]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - block/blk-core.c
blk-merge: return the merged request
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/blk-mq.h>
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
29#include <linux/task_io_accounting_ops.h>
30#include <linux/fault-inject.h>
31#include <linux/list_sort.h>
32#include <linux/delay.h>
33#include <linux/ratelimit.h>
34#include <linux/pm_runtime.h>
35#include <linux/blk-cgroup.h>
36#include <linux/debugfs.h>
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
40
41#include "blk.h"
42#include "blk-mq.h"
43#include "blk-mq-sched.h"
44#include "blk-wbt.h"
45
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56DEFINE_IDA(blk_queue_ida);
57
58/*
59 * For the allocated request tables
60 */
61struct kmem_cache *request_cachep;
62
63/*
64 * For queue allocation
65 */
66struct kmem_cache *blk_requestq_cachep;
67
68/*
69 * Controlling structure to kblockd
70 */
71static struct workqueue_struct *kblockd_workqueue;
72
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95#endif
96}
97
98void blk_queue_congestion_threshold(struct request_queue *q)
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
113void blk_rq_init(struct request_queue *q, struct request *rq)
114{
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129}
130EXPORT_SYMBOL(blk_rq_init);
131
132static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
134{
135 if (error)
136 bio->bi_error = error;
137
138 if (unlikely(rq->rq_flags & RQF_QUIET))
139 bio_set_flag(bio, BIO_QUIET);
140
141 bio_advance(bio, nbytes);
142
143 /* don't actually finish bio if it's part of flush sequence */
144 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
145 bio_endio(bio);
146}
147
148void blk_dump_rq_flags(struct request *rq, char *msg)
149{
150 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
151 rq->rq_disk ? rq->rq_disk->disk_name : "?",
152 (unsigned long long) rq->cmd_flags);
153
154 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
155 (unsigned long long)blk_rq_pos(rq),
156 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
157 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
158 rq->bio, rq->biotail, blk_rq_bytes(rq));
159}
160EXPORT_SYMBOL(blk_dump_rq_flags);
161
162static void blk_delay_work(struct work_struct *work)
163{
164 struct request_queue *q;
165
166 q = container_of(work, struct request_queue, delay_work.work);
167 spin_lock_irq(q->queue_lock);
168 __blk_run_queue(q);
169 spin_unlock_irq(q->queue_lock);
170}
171
172/**
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
176 *
177 * Description:
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
180 * restarted around the specified time. Queue lock must be held.
181 */
182void blk_delay_queue(struct request_queue *q, unsigned long msecs)
183{
184 if (likely(!blk_queue_dead(q)))
185 queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 msecs_to_jiffies(msecs));
187}
188EXPORT_SYMBOL(blk_delay_queue);
189
190/**
191 * blk_start_queue_async - asynchronously restart a previously stopped queue
192 * @q: The &struct request_queue in question
193 *
194 * Description:
195 * blk_start_queue_async() will clear the stop flag on the queue, and
196 * ensure that the request_fn for the queue is run from an async
197 * context.
198 **/
199void blk_start_queue_async(struct request_queue *q)
200{
201 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 blk_run_queue_async(q);
203}
204EXPORT_SYMBOL(blk_start_queue_async);
205
206/**
207 * blk_start_queue - restart a previously stopped queue
208 * @q: The &struct request_queue in question
209 *
210 * Description:
211 * blk_start_queue() will clear the stop flag on the queue, and call
212 * the request_fn for the queue if it was in a stopped state when
213 * entered. Also see blk_stop_queue(). Queue lock must be held.
214 **/
215void blk_start_queue(struct request_queue *q)
216{
217 WARN_ON(!irqs_disabled());
218
219 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
220 __blk_run_queue(q);
221}
222EXPORT_SYMBOL(blk_start_queue);
223
224/**
225 * blk_stop_queue - stop a queue
226 * @q: The &struct request_queue in question
227 *
228 * Description:
229 * The Linux block layer assumes that a block driver will consume all
230 * entries on the request queue when the request_fn strategy is called.
231 * Often this will not happen, because of hardware limitations (queue
232 * depth settings). If a device driver gets a 'queue full' response,
233 * or if it simply chooses not to queue more I/O at one point, it can
234 * call this function to prevent the request_fn from being called until
235 * the driver has signalled it's ready to go again. This happens by calling
236 * blk_start_queue() to restart queue operations. Queue lock must be held.
237 **/
238void blk_stop_queue(struct request_queue *q)
239{
240 cancel_delayed_work(&q->delay_work);
241 queue_flag_set(QUEUE_FLAG_STOPPED, q);
242}
243EXPORT_SYMBOL(blk_stop_queue);
244
245/**
246 * blk_sync_queue - cancel any pending callbacks on a queue
247 * @q: the queue
248 *
249 * Description:
250 * The block layer may perform asynchronous callback activity
251 * on a queue, such as calling the unplug function after a timeout.
252 * A block device may call blk_sync_queue to ensure that any
253 * such activity is cancelled, thus allowing it to release resources
254 * that the callbacks might use. The caller must already have made sure
255 * that its ->make_request_fn will not re-add plugging prior to calling
256 * this function.
257 *
258 * This function does not cancel any asynchronous activity arising
259 * out of elevator or throttling code. That would require elevator_exit()
260 * and blkcg_exit_queue() to be called with queue lock initialized.
261 *
262 */
263void blk_sync_queue(struct request_queue *q)
264{
265 del_timer_sync(&q->timeout);
266
267 if (q->mq_ops) {
268 struct blk_mq_hw_ctx *hctx;
269 int i;
270
271 queue_for_each_hw_ctx(q, hctx, i) {
272 cancel_work_sync(&hctx->run_work);
273 cancel_delayed_work_sync(&hctx->delay_work);
274 }
275 } else {
276 cancel_delayed_work_sync(&q->delay_work);
277 }
278}
279EXPORT_SYMBOL(blk_sync_queue);
280
281/**
282 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
283 * @q: The queue to run
284 *
285 * Description:
286 * Invoke request handling on a queue if there are any pending requests.
287 * May be used to restart request handling after a request has completed.
288 * This variant runs the queue whether or not the queue has been
289 * stopped. Must be called with the queue lock held and interrupts
290 * disabled. See also @blk_run_queue.
291 */
292inline void __blk_run_queue_uncond(struct request_queue *q)
293{
294 if (unlikely(blk_queue_dead(q)))
295 return;
296
297 /*
298 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
299 * the queue lock internally. As a result multiple threads may be
300 * running such a request function concurrently. Keep track of the
301 * number of active request_fn invocations such that blk_drain_queue()
302 * can wait until all these request_fn calls have finished.
303 */
304 q->request_fn_active++;
305 q->request_fn(q);
306 q->request_fn_active--;
307}
308EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
309
310/**
311 * __blk_run_queue - run a single device queue
312 * @q: The queue to run
313 *
314 * Description:
315 * See @blk_run_queue. This variant must be called with the queue lock
316 * held and interrupts disabled.
317 */
318void __blk_run_queue(struct request_queue *q)
319{
320 if (unlikely(blk_queue_stopped(q)))
321 return;
322
323 __blk_run_queue_uncond(q);
324}
325EXPORT_SYMBOL(__blk_run_queue);
326
327/**
328 * blk_run_queue_async - run a single device queue in workqueue context
329 * @q: The queue to run
330 *
331 * Description:
332 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
333 * of us. The caller must hold the queue lock.
334 */
335void blk_run_queue_async(struct request_queue *q)
336{
337 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
338 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
339}
340EXPORT_SYMBOL(blk_run_queue_async);
341
342/**
343 * blk_run_queue - run a single device queue
344 * @q: The queue to run
345 *
346 * Description:
347 * Invoke request handling on this queue, if it has pending work to do.
348 * May be used to restart queueing when a request has completed.
349 */
350void blk_run_queue(struct request_queue *q)
351{
352 unsigned long flags;
353
354 spin_lock_irqsave(q->queue_lock, flags);
355 __blk_run_queue(q);
356 spin_unlock_irqrestore(q->queue_lock, flags);
357}
358EXPORT_SYMBOL(blk_run_queue);
359
360void blk_put_queue(struct request_queue *q)
361{
362 kobject_put(&q->kobj);
363}
364EXPORT_SYMBOL(blk_put_queue);
365
366/**
367 * __blk_drain_queue - drain requests from request_queue
368 * @q: queue to drain
369 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
370 *
371 * Drain requests from @q. If @drain_all is set, all requests are drained.
372 * If not, only ELVPRIV requests are drained. The caller is responsible
373 * for ensuring that no new requests which need to be drained are queued.
374 */
375static void __blk_drain_queue(struct request_queue *q, bool drain_all)
376 __releases(q->queue_lock)
377 __acquires(q->queue_lock)
378{
379 int i;
380
381 lockdep_assert_held(q->queue_lock);
382
383 while (true) {
384 bool drain = false;
385
386 /*
387 * The caller might be trying to drain @q before its
388 * elevator is initialized.
389 */
390 if (q->elevator)
391 elv_drain_elevator(q);
392
393 blkcg_drain_queue(q);
394
395 /*
396 * This function might be called on a queue which failed
397 * driver init after queue creation or is not yet fully
398 * active yet. Some drivers (e.g. fd and loop) get unhappy
399 * in such cases. Kick queue iff dispatch queue has
400 * something on it and @q has request_fn set.
401 */
402 if (!list_empty(&q->queue_head) && q->request_fn)
403 __blk_run_queue(q);
404
405 drain |= q->nr_rqs_elvpriv;
406 drain |= q->request_fn_active;
407
408 /*
409 * Unfortunately, requests are queued at and tracked from
410 * multiple places and there's no single counter which can
411 * be drained. Check all the queues and counters.
412 */
413 if (drain_all) {
414 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
415 drain |= !list_empty(&q->queue_head);
416 for (i = 0; i < 2; i++) {
417 drain |= q->nr_rqs[i];
418 drain |= q->in_flight[i];
419 if (fq)
420 drain |= !list_empty(&fq->flush_queue[i]);
421 }
422 }
423
424 if (!drain)
425 break;
426
427 spin_unlock_irq(q->queue_lock);
428
429 msleep(10);
430
431 spin_lock_irq(q->queue_lock);
432 }
433
434 /*
435 * With queue marked dead, any woken up waiter will fail the
436 * allocation path, so the wakeup chaining is lost and we're
437 * left with hung waiters. We need to wake up those waiters.
438 */
439 if (q->request_fn) {
440 struct request_list *rl;
441
442 blk_queue_for_each_rl(rl, q)
443 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
444 wake_up_all(&rl->wait[i]);
445 }
446}
447
448/**
449 * blk_queue_bypass_start - enter queue bypass mode
450 * @q: queue of interest
451 *
452 * In bypass mode, only the dispatch FIFO queue of @q is used. This
453 * function makes @q enter bypass mode and drains all requests which were
454 * throttled or issued before. On return, it's guaranteed that no request
455 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
456 * inside queue or RCU read lock.
457 */
458void blk_queue_bypass_start(struct request_queue *q)
459{
460 spin_lock_irq(q->queue_lock);
461 q->bypass_depth++;
462 queue_flag_set(QUEUE_FLAG_BYPASS, q);
463 spin_unlock_irq(q->queue_lock);
464
465 /*
466 * Queues start drained. Skip actual draining till init is
467 * complete. This avoids lenghty delays during queue init which
468 * can happen many times during boot.
469 */
470 if (blk_queue_init_done(q)) {
471 spin_lock_irq(q->queue_lock);
472 __blk_drain_queue(q, false);
473 spin_unlock_irq(q->queue_lock);
474
475 /* ensure blk_queue_bypass() is %true inside RCU read lock */
476 synchronize_rcu();
477 }
478}
479EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
480
481/**
482 * blk_queue_bypass_end - leave queue bypass mode
483 * @q: queue of interest
484 *
485 * Leave bypass mode and restore the normal queueing behavior.
486 */
487void blk_queue_bypass_end(struct request_queue *q)
488{
489 spin_lock_irq(q->queue_lock);
490 if (!--q->bypass_depth)
491 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
492 WARN_ON_ONCE(q->bypass_depth < 0);
493 spin_unlock_irq(q->queue_lock);
494}
495EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
496
497void blk_set_queue_dying(struct request_queue *q)
498{
499 spin_lock_irq(q->queue_lock);
500 queue_flag_set(QUEUE_FLAG_DYING, q);
501 spin_unlock_irq(q->queue_lock);
502
503 if (q->mq_ops)
504 blk_mq_wake_waiters(q);
505 else {
506 struct request_list *rl;
507
508 blk_queue_for_each_rl(rl, q) {
509 if (rl->rq_pool) {
510 wake_up(&rl->wait[BLK_RW_SYNC]);
511 wake_up(&rl->wait[BLK_RW_ASYNC]);
512 }
513 }
514 }
515}
516EXPORT_SYMBOL_GPL(blk_set_queue_dying);
517
518/**
519 * blk_cleanup_queue - shutdown a request queue
520 * @q: request queue to shutdown
521 *
522 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
523 * put it. All future requests will be failed immediately with -ENODEV.
524 */
525void blk_cleanup_queue(struct request_queue *q)
526{
527 spinlock_t *lock = q->queue_lock;
528
529 /* mark @q DYING, no new request or merges will be allowed afterwards */
530 mutex_lock(&q->sysfs_lock);
531 blk_set_queue_dying(q);
532 spin_lock_irq(lock);
533
534 /*
535 * A dying queue is permanently in bypass mode till released. Note
536 * that, unlike blk_queue_bypass_start(), we aren't performing
537 * synchronize_rcu() after entering bypass mode to avoid the delay
538 * as some drivers create and destroy a lot of queues while
539 * probing. This is still safe because blk_release_queue() will be
540 * called only after the queue refcnt drops to zero and nothing,
541 * RCU or not, would be traversing the queue by then.
542 */
543 q->bypass_depth++;
544 queue_flag_set(QUEUE_FLAG_BYPASS, q);
545
546 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
547 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
548 queue_flag_set(QUEUE_FLAG_DYING, q);
549 spin_unlock_irq(lock);
550 mutex_unlock(&q->sysfs_lock);
551
552 /*
553 * Drain all requests queued before DYING marking. Set DEAD flag to
554 * prevent that q->request_fn() gets invoked after draining finished.
555 */
556 blk_freeze_queue(q);
557 spin_lock_irq(lock);
558 if (!q->mq_ops)
559 __blk_drain_queue(q, true);
560 queue_flag_set(QUEUE_FLAG_DEAD, q);
561 spin_unlock_irq(lock);
562
563 /* for synchronous bio-based driver finish in-flight integrity i/o */
564 blk_flush_integrity();
565
566 /* @q won't process any more request, flush async actions */
567 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
568 blk_sync_queue(q);
569
570 if (q->mq_ops)
571 blk_mq_free_queue(q);
572 percpu_ref_exit(&q->q_usage_counter);
573
574 spin_lock_irq(lock);
575 if (q->queue_lock != &q->__queue_lock)
576 q->queue_lock = &q->__queue_lock;
577 spin_unlock_irq(lock);
578
579 bdi_unregister(q->backing_dev_info);
580 put_disk_devt(q->disk_devt);
581
582 /* @q is and will stay empty, shutdown and put */
583 blk_put_queue(q);
584}
585EXPORT_SYMBOL(blk_cleanup_queue);
586
587/* Allocate memory local to the request queue */
588static void *alloc_request_simple(gfp_t gfp_mask, void *data)
589{
590 struct request_queue *q = data;
591
592 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
593}
594
595static void free_request_simple(void *element, void *data)
596{
597 kmem_cache_free(request_cachep, element);
598}
599
600static void *alloc_request_size(gfp_t gfp_mask, void *data)
601{
602 struct request_queue *q = data;
603 struct request *rq;
604
605 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
606 q->node);
607 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
608 kfree(rq);
609 rq = NULL;
610 }
611 return rq;
612}
613
614static void free_request_size(void *element, void *data)
615{
616 struct request_queue *q = data;
617
618 if (q->exit_rq_fn)
619 q->exit_rq_fn(q, element);
620 kfree(element);
621}
622
623int blk_init_rl(struct request_list *rl, struct request_queue *q,
624 gfp_t gfp_mask)
625{
626 if (unlikely(rl->rq_pool))
627 return 0;
628
629 rl->q = q;
630 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
631 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
632 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
633 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
634
635 if (q->cmd_size) {
636 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
637 alloc_request_size, free_request_size,
638 q, gfp_mask, q->node);
639 } else {
640 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
641 alloc_request_simple, free_request_simple,
642 q, gfp_mask, q->node);
643 }
644 if (!rl->rq_pool)
645 return -ENOMEM;
646
647 return 0;
648}
649
650void blk_exit_rl(struct request_list *rl)
651{
652 if (rl->rq_pool)
653 mempool_destroy(rl->rq_pool);
654}
655
656struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
657{
658 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
659}
660EXPORT_SYMBOL(blk_alloc_queue);
661
662int blk_queue_enter(struct request_queue *q, bool nowait)
663{
664 while (true) {
665 int ret;
666
667 if (percpu_ref_tryget_live(&q->q_usage_counter))
668 return 0;
669
670 if (nowait)
671 return -EBUSY;
672
673 ret = wait_event_interruptible(q->mq_freeze_wq,
674 !atomic_read(&q->mq_freeze_depth) ||
675 blk_queue_dying(q));
676 if (blk_queue_dying(q))
677 return -ENODEV;
678 if (ret)
679 return ret;
680 }
681}
682
683void blk_queue_exit(struct request_queue *q)
684{
685 percpu_ref_put(&q->q_usage_counter);
686}
687
688static void blk_queue_usage_counter_release(struct percpu_ref *ref)
689{
690 struct request_queue *q =
691 container_of(ref, struct request_queue, q_usage_counter);
692
693 wake_up_all(&q->mq_freeze_wq);
694}
695
696static void blk_rq_timed_out_timer(unsigned long data)
697{
698 struct request_queue *q = (struct request_queue *)data;
699
700 kblockd_schedule_work(&q->timeout_work);
701}
702
703struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
704{
705 struct request_queue *q;
706
707 q = kmem_cache_alloc_node(blk_requestq_cachep,
708 gfp_mask | __GFP_ZERO, node_id);
709 if (!q)
710 return NULL;
711
712 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
713 if (q->id < 0)
714 goto fail_q;
715
716 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
717 if (!q->bio_split)
718 goto fail_id;
719
720 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
721 if (!q->backing_dev_info)
722 goto fail_split;
723
724 q->backing_dev_info->ra_pages =
725 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
726 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
727 q->backing_dev_info->name = "block";
728 q->node = node_id;
729
730 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
731 laptop_mode_timer_fn, (unsigned long) q);
732 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
733 INIT_LIST_HEAD(&q->queue_head);
734 INIT_LIST_HEAD(&q->timeout_list);
735 INIT_LIST_HEAD(&q->icq_list);
736#ifdef CONFIG_BLK_CGROUP
737 INIT_LIST_HEAD(&q->blkg_list);
738#endif
739 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
740
741 kobject_init(&q->kobj, &blk_queue_ktype);
742
743 mutex_init(&q->sysfs_lock);
744 spin_lock_init(&q->__queue_lock);
745
746 /*
747 * By default initialize queue_lock to internal lock and driver can
748 * override it later if need be.
749 */
750 q->queue_lock = &q->__queue_lock;
751
752 /*
753 * A queue starts its life with bypass turned on to avoid
754 * unnecessary bypass on/off overhead and nasty surprises during
755 * init. The initial bypass will be finished when the queue is
756 * registered by blk_register_queue().
757 */
758 q->bypass_depth = 1;
759 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
760
761 init_waitqueue_head(&q->mq_freeze_wq);
762
763 /*
764 * Init percpu_ref in atomic mode so that it's faster to shutdown.
765 * See blk_register_queue() for details.
766 */
767 if (percpu_ref_init(&q->q_usage_counter,
768 blk_queue_usage_counter_release,
769 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
770 goto fail_bdi;
771
772 if (blkcg_init_queue(q))
773 goto fail_ref;
774
775 return q;
776
777fail_ref:
778 percpu_ref_exit(&q->q_usage_counter);
779fail_bdi:
780 bdi_put(q->backing_dev_info);
781fail_split:
782 bioset_free(q->bio_split);
783fail_id:
784 ida_simple_remove(&blk_queue_ida, q->id);
785fail_q:
786 kmem_cache_free(blk_requestq_cachep, q);
787 return NULL;
788}
789EXPORT_SYMBOL(blk_alloc_queue_node);
790
791/**
792 * blk_init_queue - prepare a request queue for use with a block device
793 * @rfn: The function to be called to process requests that have been
794 * placed on the queue.
795 * @lock: Request queue spin lock
796 *
797 * Description:
798 * If a block device wishes to use the standard request handling procedures,
799 * which sorts requests and coalesces adjacent requests, then it must
800 * call blk_init_queue(). The function @rfn will be called when there
801 * are requests on the queue that need to be processed. If the device
802 * supports plugging, then @rfn may not be called immediately when requests
803 * are available on the queue, but may be called at some time later instead.
804 * Plugged queues are generally unplugged when a buffer belonging to one
805 * of the requests on the queue is needed, or due to memory pressure.
806 *
807 * @rfn is not required, or even expected, to remove all requests off the
808 * queue, but only as many as it can handle at a time. If it does leave
809 * requests on the queue, it is responsible for arranging that the requests
810 * get dealt with eventually.
811 *
812 * The queue spin lock must be held while manipulating the requests on the
813 * request queue; this lock will be taken also from interrupt context, so irq
814 * disabling is needed for it.
815 *
816 * Function returns a pointer to the initialized request queue, or %NULL if
817 * it didn't succeed.
818 *
819 * Note:
820 * blk_init_queue() must be paired with a blk_cleanup_queue() call
821 * when the block device is deactivated (such as at module unload).
822 **/
823
824struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
825{
826 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
827}
828EXPORT_SYMBOL(blk_init_queue);
829
830struct request_queue *
831blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
832{
833 struct request_queue *q;
834
835 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
836 if (!q)
837 return NULL;
838
839 q->request_fn = rfn;
840 if (lock)
841 q->queue_lock = lock;
842 if (blk_init_allocated_queue(q) < 0) {
843 blk_cleanup_queue(q);
844 return NULL;
845 }
846
847 return q;
848}
849EXPORT_SYMBOL(blk_init_queue_node);
850
851static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
852
853
854int blk_init_allocated_queue(struct request_queue *q)
855{
856 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
857 if (!q->fq)
858 return -ENOMEM;
859
860 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
861 goto out_free_flush_queue;
862
863 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
864 goto out_exit_flush_rq;
865
866 INIT_WORK(&q->timeout_work, blk_timeout_work);
867 q->queue_flags |= QUEUE_FLAG_DEFAULT;
868
869 /*
870 * This also sets hw/phys segments, boundary and size
871 */
872 blk_queue_make_request(q, blk_queue_bio);
873
874 q->sg_reserved_size = INT_MAX;
875
876 /* Protect q->elevator from elevator_change */
877 mutex_lock(&q->sysfs_lock);
878
879 /* init elevator */
880 if (elevator_init(q, NULL)) {
881 mutex_unlock(&q->sysfs_lock);
882 goto out_exit_flush_rq;
883 }
884
885 mutex_unlock(&q->sysfs_lock);
886 return 0;
887
888out_exit_flush_rq:
889 if (q->exit_rq_fn)
890 q->exit_rq_fn(q, q->fq->flush_rq);
891out_free_flush_queue:
892 blk_free_flush_queue(q->fq);
893 wbt_exit(q);
894 return -ENOMEM;
895}
896EXPORT_SYMBOL(blk_init_allocated_queue);
897
898bool blk_get_queue(struct request_queue *q)
899{
900 if (likely(!blk_queue_dying(q))) {
901 __blk_get_queue(q);
902 return true;
903 }
904
905 return false;
906}
907EXPORT_SYMBOL(blk_get_queue);
908
909static inline void blk_free_request(struct request_list *rl, struct request *rq)
910{
911 if (rq->rq_flags & RQF_ELVPRIV) {
912 elv_put_request(rl->q, rq);
913 if (rq->elv.icq)
914 put_io_context(rq->elv.icq->ioc);
915 }
916
917 mempool_free(rq, rl->rq_pool);
918}
919
920/*
921 * ioc_batching returns true if the ioc is a valid batching request and
922 * should be given priority access to a request.
923 */
924static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
925{
926 if (!ioc)
927 return 0;
928
929 /*
930 * Make sure the process is able to allocate at least 1 request
931 * even if the batch times out, otherwise we could theoretically
932 * lose wakeups.
933 */
934 return ioc->nr_batch_requests == q->nr_batching ||
935 (ioc->nr_batch_requests > 0
936 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
937}
938
939/*
940 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
941 * will cause the process to be a "batcher" on all queues in the system. This
942 * is the behaviour we want though - once it gets a wakeup it should be given
943 * a nice run.
944 */
945static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
946{
947 if (!ioc || ioc_batching(q, ioc))
948 return;
949
950 ioc->nr_batch_requests = q->nr_batching;
951 ioc->last_waited = jiffies;
952}
953
954static void __freed_request(struct request_list *rl, int sync)
955{
956 struct request_queue *q = rl->q;
957
958 if (rl->count[sync] < queue_congestion_off_threshold(q))
959 blk_clear_congested(rl, sync);
960
961 if (rl->count[sync] + 1 <= q->nr_requests) {
962 if (waitqueue_active(&rl->wait[sync]))
963 wake_up(&rl->wait[sync]);
964
965 blk_clear_rl_full(rl, sync);
966 }
967}
968
969/*
970 * A request has just been released. Account for it, update the full and
971 * congestion status, wake up any waiters. Called under q->queue_lock.
972 */
973static void freed_request(struct request_list *rl, bool sync,
974 req_flags_t rq_flags)
975{
976 struct request_queue *q = rl->q;
977
978 q->nr_rqs[sync]--;
979 rl->count[sync]--;
980 if (rq_flags & RQF_ELVPRIV)
981 q->nr_rqs_elvpriv--;
982
983 __freed_request(rl, sync);
984
985 if (unlikely(rl->starved[sync ^ 1]))
986 __freed_request(rl, sync ^ 1);
987}
988
989int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
990{
991 struct request_list *rl;
992 int on_thresh, off_thresh;
993
994 spin_lock_irq(q->queue_lock);
995 q->nr_requests = nr;
996 blk_queue_congestion_threshold(q);
997 on_thresh = queue_congestion_on_threshold(q);
998 off_thresh = queue_congestion_off_threshold(q);
999
1000 blk_queue_for_each_rl(rl, q) {
1001 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1002 blk_set_congested(rl, BLK_RW_SYNC);
1003 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1004 blk_clear_congested(rl, BLK_RW_SYNC);
1005
1006 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1007 blk_set_congested(rl, BLK_RW_ASYNC);
1008 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1009 blk_clear_congested(rl, BLK_RW_ASYNC);
1010
1011 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1012 blk_set_rl_full(rl, BLK_RW_SYNC);
1013 } else {
1014 blk_clear_rl_full(rl, BLK_RW_SYNC);
1015 wake_up(&rl->wait[BLK_RW_SYNC]);
1016 }
1017
1018 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1019 blk_set_rl_full(rl, BLK_RW_ASYNC);
1020 } else {
1021 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1022 wake_up(&rl->wait[BLK_RW_ASYNC]);
1023 }
1024 }
1025
1026 spin_unlock_irq(q->queue_lock);
1027 return 0;
1028}
1029
1030/**
1031 * __get_request - get a free request
1032 * @rl: request list to allocate from
1033 * @op: operation and flags
1034 * @bio: bio to allocate request for (can be %NULL)
1035 * @gfp_mask: allocation mask
1036 *
1037 * Get a free request from @q. This function may fail under memory
1038 * pressure or if @q is dead.
1039 *
1040 * Must be called with @q->queue_lock held and,
1041 * Returns ERR_PTR on failure, with @q->queue_lock held.
1042 * Returns request pointer on success, with @q->queue_lock *not held*.
1043 */
1044static struct request *__get_request(struct request_list *rl, unsigned int op,
1045 struct bio *bio, gfp_t gfp_mask)
1046{
1047 struct request_queue *q = rl->q;
1048 struct request *rq;
1049 struct elevator_type *et = q->elevator->type;
1050 struct io_context *ioc = rq_ioc(bio);
1051 struct io_cq *icq = NULL;
1052 const bool is_sync = op_is_sync(op);
1053 int may_queue;
1054 req_flags_t rq_flags = RQF_ALLOCED;
1055
1056 if (unlikely(blk_queue_dying(q)))
1057 return ERR_PTR(-ENODEV);
1058
1059 may_queue = elv_may_queue(q, op);
1060 if (may_queue == ELV_MQUEUE_NO)
1061 goto rq_starved;
1062
1063 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1064 if (rl->count[is_sync]+1 >= q->nr_requests) {
1065 /*
1066 * The queue will fill after this allocation, so set
1067 * it as full, and mark this process as "batching".
1068 * This process will be allowed to complete a batch of
1069 * requests, others will be blocked.
1070 */
1071 if (!blk_rl_full(rl, is_sync)) {
1072 ioc_set_batching(q, ioc);
1073 blk_set_rl_full(rl, is_sync);
1074 } else {
1075 if (may_queue != ELV_MQUEUE_MUST
1076 && !ioc_batching(q, ioc)) {
1077 /*
1078 * The queue is full and the allocating
1079 * process is not a "batcher", and not
1080 * exempted by the IO scheduler
1081 */
1082 return ERR_PTR(-ENOMEM);
1083 }
1084 }
1085 }
1086 blk_set_congested(rl, is_sync);
1087 }
1088
1089 /*
1090 * Only allow batching queuers to allocate up to 50% over the defined
1091 * limit of requests, otherwise we could have thousands of requests
1092 * allocated with any setting of ->nr_requests
1093 */
1094 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1095 return ERR_PTR(-ENOMEM);
1096
1097 q->nr_rqs[is_sync]++;
1098 rl->count[is_sync]++;
1099 rl->starved[is_sync] = 0;
1100
1101 /*
1102 * Decide whether the new request will be managed by elevator. If
1103 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1104 * prevent the current elevator from being destroyed until the new
1105 * request is freed. This guarantees icq's won't be destroyed and
1106 * makes creating new ones safe.
1107 *
1108 * Flush requests do not use the elevator so skip initialization.
1109 * This allows a request to share the flush and elevator data.
1110 *
1111 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1112 * it will be created after releasing queue_lock.
1113 */
1114 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1115 rq_flags |= RQF_ELVPRIV;
1116 q->nr_rqs_elvpriv++;
1117 if (et->icq_cache && ioc)
1118 icq = ioc_lookup_icq(ioc, q);
1119 }
1120
1121 if (blk_queue_io_stat(q))
1122 rq_flags |= RQF_IO_STAT;
1123 spin_unlock_irq(q->queue_lock);
1124
1125 /* allocate and init request */
1126 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1127 if (!rq)
1128 goto fail_alloc;
1129
1130 blk_rq_init(q, rq);
1131 blk_rq_set_rl(rq, rl);
1132 blk_rq_set_prio(rq, ioc);
1133 rq->cmd_flags = op;
1134 rq->rq_flags = rq_flags;
1135
1136 /* init elvpriv */
1137 if (rq_flags & RQF_ELVPRIV) {
1138 if (unlikely(et->icq_cache && !icq)) {
1139 if (ioc)
1140 icq = ioc_create_icq(ioc, q, gfp_mask);
1141 if (!icq)
1142 goto fail_elvpriv;
1143 }
1144
1145 rq->elv.icq = icq;
1146 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1147 goto fail_elvpriv;
1148
1149 /* @rq->elv.icq holds io_context until @rq is freed */
1150 if (icq)
1151 get_io_context(icq->ioc);
1152 }
1153out:
1154 /*
1155 * ioc may be NULL here, and ioc_batching will be false. That's
1156 * OK, if the queue is under the request limit then requests need
1157 * not count toward the nr_batch_requests limit. There will always
1158 * be some limit enforced by BLK_BATCH_TIME.
1159 */
1160 if (ioc_batching(q, ioc))
1161 ioc->nr_batch_requests--;
1162
1163 trace_block_getrq(q, bio, op);
1164 return rq;
1165
1166fail_elvpriv:
1167 /*
1168 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1169 * and may fail indefinitely under memory pressure and thus
1170 * shouldn't stall IO. Treat this request as !elvpriv. This will
1171 * disturb iosched and blkcg but weird is bettern than dead.
1172 */
1173 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1174 __func__, dev_name(q->backing_dev_info->dev));
1175
1176 rq->rq_flags &= ~RQF_ELVPRIV;
1177 rq->elv.icq = NULL;
1178
1179 spin_lock_irq(q->queue_lock);
1180 q->nr_rqs_elvpriv--;
1181 spin_unlock_irq(q->queue_lock);
1182 goto out;
1183
1184fail_alloc:
1185 /*
1186 * Allocation failed presumably due to memory. Undo anything we
1187 * might have messed up.
1188 *
1189 * Allocating task should really be put onto the front of the wait
1190 * queue, but this is pretty rare.
1191 */
1192 spin_lock_irq(q->queue_lock);
1193 freed_request(rl, is_sync, rq_flags);
1194
1195 /*
1196 * in the very unlikely event that allocation failed and no
1197 * requests for this direction was pending, mark us starved so that
1198 * freeing of a request in the other direction will notice
1199 * us. another possible fix would be to split the rq mempool into
1200 * READ and WRITE
1201 */
1202rq_starved:
1203 if (unlikely(rl->count[is_sync] == 0))
1204 rl->starved[is_sync] = 1;
1205 return ERR_PTR(-ENOMEM);
1206}
1207
1208/**
1209 * get_request - get a free request
1210 * @q: request_queue to allocate request from
1211 * @op: operation and flags
1212 * @bio: bio to allocate request for (can be %NULL)
1213 * @gfp_mask: allocation mask
1214 *
1215 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1216 * this function keeps retrying under memory pressure and fails iff @q is dead.
1217 *
1218 * Must be called with @q->queue_lock held and,
1219 * Returns ERR_PTR on failure, with @q->queue_lock held.
1220 * Returns request pointer on success, with @q->queue_lock *not held*.
1221 */
1222static struct request *get_request(struct request_queue *q, unsigned int op,
1223 struct bio *bio, gfp_t gfp_mask)
1224{
1225 const bool is_sync = op_is_sync(op);
1226 DEFINE_WAIT(wait);
1227 struct request_list *rl;
1228 struct request *rq;
1229
1230 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1231retry:
1232 rq = __get_request(rl, op, bio, gfp_mask);
1233 if (!IS_ERR(rq))
1234 return rq;
1235
1236 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1237 blk_put_rl(rl);
1238 return rq;
1239 }
1240
1241 /* wait on @rl and retry */
1242 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1243 TASK_UNINTERRUPTIBLE);
1244
1245 trace_block_sleeprq(q, bio, op);
1246
1247 spin_unlock_irq(q->queue_lock);
1248 io_schedule();
1249
1250 /*
1251 * After sleeping, we become a "batching" process and will be able
1252 * to allocate at least one request, and up to a big batch of them
1253 * for a small period time. See ioc_batching, ioc_set_batching
1254 */
1255 ioc_set_batching(q, current->io_context);
1256
1257 spin_lock_irq(q->queue_lock);
1258 finish_wait(&rl->wait[is_sync], &wait);
1259
1260 goto retry;
1261}
1262
1263static struct request *blk_old_get_request(struct request_queue *q, int rw,
1264 gfp_t gfp_mask)
1265{
1266 struct request *rq;
1267
1268 /* create ioc upfront */
1269 create_io_context(gfp_mask, q->node);
1270
1271 spin_lock_irq(q->queue_lock);
1272 rq = get_request(q, rw, NULL, gfp_mask);
1273 if (IS_ERR(rq)) {
1274 spin_unlock_irq(q->queue_lock);
1275 return rq;
1276 }
1277
1278 /* q->queue_lock is unlocked at this point */
1279 rq->__data_len = 0;
1280 rq->__sector = (sector_t) -1;
1281 rq->bio = rq->biotail = NULL;
1282 return rq;
1283}
1284
1285struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1286{
1287 if (q->mq_ops)
1288 return blk_mq_alloc_request(q, rw,
1289 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1290 0 : BLK_MQ_REQ_NOWAIT);
1291 else
1292 return blk_old_get_request(q, rw, gfp_mask);
1293}
1294EXPORT_SYMBOL(blk_get_request);
1295
1296/**
1297 * blk_requeue_request - put a request back on queue
1298 * @q: request queue where request should be inserted
1299 * @rq: request to be inserted
1300 *
1301 * Description:
1302 * Drivers often keep queueing requests until the hardware cannot accept
1303 * more, when that condition happens we need to put the request back
1304 * on the queue. Must be called with queue lock held.
1305 */
1306void blk_requeue_request(struct request_queue *q, struct request *rq)
1307{
1308 blk_delete_timer(rq);
1309 blk_clear_rq_complete(rq);
1310 trace_block_rq_requeue(q, rq);
1311 wbt_requeue(q->rq_wb, &rq->issue_stat);
1312
1313 if (rq->rq_flags & RQF_QUEUED)
1314 blk_queue_end_tag(q, rq);
1315
1316 BUG_ON(blk_queued_rq(rq));
1317
1318 elv_requeue_request(q, rq);
1319}
1320EXPORT_SYMBOL(blk_requeue_request);
1321
1322static void add_acct_request(struct request_queue *q, struct request *rq,
1323 int where)
1324{
1325 blk_account_io_start(rq, true);
1326 __elv_add_request(q, rq, where);
1327}
1328
1329static void part_round_stats_single(int cpu, struct hd_struct *part,
1330 unsigned long now)
1331{
1332 int inflight;
1333
1334 if (now == part->stamp)
1335 return;
1336
1337 inflight = part_in_flight(part);
1338 if (inflight) {
1339 __part_stat_add(cpu, part, time_in_queue,
1340 inflight * (now - part->stamp));
1341 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1342 }
1343 part->stamp = now;
1344}
1345
1346/**
1347 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1348 * @cpu: cpu number for stats access
1349 * @part: target partition
1350 *
1351 * The average IO queue length and utilisation statistics are maintained
1352 * by observing the current state of the queue length and the amount of
1353 * time it has been in this state for.
1354 *
1355 * Normally, that accounting is done on IO completion, but that can result
1356 * in more than a second's worth of IO being accounted for within any one
1357 * second, leading to >100% utilisation. To deal with that, we call this
1358 * function to do a round-off before returning the results when reading
1359 * /proc/diskstats. This accounts immediately for all queue usage up to
1360 * the current jiffies and restarts the counters again.
1361 */
1362void part_round_stats(int cpu, struct hd_struct *part)
1363{
1364 unsigned long now = jiffies;
1365
1366 if (part->partno)
1367 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1368 part_round_stats_single(cpu, part, now);
1369}
1370EXPORT_SYMBOL_GPL(part_round_stats);
1371
1372#ifdef CONFIG_PM
1373static void blk_pm_put_request(struct request *rq)
1374{
1375 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1376 pm_runtime_mark_last_busy(rq->q->dev);
1377}
1378#else
1379static inline void blk_pm_put_request(struct request *rq) {}
1380#endif
1381
1382/*
1383 * queue lock must be held
1384 */
1385void __blk_put_request(struct request_queue *q, struct request *req)
1386{
1387 req_flags_t rq_flags = req->rq_flags;
1388
1389 if (unlikely(!q))
1390 return;
1391
1392 if (q->mq_ops) {
1393 blk_mq_free_request(req);
1394 return;
1395 }
1396
1397 blk_pm_put_request(req);
1398
1399 elv_completed_request(q, req);
1400
1401 /* this is a bio leak */
1402 WARN_ON(req->bio != NULL);
1403
1404 wbt_done(q->rq_wb, &req->issue_stat);
1405
1406 /*
1407 * Request may not have originated from ll_rw_blk. if not,
1408 * it didn't come out of our reserved rq pools
1409 */
1410 if (rq_flags & RQF_ALLOCED) {
1411 struct request_list *rl = blk_rq_rl(req);
1412 bool sync = op_is_sync(req->cmd_flags);
1413
1414 BUG_ON(!list_empty(&req->queuelist));
1415 BUG_ON(ELV_ON_HASH(req));
1416
1417 blk_free_request(rl, req);
1418 freed_request(rl, sync, rq_flags);
1419 blk_put_rl(rl);
1420 }
1421}
1422EXPORT_SYMBOL_GPL(__blk_put_request);
1423
1424void blk_put_request(struct request *req)
1425{
1426 struct request_queue *q = req->q;
1427
1428 if (q->mq_ops)
1429 blk_mq_free_request(req);
1430 else {
1431 unsigned long flags;
1432
1433 spin_lock_irqsave(q->queue_lock, flags);
1434 __blk_put_request(q, req);
1435 spin_unlock_irqrestore(q->queue_lock, flags);
1436 }
1437}
1438EXPORT_SYMBOL(blk_put_request);
1439
1440bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1441 struct bio *bio)
1442{
1443 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1444
1445 if (!ll_back_merge_fn(q, req, bio))
1446 return false;
1447
1448 trace_block_bio_backmerge(q, req, bio);
1449
1450 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1451 blk_rq_set_mixed_merge(req);
1452
1453 req->biotail->bi_next = bio;
1454 req->biotail = bio;
1455 req->__data_len += bio->bi_iter.bi_size;
1456 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1457
1458 blk_account_io_start(req, false);
1459 return true;
1460}
1461
1462bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1463 struct bio *bio)
1464{
1465 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1466
1467 if (!ll_front_merge_fn(q, req, bio))
1468 return false;
1469
1470 trace_block_bio_frontmerge(q, req, bio);
1471
1472 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1473 blk_rq_set_mixed_merge(req);
1474
1475 bio->bi_next = req->bio;
1476 req->bio = bio;
1477
1478 req->__sector = bio->bi_iter.bi_sector;
1479 req->__data_len += bio->bi_iter.bi_size;
1480 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1481
1482 blk_account_io_start(req, false);
1483 return true;
1484}
1485
1486/**
1487 * blk_attempt_plug_merge - try to merge with %current's plugged list
1488 * @q: request_queue new bio is being queued at
1489 * @bio: new bio being queued
1490 * @request_count: out parameter for number of traversed plugged requests
1491 * @same_queue_rq: pointer to &struct request that gets filled in when
1492 * another request associated with @q is found on the plug list
1493 * (optional, may be %NULL)
1494 *
1495 * Determine whether @bio being queued on @q can be merged with a request
1496 * on %current's plugged list. Returns %true if merge was successful,
1497 * otherwise %false.
1498 *
1499 * Plugging coalesces IOs from the same issuer for the same purpose without
1500 * going through @q->queue_lock. As such it's more of an issuing mechanism
1501 * than scheduling, and the request, while may have elvpriv data, is not
1502 * added on the elevator at this point. In addition, we don't have
1503 * reliable access to the elevator outside queue lock. Only check basic
1504 * merging parameters without querying the elevator.
1505 *
1506 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1507 */
1508bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1509 unsigned int *request_count,
1510 struct request **same_queue_rq)
1511{
1512 struct blk_plug *plug;
1513 struct request *rq;
1514 bool ret = false;
1515 struct list_head *plug_list;
1516
1517 plug = current->plug;
1518 if (!plug)
1519 goto out;
1520 *request_count = 0;
1521
1522 if (q->mq_ops)
1523 plug_list = &plug->mq_list;
1524 else
1525 plug_list = &plug->list;
1526
1527 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1528 int el_ret;
1529
1530 if (rq->q == q) {
1531 (*request_count)++;
1532 /*
1533 * Only blk-mq multiple hardware queues case checks the
1534 * rq in the same queue, there should be only one such
1535 * rq in a queue
1536 **/
1537 if (same_queue_rq)
1538 *same_queue_rq = rq;
1539 }
1540
1541 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1542 continue;
1543
1544 el_ret = blk_try_merge(rq, bio);
1545 if (el_ret == ELEVATOR_BACK_MERGE) {
1546 ret = bio_attempt_back_merge(q, rq, bio);
1547 if (ret)
1548 break;
1549 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1550 ret = bio_attempt_front_merge(q, rq, bio);
1551 if (ret)
1552 break;
1553 }
1554 }
1555out:
1556 return ret;
1557}
1558
1559unsigned int blk_plug_queued_count(struct request_queue *q)
1560{
1561 struct blk_plug *plug;
1562 struct request *rq;
1563 struct list_head *plug_list;
1564 unsigned int ret = 0;
1565
1566 plug = current->plug;
1567 if (!plug)
1568 goto out;
1569
1570 if (q->mq_ops)
1571 plug_list = &plug->mq_list;
1572 else
1573 plug_list = &plug->list;
1574
1575 list_for_each_entry(rq, plug_list, queuelist) {
1576 if (rq->q == q)
1577 ret++;
1578 }
1579out:
1580 return ret;
1581}
1582
1583void init_request_from_bio(struct request *req, struct bio *bio)
1584{
1585 if (bio->bi_opf & REQ_RAHEAD)
1586 req->cmd_flags |= REQ_FAILFAST_MASK;
1587
1588 req->errors = 0;
1589 req->__sector = bio->bi_iter.bi_sector;
1590 if (ioprio_valid(bio_prio(bio)))
1591 req->ioprio = bio_prio(bio);
1592 blk_rq_bio_prep(req->q, req, bio);
1593}
1594
1595static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1596{
1597 struct blk_plug *plug;
1598 int el_ret, where = ELEVATOR_INSERT_SORT;
1599 struct request *req;
1600 unsigned int request_count = 0;
1601 unsigned int wb_acct;
1602
1603 /*
1604 * low level driver can indicate that it wants pages above a
1605 * certain limit bounced to low memory (ie for highmem, or even
1606 * ISA dma in theory)
1607 */
1608 blk_queue_bounce(q, &bio);
1609
1610 blk_queue_split(q, &bio, q->bio_split);
1611
1612 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1613 bio->bi_error = -EIO;
1614 bio_endio(bio);
1615 return BLK_QC_T_NONE;
1616 }
1617
1618 if (op_is_flush(bio->bi_opf)) {
1619 spin_lock_irq(q->queue_lock);
1620 where = ELEVATOR_INSERT_FLUSH;
1621 goto get_rq;
1622 }
1623
1624 /*
1625 * Check if we can merge with the plugged list before grabbing
1626 * any locks.
1627 */
1628 if (!blk_queue_nomerges(q)) {
1629 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1630 return BLK_QC_T_NONE;
1631 } else
1632 request_count = blk_plug_queued_count(q);
1633
1634 spin_lock_irq(q->queue_lock);
1635
1636 el_ret = elv_merge(q, &req, bio);
1637 if (el_ret == ELEVATOR_BACK_MERGE) {
1638 if (bio_attempt_back_merge(q, req, bio)) {
1639 elv_bio_merged(q, req, bio);
1640 if (!attempt_back_merge(q, req))
1641 elv_merged_request(q, req, el_ret);
1642 goto out_unlock;
1643 }
1644 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1645 if (bio_attempt_front_merge(q, req, bio)) {
1646 elv_bio_merged(q, req, bio);
1647 if (!attempt_front_merge(q, req))
1648 elv_merged_request(q, req, el_ret);
1649 goto out_unlock;
1650 }
1651 }
1652
1653get_rq:
1654 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1655
1656 /*
1657 * Grab a free request. This is might sleep but can not fail.
1658 * Returns with the queue unlocked.
1659 */
1660 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1661 if (IS_ERR(req)) {
1662 __wbt_done(q->rq_wb, wb_acct);
1663 bio->bi_error = PTR_ERR(req);
1664 bio_endio(bio);
1665 goto out_unlock;
1666 }
1667
1668 wbt_track(&req->issue_stat, wb_acct);
1669
1670 /*
1671 * After dropping the lock and possibly sleeping here, our request
1672 * may now be mergeable after it had proven unmergeable (above).
1673 * We don't worry about that case for efficiency. It won't happen
1674 * often, and the elevators are able to handle it.
1675 */
1676 init_request_from_bio(req, bio);
1677
1678 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1679 req->cpu = raw_smp_processor_id();
1680
1681 plug = current->plug;
1682 if (plug) {
1683 /*
1684 * If this is the first request added after a plug, fire
1685 * of a plug trace.
1686 *
1687 * @request_count may become stale because of schedule
1688 * out, so check plug list again.
1689 */
1690 if (!request_count || list_empty(&plug->list))
1691 trace_block_plug(q);
1692 else {
1693 struct request *last = list_entry_rq(plug->list.prev);
1694 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1695 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1696 blk_flush_plug_list(plug, false);
1697 trace_block_plug(q);
1698 }
1699 }
1700 list_add_tail(&req->queuelist, &plug->list);
1701 blk_account_io_start(req, true);
1702 } else {
1703 spin_lock_irq(q->queue_lock);
1704 add_acct_request(q, req, where);
1705 __blk_run_queue(q);
1706out_unlock:
1707 spin_unlock_irq(q->queue_lock);
1708 }
1709
1710 return BLK_QC_T_NONE;
1711}
1712
1713/*
1714 * If bio->bi_dev is a partition, remap the location
1715 */
1716static inline void blk_partition_remap(struct bio *bio)
1717{
1718 struct block_device *bdev = bio->bi_bdev;
1719
1720 /*
1721 * Zone reset does not include bi_size so bio_sectors() is always 0.
1722 * Include a test for the reset op code and perform the remap if needed.
1723 */
1724 if (bdev != bdev->bd_contains &&
1725 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1726 struct hd_struct *p = bdev->bd_part;
1727
1728 bio->bi_iter.bi_sector += p->start_sect;
1729 bio->bi_bdev = bdev->bd_contains;
1730
1731 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1732 bdev->bd_dev,
1733 bio->bi_iter.bi_sector - p->start_sect);
1734 }
1735}
1736
1737static void handle_bad_sector(struct bio *bio)
1738{
1739 char b[BDEVNAME_SIZE];
1740
1741 printk(KERN_INFO "attempt to access beyond end of device\n");
1742 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1743 bdevname(bio->bi_bdev, b),
1744 bio->bi_opf,
1745 (unsigned long long)bio_end_sector(bio),
1746 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1747}
1748
1749#ifdef CONFIG_FAIL_MAKE_REQUEST
1750
1751static DECLARE_FAULT_ATTR(fail_make_request);
1752
1753static int __init setup_fail_make_request(char *str)
1754{
1755 return setup_fault_attr(&fail_make_request, str);
1756}
1757__setup("fail_make_request=", setup_fail_make_request);
1758
1759static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1760{
1761 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1762}
1763
1764static int __init fail_make_request_debugfs(void)
1765{
1766 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1767 NULL, &fail_make_request);
1768
1769 return PTR_ERR_OR_ZERO(dir);
1770}
1771
1772late_initcall(fail_make_request_debugfs);
1773
1774#else /* CONFIG_FAIL_MAKE_REQUEST */
1775
1776static inline bool should_fail_request(struct hd_struct *part,
1777 unsigned int bytes)
1778{
1779 return false;
1780}
1781
1782#endif /* CONFIG_FAIL_MAKE_REQUEST */
1783
1784/*
1785 * Check whether this bio extends beyond the end of the device.
1786 */
1787static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1788{
1789 sector_t maxsector;
1790
1791 if (!nr_sectors)
1792 return 0;
1793
1794 /* Test device or partition size, when known. */
1795 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1796 if (maxsector) {
1797 sector_t sector = bio->bi_iter.bi_sector;
1798
1799 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1800 /*
1801 * This may well happen - the kernel calls bread()
1802 * without checking the size of the device, e.g., when
1803 * mounting a device.
1804 */
1805 handle_bad_sector(bio);
1806 return 1;
1807 }
1808 }
1809
1810 return 0;
1811}
1812
1813static noinline_for_stack bool
1814generic_make_request_checks(struct bio *bio)
1815{
1816 struct request_queue *q;
1817 int nr_sectors = bio_sectors(bio);
1818 int err = -EIO;
1819 char b[BDEVNAME_SIZE];
1820 struct hd_struct *part;
1821
1822 might_sleep();
1823
1824 if (bio_check_eod(bio, nr_sectors))
1825 goto end_io;
1826
1827 q = bdev_get_queue(bio->bi_bdev);
1828 if (unlikely(!q)) {
1829 printk(KERN_ERR
1830 "generic_make_request: Trying to access "
1831 "nonexistent block-device %s (%Lu)\n",
1832 bdevname(bio->bi_bdev, b),
1833 (long long) bio->bi_iter.bi_sector);
1834 goto end_io;
1835 }
1836
1837 part = bio->bi_bdev->bd_part;
1838 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1839 should_fail_request(&part_to_disk(part)->part0,
1840 bio->bi_iter.bi_size))
1841 goto end_io;
1842
1843 /*
1844 * If this device has partitions, remap block n
1845 * of partition p to block n+start(p) of the disk.
1846 */
1847 blk_partition_remap(bio);
1848
1849 if (bio_check_eod(bio, nr_sectors))
1850 goto end_io;
1851
1852 /*
1853 * Filter flush bio's early so that make_request based
1854 * drivers without flush support don't have to worry
1855 * about them.
1856 */
1857 if (op_is_flush(bio->bi_opf) &&
1858 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1859 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1860 if (!nr_sectors) {
1861 err = 0;
1862 goto end_io;
1863 }
1864 }
1865
1866 switch (bio_op(bio)) {
1867 case REQ_OP_DISCARD:
1868 if (!blk_queue_discard(q))
1869 goto not_supported;
1870 break;
1871 case REQ_OP_SECURE_ERASE:
1872 if (!blk_queue_secure_erase(q))
1873 goto not_supported;
1874 break;
1875 case REQ_OP_WRITE_SAME:
1876 if (!bdev_write_same(bio->bi_bdev))
1877 goto not_supported;
1878 break;
1879 case REQ_OP_ZONE_REPORT:
1880 case REQ_OP_ZONE_RESET:
1881 if (!bdev_is_zoned(bio->bi_bdev))
1882 goto not_supported;
1883 break;
1884 case REQ_OP_WRITE_ZEROES:
1885 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1886 goto not_supported;
1887 break;
1888 default:
1889 break;
1890 }
1891
1892 /*
1893 * Various block parts want %current->io_context and lazy ioc
1894 * allocation ends up trading a lot of pain for a small amount of
1895 * memory. Just allocate it upfront. This may fail and block
1896 * layer knows how to live with it.
1897 */
1898 create_io_context(GFP_ATOMIC, q->node);
1899
1900 if (!blkcg_bio_issue_check(q, bio))
1901 return false;
1902
1903 trace_block_bio_queue(q, bio);
1904 return true;
1905
1906not_supported:
1907 err = -EOPNOTSUPP;
1908end_io:
1909 bio->bi_error = err;
1910 bio_endio(bio);
1911 return false;
1912}
1913
1914/**
1915 * generic_make_request - hand a buffer to its device driver for I/O
1916 * @bio: The bio describing the location in memory and on the device.
1917 *
1918 * generic_make_request() is used to make I/O requests of block
1919 * devices. It is passed a &struct bio, which describes the I/O that needs
1920 * to be done.
1921 *
1922 * generic_make_request() does not return any status. The
1923 * success/failure status of the request, along with notification of
1924 * completion, is delivered asynchronously through the bio->bi_end_io
1925 * function described (one day) else where.
1926 *
1927 * The caller of generic_make_request must make sure that bi_io_vec
1928 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1929 * set to describe the device address, and the
1930 * bi_end_io and optionally bi_private are set to describe how
1931 * completion notification should be signaled.
1932 *
1933 * generic_make_request and the drivers it calls may use bi_next if this
1934 * bio happens to be merged with someone else, and may resubmit the bio to
1935 * a lower device by calling into generic_make_request recursively, which
1936 * means the bio should NOT be touched after the call to ->make_request_fn.
1937 */
1938blk_qc_t generic_make_request(struct bio *bio)
1939{
1940 struct bio_list bio_list_on_stack;
1941 blk_qc_t ret = BLK_QC_T_NONE;
1942
1943 if (!generic_make_request_checks(bio))
1944 goto out;
1945
1946 /*
1947 * We only want one ->make_request_fn to be active at a time, else
1948 * stack usage with stacked devices could be a problem. So use
1949 * current->bio_list to keep a list of requests submited by a
1950 * make_request_fn function. current->bio_list is also used as a
1951 * flag to say if generic_make_request is currently active in this
1952 * task or not. If it is NULL, then no make_request is active. If
1953 * it is non-NULL, then a make_request is active, and new requests
1954 * should be added at the tail
1955 */
1956 if (current->bio_list) {
1957 bio_list_add(current->bio_list, bio);
1958 goto out;
1959 }
1960
1961 /* following loop may be a bit non-obvious, and so deserves some
1962 * explanation.
1963 * Before entering the loop, bio->bi_next is NULL (as all callers
1964 * ensure that) so we have a list with a single bio.
1965 * We pretend that we have just taken it off a longer list, so
1966 * we assign bio_list to a pointer to the bio_list_on_stack,
1967 * thus initialising the bio_list of new bios to be
1968 * added. ->make_request() may indeed add some more bios
1969 * through a recursive call to generic_make_request. If it
1970 * did, we find a non-NULL value in bio_list and re-enter the loop
1971 * from the top. In this case we really did just take the bio
1972 * of the top of the list (no pretending) and so remove it from
1973 * bio_list, and call into ->make_request() again.
1974 */
1975 BUG_ON(bio->bi_next);
1976 bio_list_init(&bio_list_on_stack);
1977 current->bio_list = &bio_list_on_stack;
1978 do {
1979 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1980
1981 if (likely(blk_queue_enter(q, false) == 0)) {
1982 ret = q->make_request_fn(q, bio);
1983
1984 blk_queue_exit(q);
1985
1986 bio = bio_list_pop(current->bio_list);
1987 } else {
1988 struct bio *bio_next = bio_list_pop(current->bio_list);
1989
1990 bio_io_error(bio);
1991 bio = bio_next;
1992 }
1993 } while (bio);
1994 current->bio_list = NULL; /* deactivate */
1995
1996out:
1997 return ret;
1998}
1999EXPORT_SYMBOL(generic_make_request);
2000
2001/**
2002 * submit_bio - submit a bio to the block device layer for I/O
2003 * @bio: The &struct bio which describes the I/O
2004 *
2005 * submit_bio() is very similar in purpose to generic_make_request(), and
2006 * uses that function to do most of the work. Both are fairly rough
2007 * interfaces; @bio must be presetup and ready for I/O.
2008 *
2009 */
2010blk_qc_t submit_bio(struct bio *bio)
2011{
2012 /*
2013 * If it's a regular read/write or a barrier with data attached,
2014 * go through the normal accounting stuff before submission.
2015 */
2016 if (bio_has_data(bio)) {
2017 unsigned int count;
2018
2019 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2020 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2021 else
2022 count = bio_sectors(bio);
2023
2024 if (op_is_write(bio_op(bio))) {
2025 count_vm_events(PGPGOUT, count);
2026 } else {
2027 task_io_account_read(bio->bi_iter.bi_size);
2028 count_vm_events(PGPGIN, count);
2029 }
2030
2031 if (unlikely(block_dump)) {
2032 char b[BDEVNAME_SIZE];
2033 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2034 current->comm, task_pid_nr(current),
2035 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2036 (unsigned long long)bio->bi_iter.bi_sector,
2037 bdevname(bio->bi_bdev, b),
2038 count);
2039 }
2040 }
2041
2042 return generic_make_request(bio);
2043}
2044EXPORT_SYMBOL(submit_bio);
2045
2046/**
2047 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2048 * for new the queue limits
2049 * @q: the queue
2050 * @rq: the request being checked
2051 *
2052 * Description:
2053 * @rq may have been made based on weaker limitations of upper-level queues
2054 * in request stacking drivers, and it may violate the limitation of @q.
2055 * Since the block layer and the underlying device driver trust @rq
2056 * after it is inserted to @q, it should be checked against @q before
2057 * the insertion using this generic function.
2058 *
2059 * Request stacking drivers like request-based dm may change the queue
2060 * limits when retrying requests on other queues. Those requests need
2061 * to be checked against the new queue limits again during dispatch.
2062 */
2063static int blk_cloned_rq_check_limits(struct request_queue *q,
2064 struct request *rq)
2065{
2066 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2067 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2068 return -EIO;
2069 }
2070
2071 /*
2072 * queue's settings related to segment counting like q->bounce_pfn
2073 * may differ from that of other stacking queues.
2074 * Recalculate it to check the request correctly on this queue's
2075 * limitation.
2076 */
2077 blk_recalc_rq_segments(rq);
2078 if (rq->nr_phys_segments > queue_max_segments(q)) {
2079 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2080 return -EIO;
2081 }
2082
2083 return 0;
2084}
2085
2086/**
2087 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2088 * @q: the queue to submit the request
2089 * @rq: the request being queued
2090 */
2091int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2092{
2093 unsigned long flags;
2094 int where = ELEVATOR_INSERT_BACK;
2095
2096 if (blk_cloned_rq_check_limits(q, rq))
2097 return -EIO;
2098
2099 if (rq->rq_disk &&
2100 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2101 return -EIO;
2102
2103 if (q->mq_ops) {
2104 if (blk_queue_io_stat(q))
2105 blk_account_io_start(rq, true);
2106 blk_mq_sched_insert_request(rq, false, true, false, false);
2107 return 0;
2108 }
2109
2110 spin_lock_irqsave(q->queue_lock, flags);
2111 if (unlikely(blk_queue_dying(q))) {
2112 spin_unlock_irqrestore(q->queue_lock, flags);
2113 return -ENODEV;
2114 }
2115
2116 /*
2117 * Submitting request must be dequeued before calling this function
2118 * because it will be linked to another request_queue
2119 */
2120 BUG_ON(blk_queued_rq(rq));
2121
2122 if (op_is_flush(rq->cmd_flags))
2123 where = ELEVATOR_INSERT_FLUSH;
2124
2125 add_acct_request(q, rq, where);
2126 if (where == ELEVATOR_INSERT_FLUSH)
2127 __blk_run_queue(q);
2128 spin_unlock_irqrestore(q->queue_lock, flags);
2129
2130 return 0;
2131}
2132EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2133
2134/**
2135 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2136 * @rq: request to examine
2137 *
2138 * Description:
2139 * A request could be merge of IOs which require different failure
2140 * handling. This function determines the number of bytes which
2141 * can be failed from the beginning of the request without
2142 * crossing into area which need to be retried further.
2143 *
2144 * Return:
2145 * The number of bytes to fail.
2146 *
2147 * Context:
2148 * queue_lock must be held.
2149 */
2150unsigned int blk_rq_err_bytes(const struct request *rq)
2151{
2152 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2153 unsigned int bytes = 0;
2154 struct bio *bio;
2155
2156 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2157 return blk_rq_bytes(rq);
2158
2159 /*
2160 * Currently the only 'mixing' which can happen is between
2161 * different fastfail types. We can safely fail portions
2162 * which have all the failfast bits that the first one has -
2163 * the ones which are at least as eager to fail as the first
2164 * one.
2165 */
2166 for (bio = rq->bio; bio; bio = bio->bi_next) {
2167 if ((bio->bi_opf & ff) != ff)
2168 break;
2169 bytes += bio->bi_iter.bi_size;
2170 }
2171
2172 /* this could lead to infinite loop */
2173 BUG_ON(blk_rq_bytes(rq) && !bytes);
2174 return bytes;
2175}
2176EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2177
2178void blk_account_io_completion(struct request *req, unsigned int bytes)
2179{
2180 if (blk_do_io_stat(req)) {
2181 const int rw = rq_data_dir(req);
2182 struct hd_struct *part;
2183 int cpu;
2184
2185 cpu = part_stat_lock();
2186 part = req->part;
2187 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2188 part_stat_unlock();
2189 }
2190}
2191
2192void blk_account_io_done(struct request *req)
2193{
2194 /*
2195 * Account IO completion. flush_rq isn't accounted as a
2196 * normal IO on queueing nor completion. Accounting the
2197 * containing request is enough.
2198 */
2199 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2200 unsigned long duration = jiffies - req->start_time;
2201 const int rw = rq_data_dir(req);
2202 struct hd_struct *part;
2203 int cpu;
2204
2205 cpu = part_stat_lock();
2206 part = req->part;
2207
2208 part_stat_inc(cpu, part, ios[rw]);
2209 part_stat_add(cpu, part, ticks[rw], duration);
2210 part_round_stats(cpu, part);
2211 part_dec_in_flight(part, rw);
2212
2213 hd_struct_put(part);
2214 part_stat_unlock();
2215 }
2216}
2217
2218#ifdef CONFIG_PM
2219/*
2220 * Don't process normal requests when queue is suspended
2221 * or in the process of suspending/resuming
2222 */
2223static struct request *blk_pm_peek_request(struct request_queue *q,
2224 struct request *rq)
2225{
2226 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2227 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2228 return NULL;
2229 else
2230 return rq;
2231}
2232#else
2233static inline struct request *blk_pm_peek_request(struct request_queue *q,
2234 struct request *rq)
2235{
2236 return rq;
2237}
2238#endif
2239
2240void blk_account_io_start(struct request *rq, bool new_io)
2241{
2242 struct hd_struct *part;
2243 int rw = rq_data_dir(rq);
2244 int cpu;
2245
2246 if (!blk_do_io_stat(rq))
2247 return;
2248
2249 cpu = part_stat_lock();
2250
2251 if (!new_io) {
2252 part = rq->part;
2253 part_stat_inc(cpu, part, merges[rw]);
2254 } else {
2255 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2256 if (!hd_struct_try_get(part)) {
2257 /*
2258 * The partition is already being removed,
2259 * the request will be accounted on the disk only
2260 *
2261 * We take a reference on disk->part0 although that
2262 * partition will never be deleted, so we can treat
2263 * it as any other partition.
2264 */
2265 part = &rq->rq_disk->part0;
2266 hd_struct_get(part);
2267 }
2268 part_round_stats(cpu, part);
2269 part_inc_in_flight(part, rw);
2270 rq->part = part;
2271 }
2272
2273 part_stat_unlock();
2274}
2275
2276/**
2277 * blk_peek_request - peek at the top of a request queue
2278 * @q: request queue to peek at
2279 *
2280 * Description:
2281 * Return the request at the top of @q. The returned request
2282 * should be started using blk_start_request() before LLD starts
2283 * processing it.
2284 *
2285 * Return:
2286 * Pointer to the request at the top of @q if available. Null
2287 * otherwise.
2288 *
2289 * Context:
2290 * queue_lock must be held.
2291 */
2292struct request *blk_peek_request(struct request_queue *q)
2293{
2294 struct request *rq;
2295 int ret;
2296
2297 while ((rq = __elv_next_request(q)) != NULL) {
2298
2299 rq = blk_pm_peek_request(q, rq);
2300 if (!rq)
2301 break;
2302
2303 if (!(rq->rq_flags & RQF_STARTED)) {
2304 /*
2305 * This is the first time the device driver
2306 * sees this request (possibly after
2307 * requeueing). Notify IO scheduler.
2308 */
2309 if (rq->rq_flags & RQF_SORTED)
2310 elv_activate_rq(q, rq);
2311
2312 /*
2313 * just mark as started even if we don't start
2314 * it, a request that has been delayed should
2315 * not be passed by new incoming requests
2316 */
2317 rq->rq_flags |= RQF_STARTED;
2318 trace_block_rq_issue(q, rq);
2319 }
2320
2321 if (!q->boundary_rq || q->boundary_rq == rq) {
2322 q->end_sector = rq_end_sector(rq);
2323 q->boundary_rq = NULL;
2324 }
2325
2326 if (rq->rq_flags & RQF_DONTPREP)
2327 break;
2328
2329 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2330 /*
2331 * make sure space for the drain appears we
2332 * know we can do this because max_hw_segments
2333 * has been adjusted to be one fewer than the
2334 * device can handle
2335 */
2336 rq->nr_phys_segments++;
2337 }
2338
2339 if (!q->prep_rq_fn)
2340 break;
2341
2342 ret = q->prep_rq_fn(q, rq);
2343 if (ret == BLKPREP_OK) {
2344 break;
2345 } else if (ret == BLKPREP_DEFER) {
2346 /*
2347 * the request may have been (partially) prepped.
2348 * we need to keep this request in the front to
2349 * avoid resource deadlock. RQF_STARTED will
2350 * prevent other fs requests from passing this one.
2351 */
2352 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2353 !(rq->rq_flags & RQF_DONTPREP)) {
2354 /*
2355 * remove the space for the drain we added
2356 * so that we don't add it again
2357 */
2358 --rq->nr_phys_segments;
2359 }
2360
2361 rq = NULL;
2362 break;
2363 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2364 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2365
2366 rq->rq_flags |= RQF_QUIET;
2367 /*
2368 * Mark this request as started so we don't trigger
2369 * any debug logic in the end I/O path.
2370 */
2371 blk_start_request(rq);
2372 __blk_end_request_all(rq, err);
2373 } else {
2374 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2375 break;
2376 }
2377 }
2378
2379 return rq;
2380}
2381EXPORT_SYMBOL(blk_peek_request);
2382
2383void blk_dequeue_request(struct request *rq)
2384{
2385 struct request_queue *q = rq->q;
2386
2387 BUG_ON(list_empty(&rq->queuelist));
2388 BUG_ON(ELV_ON_HASH(rq));
2389
2390 list_del_init(&rq->queuelist);
2391
2392 /*
2393 * the time frame between a request being removed from the lists
2394 * and to it is freed is accounted as io that is in progress at
2395 * the driver side.
2396 */
2397 if (blk_account_rq(rq)) {
2398 q->in_flight[rq_is_sync(rq)]++;
2399 set_io_start_time_ns(rq);
2400 }
2401}
2402
2403/**
2404 * blk_start_request - start request processing on the driver
2405 * @req: request to dequeue
2406 *
2407 * Description:
2408 * Dequeue @req and start timeout timer on it. This hands off the
2409 * request to the driver.
2410 *
2411 * Block internal functions which don't want to start timer should
2412 * call blk_dequeue_request().
2413 *
2414 * Context:
2415 * queue_lock must be held.
2416 */
2417void blk_start_request(struct request *req)
2418{
2419 blk_dequeue_request(req);
2420
2421 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2422 blk_stat_set_issue_time(&req->issue_stat);
2423 req->rq_flags |= RQF_STATS;
2424 wbt_issue(req->q->rq_wb, &req->issue_stat);
2425 }
2426
2427 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2428 blk_add_timer(req);
2429}
2430EXPORT_SYMBOL(blk_start_request);
2431
2432/**
2433 * blk_fetch_request - fetch a request from a request queue
2434 * @q: request queue to fetch a request from
2435 *
2436 * Description:
2437 * Return the request at the top of @q. The request is started on
2438 * return and LLD can start processing it immediately.
2439 *
2440 * Return:
2441 * Pointer to the request at the top of @q if available. Null
2442 * otherwise.
2443 *
2444 * Context:
2445 * queue_lock must be held.
2446 */
2447struct request *blk_fetch_request(struct request_queue *q)
2448{
2449 struct request *rq;
2450
2451 rq = blk_peek_request(q);
2452 if (rq)
2453 blk_start_request(rq);
2454 return rq;
2455}
2456EXPORT_SYMBOL(blk_fetch_request);
2457
2458/**
2459 * blk_update_request - Special helper function for request stacking drivers
2460 * @req: the request being processed
2461 * @error: %0 for success, < %0 for error
2462 * @nr_bytes: number of bytes to complete @req
2463 *
2464 * Description:
2465 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2466 * the request structure even if @req doesn't have leftover.
2467 * If @req has leftover, sets it up for the next range of segments.
2468 *
2469 * This special helper function is only for request stacking drivers
2470 * (e.g. request-based dm) so that they can handle partial completion.
2471 * Actual device drivers should use blk_end_request instead.
2472 *
2473 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2474 * %false return from this function.
2475 *
2476 * Return:
2477 * %false - this request doesn't have any more data
2478 * %true - this request has more data
2479 **/
2480bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2481{
2482 int total_bytes;
2483
2484 trace_block_rq_complete(req->q, req, nr_bytes);
2485
2486 if (!req->bio)
2487 return false;
2488
2489 /*
2490 * For fs requests, rq is just carrier of independent bio's
2491 * and each partial completion should be handled separately.
2492 * Reset per-request error on each partial completion.
2493 *
2494 * TODO: tj: This is too subtle. It would be better to let
2495 * low level drivers do what they see fit.
2496 */
2497 if (!blk_rq_is_passthrough(req))
2498 req->errors = 0;
2499
2500 if (error && !blk_rq_is_passthrough(req) &&
2501 !(req->rq_flags & RQF_QUIET)) {
2502 char *error_type;
2503
2504 switch (error) {
2505 case -ENOLINK:
2506 error_type = "recoverable transport";
2507 break;
2508 case -EREMOTEIO:
2509 error_type = "critical target";
2510 break;
2511 case -EBADE:
2512 error_type = "critical nexus";
2513 break;
2514 case -ETIMEDOUT:
2515 error_type = "timeout";
2516 break;
2517 case -ENOSPC:
2518 error_type = "critical space allocation";
2519 break;
2520 case -ENODATA:
2521 error_type = "critical medium";
2522 break;
2523 case -EIO:
2524 default:
2525 error_type = "I/O";
2526 break;
2527 }
2528 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2529 __func__, error_type, req->rq_disk ?
2530 req->rq_disk->disk_name : "?",
2531 (unsigned long long)blk_rq_pos(req));
2532
2533 }
2534
2535 blk_account_io_completion(req, nr_bytes);
2536
2537 total_bytes = 0;
2538 while (req->bio) {
2539 struct bio *bio = req->bio;
2540 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2541
2542 if (bio_bytes == bio->bi_iter.bi_size)
2543 req->bio = bio->bi_next;
2544
2545 req_bio_endio(req, bio, bio_bytes, error);
2546
2547 total_bytes += bio_bytes;
2548 nr_bytes -= bio_bytes;
2549
2550 if (!nr_bytes)
2551 break;
2552 }
2553
2554 /*
2555 * completely done
2556 */
2557 if (!req->bio) {
2558 /*
2559 * Reset counters so that the request stacking driver
2560 * can find how many bytes remain in the request
2561 * later.
2562 */
2563 req->__data_len = 0;
2564 return false;
2565 }
2566
2567 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2568
2569 req->__data_len -= total_bytes;
2570
2571 /* update sector only for requests with clear definition of sector */
2572 if (!blk_rq_is_passthrough(req))
2573 req->__sector += total_bytes >> 9;
2574
2575 /* mixed attributes always follow the first bio */
2576 if (req->rq_flags & RQF_MIXED_MERGE) {
2577 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2578 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2579 }
2580
2581 /*
2582 * If total number of sectors is less than the first segment
2583 * size, something has gone terribly wrong.
2584 */
2585 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2586 blk_dump_rq_flags(req, "request botched");
2587 req->__data_len = blk_rq_cur_bytes(req);
2588 }
2589
2590 /* recalculate the number of segments */
2591 blk_recalc_rq_segments(req);
2592
2593 return true;
2594}
2595EXPORT_SYMBOL_GPL(blk_update_request);
2596
2597static bool blk_update_bidi_request(struct request *rq, int error,
2598 unsigned int nr_bytes,
2599 unsigned int bidi_bytes)
2600{
2601 if (blk_update_request(rq, error, nr_bytes))
2602 return true;
2603
2604 /* Bidi request must be completed as a whole */
2605 if (unlikely(blk_bidi_rq(rq)) &&
2606 blk_update_request(rq->next_rq, error, bidi_bytes))
2607 return true;
2608
2609 if (blk_queue_add_random(rq->q))
2610 add_disk_randomness(rq->rq_disk);
2611
2612 return false;
2613}
2614
2615/**
2616 * blk_unprep_request - unprepare a request
2617 * @req: the request
2618 *
2619 * This function makes a request ready for complete resubmission (or
2620 * completion). It happens only after all error handling is complete,
2621 * so represents the appropriate moment to deallocate any resources
2622 * that were allocated to the request in the prep_rq_fn. The queue
2623 * lock is held when calling this.
2624 */
2625void blk_unprep_request(struct request *req)
2626{
2627 struct request_queue *q = req->q;
2628
2629 req->rq_flags &= ~RQF_DONTPREP;
2630 if (q->unprep_rq_fn)
2631 q->unprep_rq_fn(q, req);
2632}
2633EXPORT_SYMBOL_GPL(blk_unprep_request);
2634
2635/*
2636 * queue lock must be held
2637 */
2638void blk_finish_request(struct request *req, int error)
2639{
2640 struct request_queue *q = req->q;
2641
2642 if (req->rq_flags & RQF_STATS)
2643 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2644
2645 if (req->rq_flags & RQF_QUEUED)
2646 blk_queue_end_tag(q, req);
2647
2648 BUG_ON(blk_queued_rq(req));
2649
2650 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2651 laptop_io_completion(req->q->backing_dev_info);
2652
2653 blk_delete_timer(req);
2654
2655 if (req->rq_flags & RQF_DONTPREP)
2656 blk_unprep_request(req);
2657
2658 blk_account_io_done(req);
2659
2660 if (req->end_io) {
2661 wbt_done(req->q->rq_wb, &req->issue_stat);
2662 req->end_io(req, error);
2663 } else {
2664 if (blk_bidi_rq(req))
2665 __blk_put_request(req->next_rq->q, req->next_rq);
2666
2667 __blk_put_request(q, req);
2668 }
2669}
2670EXPORT_SYMBOL(blk_finish_request);
2671
2672/**
2673 * blk_end_bidi_request - Complete a bidi request
2674 * @rq: the request to complete
2675 * @error: %0 for success, < %0 for error
2676 * @nr_bytes: number of bytes to complete @rq
2677 * @bidi_bytes: number of bytes to complete @rq->next_rq
2678 *
2679 * Description:
2680 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2681 * Drivers that supports bidi can safely call this member for any
2682 * type of request, bidi or uni. In the later case @bidi_bytes is
2683 * just ignored.
2684 *
2685 * Return:
2686 * %false - we are done with this request
2687 * %true - still buffers pending for this request
2688 **/
2689static bool blk_end_bidi_request(struct request *rq, int error,
2690 unsigned int nr_bytes, unsigned int bidi_bytes)
2691{
2692 struct request_queue *q = rq->q;
2693 unsigned long flags;
2694
2695 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2696 return true;
2697
2698 spin_lock_irqsave(q->queue_lock, flags);
2699 blk_finish_request(rq, error);
2700 spin_unlock_irqrestore(q->queue_lock, flags);
2701
2702 return false;
2703}
2704
2705/**
2706 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2707 * @rq: the request to complete
2708 * @error: %0 for success, < %0 for error
2709 * @nr_bytes: number of bytes to complete @rq
2710 * @bidi_bytes: number of bytes to complete @rq->next_rq
2711 *
2712 * Description:
2713 * Identical to blk_end_bidi_request() except that queue lock is
2714 * assumed to be locked on entry and remains so on return.
2715 *
2716 * Return:
2717 * %false - we are done with this request
2718 * %true - still buffers pending for this request
2719 **/
2720bool __blk_end_bidi_request(struct request *rq, int error,
2721 unsigned int nr_bytes, unsigned int bidi_bytes)
2722{
2723 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2724 return true;
2725
2726 blk_finish_request(rq, error);
2727
2728 return false;
2729}
2730
2731/**
2732 * blk_end_request - Helper function for drivers to complete the request.
2733 * @rq: the request being processed
2734 * @error: %0 for success, < %0 for error
2735 * @nr_bytes: number of bytes to complete
2736 *
2737 * Description:
2738 * Ends I/O on a number of bytes attached to @rq.
2739 * If @rq has leftover, sets it up for the next range of segments.
2740 *
2741 * Return:
2742 * %false - we are done with this request
2743 * %true - still buffers pending for this request
2744 **/
2745bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2746{
2747 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2748}
2749EXPORT_SYMBOL(blk_end_request);
2750
2751/**
2752 * blk_end_request_all - Helper function for drives to finish the request.
2753 * @rq: the request to finish
2754 * @error: %0 for success, < %0 for error
2755 *
2756 * Description:
2757 * Completely finish @rq.
2758 */
2759void blk_end_request_all(struct request *rq, int error)
2760{
2761 bool pending;
2762 unsigned int bidi_bytes = 0;
2763
2764 if (unlikely(blk_bidi_rq(rq)))
2765 bidi_bytes = blk_rq_bytes(rq->next_rq);
2766
2767 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2768 BUG_ON(pending);
2769}
2770EXPORT_SYMBOL(blk_end_request_all);
2771
2772/**
2773 * blk_end_request_cur - Helper function to finish the current request chunk.
2774 * @rq: the request to finish the current chunk for
2775 * @error: %0 for success, < %0 for error
2776 *
2777 * Description:
2778 * Complete the current consecutively mapped chunk from @rq.
2779 *
2780 * Return:
2781 * %false - we are done with this request
2782 * %true - still buffers pending for this request
2783 */
2784bool blk_end_request_cur(struct request *rq, int error)
2785{
2786 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2787}
2788EXPORT_SYMBOL(blk_end_request_cur);
2789
2790/**
2791 * blk_end_request_err - Finish a request till the next failure boundary.
2792 * @rq: the request to finish till the next failure boundary for
2793 * @error: must be negative errno
2794 *
2795 * Description:
2796 * Complete @rq till the next failure boundary.
2797 *
2798 * Return:
2799 * %false - we are done with this request
2800 * %true - still buffers pending for this request
2801 */
2802bool blk_end_request_err(struct request *rq, int error)
2803{
2804 WARN_ON(error >= 0);
2805 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2806}
2807EXPORT_SYMBOL_GPL(blk_end_request_err);
2808
2809/**
2810 * __blk_end_request - Helper function for drivers to complete the request.
2811 * @rq: the request being processed
2812 * @error: %0 for success, < %0 for error
2813 * @nr_bytes: number of bytes to complete
2814 *
2815 * Description:
2816 * Must be called with queue lock held unlike blk_end_request().
2817 *
2818 * Return:
2819 * %false - we are done with this request
2820 * %true - still buffers pending for this request
2821 **/
2822bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2823{
2824 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2825}
2826EXPORT_SYMBOL(__blk_end_request);
2827
2828/**
2829 * __blk_end_request_all - Helper function for drives to finish the request.
2830 * @rq: the request to finish
2831 * @error: %0 for success, < %0 for error
2832 *
2833 * Description:
2834 * Completely finish @rq. Must be called with queue lock held.
2835 */
2836void __blk_end_request_all(struct request *rq, int error)
2837{
2838 bool pending;
2839 unsigned int bidi_bytes = 0;
2840
2841 if (unlikely(blk_bidi_rq(rq)))
2842 bidi_bytes = blk_rq_bytes(rq->next_rq);
2843
2844 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2845 BUG_ON(pending);
2846}
2847EXPORT_SYMBOL(__blk_end_request_all);
2848
2849/**
2850 * __blk_end_request_cur - Helper function to finish the current request chunk.
2851 * @rq: the request to finish the current chunk for
2852 * @error: %0 for success, < %0 for error
2853 *
2854 * Description:
2855 * Complete the current consecutively mapped chunk from @rq. Must
2856 * be called with queue lock held.
2857 *
2858 * Return:
2859 * %false - we are done with this request
2860 * %true - still buffers pending for this request
2861 */
2862bool __blk_end_request_cur(struct request *rq, int error)
2863{
2864 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2865}
2866EXPORT_SYMBOL(__blk_end_request_cur);
2867
2868/**
2869 * __blk_end_request_err - Finish a request till the next failure boundary.
2870 * @rq: the request to finish till the next failure boundary for
2871 * @error: must be negative errno
2872 *
2873 * Description:
2874 * Complete @rq till the next failure boundary. Must be called
2875 * with queue lock held.
2876 *
2877 * Return:
2878 * %false - we are done with this request
2879 * %true - still buffers pending for this request
2880 */
2881bool __blk_end_request_err(struct request *rq, int error)
2882{
2883 WARN_ON(error >= 0);
2884 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2885}
2886EXPORT_SYMBOL_GPL(__blk_end_request_err);
2887
2888void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2889 struct bio *bio)
2890{
2891 if (bio_has_data(bio))
2892 rq->nr_phys_segments = bio_phys_segments(q, bio);
2893
2894 rq->__data_len = bio->bi_iter.bi_size;
2895 rq->bio = rq->biotail = bio;
2896
2897 if (bio->bi_bdev)
2898 rq->rq_disk = bio->bi_bdev->bd_disk;
2899}
2900
2901#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2902/**
2903 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2904 * @rq: the request to be flushed
2905 *
2906 * Description:
2907 * Flush all pages in @rq.
2908 */
2909void rq_flush_dcache_pages(struct request *rq)
2910{
2911 struct req_iterator iter;
2912 struct bio_vec bvec;
2913
2914 rq_for_each_segment(bvec, rq, iter)
2915 flush_dcache_page(bvec.bv_page);
2916}
2917EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2918#endif
2919
2920/**
2921 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2922 * @q : the queue of the device being checked
2923 *
2924 * Description:
2925 * Check if underlying low-level drivers of a device are busy.
2926 * If the drivers want to export their busy state, they must set own
2927 * exporting function using blk_queue_lld_busy() first.
2928 *
2929 * Basically, this function is used only by request stacking drivers
2930 * to stop dispatching requests to underlying devices when underlying
2931 * devices are busy. This behavior helps more I/O merging on the queue
2932 * of the request stacking driver and prevents I/O throughput regression
2933 * on burst I/O load.
2934 *
2935 * Return:
2936 * 0 - Not busy (The request stacking driver should dispatch request)
2937 * 1 - Busy (The request stacking driver should stop dispatching request)
2938 */
2939int blk_lld_busy(struct request_queue *q)
2940{
2941 if (q->lld_busy_fn)
2942 return q->lld_busy_fn(q);
2943
2944 return 0;
2945}
2946EXPORT_SYMBOL_GPL(blk_lld_busy);
2947
2948/**
2949 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2950 * @rq: the clone request to be cleaned up
2951 *
2952 * Description:
2953 * Free all bios in @rq for a cloned request.
2954 */
2955void blk_rq_unprep_clone(struct request *rq)
2956{
2957 struct bio *bio;
2958
2959 while ((bio = rq->bio) != NULL) {
2960 rq->bio = bio->bi_next;
2961
2962 bio_put(bio);
2963 }
2964}
2965EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2966
2967/*
2968 * Copy attributes of the original request to the clone request.
2969 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2970 */
2971static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2972{
2973 dst->cpu = src->cpu;
2974 dst->__sector = blk_rq_pos(src);
2975 dst->__data_len = blk_rq_bytes(src);
2976 dst->nr_phys_segments = src->nr_phys_segments;
2977 dst->ioprio = src->ioprio;
2978 dst->extra_len = src->extra_len;
2979}
2980
2981/**
2982 * blk_rq_prep_clone - Helper function to setup clone request
2983 * @rq: the request to be setup
2984 * @rq_src: original request to be cloned
2985 * @bs: bio_set that bios for clone are allocated from
2986 * @gfp_mask: memory allocation mask for bio
2987 * @bio_ctr: setup function to be called for each clone bio.
2988 * Returns %0 for success, non %0 for failure.
2989 * @data: private data to be passed to @bio_ctr
2990 *
2991 * Description:
2992 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2993 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2994 * are not copied, and copying such parts is the caller's responsibility.
2995 * Also, pages which the original bios are pointing to are not copied
2996 * and the cloned bios just point same pages.
2997 * So cloned bios must be completed before original bios, which means
2998 * the caller must complete @rq before @rq_src.
2999 */
3000int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3001 struct bio_set *bs, gfp_t gfp_mask,
3002 int (*bio_ctr)(struct bio *, struct bio *, void *),
3003 void *data)
3004{
3005 struct bio *bio, *bio_src;
3006
3007 if (!bs)
3008 bs = fs_bio_set;
3009
3010 __rq_for_each_bio(bio_src, rq_src) {
3011 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3012 if (!bio)
3013 goto free_and_out;
3014
3015 if (bio_ctr && bio_ctr(bio, bio_src, data))
3016 goto free_and_out;
3017
3018 if (rq->bio) {
3019 rq->biotail->bi_next = bio;
3020 rq->biotail = bio;
3021 } else
3022 rq->bio = rq->biotail = bio;
3023 }
3024
3025 __blk_rq_prep_clone(rq, rq_src);
3026
3027 return 0;
3028
3029free_and_out:
3030 if (bio)
3031 bio_put(bio);
3032 blk_rq_unprep_clone(rq);
3033
3034 return -ENOMEM;
3035}
3036EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3037
3038int kblockd_schedule_work(struct work_struct *work)
3039{
3040 return queue_work(kblockd_workqueue, work);
3041}
3042EXPORT_SYMBOL(kblockd_schedule_work);
3043
3044int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3045{
3046 return queue_work_on(cpu, kblockd_workqueue, work);
3047}
3048EXPORT_SYMBOL(kblockd_schedule_work_on);
3049
3050int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3051 unsigned long delay)
3052{
3053 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3054}
3055EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3056
3057int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3058 unsigned long delay)
3059{
3060 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3061}
3062EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3063
3064/**
3065 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3066 * @plug: The &struct blk_plug that needs to be initialized
3067 *
3068 * Description:
3069 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3070 * pending I/O should the task end up blocking between blk_start_plug() and
3071 * blk_finish_plug(). This is important from a performance perspective, but
3072 * also ensures that we don't deadlock. For instance, if the task is blocking
3073 * for a memory allocation, memory reclaim could end up wanting to free a
3074 * page belonging to that request that is currently residing in our private
3075 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3076 * this kind of deadlock.
3077 */
3078void blk_start_plug(struct blk_plug *plug)
3079{
3080 struct task_struct *tsk = current;
3081
3082 /*
3083 * If this is a nested plug, don't actually assign it.
3084 */
3085 if (tsk->plug)
3086 return;
3087
3088 INIT_LIST_HEAD(&plug->list);
3089 INIT_LIST_HEAD(&plug->mq_list);
3090 INIT_LIST_HEAD(&plug->cb_list);
3091 /*
3092 * Store ordering should not be needed here, since a potential
3093 * preempt will imply a full memory barrier
3094 */
3095 tsk->plug = plug;
3096}
3097EXPORT_SYMBOL(blk_start_plug);
3098
3099static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3100{
3101 struct request *rqa = container_of(a, struct request, queuelist);
3102 struct request *rqb = container_of(b, struct request, queuelist);
3103
3104 return !(rqa->q < rqb->q ||
3105 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3106}
3107
3108/*
3109 * If 'from_schedule' is true, then postpone the dispatch of requests
3110 * until a safe kblockd context. We due this to avoid accidental big
3111 * additional stack usage in driver dispatch, in places where the originally
3112 * plugger did not intend it.
3113 */
3114static void queue_unplugged(struct request_queue *q, unsigned int depth,
3115 bool from_schedule)
3116 __releases(q->queue_lock)
3117{
3118 trace_block_unplug(q, depth, !from_schedule);
3119
3120 if (from_schedule)
3121 blk_run_queue_async(q);
3122 else
3123 __blk_run_queue(q);
3124 spin_unlock(q->queue_lock);
3125}
3126
3127static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3128{
3129 LIST_HEAD(callbacks);
3130
3131 while (!list_empty(&plug->cb_list)) {
3132 list_splice_init(&plug->cb_list, &callbacks);
3133
3134 while (!list_empty(&callbacks)) {
3135 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3136 struct blk_plug_cb,
3137 list);
3138 list_del(&cb->list);
3139 cb->callback(cb, from_schedule);
3140 }
3141 }
3142}
3143
3144struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3145 int size)
3146{
3147 struct blk_plug *plug = current->plug;
3148 struct blk_plug_cb *cb;
3149
3150 if (!plug)
3151 return NULL;
3152
3153 list_for_each_entry(cb, &plug->cb_list, list)
3154 if (cb->callback == unplug && cb->data == data)
3155 return cb;
3156
3157 /* Not currently on the callback list */
3158 BUG_ON(size < sizeof(*cb));
3159 cb = kzalloc(size, GFP_ATOMIC);
3160 if (cb) {
3161 cb->data = data;
3162 cb->callback = unplug;
3163 list_add(&cb->list, &plug->cb_list);
3164 }
3165 return cb;
3166}
3167EXPORT_SYMBOL(blk_check_plugged);
3168
3169void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3170{
3171 struct request_queue *q;
3172 unsigned long flags;
3173 struct request *rq;
3174 LIST_HEAD(list);
3175 unsigned int depth;
3176
3177 flush_plug_callbacks(plug, from_schedule);
3178
3179 if (!list_empty(&plug->mq_list))
3180 blk_mq_flush_plug_list(plug, from_schedule);
3181
3182 if (list_empty(&plug->list))
3183 return;
3184
3185 list_splice_init(&plug->list, &list);
3186
3187 list_sort(NULL, &list, plug_rq_cmp);
3188
3189 q = NULL;
3190 depth = 0;
3191
3192 /*
3193 * Save and disable interrupts here, to avoid doing it for every
3194 * queue lock we have to take.
3195 */
3196 local_irq_save(flags);
3197 while (!list_empty(&list)) {
3198 rq = list_entry_rq(list.next);
3199 list_del_init(&rq->queuelist);
3200 BUG_ON(!rq->q);
3201 if (rq->q != q) {
3202 /*
3203 * This drops the queue lock
3204 */
3205 if (q)
3206 queue_unplugged(q, depth, from_schedule);
3207 q = rq->q;
3208 depth = 0;
3209 spin_lock(q->queue_lock);
3210 }
3211
3212 /*
3213 * Short-circuit if @q is dead
3214 */
3215 if (unlikely(blk_queue_dying(q))) {
3216 __blk_end_request_all(rq, -ENODEV);
3217 continue;
3218 }
3219
3220 /*
3221 * rq is already accounted, so use raw insert
3222 */
3223 if (op_is_flush(rq->cmd_flags))
3224 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3225 else
3226 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3227
3228 depth++;
3229 }
3230
3231 /*
3232 * This drops the queue lock
3233 */
3234 if (q)
3235 queue_unplugged(q, depth, from_schedule);
3236
3237 local_irq_restore(flags);
3238}
3239
3240void blk_finish_plug(struct blk_plug *plug)
3241{
3242 if (plug != current->plug)
3243 return;
3244 blk_flush_plug_list(plug, false);
3245
3246 current->plug = NULL;
3247}
3248EXPORT_SYMBOL(blk_finish_plug);
3249
3250#ifdef CONFIG_PM
3251/**
3252 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3253 * @q: the queue of the device
3254 * @dev: the device the queue belongs to
3255 *
3256 * Description:
3257 * Initialize runtime-PM-related fields for @q and start auto suspend for
3258 * @dev. Drivers that want to take advantage of request-based runtime PM
3259 * should call this function after @dev has been initialized, and its
3260 * request queue @q has been allocated, and runtime PM for it can not happen
3261 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3262 * cases, driver should call this function before any I/O has taken place.
3263 *
3264 * This function takes care of setting up using auto suspend for the device,
3265 * the autosuspend delay is set to -1 to make runtime suspend impossible
3266 * until an updated value is either set by user or by driver. Drivers do
3267 * not need to touch other autosuspend settings.
3268 *
3269 * The block layer runtime PM is request based, so only works for drivers
3270 * that use request as their IO unit instead of those directly use bio's.
3271 */
3272void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3273{
3274 q->dev = dev;
3275 q->rpm_status = RPM_ACTIVE;
3276 pm_runtime_set_autosuspend_delay(q->dev, -1);
3277 pm_runtime_use_autosuspend(q->dev);
3278}
3279EXPORT_SYMBOL(blk_pm_runtime_init);
3280
3281/**
3282 * blk_pre_runtime_suspend - Pre runtime suspend check
3283 * @q: the queue of the device
3284 *
3285 * Description:
3286 * This function will check if runtime suspend is allowed for the device
3287 * by examining if there are any requests pending in the queue. If there
3288 * are requests pending, the device can not be runtime suspended; otherwise,
3289 * the queue's status will be updated to SUSPENDING and the driver can
3290 * proceed to suspend the device.
3291 *
3292 * For the not allowed case, we mark last busy for the device so that
3293 * runtime PM core will try to autosuspend it some time later.
3294 *
3295 * This function should be called near the start of the device's
3296 * runtime_suspend callback.
3297 *
3298 * Return:
3299 * 0 - OK to runtime suspend the device
3300 * -EBUSY - Device should not be runtime suspended
3301 */
3302int blk_pre_runtime_suspend(struct request_queue *q)
3303{
3304 int ret = 0;
3305
3306 if (!q->dev)
3307 return ret;
3308
3309 spin_lock_irq(q->queue_lock);
3310 if (q->nr_pending) {
3311 ret = -EBUSY;
3312 pm_runtime_mark_last_busy(q->dev);
3313 } else {
3314 q->rpm_status = RPM_SUSPENDING;
3315 }
3316 spin_unlock_irq(q->queue_lock);
3317 return ret;
3318}
3319EXPORT_SYMBOL(blk_pre_runtime_suspend);
3320
3321/**
3322 * blk_post_runtime_suspend - Post runtime suspend processing
3323 * @q: the queue of the device
3324 * @err: return value of the device's runtime_suspend function
3325 *
3326 * Description:
3327 * Update the queue's runtime status according to the return value of the
3328 * device's runtime suspend function and mark last busy for the device so
3329 * that PM core will try to auto suspend the device at a later time.
3330 *
3331 * This function should be called near the end of the device's
3332 * runtime_suspend callback.
3333 */
3334void blk_post_runtime_suspend(struct request_queue *q, int err)
3335{
3336 if (!q->dev)
3337 return;
3338
3339 spin_lock_irq(q->queue_lock);
3340 if (!err) {
3341 q->rpm_status = RPM_SUSPENDED;
3342 } else {
3343 q->rpm_status = RPM_ACTIVE;
3344 pm_runtime_mark_last_busy(q->dev);
3345 }
3346 spin_unlock_irq(q->queue_lock);
3347}
3348EXPORT_SYMBOL(blk_post_runtime_suspend);
3349
3350/**
3351 * blk_pre_runtime_resume - Pre runtime resume processing
3352 * @q: the queue of the device
3353 *
3354 * Description:
3355 * Update the queue's runtime status to RESUMING in preparation for the
3356 * runtime resume of the device.
3357 *
3358 * This function should be called near the start of the device's
3359 * runtime_resume callback.
3360 */
3361void blk_pre_runtime_resume(struct request_queue *q)
3362{
3363 if (!q->dev)
3364 return;
3365
3366 spin_lock_irq(q->queue_lock);
3367 q->rpm_status = RPM_RESUMING;
3368 spin_unlock_irq(q->queue_lock);
3369}
3370EXPORT_SYMBOL(blk_pre_runtime_resume);
3371
3372/**
3373 * blk_post_runtime_resume - Post runtime resume processing
3374 * @q: the queue of the device
3375 * @err: return value of the device's runtime_resume function
3376 *
3377 * Description:
3378 * Update the queue's runtime status according to the return value of the
3379 * device's runtime_resume function. If it is successfully resumed, process
3380 * the requests that are queued into the device's queue when it is resuming
3381 * and then mark last busy and initiate autosuspend for it.
3382 *
3383 * This function should be called near the end of the device's
3384 * runtime_resume callback.
3385 */
3386void blk_post_runtime_resume(struct request_queue *q, int err)
3387{
3388 if (!q->dev)
3389 return;
3390
3391 spin_lock_irq(q->queue_lock);
3392 if (!err) {
3393 q->rpm_status = RPM_ACTIVE;
3394 __blk_run_queue(q);
3395 pm_runtime_mark_last_busy(q->dev);
3396 pm_request_autosuspend(q->dev);
3397 } else {
3398 q->rpm_status = RPM_SUSPENDED;
3399 }
3400 spin_unlock_irq(q->queue_lock);
3401}
3402EXPORT_SYMBOL(blk_post_runtime_resume);
3403
3404/**
3405 * blk_set_runtime_active - Force runtime status of the queue to be active
3406 * @q: the queue of the device
3407 *
3408 * If the device is left runtime suspended during system suspend the resume
3409 * hook typically resumes the device and corrects runtime status
3410 * accordingly. However, that does not affect the queue runtime PM status
3411 * which is still "suspended". This prevents processing requests from the
3412 * queue.
3413 *
3414 * This function can be used in driver's resume hook to correct queue
3415 * runtime PM status and re-enable peeking requests from the queue. It
3416 * should be called before first request is added to the queue.
3417 */
3418void blk_set_runtime_active(struct request_queue *q)
3419{
3420 spin_lock_irq(q->queue_lock);
3421 q->rpm_status = RPM_ACTIVE;
3422 pm_runtime_mark_last_busy(q->dev);
3423 pm_request_autosuspend(q->dev);
3424 spin_unlock_irq(q->queue_lock);
3425}
3426EXPORT_SYMBOL(blk_set_runtime_active);
3427#endif
3428
3429int __init blk_dev_init(void)
3430{
3431 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3432 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3433 FIELD_SIZEOF(struct request, cmd_flags));
3434 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3435 FIELD_SIZEOF(struct bio, bi_opf));
3436
3437 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3438 kblockd_workqueue = alloc_workqueue("kblockd",
3439 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3440 if (!kblockd_workqueue)
3441 panic("Failed to create kblockd\n");
3442
3443 request_cachep = kmem_cache_create("blkdev_requests",
3444 sizeof(struct request), 0, SLAB_PANIC, NULL);
3445
3446 blk_requestq_cachep = kmem_cache_create("request_queue",
3447 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3448
3449#ifdef CONFIG_DEBUG_FS
3450 blk_debugfs_root = debugfs_create_dir("block", NULL);
3451#endif
3452
3453 return 0;
3454}