]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - block/blk-mq.c
blk-mq: fix and simplify tag iteration for the timeout handler
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
... / ...
CommitLineData
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
23
24#include <trace/events/block.h>
25
26#include <linux/blk-mq.h>
27#include "blk.h"
28#include "blk-mq.h"
29#include "blk-mq-tag.h"
30
31static DEFINE_MUTEX(all_q_mutex);
32static LIST_HEAD(all_q_list);
33
34static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
36/*
37 * Check if any of the ctx's have pending work in this hardware queue
38 */
39static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40{
41 unsigned int i;
42
43 for (i = 0; i < hctx->ctx_map.map_size; i++)
44 if (hctx->ctx_map.map[i].word)
45 return true;
46
47 return false;
48}
49
50static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52{
53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54}
55
56#define CTX_TO_BIT(hctx, ctx) \
57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
59/*
60 * Mark this ctx as having pending work in this hardware queue
61 */
62static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64{
65 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69}
70
71static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73{
74 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
77}
78
79static int blk_mq_queue_enter(struct request_queue *q)
80{
81 while (true) {
82 int ret;
83
84 if (percpu_ref_tryget_live(&q->mq_usage_counter))
85 return 0;
86
87 ret = wait_event_interruptible(q->mq_freeze_wq,
88 !q->mq_freeze_depth || blk_queue_dying(q));
89 if (blk_queue_dying(q))
90 return -ENODEV;
91 if (ret)
92 return ret;
93 }
94}
95
96static void blk_mq_queue_exit(struct request_queue *q)
97{
98 percpu_ref_put(&q->mq_usage_counter);
99}
100
101static void blk_mq_usage_counter_release(struct percpu_ref *ref)
102{
103 struct request_queue *q =
104 container_of(ref, struct request_queue, mq_usage_counter);
105
106 wake_up_all(&q->mq_freeze_wq);
107}
108
109/*
110 * Guarantee no request is in use, so we can change any data structure of
111 * the queue afterward.
112 */
113void blk_mq_freeze_queue(struct request_queue *q)
114{
115 bool freeze;
116
117 spin_lock_irq(q->queue_lock);
118 freeze = !q->mq_freeze_depth++;
119 spin_unlock_irq(q->queue_lock);
120
121 if (freeze) {
122 percpu_ref_kill(&q->mq_usage_counter);
123 blk_mq_run_queues(q, false);
124 }
125 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
126}
127
128static void blk_mq_unfreeze_queue(struct request_queue *q)
129{
130 bool wake;
131
132 spin_lock_irq(q->queue_lock);
133 wake = !--q->mq_freeze_depth;
134 WARN_ON_ONCE(q->mq_freeze_depth < 0);
135 spin_unlock_irq(q->queue_lock);
136 if (wake) {
137 percpu_ref_reinit(&q->mq_usage_counter);
138 wake_up_all(&q->mq_freeze_wq);
139 }
140}
141
142bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
143{
144 return blk_mq_has_free_tags(hctx->tags);
145}
146EXPORT_SYMBOL(blk_mq_can_queue);
147
148static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
149 struct request *rq, unsigned int rw_flags)
150{
151 if (blk_queue_io_stat(q))
152 rw_flags |= REQ_IO_STAT;
153
154 INIT_LIST_HEAD(&rq->queuelist);
155 /* csd/requeue_work/fifo_time is initialized before use */
156 rq->q = q;
157 rq->mq_ctx = ctx;
158 rq->cmd_flags |= rw_flags;
159 /* do not touch atomic flags, it needs atomic ops against the timer */
160 rq->cpu = -1;
161 INIT_HLIST_NODE(&rq->hash);
162 RB_CLEAR_NODE(&rq->rb_node);
163 rq->rq_disk = NULL;
164 rq->part = NULL;
165 rq->start_time = jiffies;
166#ifdef CONFIG_BLK_CGROUP
167 rq->rl = NULL;
168 set_start_time_ns(rq);
169 rq->io_start_time_ns = 0;
170#endif
171 rq->nr_phys_segments = 0;
172#if defined(CONFIG_BLK_DEV_INTEGRITY)
173 rq->nr_integrity_segments = 0;
174#endif
175 rq->special = NULL;
176 /* tag was already set */
177 rq->errors = 0;
178
179 rq->cmd = rq->__cmd;
180
181 rq->extra_len = 0;
182 rq->sense_len = 0;
183 rq->resid_len = 0;
184 rq->sense = NULL;
185
186 INIT_LIST_HEAD(&rq->timeout_list);
187 rq->timeout = 0;
188
189 rq->end_io = NULL;
190 rq->end_io_data = NULL;
191 rq->next_rq = NULL;
192
193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
194}
195
196static struct request *
197__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
198{
199 struct request *rq;
200 unsigned int tag;
201
202 tag = blk_mq_get_tag(data);
203 if (tag != BLK_MQ_TAG_FAIL) {
204 rq = data->hctx->tags->rqs[tag];
205
206 if (blk_mq_tag_busy(data->hctx)) {
207 rq->cmd_flags = REQ_MQ_INFLIGHT;
208 atomic_inc(&data->hctx->nr_active);
209 }
210
211 rq->tag = tag;
212 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
213 return rq;
214 }
215
216 return NULL;
217}
218
219struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
220 bool reserved)
221{
222 struct blk_mq_ctx *ctx;
223 struct blk_mq_hw_ctx *hctx;
224 struct request *rq;
225 struct blk_mq_alloc_data alloc_data;
226 int ret;
227
228 ret = blk_mq_queue_enter(q);
229 if (ret)
230 return ERR_PTR(ret);
231
232 ctx = blk_mq_get_ctx(q);
233 hctx = q->mq_ops->map_queue(q, ctx->cpu);
234 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
235 reserved, ctx, hctx);
236
237 rq = __blk_mq_alloc_request(&alloc_data, rw);
238 if (!rq && (gfp & __GFP_WAIT)) {
239 __blk_mq_run_hw_queue(hctx);
240 blk_mq_put_ctx(ctx);
241
242 ctx = blk_mq_get_ctx(q);
243 hctx = q->mq_ops->map_queue(q, ctx->cpu);
244 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
245 hctx);
246 rq = __blk_mq_alloc_request(&alloc_data, rw);
247 ctx = alloc_data.ctx;
248 }
249 blk_mq_put_ctx(ctx);
250 if (!rq)
251 return ERR_PTR(-EWOULDBLOCK);
252 return rq;
253}
254EXPORT_SYMBOL(blk_mq_alloc_request);
255
256static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
257 struct blk_mq_ctx *ctx, struct request *rq)
258{
259 const int tag = rq->tag;
260 struct request_queue *q = rq->q;
261
262 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
263 atomic_dec(&hctx->nr_active);
264 rq->cmd_flags = 0;
265
266 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
267 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
268 blk_mq_queue_exit(q);
269}
270
271void blk_mq_free_request(struct request *rq)
272{
273 struct blk_mq_ctx *ctx = rq->mq_ctx;
274 struct blk_mq_hw_ctx *hctx;
275 struct request_queue *q = rq->q;
276
277 ctx->rq_completed[rq_is_sync(rq)]++;
278
279 hctx = q->mq_ops->map_queue(q, ctx->cpu);
280 __blk_mq_free_request(hctx, ctx, rq);
281}
282
283/*
284 * Clone all relevant state from a request that has been put on hold in
285 * the flush state machine into the preallocated flush request that hangs
286 * off the request queue.
287 *
288 * For a driver the flush request should be invisible, that's why we are
289 * impersonating the original request here.
290 */
291void blk_mq_clone_flush_request(struct request *flush_rq,
292 struct request *orig_rq)
293{
294 struct blk_mq_hw_ctx *hctx =
295 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
296
297 flush_rq->mq_ctx = orig_rq->mq_ctx;
298 flush_rq->tag = orig_rq->tag;
299 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
300 hctx->cmd_size);
301}
302
303inline void __blk_mq_end_request(struct request *rq, int error)
304{
305 blk_account_io_done(rq);
306
307 if (rq->end_io) {
308 rq->end_io(rq, error);
309 } else {
310 if (unlikely(blk_bidi_rq(rq)))
311 blk_mq_free_request(rq->next_rq);
312 blk_mq_free_request(rq);
313 }
314}
315EXPORT_SYMBOL(__blk_mq_end_request);
316
317void blk_mq_end_request(struct request *rq, int error)
318{
319 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
320 BUG();
321 __blk_mq_end_request(rq, error);
322}
323EXPORT_SYMBOL(blk_mq_end_request);
324
325static void __blk_mq_complete_request_remote(void *data)
326{
327 struct request *rq = data;
328
329 rq->q->softirq_done_fn(rq);
330}
331
332static void blk_mq_ipi_complete_request(struct request *rq)
333{
334 struct blk_mq_ctx *ctx = rq->mq_ctx;
335 bool shared = false;
336 int cpu;
337
338 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
339 rq->q->softirq_done_fn(rq);
340 return;
341 }
342
343 cpu = get_cpu();
344 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
345 shared = cpus_share_cache(cpu, ctx->cpu);
346
347 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
348 rq->csd.func = __blk_mq_complete_request_remote;
349 rq->csd.info = rq;
350 rq->csd.flags = 0;
351 smp_call_function_single_async(ctx->cpu, &rq->csd);
352 } else {
353 rq->q->softirq_done_fn(rq);
354 }
355 put_cpu();
356}
357
358void __blk_mq_complete_request(struct request *rq)
359{
360 struct request_queue *q = rq->q;
361
362 if (!q->softirq_done_fn)
363 blk_mq_end_request(rq, rq->errors);
364 else
365 blk_mq_ipi_complete_request(rq);
366}
367
368/**
369 * blk_mq_complete_request - end I/O on a request
370 * @rq: the request being processed
371 *
372 * Description:
373 * Ends all I/O on a request. It does not handle partial completions.
374 * The actual completion happens out-of-order, through a IPI handler.
375 **/
376void blk_mq_complete_request(struct request *rq)
377{
378 struct request_queue *q = rq->q;
379
380 if (unlikely(blk_should_fake_timeout(q)))
381 return;
382 if (!blk_mark_rq_complete(rq))
383 __blk_mq_complete_request(rq);
384}
385EXPORT_SYMBOL(blk_mq_complete_request);
386
387void blk_mq_start_request(struct request *rq)
388{
389 struct request_queue *q = rq->q;
390
391 trace_block_rq_issue(q, rq);
392
393 rq->resid_len = blk_rq_bytes(rq);
394 if (unlikely(blk_bidi_rq(rq)))
395 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
396
397 blk_add_timer(rq);
398
399 /*
400 * Ensure that ->deadline is visible before set the started
401 * flag and clear the completed flag.
402 */
403 smp_mb__before_atomic();
404
405 /*
406 * Mark us as started and clear complete. Complete might have been
407 * set if requeue raced with timeout, which then marked it as
408 * complete. So be sure to clear complete again when we start
409 * the request, otherwise we'll ignore the completion event.
410 */
411 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
412 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
413 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
414 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
415
416 if (q->dma_drain_size && blk_rq_bytes(rq)) {
417 /*
418 * Make sure space for the drain appears. We know we can do
419 * this because max_hw_segments has been adjusted to be one
420 * fewer than the device can handle.
421 */
422 rq->nr_phys_segments++;
423 }
424}
425EXPORT_SYMBOL(blk_mq_start_request);
426
427static void __blk_mq_requeue_request(struct request *rq)
428{
429 struct request_queue *q = rq->q;
430
431 trace_block_rq_requeue(q, rq);
432
433 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
434 if (q->dma_drain_size && blk_rq_bytes(rq))
435 rq->nr_phys_segments--;
436 }
437}
438
439void blk_mq_requeue_request(struct request *rq)
440{
441 __blk_mq_requeue_request(rq);
442 blk_clear_rq_complete(rq);
443
444 BUG_ON(blk_queued_rq(rq));
445 blk_mq_add_to_requeue_list(rq, true);
446}
447EXPORT_SYMBOL(blk_mq_requeue_request);
448
449static void blk_mq_requeue_work(struct work_struct *work)
450{
451 struct request_queue *q =
452 container_of(work, struct request_queue, requeue_work);
453 LIST_HEAD(rq_list);
454 struct request *rq, *next;
455 unsigned long flags;
456
457 spin_lock_irqsave(&q->requeue_lock, flags);
458 list_splice_init(&q->requeue_list, &rq_list);
459 spin_unlock_irqrestore(&q->requeue_lock, flags);
460
461 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
462 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
463 continue;
464
465 rq->cmd_flags &= ~REQ_SOFTBARRIER;
466 list_del_init(&rq->queuelist);
467 blk_mq_insert_request(rq, true, false, false);
468 }
469
470 while (!list_empty(&rq_list)) {
471 rq = list_entry(rq_list.next, struct request, queuelist);
472 list_del_init(&rq->queuelist);
473 blk_mq_insert_request(rq, false, false, false);
474 }
475
476 /*
477 * Use the start variant of queue running here, so that running
478 * the requeue work will kick stopped queues.
479 */
480 blk_mq_start_hw_queues(q);
481}
482
483void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
484{
485 struct request_queue *q = rq->q;
486 unsigned long flags;
487
488 /*
489 * We abuse this flag that is otherwise used by the I/O scheduler to
490 * request head insertation from the workqueue.
491 */
492 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
493
494 spin_lock_irqsave(&q->requeue_lock, flags);
495 if (at_head) {
496 rq->cmd_flags |= REQ_SOFTBARRIER;
497 list_add(&rq->queuelist, &q->requeue_list);
498 } else {
499 list_add_tail(&rq->queuelist, &q->requeue_list);
500 }
501 spin_unlock_irqrestore(&q->requeue_lock, flags);
502}
503EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
504
505void blk_mq_kick_requeue_list(struct request_queue *q)
506{
507 kblockd_schedule_work(&q->requeue_work);
508}
509EXPORT_SYMBOL(blk_mq_kick_requeue_list);
510
511static inline bool is_flush_request(struct request *rq, unsigned int tag)
512{
513 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
514 rq->q->flush_rq->tag == tag);
515}
516
517struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
518{
519 struct request *rq = tags->rqs[tag];
520
521 if (!is_flush_request(rq, tag))
522 return rq;
523
524 return rq->q->flush_rq;
525}
526EXPORT_SYMBOL(blk_mq_tag_to_rq);
527
528static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
529{
530 struct request_queue *q = rq->q;
531
532 /*
533 * We know that complete is set at this point. If STARTED isn't set
534 * anymore, then the request isn't active and the "timeout" should
535 * just be ignored. This can happen due to the bitflag ordering.
536 * Timeout first checks if STARTED is set, and if it is, assumes
537 * the request is active. But if we race with completion, then
538 * we both flags will get cleared. So check here again, and ignore
539 * a timeout event with a request that isn't active.
540 */
541 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
542 return BLK_EH_NOT_HANDLED;
543
544 if (!q->mq_ops->timeout)
545 return BLK_EH_RESET_TIMER;
546
547 return q->mq_ops->timeout(rq);
548}
549
550struct blk_mq_timeout_data {
551 unsigned long next;
552 unsigned int next_set;
553};
554
555static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
556 struct request *rq, void *priv, bool reserved)
557{
558 struct blk_mq_timeout_data *data = priv;
559
560 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
561 blk_rq_check_expired(rq, &data->next, &data->next_set);
562}
563
564static void blk_mq_rq_timer(unsigned long priv)
565{
566 struct request_queue *q = (struct request_queue *)priv;
567 struct blk_mq_timeout_data data = {
568 .next = 0,
569 .next_set = 0,
570 };
571 struct blk_mq_hw_ctx *hctx;
572 int i;
573
574 queue_for_each_hw_ctx(q, hctx, i) {
575 /*
576 * If not software queues are currently mapped to this
577 * hardware queue, there's nothing to check
578 */
579 if (!hctx->nr_ctx || !hctx->tags)
580 continue;
581
582 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
583 }
584
585 if (data.next_set) {
586 data.next = blk_rq_timeout(round_jiffies_up(data.next));
587 mod_timer(&q->timeout, data.next);
588 } else {
589 queue_for_each_hw_ctx(q, hctx, i)
590 blk_mq_tag_idle(hctx);
591 }
592}
593
594/*
595 * Reverse check our software queue for entries that we could potentially
596 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
597 * too much time checking for merges.
598 */
599static bool blk_mq_attempt_merge(struct request_queue *q,
600 struct blk_mq_ctx *ctx, struct bio *bio)
601{
602 struct request *rq;
603 int checked = 8;
604
605 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
606 int el_ret;
607
608 if (!checked--)
609 break;
610
611 if (!blk_rq_merge_ok(rq, bio))
612 continue;
613
614 el_ret = blk_try_merge(rq, bio);
615 if (el_ret == ELEVATOR_BACK_MERGE) {
616 if (bio_attempt_back_merge(q, rq, bio)) {
617 ctx->rq_merged++;
618 return true;
619 }
620 break;
621 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
622 if (bio_attempt_front_merge(q, rq, bio)) {
623 ctx->rq_merged++;
624 return true;
625 }
626 break;
627 }
628 }
629
630 return false;
631}
632
633/*
634 * Process software queues that have been marked busy, splicing them
635 * to the for-dispatch
636 */
637static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
638{
639 struct blk_mq_ctx *ctx;
640 int i;
641
642 for (i = 0; i < hctx->ctx_map.map_size; i++) {
643 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
644 unsigned int off, bit;
645
646 if (!bm->word)
647 continue;
648
649 bit = 0;
650 off = i * hctx->ctx_map.bits_per_word;
651 do {
652 bit = find_next_bit(&bm->word, bm->depth, bit);
653 if (bit >= bm->depth)
654 break;
655
656 ctx = hctx->ctxs[bit + off];
657 clear_bit(bit, &bm->word);
658 spin_lock(&ctx->lock);
659 list_splice_tail_init(&ctx->rq_list, list);
660 spin_unlock(&ctx->lock);
661
662 bit++;
663 } while (1);
664 }
665}
666
667/*
668 * Run this hardware queue, pulling any software queues mapped to it in.
669 * Note that this function currently has various problems around ordering
670 * of IO. In particular, we'd like FIFO behaviour on handling existing
671 * items on the hctx->dispatch list. Ignore that for now.
672 */
673static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
674{
675 struct request_queue *q = hctx->queue;
676 struct request *rq;
677 LIST_HEAD(rq_list);
678 int queued;
679
680 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
681
682 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
683 return;
684
685 hctx->run++;
686
687 /*
688 * Touch any software queue that has pending entries.
689 */
690 flush_busy_ctxs(hctx, &rq_list);
691
692 /*
693 * If we have previous entries on our dispatch list, grab them
694 * and stuff them at the front for more fair dispatch.
695 */
696 if (!list_empty_careful(&hctx->dispatch)) {
697 spin_lock(&hctx->lock);
698 if (!list_empty(&hctx->dispatch))
699 list_splice_init(&hctx->dispatch, &rq_list);
700 spin_unlock(&hctx->lock);
701 }
702
703 /*
704 * Now process all the entries, sending them to the driver.
705 */
706 queued = 0;
707 while (!list_empty(&rq_list)) {
708 int ret;
709
710 rq = list_first_entry(&rq_list, struct request, queuelist);
711 list_del_init(&rq->queuelist);
712
713 ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list));
714 switch (ret) {
715 case BLK_MQ_RQ_QUEUE_OK:
716 queued++;
717 continue;
718 case BLK_MQ_RQ_QUEUE_BUSY:
719 list_add(&rq->queuelist, &rq_list);
720 __blk_mq_requeue_request(rq);
721 break;
722 default:
723 pr_err("blk-mq: bad return on queue: %d\n", ret);
724 case BLK_MQ_RQ_QUEUE_ERROR:
725 rq->errors = -EIO;
726 blk_mq_end_request(rq, rq->errors);
727 break;
728 }
729
730 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
731 break;
732 }
733
734 if (!queued)
735 hctx->dispatched[0]++;
736 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
737 hctx->dispatched[ilog2(queued) + 1]++;
738
739 /*
740 * Any items that need requeuing? Stuff them into hctx->dispatch,
741 * that is where we will continue on next queue run.
742 */
743 if (!list_empty(&rq_list)) {
744 spin_lock(&hctx->lock);
745 list_splice(&rq_list, &hctx->dispatch);
746 spin_unlock(&hctx->lock);
747 }
748}
749
750/*
751 * It'd be great if the workqueue API had a way to pass
752 * in a mask and had some smarts for more clever placement.
753 * For now we just round-robin here, switching for every
754 * BLK_MQ_CPU_WORK_BATCH queued items.
755 */
756static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
757{
758 int cpu = hctx->next_cpu;
759
760 if (--hctx->next_cpu_batch <= 0) {
761 int next_cpu;
762
763 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
764 if (next_cpu >= nr_cpu_ids)
765 next_cpu = cpumask_first(hctx->cpumask);
766
767 hctx->next_cpu = next_cpu;
768 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
769 }
770
771 return cpu;
772}
773
774void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
775{
776 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
777 return;
778
779 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
780 __blk_mq_run_hw_queue(hctx);
781 else if (hctx->queue->nr_hw_queues == 1)
782 kblockd_schedule_delayed_work(&hctx->run_work, 0);
783 else {
784 unsigned int cpu;
785
786 cpu = blk_mq_hctx_next_cpu(hctx);
787 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
788 }
789}
790
791void blk_mq_run_queues(struct request_queue *q, bool async)
792{
793 struct blk_mq_hw_ctx *hctx;
794 int i;
795
796 queue_for_each_hw_ctx(q, hctx, i) {
797 if ((!blk_mq_hctx_has_pending(hctx) &&
798 list_empty_careful(&hctx->dispatch)) ||
799 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
800 continue;
801
802 preempt_disable();
803 blk_mq_run_hw_queue(hctx, async);
804 preempt_enable();
805 }
806}
807EXPORT_SYMBOL(blk_mq_run_queues);
808
809void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
810{
811 cancel_delayed_work(&hctx->run_work);
812 cancel_delayed_work(&hctx->delay_work);
813 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
814}
815EXPORT_SYMBOL(blk_mq_stop_hw_queue);
816
817void blk_mq_stop_hw_queues(struct request_queue *q)
818{
819 struct blk_mq_hw_ctx *hctx;
820 int i;
821
822 queue_for_each_hw_ctx(q, hctx, i)
823 blk_mq_stop_hw_queue(hctx);
824}
825EXPORT_SYMBOL(blk_mq_stop_hw_queues);
826
827void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
828{
829 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
830
831 preempt_disable();
832 blk_mq_run_hw_queue(hctx, false);
833 preempt_enable();
834}
835EXPORT_SYMBOL(blk_mq_start_hw_queue);
836
837void blk_mq_start_hw_queues(struct request_queue *q)
838{
839 struct blk_mq_hw_ctx *hctx;
840 int i;
841
842 queue_for_each_hw_ctx(q, hctx, i)
843 blk_mq_start_hw_queue(hctx);
844}
845EXPORT_SYMBOL(blk_mq_start_hw_queues);
846
847
848void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
849{
850 struct blk_mq_hw_ctx *hctx;
851 int i;
852
853 queue_for_each_hw_ctx(q, hctx, i) {
854 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
855 continue;
856
857 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
858 preempt_disable();
859 blk_mq_run_hw_queue(hctx, async);
860 preempt_enable();
861 }
862}
863EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
864
865static void blk_mq_run_work_fn(struct work_struct *work)
866{
867 struct blk_mq_hw_ctx *hctx;
868
869 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
870
871 __blk_mq_run_hw_queue(hctx);
872}
873
874static void blk_mq_delay_work_fn(struct work_struct *work)
875{
876 struct blk_mq_hw_ctx *hctx;
877
878 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
879
880 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
881 __blk_mq_run_hw_queue(hctx);
882}
883
884void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
885{
886 unsigned long tmo = msecs_to_jiffies(msecs);
887
888 if (hctx->queue->nr_hw_queues == 1)
889 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
890 else {
891 unsigned int cpu;
892
893 cpu = blk_mq_hctx_next_cpu(hctx);
894 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
895 }
896}
897EXPORT_SYMBOL(blk_mq_delay_queue);
898
899static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
900 struct request *rq, bool at_head)
901{
902 struct blk_mq_ctx *ctx = rq->mq_ctx;
903
904 trace_block_rq_insert(hctx->queue, rq);
905
906 if (at_head)
907 list_add(&rq->queuelist, &ctx->rq_list);
908 else
909 list_add_tail(&rq->queuelist, &ctx->rq_list);
910
911 blk_mq_hctx_mark_pending(hctx, ctx);
912}
913
914void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
915 bool async)
916{
917 struct request_queue *q = rq->q;
918 struct blk_mq_hw_ctx *hctx;
919 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
920
921 current_ctx = blk_mq_get_ctx(q);
922 if (!cpu_online(ctx->cpu))
923 rq->mq_ctx = ctx = current_ctx;
924
925 hctx = q->mq_ops->map_queue(q, ctx->cpu);
926
927 spin_lock(&ctx->lock);
928 __blk_mq_insert_request(hctx, rq, at_head);
929 spin_unlock(&ctx->lock);
930
931 if (run_queue)
932 blk_mq_run_hw_queue(hctx, async);
933
934 blk_mq_put_ctx(current_ctx);
935}
936
937static void blk_mq_insert_requests(struct request_queue *q,
938 struct blk_mq_ctx *ctx,
939 struct list_head *list,
940 int depth,
941 bool from_schedule)
942
943{
944 struct blk_mq_hw_ctx *hctx;
945 struct blk_mq_ctx *current_ctx;
946
947 trace_block_unplug(q, depth, !from_schedule);
948
949 current_ctx = blk_mq_get_ctx(q);
950
951 if (!cpu_online(ctx->cpu))
952 ctx = current_ctx;
953 hctx = q->mq_ops->map_queue(q, ctx->cpu);
954
955 /*
956 * preemption doesn't flush plug list, so it's possible ctx->cpu is
957 * offline now
958 */
959 spin_lock(&ctx->lock);
960 while (!list_empty(list)) {
961 struct request *rq;
962
963 rq = list_first_entry(list, struct request, queuelist);
964 list_del_init(&rq->queuelist);
965 rq->mq_ctx = ctx;
966 __blk_mq_insert_request(hctx, rq, false);
967 }
968 spin_unlock(&ctx->lock);
969
970 blk_mq_run_hw_queue(hctx, from_schedule);
971 blk_mq_put_ctx(current_ctx);
972}
973
974static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
975{
976 struct request *rqa = container_of(a, struct request, queuelist);
977 struct request *rqb = container_of(b, struct request, queuelist);
978
979 return !(rqa->mq_ctx < rqb->mq_ctx ||
980 (rqa->mq_ctx == rqb->mq_ctx &&
981 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
982}
983
984void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
985{
986 struct blk_mq_ctx *this_ctx;
987 struct request_queue *this_q;
988 struct request *rq;
989 LIST_HEAD(list);
990 LIST_HEAD(ctx_list);
991 unsigned int depth;
992
993 list_splice_init(&plug->mq_list, &list);
994
995 list_sort(NULL, &list, plug_ctx_cmp);
996
997 this_q = NULL;
998 this_ctx = NULL;
999 depth = 0;
1000
1001 while (!list_empty(&list)) {
1002 rq = list_entry_rq(list.next);
1003 list_del_init(&rq->queuelist);
1004 BUG_ON(!rq->q);
1005 if (rq->mq_ctx != this_ctx) {
1006 if (this_ctx) {
1007 blk_mq_insert_requests(this_q, this_ctx,
1008 &ctx_list, depth,
1009 from_schedule);
1010 }
1011
1012 this_ctx = rq->mq_ctx;
1013 this_q = rq->q;
1014 depth = 0;
1015 }
1016
1017 depth++;
1018 list_add_tail(&rq->queuelist, &ctx_list);
1019 }
1020
1021 /*
1022 * If 'this_ctx' is set, we know we have entries to complete
1023 * on 'ctx_list'. Do those.
1024 */
1025 if (this_ctx) {
1026 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1027 from_schedule);
1028 }
1029}
1030
1031static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1032{
1033 init_request_from_bio(rq, bio);
1034
1035 if (blk_do_io_stat(rq))
1036 blk_account_io_start(rq, 1);
1037}
1038
1039static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1040{
1041 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1042 !blk_queue_nomerges(hctx->queue);
1043}
1044
1045static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1046 struct blk_mq_ctx *ctx,
1047 struct request *rq, struct bio *bio)
1048{
1049 if (!hctx_allow_merges(hctx)) {
1050 blk_mq_bio_to_request(rq, bio);
1051 spin_lock(&ctx->lock);
1052insert_rq:
1053 __blk_mq_insert_request(hctx, rq, false);
1054 spin_unlock(&ctx->lock);
1055 return false;
1056 } else {
1057 struct request_queue *q = hctx->queue;
1058
1059 spin_lock(&ctx->lock);
1060 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1061 blk_mq_bio_to_request(rq, bio);
1062 goto insert_rq;
1063 }
1064
1065 spin_unlock(&ctx->lock);
1066 __blk_mq_free_request(hctx, ctx, rq);
1067 return true;
1068 }
1069}
1070
1071struct blk_map_ctx {
1072 struct blk_mq_hw_ctx *hctx;
1073 struct blk_mq_ctx *ctx;
1074};
1075
1076static struct request *blk_mq_map_request(struct request_queue *q,
1077 struct bio *bio,
1078 struct blk_map_ctx *data)
1079{
1080 struct blk_mq_hw_ctx *hctx;
1081 struct blk_mq_ctx *ctx;
1082 struct request *rq;
1083 int rw = bio_data_dir(bio);
1084 struct blk_mq_alloc_data alloc_data;
1085
1086 if (unlikely(blk_mq_queue_enter(q))) {
1087 bio_endio(bio, -EIO);
1088 return NULL;
1089 }
1090
1091 ctx = blk_mq_get_ctx(q);
1092 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1093
1094 if (rw_is_sync(bio->bi_rw))
1095 rw |= REQ_SYNC;
1096
1097 trace_block_getrq(q, bio, rw);
1098 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1099 hctx);
1100 rq = __blk_mq_alloc_request(&alloc_data, rw);
1101 if (unlikely(!rq)) {
1102 __blk_mq_run_hw_queue(hctx);
1103 blk_mq_put_ctx(ctx);
1104 trace_block_sleeprq(q, bio, rw);
1105
1106 ctx = blk_mq_get_ctx(q);
1107 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1108 blk_mq_set_alloc_data(&alloc_data, q,
1109 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1110 rq = __blk_mq_alloc_request(&alloc_data, rw);
1111 ctx = alloc_data.ctx;
1112 hctx = alloc_data.hctx;
1113 }
1114
1115 hctx->queued++;
1116 data->hctx = hctx;
1117 data->ctx = ctx;
1118 return rq;
1119}
1120
1121/*
1122 * Multiple hardware queue variant. This will not use per-process plugs,
1123 * but will attempt to bypass the hctx queueing if we can go straight to
1124 * hardware for SYNC IO.
1125 */
1126static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1127{
1128 const int is_sync = rw_is_sync(bio->bi_rw);
1129 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1130 struct blk_map_ctx data;
1131 struct request *rq;
1132
1133 blk_queue_bounce(q, &bio);
1134
1135 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1136 bio_endio(bio, -EIO);
1137 return;
1138 }
1139
1140 rq = blk_mq_map_request(q, bio, &data);
1141 if (unlikely(!rq))
1142 return;
1143
1144 if (unlikely(is_flush_fua)) {
1145 blk_mq_bio_to_request(rq, bio);
1146 blk_insert_flush(rq);
1147 goto run_queue;
1148 }
1149
1150 if (is_sync) {
1151 int ret;
1152
1153 blk_mq_bio_to_request(rq, bio);
1154
1155 /*
1156 * For OK queue, we are done. For error, kill it. Any other
1157 * error (busy), just add it to our list as we previously
1158 * would have done
1159 */
1160 ret = q->mq_ops->queue_rq(data.hctx, rq, true);
1161 if (ret == BLK_MQ_RQ_QUEUE_OK)
1162 goto done;
1163 else {
1164 __blk_mq_requeue_request(rq);
1165
1166 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1167 rq->errors = -EIO;
1168 blk_mq_end_request(rq, rq->errors);
1169 goto done;
1170 }
1171 }
1172 }
1173
1174 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1175 /*
1176 * For a SYNC request, send it to the hardware immediately. For
1177 * an ASYNC request, just ensure that we run it later on. The
1178 * latter allows for merging opportunities and more efficient
1179 * dispatching.
1180 */
1181run_queue:
1182 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1183 }
1184done:
1185 blk_mq_put_ctx(data.ctx);
1186}
1187
1188/*
1189 * Single hardware queue variant. This will attempt to use any per-process
1190 * plug for merging and IO deferral.
1191 */
1192static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1193{
1194 const int is_sync = rw_is_sync(bio->bi_rw);
1195 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1196 unsigned int use_plug, request_count = 0;
1197 struct blk_map_ctx data;
1198 struct request *rq;
1199
1200 /*
1201 * If we have multiple hardware queues, just go directly to
1202 * one of those for sync IO.
1203 */
1204 use_plug = !is_flush_fua && !is_sync;
1205
1206 blk_queue_bounce(q, &bio);
1207
1208 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1209 bio_endio(bio, -EIO);
1210 return;
1211 }
1212
1213 if (use_plug && !blk_queue_nomerges(q) &&
1214 blk_attempt_plug_merge(q, bio, &request_count))
1215 return;
1216
1217 rq = blk_mq_map_request(q, bio, &data);
1218 if (unlikely(!rq))
1219 return;
1220
1221 if (unlikely(is_flush_fua)) {
1222 blk_mq_bio_to_request(rq, bio);
1223 blk_insert_flush(rq);
1224 goto run_queue;
1225 }
1226
1227 /*
1228 * A task plug currently exists. Since this is completely lockless,
1229 * utilize that to temporarily store requests until the task is
1230 * either done or scheduled away.
1231 */
1232 if (use_plug) {
1233 struct blk_plug *plug = current->plug;
1234
1235 if (plug) {
1236 blk_mq_bio_to_request(rq, bio);
1237 if (list_empty(&plug->mq_list))
1238 trace_block_plug(q);
1239 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1240 blk_flush_plug_list(plug, false);
1241 trace_block_plug(q);
1242 }
1243 list_add_tail(&rq->queuelist, &plug->mq_list);
1244 blk_mq_put_ctx(data.ctx);
1245 return;
1246 }
1247 }
1248
1249 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1250 /*
1251 * For a SYNC request, send it to the hardware immediately. For
1252 * an ASYNC request, just ensure that we run it later on. The
1253 * latter allows for merging opportunities and more efficient
1254 * dispatching.
1255 */
1256run_queue:
1257 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1258 }
1259
1260 blk_mq_put_ctx(data.ctx);
1261}
1262
1263/*
1264 * Default mapping to a software queue, since we use one per CPU.
1265 */
1266struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1267{
1268 return q->queue_hw_ctx[q->mq_map[cpu]];
1269}
1270EXPORT_SYMBOL(blk_mq_map_queue);
1271
1272static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1273 struct blk_mq_tags *tags, unsigned int hctx_idx)
1274{
1275 struct page *page;
1276
1277 if (tags->rqs && set->ops->exit_request) {
1278 int i;
1279
1280 for (i = 0; i < tags->nr_tags; i++) {
1281 if (!tags->rqs[i])
1282 continue;
1283 set->ops->exit_request(set->driver_data, tags->rqs[i],
1284 hctx_idx, i);
1285 tags->rqs[i] = NULL;
1286 }
1287 }
1288
1289 while (!list_empty(&tags->page_list)) {
1290 page = list_first_entry(&tags->page_list, struct page, lru);
1291 list_del_init(&page->lru);
1292 __free_pages(page, page->private);
1293 }
1294
1295 kfree(tags->rqs);
1296
1297 blk_mq_free_tags(tags);
1298}
1299
1300static size_t order_to_size(unsigned int order)
1301{
1302 return (size_t)PAGE_SIZE << order;
1303}
1304
1305static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1306 unsigned int hctx_idx)
1307{
1308 struct blk_mq_tags *tags;
1309 unsigned int i, j, entries_per_page, max_order = 4;
1310 size_t rq_size, left;
1311
1312 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1313 set->numa_node);
1314 if (!tags)
1315 return NULL;
1316
1317 INIT_LIST_HEAD(&tags->page_list);
1318
1319 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1320 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1321 set->numa_node);
1322 if (!tags->rqs) {
1323 blk_mq_free_tags(tags);
1324 return NULL;
1325 }
1326
1327 /*
1328 * rq_size is the size of the request plus driver payload, rounded
1329 * to the cacheline size
1330 */
1331 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1332 cache_line_size());
1333 left = rq_size * set->queue_depth;
1334
1335 for (i = 0; i < set->queue_depth; ) {
1336 int this_order = max_order;
1337 struct page *page;
1338 int to_do;
1339 void *p;
1340
1341 while (left < order_to_size(this_order - 1) && this_order)
1342 this_order--;
1343
1344 do {
1345 page = alloc_pages_node(set->numa_node,
1346 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1347 this_order);
1348 if (page)
1349 break;
1350 if (!this_order--)
1351 break;
1352 if (order_to_size(this_order) < rq_size)
1353 break;
1354 } while (1);
1355
1356 if (!page)
1357 goto fail;
1358
1359 page->private = this_order;
1360 list_add_tail(&page->lru, &tags->page_list);
1361
1362 p = page_address(page);
1363 entries_per_page = order_to_size(this_order) / rq_size;
1364 to_do = min(entries_per_page, set->queue_depth - i);
1365 left -= to_do * rq_size;
1366 for (j = 0; j < to_do; j++) {
1367 tags->rqs[i] = p;
1368 tags->rqs[i]->atomic_flags = 0;
1369 tags->rqs[i]->cmd_flags = 0;
1370 if (set->ops->init_request) {
1371 if (set->ops->init_request(set->driver_data,
1372 tags->rqs[i], hctx_idx, i,
1373 set->numa_node)) {
1374 tags->rqs[i] = NULL;
1375 goto fail;
1376 }
1377 }
1378
1379 p += rq_size;
1380 i++;
1381 }
1382 }
1383
1384 return tags;
1385
1386fail:
1387 blk_mq_free_rq_map(set, tags, hctx_idx);
1388 return NULL;
1389}
1390
1391static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1392{
1393 kfree(bitmap->map);
1394}
1395
1396static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1397{
1398 unsigned int bpw = 8, total, num_maps, i;
1399
1400 bitmap->bits_per_word = bpw;
1401
1402 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1403 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1404 GFP_KERNEL, node);
1405 if (!bitmap->map)
1406 return -ENOMEM;
1407
1408 bitmap->map_size = num_maps;
1409
1410 total = nr_cpu_ids;
1411 for (i = 0; i < num_maps; i++) {
1412 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1413 total -= bitmap->map[i].depth;
1414 }
1415
1416 return 0;
1417}
1418
1419static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1420{
1421 struct request_queue *q = hctx->queue;
1422 struct blk_mq_ctx *ctx;
1423 LIST_HEAD(tmp);
1424
1425 /*
1426 * Move ctx entries to new CPU, if this one is going away.
1427 */
1428 ctx = __blk_mq_get_ctx(q, cpu);
1429
1430 spin_lock(&ctx->lock);
1431 if (!list_empty(&ctx->rq_list)) {
1432 list_splice_init(&ctx->rq_list, &tmp);
1433 blk_mq_hctx_clear_pending(hctx, ctx);
1434 }
1435 spin_unlock(&ctx->lock);
1436
1437 if (list_empty(&tmp))
1438 return NOTIFY_OK;
1439
1440 ctx = blk_mq_get_ctx(q);
1441 spin_lock(&ctx->lock);
1442
1443 while (!list_empty(&tmp)) {
1444 struct request *rq;
1445
1446 rq = list_first_entry(&tmp, struct request, queuelist);
1447 rq->mq_ctx = ctx;
1448 list_move_tail(&rq->queuelist, &ctx->rq_list);
1449 }
1450
1451 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1452 blk_mq_hctx_mark_pending(hctx, ctx);
1453
1454 spin_unlock(&ctx->lock);
1455
1456 blk_mq_run_hw_queue(hctx, true);
1457 blk_mq_put_ctx(ctx);
1458 return NOTIFY_OK;
1459}
1460
1461static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1462{
1463 struct request_queue *q = hctx->queue;
1464 struct blk_mq_tag_set *set = q->tag_set;
1465
1466 if (set->tags[hctx->queue_num])
1467 return NOTIFY_OK;
1468
1469 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1470 if (!set->tags[hctx->queue_num])
1471 return NOTIFY_STOP;
1472
1473 hctx->tags = set->tags[hctx->queue_num];
1474 return NOTIFY_OK;
1475}
1476
1477static int blk_mq_hctx_notify(void *data, unsigned long action,
1478 unsigned int cpu)
1479{
1480 struct blk_mq_hw_ctx *hctx = data;
1481
1482 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1483 return blk_mq_hctx_cpu_offline(hctx, cpu);
1484 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1485 return blk_mq_hctx_cpu_online(hctx, cpu);
1486
1487 return NOTIFY_OK;
1488}
1489
1490static void blk_mq_exit_hw_queues(struct request_queue *q,
1491 struct blk_mq_tag_set *set, int nr_queue)
1492{
1493 struct blk_mq_hw_ctx *hctx;
1494 unsigned int i;
1495
1496 queue_for_each_hw_ctx(q, hctx, i) {
1497 if (i == nr_queue)
1498 break;
1499
1500 blk_mq_tag_idle(hctx);
1501
1502 if (set->ops->exit_hctx)
1503 set->ops->exit_hctx(hctx, i);
1504
1505 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1506 kfree(hctx->ctxs);
1507 blk_mq_free_bitmap(&hctx->ctx_map);
1508 }
1509
1510}
1511
1512static void blk_mq_free_hw_queues(struct request_queue *q,
1513 struct blk_mq_tag_set *set)
1514{
1515 struct blk_mq_hw_ctx *hctx;
1516 unsigned int i;
1517
1518 queue_for_each_hw_ctx(q, hctx, i) {
1519 free_cpumask_var(hctx->cpumask);
1520 kfree(hctx);
1521 }
1522}
1523
1524static int blk_mq_init_hw_queues(struct request_queue *q,
1525 struct blk_mq_tag_set *set)
1526{
1527 struct blk_mq_hw_ctx *hctx;
1528 unsigned int i;
1529
1530 /*
1531 * Initialize hardware queues
1532 */
1533 queue_for_each_hw_ctx(q, hctx, i) {
1534 int node;
1535
1536 node = hctx->numa_node;
1537 if (node == NUMA_NO_NODE)
1538 node = hctx->numa_node = set->numa_node;
1539
1540 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1541 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1542 spin_lock_init(&hctx->lock);
1543 INIT_LIST_HEAD(&hctx->dispatch);
1544 hctx->queue = q;
1545 hctx->queue_num = i;
1546 hctx->flags = set->flags;
1547 hctx->cmd_size = set->cmd_size;
1548
1549 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1550 blk_mq_hctx_notify, hctx);
1551 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1552
1553 hctx->tags = set->tags[i];
1554
1555 /*
1556 * Allocate space for all possible cpus to avoid allocation at
1557 * runtime
1558 */
1559 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1560 GFP_KERNEL, node);
1561 if (!hctx->ctxs)
1562 break;
1563
1564 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1565 break;
1566
1567 hctx->nr_ctx = 0;
1568
1569 if (set->ops->init_hctx &&
1570 set->ops->init_hctx(hctx, set->driver_data, i))
1571 break;
1572 }
1573
1574 if (i == q->nr_hw_queues)
1575 return 0;
1576
1577 /*
1578 * Init failed
1579 */
1580 blk_mq_exit_hw_queues(q, set, i);
1581
1582 return 1;
1583}
1584
1585static void blk_mq_init_cpu_queues(struct request_queue *q,
1586 unsigned int nr_hw_queues)
1587{
1588 unsigned int i;
1589
1590 for_each_possible_cpu(i) {
1591 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1592 struct blk_mq_hw_ctx *hctx;
1593
1594 memset(__ctx, 0, sizeof(*__ctx));
1595 __ctx->cpu = i;
1596 spin_lock_init(&__ctx->lock);
1597 INIT_LIST_HEAD(&__ctx->rq_list);
1598 __ctx->queue = q;
1599
1600 /* If the cpu isn't online, the cpu is mapped to first hctx */
1601 if (!cpu_online(i))
1602 continue;
1603
1604 hctx = q->mq_ops->map_queue(q, i);
1605 cpumask_set_cpu(i, hctx->cpumask);
1606 hctx->nr_ctx++;
1607
1608 /*
1609 * Set local node, IFF we have more than one hw queue. If
1610 * not, we remain on the home node of the device
1611 */
1612 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1613 hctx->numa_node = cpu_to_node(i);
1614 }
1615}
1616
1617static void blk_mq_map_swqueue(struct request_queue *q)
1618{
1619 unsigned int i;
1620 struct blk_mq_hw_ctx *hctx;
1621 struct blk_mq_ctx *ctx;
1622
1623 queue_for_each_hw_ctx(q, hctx, i) {
1624 cpumask_clear(hctx->cpumask);
1625 hctx->nr_ctx = 0;
1626 }
1627
1628 /*
1629 * Map software to hardware queues
1630 */
1631 queue_for_each_ctx(q, ctx, i) {
1632 /* If the cpu isn't online, the cpu is mapped to first hctx */
1633 if (!cpu_online(i))
1634 continue;
1635
1636 hctx = q->mq_ops->map_queue(q, i);
1637 cpumask_set_cpu(i, hctx->cpumask);
1638 ctx->index_hw = hctx->nr_ctx;
1639 hctx->ctxs[hctx->nr_ctx++] = ctx;
1640 }
1641
1642 queue_for_each_hw_ctx(q, hctx, i) {
1643 /*
1644 * If no software queues are mapped to this hardware queue,
1645 * disable it and free the request entries.
1646 */
1647 if (!hctx->nr_ctx) {
1648 struct blk_mq_tag_set *set = q->tag_set;
1649
1650 if (set->tags[i]) {
1651 blk_mq_free_rq_map(set, set->tags[i], i);
1652 set->tags[i] = NULL;
1653 hctx->tags = NULL;
1654 }
1655 continue;
1656 }
1657
1658 /*
1659 * Initialize batch roundrobin counts
1660 */
1661 hctx->next_cpu = cpumask_first(hctx->cpumask);
1662 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1663 }
1664}
1665
1666static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1667{
1668 struct blk_mq_hw_ctx *hctx;
1669 struct request_queue *q;
1670 bool shared;
1671 int i;
1672
1673 if (set->tag_list.next == set->tag_list.prev)
1674 shared = false;
1675 else
1676 shared = true;
1677
1678 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1679 blk_mq_freeze_queue(q);
1680
1681 queue_for_each_hw_ctx(q, hctx, i) {
1682 if (shared)
1683 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1684 else
1685 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1686 }
1687 blk_mq_unfreeze_queue(q);
1688 }
1689}
1690
1691static void blk_mq_del_queue_tag_set(struct request_queue *q)
1692{
1693 struct blk_mq_tag_set *set = q->tag_set;
1694
1695 mutex_lock(&set->tag_list_lock);
1696 list_del_init(&q->tag_set_list);
1697 blk_mq_update_tag_set_depth(set);
1698 mutex_unlock(&set->tag_list_lock);
1699}
1700
1701static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1702 struct request_queue *q)
1703{
1704 q->tag_set = set;
1705
1706 mutex_lock(&set->tag_list_lock);
1707 list_add_tail(&q->tag_set_list, &set->tag_list);
1708 blk_mq_update_tag_set_depth(set);
1709 mutex_unlock(&set->tag_list_lock);
1710}
1711
1712struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1713{
1714 struct blk_mq_hw_ctx **hctxs;
1715 struct blk_mq_ctx __percpu *ctx;
1716 struct request_queue *q;
1717 unsigned int *map;
1718 int i;
1719
1720 ctx = alloc_percpu(struct blk_mq_ctx);
1721 if (!ctx)
1722 return ERR_PTR(-ENOMEM);
1723
1724 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1725 set->numa_node);
1726
1727 if (!hctxs)
1728 goto err_percpu;
1729
1730 map = blk_mq_make_queue_map(set);
1731 if (!map)
1732 goto err_map;
1733
1734 for (i = 0; i < set->nr_hw_queues; i++) {
1735 int node = blk_mq_hw_queue_to_node(map, i);
1736
1737 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1738 GFP_KERNEL, node);
1739 if (!hctxs[i])
1740 goto err_hctxs;
1741
1742 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1743 goto err_hctxs;
1744
1745 atomic_set(&hctxs[i]->nr_active, 0);
1746 hctxs[i]->numa_node = node;
1747 hctxs[i]->queue_num = i;
1748 }
1749
1750 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1751 if (!q)
1752 goto err_hctxs;
1753
1754 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
1755 goto err_map;
1756
1757 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1758 blk_queue_rq_timeout(q, 30000);
1759
1760 q->nr_queues = nr_cpu_ids;
1761 q->nr_hw_queues = set->nr_hw_queues;
1762 q->mq_map = map;
1763
1764 q->queue_ctx = ctx;
1765 q->queue_hw_ctx = hctxs;
1766
1767 q->mq_ops = set->ops;
1768 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1769
1770 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1771 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1772
1773 q->sg_reserved_size = INT_MAX;
1774
1775 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1776 INIT_LIST_HEAD(&q->requeue_list);
1777 spin_lock_init(&q->requeue_lock);
1778
1779 if (q->nr_hw_queues > 1)
1780 blk_queue_make_request(q, blk_mq_make_request);
1781 else
1782 blk_queue_make_request(q, blk_sq_make_request);
1783
1784 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1785 if (set->timeout)
1786 blk_queue_rq_timeout(q, set->timeout);
1787
1788 /*
1789 * Do this after blk_queue_make_request() overrides it...
1790 */
1791 q->nr_requests = set->queue_depth;
1792
1793 if (set->ops->complete)
1794 blk_queue_softirq_done(q, set->ops->complete);
1795
1796 blk_mq_init_flush(q);
1797 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1798
1799 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1800 set->cmd_size, cache_line_size()),
1801 GFP_KERNEL);
1802 if (!q->flush_rq)
1803 goto err_hw;
1804
1805 if (blk_mq_init_hw_queues(q, set))
1806 goto err_flush_rq;
1807
1808 mutex_lock(&all_q_mutex);
1809 list_add_tail(&q->all_q_node, &all_q_list);
1810 mutex_unlock(&all_q_mutex);
1811
1812 blk_mq_add_queue_tag_set(set, q);
1813
1814 blk_mq_map_swqueue(q);
1815
1816 return q;
1817
1818err_flush_rq:
1819 kfree(q->flush_rq);
1820err_hw:
1821 blk_cleanup_queue(q);
1822err_hctxs:
1823 kfree(map);
1824 for (i = 0; i < set->nr_hw_queues; i++) {
1825 if (!hctxs[i])
1826 break;
1827 free_cpumask_var(hctxs[i]->cpumask);
1828 kfree(hctxs[i]);
1829 }
1830err_map:
1831 kfree(hctxs);
1832err_percpu:
1833 free_percpu(ctx);
1834 return ERR_PTR(-ENOMEM);
1835}
1836EXPORT_SYMBOL(blk_mq_init_queue);
1837
1838void blk_mq_free_queue(struct request_queue *q)
1839{
1840 struct blk_mq_tag_set *set = q->tag_set;
1841
1842 blk_mq_del_queue_tag_set(q);
1843
1844 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1845 blk_mq_free_hw_queues(q, set);
1846
1847 percpu_ref_exit(&q->mq_usage_counter);
1848
1849 free_percpu(q->queue_ctx);
1850 kfree(q->queue_hw_ctx);
1851 kfree(q->mq_map);
1852
1853 q->queue_ctx = NULL;
1854 q->queue_hw_ctx = NULL;
1855 q->mq_map = NULL;
1856
1857 mutex_lock(&all_q_mutex);
1858 list_del_init(&q->all_q_node);
1859 mutex_unlock(&all_q_mutex);
1860}
1861
1862/* Basically redo blk_mq_init_queue with queue frozen */
1863static void blk_mq_queue_reinit(struct request_queue *q)
1864{
1865 blk_mq_freeze_queue(q);
1866
1867 blk_mq_sysfs_unregister(q);
1868
1869 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1870
1871 /*
1872 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1873 * we should change hctx numa_node according to new topology (this
1874 * involves free and re-allocate memory, worthy doing?)
1875 */
1876
1877 blk_mq_map_swqueue(q);
1878
1879 blk_mq_sysfs_register(q);
1880
1881 blk_mq_unfreeze_queue(q);
1882}
1883
1884static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1885 unsigned long action, void *hcpu)
1886{
1887 struct request_queue *q;
1888
1889 /*
1890 * Before new mappings are established, hotadded cpu might already
1891 * start handling requests. This doesn't break anything as we map
1892 * offline CPUs to first hardware queue. We will re-init the queue
1893 * below to get optimal settings.
1894 */
1895 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1896 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1897 return NOTIFY_OK;
1898
1899 mutex_lock(&all_q_mutex);
1900 list_for_each_entry(q, &all_q_list, all_q_node)
1901 blk_mq_queue_reinit(q);
1902 mutex_unlock(&all_q_mutex);
1903 return NOTIFY_OK;
1904}
1905
1906static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1907{
1908 int i;
1909
1910 for (i = 0; i < set->nr_hw_queues; i++) {
1911 set->tags[i] = blk_mq_init_rq_map(set, i);
1912 if (!set->tags[i])
1913 goto out_unwind;
1914 }
1915
1916 return 0;
1917
1918out_unwind:
1919 while (--i >= 0)
1920 blk_mq_free_rq_map(set, set->tags[i], i);
1921
1922 return -ENOMEM;
1923}
1924
1925/*
1926 * Allocate the request maps associated with this tag_set. Note that this
1927 * may reduce the depth asked for, if memory is tight. set->queue_depth
1928 * will be updated to reflect the allocated depth.
1929 */
1930static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1931{
1932 unsigned int depth;
1933 int err;
1934
1935 depth = set->queue_depth;
1936 do {
1937 err = __blk_mq_alloc_rq_maps(set);
1938 if (!err)
1939 break;
1940
1941 set->queue_depth >>= 1;
1942 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
1943 err = -ENOMEM;
1944 break;
1945 }
1946 } while (set->queue_depth);
1947
1948 if (!set->queue_depth || err) {
1949 pr_err("blk-mq: failed to allocate request map\n");
1950 return -ENOMEM;
1951 }
1952
1953 if (depth != set->queue_depth)
1954 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
1955 depth, set->queue_depth);
1956
1957 return 0;
1958}
1959
1960/*
1961 * Alloc a tag set to be associated with one or more request queues.
1962 * May fail with EINVAL for various error conditions. May adjust the
1963 * requested depth down, if if it too large. In that case, the set
1964 * value will be stored in set->queue_depth.
1965 */
1966int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1967{
1968 if (!set->nr_hw_queues)
1969 return -EINVAL;
1970 if (!set->queue_depth)
1971 return -EINVAL;
1972 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1973 return -EINVAL;
1974
1975 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
1976 return -EINVAL;
1977
1978 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
1979 pr_info("blk-mq: reduced tag depth to %u\n",
1980 BLK_MQ_MAX_DEPTH);
1981 set->queue_depth = BLK_MQ_MAX_DEPTH;
1982 }
1983
1984 set->tags = kmalloc_node(set->nr_hw_queues *
1985 sizeof(struct blk_mq_tags *),
1986 GFP_KERNEL, set->numa_node);
1987 if (!set->tags)
1988 return -ENOMEM;
1989
1990 if (blk_mq_alloc_rq_maps(set))
1991 goto enomem;
1992
1993 mutex_init(&set->tag_list_lock);
1994 INIT_LIST_HEAD(&set->tag_list);
1995
1996 return 0;
1997enomem:
1998 kfree(set->tags);
1999 set->tags = NULL;
2000 return -ENOMEM;
2001}
2002EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2003
2004void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2005{
2006 int i;
2007
2008 for (i = 0; i < set->nr_hw_queues; i++) {
2009 if (set->tags[i])
2010 blk_mq_free_rq_map(set, set->tags[i], i);
2011 }
2012
2013 kfree(set->tags);
2014 set->tags = NULL;
2015}
2016EXPORT_SYMBOL(blk_mq_free_tag_set);
2017
2018int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2019{
2020 struct blk_mq_tag_set *set = q->tag_set;
2021 struct blk_mq_hw_ctx *hctx;
2022 int i, ret;
2023
2024 if (!set || nr > set->queue_depth)
2025 return -EINVAL;
2026
2027 ret = 0;
2028 queue_for_each_hw_ctx(q, hctx, i) {
2029 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2030 if (ret)
2031 break;
2032 }
2033
2034 if (!ret)
2035 q->nr_requests = nr;
2036
2037 return ret;
2038}
2039
2040void blk_mq_disable_hotplug(void)
2041{
2042 mutex_lock(&all_q_mutex);
2043}
2044
2045void blk_mq_enable_hotplug(void)
2046{
2047 mutex_unlock(&all_q_mutex);
2048}
2049
2050static int __init blk_mq_init(void)
2051{
2052 blk_mq_cpu_init();
2053
2054 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2055
2056 return 0;
2057}
2058subsys_initcall(blk_mq_init);