]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - block/blk-mq.c
blk-mq: export helpers
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
... / ...
CommitLineData
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/kmemleak.h>
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/sched/topology.h>
24#include <linux/sched/signal.h>
25#include <linux/delay.h>
26#include <linux/crash_dump.h>
27#include <linux/prefetch.h>
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
34#include "blk-mq-tag.h"
35#include "blk-stat.h"
36#include "blk-wbt.h"
37#include "blk-mq-sched.h"
38
39static DEFINE_MUTEX(all_q_mutex);
40static LIST_HEAD(all_q_list);
41
42static void blk_mq_poll_stats_start(struct request_queue *q);
43static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45/*
46 * Check if any of the ctx's have pending work in this hardware queue
47 */
48bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49{
50 return sbitmap_any_bit_set(&hctx->ctx_map) ||
51 !list_empty_careful(&hctx->dispatch) ||
52 blk_mq_sched_has_work(hctx);
53}
54
55/*
56 * Mark this ctx as having pending work in this hardware queue
57 */
58static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
59 struct blk_mq_ctx *ctx)
60{
61 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
62 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63}
64
65static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
66 struct blk_mq_ctx *ctx)
67{
68 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69}
70
71void blk_freeze_queue_start(struct request_queue *q)
72{
73 int freeze_depth;
74
75 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
76 if (freeze_depth == 1) {
77 percpu_ref_kill(&q->q_usage_counter);
78 blk_mq_run_hw_queues(q, false);
79 }
80}
81EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
82
83void blk_mq_freeze_queue_wait(struct request_queue *q)
84{
85 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86}
87EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88
89int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
90 unsigned long timeout)
91{
92 return wait_event_timeout(q->mq_freeze_wq,
93 percpu_ref_is_zero(&q->q_usage_counter),
94 timeout);
95}
96EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97
98/*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
102void blk_freeze_queue(struct request_queue *q)
103{
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
111 blk_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113}
114
115void blk_mq_freeze_queue(struct request_queue *q)
116{
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122}
123EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125void blk_mq_unfreeze_queue(struct request_queue *q)
126{
127 int freeze_depth;
128
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
132 percpu_ref_reinit(&q->q_usage_counter);
133 wake_up_all(&q->mq_freeze_wq);
134 }
135}
136EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138/**
139 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
140 * @q: request queue.
141 *
142 * Note: this function does not prevent that the struct request end_io()
143 * callback function is invoked. Additionally, it is not prevented that
144 * new queue_rq() calls occur unless the queue has been stopped first.
145 */
146void blk_mq_quiesce_queue(struct request_queue *q)
147{
148 struct blk_mq_hw_ctx *hctx;
149 unsigned int i;
150 bool rcu = false;
151
152 blk_mq_stop_hw_queues(q);
153
154 queue_for_each_hw_ctx(q, hctx, i) {
155 if (hctx->flags & BLK_MQ_F_BLOCKING)
156 synchronize_srcu(&hctx->queue_rq_srcu);
157 else
158 rcu = true;
159 }
160 if (rcu)
161 synchronize_rcu();
162}
163EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
164
165void blk_mq_wake_waiters(struct request_queue *q)
166{
167 struct blk_mq_hw_ctx *hctx;
168 unsigned int i;
169
170 queue_for_each_hw_ctx(q, hctx, i)
171 if (blk_mq_hw_queue_mapped(hctx))
172 blk_mq_tag_wakeup_all(hctx->tags, true);
173
174 /*
175 * If we are called because the queue has now been marked as
176 * dying, we need to ensure that processes currently waiting on
177 * the queue are notified as well.
178 */
179 wake_up_all(&q->mq_freeze_wq);
180}
181
182bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
183{
184 return blk_mq_has_free_tags(hctx->tags);
185}
186EXPORT_SYMBOL(blk_mq_can_queue);
187
188void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
189 struct request *rq, unsigned int op)
190{
191 INIT_LIST_HEAD(&rq->queuelist);
192 /* csd/requeue_work/fifo_time is initialized before use */
193 rq->q = q;
194 rq->mq_ctx = ctx;
195 rq->cmd_flags = op;
196 if (blk_queue_io_stat(q))
197 rq->rq_flags |= RQF_IO_STAT;
198 /* do not touch atomic flags, it needs atomic ops against the timer */
199 rq->cpu = -1;
200 INIT_HLIST_NODE(&rq->hash);
201 RB_CLEAR_NODE(&rq->rb_node);
202 rq->rq_disk = NULL;
203 rq->part = NULL;
204 rq->start_time = jiffies;
205#ifdef CONFIG_BLK_CGROUP
206 rq->rl = NULL;
207 set_start_time_ns(rq);
208 rq->io_start_time_ns = 0;
209#endif
210 rq->nr_phys_segments = 0;
211#if defined(CONFIG_BLK_DEV_INTEGRITY)
212 rq->nr_integrity_segments = 0;
213#endif
214 rq->special = NULL;
215 /* tag was already set */
216 rq->errors = 0;
217 rq->extra_len = 0;
218
219 INIT_LIST_HEAD(&rq->timeout_list);
220 rq->timeout = 0;
221
222 rq->end_io = NULL;
223 rq->end_io_data = NULL;
224 rq->next_rq = NULL;
225
226 ctx->rq_dispatched[op_is_sync(op)]++;
227}
228EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229
230struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
231 unsigned int op)
232{
233 struct request *rq;
234 unsigned int tag;
235
236 tag = blk_mq_get_tag(data);
237 if (tag != BLK_MQ_TAG_FAIL) {
238 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
239
240 rq = tags->static_rqs[tag];
241
242 if (data->flags & BLK_MQ_REQ_INTERNAL) {
243 rq->tag = -1;
244 rq->internal_tag = tag;
245 } else {
246 if (blk_mq_tag_busy(data->hctx)) {
247 rq->rq_flags = RQF_MQ_INFLIGHT;
248 atomic_inc(&data->hctx->nr_active);
249 }
250 rq->tag = tag;
251 rq->internal_tag = -1;
252 data->hctx->tags->rqs[rq->tag] = rq;
253 }
254
255 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256 return rq;
257 }
258
259 return NULL;
260}
261EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262
263struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
264 unsigned int flags)
265{
266 struct blk_mq_alloc_data alloc_data = { .flags = flags };
267 struct request *rq;
268 int ret;
269
270 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271 if (ret)
272 return ERR_PTR(ret);
273
274 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275
276 blk_mq_put_ctx(alloc_data.ctx);
277 blk_queue_exit(q);
278
279 if (!rq)
280 return ERR_PTR(-EWOULDBLOCK);
281
282 rq->__data_len = 0;
283 rq->__sector = (sector_t) -1;
284 rq->bio = rq->biotail = NULL;
285 return rq;
286}
287EXPORT_SYMBOL(blk_mq_alloc_request);
288
289struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
290 unsigned int flags, unsigned int hctx_idx)
291{
292 struct blk_mq_alloc_data alloc_data = { .flags = flags };
293 struct request *rq;
294 unsigned int cpu;
295 int ret;
296
297 /*
298 * If the tag allocator sleeps we could get an allocation for a
299 * different hardware context. No need to complicate the low level
300 * allocator for this for the rare use case of a command tied to
301 * a specific queue.
302 */
303 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
304 return ERR_PTR(-EINVAL);
305
306 if (hctx_idx >= q->nr_hw_queues)
307 return ERR_PTR(-EIO);
308
309 ret = blk_queue_enter(q, true);
310 if (ret)
311 return ERR_PTR(ret);
312
313 /*
314 * Check if the hardware context is actually mapped to anything.
315 * If not tell the caller that it should skip this queue.
316 */
317 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
318 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
319 blk_queue_exit(q);
320 return ERR_PTR(-EXDEV);
321 }
322 cpu = cpumask_first(alloc_data.hctx->cpumask);
323 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
324
325 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326
327 blk_queue_exit(q);
328
329 if (!rq)
330 return ERR_PTR(-EWOULDBLOCK);
331
332 return rq;
333}
334EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
335
336void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
337 struct request *rq)
338{
339 const int sched_tag = rq->internal_tag;
340 struct request_queue *q = rq->q;
341
342 if (rq->rq_flags & RQF_MQ_INFLIGHT)
343 atomic_dec(&hctx->nr_active);
344
345 wbt_done(q->rq_wb, &rq->issue_stat);
346 rq->rq_flags = 0;
347
348 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
349 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
350 if (rq->tag != -1)
351 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
352 if (sched_tag != -1)
353 blk_mq_sched_completed_request(hctx, rq);
354 blk_mq_sched_restart(hctx);
355 blk_queue_exit(q);
356}
357
358static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
359 struct request *rq)
360{
361 struct blk_mq_ctx *ctx = rq->mq_ctx;
362
363 ctx->rq_completed[rq_is_sync(rq)]++;
364 __blk_mq_finish_request(hctx, ctx, rq);
365}
366
367void blk_mq_finish_request(struct request *rq)
368{
369 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
370}
371EXPORT_SYMBOL_GPL(blk_mq_finish_request);
372
373void blk_mq_free_request(struct request *rq)
374{
375 blk_mq_sched_put_request(rq);
376}
377EXPORT_SYMBOL_GPL(blk_mq_free_request);
378
379inline void __blk_mq_end_request(struct request *rq, int error)
380{
381 blk_account_io_done(rq);
382
383 if (rq->end_io) {
384 wbt_done(rq->q->rq_wb, &rq->issue_stat);
385 rq->end_io(rq, error);
386 } else {
387 if (unlikely(blk_bidi_rq(rq)))
388 blk_mq_free_request(rq->next_rq);
389 blk_mq_free_request(rq);
390 }
391}
392EXPORT_SYMBOL(__blk_mq_end_request);
393
394void blk_mq_end_request(struct request *rq, int error)
395{
396 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
397 BUG();
398 __blk_mq_end_request(rq, error);
399}
400EXPORT_SYMBOL(blk_mq_end_request);
401
402static void __blk_mq_complete_request_remote(void *data)
403{
404 struct request *rq = data;
405
406 rq->q->softirq_done_fn(rq);
407}
408
409static void blk_mq_ipi_complete_request(struct request *rq)
410{
411 struct blk_mq_ctx *ctx = rq->mq_ctx;
412 bool shared = false;
413 int cpu;
414
415 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
416 rq->q->softirq_done_fn(rq);
417 return;
418 }
419
420 cpu = get_cpu();
421 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
422 shared = cpus_share_cache(cpu, ctx->cpu);
423
424 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
425 rq->csd.func = __blk_mq_complete_request_remote;
426 rq->csd.info = rq;
427 rq->csd.flags = 0;
428 smp_call_function_single_async(ctx->cpu, &rq->csd);
429 } else {
430 rq->q->softirq_done_fn(rq);
431 }
432 put_cpu();
433}
434
435static void blk_mq_stat_add(struct request *rq)
436{
437 if (rq->rq_flags & RQF_STATS) {
438 blk_mq_poll_stats_start(rq->q);
439 blk_stat_add(rq);
440 }
441}
442
443static void __blk_mq_complete_request(struct request *rq)
444{
445 struct request_queue *q = rq->q;
446
447 blk_mq_stat_add(rq);
448
449 if (!q->softirq_done_fn)
450 blk_mq_end_request(rq, rq->errors);
451 else
452 blk_mq_ipi_complete_request(rq);
453}
454
455/**
456 * blk_mq_complete_request - end I/O on a request
457 * @rq: the request being processed
458 *
459 * Description:
460 * Ends all I/O on a request. It does not handle partial completions.
461 * The actual completion happens out-of-order, through a IPI handler.
462 **/
463void blk_mq_complete_request(struct request *rq, int error)
464{
465 struct request_queue *q = rq->q;
466
467 if (unlikely(blk_should_fake_timeout(q)))
468 return;
469 if (!blk_mark_rq_complete(rq)) {
470 rq->errors = error;
471 __blk_mq_complete_request(rq);
472 }
473}
474EXPORT_SYMBOL(blk_mq_complete_request);
475
476int blk_mq_request_started(struct request *rq)
477{
478 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479}
480EXPORT_SYMBOL_GPL(blk_mq_request_started);
481
482void blk_mq_start_request(struct request *rq)
483{
484 struct request_queue *q = rq->q;
485
486 blk_mq_sched_started_request(rq);
487
488 trace_block_rq_issue(q, rq);
489
490 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
491 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
492 rq->rq_flags |= RQF_STATS;
493 wbt_issue(q->rq_wb, &rq->issue_stat);
494 }
495
496 blk_add_timer(rq);
497
498 /*
499 * Ensure that ->deadline is visible before set the started
500 * flag and clear the completed flag.
501 */
502 smp_mb__before_atomic();
503
504 /*
505 * Mark us as started and clear complete. Complete might have been
506 * set if requeue raced with timeout, which then marked it as
507 * complete. So be sure to clear complete again when we start
508 * the request, otherwise we'll ignore the completion event.
509 */
510 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
511 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
512 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
513 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
514
515 if (q->dma_drain_size && blk_rq_bytes(rq)) {
516 /*
517 * Make sure space for the drain appears. We know we can do
518 * this because max_hw_segments has been adjusted to be one
519 * fewer than the device can handle.
520 */
521 rq->nr_phys_segments++;
522 }
523}
524EXPORT_SYMBOL(blk_mq_start_request);
525
526/*
527 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
528 * flag isn't set yet, so there may be race with timeout handler,
529 * but given rq->deadline is just set in .queue_rq() under
530 * this situation, the race won't be possible in reality because
531 * rq->timeout should be set as big enough to cover the window
532 * between blk_mq_start_request() called from .queue_rq() and
533 * clearing REQ_ATOM_STARTED here.
534 */
535static void __blk_mq_requeue_request(struct request *rq)
536{
537 struct request_queue *q = rq->q;
538
539 trace_block_rq_requeue(q, rq);
540 wbt_requeue(q->rq_wb, &rq->issue_stat);
541 blk_mq_sched_requeue_request(rq);
542
543 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
544 if (q->dma_drain_size && blk_rq_bytes(rq))
545 rq->nr_phys_segments--;
546 }
547}
548
549void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
550{
551 __blk_mq_requeue_request(rq);
552
553 BUG_ON(blk_queued_rq(rq));
554 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
555}
556EXPORT_SYMBOL(blk_mq_requeue_request);
557
558static void blk_mq_requeue_work(struct work_struct *work)
559{
560 struct request_queue *q =
561 container_of(work, struct request_queue, requeue_work.work);
562 LIST_HEAD(rq_list);
563 struct request *rq, *next;
564 unsigned long flags;
565
566 spin_lock_irqsave(&q->requeue_lock, flags);
567 list_splice_init(&q->requeue_list, &rq_list);
568 spin_unlock_irqrestore(&q->requeue_lock, flags);
569
570 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
571 if (!(rq->rq_flags & RQF_SOFTBARRIER))
572 continue;
573
574 rq->rq_flags &= ~RQF_SOFTBARRIER;
575 list_del_init(&rq->queuelist);
576 blk_mq_sched_insert_request(rq, true, false, false, true);
577 }
578
579 while (!list_empty(&rq_list)) {
580 rq = list_entry(rq_list.next, struct request, queuelist);
581 list_del_init(&rq->queuelist);
582 blk_mq_sched_insert_request(rq, false, false, false, true);
583 }
584
585 blk_mq_run_hw_queues(q, false);
586}
587
588void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
589 bool kick_requeue_list)
590{
591 struct request_queue *q = rq->q;
592 unsigned long flags;
593
594 /*
595 * We abuse this flag that is otherwise used by the I/O scheduler to
596 * request head insertation from the workqueue.
597 */
598 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
599
600 spin_lock_irqsave(&q->requeue_lock, flags);
601 if (at_head) {
602 rq->rq_flags |= RQF_SOFTBARRIER;
603 list_add(&rq->queuelist, &q->requeue_list);
604 } else {
605 list_add_tail(&rq->queuelist, &q->requeue_list);
606 }
607 spin_unlock_irqrestore(&q->requeue_lock, flags);
608
609 if (kick_requeue_list)
610 blk_mq_kick_requeue_list(q);
611}
612EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
613
614void blk_mq_kick_requeue_list(struct request_queue *q)
615{
616 kblockd_schedule_delayed_work(&q->requeue_work, 0);
617}
618EXPORT_SYMBOL(blk_mq_kick_requeue_list);
619
620void blk_mq_delay_kick_requeue_list(struct request_queue *q,
621 unsigned long msecs)
622{
623 kblockd_schedule_delayed_work(&q->requeue_work,
624 msecs_to_jiffies(msecs));
625}
626EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
627
628void blk_mq_abort_requeue_list(struct request_queue *q)
629{
630 unsigned long flags;
631 LIST_HEAD(rq_list);
632
633 spin_lock_irqsave(&q->requeue_lock, flags);
634 list_splice_init(&q->requeue_list, &rq_list);
635 spin_unlock_irqrestore(&q->requeue_lock, flags);
636
637 while (!list_empty(&rq_list)) {
638 struct request *rq;
639
640 rq = list_first_entry(&rq_list, struct request, queuelist);
641 list_del_init(&rq->queuelist);
642 rq->errors = -EIO;
643 blk_mq_end_request(rq, rq->errors);
644 }
645}
646EXPORT_SYMBOL(blk_mq_abort_requeue_list);
647
648struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
649{
650 if (tag < tags->nr_tags) {
651 prefetch(tags->rqs[tag]);
652 return tags->rqs[tag];
653 }
654
655 return NULL;
656}
657EXPORT_SYMBOL(blk_mq_tag_to_rq);
658
659struct blk_mq_timeout_data {
660 unsigned long next;
661 unsigned int next_set;
662};
663
664void blk_mq_rq_timed_out(struct request *req, bool reserved)
665{
666 const struct blk_mq_ops *ops = req->q->mq_ops;
667 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
668
669 /*
670 * We know that complete is set at this point. If STARTED isn't set
671 * anymore, then the request isn't active and the "timeout" should
672 * just be ignored. This can happen due to the bitflag ordering.
673 * Timeout first checks if STARTED is set, and if it is, assumes
674 * the request is active. But if we race with completion, then
675 * both flags will get cleared. So check here again, and ignore
676 * a timeout event with a request that isn't active.
677 */
678 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
679 return;
680
681 if (ops->timeout)
682 ret = ops->timeout(req, reserved);
683
684 switch (ret) {
685 case BLK_EH_HANDLED:
686 __blk_mq_complete_request(req);
687 break;
688 case BLK_EH_RESET_TIMER:
689 blk_add_timer(req);
690 blk_clear_rq_complete(req);
691 break;
692 case BLK_EH_NOT_HANDLED:
693 break;
694 default:
695 printk(KERN_ERR "block: bad eh return: %d\n", ret);
696 break;
697 }
698}
699
700static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
701 struct request *rq, void *priv, bool reserved)
702{
703 struct blk_mq_timeout_data *data = priv;
704
705 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
706 return;
707
708 /*
709 * The rq being checked may have been freed and reallocated
710 * out already here, we avoid this race by checking rq->deadline
711 * and REQ_ATOM_COMPLETE flag together:
712 *
713 * - if rq->deadline is observed as new value because of
714 * reusing, the rq won't be timed out because of timing.
715 * - if rq->deadline is observed as previous value,
716 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
717 * because we put a barrier between setting rq->deadline
718 * and clearing the flag in blk_mq_start_request(), so
719 * this rq won't be timed out too.
720 */
721 if (time_after_eq(jiffies, rq->deadline)) {
722 if (!blk_mark_rq_complete(rq))
723 blk_mq_rq_timed_out(rq, reserved);
724 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
725 data->next = rq->deadline;
726 data->next_set = 1;
727 }
728}
729
730static void blk_mq_timeout_work(struct work_struct *work)
731{
732 struct request_queue *q =
733 container_of(work, struct request_queue, timeout_work);
734 struct blk_mq_timeout_data data = {
735 .next = 0,
736 .next_set = 0,
737 };
738 int i;
739
740 /* A deadlock might occur if a request is stuck requiring a
741 * timeout at the same time a queue freeze is waiting
742 * completion, since the timeout code would not be able to
743 * acquire the queue reference here.
744 *
745 * That's why we don't use blk_queue_enter here; instead, we use
746 * percpu_ref_tryget directly, because we need to be able to
747 * obtain a reference even in the short window between the queue
748 * starting to freeze, by dropping the first reference in
749 * blk_freeze_queue_start, and the moment the last request is
750 * consumed, marked by the instant q_usage_counter reaches
751 * zero.
752 */
753 if (!percpu_ref_tryget(&q->q_usage_counter))
754 return;
755
756 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
757
758 if (data.next_set) {
759 data.next = blk_rq_timeout(round_jiffies_up(data.next));
760 mod_timer(&q->timeout, data.next);
761 } else {
762 struct blk_mq_hw_ctx *hctx;
763
764 queue_for_each_hw_ctx(q, hctx, i) {
765 /* the hctx may be unmapped, so check it here */
766 if (blk_mq_hw_queue_mapped(hctx))
767 blk_mq_tag_idle(hctx);
768 }
769 }
770 blk_queue_exit(q);
771}
772
773/*
774 * Reverse check our software queue for entries that we could potentially
775 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
776 * too much time checking for merges.
777 */
778static bool blk_mq_attempt_merge(struct request_queue *q,
779 struct blk_mq_ctx *ctx, struct bio *bio)
780{
781 struct request *rq;
782 int checked = 8;
783
784 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
785 bool merged = false;
786
787 if (!checked--)
788 break;
789
790 if (!blk_rq_merge_ok(rq, bio))
791 continue;
792
793 switch (blk_try_merge(rq, bio)) {
794 case ELEVATOR_BACK_MERGE:
795 if (blk_mq_sched_allow_merge(q, rq, bio))
796 merged = bio_attempt_back_merge(q, rq, bio);
797 break;
798 case ELEVATOR_FRONT_MERGE:
799 if (blk_mq_sched_allow_merge(q, rq, bio))
800 merged = bio_attempt_front_merge(q, rq, bio);
801 break;
802 case ELEVATOR_DISCARD_MERGE:
803 merged = bio_attempt_discard_merge(q, rq, bio);
804 break;
805 default:
806 continue;
807 }
808
809 if (merged)
810 ctx->rq_merged++;
811 return merged;
812 }
813
814 return false;
815}
816
817struct flush_busy_ctx_data {
818 struct blk_mq_hw_ctx *hctx;
819 struct list_head *list;
820};
821
822static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
823{
824 struct flush_busy_ctx_data *flush_data = data;
825 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
826 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
827
828 sbitmap_clear_bit(sb, bitnr);
829 spin_lock(&ctx->lock);
830 list_splice_tail_init(&ctx->rq_list, flush_data->list);
831 spin_unlock(&ctx->lock);
832 return true;
833}
834
835/*
836 * Process software queues that have been marked busy, splicing them
837 * to the for-dispatch
838 */
839void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
840{
841 struct flush_busy_ctx_data data = {
842 .hctx = hctx,
843 .list = list,
844 };
845
846 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
847}
848EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
849
850static inline unsigned int queued_to_index(unsigned int queued)
851{
852 if (!queued)
853 return 0;
854
855 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
856}
857
858bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
859 bool wait)
860{
861 struct blk_mq_alloc_data data = {
862 .q = rq->q,
863 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
864 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
865 };
866
867 if (rq->tag != -1)
868 goto done;
869
870 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
871 data.flags |= BLK_MQ_REQ_RESERVED;
872
873 rq->tag = blk_mq_get_tag(&data);
874 if (rq->tag >= 0) {
875 if (blk_mq_tag_busy(data.hctx)) {
876 rq->rq_flags |= RQF_MQ_INFLIGHT;
877 atomic_inc(&data.hctx->nr_active);
878 }
879 data.hctx->tags->rqs[rq->tag] = rq;
880 }
881
882done:
883 if (hctx)
884 *hctx = data.hctx;
885 return rq->tag != -1;
886}
887
888static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
889 struct request *rq)
890{
891 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
892 rq->tag = -1;
893
894 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
895 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
896 atomic_dec(&hctx->nr_active);
897 }
898}
899
900static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
901 struct request *rq)
902{
903 if (rq->tag == -1 || rq->internal_tag == -1)
904 return;
905
906 __blk_mq_put_driver_tag(hctx, rq);
907}
908
909static void blk_mq_put_driver_tag(struct request *rq)
910{
911 struct blk_mq_hw_ctx *hctx;
912
913 if (rq->tag == -1 || rq->internal_tag == -1)
914 return;
915
916 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
917 __blk_mq_put_driver_tag(hctx, rq);
918}
919
920/*
921 * If we fail getting a driver tag because all the driver tags are already
922 * assigned and on the dispatch list, BUT the first entry does not have a
923 * tag, then we could deadlock. For that case, move entries with assigned
924 * driver tags to the front, leaving the set of tagged requests in the
925 * same order, and the untagged set in the same order.
926 */
927static bool reorder_tags_to_front(struct list_head *list)
928{
929 struct request *rq, *tmp, *first = NULL;
930
931 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
932 if (rq == first)
933 break;
934 if (rq->tag != -1) {
935 list_move(&rq->queuelist, list);
936 if (!first)
937 first = rq;
938 }
939 }
940
941 return first != NULL;
942}
943
944static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
945 void *key)
946{
947 struct blk_mq_hw_ctx *hctx;
948
949 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
950
951 list_del(&wait->task_list);
952 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
953 blk_mq_run_hw_queue(hctx, true);
954 return 1;
955}
956
957static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
958{
959 struct sbq_wait_state *ws;
960
961 /*
962 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
963 * The thread which wins the race to grab this bit adds the hardware
964 * queue to the wait queue.
965 */
966 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
967 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
968 return false;
969
970 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
971 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
972
973 /*
974 * As soon as this returns, it's no longer safe to fiddle with
975 * hctx->dispatch_wait, since a completion can wake up the wait queue
976 * and unlock the bit.
977 */
978 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
979 return true;
980}
981
982bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
983{
984 struct blk_mq_hw_ctx *hctx;
985 struct request *rq;
986 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
987
988 if (list_empty(list))
989 return false;
990
991 /*
992 * Now process all the entries, sending them to the driver.
993 */
994 errors = queued = 0;
995 do {
996 struct blk_mq_queue_data bd;
997
998 rq = list_first_entry(list, struct request, queuelist);
999 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1000 if (!queued && reorder_tags_to_front(list))
1001 continue;
1002
1003 /*
1004 * The initial allocation attempt failed, so we need to
1005 * rerun the hardware queue when a tag is freed.
1006 */
1007 if (!blk_mq_dispatch_wait_add(hctx))
1008 break;
1009
1010 /*
1011 * It's possible that a tag was freed in the window
1012 * between the allocation failure and adding the
1013 * hardware queue to the wait queue.
1014 */
1015 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1016 break;
1017 }
1018
1019 list_del_init(&rq->queuelist);
1020
1021 bd.rq = rq;
1022
1023 /*
1024 * Flag last if we have no more requests, or if we have more
1025 * but can't assign a driver tag to it.
1026 */
1027 if (list_empty(list))
1028 bd.last = true;
1029 else {
1030 struct request *nxt;
1031
1032 nxt = list_first_entry(list, struct request, queuelist);
1033 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1034 }
1035
1036 ret = q->mq_ops->queue_rq(hctx, &bd);
1037 switch (ret) {
1038 case BLK_MQ_RQ_QUEUE_OK:
1039 queued++;
1040 break;
1041 case BLK_MQ_RQ_QUEUE_BUSY:
1042 blk_mq_put_driver_tag_hctx(hctx, rq);
1043 list_add(&rq->queuelist, list);
1044 __blk_mq_requeue_request(rq);
1045 break;
1046 default:
1047 pr_err("blk-mq: bad return on queue: %d\n", ret);
1048 case BLK_MQ_RQ_QUEUE_ERROR:
1049 errors++;
1050 rq->errors = -EIO;
1051 blk_mq_end_request(rq, rq->errors);
1052 break;
1053 }
1054
1055 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1056 break;
1057 } while (!list_empty(list));
1058
1059 hctx->dispatched[queued_to_index(queued)]++;
1060
1061 /*
1062 * Any items that need requeuing? Stuff them into hctx->dispatch,
1063 * that is where we will continue on next queue run.
1064 */
1065 if (!list_empty(list)) {
1066 /*
1067 * If an I/O scheduler has been configured and we got a driver
1068 * tag for the next request already, free it again.
1069 */
1070 rq = list_first_entry(list, struct request, queuelist);
1071 blk_mq_put_driver_tag(rq);
1072
1073 spin_lock(&hctx->lock);
1074 list_splice_init(list, &hctx->dispatch);
1075 spin_unlock(&hctx->lock);
1076
1077 /*
1078 * If SCHED_RESTART was set by the caller of this function and
1079 * it is no longer set that means that it was cleared by another
1080 * thread and hence that a queue rerun is needed.
1081 *
1082 * If TAG_WAITING is set that means that an I/O scheduler has
1083 * been configured and another thread is waiting for a driver
1084 * tag. To guarantee fairness, do not rerun this hardware queue
1085 * but let the other thread grab the driver tag.
1086 *
1087 * If no I/O scheduler has been configured it is possible that
1088 * the hardware queue got stopped and restarted before requests
1089 * were pushed back onto the dispatch list. Rerun the queue to
1090 * avoid starvation. Notes:
1091 * - blk_mq_run_hw_queue() checks whether or not a queue has
1092 * been stopped before rerunning a queue.
1093 * - Some but not all block drivers stop a queue before
1094 * returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1095 * and dm-rq.
1096 */
1097 if (!blk_mq_sched_needs_restart(hctx) &&
1098 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1099 blk_mq_run_hw_queue(hctx, true);
1100 }
1101
1102 return (queued + errors) != 0;
1103}
1104
1105static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1106{
1107 int srcu_idx;
1108
1109 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1110 cpu_online(hctx->next_cpu));
1111
1112 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1113 rcu_read_lock();
1114 blk_mq_sched_dispatch_requests(hctx);
1115 rcu_read_unlock();
1116 } else {
1117 might_sleep();
1118
1119 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1120 blk_mq_sched_dispatch_requests(hctx);
1121 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1122 }
1123}
1124
1125/*
1126 * It'd be great if the workqueue API had a way to pass
1127 * in a mask and had some smarts for more clever placement.
1128 * For now we just round-robin here, switching for every
1129 * BLK_MQ_CPU_WORK_BATCH queued items.
1130 */
1131static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1132{
1133 if (hctx->queue->nr_hw_queues == 1)
1134 return WORK_CPU_UNBOUND;
1135
1136 if (--hctx->next_cpu_batch <= 0) {
1137 int next_cpu;
1138
1139 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1140 if (next_cpu >= nr_cpu_ids)
1141 next_cpu = cpumask_first(hctx->cpumask);
1142
1143 hctx->next_cpu = next_cpu;
1144 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1145 }
1146
1147 return hctx->next_cpu;
1148}
1149
1150static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1151 unsigned long msecs)
1152{
1153 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1154 !blk_mq_hw_queue_mapped(hctx)))
1155 return;
1156
1157 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1158 int cpu = get_cpu();
1159 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1160 __blk_mq_run_hw_queue(hctx);
1161 put_cpu();
1162 return;
1163 }
1164
1165 put_cpu();
1166 }
1167
1168 if (msecs == 0)
1169 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
1170 &hctx->run_work);
1171 else
1172 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1173 &hctx->delayed_run_work,
1174 msecs_to_jiffies(msecs));
1175}
1176
1177void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1178{
1179 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1180}
1181EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1182
1183void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1184{
1185 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1186}
1187EXPORT_SYMBOL(blk_mq_run_hw_queue);
1188
1189void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1190{
1191 struct blk_mq_hw_ctx *hctx;
1192 int i;
1193
1194 queue_for_each_hw_ctx(q, hctx, i) {
1195 if (!blk_mq_hctx_has_pending(hctx) ||
1196 blk_mq_hctx_stopped(hctx))
1197 continue;
1198
1199 blk_mq_run_hw_queue(hctx, async);
1200 }
1201}
1202EXPORT_SYMBOL(blk_mq_run_hw_queues);
1203
1204/**
1205 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1206 * @q: request queue.
1207 *
1208 * The caller is responsible for serializing this function against
1209 * blk_mq_{start,stop}_hw_queue().
1210 */
1211bool blk_mq_queue_stopped(struct request_queue *q)
1212{
1213 struct blk_mq_hw_ctx *hctx;
1214 int i;
1215
1216 queue_for_each_hw_ctx(q, hctx, i)
1217 if (blk_mq_hctx_stopped(hctx))
1218 return true;
1219
1220 return false;
1221}
1222EXPORT_SYMBOL(blk_mq_queue_stopped);
1223
1224void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1225{
1226 cancel_work(&hctx->run_work);
1227 cancel_delayed_work(&hctx->delay_work);
1228 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1229}
1230EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1231
1232void blk_mq_stop_hw_queues(struct request_queue *q)
1233{
1234 struct blk_mq_hw_ctx *hctx;
1235 int i;
1236
1237 queue_for_each_hw_ctx(q, hctx, i)
1238 blk_mq_stop_hw_queue(hctx);
1239}
1240EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1241
1242void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1243{
1244 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1245
1246 blk_mq_run_hw_queue(hctx, false);
1247}
1248EXPORT_SYMBOL(blk_mq_start_hw_queue);
1249
1250void blk_mq_start_hw_queues(struct request_queue *q)
1251{
1252 struct blk_mq_hw_ctx *hctx;
1253 int i;
1254
1255 queue_for_each_hw_ctx(q, hctx, i)
1256 blk_mq_start_hw_queue(hctx);
1257}
1258EXPORT_SYMBOL(blk_mq_start_hw_queues);
1259
1260void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1261{
1262 if (!blk_mq_hctx_stopped(hctx))
1263 return;
1264
1265 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1266 blk_mq_run_hw_queue(hctx, async);
1267}
1268EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1269
1270void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1271{
1272 struct blk_mq_hw_ctx *hctx;
1273 int i;
1274
1275 queue_for_each_hw_ctx(q, hctx, i)
1276 blk_mq_start_stopped_hw_queue(hctx, async);
1277}
1278EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1279
1280static void blk_mq_run_work_fn(struct work_struct *work)
1281{
1282 struct blk_mq_hw_ctx *hctx;
1283
1284 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1285
1286 __blk_mq_run_hw_queue(hctx);
1287}
1288
1289static void blk_mq_delayed_run_work_fn(struct work_struct *work)
1290{
1291 struct blk_mq_hw_ctx *hctx;
1292
1293 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);
1294
1295 __blk_mq_run_hw_queue(hctx);
1296}
1297
1298static void blk_mq_delay_work_fn(struct work_struct *work)
1299{
1300 struct blk_mq_hw_ctx *hctx;
1301
1302 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1303
1304 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1305 __blk_mq_run_hw_queue(hctx);
1306}
1307
1308void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1309{
1310 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1311 return;
1312
1313 blk_mq_stop_hw_queue(hctx);
1314 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1315 &hctx->delay_work, msecs_to_jiffies(msecs));
1316}
1317EXPORT_SYMBOL(blk_mq_delay_queue);
1318
1319static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1320 struct request *rq,
1321 bool at_head)
1322{
1323 struct blk_mq_ctx *ctx = rq->mq_ctx;
1324
1325 trace_block_rq_insert(hctx->queue, rq);
1326
1327 if (at_head)
1328 list_add(&rq->queuelist, &ctx->rq_list);
1329 else
1330 list_add_tail(&rq->queuelist, &ctx->rq_list);
1331}
1332
1333void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1334 bool at_head)
1335{
1336 struct blk_mq_ctx *ctx = rq->mq_ctx;
1337
1338 __blk_mq_insert_req_list(hctx, rq, at_head);
1339 blk_mq_hctx_mark_pending(hctx, ctx);
1340}
1341
1342void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1343 struct list_head *list)
1344
1345{
1346 /*
1347 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1348 * offline now
1349 */
1350 spin_lock(&ctx->lock);
1351 while (!list_empty(list)) {
1352 struct request *rq;
1353
1354 rq = list_first_entry(list, struct request, queuelist);
1355 BUG_ON(rq->mq_ctx != ctx);
1356 list_del_init(&rq->queuelist);
1357 __blk_mq_insert_req_list(hctx, rq, false);
1358 }
1359 blk_mq_hctx_mark_pending(hctx, ctx);
1360 spin_unlock(&ctx->lock);
1361}
1362
1363static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1364{
1365 struct request *rqa = container_of(a, struct request, queuelist);
1366 struct request *rqb = container_of(b, struct request, queuelist);
1367
1368 return !(rqa->mq_ctx < rqb->mq_ctx ||
1369 (rqa->mq_ctx == rqb->mq_ctx &&
1370 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1371}
1372
1373void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1374{
1375 struct blk_mq_ctx *this_ctx;
1376 struct request_queue *this_q;
1377 struct request *rq;
1378 LIST_HEAD(list);
1379 LIST_HEAD(ctx_list);
1380 unsigned int depth;
1381
1382 list_splice_init(&plug->mq_list, &list);
1383
1384 list_sort(NULL, &list, plug_ctx_cmp);
1385
1386 this_q = NULL;
1387 this_ctx = NULL;
1388 depth = 0;
1389
1390 while (!list_empty(&list)) {
1391 rq = list_entry_rq(list.next);
1392 list_del_init(&rq->queuelist);
1393 BUG_ON(!rq->q);
1394 if (rq->mq_ctx != this_ctx) {
1395 if (this_ctx) {
1396 trace_block_unplug(this_q, depth, from_schedule);
1397 blk_mq_sched_insert_requests(this_q, this_ctx,
1398 &ctx_list,
1399 from_schedule);
1400 }
1401
1402 this_ctx = rq->mq_ctx;
1403 this_q = rq->q;
1404 depth = 0;
1405 }
1406
1407 depth++;
1408 list_add_tail(&rq->queuelist, &ctx_list);
1409 }
1410
1411 /*
1412 * If 'this_ctx' is set, we know we have entries to complete
1413 * on 'ctx_list'. Do those.
1414 */
1415 if (this_ctx) {
1416 trace_block_unplug(this_q, depth, from_schedule);
1417 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1418 from_schedule);
1419 }
1420}
1421
1422static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1423{
1424 init_request_from_bio(rq, bio);
1425
1426 blk_account_io_start(rq, true);
1427}
1428
1429static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1430{
1431 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1432 !blk_queue_nomerges(hctx->queue);
1433}
1434
1435static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1436 struct blk_mq_ctx *ctx,
1437 struct request *rq, struct bio *bio)
1438{
1439 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1440 blk_mq_bio_to_request(rq, bio);
1441 spin_lock(&ctx->lock);
1442insert_rq:
1443 __blk_mq_insert_request(hctx, rq, false);
1444 spin_unlock(&ctx->lock);
1445 return false;
1446 } else {
1447 struct request_queue *q = hctx->queue;
1448
1449 spin_lock(&ctx->lock);
1450 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1451 blk_mq_bio_to_request(rq, bio);
1452 goto insert_rq;
1453 }
1454
1455 spin_unlock(&ctx->lock);
1456 __blk_mq_finish_request(hctx, ctx, rq);
1457 return true;
1458 }
1459}
1460
1461static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1462{
1463 if (rq->tag != -1)
1464 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1465
1466 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1467}
1468
1469static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1470 bool may_sleep)
1471{
1472 struct request_queue *q = rq->q;
1473 struct blk_mq_queue_data bd = {
1474 .rq = rq,
1475 .last = true,
1476 };
1477 struct blk_mq_hw_ctx *hctx;
1478 blk_qc_t new_cookie;
1479 int ret;
1480
1481 if (q->elevator)
1482 goto insert;
1483
1484 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1485 goto insert;
1486
1487 new_cookie = request_to_qc_t(hctx, rq);
1488
1489 /*
1490 * For OK queue, we are done. For error, kill it. Any other
1491 * error (busy), just add it to our list as we previously
1492 * would have done
1493 */
1494 ret = q->mq_ops->queue_rq(hctx, &bd);
1495 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1496 *cookie = new_cookie;
1497 return;
1498 }
1499
1500 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1501 *cookie = BLK_QC_T_NONE;
1502 rq->errors = -EIO;
1503 blk_mq_end_request(rq, rq->errors);
1504 return;
1505 }
1506
1507 __blk_mq_requeue_request(rq);
1508insert:
1509 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1510}
1511
1512static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1513 struct request *rq, blk_qc_t *cookie)
1514{
1515 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1516 rcu_read_lock();
1517 __blk_mq_try_issue_directly(rq, cookie, false);
1518 rcu_read_unlock();
1519 } else {
1520 unsigned int srcu_idx;
1521
1522 might_sleep();
1523
1524 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1525 __blk_mq_try_issue_directly(rq, cookie, true);
1526 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1527 }
1528}
1529
1530static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1531{
1532 const int is_sync = op_is_sync(bio->bi_opf);
1533 const int is_flush_fua = op_is_flush(bio->bi_opf);
1534 struct blk_mq_alloc_data data = { .flags = 0 };
1535 struct request *rq;
1536 unsigned int request_count = 0;
1537 struct blk_plug *plug;
1538 struct request *same_queue_rq = NULL;
1539 blk_qc_t cookie;
1540 unsigned int wb_acct;
1541
1542 blk_queue_bounce(q, &bio);
1543
1544 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1545 bio_io_error(bio);
1546 return BLK_QC_T_NONE;
1547 }
1548
1549 blk_queue_split(q, &bio, q->bio_split);
1550
1551 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1552 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1553 return BLK_QC_T_NONE;
1554
1555 if (blk_mq_sched_bio_merge(q, bio))
1556 return BLK_QC_T_NONE;
1557
1558 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1559
1560 trace_block_getrq(q, bio, bio->bi_opf);
1561
1562 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1563 if (unlikely(!rq)) {
1564 __wbt_done(q->rq_wb, wb_acct);
1565 return BLK_QC_T_NONE;
1566 }
1567
1568 wbt_track(&rq->issue_stat, wb_acct);
1569
1570 cookie = request_to_qc_t(data.hctx, rq);
1571
1572 plug = current->plug;
1573 if (unlikely(is_flush_fua)) {
1574 blk_mq_bio_to_request(rq, bio);
1575 if (q->elevator) {
1576 blk_mq_sched_insert_request(rq, false, true, true,
1577 true);
1578 } else {
1579 blk_insert_flush(rq);
1580 blk_mq_run_hw_queue(data.hctx, true);
1581 }
1582 } else if (plug && q->nr_hw_queues == 1) {
1583 struct request *last = NULL;
1584
1585 blk_mq_bio_to_request(rq, bio);
1586
1587 /*
1588 * @request_count may become stale because of schedule
1589 * out, so check the list again.
1590 */
1591 if (list_empty(&plug->mq_list))
1592 request_count = 0;
1593 else if (blk_queue_nomerges(q))
1594 request_count = blk_plug_queued_count(q);
1595
1596 if (!request_count)
1597 trace_block_plug(q);
1598 else
1599 last = list_entry_rq(plug->mq_list.prev);
1600
1601 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1602 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1603 blk_flush_plug_list(plug, false);
1604 trace_block_plug(q);
1605 }
1606
1607 list_add_tail(&rq->queuelist, &plug->mq_list);
1608 } else if (plug && !blk_queue_nomerges(q)) {
1609 blk_mq_bio_to_request(rq, bio);
1610
1611 /*
1612 * We do limited plugging. If the bio can be merged, do that.
1613 * Otherwise the existing request in the plug list will be
1614 * issued. So the plug list will have one request at most
1615 * The plug list might get flushed before this. If that happens,
1616 * the plug list is empty, and same_queue_rq is invalid.
1617 */
1618 if (list_empty(&plug->mq_list))
1619 same_queue_rq = NULL;
1620 if (same_queue_rq)
1621 list_del_init(&same_queue_rq->queuelist);
1622 list_add_tail(&rq->queuelist, &plug->mq_list);
1623
1624 blk_mq_put_ctx(data.ctx);
1625
1626 if (same_queue_rq)
1627 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1628 &cookie);
1629
1630 return cookie;
1631 } else if (q->nr_hw_queues > 1 && is_sync) {
1632 blk_mq_put_ctx(data.ctx);
1633 blk_mq_bio_to_request(rq, bio);
1634 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1635 return cookie;
1636 } else if (q->elevator) {
1637 blk_mq_bio_to_request(rq, bio);
1638 blk_mq_sched_insert_request(rq, false, true, true, true);
1639 } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio))
1640 blk_mq_run_hw_queue(data.hctx, true);
1641
1642 blk_mq_put_ctx(data.ctx);
1643 return cookie;
1644}
1645
1646void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1647 unsigned int hctx_idx)
1648{
1649 struct page *page;
1650
1651 if (tags->rqs && set->ops->exit_request) {
1652 int i;
1653
1654 for (i = 0; i < tags->nr_tags; i++) {
1655 struct request *rq = tags->static_rqs[i];
1656
1657 if (!rq)
1658 continue;
1659 set->ops->exit_request(set->driver_data, rq,
1660 hctx_idx, i);
1661 tags->static_rqs[i] = NULL;
1662 }
1663 }
1664
1665 while (!list_empty(&tags->page_list)) {
1666 page = list_first_entry(&tags->page_list, struct page, lru);
1667 list_del_init(&page->lru);
1668 /*
1669 * Remove kmemleak object previously allocated in
1670 * blk_mq_init_rq_map().
1671 */
1672 kmemleak_free(page_address(page));
1673 __free_pages(page, page->private);
1674 }
1675}
1676
1677void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1678{
1679 kfree(tags->rqs);
1680 tags->rqs = NULL;
1681 kfree(tags->static_rqs);
1682 tags->static_rqs = NULL;
1683
1684 blk_mq_free_tags(tags);
1685}
1686
1687struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1688 unsigned int hctx_idx,
1689 unsigned int nr_tags,
1690 unsigned int reserved_tags)
1691{
1692 struct blk_mq_tags *tags;
1693 int node;
1694
1695 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1696 if (node == NUMA_NO_NODE)
1697 node = set->numa_node;
1698
1699 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1700 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1701 if (!tags)
1702 return NULL;
1703
1704 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1705 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1706 node);
1707 if (!tags->rqs) {
1708 blk_mq_free_tags(tags);
1709 return NULL;
1710 }
1711
1712 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1713 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1714 node);
1715 if (!tags->static_rqs) {
1716 kfree(tags->rqs);
1717 blk_mq_free_tags(tags);
1718 return NULL;
1719 }
1720
1721 return tags;
1722}
1723
1724static size_t order_to_size(unsigned int order)
1725{
1726 return (size_t)PAGE_SIZE << order;
1727}
1728
1729int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1730 unsigned int hctx_idx, unsigned int depth)
1731{
1732 unsigned int i, j, entries_per_page, max_order = 4;
1733 size_t rq_size, left;
1734 int node;
1735
1736 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1737 if (node == NUMA_NO_NODE)
1738 node = set->numa_node;
1739
1740 INIT_LIST_HEAD(&tags->page_list);
1741
1742 /*
1743 * rq_size is the size of the request plus driver payload, rounded
1744 * to the cacheline size
1745 */
1746 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1747 cache_line_size());
1748 left = rq_size * depth;
1749
1750 for (i = 0; i < depth; ) {
1751 int this_order = max_order;
1752 struct page *page;
1753 int to_do;
1754 void *p;
1755
1756 while (this_order && left < order_to_size(this_order - 1))
1757 this_order--;
1758
1759 do {
1760 page = alloc_pages_node(node,
1761 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1762 this_order);
1763 if (page)
1764 break;
1765 if (!this_order--)
1766 break;
1767 if (order_to_size(this_order) < rq_size)
1768 break;
1769 } while (1);
1770
1771 if (!page)
1772 goto fail;
1773
1774 page->private = this_order;
1775 list_add_tail(&page->lru, &tags->page_list);
1776
1777 p = page_address(page);
1778 /*
1779 * Allow kmemleak to scan these pages as they contain pointers
1780 * to additional allocations like via ops->init_request().
1781 */
1782 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1783 entries_per_page = order_to_size(this_order) / rq_size;
1784 to_do = min(entries_per_page, depth - i);
1785 left -= to_do * rq_size;
1786 for (j = 0; j < to_do; j++) {
1787 struct request *rq = p;
1788
1789 tags->static_rqs[i] = rq;
1790 if (set->ops->init_request) {
1791 if (set->ops->init_request(set->driver_data,
1792 rq, hctx_idx, i,
1793 node)) {
1794 tags->static_rqs[i] = NULL;
1795 goto fail;
1796 }
1797 }
1798
1799 p += rq_size;
1800 i++;
1801 }
1802 }
1803 return 0;
1804
1805fail:
1806 blk_mq_free_rqs(set, tags, hctx_idx);
1807 return -ENOMEM;
1808}
1809
1810/*
1811 * 'cpu' is going away. splice any existing rq_list entries from this
1812 * software queue to the hw queue dispatch list, and ensure that it
1813 * gets run.
1814 */
1815static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1816{
1817 struct blk_mq_hw_ctx *hctx;
1818 struct blk_mq_ctx *ctx;
1819 LIST_HEAD(tmp);
1820
1821 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1822 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1823
1824 spin_lock(&ctx->lock);
1825 if (!list_empty(&ctx->rq_list)) {
1826 list_splice_init(&ctx->rq_list, &tmp);
1827 blk_mq_hctx_clear_pending(hctx, ctx);
1828 }
1829 spin_unlock(&ctx->lock);
1830
1831 if (list_empty(&tmp))
1832 return 0;
1833
1834 spin_lock(&hctx->lock);
1835 list_splice_tail_init(&tmp, &hctx->dispatch);
1836 spin_unlock(&hctx->lock);
1837
1838 blk_mq_run_hw_queue(hctx, true);
1839 return 0;
1840}
1841
1842static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1843{
1844 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1845 &hctx->cpuhp_dead);
1846}
1847
1848/* hctx->ctxs will be freed in queue's release handler */
1849static void blk_mq_exit_hctx(struct request_queue *q,
1850 struct blk_mq_tag_set *set,
1851 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1852{
1853 unsigned flush_start_tag = set->queue_depth;
1854
1855 blk_mq_tag_idle(hctx);
1856
1857 if (set->ops->exit_request)
1858 set->ops->exit_request(set->driver_data,
1859 hctx->fq->flush_rq, hctx_idx,
1860 flush_start_tag + hctx_idx);
1861
1862 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1863
1864 if (set->ops->exit_hctx)
1865 set->ops->exit_hctx(hctx, hctx_idx);
1866
1867 if (hctx->flags & BLK_MQ_F_BLOCKING)
1868 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1869
1870 blk_mq_remove_cpuhp(hctx);
1871 blk_free_flush_queue(hctx->fq);
1872 sbitmap_free(&hctx->ctx_map);
1873}
1874
1875static void blk_mq_exit_hw_queues(struct request_queue *q,
1876 struct blk_mq_tag_set *set, int nr_queue)
1877{
1878 struct blk_mq_hw_ctx *hctx;
1879 unsigned int i;
1880
1881 queue_for_each_hw_ctx(q, hctx, i) {
1882 if (i == nr_queue)
1883 break;
1884 blk_mq_exit_hctx(q, set, hctx, i);
1885 }
1886}
1887
1888static int blk_mq_init_hctx(struct request_queue *q,
1889 struct blk_mq_tag_set *set,
1890 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1891{
1892 int node;
1893 unsigned flush_start_tag = set->queue_depth;
1894
1895 node = hctx->numa_node;
1896 if (node == NUMA_NO_NODE)
1897 node = hctx->numa_node = set->numa_node;
1898
1899 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1900 INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1901 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1902 spin_lock_init(&hctx->lock);
1903 INIT_LIST_HEAD(&hctx->dispatch);
1904 hctx->queue = q;
1905 hctx->queue_num = hctx_idx;
1906 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1907
1908 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1909
1910 hctx->tags = set->tags[hctx_idx];
1911
1912 /*
1913 * Allocate space for all possible cpus to avoid allocation at
1914 * runtime
1915 */
1916 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1917 GFP_KERNEL, node);
1918 if (!hctx->ctxs)
1919 goto unregister_cpu_notifier;
1920
1921 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1922 node))
1923 goto free_ctxs;
1924
1925 hctx->nr_ctx = 0;
1926
1927 if (set->ops->init_hctx &&
1928 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1929 goto free_bitmap;
1930
1931 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1932 goto exit_hctx;
1933
1934 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1935 if (!hctx->fq)
1936 goto sched_exit_hctx;
1937
1938 if (set->ops->init_request &&
1939 set->ops->init_request(set->driver_data,
1940 hctx->fq->flush_rq, hctx_idx,
1941 flush_start_tag + hctx_idx, node))
1942 goto free_fq;
1943
1944 if (hctx->flags & BLK_MQ_F_BLOCKING)
1945 init_srcu_struct(&hctx->queue_rq_srcu);
1946
1947 return 0;
1948
1949 free_fq:
1950 kfree(hctx->fq);
1951 sched_exit_hctx:
1952 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1953 exit_hctx:
1954 if (set->ops->exit_hctx)
1955 set->ops->exit_hctx(hctx, hctx_idx);
1956 free_bitmap:
1957 sbitmap_free(&hctx->ctx_map);
1958 free_ctxs:
1959 kfree(hctx->ctxs);
1960 unregister_cpu_notifier:
1961 blk_mq_remove_cpuhp(hctx);
1962 return -1;
1963}
1964
1965static void blk_mq_init_cpu_queues(struct request_queue *q,
1966 unsigned int nr_hw_queues)
1967{
1968 unsigned int i;
1969
1970 for_each_possible_cpu(i) {
1971 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1972 struct blk_mq_hw_ctx *hctx;
1973
1974 __ctx->cpu = i;
1975 spin_lock_init(&__ctx->lock);
1976 INIT_LIST_HEAD(&__ctx->rq_list);
1977 __ctx->queue = q;
1978
1979 /* If the cpu isn't online, the cpu is mapped to first hctx */
1980 if (!cpu_online(i))
1981 continue;
1982
1983 hctx = blk_mq_map_queue(q, i);
1984
1985 /*
1986 * Set local node, IFF we have more than one hw queue. If
1987 * not, we remain on the home node of the device
1988 */
1989 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1990 hctx->numa_node = local_memory_node(cpu_to_node(i));
1991 }
1992}
1993
1994static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1995{
1996 int ret = 0;
1997
1998 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1999 set->queue_depth, set->reserved_tags);
2000 if (!set->tags[hctx_idx])
2001 return false;
2002
2003 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2004 set->queue_depth);
2005 if (!ret)
2006 return true;
2007
2008 blk_mq_free_rq_map(set->tags[hctx_idx]);
2009 set->tags[hctx_idx] = NULL;
2010 return false;
2011}
2012
2013static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2014 unsigned int hctx_idx)
2015{
2016 if (set->tags[hctx_idx]) {
2017 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2018 blk_mq_free_rq_map(set->tags[hctx_idx]);
2019 set->tags[hctx_idx] = NULL;
2020 }
2021}
2022
2023static void blk_mq_map_swqueue(struct request_queue *q,
2024 const struct cpumask *online_mask)
2025{
2026 unsigned int i, hctx_idx;
2027 struct blk_mq_hw_ctx *hctx;
2028 struct blk_mq_ctx *ctx;
2029 struct blk_mq_tag_set *set = q->tag_set;
2030
2031 /*
2032 * Avoid others reading imcomplete hctx->cpumask through sysfs
2033 */
2034 mutex_lock(&q->sysfs_lock);
2035
2036 queue_for_each_hw_ctx(q, hctx, i) {
2037 cpumask_clear(hctx->cpumask);
2038 hctx->nr_ctx = 0;
2039 }
2040
2041 /*
2042 * Map software to hardware queues
2043 */
2044 for_each_possible_cpu(i) {
2045 /* If the cpu isn't online, the cpu is mapped to first hctx */
2046 if (!cpumask_test_cpu(i, online_mask))
2047 continue;
2048
2049 hctx_idx = q->mq_map[i];
2050 /* unmapped hw queue can be remapped after CPU topo changed */
2051 if (!set->tags[hctx_idx] &&
2052 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2053 /*
2054 * If tags initialization fail for some hctx,
2055 * that hctx won't be brought online. In this
2056 * case, remap the current ctx to hctx[0] which
2057 * is guaranteed to always have tags allocated
2058 */
2059 q->mq_map[i] = 0;
2060 }
2061
2062 ctx = per_cpu_ptr(q->queue_ctx, i);
2063 hctx = blk_mq_map_queue(q, i);
2064
2065 cpumask_set_cpu(i, hctx->cpumask);
2066 ctx->index_hw = hctx->nr_ctx;
2067 hctx->ctxs[hctx->nr_ctx++] = ctx;
2068 }
2069
2070 mutex_unlock(&q->sysfs_lock);
2071
2072 queue_for_each_hw_ctx(q, hctx, i) {
2073 /*
2074 * If no software queues are mapped to this hardware queue,
2075 * disable it and free the request entries.
2076 */
2077 if (!hctx->nr_ctx) {
2078 /* Never unmap queue 0. We need it as a
2079 * fallback in case of a new remap fails
2080 * allocation
2081 */
2082 if (i && set->tags[i])
2083 blk_mq_free_map_and_requests(set, i);
2084
2085 hctx->tags = NULL;
2086 continue;
2087 }
2088
2089 hctx->tags = set->tags[i];
2090 WARN_ON(!hctx->tags);
2091
2092 /*
2093 * Set the map size to the number of mapped software queues.
2094 * This is more accurate and more efficient than looping
2095 * over all possibly mapped software queues.
2096 */
2097 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2098
2099 /*
2100 * Initialize batch roundrobin counts
2101 */
2102 hctx->next_cpu = cpumask_first(hctx->cpumask);
2103 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2104 }
2105}
2106
2107static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2108{
2109 struct blk_mq_hw_ctx *hctx;
2110 int i;
2111
2112 queue_for_each_hw_ctx(q, hctx, i) {
2113 if (shared)
2114 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2115 else
2116 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2117 }
2118}
2119
2120static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2121{
2122 struct request_queue *q;
2123
2124 lockdep_assert_held(&set->tag_list_lock);
2125
2126 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2127 blk_mq_freeze_queue(q);
2128 queue_set_hctx_shared(q, shared);
2129 blk_mq_unfreeze_queue(q);
2130 }
2131}
2132
2133static void blk_mq_del_queue_tag_set(struct request_queue *q)
2134{
2135 struct blk_mq_tag_set *set = q->tag_set;
2136
2137 mutex_lock(&set->tag_list_lock);
2138 list_del_rcu(&q->tag_set_list);
2139 INIT_LIST_HEAD(&q->tag_set_list);
2140 if (list_is_singular(&set->tag_list)) {
2141 /* just transitioned to unshared */
2142 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2143 /* update existing queue */
2144 blk_mq_update_tag_set_depth(set, false);
2145 }
2146 mutex_unlock(&set->tag_list_lock);
2147
2148 synchronize_rcu();
2149}
2150
2151static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2152 struct request_queue *q)
2153{
2154 q->tag_set = set;
2155
2156 mutex_lock(&set->tag_list_lock);
2157
2158 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2159 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2160 set->flags |= BLK_MQ_F_TAG_SHARED;
2161 /* update existing queue */
2162 blk_mq_update_tag_set_depth(set, true);
2163 }
2164 if (set->flags & BLK_MQ_F_TAG_SHARED)
2165 queue_set_hctx_shared(q, true);
2166 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2167
2168 mutex_unlock(&set->tag_list_lock);
2169}
2170
2171/*
2172 * It is the actual release handler for mq, but we do it from
2173 * request queue's release handler for avoiding use-after-free
2174 * and headache because q->mq_kobj shouldn't have been introduced,
2175 * but we can't group ctx/kctx kobj without it.
2176 */
2177void blk_mq_release(struct request_queue *q)
2178{
2179 struct blk_mq_hw_ctx *hctx;
2180 unsigned int i;
2181
2182 /* hctx kobj stays in hctx */
2183 queue_for_each_hw_ctx(q, hctx, i) {
2184 if (!hctx)
2185 continue;
2186 kobject_put(&hctx->kobj);
2187 }
2188
2189 q->mq_map = NULL;
2190
2191 kfree(q->queue_hw_ctx);
2192
2193 /*
2194 * release .mq_kobj and sw queue's kobject now because
2195 * both share lifetime with request queue.
2196 */
2197 blk_mq_sysfs_deinit(q);
2198
2199 free_percpu(q->queue_ctx);
2200}
2201
2202struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2203{
2204 struct request_queue *uninit_q, *q;
2205
2206 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2207 if (!uninit_q)
2208 return ERR_PTR(-ENOMEM);
2209
2210 q = blk_mq_init_allocated_queue(set, uninit_q);
2211 if (IS_ERR(q))
2212 blk_cleanup_queue(uninit_q);
2213
2214 return q;
2215}
2216EXPORT_SYMBOL(blk_mq_init_queue);
2217
2218static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2219 struct request_queue *q)
2220{
2221 int i, j;
2222 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2223
2224 blk_mq_sysfs_unregister(q);
2225 for (i = 0; i < set->nr_hw_queues; i++) {
2226 int node;
2227
2228 if (hctxs[i])
2229 continue;
2230
2231 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2232 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2233 GFP_KERNEL, node);
2234 if (!hctxs[i])
2235 break;
2236
2237 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2238 node)) {
2239 kfree(hctxs[i]);
2240 hctxs[i] = NULL;
2241 break;
2242 }
2243
2244 atomic_set(&hctxs[i]->nr_active, 0);
2245 hctxs[i]->numa_node = node;
2246 hctxs[i]->queue_num = i;
2247
2248 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2249 free_cpumask_var(hctxs[i]->cpumask);
2250 kfree(hctxs[i]);
2251 hctxs[i] = NULL;
2252 break;
2253 }
2254 blk_mq_hctx_kobj_init(hctxs[i]);
2255 }
2256 for (j = i; j < q->nr_hw_queues; j++) {
2257 struct blk_mq_hw_ctx *hctx = hctxs[j];
2258
2259 if (hctx) {
2260 if (hctx->tags)
2261 blk_mq_free_map_and_requests(set, j);
2262 blk_mq_exit_hctx(q, set, hctx, j);
2263 kobject_put(&hctx->kobj);
2264 hctxs[j] = NULL;
2265
2266 }
2267 }
2268 q->nr_hw_queues = i;
2269 blk_mq_sysfs_register(q);
2270}
2271
2272struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2273 struct request_queue *q)
2274{
2275 /* mark the queue as mq asap */
2276 q->mq_ops = set->ops;
2277
2278 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2279 blk_stat_rq_ddir, 2, q);
2280 if (!q->poll_cb)
2281 goto err_exit;
2282
2283 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2284 if (!q->queue_ctx)
2285 goto err_exit;
2286
2287 /* init q->mq_kobj and sw queues' kobjects */
2288 blk_mq_sysfs_init(q);
2289
2290 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2291 GFP_KERNEL, set->numa_node);
2292 if (!q->queue_hw_ctx)
2293 goto err_percpu;
2294
2295 q->mq_map = set->mq_map;
2296
2297 blk_mq_realloc_hw_ctxs(set, q);
2298 if (!q->nr_hw_queues)
2299 goto err_hctxs;
2300
2301 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2302 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2303
2304 q->nr_queues = nr_cpu_ids;
2305
2306 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2307
2308 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2309 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2310
2311 q->sg_reserved_size = INT_MAX;
2312
2313 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2314 INIT_LIST_HEAD(&q->requeue_list);
2315 spin_lock_init(&q->requeue_lock);
2316
2317 blk_queue_make_request(q, blk_mq_make_request);
2318
2319 /*
2320 * Do this after blk_queue_make_request() overrides it...
2321 */
2322 q->nr_requests = set->queue_depth;
2323
2324 /*
2325 * Default to classic polling
2326 */
2327 q->poll_nsec = -1;
2328
2329 if (set->ops->complete)
2330 blk_queue_softirq_done(q, set->ops->complete);
2331
2332 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2333
2334 get_online_cpus();
2335 mutex_lock(&all_q_mutex);
2336
2337 list_add_tail(&q->all_q_node, &all_q_list);
2338 blk_mq_add_queue_tag_set(set, q);
2339 blk_mq_map_swqueue(q, cpu_online_mask);
2340
2341 mutex_unlock(&all_q_mutex);
2342 put_online_cpus();
2343
2344 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2345 int ret;
2346
2347 ret = blk_mq_sched_init(q);
2348 if (ret)
2349 return ERR_PTR(ret);
2350 }
2351
2352 return q;
2353
2354err_hctxs:
2355 kfree(q->queue_hw_ctx);
2356err_percpu:
2357 free_percpu(q->queue_ctx);
2358err_exit:
2359 q->mq_ops = NULL;
2360 return ERR_PTR(-ENOMEM);
2361}
2362EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2363
2364void blk_mq_free_queue(struct request_queue *q)
2365{
2366 struct blk_mq_tag_set *set = q->tag_set;
2367
2368 mutex_lock(&all_q_mutex);
2369 list_del_init(&q->all_q_node);
2370 mutex_unlock(&all_q_mutex);
2371
2372 blk_mq_del_queue_tag_set(q);
2373
2374 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2375}
2376
2377/* Basically redo blk_mq_init_queue with queue frozen */
2378static void blk_mq_queue_reinit(struct request_queue *q,
2379 const struct cpumask *online_mask)
2380{
2381 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2382
2383 blk_mq_sysfs_unregister(q);
2384
2385 /*
2386 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2387 * we should change hctx numa_node according to new topology (this
2388 * involves free and re-allocate memory, worthy doing?)
2389 */
2390
2391 blk_mq_map_swqueue(q, online_mask);
2392
2393 blk_mq_sysfs_register(q);
2394}
2395
2396/*
2397 * New online cpumask which is going to be set in this hotplug event.
2398 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2399 * one-by-one and dynamically allocating this could result in a failure.
2400 */
2401static struct cpumask cpuhp_online_new;
2402
2403static void blk_mq_queue_reinit_work(void)
2404{
2405 struct request_queue *q;
2406
2407 mutex_lock(&all_q_mutex);
2408 /*
2409 * We need to freeze and reinit all existing queues. Freezing
2410 * involves synchronous wait for an RCU grace period and doing it
2411 * one by one may take a long time. Start freezing all queues in
2412 * one swoop and then wait for the completions so that freezing can
2413 * take place in parallel.
2414 */
2415 list_for_each_entry(q, &all_q_list, all_q_node)
2416 blk_freeze_queue_start(q);
2417 list_for_each_entry(q, &all_q_list, all_q_node)
2418 blk_mq_freeze_queue_wait(q);
2419
2420 list_for_each_entry(q, &all_q_list, all_q_node)
2421 blk_mq_queue_reinit(q, &cpuhp_online_new);
2422
2423 list_for_each_entry(q, &all_q_list, all_q_node)
2424 blk_mq_unfreeze_queue(q);
2425
2426 mutex_unlock(&all_q_mutex);
2427}
2428
2429static int blk_mq_queue_reinit_dead(unsigned int cpu)
2430{
2431 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2432 blk_mq_queue_reinit_work();
2433 return 0;
2434}
2435
2436/*
2437 * Before hotadded cpu starts handling requests, new mappings must be
2438 * established. Otherwise, these requests in hw queue might never be
2439 * dispatched.
2440 *
2441 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2442 * for CPU0, and ctx1 for CPU1).
2443 *
2444 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2445 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2446 *
2447 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2448 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2449 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2450 * ignored.
2451 */
2452static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2453{
2454 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2455 cpumask_set_cpu(cpu, &cpuhp_online_new);
2456 blk_mq_queue_reinit_work();
2457 return 0;
2458}
2459
2460static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2461{
2462 int i;
2463
2464 for (i = 0; i < set->nr_hw_queues; i++)
2465 if (!__blk_mq_alloc_rq_map(set, i))
2466 goto out_unwind;
2467
2468 return 0;
2469
2470out_unwind:
2471 while (--i >= 0)
2472 blk_mq_free_rq_map(set->tags[i]);
2473
2474 return -ENOMEM;
2475}
2476
2477/*
2478 * Allocate the request maps associated with this tag_set. Note that this
2479 * may reduce the depth asked for, if memory is tight. set->queue_depth
2480 * will be updated to reflect the allocated depth.
2481 */
2482static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2483{
2484 unsigned int depth;
2485 int err;
2486
2487 depth = set->queue_depth;
2488 do {
2489 err = __blk_mq_alloc_rq_maps(set);
2490 if (!err)
2491 break;
2492
2493 set->queue_depth >>= 1;
2494 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2495 err = -ENOMEM;
2496 break;
2497 }
2498 } while (set->queue_depth);
2499
2500 if (!set->queue_depth || err) {
2501 pr_err("blk-mq: failed to allocate request map\n");
2502 return -ENOMEM;
2503 }
2504
2505 if (depth != set->queue_depth)
2506 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2507 depth, set->queue_depth);
2508
2509 return 0;
2510}
2511
2512static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2513{
2514 if (set->ops->map_queues)
2515 return set->ops->map_queues(set);
2516 else
2517 return blk_mq_map_queues(set);
2518}
2519
2520/*
2521 * Alloc a tag set to be associated with one or more request queues.
2522 * May fail with EINVAL for various error conditions. May adjust the
2523 * requested depth down, if if it too large. In that case, the set
2524 * value will be stored in set->queue_depth.
2525 */
2526int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2527{
2528 int ret;
2529
2530 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2531
2532 if (!set->nr_hw_queues)
2533 return -EINVAL;
2534 if (!set->queue_depth)
2535 return -EINVAL;
2536 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2537 return -EINVAL;
2538
2539 if (!set->ops->queue_rq)
2540 return -EINVAL;
2541
2542 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2543 pr_info("blk-mq: reduced tag depth to %u\n",
2544 BLK_MQ_MAX_DEPTH);
2545 set->queue_depth = BLK_MQ_MAX_DEPTH;
2546 }
2547
2548 /*
2549 * If a crashdump is active, then we are potentially in a very
2550 * memory constrained environment. Limit us to 1 queue and
2551 * 64 tags to prevent using too much memory.
2552 */
2553 if (is_kdump_kernel()) {
2554 set->nr_hw_queues = 1;
2555 set->queue_depth = min(64U, set->queue_depth);
2556 }
2557 /*
2558 * There is no use for more h/w queues than cpus.
2559 */
2560 if (set->nr_hw_queues > nr_cpu_ids)
2561 set->nr_hw_queues = nr_cpu_ids;
2562
2563 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2564 GFP_KERNEL, set->numa_node);
2565 if (!set->tags)
2566 return -ENOMEM;
2567
2568 ret = -ENOMEM;
2569 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2570 GFP_KERNEL, set->numa_node);
2571 if (!set->mq_map)
2572 goto out_free_tags;
2573
2574 ret = blk_mq_update_queue_map(set);
2575 if (ret)
2576 goto out_free_mq_map;
2577
2578 ret = blk_mq_alloc_rq_maps(set);
2579 if (ret)
2580 goto out_free_mq_map;
2581
2582 mutex_init(&set->tag_list_lock);
2583 INIT_LIST_HEAD(&set->tag_list);
2584
2585 return 0;
2586
2587out_free_mq_map:
2588 kfree(set->mq_map);
2589 set->mq_map = NULL;
2590out_free_tags:
2591 kfree(set->tags);
2592 set->tags = NULL;
2593 return ret;
2594}
2595EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2596
2597void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2598{
2599 int i;
2600
2601 for (i = 0; i < nr_cpu_ids; i++)
2602 blk_mq_free_map_and_requests(set, i);
2603
2604 kfree(set->mq_map);
2605 set->mq_map = NULL;
2606
2607 kfree(set->tags);
2608 set->tags = NULL;
2609}
2610EXPORT_SYMBOL(blk_mq_free_tag_set);
2611
2612int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2613{
2614 struct blk_mq_tag_set *set = q->tag_set;
2615 struct blk_mq_hw_ctx *hctx;
2616 int i, ret;
2617
2618 if (!set)
2619 return -EINVAL;
2620
2621 blk_mq_freeze_queue(q);
2622 blk_mq_quiesce_queue(q);
2623
2624 ret = 0;
2625 queue_for_each_hw_ctx(q, hctx, i) {
2626 if (!hctx->tags)
2627 continue;
2628 /*
2629 * If we're using an MQ scheduler, just update the scheduler
2630 * queue depth. This is similar to what the old code would do.
2631 */
2632 if (!hctx->sched_tags) {
2633 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2634 min(nr, set->queue_depth),
2635 false);
2636 } else {
2637 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2638 nr, true);
2639 }
2640 if (ret)
2641 break;
2642 }
2643
2644 if (!ret)
2645 q->nr_requests = nr;
2646
2647 blk_mq_unfreeze_queue(q);
2648 blk_mq_start_stopped_hw_queues(q, true);
2649
2650 return ret;
2651}
2652
2653void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2654{
2655 struct request_queue *q;
2656
2657 lockdep_assert_held(&set->tag_list_lock);
2658
2659 if (nr_hw_queues > nr_cpu_ids)
2660 nr_hw_queues = nr_cpu_ids;
2661 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2662 return;
2663
2664 list_for_each_entry(q, &set->tag_list, tag_set_list)
2665 blk_mq_freeze_queue(q);
2666
2667 set->nr_hw_queues = nr_hw_queues;
2668 blk_mq_update_queue_map(set);
2669 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2670 blk_mq_realloc_hw_ctxs(set, q);
2671 blk_mq_queue_reinit(q, cpu_online_mask);
2672 }
2673
2674 list_for_each_entry(q, &set->tag_list, tag_set_list)
2675 blk_mq_unfreeze_queue(q);
2676}
2677EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2678
2679/* Enable polling stats and return whether they were already enabled. */
2680static bool blk_poll_stats_enable(struct request_queue *q)
2681{
2682 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2683 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2684 return true;
2685 blk_stat_add_callback(q, q->poll_cb);
2686 return false;
2687}
2688
2689static void blk_mq_poll_stats_start(struct request_queue *q)
2690{
2691 /*
2692 * We don't arm the callback if polling stats are not enabled or the
2693 * callback is already active.
2694 */
2695 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2696 blk_stat_is_active(q->poll_cb))
2697 return;
2698
2699 blk_stat_activate_msecs(q->poll_cb, 100);
2700}
2701
2702static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2703{
2704 struct request_queue *q = cb->data;
2705
2706 if (cb->stat[READ].nr_samples)
2707 q->poll_stat[READ] = cb->stat[READ];
2708 if (cb->stat[WRITE].nr_samples)
2709 q->poll_stat[WRITE] = cb->stat[WRITE];
2710}
2711
2712static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2713 struct blk_mq_hw_ctx *hctx,
2714 struct request *rq)
2715{
2716 unsigned long ret = 0;
2717
2718 /*
2719 * If stats collection isn't on, don't sleep but turn it on for
2720 * future users
2721 */
2722 if (!blk_poll_stats_enable(q))
2723 return 0;
2724
2725 /*
2726 * As an optimistic guess, use half of the mean service time
2727 * for this type of request. We can (and should) make this smarter.
2728 * For instance, if the completion latencies are tight, we can
2729 * get closer than just half the mean. This is especially
2730 * important on devices where the completion latencies are longer
2731 * than ~10 usec.
2732 */
2733 if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
2734 ret = (q->poll_stat[READ].mean + 1) / 2;
2735 else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
2736 ret = (q->poll_stat[WRITE].mean + 1) / 2;
2737
2738 return ret;
2739}
2740
2741static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2742 struct blk_mq_hw_ctx *hctx,
2743 struct request *rq)
2744{
2745 struct hrtimer_sleeper hs;
2746 enum hrtimer_mode mode;
2747 unsigned int nsecs;
2748 ktime_t kt;
2749
2750 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2751 return false;
2752
2753 /*
2754 * poll_nsec can be:
2755 *
2756 * -1: don't ever hybrid sleep
2757 * 0: use half of prev avg
2758 * >0: use this specific value
2759 */
2760 if (q->poll_nsec == -1)
2761 return false;
2762 else if (q->poll_nsec > 0)
2763 nsecs = q->poll_nsec;
2764 else
2765 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2766
2767 if (!nsecs)
2768 return false;
2769
2770 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2771
2772 /*
2773 * This will be replaced with the stats tracking code, using
2774 * 'avg_completion_time / 2' as the pre-sleep target.
2775 */
2776 kt = nsecs;
2777
2778 mode = HRTIMER_MODE_REL;
2779 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2780 hrtimer_set_expires(&hs.timer, kt);
2781
2782 hrtimer_init_sleeper(&hs, current);
2783 do {
2784 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2785 break;
2786 set_current_state(TASK_UNINTERRUPTIBLE);
2787 hrtimer_start_expires(&hs.timer, mode);
2788 if (hs.task)
2789 io_schedule();
2790 hrtimer_cancel(&hs.timer);
2791 mode = HRTIMER_MODE_ABS;
2792 } while (hs.task && !signal_pending(current));
2793
2794 __set_current_state(TASK_RUNNING);
2795 destroy_hrtimer_on_stack(&hs.timer);
2796 return true;
2797}
2798
2799static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2800{
2801 struct request_queue *q = hctx->queue;
2802 long state;
2803
2804 /*
2805 * If we sleep, have the caller restart the poll loop to reset
2806 * the state. Like for the other success return cases, the
2807 * caller is responsible for checking if the IO completed. If
2808 * the IO isn't complete, we'll get called again and will go
2809 * straight to the busy poll loop.
2810 */
2811 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2812 return true;
2813
2814 hctx->poll_considered++;
2815
2816 state = current->state;
2817 while (!need_resched()) {
2818 int ret;
2819
2820 hctx->poll_invoked++;
2821
2822 ret = q->mq_ops->poll(hctx, rq->tag);
2823 if (ret > 0) {
2824 hctx->poll_success++;
2825 set_current_state(TASK_RUNNING);
2826 return true;
2827 }
2828
2829 if (signal_pending_state(state, current))
2830 set_current_state(TASK_RUNNING);
2831
2832 if (current->state == TASK_RUNNING)
2833 return true;
2834 if (ret < 0)
2835 break;
2836 cpu_relax();
2837 }
2838
2839 return false;
2840}
2841
2842bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2843{
2844 struct blk_mq_hw_ctx *hctx;
2845 struct blk_plug *plug;
2846 struct request *rq;
2847
2848 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2849 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2850 return false;
2851
2852 plug = current->plug;
2853 if (plug)
2854 blk_flush_plug_list(plug, false);
2855
2856 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2857 if (!blk_qc_t_is_internal(cookie))
2858 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2859 else
2860 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2861
2862 return __blk_mq_poll(hctx, rq);
2863}
2864EXPORT_SYMBOL_GPL(blk_mq_poll);
2865
2866void blk_mq_disable_hotplug(void)
2867{
2868 mutex_lock(&all_q_mutex);
2869}
2870
2871void blk_mq_enable_hotplug(void)
2872{
2873 mutex_unlock(&all_q_mutex);
2874}
2875
2876static int __init blk_mq_init(void)
2877{
2878 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2879 blk_mq_hctx_notify_dead);
2880
2881 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2882 blk_mq_queue_reinit_prepare,
2883 blk_mq_queue_reinit_dead);
2884 return 0;
2885}
2886subsys_initcall(blk_mq_init);