]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - block/blk-core.c
block: properly stack underlying max_segment_size to DM device
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/task_io_accounting_ops.h>
29#include <linux/fault-inject.h>
30#include <linux/list_sort.h>
31#include <linux/delay.h>
32#include <linux/ratelimit.h>
33#include <linux/pm_runtime.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/block.h>
37
38#include "blk.h"
39#include "blk-cgroup.h"
40
41EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
42EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
44EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
45
46DEFINE_IDA(blk_queue_ida);
47
48/*
49 * For the allocated request tables
50 */
51static struct kmem_cache *request_cachep;
52
53/*
54 * For queue allocation
55 */
56struct kmem_cache *blk_requestq_cachep;
57
58/*
59 * Controlling structure to kblockd
60 */
61static struct workqueue_struct *kblockd_workqueue;
62
63static void drive_stat_acct(struct request *rq, int new_io)
64{
65 struct hd_struct *part;
66 int rw = rq_data_dir(rq);
67 int cpu;
68
69 if (!blk_do_io_stat(rq))
70 return;
71
72 cpu = part_stat_lock();
73
74 if (!new_io) {
75 part = rq->part;
76 part_stat_inc(cpu, part, merges[rw]);
77 } else {
78 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
79 if (!hd_struct_try_get(part)) {
80 /*
81 * The partition is already being removed,
82 * the request will be accounted on the disk only
83 *
84 * We take a reference on disk->part0 although that
85 * partition will never be deleted, so we can treat
86 * it as any other partition.
87 */
88 part = &rq->rq_disk->part0;
89 hd_struct_get(part);
90 }
91 part_round_stats(cpu, part);
92 part_inc_in_flight(part, rw);
93 rq->part = part;
94 }
95
96 part_stat_unlock();
97}
98
99void blk_queue_congestion_threshold(struct request_queue *q)
100{
101 int nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
107
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
112}
113
114/**
115 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * @bdev: device
117 *
118 * Locates the passed device's request queue and returns the address of its
119 * backing_dev_info
120 *
121 * Will return NULL if the request queue cannot be located.
122 */
123struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
124{
125 struct backing_dev_info *ret = NULL;
126 struct request_queue *q = bdev_get_queue(bdev);
127
128 if (q)
129 ret = &q->backing_dev_info;
130 return ret;
131}
132EXPORT_SYMBOL(blk_get_backing_dev_info);
133
134void blk_rq_init(struct request_queue *q, struct request *rq)
135{
136 memset(rq, 0, sizeof(*rq));
137
138 INIT_LIST_HEAD(&rq->queuelist);
139 INIT_LIST_HEAD(&rq->timeout_list);
140 rq->cpu = -1;
141 rq->q = q;
142 rq->__sector = (sector_t) -1;
143 INIT_HLIST_NODE(&rq->hash);
144 RB_CLEAR_NODE(&rq->rb_node);
145 rq->cmd = rq->__cmd;
146 rq->cmd_len = BLK_MAX_CDB;
147 rq->tag = -1;
148 rq->ref_count = 1;
149 rq->start_time = jiffies;
150 set_start_time_ns(rq);
151 rq->part = NULL;
152}
153EXPORT_SYMBOL(blk_rq_init);
154
155static void req_bio_endio(struct request *rq, struct bio *bio,
156 unsigned int nbytes, int error)
157{
158 if (error)
159 clear_bit(BIO_UPTODATE, &bio->bi_flags);
160 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
161 error = -EIO;
162
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
165
166 bio_advance(bio, nbytes);
167
168 /* don't actually finish bio if it's part of flush sequence */
169 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
170 bio_endio(bio, error);
171}
172
173void blk_dump_rq_flags(struct request *rq, char *msg)
174{
175 int bit;
176
177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
180
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
186
187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
188 printk(KERN_INFO " cdb: ");
189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193}
194EXPORT_SYMBOL(blk_dump_rq_flags);
195
196static void blk_delay_work(struct work_struct *work)
197{
198 struct request_queue *q;
199
200 q = container_of(work, struct request_queue, delay_work.work);
201 spin_lock_irq(q->queue_lock);
202 __blk_run_queue(q);
203 spin_unlock_irq(q->queue_lock);
204}
205
206/**
207 * blk_delay_queue - restart queueing after defined interval
208 * @q: The &struct request_queue in question
209 * @msecs: Delay in msecs
210 *
211 * Description:
212 * Sometimes queueing needs to be postponed for a little while, to allow
213 * resources to come back. This function will make sure that queueing is
214 * restarted around the specified time. Queue lock must be held.
215 */
216void blk_delay_queue(struct request_queue *q, unsigned long msecs)
217{
218 if (likely(!blk_queue_dead(q)))
219 queue_delayed_work(kblockd_workqueue, &q->delay_work,
220 msecs_to_jiffies(msecs));
221}
222EXPORT_SYMBOL(blk_delay_queue);
223
224/**
225 * blk_start_queue - restart a previously stopped queue
226 * @q: The &struct request_queue in question
227 *
228 * Description:
229 * blk_start_queue() will clear the stop flag on the queue, and call
230 * the request_fn for the queue if it was in a stopped state when
231 * entered. Also see blk_stop_queue(). Queue lock must be held.
232 **/
233void blk_start_queue(struct request_queue *q)
234{
235 WARN_ON(!irqs_disabled());
236
237 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
238 __blk_run_queue(q);
239}
240EXPORT_SYMBOL(blk_start_queue);
241
242/**
243 * blk_stop_queue - stop a queue
244 * @q: The &struct request_queue in question
245 *
246 * Description:
247 * The Linux block layer assumes that a block driver will consume all
248 * entries on the request queue when the request_fn strategy is called.
249 * Often this will not happen, because of hardware limitations (queue
250 * depth settings). If a device driver gets a 'queue full' response,
251 * or if it simply chooses not to queue more I/O at one point, it can
252 * call this function to prevent the request_fn from being called until
253 * the driver has signalled it's ready to go again. This happens by calling
254 * blk_start_queue() to restart queue operations. Queue lock must be held.
255 **/
256void blk_stop_queue(struct request_queue *q)
257{
258 cancel_delayed_work(&q->delay_work);
259 queue_flag_set(QUEUE_FLAG_STOPPED, q);
260}
261EXPORT_SYMBOL(blk_stop_queue);
262
263/**
264 * blk_sync_queue - cancel any pending callbacks on a queue
265 * @q: the queue
266 *
267 * Description:
268 * The block layer may perform asynchronous callback activity
269 * on a queue, such as calling the unplug function after a timeout.
270 * A block device may call blk_sync_queue to ensure that any
271 * such activity is cancelled, thus allowing it to release resources
272 * that the callbacks might use. The caller must already have made sure
273 * that its ->make_request_fn will not re-add plugging prior to calling
274 * this function.
275 *
276 * This function does not cancel any asynchronous activity arising
277 * out of elevator or throttling code. That would require elevaotor_exit()
278 * and blkcg_exit_queue() to be called with queue lock initialized.
279 *
280 */
281void blk_sync_queue(struct request_queue *q)
282{
283 del_timer_sync(&q->timeout);
284 cancel_delayed_work_sync(&q->delay_work);
285}
286EXPORT_SYMBOL(blk_sync_queue);
287
288/**
289 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
290 * @q: The queue to run
291 *
292 * Description:
293 * Invoke request handling on a queue if there are any pending requests.
294 * May be used to restart request handling after a request has completed.
295 * This variant runs the queue whether or not the queue has been
296 * stopped. Must be called with the queue lock held and interrupts
297 * disabled. See also @blk_run_queue.
298 */
299inline void __blk_run_queue_uncond(struct request_queue *q)
300{
301 if (unlikely(blk_queue_dead(q)))
302 return;
303
304 /*
305 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
306 * the queue lock internally. As a result multiple threads may be
307 * running such a request function concurrently. Keep track of the
308 * number of active request_fn invocations such that blk_drain_queue()
309 * can wait until all these request_fn calls have finished.
310 */
311 q->request_fn_active++;
312 q->request_fn(q);
313 q->request_fn_active--;
314}
315
316/**
317 * __blk_run_queue - run a single device queue
318 * @q: The queue to run
319 *
320 * Description:
321 * See @blk_run_queue. This variant must be called with the queue lock
322 * held and interrupts disabled.
323 */
324void __blk_run_queue(struct request_queue *q)
325{
326 if (unlikely(blk_queue_stopped(q)))
327 return;
328
329 __blk_run_queue_uncond(q);
330}
331EXPORT_SYMBOL(__blk_run_queue);
332
333/**
334 * blk_run_queue_async - run a single device queue in workqueue context
335 * @q: The queue to run
336 *
337 * Description:
338 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
339 * of us. The caller must hold the queue lock.
340 */
341void blk_run_queue_async(struct request_queue *q)
342{
343 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
344 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
345}
346EXPORT_SYMBOL(blk_run_queue_async);
347
348/**
349 * blk_run_queue - run a single device queue
350 * @q: The queue to run
351 *
352 * Description:
353 * Invoke request handling on this queue, if it has pending work to do.
354 * May be used to restart queueing when a request has completed.
355 */
356void blk_run_queue(struct request_queue *q)
357{
358 unsigned long flags;
359
360 spin_lock_irqsave(q->queue_lock, flags);
361 __blk_run_queue(q);
362 spin_unlock_irqrestore(q->queue_lock, flags);
363}
364EXPORT_SYMBOL(blk_run_queue);
365
366void blk_put_queue(struct request_queue *q)
367{
368 kobject_put(&q->kobj);
369}
370EXPORT_SYMBOL(blk_put_queue);
371
372/**
373 * __blk_drain_queue - drain requests from request_queue
374 * @q: queue to drain
375 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
376 *
377 * Drain requests from @q. If @drain_all is set, all requests are drained.
378 * If not, only ELVPRIV requests are drained. The caller is responsible
379 * for ensuring that no new requests which need to be drained are queued.
380 */
381static void __blk_drain_queue(struct request_queue *q, bool drain_all)
382 __releases(q->queue_lock)
383 __acquires(q->queue_lock)
384{
385 int i;
386
387 lockdep_assert_held(q->queue_lock);
388
389 while (true) {
390 bool drain = false;
391
392 /*
393 * The caller might be trying to drain @q before its
394 * elevator is initialized.
395 */
396 if (q->elevator)
397 elv_drain_elevator(q);
398
399 blkcg_drain_queue(q);
400
401 /*
402 * This function might be called on a queue which failed
403 * driver init after queue creation or is not yet fully
404 * active yet. Some drivers (e.g. fd and loop) get unhappy
405 * in such cases. Kick queue iff dispatch queue has
406 * something on it and @q has request_fn set.
407 */
408 if (!list_empty(&q->queue_head) && q->request_fn)
409 __blk_run_queue(q);
410
411 drain |= q->nr_rqs_elvpriv;
412 drain |= q->request_fn_active;
413
414 /*
415 * Unfortunately, requests are queued at and tracked from
416 * multiple places and there's no single counter which can
417 * be drained. Check all the queues and counters.
418 */
419 if (drain_all) {
420 drain |= !list_empty(&q->queue_head);
421 for (i = 0; i < 2; i++) {
422 drain |= q->nr_rqs[i];
423 drain |= q->in_flight[i];
424 drain |= !list_empty(&q->flush_queue[i]);
425 }
426 }
427
428 if (!drain)
429 break;
430
431 spin_unlock_irq(q->queue_lock);
432
433 msleep(10);
434
435 spin_lock_irq(q->queue_lock);
436 }
437
438 /*
439 * With queue marked dead, any woken up waiter will fail the
440 * allocation path, so the wakeup chaining is lost and we're
441 * left with hung waiters. We need to wake up those waiters.
442 */
443 if (q->request_fn) {
444 struct request_list *rl;
445
446 blk_queue_for_each_rl(rl, q)
447 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
448 wake_up_all(&rl->wait[i]);
449 }
450}
451
452/**
453 * blk_queue_bypass_start - enter queue bypass mode
454 * @q: queue of interest
455 *
456 * In bypass mode, only the dispatch FIFO queue of @q is used. This
457 * function makes @q enter bypass mode and drains all requests which were
458 * throttled or issued before. On return, it's guaranteed that no request
459 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
460 * inside queue or RCU read lock.
461 */
462void blk_queue_bypass_start(struct request_queue *q)
463{
464 bool drain;
465
466 spin_lock_irq(q->queue_lock);
467 drain = !q->bypass_depth++;
468 queue_flag_set(QUEUE_FLAG_BYPASS, q);
469 spin_unlock_irq(q->queue_lock);
470
471 if (drain) {
472 spin_lock_irq(q->queue_lock);
473 __blk_drain_queue(q, false);
474 spin_unlock_irq(q->queue_lock);
475
476 /* ensure blk_queue_bypass() is %true inside RCU read lock */
477 synchronize_rcu();
478 }
479}
480EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
481
482/**
483 * blk_queue_bypass_end - leave queue bypass mode
484 * @q: queue of interest
485 *
486 * Leave bypass mode and restore the normal queueing behavior.
487 */
488void blk_queue_bypass_end(struct request_queue *q)
489{
490 spin_lock_irq(q->queue_lock);
491 if (!--q->bypass_depth)
492 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
493 WARN_ON_ONCE(q->bypass_depth < 0);
494 spin_unlock_irq(q->queue_lock);
495}
496EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
497
498/**
499 * blk_cleanup_queue - shutdown a request queue
500 * @q: request queue to shutdown
501 *
502 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
503 * put it. All future requests will be failed immediately with -ENODEV.
504 */
505void blk_cleanup_queue(struct request_queue *q)
506{
507 spinlock_t *lock = q->queue_lock;
508
509 /* mark @q DYING, no new request or merges will be allowed afterwards */
510 mutex_lock(&q->sysfs_lock);
511 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
512 spin_lock_irq(lock);
513
514 /*
515 * A dying queue is permanently in bypass mode till released. Note
516 * that, unlike blk_queue_bypass_start(), we aren't performing
517 * synchronize_rcu() after entering bypass mode to avoid the delay
518 * as some drivers create and destroy a lot of queues while
519 * probing. This is still safe because blk_release_queue() will be
520 * called only after the queue refcnt drops to zero and nothing,
521 * RCU or not, would be traversing the queue by then.
522 */
523 q->bypass_depth++;
524 queue_flag_set(QUEUE_FLAG_BYPASS, q);
525
526 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
527 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
528 queue_flag_set(QUEUE_FLAG_DYING, q);
529 spin_unlock_irq(lock);
530 mutex_unlock(&q->sysfs_lock);
531
532 /*
533 * Drain all requests queued before DYING marking. Set DEAD flag to
534 * prevent that q->request_fn() gets invoked after draining finished.
535 */
536 spin_lock_irq(lock);
537 __blk_drain_queue(q, true);
538 queue_flag_set(QUEUE_FLAG_DEAD, q);
539 spin_unlock_irq(lock);
540
541 /* @q won't process any more request, flush async actions */
542 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
543 blk_sync_queue(q);
544
545 spin_lock_irq(lock);
546 if (q->queue_lock != &q->__queue_lock)
547 q->queue_lock = &q->__queue_lock;
548 spin_unlock_irq(lock);
549
550 /* @q is and will stay empty, shutdown and put */
551 blk_put_queue(q);
552}
553EXPORT_SYMBOL(blk_cleanup_queue);
554
555int blk_init_rl(struct request_list *rl, struct request_queue *q,
556 gfp_t gfp_mask)
557{
558 if (unlikely(rl->rq_pool))
559 return 0;
560
561 rl->q = q;
562 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
563 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
564 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
565 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
566
567 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
568 mempool_free_slab, request_cachep,
569 gfp_mask, q->node);
570 if (!rl->rq_pool)
571 return -ENOMEM;
572
573 return 0;
574}
575
576void blk_exit_rl(struct request_list *rl)
577{
578 if (rl->rq_pool)
579 mempool_destroy(rl->rq_pool);
580}
581
582struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
583{
584 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
585}
586EXPORT_SYMBOL(blk_alloc_queue);
587
588struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
589{
590 struct request_queue *q;
591 int err;
592
593 q = kmem_cache_alloc_node(blk_requestq_cachep,
594 gfp_mask | __GFP_ZERO, node_id);
595 if (!q)
596 return NULL;
597
598 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
599 if (q->id < 0)
600 goto fail_q;
601
602 q->backing_dev_info.ra_pages =
603 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
604 q->backing_dev_info.state = 0;
605 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
606 q->backing_dev_info.name = "block";
607 q->node = node_id;
608
609 err = bdi_init(&q->backing_dev_info);
610 if (err)
611 goto fail_id;
612
613 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
614 laptop_mode_timer_fn, (unsigned long) q);
615 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
616 INIT_LIST_HEAD(&q->queue_head);
617 INIT_LIST_HEAD(&q->timeout_list);
618 INIT_LIST_HEAD(&q->icq_list);
619#ifdef CONFIG_BLK_CGROUP
620 INIT_LIST_HEAD(&q->blkg_list);
621#endif
622 INIT_LIST_HEAD(&q->flush_queue[0]);
623 INIT_LIST_HEAD(&q->flush_queue[1]);
624 INIT_LIST_HEAD(&q->flush_data_in_flight);
625 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
626
627 kobject_init(&q->kobj, &blk_queue_ktype);
628
629 mutex_init(&q->sysfs_lock);
630 spin_lock_init(&q->__queue_lock);
631
632 /*
633 * By default initialize queue_lock to internal lock and driver can
634 * override it later if need be.
635 */
636 q->queue_lock = &q->__queue_lock;
637
638 /*
639 * A queue starts its life with bypass turned on to avoid
640 * unnecessary bypass on/off overhead and nasty surprises during
641 * init. The initial bypass will be finished when the queue is
642 * registered by blk_register_queue().
643 */
644 q->bypass_depth = 1;
645 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
646
647 if (blkcg_init_queue(q))
648 goto fail_bdi;
649
650 return q;
651
652fail_bdi:
653 bdi_destroy(&q->backing_dev_info);
654fail_id:
655 ida_simple_remove(&blk_queue_ida, q->id);
656fail_q:
657 kmem_cache_free(blk_requestq_cachep, q);
658 return NULL;
659}
660EXPORT_SYMBOL(blk_alloc_queue_node);
661
662/**
663 * blk_init_queue - prepare a request queue for use with a block device
664 * @rfn: The function to be called to process requests that have been
665 * placed on the queue.
666 * @lock: Request queue spin lock
667 *
668 * Description:
669 * If a block device wishes to use the standard request handling procedures,
670 * which sorts requests and coalesces adjacent requests, then it must
671 * call blk_init_queue(). The function @rfn will be called when there
672 * are requests on the queue that need to be processed. If the device
673 * supports plugging, then @rfn may not be called immediately when requests
674 * are available on the queue, but may be called at some time later instead.
675 * Plugged queues are generally unplugged when a buffer belonging to one
676 * of the requests on the queue is needed, or due to memory pressure.
677 *
678 * @rfn is not required, or even expected, to remove all requests off the
679 * queue, but only as many as it can handle at a time. If it does leave
680 * requests on the queue, it is responsible for arranging that the requests
681 * get dealt with eventually.
682 *
683 * The queue spin lock must be held while manipulating the requests on the
684 * request queue; this lock will be taken also from interrupt context, so irq
685 * disabling is needed for it.
686 *
687 * Function returns a pointer to the initialized request queue, or %NULL if
688 * it didn't succeed.
689 *
690 * Note:
691 * blk_init_queue() must be paired with a blk_cleanup_queue() call
692 * when the block device is deactivated (such as at module unload).
693 **/
694
695struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
696{
697 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
698}
699EXPORT_SYMBOL(blk_init_queue);
700
701struct request_queue *
702blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
703{
704 struct request_queue *uninit_q, *q;
705
706 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
707 if (!uninit_q)
708 return NULL;
709
710 q = blk_init_allocated_queue(uninit_q, rfn, lock);
711 if (!q)
712 blk_cleanup_queue(uninit_q);
713
714 return q;
715}
716EXPORT_SYMBOL(blk_init_queue_node);
717
718struct request_queue *
719blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
720 spinlock_t *lock)
721{
722 if (!q)
723 return NULL;
724
725 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
726 return NULL;
727
728 q->request_fn = rfn;
729 q->prep_rq_fn = NULL;
730 q->unprep_rq_fn = NULL;
731 q->queue_flags |= QUEUE_FLAG_DEFAULT;
732
733 /* Override internal queue lock with supplied lock pointer */
734 if (lock)
735 q->queue_lock = lock;
736
737 /*
738 * This also sets hw/phys segments, boundary and size
739 */
740 blk_queue_make_request(q, blk_queue_bio);
741
742 q->sg_reserved_size = INT_MAX;
743
744 /* Protect q->elevator from elevator_change */
745 mutex_lock(&q->sysfs_lock);
746
747 /* init elevator */
748 if (elevator_init(q, NULL)) {
749 mutex_unlock(&q->sysfs_lock);
750 return NULL;
751 }
752
753 mutex_unlock(&q->sysfs_lock);
754
755 return q;
756}
757EXPORT_SYMBOL(blk_init_allocated_queue);
758
759bool blk_get_queue(struct request_queue *q)
760{
761 if (likely(!blk_queue_dying(q))) {
762 __blk_get_queue(q);
763 return true;
764 }
765
766 return false;
767}
768EXPORT_SYMBOL(blk_get_queue);
769
770static inline void blk_free_request(struct request_list *rl, struct request *rq)
771{
772 if (rq->cmd_flags & REQ_ELVPRIV) {
773 elv_put_request(rl->q, rq);
774 if (rq->elv.icq)
775 put_io_context(rq->elv.icq->ioc);
776 }
777
778 mempool_free(rq, rl->rq_pool);
779}
780
781/*
782 * ioc_batching returns true if the ioc is a valid batching request and
783 * should be given priority access to a request.
784 */
785static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
786{
787 if (!ioc)
788 return 0;
789
790 /*
791 * Make sure the process is able to allocate at least 1 request
792 * even if the batch times out, otherwise we could theoretically
793 * lose wakeups.
794 */
795 return ioc->nr_batch_requests == q->nr_batching ||
796 (ioc->nr_batch_requests > 0
797 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
798}
799
800/*
801 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
802 * will cause the process to be a "batcher" on all queues in the system. This
803 * is the behaviour we want though - once it gets a wakeup it should be given
804 * a nice run.
805 */
806static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
807{
808 if (!ioc || ioc_batching(q, ioc))
809 return;
810
811 ioc->nr_batch_requests = q->nr_batching;
812 ioc->last_waited = jiffies;
813}
814
815static void __freed_request(struct request_list *rl, int sync)
816{
817 struct request_queue *q = rl->q;
818
819 /*
820 * bdi isn't aware of blkcg yet. As all async IOs end up root
821 * blkcg anyway, just use root blkcg state.
822 */
823 if (rl == &q->root_rl &&
824 rl->count[sync] < queue_congestion_off_threshold(q))
825 blk_clear_queue_congested(q, sync);
826
827 if (rl->count[sync] + 1 <= q->nr_requests) {
828 if (waitqueue_active(&rl->wait[sync]))
829 wake_up(&rl->wait[sync]);
830
831 blk_clear_rl_full(rl, sync);
832 }
833}
834
835/*
836 * A request has just been released. Account for it, update the full and
837 * congestion status, wake up any waiters. Called under q->queue_lock.
838 */
839static void freed_request(struct request_list *rl, unsigned int flags)
840{
841 struct request_queue *q = rl->q;
842 int sync = rw_is_sync(flags);
843
844 q->nr_rqs[sync]--;
845 rl->count[sync]--;
846 if (flags & REQ_ELVPRIV)
847 q->nr_rqs_elvpriv--;
848
849 __freed_request(rl, sync);
850
851 if (unlikely(rl->starved[sync ^ 1]))
852 __freed_request(rl, sync ^ 1);
853}
854
855/*
856 * Determine if elevator data should be initialized when allocating the
857 * request associated with @bio.
858 */
859static bool blk_rq_should_init_elevator(struct bio *bio)
860{
861 if (!bio)
862 return true;
863
864 /*
865 * Flush requests do not use the elevator so skip initialization.
866 * This allows a request to share the flush and elevator data.
867 */
868 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
869 return false;
870
871 return true;
872}
873
874/**
875 * rq_ioc - determine io_context for request allocation
876 * @bio: request being allocated is for this bio (can be %NULL)
877 *
878 * Determine io_context to use for request allocation for @bio. May return
879 * %NULL if %current->io_context doesn't exist.
880 */
881static struct io_context *rq_ioc(struct bio *bio)
882{
883#ifdef CONFIG_BLK_CGROUP
884 if (bio && bio->bi_ioc)
885 return bio->bi_ioc;
886#endif
887 return current->io_context;
888}
889
890/**
891 * __get_request - get a free request
892 * @rl: request list to allocate from
893 * @rw_flags: RW and SYNC flags
894 * @bio: bio to allocate request for (can be %NULL)
895 * @gfp_mask: allocation mask
896 *
897 * Get a free request from @q. This function may fail under memory
898 * pressure or if @q is dead.
899 *
900 * Must be callled with @q->queue_lock held and,
901 * Returns %NULL on failure, with @q->queue_lock held.
902 * Returns !%NULL on success, with @q->queue_lock *not held*.
903 */
904static struct request *__get_request(struct request_list *rl, int rw_flags,
905 struct bio *bio, gfp_t gfp_mask)
906{
907 struct request_queue *q = rl->q;
908 struct request *rq;
909 struct elevator_type *et = q->elevator->type;
910 struct io_context *ioc = rq_ioc(bio);
911 struct io_cq *icq = NULL;
912 const bool is_sync = rw_is_sync(rw_flags) != 0;
913 int may_queue;
914
915 if (unlikely(blk_queue_dying(q)))
916 return NULL;
917
918 may_queue = elv_may_queue(q, rw_flags);
919 if (may_queue == ELV_MQUEUE_NO)
920 goto rq_starved;
921
922 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
923 if (rl->count[is_sync]+1 >= q->nr_requests) {
924 /*
925 * The queue will fill after this allocation, so set
926 * it as full, and mark this process as "batching".
927 * This process will be allowed to complete a batch of
928 * requests, others will be blocked.
929 */
930 if (!blk_rl_full(rl, is_sync)) {
931 ioc_set_batching(q, ioc);
932 blk_set_rl_full(rl, is_sync);
933 } else {
934 if (may_queue != ELV_MQUEUE_MUST
935 && !ioc_batching(q, ioc)) {
936 /*
937 * The queue is full and the allocating
938 * process is not a "batcher", and not
939 * exempted by the IO scheduler
940 */
941 return NULL;
942 }
943 }
944 }
945 /*
946 * bdi isn't aware of blkcg yet. As all async IOs end up
947 * root blkcg anyway, just use root blkcg state.
948 */
949 if (rl == &q->root_rl)
950 blk_set_queue_congested(q, is_sync);
951 }
952
953 /*
954 * Only allow batching queuers to allocate up to 50% over the defined
955 * limit of requests, otherwise we could have thousands of requests
956 * allocated with any setting of ->nr_requests
957 */
958 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
959 return NULL;
960
961 q->nr_rqs[is_sync]++;
962 rl->count[is_sync]++;
963 rl->starved[is_sync] = 0;
964
965 /*
966 * Decide whether the new request will be managed by elevator. If
967 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
968 * prevent the current elevator from being destroyed until the new
969 * request is freed. This guarantees icq's won't be destroyed and
970 * makes creating new ones safe.
971 *
972 * Also, lookup icq while holding queue_lock. If it doesn't exist,
973 * it will be created after releasing queue_lock.
974 */
975 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
976 rw_flags |= REQ_ELVPRIV;
977 q->nr_rqs_elvpriv++;
978 if (et->icq_cache && ioc)
979 icq = ioc_lookup_icq(ioc, q);
980 }
981
982 if (blk_queue_io_stat(q))
983 rw_flags |= REQ_IO_STAT;
984 spin_unlock_irq(q->queue_lock);
985
986 /* allocate and init request */
987 rq = mempool_alloc(rl->rq_pool, gfp_mask);
988 if (!rq)
989 goto fail_alloc;
990
991 blk_rq_init(q, rq);
992 blk_rq_set_rl(rq, rl);
993 rq->cmd_flags = rw_flags | REQ_ALLOCED;
994
995 /* init elvpriv */
996 if (rw_flags & REQ_ELVPRIV) {
997 if (unlikely(et->icq_cache && !icq)) {
998 if (ioc)
999 icq = ioc_create_icq(ioc, q, gfp_mask);
1000 if (!icq)
1001 goto fail_elvpriv;
1002 }
1003
1004 rq->elv.icq = icq;
1005 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1006 goto fail_elvpriv;
1007
1008 /* @rq->elv.icq holds io_context until @rq is freed */
1009 if (icq)
1010 get_io_context(icq->ioc);
1011 }
1012out:
1013 /*
1014 * ioc may be NULL here, and ioc_batching will be false. That's
1015 * OK, if the queue is under the request limit then requests need
1016 * not count toward the nr_batch_requests limit. There will always
1017 * be some limit enforced by BLK_BATCH_TIME.
1018 */
1019 if (ioc_batching(q, ioc))
1020 ioc->nr_batch_requests--;
1021
1022 trace_block_getrq(q, bio, rw_flags & 1);
1023 return rq;
1024
1025fail_elvpriv:
1026 /*
1027 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1028 * and may fail indefinitely under memory pressure and thus
1029 * shouldn't stall IO. Treat this request as !elvpriv. This will
1030 * disturb iosched and blkcg but weird is bettern than dead.
1031 */
1032 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1033 dev_name(q->backing_dev_info.dev));
1034
1035 rq->cmd_flags &= ~REQ_ELVPRIV;
1036 rq->elv.icq = NULL;
1037
1038 spin_lock_irq(q->queue_lock);
1039 q->nr_rqs_elvpriv--;
1040 spin_unlock_irq(q->queue_lock);
1041 goto out;
1042
1043fail_alloc:
1044 /*
1045 * Allocation failed presumably due to memory. Undo anything we
1046 * might have messed up.
1047 *
1048 * Allocating task should really be put onto the front of the wait
1049 * queue, but this is pretty rare.
1050 */
1051 spin_lock_irq(q->queue_lock);
1052 freed_request(rl, rw_flags);
1053
1054 /*
1055 * in the very unlikely event that allocation failed and no
1056 * requests for this direction was pending, mark us starved so that
1057 * freeing of a request in the other direction will notice
1058 * us. another possible fix would be to split the rq mempool into
1059 * READ and WRITE
1060 */
1061rq_starved:
1062 if (unlikely(rl->count[is_sync] == 0))
1063 rl->starved[is_sync] = 1;
1064 return NULL;
1065}
1066
1067/**
1068 * get_request - get a free request
1069 * @q: request_queue to allocate request from
1070 * @rw_flags: RW and SYNC flags
1071 * @bio: bio to allocate request for (can be %NULL)
1072 * @gfp_mask: allocation mask
1073 *
1074 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1075 * function keeps retrying under memory pressure and fails iff @q is dead.
1076 *
1077 * Must be callled with @q->queue_lock held and,
1078 * Returns %NULL on failure, with @q->queue_lock held.
1079 * Returns !%NULL on success, with @q->queue_lock *not held*.
1080 */
1081static struct request *get_request(struct request_queue *q, int rw_flags,
1082 struct bio *bio, gfp_t gfp_mask)
1083{
1084 const bool is_sync = rw_is_sync(rw_flags) != 0;
1085 DEFINE_WAIT(wait);
1086 struct request_list *rl;
1087 struct request *rq;
1088
1089 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1090retry:
1091 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1092 if (rq)
1093 return rq;
1094
1095 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1096 blk_put_rl(rl);
1097 return NULL;
1098 }
1099
1100 /* wait on @rl and retry */
1101 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1102 TASK_UNINTERRUPTIBLE);
1103
1104 trace_block_sleeprq(q, bio, rw_flags & 1);
1105
1106 spin_unlock_irq(q->queue_lock);
1107 io_schedule();
1108
1109 /*
1110 * After sleeping, we become a "batching" process and will be able
1111 * to allocate at least one request, and up to a big batch of them
1112 * for a small period time. See ioc_batching, ioc_set_batching
1113 */
1114 ioc_set_batching(q, current->io_context);
1115
1116 spin_lock_irq(q->queue_lock);
1117 finish_wait(&rl->wait[is_sync], &wait);
1118
1119 goto retry;
1120}
1121
1122struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1123{
1124 struct request *rq;
1125
1126 BUG_ON(rw != READ && rw != WRITE);
1127
1128 /* create ioc upfront */
1129 create_io_context(gfp_mask, q->node);
1130
1131 spin_lock_irq(q->queue_lock);
1132 rq = get_request(q, rw, NULL, gfp_mask);
1133 if (!rq)
1134 spin_unlock_irq(q->queue_lock);
1135 /* q->queue_lock is unlocked at this point */
1136
1137 return rq;
1138}
1139EXPORT_SYMBOL(blk_get_request);
1140
1141/**
1142 * blk_make_request - given a bio, allocate a corresponding struct request.
1143 * @q: target request queue
1144 * @bio: The bio describing the memory mappings that will be submitted for IO.
1145 * It may be a chained-bio properly constructed by block/bio layer.
1146 * @gfp_mask: gfp flags to be used for memory allocation
1147 *
1148 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1149 * type commands. Where the struct request needs to be farther initialized by
1150 * the caller. It is passed a &struct bio, which describes the memory info of
1151 * the I/O transfer.
1152 *
1153 * The caller of blk_make_request must make sure that bi_io_vec
1154 * are set to describe the memory buffers. That bio_data_dir() will return
1155 * the needed direction of the request. (And all bio's in the passed bio-chain
1156 * are properly set accordingly)
1157 *
1158 * If called under none-sleepable conditions, mapped bio buffers must not
1159 * need bouncing, by calling the appropriate masked or flagged allocator,
1160 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1161 * BUG.
1162 *
1163 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1164 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1165 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1166 * completion of a bio that hasn't been submitted yet, thus resulting in a
1167 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1168 * of bio_alloc(), as that avoids the mempool deadlock.
1169 * If possible a big IO should be split into smaller parts when allocation
1170 * fails. Partial allocation should not be an error, or you risk a live-lock.
1171 */
1172struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1173 gfp_t gfp_mask)
1174{
1175 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1176
1177 if (unlikely(!rq))
1178 return ERR_PTR(-ENOMEM);
1179
1180 for_each_bio(bio) {
1181 struct bio *bounce_bio = bio;
1182 int ret;
1183
1184 blk_queue_bounce(q, &bounce_bio);
1185 ret = blk_rq_append_bio(q, rq, bounce_bio);
1186 if (unlikely(ret)) {
1187 blk_put_request(rq);
1188 return ERR_PTR(ret);
1189 }
1190 }
1191
1192 return rq;
1193}
1194EXPORT_SYMBOL(blk_make_request);
1195
1196/**
1197 * blk_requeue_request - put a request back on queue
1198 * @q: request queue where request should be inserted
1199 * @rq: request to be inserted
1200 *
1201 * Description:
1202 * Drivers often keep queueing requests until the hardware cannot accept
1203 * more, when that condition happens we need to put the request back
1204 * on the queue. Must be called with queue lock held.
1205 */
1206void blk_requeue_request(struct request_queue *q, struct request *rq)
1207{
1208 blk_delete_timer(rq);
1209 blk_clear_rq_complete(rq);
1210 trace_block_rq_requeue(q, rq);
1211
1212 if (blk_rq_tagged(rq))
1213 blk_queue_end_tag(q, rq);
1214
1215 BUG_ON(blk_queued_rq(rq));
1216
1217 elv_requeue_request(q, rq);
1218}
1219EXPORT_SYMBOL(blk_requeue_request);
1220
1221static void add_acct_request(struct request_queue *q, struct request *rq,
1222 int where)
1223{
1224 drive_stat_acct(rq, 1);
1225 __elv_add_request(q, rq, where);
1226}
1227
1228static void part_round_stats_single(int cpu, struct hd_struct *part,
1229 unsigned long now)
1230{
1231 if (now == part->stamp)
1232 return;
1233
1234 if (part_in_flight(part)) {
1235 __part_stat_add(cpu, part, time_in_queue,
1236 part_in_flight(part) * (now - part->stamp));
1237 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1238 }
1239 part->stamp = now;
1240}
1241
1242/**
1243 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1244 * @cpu: cpu number for stats access
1245 * @part: target partition
1246 *
1247 * The average IO queue length and utilisation statistics are maintained
1248 * by observing the current state of the queue length and the amount of
1249 * time it has been in this state for.
1250 *
1251 * Normally, that accounting is done on IO completion, but that can result
1252 * in more than a second's worth of IO being accounted for within any one
1253 * second, leading to >100% utilisation. To deal with that, we call this
1254 * function to do a round-off before returning the results when reading
1255 * /proc/diskstats. This accounts immediately for all queue usage up to
1256 * the current jiffies and restarts the counters again.
1257 */
1258void part_round_stats(int cpu, struct hd_struct *part)
1259{
1260 unsigned long now = jiffies;
1261
1262 if (part->partno)
1263 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1264 part_round_stats_single(cpu, part, now);
1265}
1266EXPORT_SYMBOL_GPL(part_round_stats);
1267
1268#ifdef CONFIG_PM_RUNTIME
1269static void blk_pm_put_request(struct request *rq)
1270{
1271 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1272 pm_runtime_mark_last_busy(rq->q->dev);
1273}
1274#else
1275static inline void blk_pm_put_request(struct request *rq) {}
1276#endif
1277
1278/*
1279 * queue lock must be held
1280 */
1281void __blk_put_request(struct request_queue *q, struct request *req)
1282{
1283 if (unlikely(!q))
1284 return;
1285 if (unlikely(--req->ref_count))
1286 return;
1287
1288 blk_pm_put_request(req);
1289
1290 elv_completed_request(q, req);
1291
1292 /* this is a bio leak */
1293 WARN_ON(req->bio != NULL);
1294
1295 /*
1296 * Request may not have originated from ll_rw_blk. if not,
1297 * it didn't come out of our reserved rq pools
1298 */
1299 if (req->cmd_flags & REQ_ALLOCED) {
1300 unsigned int flags = req->cmd_flags;
1301 struct request_list *rl = blk_rq_rl(req);
1302
1303 BUG_ON(!list_empty(&req->queuelist));
1304 BUG_ON(!hlist_unhashed(&req->hash));
1305
1306 blk_free_request(rl, req);
1307 freed_request(rl, flags);
1308 blk_put_rl(rl);
1309 }
1310}
1311EXPORT_SYMBOL_GPL(__blk_put_request);
1312
1313void blk_put_request(struct request *req)
1314{
1315 unsigned long flags;
1316 struct request_queue *q = req->q;
1317
1318 spin_lock_irqsave(q->queue_lock, flags);
1319 __blk_put_request(q, req);
1320 spin_unlock_irqrestore(q->queue_lock, flags);
1321}
1322EXPORT_SYMBOL(blk_put_request);
1323
1324/**
1325 * blk_add_request_payload - add a payload to a request
1326 * @rq: request to update
1327 * @page: page backing the payload
1328 * @len: length of the payload.
1329 *
1330 * This allows to later add a payload to an already submitted request by
1331 * a block driver. The driver needs to take care of freeing the payload
1332 * itself.
1333 *
1334 * Note that this is a quite horrible hack and nothing but handling of
1335 * discard requests should ever use it.
1336 */
1337void blk_add_request_payload(struct request *rq, struct page *page,
1338 unsigned int len)
1339{
1340 struct bio *bio = rq->bio;
1341
1342 bio->bi_io_vec->bv_page = page;
1343 bio->bi_io_vec->bv_offset = 0;
1344 bio->bi_io_vec->bv_len = len;
1345
1346 bio->bi_size = len;
1347 bio->bi_vcnt = 1;
1348 bio->bi_phys_segments = 1;
1349
1350 rq->__data_len = rq->resid_len = len;
1351 rq->nr_phys_segments = 1;
1352 rq->buffer = bio_data(bio);
1353}
1354EXPORT_SYMBOL_GPL(blk_add_request_payload);
1355
1356static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1357 struct bio *bio)
1358{
1359 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1360
1361 if (!ll_back_merge_fn(q, req, bio))
1362 return false;
1363
1364 trace_block_bio_backmerge(q, req, bio);
1365
1366 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1367 blk_rq_set_mixed_merge(req);
1368
1369 req->biotail->bi_next = bio;
1370 req->biotail = bio;
1371 req->__data_len += bio->bi_size;
1372 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1373
1374 drive_stat_acct(req, 0);
1375 return true;
1376}
1377
1378static bool bio_attempt_front_merge(struct request_queue *q,
1379 struct request *req, struct bio *bio)
1380{
1381 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1382
1383 if (!ll_front_merge_fn(q, req, bio))
1384 return false;
1385
1386 trace_block_bio_frontmerge(q, req, bio);
1387
1388 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1389 blk_rq_set_mixed_merge(req);
1390
1391 bio->bi_next = req->bio;
1392 req->bio = bio;
1393
1394 /*
1395 * may not be valid. if the low level driver said
1396 * it didn't need a bounce buffer then it better
1397 * not touch req->buffer either...
1398 */
1399 req->buffer = bio_data(bio);
1400 req->__sector = bio->bi_sector;
1401 req->__data_len += bio->bi_size;
1402 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1403
1404 drive_stat_acct(req, 0);
1405 return true;
1406}
1407
1408/**
1409 * attempt_plug_merge - try to merge with %current's plugged list
1410 * @q: request_queue new bio is being queued at
1411 * @bio: new bio being queued
1412 * @request_count: out parameter for number of traversed plugged requests
1413 *
1414 * Determine whether @bio being queued on @q can be merged with a request
1415 * on %current's plugged list. Returns %true if merge was successful,
1416 * otherwise %false.
1417 *
1418 * Plugging coalesces IOs from the same issuer for the same purpose without
1419 * going through @q->queue_lock. As such it's more of an issuing mechanism
1420 * than scheduling, and the request, while may have elvpriv data, is not
1421 * added on the elevator at this point. In addition, we don't have
1422 * reliable access to the elevator outside queue lock. Only check basic
1423 * merging parameters without querying the elevator.
1424 */
1425static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1426 unsigned int *request_count)
1427{
1428 struct blk_plug *plug;
1429 struct request *rq;
1430 bool ret = false;
1431
1432 plug = current->plug;
1433 if (!plug)
1434 goto out;
1435 *request_count = 0;
1436
1437 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1438 int el_ret;
1439
1440 if (rq->q == q)
1441 (*request_count)++;
1442
1443 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1444 continue;
1445
1446 el_ret = blk_try_merge(rq, bio);
1447 if (el_ret == ELEVATOR_BACK_MERGE) {
1448 ret = bio_attempt_back_merge(q, rq, bio);
1449 if (ret)
1450 break;
1451 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1452 ret = bio_attempt_front_merge(q, rq, bio);
1453 if (ret)
1454 break;
1455 }
1456 }
1457out:
1458 return ret;
1459}
1460
1461void init_request_from_bio(struct request *req, struct bio *bio)
1462{
1463 req->cmd_type = REQ_TYPE_FS;
1464
1465 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1466 if (bio->bi_rw & REQ_RAHEAD)
1467 req->cmd_flags |= REQ_FAILFAST_MASK;
1468
1469 req->errors = 0;
1470 req->__sector = bio->bi_sector;
1471 req->ioprio = bio_prio(bio);
1472 blk_rq_bio_prep(req->q, req, bio);
1473}
1474
1475void blk_queue_bio(struct request_queue *q, struct bio *bio)
1476{
1477 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1478 struct blk_plug *plug;
1479 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1480 struct request *req;
1481 unsigned int request_count = 0;
1482
1483 /*
1484 * low level driver can indicate that it wants pages above a
1485 * certain limit bounced to low memory (ie for highmem, or even
1486 * ISA dma in theory)
1487 */
1488 blk_queue_bounce(q, &bio);
1489
1490 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1491 bio_endio(bio, -EIO);
1492 return;
1493 }
1494
1495 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1496 spin_lock_irq(q->queue_lock);
1497 where = ELEVATOR_INSERT_FLUSH;
1498 goto get_rq;
1499 }
1500
1501 /*
1502 * Check if we can merge with the plugged list before grabbing
1503 * any locks.
1504 */
1505 if (attempt_plug_merge(q, bio, &request_count))
1506 return;
1507
1508 spin_lock_irq(q->queue_lock);
1509
1510 el_ret = elv_merge(q, &req, bio);
1511 if (el_ret == ELEVATOR_BACK_MERGE) {
1512 if (bio_attempt_back_merge(q, req, bio)) {
1513 elv_bio_merged(q, req, bio);
1514 if (!attempt_back_merge(q, req))
1515 elv_merged_request(q, req, el_ret);
1516 goto out_unlock;
1517 }
1518 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1519 if (bio_attempt_front_merge(q, req, bio)) {
1520 elv_bio_merged(q, req, bio);
1521 if (!attempt_front_merge(q, req))
1522 elv_merged_request(q, req, el_ret);
1523 goto out_unlock;
1524 }
1525 }
1526
1527get_rq:
1528 /*
1529 * This sync check and mask will be re-done in init_request_from_bio(),
1530 * but we need to set it earlier to expose the sync flag to the
1531 * rq allocator and io schedulers.
1532 */
1533 rw_flags = bio_data_dir(bio);
1534 if (sync)
1535 rw_flags |= REQ_SYNC;
1536
1537 /*
1538 * Grab a free request. This is might sleep but can not fail.
1539 * Returns with the queue unlocked.
1540 */
1541 req = get_request(q, rw_flags, bio, GFP_NOIO);
1542 if (unlikely(!req)) {
1543 bio_endio(bio, -ENODEV); /* @q is dead */
1544 goto out_unlock;
1545 }
1546
1547 /*
1548 * After dropping the lock and possibly sleeping here, our request
1549 * may now be mergeable after it had proven unmergeable (above).
1550 * We don't worry about that case for efficiency. It won't happen
1551 * often, and the elevators are able to handle it.
1552 */
1553 init_request_from_bio(req, bio);
1554
1555 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1556 req->cpu = raw_smp_processor_id();
1557
1558 plug = current->plug;
1559 if (plug) {
1560 /*
1561 * If this is the first request added after a plug, fire
1562 * of a plug trace.
1563 */
1564 if (!request_count)
1565 trace_block_plug(q);
1566 else {
1567 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1568 blk_flush_plug_list(plug, false);
1569 trace_block_plug(q);
1570 }
1571 }
1572 list_add_tail(&req->queuelist, &plug->list);
1573 drive_stat_acct(req, 1);
1574 } else {
1575 spin_lock_irq(q->queue_lock);
1576 add_acct_request(q, req, where);
1577 __blk_run_queue(q);
1578out_unlock:
1579 spin_unlock_irq(q->queue_lock);
1580 }
1581}
1582EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1583
1584/*
1585 * If bio->bi_dev is a partition, remap the location
1586 */
1587static inline void blk_partition_remap(struct bio *bio)
1588{
1589 struct block_device *bdev = bio->bi_bdev;
1590
1591 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1592 struct hd_struct *p = bdev->bd_part;
1593
1594 bio->bi_sector += p->start_sect;
1595 bio->bi_bdev = bdev->bd_contains;
1596
1597 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1598 bdev->bd_dev,
1599 bio->bi_sector - p->start_sect);
1600 }
1601}
1602
1603static void handle_bad_sector(struct bio *bio)
1604{
1605 char b[BDEVNAME_SIZE];
1606
1607 printk(KERN_INFO "attempt to access beyond end of device\n");
1608 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1609 bdevname(bio->bi_bdev, b),
1610 bio->bi_rw,
1611 (unsigned long long)bio_end_sector(bio),
1612 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1613
1614 set_bit(BIO_EOF, &bio->bi_flags);
1615}
1616
1617#ifdef CONFIG_FAIL_MAKE_REQUEST
1618
1619static DECLARE_FAULT_ATTR(fail_make_request);
1620
1621static int __init setup_fail_make_request(char *str)
1622{
1623 return setup_fault_attr(&fail_make_request, str);
1624}
1625__setup("fail_make_request=", setup_fail_make_request);
1626
1627static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1628{
1629 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1630}
1631
1632static int __init fail_make_request_debugfs(void)
1633{
1634 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1635 NULL, &fail_make_request);
1636
1637 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1638}
1639
1640late_initcall(fail_make_request_debugfs);
1641
1642#else /* CONFIG_FAIL_MAKE_REQUEST */
1643
1644static inline bool should_fail_request(struct hd_struct *part,
1645 unsigned int bytes)
1646{
1647 return false;
1648}
1649
1650#endif /* CONFIG_FAIL_MAKE_REQUEST */
1651
1652/*
1653 * Check whether this bio extends beyond the end of the device.
1654 */
1655static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1656{
1657 sector_t maxsector;
1658
1659 if (!nr_sectors)
1660 return 0;
1661
1662 /* Test device or partition size, when known. */
1663 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1664 if (maxsector) {
1665 sector_t sector = bio->bi_sector;
1666
1667 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1668 /*
1669 * This may well happen - the kernel calls bread()
1670 * without checking the size of the device, e.g., when
1671 * mounting a device.
1672 */
1673 handle_bad_sector(bio);
1674 return 1;
1675 }
1676 }
1677
1678 return 0;
1679}
1680
1681static noinline_for_stack bool
1682generic_make_request_checks(struct bio *bio)
1683{
1684 struct request_queue *q;
1685 int nr_sectors = bio_sectors(bio);
1686 int err = -EIO;
1687 char b[BDEVNAME_SIZE];
1688 struct hd_struct *part;
1689
1690 might_sleep();
1691
1692 if (bio_check_eod(bio, nr_sectors))
1693 goto end_io;
1694
1695 q = bdev_get_queue(bio->bi_bdev);
1696 if (unlikely(!q)) {
1697 printk(KERN_ERR
1698 "generic_make_request: Trying to access "
1699 "nonexistent block-device %s (%Lu)\n",
1700 bdevname(bio->bi_bdev, b),
1701 (long long) bio->bi_sector);
1702 goto end_io;
1703 }
1704
1705 if (likely(bio_is_rw(bio) &&
1706 nr_sectors > queue_max_hw_sectors(q))) {
1707 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1708 bdevname(bio->bi_bdev, b),
1709 bio_sectors(bio),
1710 queue_max_hw_sectors(q));
1711 goto end_io;
1712 }
1713
1714 part = bio->bi_bdev->bd_part;
1715 if (should_fail_request(part, bio->bi_size) ||
1716 should_fail_request(&part_to_disk(part)->part0,
1717 bio->bi_size))
1718 goto end_io;
1719
1720 /*
1721 * If this device has partitions, remap block n
1722 * of partition p to block n+start(p) of the disk.
1723 */
1724 blk_partition_remap(bio);
1725
1726 if (bio_check_eod(bio, nr_sectors))
1727 goto end_io;
1728
1729 /*
1730 * Filter flush bio's early so that make_request based
1731 * drivers without flush support don't have to worry
1732 * about them.
1733 */
1734 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1735 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1736 if (!nr_sectors) {
1737 err = 0;
1738 goto end_io;
1739 }
1740 }
1741
1742 if ((bio->bi_rw & REQ_DISCARD) &&
1743 (!blk_queue_discard(q) ||
1744 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1745 err = -EOPNOTSUPP;
1746 goto end_io;
1747 }
1748
1749 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1750 err = -EOPNOTSUPP;
1751 goto end_io;
1752 }
1753
1754 /*
1755 * Various block parts want %current->io_context and lazy ioc
1756 * allocation ends up trading a lot of pain for a small amount of
1757 * memory. Just allocate it upfront. This may fail and block
1758 * layer knows how to live with it.
1759 */
1760 create_io_context(GFP_ATOMIC, q->node);
1761
1762 if (blk_throtl_bio(q, bio))
1763 return false; /* throttled, will be resubmitted later */
1764
1765 trace_block_bio_queue(q, bio);
1766 return true;
1767
1768end_io:
1769 bio_endio(bio, err);
1770 return false;
1771}
1772
1773/**
1774 * generic_make_request - hand a buffer to its device driver for I/O
1775 * @bio: The bio describing the location in memory and on the device.
1776 *
1777 * generic_make_request() is used to make I/O requests of block
1778 * devices. It is passed a &struct bio, which describes the I/O that needs
1779 * to be done.
1780 *
1781 * generic_make_request() does not return any status. The
1782 * success/failure status of the request, along with notification of
1783 * completion, is delivered asynchronously through the bio->bi_end_io
1784 * function described (one day) else where.
1785 *
1786 * The caller of generic_make_request must make sure that bi_io_vec
1787 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1788 * set to describe the device address, and the
1789 * bi_end_io and optionally bi_private are set to describe how
1790 * completion notification should be signaled.
1791 *
1792 * generic_make_request and the drivers it calls may use bi_next if this
1793 * bio happens to be merged with someone else, and may resubmit the bio to
1794 * a lower device by calling into generic_make_request recursively, which
1795 * means the bio should NOT be touched after the call to ->make_request_fn.
1796 */
1797void generic_make_request(struct bio *bio)
1798{
1799 struct bio_list bio_list_on_stack;
1800
1801 if (!generic_make_request_checks(bio))
1802 return;
1803
1804 /*
1805 * We only want one ->make_request_fn to be active at a time, else
1806 * stack usage with stacked devices could be a problem. So use
1807 * current->bio_list to keep a list of requests submited by a
1808 * make_request_fn function. current->bio_list is also used as a
1809 * flag to say if generic_make_request is currently active in this
1810 * task or not. If it is NULL, then no make_request is active. If
1811 * it is non-NULL, then a make_request is active, and new requests
1812 * should be added at the tail
1813 */
1814 if (current->bio_list) {
1815 bio_list_add(current->bio_list, bio);
1816 return;
1817 }
1818
1819 /* following loop may be a bit non-obvious, and so deserves some
1820 * explanation.
1821 * Before entering the loop, bio->bi_next is NULL (as all callers
1822 * ensure that) so we have a list with a single bio.
1823 * We pretend that we have just taken it off a longer list, so
1824 * we assign bio_list to a pointer to the bio_list_on_stack,
1825 * thus initialising the bio_list of new bios to be
1826 * added. ->make_request() may indeed add some more bios
1827 * through a recursive call to generic_make_request. If it
1828 * did, we find a non-NULL value in bio_list and re-enter the loop
1829 * from the top. In this case we really did just take the bio
1830 * of the top of the list (no pretending) and so remove it from
1831 * bio_list, and call into ->make_request() again.
1832 */
1833 BUG_ON(bio->bi_next);
1834 bio_list_init(&bio_list_on_stack);
1835 current->bio_list = &bio_list_on_stack;
1836 do {
1837 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1838
1839 q->make_request_fn(q, bio);
1840
1841 bio = bio_list_pop(current->bio_list);
1842 } while (bio);
1843 current->bio_list = NULL; /* deactivate */
1844}
1845EXPORT_SYMBOL(generic_make_request);
1846
1847/**
1848 * submit_bio - submit a bio to the block device layer for I/O
1849 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1850 * @bio: The &struct bio which describes the I/O
1851 *
1852 * submit_bio() is very similar in purpose to generic_make_request(), and
1853 * uses that function to do most of the work. Both are fairly rough
1854 * interfaces; @bio must be presetup and ready for I/O.
1855 *
1856 */
1857void submit_bio(int rw, struct bio *bio)
1858{
1859 bio->bi_rw |= rw;
1860
1861 /*
1862 * If it's a regular read/write or a barrier with data attached,
1863 * go through the normal accounting stuff before submission.
1864 */
1865 if (bio_has_data(bio)) {
1866 unsigned int count;
1867
1868 if (unlikely(rw & REQ_WRITE_SAME))
1869 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1870 else
1871 count = bio_sectors(bio);
1872
1873 if (rw & WRITE) {
1874 count_vm_events(PGPGOUT, count);
1875 } else {
1876 task_io_account_read(bio->bi_size);
1877 count_vm_events(PGPGIN, count);
1878 }
1879
1880 if (unlikely(block_dump)) {
1881 char b[BDEVNAME_SIZE];
1882 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1883 current->comm, task_pid_nr(current),
1884 (rw & WRITE) ? "WRITE" : "READ",
1885 (unsigned long long)bio->bi_sector,
1886 bdevname(bio->bi_bdev, b),
1887 count);
1888 }
1889 }
1890
1891 generic_make_request(bio);
1892}
1893EXPORT_SYMBOL(submit_bio);
1894
1895/**
1896 * blk_rq_check_limits - Helper function to check a request for the queue limit
1897 * @q: the queue
1898 * @rq: the request being checked
1899 *
1900 * Description:
1901 * @rq may have been made based on weaker limitations of upper-level queues
1902 * in request stacking drivers, and it may violate the limitation of @q.
1903 * Since the block layer and the underlying device driver trust @rq
1904 * after it is inserted to @q, it should be checked against @q before
1905 * the insertion using this generic function.
1906 *
1907 * This function should also be useful for request stacking drivers
1908 * in some cases below, so export this function.
1909 * Request stacking drivers like request-based dm may change the queue
1910 * limits while requests are in the queue (e.g. dm's table swapping).
1911 * Such request stacking drivers should check those requests agaist
1912 * the new queue limits again when they dispatch those requests,
1913 * although such checkings are also done against the old queue limits
1914 * when submitting requests.
1915 */
1916int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1917{
1918 if (!rq_mergeable(rq))
1919 return 0;
1920
1921 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1922 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1923 return -EIO;
1924 }
1925
1926 /*
1927 * queue's settings related to segment counting like q->bounce_pfn
1928 * may differ from that of other stacking queues.
1929 * Recalculate it to check the request correctly on this queue's
1930 * limitation.
1931 */
1932 blk_recalc_rq_segments(rq);
1933 if (rq->nr_phys_segments > queue_max_segments(q)) {
1934 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1935 return -EIO;
1936 }
1937
1938 return 0;
1939}
1940EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1941
1942/**
1943 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1944 * @q: the queue to submit the request
1945 * @rq: the request being queued
1946 */
1947int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1948{
1949 unsigned long flags;
1950 int where = ELEVATOR_INSERT_BACK;
1951
1952 if (blk_rq_check_limits(q, rq))
1953 return -EIO;
1954
1955 if (rq->rq_disk &&
1956 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1957 return -EIO;
1958
1959 spin_lock_irqsave(q->queue_lock, flags);
1960 if (unlikely(blk_queue_dying(q))) {
1961 spin_unlock_irqrestore(q->queue_lock, flags);
1962 return -ENODEV;
1963 }
1964
1965 /*
1966 * Submitting request must be dequeued before calling this function
1967 * because it will be linked to another request_queue
1968 */
1969 BUG_ON(blk_queued_rq(rq));
1970
1971 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1972 where = ELEVATOR_INSERT_FLUSH;
1973
1974 add_acct_request(q, rq, where);
1975 if (where == ELEVATOR_INSERT_FLUSH)
1976 __blk_run_queue(q);
1977 spin_unlock_irqrestore(q->queue_lock, flags);
1978
1979 return 0;
1980}
1981EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1982
1983/**
1984 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1985 * @rq: request to examine
1986 *
1987 * Description:
1988 * A request could be merge of IOs which require different failure
1989 * handling. This function determines the number of bytes which
1990 * can be failed from the beginning of the request without
1991 * crossing into area which need to be retried further.
1992 *
1993 * Return:
1994 * The number of bytes to fail.
1995 *
1996 * Context:
1997 * queue_lock must be held.
1998 */
1999unsigned int blk_rq_err_bytes(const struct request *rq)
2000{
2001 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2002 unsigned int bytes = 0;
2003 struct bio *bio;
2004
2005 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2006 return blk_rq_bytes(rq);
2007
2008 /*
2009 * Currently the only 'mixing' which can happen is between
2010 * different fastfail types. We can safely fail portions
2011 * which have all the failfast bits that the first one has -
2012 * the ones which are at least as eager to fail as the first
2013 * one.
2014 */
2015 for (bio = rq->bio; bio; bio = bio->bi_next) {
2016 if ((bio->bi_rw & ff) != ff)
2017 break;
2018 bytes += bio->bi_size;
2019 }
2020
2021 /* this could lead to infinite loop */
2022 BUG_ON(blk_rq_bytes(rq) && !bytes);
2023 return bytes;
2024}
2025EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2026
2027static void blk_account_io_completion(struct request *req, unsigned int bytes)
2028{
2029 if (blk_do_io_stat(req)) {
2030 const int rw = rq_data_dir(req);
2031 struct hd_struct *part;
2032 int cpu;
2033
2034 cpu = part_stat_lock();
2035 part = req->part;
2036 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2037 part_stat_unlock();
2038 }
2039}
2040
2041static void blk_account_io_done(struct request *req)
2042{
2043 /*
2044 * Account IO completion. flush_rq isn't accounted as a
2045 * normal IO on queueing nor completion. Accounting the
2046 * containing request is enough.
2047 */
2048 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2049 unsigned long duration = jiffies - req->start_time;
2050 const int rw = rq_data_dir(req);
2051 struct hd_struct *part;
2052 int cpu;
2053
2054 cpu = part_stat_lock();
2055 part = req->part;
2056
2057 part_stat_inc(cpu, part, ios[rw]);
2058 part_stat_add(cpu, part, ticks[rw], duration);
2059 part_round_stats(cpu, part);
2060 part_dec_in_flight(part, rw);
2061
2062 hd_struct_put(part);
2063 part_stat_unlock();
2064 }
2065}
2066
2067#ifdef CONFIG_PM_RUNTIME
2068/*
2069 * Don't process normal requests when queue is suspended
2070 * or in the process of suspending/resuming
2071 */
2072static struct request *blk_pm_peek_request(struct request_queue *q,
2073 struct request *rq)
2074{
2075 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2076 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2077 return NULL;
2078 else
2079 return rq;
2080}
2081#else
2082static inline struct request *blk_pm_peek_request(struct request_queue *q,
2083 struct request *rq)
2084{
2085 return rq;
2086}
2087#endif
2088
2089/**
2090 * blk_peek_request - peek at the top of a request queue
2091 * @q: request queue to peek at
2092 *
2093 * Description:
2094 * Return the request at the top of @q. The returned request
2095 * should be started using blk_start_request() before LLD starts
2096 * processing it.
2097 *
2098 * Return:
2099 * Pointer to the request at the top of @q if available. Null
2100 * otherwise.
2101 *
2102 * Context:
2103 * queue_lock must be held.
2104 */
2105struct request *blk_peek_request(struct request_queue *q)
2106{
2107 struct request *rq;
2108 int ret;
2109
2110 while ((rq = __elv_next_request(q)) != NULL) {
2111
2112 rq = blk_pm_peek_request(q, rq);
2113 if (!rq)
2114 break;
2115
2116 if (!(rq->cmd_flags & REQ_STARTED)) {
2117 /*
2118 * This is the first time the device driver
2119 * sees this request (possibly after
2120 * requeueing). Notify IO scheduler.
2121 */
2122 if (rq->cmd_flags & REQ_SORTED)
2123 elv_activate_rq(q, rq);
2124
2125 /*
2126 * just mark as started even if we don't start
2127 * it, a request that has been delayed should
2128 * not be passed by new incoming requests
2129 */
2130 rq->cmd_flags |= REQ_STARTED;
2131 trace_block_rq_issue(q, rq);
2132 }
2133
2134 if (!q->boundary_rq || q->boundary_rq == rq) {
2135 q->end_sector = rq_end_sector(rq);
2136 q->boundary_rq = NULL;
2137 }
2138
2139 if (rq->cmd_flags & REQ_DONTPREP)
2140 break;
2141
2142 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2143 /*
2144 * make sure space for the drain appears we
2145 * know we can do this because max_hw_segments
2146 * has been adjusted to be one fewer than the
2147 * device can handle
2148 */
2149 rq->nr_phys_segments++;
2150 }
2151
2152 if (!q->prep_rq_fn)
2153 break;
2154
2155 ret = q->prep_rq_fn(q, rq);
2156 if (ret == BLKPREP_OK) {
2157 break;
2158 } else if (ret == BLKPREP_DEFER) {
2159 /*
2160 * the request may have been (partially) prepped.
2161 * we need to keep this request in the front to
2162 * avoid resource deadlock. REQ_STARTED will
2163 * prevent other fs requests from passing this one.
2164 */
2165 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2166 !(rq->cmd_flags & REQ_DONTPREP)) {
2167 /*
2168 * remove the space for the drain we added
2169 * so that we don't add it again
2170 */
2171 --rq->nr_phys_segments;
2172 }
2173
2174 rq = NULL;
2175 break;
2176 } else if (ret == BLKPREP_KILL) {
2177 rq->cmd_flags |= REQ_QUIET;
2178 /*
2179 * Mark this request as started so we don't trigger
2180 * any debug logic in the end I/O path.
2181 */
2182 blk_start_request(rq);
2183 __blk_end_request_all(rq, -EIO);
2184 } else {
2185 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2186 break;
2187 }
2188 }
2189
2190 return rq;
2191}
2192EXPORT_SYMBOL(blk_peek_request);
2193
2194void blk_dequeue_request(struct request *rq)
2195{
2196 struct request_queue *q = rq->q;
2197
2198 BUG_ON(list_empty(&rq->queuelist));
2199 BUG_ON(ELV_ON_HASH(rq));
2200
2201 list_del_init(&rq->queuelist);
2202
2203 /*
2204 * the time frame between a request being removed from the lists
2205 * and to it is freed is accounted as io that is in progress at
2206 * the driver side.
2207 */
2208 if (blk_account_rq(rq)) {
2209 q->in_flight[rq_is_sync(rq)]++;
2210 set_io_start_time_ns(rq);
2211 }
2212}
2213
2214/**
2215 * blk_start_request - start request processing on the driver
2216 * @req: request to dequeue
2217 *
2218 * Description:
2219 * Dequeue @req and start timeout timer on it. This hands off the
2220 * request to the driver.
2221 *
2222 * Block internal functions which don't want to start timer should
2223 * call blk_dequeue_request().
2224 *
2225 * Context:
2226 * queue_lock must be held.
2227 */
2228void blk_start_request(struct request *req)
2229{
2230 blk_dequeue_request(req);
2231
2232 /*
2233 * We are now handing the request to the hardware, initialize
2234 * resid_len to full count and add the timeout handler.
2235 */
2236 req->resid_len = blk_rq_bytes(req);
2237 if (unlikely(blk_bidi_rq(req)))
2238 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2239
2240 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2241 blk_add_timer(req);
2242}
2243EXPORT_SYMBOL(blk_start_request);
2244
2245/**
2246 * blk_fetch_request - fetch a request from a request queue
2247 * @q: request queue to fetch a request from
2248 *
2249 * Description:
2250 * Return the request at the top of @q. The request is started on
2251 * return and LLD can start processing it immediately.
2252 *
2253 * Return:
2254 * Pointer to the request at the top of @q if available. Null
2255 * otherwise.
2256 *
2257 * Context:
2258 * queue_lock must be held.
2259 */
2260struct request *blk_fetch_request(struct request_queue *q)
2261{
2262 struct request *rq;
2263
2264 rq = blk_peek_request(q);
2265 if (rq)
2266 blk_start_request(rq);
2267 return rq;
2268}
2269EXPORT_SYMBOL(blk_fetch_request);
2270
2271/**
2272 * blk_update_request - Special helper function for request stacking drivers
2273 * @req: the request being processed
2274 * @error: %0 for success, < %0 for error
2275 * @nr_bytes: number of bytes to complete @req
2276 *
2277 * Description:
2278 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2279 * the request structure even if @req doesn't have leftover.
2280 * If @req has leftover, sets it up for the next range of segments.
2281 *
2282 * This special helper function is only for request stacking drivers
2283 * (e.g. request-based dm) so that they can handle partial completion.
2284 * Actual device drivers should use blk_end_request instead.
2285 *
2286 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2287 * %false return from this function.
2288 *
2289 * Return:
2290 * %false - this request doesn't have any more data
2291 * %true - this request has more data
2292 **/
2293bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2294{
2295 int total_bytes;
2296
2297 if (!req->bio)
2298 return false;
2299
2300 trace_block_rq_complete(req->q, req);
2301
2302 /*
2303 * For fs requests, rq is just carrier of independent bio's
2304 * and each partial completion should be handled separately.
2305 * Reset per-request error on each partial completion.
2306 *
2307 * TODO: tj: This is too subtle. It would be better to let
2308 * low level drivers do what they see fit.
2309 */
2310 if (req->cmd_type == REQ_TYPE_FS)
2311 req->errors = 0;
2312
2313 if (error && req->cmd_type == REQ_TYPE_FS &&
2314 !(req->cmd_flags & REQ_QUIET)) {
2315 char *error_type;
2316
2317 switch (error) {
2318 case -ENOLINK:
2319 error_type = "recoverable transport";
2320 break;
2321 case -EREMOTEIO:
2322 error_type = "critical target";
2323 break;
2324 case -EBADE:
2325 error_type = "critical nexus";
2326 break;
2327 case -ETIMEDOUT:
2328 error_type = "timeout";
2329 break;
2330 case -ENOSPC:
2331 error_type = "critical space allocation";
2332 break;
2333 case -ENODATA:
2334 error_type = "critical medium";
2335 break;
2336 case -EIO:
2337 default:
2338 error_type = "I/O";
2339 break;
2340 }
2341 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2342 error_type, req->rq_disk ?
2343 req->rq_disk->disk_name : "?",
2344 (unsigned long long)blk_rq_pos(req));
2345
2346 }
2347
2348 blk_account_io_completion(req, nr_bytes);
2349
2350 total_bytes = 0;
2351 while (req->bio) {
2352 struct bio *bio = req->bio;
2353 unsigned bio_bytes = min(bio->bi_size, nr_bytes);
2354
2355 if (bio_bytes == bio->bi_size)
2356 req->bio = bio->bi_next;
2357
2358 req_bio_endio(req, bio, bio_bytes, error);
2359
2360 total_bytes += bio_bytes;
2361 nr_bytes -= bio_bytes;
2362
2363 if (!nr_bytes)
2364 break;
2365 }
2366
2367 /*
2368 * completely done
2369 */
2370 if (!req->bio) {
2371 /*
2372 * Reset counters so that the request stacking driver
2373 * can find how many bytes remain in the request
2374 * later.
2375 */
2376 req->__data_len = 0;
2377 return false;
2378 }
2379
2380 req->__data_len -= total_bytes;
2381 req->buffer = bio_data(req->bio);
2382
2383 /* update sector only for requests with clear definition of sector */
2384 if (req->cmd_type == REQ_TYPE_FS)
2385 req->__sector += total_bytes >> 9;
2386
2387 /* mixed attributes always follow the first bio */
2388 if (req->cmd_flags & REQ_MIXED_MERGE) {
2389 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2390 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2391 }
2392
2393 /*
2394 * If total number of sectors is less than the first segment
2395 * size, something has gone terribly wrong.
2396 */
2397 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2398 blk_dump_rq_flags(req, "request botched");
2399 req->__data_len = blk_rq_cur_bytes(req);
2400 }
2401
2402 /* recalculate the number of segments */
2403 blk_recalc_rq_segments(req);
2404
2405 return true;
2406}
2407EXPORT_SYMBOL_GPL(blk_update_request);
2408
2409static bool blk_update_bidi_request(struct request *rq, int error,
2410 unsigned int nr_bytes,
2411 unsigned int bidi_bytes)
2412{
2413 if (blk_update_request(rq, error, nr_bytes))
2414 return true;
2415
2416 /* Bidi request must be completed as a whole */
2417 if (unlikely(blk_bidi_rq(rq)) &&
2418 blk_update_request(rq->next_rq, error, bidi_bytes))
2419 return true;
2420
2421 if (blk_queue_add_random(rq->q))
2422 add_disk_randomness(rq->rq_disk);
2423
2424 return false;
2425}
2426
2427/**
2428 * blk_unprep_request - unprepare a request
2429 * @req: the request
2430 *
2431 * This function makes a request ready for complete resubmission (or
2432 * completion). It happens only after all error handling is complete,
2433 * so represents the appropriate moment to deallocate any resources
2434 * that were allocated to the request in the prep_rq_fn. The queue
2435 * lock is held when calling this.
2436 */
2437void blk_unprep_request(struct request *req)
2438{
2439 struct request_queue *q = req->q;
2440
2441 req->cmd_flags &= ~REQ_DONTPREP;
2442 if (q->unprep_rq_fn)
2443 q->unprep_rq_fn(q, req);
2444}
2445EXPORT_SYMBOL_GPL(blk_unprep_request);
2446
2447/*
2448 * queue lock must be held
2449 */
2450static void blk_finish_request(struct request *req, int error)
2451{
2452 if (blk_rq_tagged(req))
2453 blk_queue_end_tag(req->q, req);
2454
2455 BUG_ON(blk_queued_rq(req));
2456
2457 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2458 laptop_io_completion(&req->q->backing_dev_info);
2459
2460 blk_delete_timer(req);
2461
2462 if (req->cmd_flags & REQ_DONTPREP)
2463 blk_unprep_request(req);
2464
2465
2466 blk_account_io_done(req);
2467
2468 if (req->end_io)
2469 req->end_io(req, error);
2470 else {
2471 if (blk_bidi_rq(req))
2472 __blk_put_request(req->next_rq->q, req->next_rq);
2473
2474 __blk_put_request(req->q, req);
2475 }
2476}
2477
2478/**
2479 * blk_end_bidi_request - Complete a bidi request
2480 * @rq: the request to complete
2481 * @error: %0 for success, < %0 for error
2482 * @nr_bytes: number of bytes to complete @rq
2483 * @bidi_bytes: number of bytes to complete @rq->next_rq
2484 *
2485 * Description:
2486 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2487 * Drivers that supports bidi can safely call this member for any
2488 * type of request, bidi or uni. In the later case @bidi_bytes is
2489 * just ignored.
2490 *
2491 * Return:
2492 * %false - we are done with this request
2493 * %true - still buffers pending for this request
2494 **/
2495static bool blk_end_bidi_request(struct request *rq, int error,
2496 unsigned int nr_bytes, unsigned int bidi_bytes)
2497{
2498 struct request_queue *q = rq->q;
2499 unsigned long flags;
2500
2501 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2502 return true;
2503
2504 spin_lock_irqsave(q->queue_lock, flags);
2505 blk_finish_request(rq, error);
2506 spin_unlock_irqrestore(q->queue_lock, flags);
2507
2508 return false;
2509}
2510
2511/**
2512 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2513 * @rq: the request to complete
2514 * @error: %0 for success, < %0 for error
2515 * @nr_bytes: number of bytes to complete @rq
2516 * @bidi_bytes: number of bytes to complete @rq->next_rq
2517 *
2518 * Description:
2519 * Identical to blk_end_bidi_request() except that queue lock is
2520 * assumed to be locked on entry and remains so on return.
2521 *
2522 * Return:
2523 * %false - we are done with this request
2524 * %true - still buffers pending for this request
2525 **/
2526bool __blk_end_bidi_request(struct request *rq, int error,
2527 unsigned int nr_bytes, unsigned int bidi_bytes)
2528{
2529 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2530 return true;
2531
2532 blk_finish_request(rq, error);
2533
2534 return false;
2535}
2536
2537/**
2538 * blk_end_request - Helper function for drivers to complete the request.
2539 * @rq: the request being processed
2540 * @error: %0 for success, < %0 for error
2541 * @nr_bytes: number of bytes to complete
2542 *
2543 * Description:
2544 * Ends I/O on a number of bytes attached to @rq.
2545 * If @rq has leftover, sets it up for the next range of segments.
2546 *
2547 * Return:
2548 * %false - we are done with this request
2549 * %true - still buffers pending for this request
2550 **/
2551bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2552{
2553 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2554}
2555EXPORT_SYMBOL(blk_end_request);
2556
2557/**
2558 * blk_end_request_all - Helper function for drives to finish the request.
2559 * @rq: the request to finish
2560 * @error: %0 for success, < %0 for error
2561 *
2562 * Description:
2563 * Completely finish @rq.
2564 */
2565void blk_end_request_all(struct request *rq, int error)
2566{
2567 bool pending;
2568 unsigned int bidi_bytes = 0;
2569
2570 if (unlikely(blk_bidi_rq(rq)))
2571 bidi_bytes = blk_rq_bytes(rq->next_rq);
2572
2573 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2574 BUG_ON(pending);
2575}
2576EXPORT_SYMBOL(blk_end_request_all);
2577
2578/**
2579 * blk_end_request_cur - Helper function to finish the current request chunk.
2580 * @rq: the request to finish the current chunk for
2581 * @error: %0 for success, < %0 for error
2582 *
2583 * Description:
2584 * Complete the current consecutively mapped chunk from @rq.
2585 *
2586 * Return:
2587 * %false - we are done with this request
2588 * %true - still buffers pending for this request
2589 */
2590bool blk_end_request_cur(struct request *rq, int error)
2591{
2592 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2593}
2594EXPORT_SYMBOL(blk_end_request_cur);
2595
2596/**
2597 * blk_end_request_err - Finish a request till the next failure boundary.
2598 * @rq: the request to finish till the next failure boundary for
2599 * @error: must be negative errno
2600 *
2601 * Description:
2602 * Complete @rq till the next failure boundary.
2603 *
2604 * Return:
2605 * %false - we are done with this request
2606 * %true - still buffers pending for this request
2607 */
2608bool blk_end_request_err(struct request *rq, int error)
2609{
2610 WARN_ON(error >= 0);
2611 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2612}
2613EXPORT_SYMBOL_GPL(blk_end_request_err);
2614
2615/**
2616 * __blk_end_request - Helper function for drivers to complete the request.
2617 * @rq: the request being processed
2618 * @error: %0 for success, < %0 for error
2619 * @nr_bytes: number of bytes to complete
2620 *
2621 * Description:
2622 * Must be called with queue lock held unlike blk_end_request().
2623 *
2624 * Return:
2625 * %false - we are done with this request
2626 * %true - still buffers pending for this request
2627 **/
2628bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2629{
2630 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2631}
2632EXPORT_SYMBOL(__blk_end_request);
2633
2634/**
2635 * __blk_end_request_all - Helper function for drives to finish the request.
2636 * @rq: the request to finish
2637 * @error: %0 for success, < %0 for error
2638 *
2639 * Description:
2640 * Completely finish @rq. Must be called with queue lock held.
2641 */
2642void __blk_end_request_all(struct request *rq, int error)
2643{
2644 bool pending;
2645 unsigned int bidi_bytes = 0;
2646
2647 if (unlikely(blk_bidi_rq(rq)))
2648 bidi_bytes = blk_rq_bytes(rq->next_rq);
2649
2650 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2651 BUG_ON(pending);
2652}
2653EXPORT_SYMBOL(__blk_end_request_all);
2654
2655/**
2656 * __blk_end_request_cur - Helper function to finish the current request chunk.
2657 * @rq: the request to finish the current chunk for
2658 * @error: %0 for success, < %0 for error
2659 *
2660 * Description:
2661 * Complete the current consecutively mapped chunk from @rq. Must
2662 * be called with queue lock held.
2663 *
2664 * Return:
2665 * %false - we are done with this request
2666 * %true - still buffers pending for this request
2667 */
2668bool __blk_end_request_cur(struct request *rq, int error)
2669{
2670 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2671}
2672EXPORT_SYMBOL(__blk_end_request_cur);
2673
2674/**
2675 * __blk_end_request_err - Finish a request till the next failure boundary.
2676 * @rq: the request to finish till the next failure boundary for
2677 * @error: must be negative errno
2678 *
2679 * Description:
2680 * Complete @rq till the next failure boundary. Must be called
2681 * with queue lock held.
2682 *
2683 * Return:
2684 * %false - we are done with this request
2685 * %true - still buffers pending for this request
2686 */
2687bool __blk_end_request_err(struct request *rq, int error)
2688{
2689 WARN_ON(error >= 0);
2690 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2691}
2692EXPORT_SYMBOL_GPL(__blk_end_request_err);
2693
2694void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2695 struct bio *bio)
2696{
2697 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2698 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2699
2700 if (bio_has_data(bio)) {
2701 rq->nr_phys_segments = bio_phys_segments(q, bio);
2702 rq->buffer = bio_data(bio);
2703 }
2704 rq->__data_len = bio->bi_size;
2705 rq->bio = rq->biotail = bio;
2706
2707 if (bio->bi_bdev)
2708 rq->rq_disk = bio->bi_bdev->bd_disk;
2709}
2710
2711#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2712/**
2713 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2714 * @rq: the request to be flushed
2715 *
2716 * Description:
2717 * Flush all pages in @rq.
2718 */
2719void rq_flush_dcache_pages(struct request *rq)
2720{
2721 struct req_iterator iter;
2722 struct bio_vec *bvec;
2723
2724 rq_for_each_segment(bvec, rq, iter)
2725 flush_dcache_page(bvec->bv_page);
2726}
2727EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2728#endif
2729
2730/**
2731 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2732 * @q : the queue of the device being checked
2733 *
2734 * Description:
2735 * Check if underlying low-level drivers of a device are busy.
2736 * If the drivers want to export their busy state, they must set own
2737 * exporting function using blk_queue_lld_busy() first.
2738 *
2739 * Basically, this function is used only by request stacking drivers
2740 * to stop dispatching requests to underlying devices when underlying
2741 * devices are busy. This behavior helps more I/O merging on the queue
2742 * of the request stacking driver and prevents I/O throughput regression
2743 * on burst I/O load.
2744 *
2745 * Return:
2746 * 0 - Not busy (The request stacking driver should dispatch request)
2747 * 1 - Busy (The request stacking driver should stop dispatching request)
2748 */
2749int blk_lld_busy(struct request_queue *q)
2750{
2751 if (q->lld_busy_fn)
2752 return q->lld_busy_fn(q);
2753
2754 return 0;
2755}
2756EXPORT_SYMBOL_GPL(blk_lld_busy);
2757
2758/**
2759 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2760 * @rq: the clone request to be cleaned up
2761 *
2762 * Description:
2763 * Free all bios in @rq for a cloned request.
2764 */
2765void blk_rq_unprep_clone(struct request *rq)
2766{
2767 struct bio *bio;
2768
2769 while ((bio = rq->bio) != NULL) {
2770 rq->bio = bio->bi_next;
2771
2772 bio_put(bio);
2773 }
2774}
2775EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2776
2777/*
2778 * Copy attributes of the original request to the clone request.
2779 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2780 */
2781static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2782{
2783 dst->cpu = src->cpu;
2784 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2785 dst->cmd_type = src->cmd_type;
2786 dst->__sector = blk_rq_pos(src);
2787 dst->__data_len = blk_rq_bytes(src);
2788 dst->nr_phys_segments = src->nr_phys_segments;
2789 dst->ioprio = src->ioprio;
2790 dst->extra_len = src->extra_len;
2791}
2792
2793/**
2794 * blk_rq_prep_clone - Helper function to setup clone request
2795 * @rq: the request to be setup
2796 * @rq_src: original request to be cloned
2797 * @bs: bio_set that bios for clone are allocated from
2798 * @gfp_mask: memory allocation mask for bio
2799 * @bio_ctr: setup function to be called for each clone bio.
2800 * Returns %0 for success, non %0 for failure.
2801 * @data: private data to be passed to @bio_ctr
2802 *
2803 * Description:
2804 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2805 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2806 * are not copied, and copying such parts is the caller's responsibility.
2807 * Also, pages which the original bios are pointing to are not copied
2808 * and the cloned bios just point same pages.
2809 * So cloned bios must be completed before original bios, which means
2810 * the caller must complete @rq before @rq_src.
2811 */
2812int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2813 struct bio_set *bs, gfp_t gfp_mask,
2814 int (*bio_ctr)(struct bio *, struct bio *, void *),
2815 void *data)
2816{
2817 struct bio *bio, *bio_src;
2818
2819 if (!bs)
2820 bs = fs_bio_set;
2821
2822 blk_rq_init(NULL, rq);
2823
2824 __rq_for_each_bio(bio_src, rq_src) {
2825 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2826 if (!bio)
2827 goto free_and_out;
2828
2829 if (bio_ctr && bio_ctr(bio, bio_src, data))
2830 goto free_and_out;
2831
2832 if (rq->bio) {
2833 rq->biotail->bi_next = bio;
2834 rq->biotail = bio;
2835 } else
2836 rq->bio = rq->biotail = bio;
2837 }
2838
2839 __blk_rq_prep_clone(rq, rq_src);
2840
2841 return 0;
2842
2843free_and_out:
2844 if (bio)
2845 bio_put(bio);
2846 blk_rq_unprep_clone(rq);
2847
2848 return -ENOMEM;
2849}
2850EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2851
2852int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2853{
2854 return queue_work(kblockd_workqueue, work);
2855}
2856EXPORT_SYMBOL(kblockd_schedule_work);
2857
2858int kblockd_schedule_delayed_work(struct request_queue *q,
2859 struct delayed_work *dwork, unsigned long delay)
2860{
2861 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2862}
2863EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2864
2865#define PLUG_MAGIC 0x91827364
2866
2867/**
2868 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2869 * @plug: The &struct blk_plug that needs to be initialized
2870 *
2871 * Description:
2872 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2873 * pending I/O should the task end up blocking between blk_start_plug() and
2874 * blk_finish_plug(). This is important from a performance perspective, but
2875 * also ensures that we don't deadlock. For instance, if the task is blocking
2876 * for a memory allocation, memory reclaim could end up wanting to free a
2877 * page belonging to that request that is currently residing in our private
2878 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2879 * this kind of deadlock.
2880 */
2881void blk_start_plug(struct blk_plug *plug)
2882{
2883 struct task_struct *tsk = current;
2884
2885 plug->magic = PLUG_MAGIC;
2886 INIT_LIST_HEAD(&plug->list);
2887 INIT_LIST_HEAD(&plug->cb_list);
2888
2889 /*
2890 * If this is a nested plug, don't actually assign it. It will be
2891 * flushed on its own.
2892 */
2893 if (!tsk->plug) {
2894 /*
2895 * Store ordering should not be needed here, since a potential
2896 * preempt will imply a full memory barrier
2897 */
2898 tsk->plug = plug;
2899 }
2900}
2901EXPORT_SYMBOL(blk_start_plug);
2902
2903static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2904{
2905 struct request *rqa = container_of(a, struct request, queuelist);
2906 struct request *rqb = container_of(b, struct request, queuelist);
2907
2908 return !(rqa->q < rqb->q ||
2909 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2910}
2911
2912/*
2913 * If 'from_schedule' is true, then postpone the dispatch of requests
2914 * until a safe kblockd context. We due this to avoid accidental big
2915 * additional stack usage in driver dispatch, in places where the originally
2916 * plugger did not intend it.
2917 */
2918static void queue_unplugged(struct request_queue *q, unsigned int depth,
2919 bool from_schedule)
2920 __releases(q->queue_lock)
2921{
2922 trace_block_unplug(q, depth, !from_schedule);
2923
2924 if (from_schedule)
2925 blk_run_queue_async(q);
2926 else
2927 __blk_run_queue(q);
2928 spin_unlock(q->queue_lock);
2929}
2930
2931static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2932{
2933 LIST_HEAD(callbacks);
2934
2935 while (!list_empty(&plug->cb_list)) {
2936 list_splice_init(&plug->cb_list, &callbacks);
2937
2938 while (!list_empty(&callbacks)) {
2939 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2940 struct blk_plug_cb,
2941 list);
2942 list_del(&cb->list);
2943 cb->callback(cb, from_schedule);
2944 }
2945 }
2946}
2947
2948struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2949 int size)
2950{
2951 struct blk_plug *plug = current->plug;
2952 struct blk_plug_cb *cb;
2953
2954 if (!plug)
2955 return NULL;
2956
2957 list_for_each_entry(cb, &plug->cb_list, list)
2958 if (cb->callback == unplug && cb->data == data)
2959 return cb;
2960
2961 /* Not currently on the callback list */
2962 BUG_ON(size < sizeof(*cb));
2963 cb = kzalloc(size, GFP_ATOMIC);
2964 if (cb) {
2965 cb->data = data;
2966 cb->callback = unplug;
2967 list_add(&cb->list, &plug->cb_list);
2968 }
2969 return cb;
2970}
2971EXPORT_SYMBOL(blk_check_plugged);
2972
2973void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2974{
2975 struct request_queue *q;
2976 unsigned long flags;
2977 struct request *rq;
2978 LIST_HEAD(list);
2979 unsigned int depth;
2980
2981 BUG_ON(plug->magic != PLUG_MAGIC);
2982
2983 flush_plug_callbacks(plug, from_schedule);
2984 if (list_empty(&plug->list))
2985 return;
2986
2987 list_splice_init(&plug->list, &list);
2988
2989 list_sort(NULL, &list, plug_rq_cmp);
2990
2991 q = NULL;
2992 depth = 0;
2993
2994 /*
2995 * Save and disable interrupts here, to avoid doing it for every
2996 * queue lock we have to take.
2997 */
2998 local_irq_save(flags);
2999 while (!list_empty(&list)) {
3000 rq = list_entry_rq(list.next);
3001 list_del_init(&rq->queuelist);
3002 BUG_ON(!rq->q);
3003 if (rq->q != q) {
3004 /*
3005 * This drops the queue lock
3006 */
3007 if (q)
3008 queue_unplugged(q, depth, from_schedule);
3009 q = rq->q;
3010 depth = 0;
3011 spin_lock(q->queue_lock);
3012 }
3013
3014 /*
3015 * Short-circuit if @q is dead
3016 */
3017 if (unlikely(blk_queue_dying(q))) {
3018 __blk_end_request_all(rq, -ENODEV);
3019 continue;
3020 }
3021
3022 /*
3023 * rq is already accounted, so use raw insert
3024 */
3025 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3026 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3027 else
3028 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3029
3030 depth++;
3031 }
3032
3033 /*
3034 * This drops the queue lock
3035 */
3036 if (q)
3037 queue_unplugged(q, depth, from_schedule);
3038
3039 local_irq_restore(flags);
3040}
3041
3042void blk_finish_plug(struct blk_plug *plug)
3043{
3044 blk_flush_plug_list(plug, false);
3045
3046 if (plug == current->plug)
3047 current->plug = NULL;
3048}
3049EXPORT_SYMBOL(blk_finish_plug);
3050
3051#ifdef CONFIG_PM_RUNTIME
3052/**
3053 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3054 * @q: the queue of the device
3055 * @dev: the device the queue belongs to
3056 *
3057 * Description:
3058 * Initialize runtime-PM-related fields for @q and start auto suspend for
3059 * @dev. Drivers that want to take advantage of request-based runtime PM
3060 * should call this function after @dev has been initialized, and its
3061 * request queue @q has been allocated, and runtime PM for it can not happen
3062 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3063 * cases, driver should call this function before any I/O has taken place.
3064 *
3065 * This function takes care of setting up using auto suspend for the device,
3066 * the autosuspend delay is set to -1 to make runtime suspend impossible
3067 * until an updated value is either set by user or by driver. Drivers do
3068 * not need to touch other autosuspend settings.
3069 *
3070 * The block layer runtime PM is request based, so only works for drivers
3071 * that use request as their IO unit instead of those directly use bio's.
3072 */
3073void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3074{
3075 q->dev = dev;
3076 q->rpm_status = RPM_ACTIVE;
3077 pm_runtime_set_autosuspend_delay(q->dev, -1);
3078 pm_runtime_use_autosuspend(q->dev);
3079}
3080EXPORT_SYMBOL(blk_pm_runtime_init);
3081
3082/**
3083 * blk_pre_runtime_suspend - Pre runtime suspend check
3084 * @q: the queue of the device
3085 *
3086 * Description:
3087 * This function will check if runtime suspend is allowed for the device
3088 * by examining if there are any requests pending in the queue. If there
3089 * are requests pending, the device can not be runtime suspended; otherwise,
3090 * the queue's status will be updated to SUSPENDING and the driver can
3091 * proceed to suspend the device.
3092 *
3093 * For the not allowed case, we mark last busy for the device so that
3094 * runtime PM core will try to autosuspend it some time later.
3095 *
3096 * This function should be called near the start of the device's
3097 * runtime_suspend callback.
3098 *
3099 * Return:
3100 * 0 - OK to runtime suspend the device
3101 * -EBUSY - Device should not be runtime suspended
3102 */
3103int blk_pre_runtime_suspend(struct request_queue *q)
3104{
3105 int ret = 0;
3106
3107 spin_lock_irq(q->queue_lock);
3108 if (q->nr_pending) {
3109 ret = -EBUSY;
3110 pm_runtime_mark_last_busy(q->dev);
3111 } else {
3112 q->rpm_status = RPM_SUSPENDING;
3113 }
3114 spin_unlock_irq(q->queue_lock);
3115 return ret;
3116}
3117EXPORT_SYMBOL(blk_pre_runtime_suspend);
3118
3119/**
3120 * blk_post_runtime_suspend - Post runtime suspend processing
3121 * @q: the queue of the device
3122 * @err: return value of the device's runtime_suspend function
3123 *
3124 * Description:
3125 * Update the queue's runtime status according to the return value of the
3126 * device's runtime suspend function and mark last busy for the device so
3127 * that PM core will try to auto suspend the device at a later time.
3128 *
3129 * This function should be called near the end of the device's
3130 * runtime_suspend callback.
3131 */
3132void blk_post_runtime_suspend(struct request_queue *q, int err)
3133{
3134 spin_lock_irq(q->queue_lock);
3135 if (!err) {
3136 q->rpm_status = RPM_SUSPENDED;
3137 } else {
3138 q->rpm_status = RPM_ACTIVE;
3139 pm_runtime_mark_last_busy(q->dev);
3140 }
3141 spin_unlock_irq(q->queue_lock);
3142}
3143EXPORT_SYMBOL(blk_post_runtime_suspend);
3144
3145/**
3146 * blk_pre_runtime_resume - Pre runtime resume processing
3147 * @q: the queue of the device
3148 *
3149 * Description:
3150 * Update the queue's runtime status to RESUMING in preparation for the
3151 * runtime resume of the device.
3152 *
3153 * This function should be called near the start of the device's
3154 * runtime_resume callback.
3155 */
3156void blk_pre_runtime_resume(struct request_queue *q)
3157{
3158 spin_lock_irq(q->queue_lock);
3159 q->rpm_status = RPM_RESUMING;
3160 spin_unlock_irq(q->queue_lock);
3161}
3162EXPORT_SYMBOL(blk_pre_runtime_resume);
3163
3164/**
3165 * blk_post_runtime_resume - Post runtime resume processing
3166 * @q: the queue of the device
3167 * @err: return value of the device's runtime_resume function
3168 *
3169 * Description:
3170 * Update the queue's runtime status according to the return value of the
3171 * device's runtime_resume function. If it is successfully resumed, process
3172 * the requests that are queued into the device's queue when it is resuming
3173 * and then mark last busy and initiate autosuspend for it.
3174 *
3175 * This function should be called near the end of the device's
3176 * runtime_resume callback.
3177 */
3178void blk_post_runtime_resume(struct request_queue *q, int err)
3179{
3180 spin_lock_irq(q->queue_lock);
3181 if (!err) {
3182 q->rpm_status = RPM_ACTIVE;
3183 __blk_run_queue(q);
3184 pm_runtime_mark_last_busy(q->dev);
3185 pm_request_autosuspend(q->dev);
3186 } else {
3187 q->rpm_status = RPM_SUSPENDED;
3188 }
3189 spin_unlock_irq(q->queue_lock);
3190}
3191EXPORT_SYMBOL(blk_post_runtime_resume);
3192#endif
3193
3194int __init blk_dev_init(void)
3195{
3196 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3197 sizeof(((struct request *)0)->cmd_flags));
3198
3199 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3200 kblockd_workqueue = alloc_workqueue("kblockd",
3201 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3202 WQ_POWER_EFFICIENT, 0);
3203 if (!kblockd_workqueue)
3204 panic("Failed to create kblockd\n");
3205
3206 request_cachep = kmem_cache_create("blkdev_requests",
3207 sizeof(struct request), 0, SLAB_PANIC, NULL);
3208
3209 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3210 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3211
3212 return 0;
3213}