:
629 kmem_cache_free(blk_requestq_cachep, q);
630 return NULL;
631}
632EXPORT_SYMBOL(blk_alloc_queue_node);
633
634/**
635 * blk_init_queue - prepare a request queue for use with a block device
636 * @rfn: The function to be called to process requests that have been
637 * placed on the queue.
638 * @lock: Request queue spin lock
639 *
640 * Description:
641 * If a block device wishes to use the standard request handling procedures,
642 * which sorts requests and coalesces adjacent requests, then it must
643 * call blk_init_queue(). The function @rfn will be called when there
644 * are requests on the queue that need to be processed. If the device
645 * supports plugging, then @rfn may not be called immediately when requests
646 * are available on the queue, but may be called at some time later instead.
647 * Plugged queues are generally unplugged when a buffer belonging to one
648 * of the requests on the queue is needed, or due to memory pressure.
649 *
650 * @rfn is not required, or even expected, to remove all requests off the
651 * queue, but only as many as it can handle at a time. If it does leave
652 * requests on the queue, it is responsible for arranging that the requests
653 * get dealt with eventually.
654 *
655 * The queue spin lock must be held while manipulating the requests on the
656 * request queue; this lock will be taken also from interrupt context, so irq
657 * disabling is needed for it.
658 *
659 * Function returns a pointer to the initialized request queue, or %NULL if
660 * it didn't succeed.
661 *
662 * Note:
663 * blk_init_queue() must be paired with a blk_cleanup_queue() call
664 * when the block device is deactivated (such as at module unload).
665 **/
666
667struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
668{
669 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
670}
671EXPORT_SYMBOL(blk_init_queue);
672
673struct request_queue *
674blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
675{
676 struct request_queue *uninit_q, *q;
677
678 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
679 if (!uninit_q)
680 return NULL;
681
682 q = blk_init_allocated_queue(uninit_q, rfn, lock);
683 if (!q)
684 blk_cleanup_queue(uninit_q);
685
686 return q;
687}
688EXPORT_SYMBOL(blk_init_queue_node);
689
690struct request_queue *
691blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
692 spinlock_t *lock)
693{
694 if (!q)
695 return NULL;
696
697 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
698 return NULL;
699
700 q->request_fn = rfn;
701 q->prep_rq_fn = NULL;
702 q->unprep_rq_fn = NULL;
703 q->queue_flags |= QUEUE_FLAG_DEFAULT;
704
705 /* Override internal queue lock with supplied lock pointer */
706 if (lock)
707 q->queue_lock = lock;
708
709 /*
710 * This also sets hw/phys segments, boundary and size
711 */
712 blk_queue_make_request(q, blk_queue_bio);
713
714 q->sg_reserved_size = INT_MAX;
715
716 /* init elevator */
717 if (elevator_init(q, NULL))
718 return NULL;
719 return q;
720}
721EXPORT_SYMBOL(blk_init_allocated_queue);
722
723bool blk_get_queue(struct request_queue *q)
724{
725 if (likely(!blk_queue_dying(q))) {
726 __blk_get_queue(q);
727 return true;
728 }
729
730 return false;
731}
732EXPORT_SYMBOL(blk_get_queue);
733
734static inline void blk_free_request(struct request_list *rl, struct request *rq)
735{
736 if (rq->cmd_flags & REQ_ELVPRIV) {
737 elv_put_request(rl->q, rq);
738 if (rq->elv.icq)
739 put_io_context(rq->elv.icq->ioc);
740 }
741
742 mempool_free(rq, rl->rq_pool);
743}
744
745/*
746 * ioc_batching returns true if the ioc is a valid batching request and
747 * should be given priority access to a request.
748 */
749static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
750{
751 if (!ioc)
752 return 0;
753
754 /*
755 * Make sure the process is able to allocate at least 1 request
756 * even if the batch times out, otherwise we could theoretically
757 * lose wakeups.
758 */
759 return ioc->nr_batch_requests == q->nr_batching ||
760 (ioc->nr_batch_requests > 0
761 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
762}
763
764/*
765 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
766 * will cause the process to be a "batcher" on all queues in the system. This
767 * is the behaviour we want though - once it gets a wakeup it should be given
768 * a nice run.
769 */
770static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
771{
772 if (!ioc || ioc_batching(q, ioc))
773 return;
774
775 ioc->nr_batch_requests = q->nr_batching;
776 ioc->last_waited = jiffies;
777}
778
779static void __freed_request(struct request_list *rl, int sync)
780{
781 struct request_queue *q = rl->q;
782
783 /*
784 * bdi isn't aware of blkcg yet. As all async IOs end up root
785 * blkcg anyway, just use root blkcg state.
786 */
787 if (rl == &q->root_rl &&
788 rl->count[sync] < queue_congestion_off_threshold(q))
789 blk_clear_queue_congested(q, sync);
790
791 if (rl->count[sync] + 1 <= q->nr_requests) {
792 if (waitqueue_active(&rl->wait[sync]))
793 wake_up(&rl->wait[sync]);
794
795 blk_clear_rl_full(rl, sync);
796 }
797}
798
799/*
800 * A request has just been released. Account for it, update the full and
801 * congestion status, wake up any waiters. Called under q->queue_lock.
802 */
803static void freed_request(struct request_list *rl, unsigned int flags)
804{
805 struct request_queue *q = rl->q;
806 int sync = rw_is_sync(flags);
807
808 q->nr_rqs[sync]--;
809 rl->count[sync]--;
810 if (flags & REQ_ELVPRIV)
811 q->nr_rqs_elvpriv--;
812
813 __freed_request(rl, sync);
814
815 if (unlikely(rl->starved[sync ^ 1]))
816 __freed_request(rl, sync ^ 1);
817}
818
819/*
820 * Determine if elevator data should be initialized when allocating the
821 * request associated with @bio.
822 */
823static bool blk_rq_should_init_elevator(struct bio *bio)
824{
825 if (!bio)
826 return true;
827
828 /*
829 * Flush requests do not use the elevator so skip initialization.
830 * This allows a request to share the flush and elevator data.
831 */
832 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
833 return false;
834
835 return true;
836}
837
838/**
839 * rq_ioc - determine io_context for request allocation
840 * @bio: request being allocated is for this bio (can be %NULL)
841 *
842 * Determine io_context to use for request allocation for @bio. May return
843 * %NULL if %current->io_context doesn't exist.
844 */
845static struct io_context *rq_ioc(struct bio *bio)
846{
847#ifdef CONFIG_BLK_CGROUP
848 if (bio && bio->bi_ioc)
849 return bio->bi_ioc;
850#endif
851 return current->io_context;
852}
853
854/**
855 * __get_request - get a free request
856 * @rl: request list to allocate from
857 * @rw_flags: RW and SYNC flags
858 * @bio: bio to allocate request for (can be %NULL)
859 * @gfp_mask: allocation mask
860 *
861 * Get a free request from @q. This function may fail under memory
862 * pressure or if @q is dead.
863 *
864 * Must be callled with @q->queue_lock held and,
865 * Returns %NULL on failure, with @q->queue_lock held.
866 * Returns !%NULL on success, with @q->queue_lock *not held*.
867 */
868static struct request *__get_request(struct request_list *rl, int rw_flags,
869 struct bio *bio, gfp_t gfp_mask)
870{
871 struct request_queue *q = rl->q;
872 struct request *rq;
873 struct elevator_type *et = q->elevator->type;
874 struct io_context *ioc = rq_ioc(bio);
875 struct io_cq *icq = NULL;
876 const bool is_sync = rw_is_sync(rw_flags) != 0;
877 int may_queue;
878
879 if (unlikely(blk_queue_dying(q)))
880 return NULL;
881
882 may_queue = elv_may_queue(q, rw_flags);
883 if (may_queue == ELV_MQUEUE_NO)
884 goto rq_starved;
885
886 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
887 if (rl->count[is_sync]+1 >= q->nr_requests) {
888 /*
889 * The queue will fill after this allocation, so set
890 * it as full, and mark this process as "batching".
891 * This process will be allowed to complete a batch of
892 * requests, others will be blocked.
893 */
894 if (!blk_rl_full(rl, is_sync)) {
895 ioc_set_batching(q, ioc);
896 blk_set_rl_full(rl, is_sync);
897 } else {
898 if (may_queue != ELV_MQUEUE_MUST
899 && !ioc_batching(q, ioc)) {
900 /*
901 * The queue is full and the allocating
902 * process is not a "batcher", and not
903 * exempted by the IO scheduler
904 */
905 return NULL;
906 }
907 }
908 }
909 /*
910 * bdi isn't aware of blkcg yet. As all async IOs end up
911 * root blkcg anyway, just use root blkcg state.
912 */
913 if (rl == &q->root_rl)
914 blk_set_queue_congested(q, is_sync);
915 }
916
917 /*
918 * Only allow batching queuers to allocate up to 50% over the defined
919 * limit of requests, otherwise we could have thousands of requests
920 * allocated with any setting of ->nr_requests
921 */
922 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
923 return NULL;
924
925 q->nr_rqs[is_sync]++;
926 rl->count[is_sync]++;
927 rl->starved[is_sync] = 0;
928
929 /*
930 * Decide whether the new request will be managed by elevator. If
931 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
932 * prevent the current elevator from being destroyed until the new
933 * request is freed. This guarantees icq's won't be destroyed and
934 * makes creating new ones safe.
935 *
936 * Also, lookup icq while holding queue_lock. If it doesn't exist,
937 * it will be created after releasing queue_lock.
938 */
939 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
940 rw_flags |= REQ_ELVPRIV;
941 q->nr_rqs_elvpriv++;
942 if (et->icq_cache && ioc)
943 icq = ioc_lookup_icq(ioc, q);
944 }
945
946 if (blk_queue_io_stat(q))
947 rw_flags |= REQ_IO_STAT;
948 spin_unlock_irq(q->queue_lock);
949
950 /* allocate and init request */
951 rq = mempool_alloc(rl->rq_pool, gfp_mask);
952 if (!rq)
953 goto fail_alloc;
954
955 blk_rq_init(q, rq);
956 blk_rq_set_rl(rq, rl);
957 rq->cmd_flags = rw_flags | REQ_ALLOCED;
958
959 /* init elvpriv */
960 if (rw_flags & REQ_ELVPRIV) {
961 if (unlikely(et->icq_cache && !icq)) {
962 if (ioc)
963 icq = ioc_create_icq(ioc, q, gfp_mask);
964 if (!icq)
965 goto fail_elvpriv;
966 }
967
968 rq->elv.icq = icq;
969 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
970 goto fail_elvpriv;
971
972 /* @rq->elv.icq holds io_context until @rq is freed */
973 if (icq)
974 get_io_context(icq->ioc);
975 }
976out:
977 /*
978 * ioc may be NULL here, and ioc_batching will be false. That's
979 * OK, if the queue is under the request limit then requests need
980 * not count toward the nr_batch_requests limit. There will always
981 * be some limit enforced by BLK_BATCH_TIME.
982 */
983 if (ioc_batching(q, ioc))
984 ioc->nr_batch_requests--;
985
986 trace_block_getrq(q, bio, rw_flags & 1);
987 return rq;
988
989fail_elvpriv:
990 /*
991 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
992 * and may fail indefinitely under memory pressure and thus
993 * shouldn't stall IO. Treat this request as !elvpriv. This will
994 * disturb iosched and blkcg but weird is bettern than dead.
995 */
996 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
997 dev_name(q->backing_dev_info.dev));
998
999 rq->cmd_flags &= ~REQ_ELVPRIV;
1000 rq->elv.icq = NULL;
1001
1002 spin_lock_irq(q->queue_lock);
1003 q->nr_rqs_elvpriv--;
1004 spin_unlock_irq(q->queue_lock);
1005 goto out;
1006
1007fail_alloc:
1008 /*
1009 * Allocation failed presumably due to memory. Undo anything we
1010 * might have messed up.
1011 *
1012 * Allocating task should really be put onto the front of the wait
1013 * queue, but this is pretty rare.
1014 */
1015 spin_lock_irq(q->queue_lock);
1016 freed_request(rl, rw_flags);
1017
1018 /*
1019 * in the very unlikely event that allocation failed and no
1020 * requests for this direction was pending, mark us starved so that
1021 * freeing of a request in the other direction will notice
1022 * us. another possible fix would be to split the rq mempool into
1023 * READ and WRITE
1024 */
1025rq_starved:
1026 if (unlikely(rl->count[is_sync] == 0))
1027 rl->starved[is_sync] = 1;
1028 return NULL;
1029}
1030
1031/**
1032 * get_request - get a free request
1033 * @q: request_queue to allocate request from
1034 * @rw_flags: RW and SYNC flags
1035 * @bio: bio to allocate request for (can be %NULL)
1036 * @gfp_mask: allocation mask
1037 *
1038 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1039 * function keeps retrying under memory pressure and fails iff @q is dead.
1040 *
1041 * Must be callled with @q->queue_lock held and,
1042 * Returns %NULL on failure, with @q->queue_lock held.
1043 * Returns !%NULL on success, with @q->queue_lock *not held*.
1044 */
1045static struct request *get_request(struct request_queue *q, int rw_flags,
1046 struct bio *bio, gfp_t gfp_mask)
1047{
1048 const bool is_sync = rw_is_sync(rw_flags) != 0;
1049 DEFINE_WAIT(wait);
1050 struct request_list *rl;
1051 struct request *rq;
1052
1053 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1054retry:
1055 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1056 if (rq)
1057 return rq;
1058
1059 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1060 blk_put_rl(rl);
1061 return NULL;
1062 }
1063
1064 /* wait on @rl and retry */
1065 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1066 TASK_UNINTERRUPTIBLE);
1067
1068 trace_block_sleeprq(q, bio, rw_flags & 1);
1069
1070 spin_unlock_irq(q->queue_lock);
1071 io_schedule();
1072
1073 /*
1074 * After sleeping, we become a "batching" process and will be able
1075 * to allocate at least one request, and up to a big batch of them
1076 * for a small period time. See ioc_batching, ioc_set_batching
1077 */
1078 ioc_set_batching(q, current->io_context);
1079
1080 spin_lock_irq(q->queue_lock);
1081 finish_wait(&rl->wait[is_sync], &wait);
1082
1083 goto retry;
1084}
1085
1086struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1087{
1088 struct request *rq;
1089
1090 BUG_ON(rw != READ && rw != WRITE);
1091
1092 /* create ioc upfront */
1093 create_io_context(gfp_mask, q->node);
1094
1095 spin_lock_irq(q->queue_lock);
1096 rq = get_request(q, rw, NULL, gfp_mask);
1097 if (!rq)
1098 spin_unlock_irq(q->queue_lock);
1099 /* q->queue_lock is unlocked at this point */
1100
1101 return rq;
1102}
1103EXPORT_SYMBOL(blk_get_request);
1104
1105/**
1106 * blk_make_request - given a bio, allocate a corresponding struct request.
1107 * @q: target request queue
1108 * @bio: The bio describing the memory mappings that will be submitted for IO.
1109 * It may be a chained-bio properly constructed by block/bio layer.
1110 * @gfp_mask: gfp flags to be used for memory allocation
1111 *
1112 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1113 * type commands. Where the struct request needs to be farther initialized by
1114 * the caller. It is passed a &struct bio, which describes the memory info of
1115 * the I/O transfer.
1116 *
1117 * The caller of blk_make_request must make sure that bi_io_vec
1118 * are set to describe the memory buffers. That bio_data_dir() will return
1119 * the needed direction of the request. (And all bio's in the passed bio-chain
1120 * are properly set accordingly)
1121 *
1122 * If called under none-sleepable conditions, mapped bio buffers must not
1123 * need bouncing, by calling the appropriate masked or flagged allocator,
1124 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1125 * BUG.
1126 *
1127 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1128 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1129 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1130 * completion of a bio that hasn't been submitted yet, thus resulting in a
1131 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1132 * of bio_alloc(), as that avoids the mempool deadlock.
1133 * If possible a big IO should be split into smaller parts when allocation
1134 * fails. Partial allocation should not be an error, or you risk a live-lock.
1135 */
1136struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1137 gfp_t gfp_mask)
1138{
1139 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1140
1141 if (unlikely(!rq))
1142 return ERR_PTR(-ENOMEM);
1143
1144 for_each_bio(bio) {
1145 struct bio *bounce_bio = bio;
1146 int ret;
1147
1148 blk_queue_bounce(q, &bounce_bio);
1149 ret = blk_rq_append_bio(q, rq, bounce_bio);
1150 if (unlikely(ret)) {
1151 blk_put_request(rq);
1152 return ERR_PTR(ret);
1153 }
1154 }
1155
1156 return rq;
1157}
1158EXPORT_SYMBOL(blk_make_request);
1159
1160/**
1161 * blk_requeue_request - put a request back on queue
1162 * @q: request queue where request should be inserted
1163 * @rq: request to be inserted
1164 *
1165 * Description:
1166 * Drivers often keep queueing requests until the hardware cannot accept
1167 * more, when that condition happens we need to put the request back
1168 * on the queue. Must be called with queue lock held.
1169 */
1170void blk_requeue_request(struct request_queue *q, struct request *rq)
1171{
1172 blk_delete_timer(rq);
1173 blk_clear_rq_complete(rq);
1174 trace_block_rq_requeue(q, rq);
1175
1176 if (blk_rq_tagged(rq))
1177 blk_queue_end_tag(q, rq);
1178
1179 BUG_ON(blk_queued_rq(rq));
1180
1181 elv_requeue_request(q, rq);
1182}
1183EXPORT_SYMBOL(blk_requeue_request);
1184
1185static void add_acct_request(struct request_queue *q, struct request *rq,
1186 int where)
1187{
1188 drive_stat_acct(rq, 1);
1189 __elv_add_request(q, rq, where);
1190}
1191
1192static void part_round_stats_single(int cpu, struct hd_struct *part,
1193 unsigned long now)
1194{
1195 if (now == part->stamp)
1196 return;
1197
1198 if (part_in_flight(part)) {
1199 __part_stat_add(cpu, part, time_in_queue,
1200 part_in_flight(part) * (now - part->stamp));
1201 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1202 }
1203 part->stamp = now;
1204}
1205
1206/**
1207 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1208 * @cpu: cpu number for stats access
1209 * @part: target partition
1210 *
1211 * The average IO queue length and utilisation statistics are maintained
1212 * by observing the current state of the queue length and the amount of
1213 * time it has been in this state for.
1214 *
1215 * Normally, that accounting is done on IO completion, but that can result
1216 * in more than a second's worth of IO being accounted for within any one
1217 * second, leading to >100% utilisation. To deal with that, we call this
1218 * function to do a round-off before returning the results when reading
1219 * /proc/diskstats. This accounts immediately for all queue usage up to
1220 * the current jiffies and restarts the counters again.
1221 */
1222void part_round_stats(int cpu, struct hd_struct *part)
1223{
1224 unsigned long now = jiffies;
1225
1226 if (part->partno)
1227 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1228 part_round_stats_single(cpu, part, now);
1229}
1230EXPORT_SYMBOL_GPL(part_round_stats);
1231
1232/*
1233 * queue lock must be held
1234 */
1235void __blk_put_request(struct request_queue *q, struct request *req)
1236{
1237 if (unlikely(!q))
1238 return;
1239 if (unlikely(--req->ref_count))
1240 return;
1241
1242 elv_completed_request(q, req);
1243
1244 /* this is a bio leak */
1245 WARN_ON(req->bio != NULL);
1246
1247 /*
1248 * Request may not have originated from ll_rw_blk. if not,
1249 * it didn't come out of our reserved rq pools
1250 */
1251 if (req->cmd_flags & REQ_ALLOCED) {
1252 unsigned int flags = req->cmd_flags;
1253 struct request_list *rl = blk_rq_rl(req);
1254
1255 BUG_ON(!list_empty(&req->queuelist));
1256 BUG_ON(!hlist_unhashed(&req->hash));
1257
1258 blk_free_request(rl, req);
1259 freed_request(rl, flags);
1260 blk_put_rl(rl);
1261 }
1262}
1263EXPORT_SYMBOL_GPL(__blk_put_request);
1264
1265void blk_put_request(struct request *req)
1266{
1267 unsigned long flags;
1268 struct request_queue *q = req->q;
1269
1270 spin_lock_irqsave(q->queue_lock, flags);
1271 __blk_put_request(q, req);
1272 spin_unlock_irqrestore(q->queue_lock, flags);
1273}
1274EXPORT_SYMBOL(blk_put_request);
1275
1276/**
1277 * blk_add_request_payload - add a payload to a request
1278 * @rq: request to update
1279 * @page: page backing the payload
1280 * @len: length of the payload.
1281 *
1282 * This allows to later add a payload to an already submitted request by
1283 * a block driver. The driver needs to take care of freeing the payload
1284 * itself.
1285 *
1286 * Note that this is a quite horrible hack and nothing but handling of
1287 * discard requests should ever use it.
1288 */
1289void blk_add_request_payload(struct request *rq, struct page *page,
1290 unsigned int len)
1291{
1292 struct bio *bio = rq->bio;
1293
1294 bio->bi_io_vec->bv_page = page;
1295 bio->bi_io_vec->bv_offset = 0;
1296 bio->bi_io_vec->bv_len = len;
1297
1298 bio->bi_size = len;
1299 bio->bi_vcnt = 1;
1300 bio->bi_phys_segments = 1;
1301
1302 rq->__data_len = rq->resid_len = len;
1303 rq->nr_phys_segments = 1;
1304 rq->buffer = bio_data(bio);
1305}
1306EXPORT_SYMBOL_GPL(blk_add_request_payload);
1307
1308static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1309 struct bio *bio)
1310{
1311 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1312
1313 if (!ll_back_merge_fn(q, req, bio))
1314 return false;
1315
1316 trace_block_bio_backmerge(q, bio);
1317
1318 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1319 blk_rq_set_mixed_merge(req);
1320
1321 req->biotail->bi_next = bio;
1322 req->biotail = bio;
1323 req->__data_len += bio->bi_size;
1324 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1325
1326 drive_stat_acct(req, 0);
1327 return true;
1328}
1329
1330static bool bio_attempt_front_merge(struct request_queue *q,
1331 struct request *req, struct bio *bio)
1332{
1333 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1334
1335 if (!ll_front_merge_fn(q, req, bio))
1336 return false;
1337
1338 trace_block_bio_frontmerge(q, bio);
1339
1340 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1341 blk_rq_set_mixed_merge(req);
1342
1343 bio->bi_next = req->bio;
1344 req->bio = bio;
1345
1346 /*
1347 * may not be valid. if the low level driver said
1348 * it didn't need a bounce buffer then it better
1349 * not touch req->buffer either...
1350 */
1351 req->buffer = bio_data(bio);
1352 req->__sector = bio->bi_sector;
1353 req->__data_len += bio->bi_size;
1354 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1355
1356 drive_stat_acct(req, 0);
1357 return true;
1358}
1359
1360/**
1361 * attempt_plug_merge - try to merge with %current's plugged list
1362 * @q: request_queue new bio is being queued at
1363 * @bio: new bio being queued
1364 * @request_count: out parameter for number of traversed plugged requests
1365 *
1366 * Determine whether @bio being queued on @q can be merged with a request
1367 * on %current's plugged list. Returns %true if merge was successful,
1368 * otherwise %false.
1369 *
1370 * Plugging coalesces IOs from the same issuer for the same purpose without
1371 * going through @q->queue_lock. As such it's more of an issuing mechanism
1372 * than scheduling, and the request, while may have elvpriv data, is not
1373 * added on the elevator at this point. In addition, we don't have
1374 * reliable access to the elevator outside queue lock. Only check basic
1375 * merging parameters without querying the elevator.
1376 */
1377static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1378 unsigned int *request_count)
1379{
1380 struct blk_plug *plug;
1381 struct request *rq;
1382 bool ret = false;
1383
1384 plug = current->plug;
1385 if (!plug)
1386 goto out;
1387 *request_count = 0;
1388
1389 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1390 int el_ret;
1391
1392 if (rq->q == q)
1393 (*request_count)++;
1394
1395 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1396 continue;
1397
1398 el_ret = blk_try_merge(rq, bio);
1399 if (el_ret == ELEVATOR_BACK_MERGE) {
1400 ret = bio_attempt_back_merge(q, rq, bio);
1401 if (ret)
1402 break;
1403 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1404 ret = bio_attempt_front_merge(q, rq, bio);
1405 if (ret)
1406 break;
1407 }
1408 }
1409out:
1410 return ret;
1411}
1412
1413void init_request_from_bio(struct request *req, struct bio *bio)
1414{
1415 req->cmd_type = REQ_TYPE_FS;
1416
1417 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1418 if (bio->bi_rw & REQ_RAHEAD)
1419 req->cmd_flags |= REQ_FAILFAST_MASK;
1420
1421 req->errors = 0;
1422 req->__sector = bio->bi_sector;
1423 req->ioprio = bio_prio(bio);
1424 blk_rq_bio_prep(req->q, req, bio);
1425}
1426
1427void blk_queue_bio(struct request_queue *q, struct bio *bio)
1428{
1429 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1430 struct blk_plug *plug;
1431 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1432 struct request *req;
1433 unsigned int request_count = 0;
1434
1435 /*
1436 * low level driver can indicate that it wants pages above a
1437 * certain limit bounced to low memory (ie for highmem, or even
1438 * ISA dma in theory)
1439 */
1440 blk_queue_bounce(q, &bio);
1441
1442 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1443 spin_lock_irq(q->queue_lock);
1444 where = ELEVATOR_INSERT_FLUSH;
1445 goto get_rq;
1446 }
1447
1448 /*
1449 * Check if we can merge with the plugged list before grabbing
1450 * any locks.
1451 */
1452 if (attempt_plug_merge(q, bio, &request_count))
1453 return;
1454
1455 spin_lock_irq(q->queue_lock);
1456
1457 el_ret = elv_merge(q, &req, bio);
1458 if (el_ret == ELEVATOR_BACK_MERGE) {
1459 if (bio_attempt_back_merge(q, req, bio)) {
1460 elv_bio_merged(q, req, bio);
1461 if (!attempt_back_merge(q, req))
1462 elv_merged_request(q, req, el_ret);
1463 goto out_unlock;
1464 }
1465 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1466 if (bio_attempt_front_merge(q, req, bio)) {
1467 elv_bio_merged(q, req, bio);
1468 if (!attempt_front_merge(q, req))
1469 elv_merged_request(q, req, el_ret);
1470 goto out_unlock;
1471 }
1472 }
1473
1474get_rq:
1475 /*
1476 * This sync check and mask will be re-done in init_request_from_bio(),
1477 * but we need to set it earlier to expose the sync flag to the
1478 * rq allocator and io schedulers.
1479 */
1480 rw_flags = bio_data_dir(bio);
1481 if (sync)
1482 rw_flags |= REQ_SYNC;
1483
1484 /*
1485 * Grab a free request. This is might sleep but can not fail.
1486 * Returns with the queue unlocked.
1487 */
1488 req = get_request(q, rw_flags, bio, GFP_NOIO);
1489 if (unlikely(!req)) {
1490 bio_endio(bio, -ENODEV); /* @q is dead */
1491 goto out_unlock;
1492 }
1493
1494 /*
1495 * After dropping the lock and possibly sleeping here, our request
1496 * may now be mergeable after it had proven unmergeable (above).
1497 * We don't worry about that case for efficiency. It won't happen
1498 * often, and the elevators are able to handle it.
1499 */
1500 init_request_from_bio(req, bio);
1501
1502 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1503 req->cpu = raw_smp_processor_id();
1504
1505 plug = current->plug;
1506 if (plug) {
1507 /*
1508 * If this is the first request added after a plug, fire
1509 * of a plug trace. If others have been added before, check
1510 * if we have multiple devices in this plug. If so, make a
1511 * note to sort the list before dispatch.
1512 */
1513 if (list_empty(&plug->list))
1514 trace_block_plug(q);
1515 else {
1516 if (!plug->should_sort) {
1517 struct request *__rq;
1518
1519 __rq = list_entry_rq(plug->list.prev);
1520 if (__rq->q != q)
1521 plug->should_sort = 1;
1522 }
1523 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1524 blk_flush_plug_list(plug, false);
1525 trace_block_plug(q);
1526 }
1527 }
1528 list_add_tail(&req->queuelist, &plug->list);
1529 drive_stat_acct(req, 1);
1530 } else {
1531 spin_lock_irq(q->queue_lock);
1532 add_acct_request(q, req, where);
1533 __blk_run_queue(q);
1534out_unlock:
1535 spin_unlock_irq(q->queue_lock);
1536 }
1537}
1538EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1539
1540/*
1541 * If bio->bi_dev is a partition, remap the location
1542 */
1543static inline void blk_partition_remap(struct bio *bio)
1544{
1545 struct block_device *bdev = bio->bi_bdev;
1546
1547 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1548 struct hd_struct *p = bdev->bd_part;
1549
1550 bio->bi_sector += p->start_sect;
1551 bio->bi_bdev = bdev->bd_contains;
1552
1553 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1554 bdev->bd_dev,
1555 bio->bi_sector - p->start_sect);
1556 }
1557}
1558
1559static void handle_bad_sector(struct bio *bio)
1560{
1561 char b[BDEVNAME_SIZE];
1562
1563 printk(KERN_INFO "attempt to access beyond end of device\n");
1564 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1565 bdevname(bio->bi_bdev, b),
1566 bio->bi_rw,
1567 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1568 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1569
1570 set_bit(BIO_EOF, &bio->bi_flags);
1571}
1572
1573#ifdef CONFIG_FAIL_MAKE_REQUEST
1574
1575static DECLARE_FAULT_ATTR(fail_make_request);
1576
1577static int __init setup_fail_make_request(char *str)
1578{
1579 return setup_fault_attr(&fail_make_request, str);
1580}
1581__setup("fail_make_request=", setup_fail_make_request);
1582
1583static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1584{
1585 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1586}
1587
1588static int __init fail_make_request_debugfs(void)
1589{
1590 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1591 NULL, &fail_make_request);
1592
1593 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1594}
1595
1596late_initcall(fail_make_request_debugfs);
1597
1598#else /* CONFIG_FAIL_MAKE_REQUEST */
1599
1600static inline bool should_fail_request(struct hd_struct *part,
1601 unsigned int bytes)
1602{
1603 return false;
1604}
1605
1606#endif /* CONFIG_FAIL_MAKE_REQUEST */
1607
1608/*
1609 * Check whether this bio extends beyond the end of the device.
1610 */
1611static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1612{
1613 sector_t maxsector;
1614
1615 if (!nr_sectors)
1616 return 0;
1617
1618 /* Test device or partition size, when known. */
1619 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1620 if (maxsector) {
1621 sector_t sector = bio->bi_sector;
1622
1623 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1624 /*
1625 * This may well happen - the kernel calls bread()
1626 * without checking the size of the device, e.g., when
1627 * mounting a device.
1628 */
1629 handle_bad_sector(bio);
1630 return 1;
1631 }
1632 }
1633
1634 return 0;
1635}
1636
1637static noinline_for_stack bool
1638generic_make_request_checks(struct bio *bio)
1639{
1640 struct request_queue *q;
1641 int nr_sectors = bio_sectors(bio);
1642 int err = -EIO;
1643 char b[BDEVNAME_SIZE];
1644 struct hd_struct *part;
1645
1646 might_sleep();
1647
1648 if (bio_check_eod(bio, nr_sectors))
1649 goto end_io;
1650
1651 q = bdev_get_queue(bio->bi_bdev);
1652 if (unlikely(!q)) {
1653 printk(KERN_ERR
1654 "generic_make_request: Trying to access "
1655 "nonexistent block-device %s (%Lu)\n",
1656 bdevname(bio->bi_bdev, b),
1657 (long long) bio->bi_sector);
1658 goto end_io;
1659 }
1660
1661 if (likely(bio_is_rw(bio) &&
1662 nr_sectors > queue_max_hw_sectors(q))) {
1663 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1664 bdevname(bio->bi_bdev, b),
1665 bio_sectors(bio),
1666 queue_max_hw_sectors(q));
1667 goto end_io;
1668 }
1669
1670 part = bio->bi_bdev->bd_part;
1671 if (should_fail_request(part, bio->bi_size) ||
1672 should_fail_request(&part_to_disk(part)->part0,
1673 bio->bi_size))
1674 goto end_io;
1675
1676 /*
1677 * If this device has partitions, remap block n
1678 * of partition p to block n+start(p) of the disk.
1679 */
1680 blk_partition_remap(bio);
1681
1682 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1683 goto end_io;
1684
1685 if (bio_check_eod(bio, nr_sectors))
1686 goto end_io;
1687
1688 /*
1689 * Filter flush bio's early so that make_request based
1690 * drivers without flush support don't have to worry
1691 * about them.
1692 */
1693 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1694 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1695 if (!nr_sectors) {
1696 err = 0;
1697 goto end_io;
1698 }
1699 }
1700
1701 if ((bio->bi_rw & REQ_DISCARD) &&
1702 (!blk_queue_discard(q) ||
1703 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1704 err = -EOPNOTSUPP;
1705 goto end_io;
1706 }
1707
1708 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1709 err = -EOPNOTSUPP;
1710 goto end_io;
1711 }
1712
1713 /*
1714 * Various block parts want %current->io_context and lazy ioc
1715 * allocation ends up trading a lot of pain for a small amount of
1716 * memory. Just allocate it upfront. This may fail and block
1717 * layer knows how to live with it.
1718 */
1719 create_io_context(GFP_ATOMIC, q->node);
1720
1721 if (blk_throtl_bio(q, bio))
1722 return false; /* throttled, will be resubmitted later */
1723
1724 trace_block_bio_queue(q, bio);
1725 return true;
1726
1727end_io:
1728 bio_endio(bio, err);
1729 return false;
1730}
1731
1732/**
1733 * generic_make_request - hand a buffer to its device driver for I/O
1734 * @bio: The bio describing the location in memory and on the device.
1735 *
1736 * generic_make_request() is used to make I/O requests of block
1737 * devices. It is passed a &struct bio, which describes the I/O that needs
1738 * to be done.
1739 *
1740 * generic_make_request() does not return any status. The
1741 * success/failure status of the request, along with notification of
1742 * completion, is delivered asynchronously through the bio->bi_end_io
1743 * function described (one day) else where.
1744 *
1745 * The caller of generic_make_request must make sure that bi_io_vec
1746 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1747 * set to describe the device address, and the
1748 * bi_end_io and optionally bi_private are set to describe how
1749 * completion notification should be signaled.
1750 *
1751 * generic_make_request and the drivers it calls may use bi_next if this
1752 * bio happens to be merged with someone else, and may resubmit the bio to
1753 * a lower device by calling into generic_make_request recursively, which
1754 * means the bio should NOT be touched after the call to ->make_request_fn.
1755 */
1756void generic_make_request(struct bio *bio)
1757{
1758 struct bio_list bio_list_on_stack;
1759
1760 if (!generic_make_request_checks(bio))
1761 return;
1762
1763 /*
1764 * We only want one ->make_request_fn to be active at a time, else
1765 * stack usage with stacked devices could be a problem. So use
1766 * current->bio_list to keep a list of requests submited by a
1767 * make_request_fn function. current->bio_list is also used as a
1768 * flag to say if generic_make_request is currently active in this
1769 * task or not. If it is NULL, then no make_request is active. If
1770 * it is non-NULL, then a make_request is active, and new requests
1771 * should be added at the tail
1772 */
1773 if (current->bio_list) {
1774 bio_list_add(current->bio_list, bio);
1775 return;
1776 }
1777
1778 /* following loop may be a bit non-obvious, and so deserves some
1779 * explanation.
1780 * Before entering the loop, bio->bi_next is NULL (as all callers
1781 * ensure that) so we have a list with a single bio.
1782 * We pretend that we have just taken it off a longer list, so
1783 * we assign bio_list to a pointer to the bio_list_on_stack,
1784 * thus initialising the bio_list of new bios to be
1785 * added. ->make_request() may indeed add some more bios
1786 * through a recursive call to generic_make_request. If it
1787 * did, we find a non-NULL value in bio_list and re-enter the loop
1788 * from the top. In this case we really did just take the bio
1789 * of the top of the list (no pretending) and so remove it from
1790 * bio_list, and call into ->make_request() again.
1791 */
1792 BUG_ON(bio->bi_next);
1793 bio_list_init(&bio_list_on_stack);
1794 current->bio_list = &bio_list_on_stack;
1795 do {
1796 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1797
1798 q->make_request_fn(q, bio);
1799
1800 bio = bio_list_pop(current->bio_list);
1801 } while (bio);
1802 current->bio_list = NULL; /* deactivate */
1803}
1804EXPORT_SYMBOL(generic_make_request);
1805
1806/**
1807 * submit_bio - submit a bio to the block device layer for I/O
1808 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1809 * @bio: The &struct bio which describes the I/O
1810 *
1811 * submit_bio() is very similar in purpose to generic_make_request(), and
1812 * uses that function to do most of the work. Both are fairly rough
1813 * interfaces; @bio must be presetup and ready for I/O.
1814 *
1815 */
1816void submit_bio(int rw, struct bio *bio)
1817{
1818 bio->bi_rw |= rw;
1819
1820 /*
1821 * If it's a regular read/write or a barrier with data attached,
1822 * go through the normal accounting stuff before submission.
1823 */
1824 if (bio_has_data(bio)) {
1825 unsigned int count;
1826
1827 if (unlikely(rw & REQ_WRITE_SAME))
1828 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1829 else
1830 count = bio_sectors(bio);
1831
1832 if (rw & WRITE) {
1833 count_vm_events(PGPGOUT, count);
1834 } else {
1835 task_io_account_read(bio->bi_size);
1836 count_vm_events(PGPGIN, count);
1837 }
1838
1839 if (unlikely(block_dump)) {
1840 char b[BDEVNAME_SIZE];
1841 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1842 current->comm, task_pid_nr(current),
1843 (rw & WRITE) ? "WRITE" : "READ",
1844 (unsigned long long)bio->bi_sector,
1845 bdevname(bio->bi_bdev, b),
1846 count);
1847 }
1848 }
1849
1850 generic_make_request(bio);
1851}
1852EXPORT_SYMBOL(submit_bio);
1853
1854/**
1855 * blk_rq_check_limits - Helper function to check a request for the queue limit
1856 * @q: the queue
1857 * @rq: the request being checked
1858 *
1859 * Description:
1860 * @rq may have been made based on weaker limitations of upper-level queues
1861 * in request stacking drivers, and it may violate the limitation of @q.
1862 * Since the block layer and the underlying device driver trust @rq
1863 * after it is inserted to @q, it should be checked against @q before
1864 * the insertion using this generic function.
1865 *
1866 * This function should also be useful for request stacking drivers
1867 * in some cases below, so export this function.
1868 * Request stacking drivers like request-based dm may change the queue
1869 * limits while requests are in the queue (e.g. dm's table swapping).
1870 * Such request stacking drivers should check those requests agaist
1871 * the new queue limits again when they dispatch those requests,
1872 * although such checkings are also done against the old queue limits
1873 * when submitting requests.
1874 */
1875int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1876{
1877 if (!rq_mergeable(rq))
1878 return 0;
1879
1880 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1881 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1882 return -EIO;
1883 }
1884
1885 /*
1886 * queue's settings related to segment counting like q->bounce_pfn
1887 * may differ from that of other stacking queues.
1888 * Recalculate it to check the request correctly on this queue's
1889 * limitation.
1890 */
1891 blk_recalc_rq_segments(rq);
1892 if (rq->nr_phys_segments > queue_max_segments(q)) {
1893 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1894 return -EIO;
1895 }
1896
1897 return 0;
1898}
1899EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1900
1901/**
1902 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1903 * @q: the queue to submit the request
1904 * @rq: the request being queued
1905 */
1906int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1907{
1908 unsigned long flags;
1909 int where = ELEVATOR_INSERT_BACK;
1910
1911 if (blk_rq_check_limits(q, rq))
1912 return -EIO;
1913
1914 if (rq->rq_disk &&
1915 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1916 return -EIO;
1917
1918 spin_lock_irqsave(q->queue_lock, flags);
1919 if (unlikely(blk_queue_dying(q))) {
1920 spin_unlock_irqrestore(q->queue_lock, flags);
1921 return -ENODEV;
1922 }
1923
1924 /*
1925 * Submitting request must be dequeued before calling this function
1926 * because it will be linked to another request_queue
1927 */
1928 BUG_ON(blk_queued_rq(rq));
1929
1930 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1931 where = ELEVATOR_INSERT_FLUSH;
1932
1933 add_acct_request(q, rq, where);
1934 if (where == ELEVATOR_INSERT_FLUSH)
1935 __blk_run_queue(q);
1936 spin_unlock_irqrestore(q->queue_lock, flags);
1937
1938 return 0;
1939}
1940EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1941
1942/**
1943 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1944 * @rq: request to examine
1945 *
1946 * Description:
1947 * A request could be merge of IOs which require different failure
1948 * handling. This function determines the number of bytes which
1949 * can be failed from the beginning of the request without
1950 * crossing into area which need to be retried further.
1951 *
1952 * Return:
1953 * The number of bytes to fail.
1954 *
1955 * Context:
1956 * queue_lock must be held.
1957 */
1958unsigned int blk_rq_err_bytes(const struct request *rq)
1959{
1960 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1961 unsigned int bytes = 0;
1962 struct bio *bio;
1963
1964 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1965 return blk_rq_bytes(rq);
1966
1967 /*
1968 * Currently the only 'mixing' which can happen is between
1969 * different fastfail types. We can safely fail portions
1970 * which have all the failfast bits that the first one has -
1971 * the ones which are at least as eager to fail as the first
1972 * one.
1973 */
1974 for (bio = rq->bio; bio; bio = bio->bi_next) {
1975 if ((bio->bi_rw & ff) != ff)
1976 break;
1977 bytes += bio->bi_size;
1978 }
1979
1980 /* this could lead to infinite loop */
1981 BUG_ON(blk_rq_bytes(rq) && !bytes);
1982 return bytes;
1983}
1984EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1985
1986static void blk_account_io_completion(struct request *req, unsigned int bytes)
1987{
1988 if (blk_do_io_stat(req)) {
1989 const int rw = rq_data_dir(req);
1990 struct hd_struct *part;
1991 int cpu;
1992
1993 cpu = part_stat_lock();
1994 part = req->part;
1995 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1996 part_stat_unlock();
1997 }
1998}
1999
2000static void blk_account_io_done(struct request *req)
2001{
2002 /*
2003 * Account IO completion. flush_rq isn't accounted as a
2004 * normal IO on queueing nor completion. Accounting the
2005 * containing request is enough.
2006 */
2007 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2008 unsigned long duration = jiffies - req->start_time;
2009 const int rw = rq_data_dir(req);
2010 struct hd_struct *part;
2011 int cpu;
2012
2013 cpu = part_stat_lock();
2014 part = req->part;
2015
2016 part_stat_inc(cpu, part, ios[rw]);
2017 part_stat_add(cpu, part, ticks[rw], duration);
2018 part_round_stats(cpu, part);
2019 part_dec_in_flight(part, rw);
2020
2021 hd_struct_put(part);
2022 part_stat_unlock();
2023 }
2024}
2025
2026/**
2027 * blk_peek_request - peek at the top of a request queue
2028 * @q: request queue to peek at
2029 *
2030 * Description:
2031 * Return the request at the top of @q. The returned request
2032 * should be started using blk_start_request() before LLD starts
2033 * processing it.
2034 *
2035 * Return:
2036 * Pointer to the request at the top of @q if available. Null
2037 * otherwise.
2038 *
2039 * Context:
2040 * queue_lock must be held.
2041 */
2042struct request *blk_peek_request(struct request_queue *q)
2043{
2044 struct request *rq;
2045 int ret;
2046
2047 while ((rq = __elv_next_request(q)) != NULL) {
2048 if (!(rq->cmd_flags & REQ_STARTED)) {
2049 /*
2050 * This is the first time the device driver
2051 * sees this request (possibly after
2052 * requeueing). Notify IO scheduler.
2053 */
2054 if (rq->cmd_flags & REQ_SORTED)
2055 elv_activate_rq(q, rq);
2056
2057 /*
2058 * just mark as started even if we don't start
2059 * it, a request that has been delayed should
2060 * not be passed by new incoming requests
2061 */
2062 rq->cmd_flags |= REQ_STARTED;
2063 trace_block_rq_issue(q, rq);
2064 }
2065
2066 if (!q->boundary_rq || q->boundary_rq == rq) {
2067 q->end_sector = rq_end_sector(rq);
2068 q->boundary_rq = NULL;
2069 }
2070
2071 if (rq->cmd_flags & REQ_DONTPREP)
2072 break;
2073
2074 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2075 /*
2076 * make sure space for the drain appears we
2077 * know we can do this because max_hw_segments
2078 * has been adjusted to be one fewer than the
2079 * device can handle
2080 */
2081 rq->nr_phys_segments++;
2082 }
2083
2084 if (!q->prep_rq_fn)
2085 break;
2086
2087 ret = q->prep_rq_fn(q, rq);
2088 if (ret == BLKPREP_OK) {
2089 break;
2090 } else if (ret == BLKPREP_DEFER) {
2091 /*
2092 * the request may have been (partially) prepped.
2093 * we need to keep this request in the front to
2094 * avoid resource deadlock. REQ_STARTED will
2095 * prevent other fs requests from passing this one.
2096 */
2097 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2098 !(rq->cmd_flags & REQ_DONTPREP)) {
2099 /*
2100 * remove the space for the drain we added
2101 * so that we don't add it again
2102 */
2103 --rq->nr_phys_segments;
2104 }
2105
2106 rq = NULL;
2107 break;
2108 } else if (ret == BLKPREP_KILL) {
2109 rq->cmd_flags |= REQ_QUIET;
2110 /*
2111 * Mark this request as started so we don't trigger
2112 * any debug logic in the end I/O path.
2113 */
2114 blk_start_request(rq);
2115 __blk_end_request_all(rq, -EIO);
2116 } else {
2117 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2118 break;
2119 }
2120 }
2121
2122 return rq;
2123}
2124EXPORT_SYMBOL(blk_peek_request);
2125
2126void blk_dequeue_request(struct request *rq)
2127{
2128 struct request_queue *q = rq->q;
2129
2130 BUG_ON(list_empty(&rq->queuelist));
2131 BUG_ON(ELV_ON_HASH(rq));
2132
2133 list_del_init(&rq->queuelist);
2134
2135 /*
2136 * the time frame between a request being removed from the lists
2137 * and to it is freed is accounted as io that is in progress at
2138 * the driver side.
2139 */
2140 if (blk_account_rq(rq)) {
2141 q->in_flight[rq_is_sync(rq)]++;
2142 set_io_start_time_ns(rq);
2143 }
2144}
2145
2146/**
2147 * blk_start_request - start request processing on the driver
2148 * @req: request to dequeue
2149 *
2150 * Description:
2151 * Dequeue @req and start timeout timer on it. This hands off the
2152 * request to the driver.
2153 *
2154 * Block internal functions which don't want to start timer should
2155 * call blk_dequeue_request().
2156 *
2157 * Context:
2158 * queue_lock must be held.
2159 */
2160void blk_start_request(struct request *req)
2161{
2162 blk_dequeue_request(req);
2163
2164 /*
2165 * We are now handing the request to the hardware, initialize
2166 * resid_len to full count and add the timeout handler.
2167 */
2168 req->resid_len = blk_rq_bytes(req);
2169 if (unlikely(blk_bidi_rq(req)))
2170 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2171
2172 blk_add_timer(req);
2173}
2174EXPORT_SYMBOL(blk_start_request);
2175
2176/**
2177 * blk_fetch_request - fetch a request from a request queue
2178 * @q: request queue to fetch a request from
2179 *
2180 * Description:
2181 * Return the request at the top of @q. The request is started on
2182 * return and LLD can start processing it immediately.
2183 *
2184 * Return:
2185 * Pointer to the request at the top of @q if available. Null
2186 * otherwise.
2187 *
2188 * Context:
2189 * queue_lock must be held.
2190 */
2191struct request *blk_fetch_request(struct request_queue *q)
2192{
2193 struct request *rq;
2194
2195 rq = blk_peek_request(q);
2196 if (rq)
2197 blk_start_request(rq);
2198 return rq;
2199}
2200EXPORT_SYMBOL(blk_fetch_request);
2201
2202/**
2203 * blk_update_request - Special helper function for request stacking drivers
2204 * @req: the request being processed
2205 * @error: %0 for success, < %0 for error
2206 * @nr_bytes: number of bytes to complete @req
2207 *
2208 * Description:
2209 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2210 * the request structure even if @req doesn't have leftover.
2211 * If @req has leftover, sets it up for the next range of segments.
2212 *
2213 * This special helper function is only for request stacking drivers
2214 * (e.g. request-based dm) so that they can handle partial completion.
2215 * Actual device drivers should use blk_end_request instead.
2216 *
2217 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2218 * %false return from this function.
2219 *
2220 * Return:
2221 * %false - this request doesn't have any more data
2222 * %true - this request has more data
2223 **/
2224bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2225{
2226 int total_bytes, bio_nbytes, next_idx = 0;
2227 struct bio *bio;
2228
2229 if (!req->bio)
2230 return false;
2231
2232 trace_block_rq_complete(req->q, req);
2233
2234 /*
2235 * For fs requests, rq is just carrier of independent bio's
2236 * and each partial completion should be handled separately.
2237 * Reset per-request error on each partial completion.
2238 *
2239 * TODO: tj: This is too subtle. It would be better to let
2240 * low level drivers do what they see fit.
2241 */
2242 if (req->cmd_type == REQ_TYPE_FS)
2243 req->errors = 0;
2244
2245 if (error && req->cmd_type == REQ_TYPE_FS &&
2246 !(req->cmd_flags & REQ_QUIET)) {
2247 char *error_type;
2248
2249 switch (error) {
2250 case -ENOLINK:
2251 error_type = "recoverable transport";
2252 break;
2253 case -EREMOTEIO:
2254 error_type = "critical target";
2255 break;
2256 case -EBADE:
2257 error_type = "critical nexus";
2258 break;
2259 case -EIO:
2260 default:
2261 error_type = "I/O";
2262 break;
2263 }
2264 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2265 error_type, req->rq_disk ?
2266 req->rq_disk->disk_name : "?",
2267 (unsigned long long)blk_rq_pos(req));
2268
2269 }
2270
2271 blk_account_io_completion(req, nr_bytes);
2272
2273 total_bytes = bio_nbytes = 0;
2274 while ((bio = req->bio) != NULL) {
2275 int nbytes;
2276
2277 if (nr_bytes >= bio->bi_size) {
2278 req->bio = bio->bi_next;
2279 nbytes = bio->bi_size;
2280 req_bio_endio(req, bio, nbytes, error);
2281 next_idx = 0;
2282 bio_nbytes = 0;
2283 } else {
2284 int idx = bio->bi_idx + next_idx;
2285
2286 if (unlikely(idx >= bio->bi_vcnt)) {
2287 blk_dump_rq_flags(req, "__end_that");
2288 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2289 __func__, idx, bio->bi_vcnt);
2290 break;
2291 }
2292
2293 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2294 BIO_BUG_ON(nbytes > bio->bi_size);
2295
2296 /*
2297 * not a complete bvec done
2298 */
2299 if (unlikely(nbytes > nr_bytes)) {
2300 bio_nbytes += nr_bytes;
2301 total_bytes += nr_bytes;
2302 break;
2303 }
2304
2305 /*
2306 * advance to the next vector
2307 */
2308 next_idx++;
2309 bio_nbytes += nbytes;
2310 }
2311
2312 total_bytes += nbytes;
2313 nr_bytes -= nbytes;
2314
2315 bio = req->bio;
2316 if (bio) {
2317 /*
2318 * end more in this run, or just return 'not-done'
2319 */
2320 if (unlikely(nr_bytes <= 0))
2321 break;
2322 }
2323 }
2324
2325 /*
2326 * completely done
2327 */
2328 if (!req->bio) {
2329 /*
2330 * Reset counters so that the request stacking driver
2331 * can find how many bytes remain in the request
2332 * later.
2333 */
2334 req->__data_len = 0;
2335 return false;
2336 }
2337
2338 /*
2339 * if the request wasn't completed, update state
2340 */
2341 if (bio_nbytes) {
2342 req_bio_endio(req, bio, bio_nbytes, error);
2343 bio->bi_idx += next_idx;
2344 bio_iovec(bio)->bv_offset += nr_bytes;
2345 bio_iovec(bio)->bv_len -= nr_bytes;
2346 }
2347
2348 req->__data_len -= total_bytes;
2349 req->buffer = bio_data(req->bio);
2350
2351 /* update sector only for requests with clear definition of sector */
2352 if (req->cmd_type == REQ_TYPE_FS)
2353 req->__sector += total_bytes >> 9;
2354
2355 /* mixed attributes always follow the first bio */
2356 if (req->cmd_flags & REQ_MIXED_MERGE) {
2357 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2358 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2359 }
2360
2361 /*
2362 * If total number of sectors is less than the first segment
2363 * size, something has gone terribly wrong.
2364 */
2365 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2366 blk_dump_rq_flags(req, "request botched");
2367 req->__data_len = blk_rq_cur_bytes(req);
2368 }
2369
2370 /* recalculate the number of segments */
2371 blk_recalc_rq_segments(req);
2372
2373 return true;
2374}
2375EXPORT_SYMBOL_GPL(blk_update_request);
2376
2377static bool blk_update_bidi_request(struct request *rq, int error,
2378 unsigned int nr_bytes,
2379 unsigned int bidi_bytes)
2380{
2381 if (blk_update_request(rq, error, nr_bytes))
2382 return true;
2383
2384 /* Bidi request must be completed as a whole */
2385 if (unlikely(blk_bidi_rq(rq)) &&
2386 blk_update_request(rq->next_rq, error, bidi_bytes))
2387 return true;
2388
2389 if (blk_queue_add_random(rq->q))
2390 add_disk_randomness(rq->rq_disk);
2391
2392 return false;
2393}
2394
2395/**
2396 * blk_unprep_request - unprepare a request
2397 * @req: the request
2398 *
2399 * This function makes a request ready for complete resubmission (or
2400 * completion). It happens only after all error handling is complete,
2401 * so represents the appropriate moment to deallocate any resources
2402 * that were allocated to the request in the prep_rq_fn. The queue
2403 * lock is held when calling this.
2404 */
2405void blk_unprep_request(struct request *req)
2406{
2407 struct request_queue *q = req->q;
2408
2409 req->cmd_flags &= ~REQ_DONTPREP;
2410 if (q->unprep_rq_fn)
2411 q->unprep_rq_fn(q, req);
2412}
2413EXPORT_SYMBOL_GPL(blk_unprep_request);
2414
2415/*
2416 * queue lock must be held
2417 */
2418static void blk_finish_request(struct request *req, int error)
2419{
2420 if (blk_rq_tagged(req))
2421 blk_queue_end_tag(req->q, req);
2422
2423 BUG_ON(blk_queued_rq(req));
2424
2425 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2426 laptop_io_completion(&req->q->backing_dev_info);
2427
2428 blk_delete_timer(req);
2429
2430 if (req->cmd_flags & REQ_DONTPREP)
2431 blk_unprep_request(req);
2432
2433
2434 blk_account_io_done(req);
2435
2436 if (req->end_io)
2437 req->end_io(req, error);
2438 else {
2439 if (blk_bidi_rq(req))
2440 __blk_put_request(req->next_rq->q, req->next_rq);
2441
2442 __blk_put_request(req->q, req);
2443 }
2444}
2445
2446/**
2447 * blk_end_bidi_request - Complete a bidi request
2448 * @rq: the request to complete
2449 * @error: %0 for success, < %0 for error
2450 * @nr_bytes: number of bytes to complete @rq
2451 * @bidi_bytes: number of bytes to complete @rq->next_rq
2452 *
2453 * Description:
2454 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2455 * Drivers that supports bidi can safely call this member for any
2456 * type of request, bidi or uni. In the later case @bidi_bytes is
2457 * just ignored.
2458 *
2459 * Return:
2460 * %false - we are done with this request
2461 * %true - still buffers pending for this request
2462 **/
2463static bool blk_end_bidi_request(struct request *rq, int error,
2464 unsigned int nr_bytes, unsigned int bidi_bytes)
2465{
2466 struct request_queue *q = rq->q;
2467 unsigned long flags;
2468
2469 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2470 return true;
2471
2472 spin_lock_irqsave(q->queue_lock, flags);
2473 blk_finish_request(rq, error);
2474 spin_unlock_irqrestore(q->queue_lock, flags);
2475
2476 return false;
2477}
2478
2479/**
2480 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2481 * @rq: the request to complete
2482 * @error: %0 for success, < %0 for error
2483 * @nr_bytes: number of bytes to complete @rq
2484 * @bidi_bytes: number of bytes to complete @rq->next_rq
2485 *
2486 * Description:
2487 * Identical to blk_end_bidi_request() except that queue lock is
2488 * assumed to be locked on entry and remains so on return.
2489 *
2490 * Return:
2491 * %false - we are done with this request
2492 * %true - still buffers pending for this request
2493 **/
2494bool __blk_end_bidi_request(struct request *rq, int error,
2495 unsigned int nr_bytes, unsigned int bidi_bytes)
2496{
2497 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2498 return true;
2499
2500 blk_finish_request(rq, error);
2501
2502 return false;
2503}
2504
2505/**
2506 * blk_end_request - Helper function for drivers to complete the request.
2507 * @rq: the request being processed
2508 * @error: %0 for success, < %0 for error
2509 * @nr_bytes: number of bytes to complete
2510 *
2511 * Description:
2512 * Ends I/O on a number of bytes attached to @rq.
2513 * If @rq has leftover, sets it up for the next range of segments.
2514 *
2515 * Return:
2516 * %false - we are done with this request
2517 * %true - still buffers pending for this request
2518 **/
2519bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2520{
2521 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2522}
2523EXPORT_SYMBOL(blk_end_request);
2524
2525/**
2526 * blk_end_request_all - Helper function for drives to finish the request.
2527 * @rq: the request to finish
2528 * @error: %0 for success, < %0 for error
2529 *
2530 * Description:
2531 * Completely finish @rq.
2532 */
2533void blk_end_request_all(struct request *rq, int error)
2534{
2535 bool pending;
2536 unsigned int bidi_bytes = 0;
2537
2538 if (unlikely(blk_bidi_rq(rq)))
2539 bidi_bytes = blk_rq_bytes(rq->next_rq);
2540
2541 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2542 BUG_ON(pending);
2543}
2544EXPORT_SYMBOL(blk_end_request_all);
2545
2546/**
2547 * blk_end_request_cur - Helper function to finish the current request chunk.
2548 * @rq: the request to finish the current chunk for
2549 * @error: %0 for success, < %0 for error
2550 *
2551 * Description:
2552 * Complete the current consecutively mapped chunk from @rq.
2553 *
2554 * Return:
2555 * %false - we are done with this request
2556 * %true - still buffers pending for this request
2557 */
2558bool blk_end_request_cur(struct request *rq, int error)
2559{
2560 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2561}
2562EXPORT_SYMBOL(blk_end_request_cur);
2563
2564/**
2565 * blk_end_request_err - Finish a request till the next failure boundary.
2566 * @rq: the request to finish till the next failure boundary for
2567 * @error: must be negative errno
2568 *
2569 * Description:
2570 * Complete @rq till the next failure boundary.
2571 *
2572 * Return:
2573 * %false - we are done with this request
2574 * %true - still buffers pending for this request
2575 */
2576bool blk_end_request_err(struct request *rq, int error)
2577{
2578 WARN_ON(error >= 0);
2579 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2580}
2581EXPORT_SYMBOL_GPL(blk_end_request_err);
2582
2583/**
2584 * __blk_end_request - Helper function for drivers to complete the request.
2585 * @rq: the request being processed
2586 * @error: %0 for success, < %0 for error
2587 * @nr_bytes: number of bytes to complete
2588 *
2589 * Description:
2590 * Must be called with queue lock held unlike blk_end_request().
2591 *
2592 * Return:
2593 * %false - we are done with this request
2594 * %true - still buffers pending for this request
2595 **/
2596bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2597{
2598 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2599}
2600EXPORT_SYMBOL(__blk_end_request);
2601
2602/**
2603 * __blk_end_request_all - Helper function for drives to finish the request.
2604 * @rq: the request to finish
2605 * @error: %0 for success, < %0 for error
2606 *
2607 * Description:
2608 * Completely finish @rq. Must be called with queue lock held.
2609 */
2610void __blk_end_request_all(struct request *rq, int error)
2611{
2612 bool pending;
2613 unsigned int bidi_bytes = 0;
2614
2615 if (unlikely(blk_bidi_rq(rq)))
2616 bidi_bytes = blk_rq_bytes(rq->next_rq);
2617
2618 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2619 BUG_ON(pending);
2620}
2621EXPORT_SYMBOL(__blk_end_request_all);
2622
2623/**
2624 * __blk_end_request_cur - Helper function to finish the current request chunk.
2625 * @rq: the request to finish the current chunk for
2626 * @error: %0 for success, < %0 for error
2627 *
2628 * Description:
2629 * Complete the current consecutively mapped chunk from @rq. Must
2630 * be called with queue lock held.
2631 *
2632 * Return:
2633 * %false - we are done with this request
2634 * %true - still buffers pending for this request
2635 */
2636bool __blk_end_request_cur(struct request *rq, int error)
2637{
2638 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2639}
2640EXPORT_SYMBOL(__blk_end_request_cur);
2641
2642/**
2643 * __blk_end_request_err - Finish a request till the next failure boundary.
2644 * @rq: the request to finish till the next failure boundary for
2645 * @error: must be negative errno
2646 *
2647 * Description:
2648 * Complete @rq till the next failure boundary. Must be called
2649 * with queue lock held.
2650 *
2651 * Return:
2652 * %false - we are done with this request
2653 * %true - still buffers pending for this request
2654 */
2655bool __blk_end_request_err(struct request *rq, int error)
2656{
2657 WARN_ON(error >= 0);
2658 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2659}
2660EXPORT_SYMBOL_GPL(__blk_end_request_err);
2661
2662void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2663 struct bio *bio)
2664{
2665 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2666 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2667
2668 if (bio_has_data(bio)) {
2669 rq->nr_phys_segments = bio_phys_segments(q, bio);
2670 rq->buffer = bio_data(bio);
2671 }
2672 rq->__data_len = bio->bi_size;
2673 rq->bio = rq->biotail = bio;
2674
2675 if (bio->bi_bdev)
2676 rq->rq_disk = bio->bi_bdev->bd_disk;
2677}
2678
2679#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2680/**
2681 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2682 * @rq: the request to be flushed
2683 *
2684 * Description:
2685 * Flush all pages in @rq.
2686 */
2687void rq_flush_dcache_pages(struct request *rq)
2688{
2689 struct req_iterator iter;
2690 struct bio_vec *bvec;
2691
2692 rq_for_each_segment(bvec, rq, iter)
2693 flush_dcache_page(bvec->bv_page);
2694}
2695EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2696#endif
2697
2698/**
2699 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2700 * @q : the queue of the device being checked
2701 *
2702 * Description:
2703 * Check if underlying low-level drivers of a device are busy.
2704 * If the drivers want to export their busy state, they must set own
2705 * exporting function using blk_queue_lld_busy() first.
2706 *
2707 * Basically, this function is used only by request stacking drivers
2708 * to stop dispatching requests to underlying devices when underlying
2709 * devices are busy. This behavior helps more I/O merging on the queue
2710 * of the request stacking driver and prevents I/O throughput regression
2711 * on burst I/O load.
2712 *
2713 * Return:
2714 * 0 - Not busy (The request stacking driver should dispatch request)
2715 * 1 - Busy (The request stacking driver should stop dispatching request)
2716 */
2717int blk_lld_busy(struct request_queue *q)
2718{
2719 if (q->lld_busy_fn)
2720 return q->lld_busy_fn(q);
2721
2722 return 0;
2723}
2724EXPORT_SYMBOL_GPL(blk_lld_busy);
2725
2726/**
2727 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2728 * @rq: the clone request to be cleaned up
2729 *
2730 * Description:
2731 * Free all bios in @rq for a cloned request.
2732 */
2733void blk_rq_unprep_clone(struct request *rq)
2734{
2735 struct bio *bio;
2736
2737 while ((bio = rq->bio) != NULL) {
2738 rq->bio = bio->bi_next;
2739
2740 bio_put(bio);
2741 }
2742}
2743EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2744
2745/*
2746 * Copy attributes of the original request to the clone request.
2747 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2748 */
2749static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2750{
2751 dst->cpu = src->cpu;
2752 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2753 dst->cmd_type = src->cmd_type;
2754 dst->__sector = blk_rq_pos(src);
2755 dst->__data_len = blk_rq_bytes(src);
2756 dst->nr_phys_segments = src->nr_phys_segments;
2757 dst->ioprio = src->ioprio;
2758 dst->extra_len = src->extra_len;
2759}
2760
2761/**
2762 * blk_rq_prep_clone - Helper function to setup clone request
2763 * @rq: the request to be setup
2764 * @rq_src: original request to be cloned
2765 * @bs: bio_set that bios for clone are allocated from
2766 * @gfp_mask: memory allocation mask for bio
2767 * @bio_ctr: setup function to be called for each clone bio.
2768 * Returns %0 for success, non %0 for failure.
2769 * @data: private data to be passed to @bio_ctr
2770 *
2771 * Description:
2772 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2773 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2774 * are not copied, and copying such parts is the caller's responsibility.
2775 * Also, pages which the original bios are pointing to are not copied
2776 * and the cloned bios just point same pages.
2777 * So cloned bios must be completed before original bios, which means
2778 * the caller must complete @rq before @rq_src.
2779 */
2780int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2781 struct bio_set *bs, gfp_t gfp_mask,
2782 int (*bio_ctr)(struct bio *, struct bio *, void *),
2783 void *data)
2784{
2785 struct bio *bio, *bio_src;
2786
2787 if (!bs)
2788 bs = fs_bio_set;
2789
2790 blk_rq_init(NULL, rq);
2791
2792 __rq_for_each_bio(bio_src, rq_src) {
2793 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2794 if (!bio)
2795 goto free_and_out;
2796
2797 if (bio_ctr && bio_ctr(bio, bio_src, data))
2798 goto free_and_out;
2799
2800 if (rq->bio) {
2801 rq->biotail->bi_next = bio;
2802 rq->biotail = bio;
2803 } else
2804 rq->bio = rq->biotail = bio;
2805 }
2806
2807 __blk_rq_prep_clone(rq, rq_src);
2808
2809 return 0;
2810
2811free_and_out:
2812 if (bio)
2813 bio_put(bio);
2814 blk_rq_unprep_clone(rq);
2815
2816 return -ENOMEM;
2817}
2818EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2819
2820int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2821{
2822 return queue_work(kblockd_workqueue, work);
2823}
2824EXPORT_SYMBOL(kblockd_schedule_work);
2825
2826int kblockd_schedule_delayed_work(struct request_queue *q,
2827 struct delayed_work *dwork, unsigned long delay)
2828{
2829 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2830}
2831EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2832
2833#define PLUG_MAGIC 0x91827364
2834
2835/**
2836 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2837 * @plug: The &struct blk_plug that needs to be initialized
2838 *
2839 * Description:
2840 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2841 * pending I/O should the task end up blocking between blk_start_plug() and
2842 * blk_finish_plug(). This is important from a performance perspective, but
2843 * also ensures that we don't deadlock. For instance, if the task is blocking
2844 * for a memory allocation, memory reclaim could end up wanting to free a
2845 * page belonging to that request that is currently residing in our private
2846 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2847 * this kind of deadlock.
2848 */
2849void blk_start_plug(struct blk_plug *plug)
2850{
2851 struct task_struct *tsk = current;
2852
2853 plug->magic = PLUG_MAGIC;
2854 INIT_LIST_HEAD(&plug->list);
2855 INIT_LIST_HEAD(&plug->cb_list);
2856 plug->should_sort = 0;
2857
2858 /*
2859 * If this is a nested plug, don't actually assign it. It will be
2860 * flushed on its own.
2861 */
2862 if (!tsk->plug) {
2863 /*
2864 * Store ordering should not be needed here, since a potential
2865 * preempt will imply a full memory barrier
2866 */
2867 tsk->plug = plug;
2868 }
2869}
2870EXPORT_SYMBOL(blk_start_plug);
2871
2872static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2873{
2874 struct request *rqa = container_of(a, struct request, queuelist);
2875 struct request *rqb = container_of(b, struct request, queuelist);
2876
2877 return !(rqa->q < rqb->q ||
2878 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2879}
2880
2881/*
2882 * If 'from_schedule' is true, then postpone the dispatch of requests
2883 * until a safe kblockd context. We due this to avoid accidental big
2884 * additional stack usage in driver dispatch, in places where the originally
2885 * plugger did not intend it.
2886 */
2887static void queue_unplugged(struct request_queue *q, unsigned int depth,
2888 bool from_schedule)
2889 __releases(q->queue_lock)
2890{
2891 trace_block_unplug(q, depth, !from_schedule);
2892
2893 /*
2894 * Don't mess with a dying queue.
2895 */
2896 if (unlikely(blk_queue_dying(q))) {
2897 spin_unlock(q->queue_lock);
2898 return;
2899 }
2900
2901 /*
2902 * If we are punting this to kblockd, then we can safely drop
2903 * the queue_lock before waking kblockd (which needs to take
2904 * this lock).
2905 */
2906 if (from_schedule) {
2907 spin_unlock(q->queue_lock);
2908 blk_run_queue_async(q);
2909 } else {
2910 __blk_run_queue(q);
2911 spin_unlock(q->queue_lock);
2912 }
2913
2914}
2915
2916static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2917{
2918 LIST_HEAD(callbacks);
2919
2920 while (!list_empty(&plug->cb_list)) {
2921 list_splice_init(&plug->cb_list, &callbacks);
2922
2923 while (!list_empty(&callbacks)) {
2924 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2925 struct blk_plug_cb,
2926 list);
2927 list_del(&cb->list);
2928 cb->callback(cb, from_schedule);
2929 }
2930 }
2931}
2932
2933struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2934 int size)
2935{
2936 struct blk_plug *plug = current->plug;
2937 struct blk_plug_cb *cb;
2938
2939 if (!plug)
2940 return NULL;
2941
2942 list_for_each_entry(cb, &plug->cb_list, list)
2943 if (cb->callback == unplug && cb->data == data)
2944 return cb;
2945
2946 /* Not currently on the callback list */
2947 BUG_ON(size < sizeof(*cb));
2948 cb = kzalloc(size, GFP_ATOMIC);
2949 if (cb) {
2950 cb->data = data;
2951 cb->callback = unplug;
2952 list_add(&cb->list, &plug->cb_list);
2953 }
2954 return cb;
2955}
2956EXPORT_SYMBOL(blk_check_plugged);
2957
2958void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2959{
2960 struct request_queue *q;
2961 unsigned long flags;
2962 struct request *rq;
2963 LIST_HEAD(list);
2964 unsigned int depth;
2965
2966 BUG_ON(plug->magic != PLUG_MAGIC);
2967
2968 flush_plug_callbacks(plug, from_schedule);
2969 if (list_empty(&plug->list))
2970 return;
2971
2972 list_splice_init(&plug->list, &list);
2973
2974 if (plug->should_sort) {
2975 list_sort(NULL, &list, plug_rq_cmp);
2976 plug->should_sort = 0;
2977 }
2978
2979 q = NULL;
2980 depth = 0;
2981
2982 /*
2983 * Save and disable interrupts here, to avoid doing it for every
2984 * queue lock we have to take.
2985 */
2986 local_irq_save(flags);
2987 while (!list_empty(&list)) {
2988 rq = list_entry_rq(list.next);
2989 list_del_init(&rq->queuelist);
2990 BUG_ON(!rq->q);
2991 if (rq->q != q) {
2992 /*
2993 * This drops the queue lock
2994 */
2995 if (q)
2996 queue_unplugged(q, depth, from_schedule);
2997 q = rq->q;
2998 depth = 0;
2999 spin_lock(q->queue_lock);
3000 }
3001
3002 /*
3003 * Short-circuit if @q is dead
3004 */
3005 if (unlikely(blk_queue_dying(q))) {
3006 __blk_end_request_all(rq, -ENODEV);
3007 continue;
3008 }
3009
3010 /*
3011 * rq is already accounted, so use raw insert
3012 */
3013 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3014 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3015 else
3016 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3017
3018 depth++;
3019 }
3020
3021 /*
3022 * This drops the queue lock
3023 */
3024 if (q)
3025 queue_unplugged(q, depth, from_schedule);
3026
3027 local_irq_restore(flags);
3028}
3029
3030void blk_finish_plug(struct blk_plug *plug)
3031{
3032 blk_flush_plug_list(plug, false);
3033
3034 if (plug == current->plug)
3035 current->plug = NULL;
3036}
3037EXPORT_SYMBOL(blk_finish_plug);
3038
3039int __init blk_dev_init(void)
3040{
3041 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3042 sizeof(((struct request *)0)->cmd_flags));
3043
3044 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3045 kblockd_workqueue = alloc_workqueue("kblockd",
3046 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3047 if (!kblockd_workqueue)
3048 panic("Failed to create kblockd\n");
3049
3050 request_cachep = kmem_cache_create("blkdev_requests",
3051 sizeof(struct request), 0, SLAB_PANIC, NULL);
3052
3053 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3054 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3055
3056 return 0;
3057}