]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - block/blk-mq.c
Block: mtip32xx: Improvement in code readability when memdup_user() fails.
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
... / ...
CommitLineData
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/kmemleak.h>
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/delay.h>
24#include <linux/crash_dump.h>
25#include <linux/prefetch.h>
26
27#include <trace/events/block.h>
28
29#include <linux/blk-mq.h>
30#include "blk.h"
31#include "blk-mq.h"
32#include "blk-mq-tag.h"
33#include "blk-stat.h"
34#include "blk-wbt.h"
35
36static DEFINE_MUTEX(all_q_mutex);
37static LIST_HEAD(all_q_list);
38
39/*
40 * Check if any of the ctx's have pending work in this hardware queue
41 */
42static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
43{
44 return sbitmap_any_bit_set(&hctx->ctx_map);
45}
46
47/*
48 * Mark this ctx as having pending work in this hardware queue
49 */
50static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52{
53 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
54 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
55}
56
57static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
58 struct blk_mq_ctx *ctx)
59{
60 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
61}
62
63void blk_mq_freeze_queue_start(struct request_queue *q)
64{
65 int freeze_depth;
66
67 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
68 if (freeze_depth == 1) {
69 percpu_ref_kill(&q->q_usage_counter);
70 blk_mq_run_hw_queues(q, false);
71 }
72}
73EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
74
75static void blk_mq_freeze_queue_wait(struct request_queue *q)
76{
77 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
78}
79
80/*
81 * Guarantee no request is in use, so we can change any data structure of
82 * the queue afterward.
83 */
84void blk_freeze_queue(struct request_queue *q)
85{
86 /*
87 * In the !blk_mq case we are only calling this to kill the
88 * q_usage_counter, otherwise this increases the freeze depth
89 * and waits for it to return to zero. For this reason there is
90 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
91 * exported to drivers as the only user for unfreeze is blk_mq.
92 */
93 blk_mq_freeze_queue_start(q);
94 blk_mq_freeze_queue_wait(q);
95}
96
97void blk_mq_freeze_queue(struct request_queue *q)
98{
99 /*
100 * ...just an alias to keep freeze and unfreeze actions balanced
101 * in the blk_mq_* namespace
102 */
103 blk_freeze_queue(q);
104}
105EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
106
107void blk_mq_unfreeze_queue(struct request_queue *q)
108{
109 int freeze_depth;
110
111 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
112 WARN_ON_ONCE(freeze_depth < 0);
113 if (!freeze_depth) {
114 percpu_ref_reinit(&q->q_usage_counter);
115 wake_up_all(&q->mq_freeze_wq);
116 }
117}
118EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
119
120/**
121 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
122 * @q: request queue.
123 *
124 * Note: this function does not prevent that the struct request end_io()
125 * callback function is invoked. Additionally, it is not prevented that
126 * new queue_rq() calls occur unless the queue has been stopped first.
127 */
128void blk_mq_quiesce_queue(struct request_queue *q)
129{
130 struct blk_mq_hw_ctx *hctx;
131 unsigned int i;
132 bool rcu = false;
133
134 blk_mq_stop_hw_queues(q);
135
136 queue_for_each_hw_ctx(q, hctx, i) {
137 if (hctx->flags & BLK_MQ_F_BLOCKING)
138 synchronize_srcu(&hctx->queue_rq_srcu);
139 else
140 rcu = true;
141 }
142 if (rcu)
143 synchronize_rcu();
144}
145EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
146
147void blk_mq_wake_waiters(struct request_queue *q)
148{
149 struct blk_mq_hw_ctx *hctx;
150 unsigned int i;
151
152 queue_for_each_hw_ctx(q, hctx, i)
153 if (blk_mq_hw_queue_mapped(hctx))
154 blk_mq_tag_wakeup_all(hctx->tags, true);
155
156 /*
157 * If we are called because the queue has now been marked as
158 * dying, we need to ensure that processes currently waiting on
159 * the queue are notified as well.
160 */
161 wake_up_all(&q->mq_freeze_wq);
162}
163
164bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
165{
166 return blk_mq_has_free_tags(hctx->tags);
167}
168EXPORT_SYMBOL(blk_mq_can_queue);
169
170static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
171 struct request *rq, unsigned int op)
172{
173 INIT_LIST_HEAD(&rq->queuelist);
174 /* csd/requeue_work/fifo_time is initialized before use */
175 rq->q = q;
176 rq->mq_ctx = ctx;
177 rq->cmd_flags = op;
178 if (blk_queue_io_stat(q))
179 rq->rq_flags |= RQF_IO_STAT;
180 /* do not touch atomic flags, it needs atomic ops against the timer */
181 rq->cpu = -1;
182 INIT_HLIST_NODE(&rq->hash);
183 RB_CLEAR_NODE(&rq->rb_node);
184 rq->rq_disk = NULL;
185 rq->part = NULL;
186 rq->start_time = jiffies;
187#ifdef CONFIG_BLK_CGROUP
188 rq->rl = NULL;
189 set_start_time_ns(rq);
190 rq->io_start_time_ns = 0;
191#endif
192 rq->nr_phys_segments = 0;
193#if defined(CONFIG_BLK_DEV_INTEGRITY)
194 rq->nr_integrity_segments = 0;
195#endif
196 rq->special = NULL;
197 /* tag was already set */
198 rq->errors = 0;
199
200 rq->cmd = rq->__cmd;
201
202 rq->extra_len = 0;
203 rq->sense_len = 0;
204 rq->resid_len = 0;
205 rq->sense = NULL;
206
207 INIT_LIST_HEAD(&rq->timeout_list);
208 rq->timeout = 0;
209
210 rq->end_io = NULL;
211 rq->end_io_data = NULL;
212 rq->next_rq = NULL;
213
214 ctx->rq_dispatched[op_is_sync(op)]++;
215}
216
217static struct request *
218__blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
219{
220 struct request *rq;
221 unsigned int tag;
222
223 tag = blk_mq_get_tag(data);
224 if (tag != BLK_MQ_TAG_FAIL) {
225 rq = data->hctx->tags->rqs[tag];
226
227 if (blk_mq_tag_busy(data->hctx)) {
228 rq->rq_flags = RQF_MQ_INFLIGHT;
229 atomic_inc(&data->hctx->nr_active);
230 }
231
232 rq->tag = tag;
233 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
234 return rq;
235 }
236
237 return NULL;
238}
239
240struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
241 unsigned int flags)
242{
243 struct blk_mq_ctx *ctx;
244 struct blk_mq_hw_ctx *hctx;
245 struct request *rq;
246 struct blk_mq_alloc_data alloc_data;
247 int ret;
248
249 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
250 if (ret)
251 return ERR_PTR(ret);
252
253 ctx = blk_mq_get_ctx(q);
254 hctx = blk_mq_map_queue(q, ctx->cpu);
255 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
256 rq = __blk_mq_alloc_request(&alloc_data, rw);
257 blk_mq_put_ctx(ctx);
258
259 if (!rq) {
260 blk_queue_exit(q);
261 return ERR_PTR(-EWOULDBLOCK);
262 }
263
264 rq->__data_len = 0;
265 rq->__sector = (sector_t) -1;
266 rq->bio = rq->biotail = NULL;
267 return rq;
268}
269EXPORT_SYMBOL(blk_mq_alloc_request);
270
271struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
272 unsigned int flags, unsigned int hctx_idx)
273{
274 struct blk_mq_hw_ctx *hctx;
275 struct blk_mq_ctx *ctx;
276 struct request *rq;
277 struct blk_mq_alloc_data alloc_data;
278 int ret;
279
280 /*
281 * If the tag allocator sleeps we could get an allocation for a
282 * different hardware context. No need to complicate the low level
283 * allocator for this for the rare use case of a command tied to
284 * a specific queue.
285 */
286 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
287 return ERR_PTR(-EINVAL);
288
289 if (hctx_idx >= q->nr_hw_queues)
290 return ERR_PTR(-EIO);
291
292 ret = blk_queue_enter(q, true);
293 if (ret)
294 return ERR_PTR(ret);
295
296 /*
297 * Check if the hardware context is actually mapped to anything.
298 * If not tell the caller that it should skip this queue.
299 */
300 hctx = q->queue_hw_ctx[hctx_idx];
301 if (!blk_mq_hw_queue_mapped(hctx)) {
302 ret = -EXDEV;
303 goto out_queue_exit;
304 }
305 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
306
307 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
308 rq = __blk_mq_alloc_request(&alloc_data, rw);
309 if (!rq) {
310 ret = -EWOULDBLOCK;
311 goto out_queue_exit;
312 }
313
314 return rq;
315
316out_queue_exit:
317 blk_queue_exit(q);
318 return ERR_PTR(ret);
319}
320EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
321
322static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
323 struct blk_mq_ctx *ctx, struct request *rq)
324{
325 const int tag = rq->tag;
326 struct request_queue *q = rq->q;
327
328 if (rq->rq_flags & RQF_MQ_INFLIGHT)
329 atomic_dec(&hctx->nr_active);
330
331 wbt_done(q->rq_wb, &rq->issue_stat);
332 rq->rq_flags = 0;
333
334 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
335 blk_mq_put_tag(hctx, ctx, tag);
336 blk_queue_exit(q);
337}
338
339void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
340{
341 struct blk_mq_ctx *ctx = rq->mq_ctx;
342
343 ctx->rq_completed[rq_is_sync(rq)]++;
344 __blk_mq_free_request(hctx, ctx, rq);
345
346}
347EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
348
349void blk_mq_free_request(struct request *rq)
350{
351 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
352}
353EXPORT_SYMBOL_GPL(blk_mq_free_request);
354
355inline void __blk_mq_end_request(struct request *rq, int error)
356{
357 blk_account_io_done(rq);
358
359 if (rq->end_io) {
360 wbt_done(rq->q->rq_wb, &rq->issue_stat);
361 rq->end_io(rq, error);
362 } else {
363 if (unlikely(blk_bidi_rq(rq)))
364 blk_mq_free_request(rq->next_rq);
365 blk_mq_free_request(rq);
366 }
367}
368EXPORT_SYMBOL(__blk_mq_end_request);
369
370void blk_mq_end_request(struct request *rq, int error)
371{
372 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
373 BUG();
374 __blk_mq_end_request(rq, error);
375}
376EXPORT_SYMBOL(blk_mq_end_request);
377
378static void __blk_mq_complete_request_remote(void *data)
379{
380 struct request *rq = data;
381
382 rq->q->softirq_done_fn(rq);
383}
384
385static void blk_mq_ipi_complete_request(struct request *rq)
386{
387 struct blk_mq_ctx *ctx = rq->mq_ctx;
388 bool shared = false;
389 int cpu;
390
391 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
392 rq->q->softirq_done_fn(rq);
393 return;
394 }
395
396 cpu = get_cpu();
397 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
398 shared = cpus_share_cache(cpu, ctx->cpu);
399
400 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
401 rq->csd.func = __blk_mq_complete_request_remote;
402 rq->csd.info = rq;
403 rq->csd.flags = 0;
404 smp_call_function_single_async(ctx->cpu, &rq->csd);
405 } else {
406 rq->q->softirq_done_fn(rq);
407 }
408 put_cpu();
409}
410
411static void blk_mq_stat_add(struct request *rq)
412{
413 if (rq->rq_flags & RQF_STATS) {
414 /*
415 * We could rq->mq_ctx here, but there's less of a risk
416 * of races if we have the completion event add the stats
417 * to the local software queue.
418 */
419 struct blk_mq_ctx *ctx;
420
421 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
422 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
423 }
424}
425
426static void __blk_mq_complete_request(struct request *rq)
427{
428 struct request_queue *q = rq->q;
429
430 blk_mq_stat_add(rq);
431
432 if (!q->softirq_done_fn)
433 blk_mq_end_request(rq, rq->errors);
434 else
435 blk_mq_ipi_complete_request(rq);
436}
437
438/**
439 * blk_mq_complete_request - end I/O on a request
440 * @rq: the request being processed
441 *
442 * Description:
443 * Ends all I/O on a request. It does not handle partial completions.
444 * The actual completion happens out-of-order, through a IPI handler.
445 **/
446void blk_mq_complete_request(struct request *rq, int error)
447{
448 struct request_queue *q = rq->q;
449
450 if (unlikely(blk_should_fake_timeout(q)))
451 return;
452 if (!blk_mark_rq_complete(rq)) {
453 rq->errors = error;
454 __blk_mq_complete_request(rq);
455 }
456}
457EXPORT_SYMBOL(blk_mq_complete_request);
458
459int blk_mq_request_started(struct request *rq)
460{
461 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
462}
463EXPORT_SYMBOL_GPL(blk_mq_request_started);
464
465void blk_mq_start_request(struct request *rq)
466{
467 struct request_queue *q = rq->q;
468
469 trace_block_rq_issue(q, rq);
470
471 rq->resid_len = blk_rq_bytes(rq);
472 if (unlikely(blk_bidi_rq(rq)))
473 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
474
475 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
476 blk_stat_set_issue_time(&rq->issue_stat);
477 rq->rq_flags |= RQF_STATS;
478 wbt_issue(q->rq_wb, &rq->issue_stat);
479 }
480
481 blk_add_timer(rq);
482
483 /*
484 * Ensure that ->deadline is visible before set the started
485 * flag and clear the completed flag.
486 */
487 smp_mb__before_atomic();
488
489 /*
490 * Mark us as started and clear complete. Complete might have been
491 * set if requeue raced with timeout, which then marked it as
492 * complete. So be sure to clear complete again when we start
493 * the request, otherwise we'll ignore the completion event.
494 */
495 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
496 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
497 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
498 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
499
500 if (q->dma_drain_size && blk_rq_bytes(rq)) {
501 /*
502 * Make sure space for the drain appears. We know we can do
503 * this because max_hw_segments has been adjusted to be one
504 * fewer than the device can handle.
505 */
506 rq->nr_phys_segments++;
507 }
508}
509EXPORT_SYMBOL(blk_mq_start_request);
510
511static void __blk_mq_requeue_request(struct request *rq)
512{
513 struct request_queue *q = rq->q;
514
515 trace_block_rq_requeue(q, rq);
516 wbt_requeue(q->rq_wb, &rq->issue_stat);
517
518 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
519 if (q->dma_drain_size && blk_rq_bytes(rq))
520 rq->nr_phys_segments--;
521 }
522}
523
524void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
525{
526 __blk_mq_requeue_request(rq);
527
528 BUG_ON(blk_queued_rq(rq));
529 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
530}
531EXPORT_SYMBOL(blk_mq_requeue_request);
532
533static void blk_mq_requeue_work(struct work_struct *work)
534{
535 struct request_queue *q =
536 container_of(work, struct request_queue, requeue_work.work);
537 LIST_HEAD(rq_list);
538 struct request *rq, *next;
539 unsigned long flags;
540
541 spin_lock_irqsave(&q->requeue_lock, flags);
542 list_splice_init(&q->requeue_list, &rq_list);
543 spin_unlock_irqrestore(&q->requeue_lock, flags);
544
545 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
546 if (!(rq->rq_flags & RQF_SOFTBARRIER))
547 continue;
548
549 rq->rq_flags &= ~RQF_SOFTBARRIER;
550 list_del_init(&rq->queuelist);
551 blk_mq_insert_request(rq, true, false, false);
552 }
553
554 while (!list_empty(&rq_list)) {
555 rq = list_entry(rq_list.next, struct request, queuelist);
556 list_del_init(&rq->queuelist);
557 blk_mq_insert_request(rq, false, false, false);
558 }
559
560 blk_mq_run_hw_queues(q, false);
561}
562
563void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
564 bool kick_requeue_list)
565{
566 struct request_queue *q = rq->q;
567 unsigned long flags;
568
569 /*
570 * We abuse this flag that is otherwise used by the I/O scheduler to
571 * request head insertation from the workqueue.
572 */
573 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
574
575 spin_lock_irqsave(&q->requeue_lock, flags);
576 if (at_head) {
577 rq->rq_flags |= RQF_SOFTBARRIER;
578 list_add(&rq->queuelist, &q->requeue_list);
579 } else {
580 list_add_tail(&rq->queuelist, &q->requeue_list);
581 }
582 spin_unlock_irqrestore(&q->requeue_lock, flags);
583
584 if (kick_requeue_list)
585 blk_mq_kick_requeue_list(q);
586}
587EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
588
589void blk_mq_kick_requeue_list(struct request_queue *q)
590{
591 kblockd_schedule_delayed_work(&q->requeue_work, 0);
592}
593EXPORT_SYMBOL(blk_mq_kick_requeue_list);
594
595void blk_mq_delay_kick_requeue_list(struct request_queue *q,
596 unsigned long msecs)
597{
598 kblockd_schedule_delayed_work(&q->requeue_work,
599 msecs_to_jiffies(msecs));
600}
601EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
602
603void blk_mq_abort_requeue_list(struct request_queue *q)
604{
605 unsigned long flags;
606 LIST_HEAD(rq_list);
607
608 spin_lock_irqsave(&q->requeue_lock, flags);
609 list_splice_init(&q->requeue_list, &rq_list);
610 spin_unlock_irqrestore(&q->requeue_lock, flags);
611
612 while (!list_empty(&rq_list)) {
613 struct request *rq;
614
615 rq = list_first_entry(&rq_list, struct request, queuelist);
616 list_del_init(&rq->queuelist);
617 rq->errors = -EIO;
618 blk_mq_end_request(rq, rq->errors);
619 }
620}
621EXPORT_SYMBOL(blk_mq_abort_requeue_list);
622
623struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
624{
625 if (tag < tags->nr_tags) {
626 prefetch(tags->rqs[tag]);
627 return tags->rqs[tag];
628 }
629
630 return NULL;
631}
632EXPORT_SYMBOL(blk_mq_tag_to_rq);
633
634struct blk_mq_timeout_data {
635 unsigned long next;
636 unsigned int next_set;
637};
638
639void blk_mq_rq_timed_out(struct request *req, bool reserved)
640{
641 struct blk_mq_ops *ops = req->q->mq_ops;
642 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
643
644 /*
645 * We know that complete is set at this point. If STARTED isn't set
646 * anymore, then the request isn't active and the "timeout" should
647 * just be ignored. This can happen due to the bitflag ordering.
648 * Timeout first checks if STARTED is set, and if it is, assumes
649 * the request is active. But if we race with completion, then
650 * we both flags will get cleared. So check here again, and ignore
651 * a timeout event with a request that isn't active.
652 */
653 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
654 return;
655
656 if (ops->timeout)
657 ret = ops->timeout(req, reserved);
658
659 switch (ret) {
660 case BLK_EH_HANDLED:
661 __blk_mq_complete_request(req);
662 break;
663 case BLK_EH_RESET_TIMER:
664 blk_add_timer(req);
665 blk_clear_rq_complete(req);
666 break;
667 case BLK_EH_NOT_HANDLED:
668 break;
669 default:
670 printk(KERN_ERR "block: bad eh return: %d\n", ret);
671 break;
672 }
673}
674
675static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
676 struct request *rq, void *priv, bool reserved)
677{
678 struct blk_mq_timeout_data *data = priv;
679
680 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
681 /*
682 * If a request wasn't started before the queue was
683 * marked dying, kill it here or it'll go unnoticed.
684 */
685 if (unlikely(blk_queue_dying(rq->q))) {
686 rq->errors = -EIO;
687 blk_mq_end_request(rq, rq->errors);
688 }
689 return;
690 }
691
692 if (time_after_eq(jiffies, rq->deadline)) {
693 if (!blk_mark_rq_complete(rq))
694 blk_mq_rq_timed_out(rq, reserved);
695 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
696 data->next = rq->deadline;
697 data->next_set = 1;
698 }
699}
700
701static void blk_mq_timeout_work(struct work_struct *work)
702{
703 struct request_queue *q =
704 container_of(work, struct request_queue, timeout_work);
705 struct blk_mq_timeout_data data = {
706 .next = 0,
707 .next_set = 0,
708 };
709 int i;
710
711 /* A deadlock might occur if a request is stuck requiring a
712 * timeout at the same time a queue freeze is waiting
713 * completion, since the timeout code would not be able to
714 * acquire the queue reference here.
715 *
716 * That's why we don't use blk_queue_enter here; instead, we use
717 * percpu_ref_tryget directly, because we need to be able to
718 * obtain a reference even in the short window between the queue
719 * starting to freeze, by dropping the first reference in
720 * blk_mq_freeze_queue_start, and the moment the last request is
721 * consumed, marked by the instant q_usage_counter reaches
722 * zero.
723 */
724 if (!percpu_ref_tryget(&q->q_usage_counter))
725 return;
726
727 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
728
729 if (data.next_set) {
730 data.next = blk_rq_timeout(round_jiffies_up(data.next));
731 mod_timer(&q->timeout, data.next);
732 } else {
733 struct blk_mq_hw_ctx *hctx;
734
735 queue_for_each_hw_ctx(q, hctx, i) {
736 /* the hctx may be unmapped, so check it here */
737 if (blk_mq_hw_queue_mapped(hctx))
738 blk_mq_tag_idle(hctx);
739 }
740 }
741 blk_queue_exit(q);
742}
743
744/*
745 * Reverse check our software queue for entries that we could potentially
746 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
747 * too much time checking for merges.
748 */
749static bool blk_mq_attempt_merge(struct request_queue *q,
750 struct blk_mq_ctx *ctx, struct bio *bio)
751{
752 struct request *rq;
753 int checked = 8;
754
755 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
756 int el_ret;
757
758 if (!checked--)
759 break;
760
761 if (!blk_rq_merge_ok(rq, bio))
762 continue;
763
764 el_ret = blk_try_merge(rq, bio);
765 if (el_ret == ELEVATOR_BACK_MERGE) {
766 if (bio_attempt_back_merge(q, rq, bio)) {
767 ctx->rq_merged++;
768 return true;
769 }
770 break;
771 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
772 if (bio_attempt_front_merge(q, rq, bio)) {
773 ctx->rq_merged++;
774 return true;
775 }
776 break;
777 }
778 }
779
780 return false;
781}
782
783struct flush_busy_ctx_data {
784 struct blk_mq_hw_ctx *hctx;
785 struct list_head *list;
786};
787
788static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
789{
790 struct flush_busy_ctx_data *flush_data = data;
791 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
792 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
793
794 sbitmap_clear_bit(sb, bitnr);
795 spin_lock(&ctx->lock);
796 list_splice_tail_init(&ctx->rq_list, flush_data->list);
797 spin_unlock(&ctx->lock);
798 return true;
799}
800
801/*
802 * Process software queues that have been marked busy, splicing them
803 * to the for-dispatch
804 */
805static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
806{
807 struct flush_busy_ctx_data data = {
808 .hctx = hctx,
809 .list = list,
810 };
811
812 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
813}
814
815static inline unsigned int queued_to_index(unsigned int queued)
816{
817 if (!queued)
818 return 0;
819
820 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
821}
822
823/*
824 * Run this hardware queue, pulling any software queues mapped to it in.
825 * Note that this function currently has various problems around ordering
826 * of IO. In particular, we'd like FIFO behaviour on handling existing
827 * items on the hctx->dispatch list. Ignore that for now.
828 */
829static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
830{
831 struct request_queue *q = hctx->queue;
832 struct request *rq;
833 LIST_HEAD(rq_list);
834 LIST_HEAD(driver_list);
835 struct list_head *dptr;
836 int queued;
837
838 if (unlikely(blk_mq_hctx_stopped(hctx)))
839 return;
840
841 hctx->run++;
842
843 /*
844 * Touch any software queue that has pending entries.
845 */
846 flush_busy_ctxs(hctx, &rq_list);
847
848 /*
849 * If we have previous entries on our dispatch list, grab them
850 * and stuff them at the front for more fair dispatch.
851 */
852 if (!list_empty_careful(&hctx->dispatch)) {
853 spin_lock(&hctx->lock);
854 if (!list_empty(&hctx->dispatch))
855 list_splice_init(&hctx->dispatch, &rq_list);
856 spin_unlock(&hctx->lock);
857 }
858
859 /*
860 * Start off with dptr being NULL, so we start the first request
861 * immediately, even if we have more pending.
862 */
863 dptr = NULL;
864
865 /*
866 * Now process all the entries, sending them to the driver.
867 */
868 queued = 0;
869 while (!list_empty(&rq_list)) {
870 struct blk_mq_queue_data bd;
871 int ret;
872
873 rq = list_first_entry(&rq_list, struct request, queuelist);
874 list_del_init(&rq->queuelist);
875
876 bd.rq = rq;
877 bd.list = dptr;
878 bd.last = list_empty(&rq_list);
879
880 ret = q->mq_ops->queue_rq(hctx, &bd);
881 switch (ret) {
882 case BLK_MQ_RQ_QUEUE_OK:
883 queued++;
884 break;
885 case BLK_MQ_RQ_QUEUE_BUSY:
886 list_add(&rq->queuelist, &rq_list);
887 __blk_mq_requeue_request(rq);
888 break;
889 default:
890 pr_err("blk-mq: bad return on queue: %d\n", ret);
891 case BLK_MQ_RQ_QUEUE_ERROR:
892 rq->errors = -EIO;
893 blk_mq_end_request(rq, rq->errors);
894 break;
895 }
896
897 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
898 break;
899
900 /*
901 * We've done the first request. If we have more than 1
902 * left in the list, set dptr to defer issue.
903 */
904 if (!dptr && rq_list.next != rq_list.prev)
905 dptr = &driver_list;
906 }
907
908 hctx->dispatched[queued_to_index(queued)]++;
909
910 /*
911 * Any items that need requeuing? Stuff them into hctx->dispatch,
912 * that is where we will continue on next queue run.
913 */
914 if (!list_empty(&rq_list)) {
915 spin_lock(&hctx->lock);
916 list_splice(&rq_list, &hctx->dispatch);
917 spin_unlock(&hctx->lock);
918 /*
919 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
920 * it's possible the queue is stopped and restarted again
921 * before this. Queue restart will dispatch requests. And since
922 * requests in rq_list aren't added into hctx->dispatch yet,
923 * the requests in rq_list might get lost.
924 *
925 * blk_mq_run_hw_queue() already checks the STOPPED bit
926 **/
927 blk_mq_run_hw_queue(hctx, true);
928 }
929}
930
931static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
932{
933 int srcu_idx;
934
935 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
936 cpu_online(hctx->next_cpu));
937
938 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
939 rcu_read_lock();
940 blk_mq_process_rq_list(hctx);
941 rcu_read_unlock();
942 } else {
943 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
944 blk_mq_process_rq_list(hctx);
945 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
946 }
947}
948
949/*
950 * It'd be great if the workqueue API had a way to pass
951 * in a mask and had some smarts for more clever placement.
952 * For now we just round-robin here, switching for every
953 * BLK_MQ_CPU_WORK_BATCH queued items.
954 */
955static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
956{
957 if (hctx->queue->nr_hw_queues == 1)
958 return WORK_CPU_UNBOUND;
959
960 if (--hctx->next_cpu_batch <= 0) {
961 int next_cpu;
962
963 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
964 if (next_cpu >= nr_cpu_ids)
965 next_cpu = cpumask_first(hctx->cpumask);
966
967 hctx->next_cpu = next_cpu;
968 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
969 }
970
971 return hctx->next_cpu;
972}
973
974void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
975{
976 if (unlikely(blk_mq_hctx_stopped(hctx) ||
977 !blk_mq_hw_queue_mapped(hctx)))
978 return;
979
980 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
981 int cpu = get_cpu();
982 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
983 __blk_mq_run_hw_queue(hctx);
984 put_cpu();
985 return;
986 }
987
988 put_cpu();
989 }
990
991 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
992}
993
994void blk_mq_run_hw_queues(struct request_queue *q, bool async)
995{
996 struct blk_mq_hw_ctx *hctx;
997 int i;
998
999 queue_for_each_hw_ctx(q, hctx, i) {
1000 if ((!blk_mq_hctx_has_pending(hctx) &&
1001 list_empty_careful(&hctx->dispatch)) ||
1002 blk_mq_hctx_stopped(hctx))
1003 continue;
1004
1005 blk_mq_run_hw_queue(hctx, async);
1006 }
1007}
1008EXPORT_SYMBOL(blk_mq_run_hw_queues);
1009
1010/**
1011 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1012 * @q: request queue.
1013 *
1014 * The caller is responsible for serializing this function against
1015 * blk_mq_{start,stop}_hw_queue().
1016 */
1017bool blk_mq_queue_stopped(struct request_queue *q)
1018{
1019 struct blk_mq_hw_ctx *hctx;
1020 int i;
1021
1022 queue_for_each_hw_ctx(q, hctx, i)
1023 if (blk_mq_hctx_stopped(hctx))
1024 return true;
1025
1026 return false;
1027}
1028EXPORT_SYMBOL(blk_mq_queue_stopped);
1029
1030void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1031{
1032 cancel_work(&hctx->run_work);
1033 cancel_delayed_work(&hctx->delay_work);
1034 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1035}
1036EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1037
1038void blk_mq_stop_hw_queues(struct request_queue *q)
1039{
1040 struct blk_mq_hw_ctx *hctx;
1041 int i;
1042
1043 queue_for_each_hw_ctx(q, hctx, i)
1044 blk_mq_stop_hw_queue(hctx);
1045}
1046EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1047
1048void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1049{
1050 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1051
1052 blk_mq_run_hw_queue(hctx, false);
1053}
1054EXPORT_SYMBOL(blk_mq_start_hw_queue);
1055
1056void blk_mq_start_hw_queues(struct request_queue *q)
1057{
1058 struct blk_mq_hw_ctx *hctx;
1059 int i;
1060
1061 queue_for_each_hw_ctx(q, hctx, i)
1062 blk_mq_start_hw_queue(hctx);
1063}
1064EXPORT_SYMBOL(blk_mq_start_hw_queues);
1065
1066void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1067{
1068 struct blk_mq_hw_ctx *hctx;
1069 int i;
1070
1071 queue_for_each_hw_ctx(q, hctx, i) {
1072 if (!blk_mq_hctx_stopped(hctx))
1073 continue;
1074
1075 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1076 blk_mq_run_hw_queue(hctx, async);
1077 }
1078}
1079EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1080
1081static void blk_mq_run_work_fn(struct work_struct *work)
1082{
1083 struct blk_mq_hw_ctx *hctx;
1084
1085 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1086
1087 __blk_mq_run_hw_queue(hctx);
1088}
1089
1090static void blk_mq_delay_work_fn(struct work_struct *work)
1091{
1092 struct blk_mq_hw_ctx *hctx;
1093
1094 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1095
1096 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1097 __blk_mq_run_hw_queue(hctx);
1098}
1099
1100void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1101{
1102 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1103 return;
1104
1105 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1106 &hctx->delay_work, msecs_to_jiffies(msecs));
1107}
1108EXPORT_SYMBOL(blk_mq_delay_queue);
1109
1110static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1111 struct request *rq,
1112 bool at_head)
1113{
1114 struct blk_mq_ctx *ctx = rq->mq_ctx;
1115
1116 trace_block_rq_insert(hctx->queue, rq);
1117
1118 if (at_head)
1119 list_add(&rq->queuelist, &ctx->rq_list);
1120 else
1121 list_add_tail(&rq->queuelist, &ctx->rq_list);
1122}
1123
1124static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1125 struct request *rq, bool at_head)
1126{
1127 struct blk_mq_ctx *ctx = rq->mq_ctx;
1128
1129 __blk_mq_insert_req_list(hctx, rq, at_head);
1130 blk_mq_hctx_mark_pending(hctx, ctx);
1131}
1132
1133void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1134 bool async)
1135{
1136 struct blk_mq_ctx *ctx = rq->mq_ctx;
1137 struct request_queue *q = rq->q;
1138 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1139
1140 spin_lock(&ctx->lock);
1141 __blk_mq_insert_request(hctx, rq, at_head);
1142 spin_unlock(&ctx->lock);
1143
1144 if (run_queue)
1145 blk_mq_run_hw_queue(hctx, async);
1146}
1147
1148static void blk_mq_insert_requests(struct request_queue *q,
1149 struct blk_mq_ctx *ctx,
1150 struct list_head *list,
1151 int depth,
1152 bool from_schedule)
1153
1154{
1155 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1156
1157 trace_block_unplug(q, depth, !from_schedule);
1158
1159 /*
1160 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1161 * offline now
1162 */
1163 spin_lock(&ctx->lock);
1164 while (!list_empty(list)) {
1165 struct request *rq;
1166
1167 rq = list_first_entry(list, struct request, queuelist);
1168 BUG_ON(rq->mq_ctx != ctx);
1169 list_del_init(&rq->queuelist);
1170 __blk_mq_insert_req_list(hctx, rq, false);
1171 }
1172 blk_mq_hctx_mark_pending(hctx, ctx);
1173 spin_unlock(&ctx->lock);
1174
1175 blk_mq_run_hw_queue(hctx, from_schedule);
1176}
1177
1178static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1179{
1180 struct request *rqa = container_of(a, struct request, queuelist);
1181 struct request *rqb = container_of(b, struct request, queuelist);
1182
1183 return !(rqa->mq_ctx < rqb->mq_ctx ||
1184 (rqa->mq_ctx == rqb->mq_ctx &&
1185 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1186}
1187
1188void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1189{
1190 struct blk_mq_ctx *this_ctx;
1191 struct request_queue *this_q;
1192 struct request *rq;
1193 LIST_HEAD(list);
1194 LIST_HEAD(ctx_list);
1195 unsigned int depth;
1196
1197 list_splice_init(&plug->mq_list, &list);
1198
1199 list_sort(NULL, &list, plug_ctx_cmp);
1200
1201 this_q = NULL;
1202 this_ctx = NULL;
1203 depth = 0;
1204
1205 while (!list_empty(&list)) {
1206 rq = list_entry_rq(list.next);
1207 list_del_init(&rq->queuelist);
1208 BUG_ON(!rq->q);
1209 if (rq->mq_ctx != this_ctx) {
1210 if (this_ctx) {
1211 blk_mq_insert_requests(this_q, this_ctx,
1212 &ctx_list, depth,
1213 from_schedule);
1214 }
1215
1216 this_ctx = rq->mq_ctx;
1217 this_q = rq->q;
1218 depth = 0;
1219 }
1220
1221 depth++;
1222 list_add_tail(&rq->queuelist, &ctx_list);
1223 }
1224
1225 /*
1226 * If 'this_ctx' is set, we know we have entries to complete
1227 * on 'ctx_list'. Do those.
1228 */
1229 if (this_ctx) {
1230 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1231 from_schedule);
1232 }
1233}
1234
1235static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1236{
1237 init_request_from_bio(rq, bio);
1238
1239 blk_account_io_start(rq, 1);
1240}
1241
1242static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1243{
1244 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1245 !blk_queue_nomerges(hctx->queue);
1246}
1247
1248static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1249 struct blk_mq_ctx *ctx,
1250 struct request *rq, struct bio *bio)
1251{
1252 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1253 blk_mq_bio_to_request(rq, bio);
1254 spin_lock(&ctx->lock);
1255insert_rq:
1256 __blk_mq_insert_request(hctx, rq, false);
1257 spin_unlock(&ctx->lock);
1258 return false;
1259 } else {
1260 struct request_queue *q = hctx->queue;
1261
1262 spin_lock(&ctx->lock);
1263 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1264 blk_mq_bio_to_request(rq, bio);
1265 goto insert_rq;
1266 }
1267
1268 spin_unlock(&ctx->lock);
1269 __blk_mq_free_request(hctx, ctx, rq);
1270 return true;
1271 }
1272}
1273
1274static struct request *blk_mq_map_request(struct request_queue *q,
1275 struct bio *bio,
1276 struct blk_mq_alloc_data *data)
1277{
1278 struct blk_mq_hw_ctx *hctx;
1279 struct blk_mq_ctx *ctx;
1280 struct request *rq;
1281
1282 blk_queue_enter_live(q);
1283 ctx = blk_mq_get_ctx(q);
1284 hctx = blk_mq_map_queue(q, ctx->cpu);
1285
1286 trace_block_getrq(q, bio, bio->bi_opf);
1287 blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1288 rq = __blk_mq_alloc_request(data, bio->bi_opf);
1289
1290 data->hctx->queued++;
1291 return rq;
1292}
1293
1294static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1295{
1296 int ret;
1297 struct request_queue *q = rq->q;
1298 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1299 struct blk_mq_queue_data bd = {
1300 .rq = rq,
1301 .list = NULL,
1302 .last = 1
1303 };
1304 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1305
1306 if (blk_mq_hctx_stopped(hctx))
1307 goto insert;
1308
1309 /*
1310 * For OK queue, we are done. For error, kill it. Any other
1311 * error (busy), just add it to our list as we previously
1312 * would have done
1313 */
1314 ret = q->mq_ops->queue_rq(hctx, &bd);
1315 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1316 *cookie = new_cookie;
1317 return;
1318 }
1319
1320 __blk_mq_requeue_request(rq);
1321
1322 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1323 *cookie = BLK_QC_T_NONE;
1324 rq->errors = -EIO;
1325 blk_mq_end_request(rq, rq->errors);
1326 return;
1327 }
1328
1329insert:
1330 blk_mq_insert_request(rq, false, true, true);
1331}
1332
1333/*
1334 * Multiple hardware queue variant. This will not use per-process plugs,
1335 * but will attempt to bypass the hctx queueing if we can go straight to
1336 * hardware for SYNC IO.
1337 */
1338static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1339{
1340 const int is_sync = op_is_sync(bio->bi_opf);
1341 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1342 struct blk_mq_alloc_data data;
1343 struct request *rq;
1344 unsigned int request_count = 0, srcu_idx;
1345 struct blk_plug *plug;
1346 struct request *same_queue_rq = NULL;
1347 blk_qc_t cookie;
1348 unsigned int wb_acct;
1349
1350 blk_queue_bounce(q, &bio);
1351
1352 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1353 bio_io_error(bio);
1354 return BLK_QC_T_NONE;
1355 }
1356
1357 blk_queue_split(q, &bio, q->bio_split);
1358
1359 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1360 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1361 return BLK_QC_T_NONE;
1362
1363 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1364
1365 rq = blk_mq_map_request(q, bio, &data);
1366 if (unlikely(!rq)) {
1367 __wbt_done(q->rq_wb, wb_acct);
1368 return BLK_QC_T_NONE;
1369 }
1370
1371 wbt_track(&rq->issue_stat, wb_acct);
1372
1373 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1374
1375 if (unlikely(is_flush_fua)) {
1376 blk_mq_bio_to_request(rq, bio);
1377 blk_insert_flush(rq);
1378 goto run_queue;
1379 }
1380
1381 plug = current->plug;
1382 /*
1383 * If the driver supports defer issued based on 'last', then
1384 * queue it up like normal since we can potentially save some
1385 * CPU this way.
1386 */
1387 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1388 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1389 struct request *old_rq = NULL;
1390
1391 blk_mq_bio_to_request(rq, bio);
1392
1393 /*
1394 * We do limited plugging. If the bio can be merged, do that.
1395 * Otherwise the existing request in the plug list will be
1396 * issued. So the plug list will have one request at most
1397 */
1398 if (plug) {
1399 /*
1400 * The plug list might get flushed before this. If that
1401 * happens, same_queue_rq is invalid and plug list is
1402 * empty
1403 */
1404 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1405 old_rq = same_queue_rq;
1406 list_del_init(&old_rq->queuelist);
1407 }
1408 list_add_tail(&rq->queuelist, &plug->mq_list);
1409 } else /* is_sync */
1410 old_rq = rq;
1411 blk_mq_put_ctx(data.ctx);
1412 if (!old_rq)
1413 goto done;
1414
1415 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1416 rcu_read_lock();
1417 blk_mq_try_issue_directly(old_rq, &cookie);
1418 rcu_read_unlock();
1419 } else {
1420 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1421 blk_mq_try_issue_directly(old_rq, &cookie);
1422 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1423 }
1424 goto done;
1425 }
1426
1427 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1428 /*
1429 * For a SYNC request, send it to the hardware immediately. For
1430 * an ASYNC request, just ensure that we run it later on. The
1431 * latter allows for merging opportunities and more efficient
1432 * dispatching.
1433 */
1434run_queue:
1435 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1436 }
1437 blk_mq_put_ctx(data.ctx);
1438done:
1439 return cookie;
1440}
1441
1442/*
1443 * Single hardware queue variant. This will attempt to use any per-process
1444 * plug for merging and IO deferral.
1445 */
1446static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1447{
1448 const int is_sync = op_is_sync(bio->bi_opf);
1449 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1450 struct blk_plug *plug;
1451 unsigned int request_count = 0;
1452 struct blk_mq_alloc_data data;
1453 struct request *rq;
1454 blk_qc_t cookie;
1455 unsigned int wb_acct;
1456
1457 blk_queue_bounce(q, &bio);
1458
1459 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1460 bio_io_error(bio);
1461 return BLK_QC_T_NONE;
1462 }
1463
1464 blk_queue_split(q, &bio, q->bio_split);
1465
1466 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1467 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1468 return BLK_QC_T_NONE;
1469 } else
1470 request_count = blk_plug_queued_count(q);
1471
1472 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1473
1474 rq = blk_mq_map_request(q, bio, &data);
1475 if (unlikely(!rq)) {
1476 __wbt_done(q->rq_wb, wb_acct);
1477 return BLK_QC_T_NONE;
1478 }
1479
1480 wbt_track(&rq->issue_stat, wb_acct);
1481
1482 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1483
1484 if (unlikely(is_flush_fua)) {
1485 blk_mq_bio_to_request(rq, bio);
1486 blk_insert_flush(rq);
1487 goto run_queue;
1488 }
1489
1490 /*
1491 * A task plug currently exists. Since this is completely lockless,
1492 * utilize that to temporarily store requests until the task is
1493 * either done or scheduled away.
1494 */
1495 plug = current->plug;
1496 if (plug) {
1497 struct request *last = NULL;
1498
1499 blk_mq_bio_to_request(rq, bio);
1500 if (!request_count)
1501 trace_block_plug(q);
1502 else
1503 last = list_entry_rq(plug->mq_list.prev);
1504
1505 blk_mq_put_ctx(data.ctx);
1506
1507 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1508 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1509 blk_flush_plug_list(plug, false);
1510 trace_block_plug(q);
1511 }
1512
1513 list_add_tail(&rq->queuelist, &plug->mq_list);
1514 return cookie;
1515 }
1516
1517 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1518 /*
1519 * For a SYNC request, send it to the hardware immediately. For
1520 * an ASYNC request, just ensure that we run it later on. The
1521 * latter allows for merging opportunities and more efficient
1522 * dispatching.
1523 */
1524run_queue:
1525 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1526 }
1527
1528 blk_mq_put_ctx(data.ctx);
1529 return cookie;
1530}
1531
1532static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1533 struct blk_mq_tags *tags, unsigned int hctx_idx)
1534{
1535 struct page *page;
1536
1537 if (tags->rqs && set->ops->exit_request) {
1538 int i;
1539
1540 for (i = 0; i < tags->nr_tags; i++) {
1541 if (!tags->rqs[i])
1542 continue;
1543 set->ops->exit_request(set->driver_data, tags->rqs[i],
1544 hctx_idx, i);
1545 tags->rqs[i] = NULL;
1546 }
1547 }
1548
1549 while (!list_empty(&tags->page_list)) {
1550 page = list_first_entry(&tags->page_list, struct page, lru);
1551 list_del_init(&page->lru);
1552 /*
1553 * Remove kmemleak object previously allocated in
1554 * blk_mq_init_rq_map().
1555 */
1556 kmemleak_free(page_address(page));
1557 __free_pages(page, page->private);
1558 }
1559
1560 kfree(tags->rqs);
1561
1562 blk_mq_free_tags(tags);
1563}
1564
1565static size_t order_to_size(unsigned int order)
1566{
1567 return (size_t)PAGE_SIZE << order;
1568}
1569
1570static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1571 unsigned int hctx_idx)
1572{
1573 struct blk_mq_tags *tags;
1574 unsigned int i, j, entries_per_page, max_order = 4;
1575 size_t rq_size, left;
1576
1577 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1578 set->numa_node,
1579 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1580 if (!tags)
1581 return NULL;
1582
1583 INIT_LIST_HEAD(&tags->page_list);
1584
1585 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1586 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1587 set->numa_node);
1588 if (!tags->rqs) {
1589 blk_mq_free_tags(tags);
1590 return NULL;
1591 }
1592
1593 /*
1594 * rq_size is the size of the request plus driver payload, rounded
1595 * to the cacheline size
1596 */
1597 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1598 cache_line_size());
1599 left = rq_size * set->queue_depth;
1600
1601 for (i = 0; i < set->queue_depth; ) {
1602 int this_order = max_order;
1603 struct page *page;
1604 int to_do;
1605 void *p;
1606
1607 while (this_order && left < order_to_size(this_order - 1))
1608 this_order--;
1609
1610 do {
1611 page = alloc_pages_node(set->numa_node,
1612 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1613 this_order);
1614 if (page)
1615 break;
1616 if (!this_order--)
1617 break;
1618 if (order_to_size(this_order) < rq_size)
1619 break;
1620 } while (1);
1621
1622 if (!page)
1623 goto fail;
1624
1625 page->private = this_order;
1626 list_add_tail(&page->lru, &tags->page_list);
1627
1628 p = page_address(page);
1629 /*
1630 * Allow kmemleak to scan these pages as they contain pointers
1631 * to additional allocations like via ops->init_request().
1632 */
1633 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1634 entries_per_page = order_to_size(this_order) / rq_size;
1635 to_do = min(entries_per_page, set->queue_depth - i);
1636 left -= to_do * rq_size;
1637 for (j = 0; j < to_do; j++) {
1638 tags->rqs[i] = p;
1639 if (set->ops->init_request) {
1640 if (set->ops->init_request(set->driver_data,
1641 tags->rqs[i], hctx_idx, i,
1642 set->numa_node)) {
1643 tags->rqs[i] = NULL;
1644 goto fail;
1645 }
1646 }
1647
1648 p += rq_size;
1649 i++;
1650 }
1651 }
1652 return tags;
1653
1654fail:
1655 blk_mq_free_rq_map(set, tags, hctx_idx);
1656 return NULL;
1657}
1658
1659/*
1660 * 'cpu' is going away. splice any existing rq_list entries from this
1661 * software queue to the hw queue dispatch list, and ensure that it
1662 * gets run.
1663 */
1664static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1665{
1666 struct blk_mq_hw_ctx *hctx;
1667 struct blk_mq_ctx *ctx;
1668 LIST_HEAD(tmp);
1669
1670 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1671 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1672
1673 spin_lock(&ctx->lock);
1674 if (!list_empty(&ctx->rq_list)) {
1675 list_splice_init(&ctx->rq_list, &tmp);
1676 blk_mq_hctx_clear_pending(hctx, ctx);
1677 }
1678 spin_unlock(&ctx->lock);
1679
1680 if (list_empty(&tmp))
1681 return 0;
1682
1683 spin_lock(&hctx->lock);
1684 list_splice_tail_init(&tmp, &hctx->dispatch);
1685 spin_unlock(&hctx->lock);
1686
1687 blk_mq_run_hw_queue(hctx, true);
1688 return 0;
1689}
1690
1691static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1692{
1693 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1694 &hctx->cpuhp_dead);
1695}
1696
1697/* hctx->ctxs will be freed in queue's release handler */
1698static void blk_mq_exit_hctx(struct request_queue *q,
1699 struct blk_mq_tag_set *set,
1700 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1701{
1702 unsigned flush_start_tag = set->queue_depth;
1703
1704 blk_mq_tag_idle(hctx);
1705
1706 if (set->ops->exit_request)
1707 set->ops->exit_request(set->driver_data,
1708 hctx->fq->flush_rq, hctx_idx,
1709 flush_start_tag + hctx_idx);
1710
1711 if (set->ops->exit_hctx)
1712 set->ops->exit_hctx(hctx, hctx_idx);
1713
1714 if (hctx->flags & BLK_MQ_F_BLOCKING)
1715 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1716
1717 blk_mq_remove_cpuhp(hctx);
1718 blk_free_flush_queue(hctx->fq);
1719 sbitmap_free(&hctx->ctx_map);
1720}
1721
1722static void blk_mq_exit_hw_queues(struct request_queue *q,
1723 struct blk_mq_tag_set *set, int nr_queue)
1724{
1725 struct blk_mq_hw_ctx *hctx;
1726 unsigned int i;
1727
1728 queue_for_each_hw_ctx(q, hctx, i) {
1729 if (i == nr_queue)
1730 break;
1731 blk_mq_exit_hctx(q, set, hctx, i);
1732 }
1733}
1734
1735static void blk_mq_free_hw_queues(struct request_queue *q,
1736 struct blk_mq_tag_set *set)
1737{
1738 struct blk_mq_hw_ctx *hctx;
1739 unsigned int i;
1740
1741 queue_for_each_hw_ctx(q, hctx, i)
1742 free_cpumask_var(hctx->cpumask);
1743}
1744
1745static int blk_mq_init_hctx(struct request_queue *q,
1746 struct blk_mq_tag_set *set,
1747 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1748{
1749 int node;
1750 unsigned flush_start_tag = set->queue_depth;
1751
1752 node = hctx->numa_node;
1753 if (node == NUMA_NO_NODE)
1754 node = hctx->numa_node = set->numa_node;
1755
1756 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1757 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1758 spin_lock_init(&hctx->lock);
1759 INIT_LIST_HEAD(&hctx->dispatch);
1760 hctx->queue = q;
1761 hctx->queue_num = hctx_idx;
1762 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1763
1764 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1765
1766 hctx->tags = set->tags[hctx_idx];
1767
1768 /*
1769 * Allocate space for all possible cpus to avoid allocation at
1770 * runtime
1771 */
1772 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1773 GFP_KERNEL, node);
1774 if (!hctx->ctxs)
1775 goto unregister_cpu_notifier;
1776
1777 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1778 node))
1779 goto free_ctxs;
1780
1781 hctx->nr_ctx = 0;
1782
1783 if (set->ops->init_hctx &&
1784 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1785 goto free_bitmap;
1786
1787 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1788 if (!hctx->fq)
1789 goto exit_hctx;
1790
1791 if (set->ops->init_request &&
1792 set->ops->init_request(set->driver_data,
1793 hctx->fq->flush_rq, hctx_idx,
1794 flush_start_tag + hctx_idx, node))
1795 goto free_fq;
1796
1797 if (hctx->flags & BLK_MQ_F_BLOCKING)
1798 init_srcu_struct(&hctx->queue_rq_srcu);
1799
1800 return 0;
1801
1802 free_fq:
1803 kfree(hctx->fq);
1804 exit_hctx:
1805 if (set->ops->exit_hctx)
1806 set->ops->exit_hctx(hctx, hctx_idx);
1807 free_bitmap:
1808 sbitmap_free(&hctx->ctx_map);
1809 free_ctxs:
1810 kfree(hctx->ctxs);
1811 unregister_cpu_notifier:
1812 blk_mq_remove_cpuhp(hctx);
1813 return -1;
1814}
1815
1816static void blk_mq_init_cpu_queues(struct request_queue *q,
1817 unsigned int nr_hw_queues)
1818{
1819 unsigned int i;
1820
1821 for_each_possible_cpu(i) {
1822 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1823 struct blk_mq_hw_ctx *hctx;
1824
1825 memset(__ctx, 0, sizeof(*__ctx));
1826 __ctx->cpu = i;
1827 spin_lock_init(&__ctx->lock);
1828 INIT_LIST_HEAD(&__ctx->rq_list);
1829 __ctx->queue = q;
1830 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1831 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1832
1833 /* If the cpu isn't online, the cpu is mapped to first hctx */
1834 if (!cpu_online(i))
1835 continue;
1836
1837 hctx = blk_mq_map_queue(q, i);
1838
1839 /*
1840 * Set local node, IFF we have more than one hw queue. If
1841 * not, we remain on the home node of the device
1842 */
1843 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1844 hctx->numa_node = local_memory_node(cpu_to_node(i));
1845 }
1846}
1847
1848static void blk_mq_map_swqueue(struct request_queue *q,
1849 const struct cpumask *online_mask)
1850{
1851 unsigned int i;
1852 struct blk_mq_hw_ctx *hctx;
1853 struct blk_mq_ctx *ctx;
1854 struct blk_mq_tag_set *set = q->tag_set;
1855
1856 /*
1857 * Avoid others reading imcomplete hctx->cpumask through sysfs
1858 */
1859 mutex_lock(&q->sysfs_lock);
1860
1861 queue_for_each_hw_ctx(q, hctx, i) {
1862 cpumask_clear(hctx->cpumask);
1863 hctx->nr_ctx = 0;
1864 }
1865
1866 /*
1867 * Map software to hardware queues
1868 */
1869 for_each_possible_cpu(i) {
1870 /* If the cpu isn't online, the cpu is mapped to first hctx */
1871 if (!cpumask_test_cpu(i, online_mask))
1872 continue;
1873
1874 ctx = per_cpu_ptr(q->queue_ctx, i);
1875 hctx = blk_mq_map_queue(q, i);
1876
1877 cpumask_set_cpu(i, hctx->cpumask);
1878 ctx->index_hw = hctx->nr_ctx;
1879 hctx->ctxs[hctx->nr_ctx++] = ctx;
1880 }
1881
1882 mutex_unlock(&q->sysfs_lock);
1883
1884 queue_for_each_hw_ctx(q, hctx, i) {
1885 /*
1886 * If no software queues are mapped to this hardware queue,
1887 * disable it and free the request entries.
1888 */
1889 if (!hctx->nr_ctx) {
1890 if (set->tags[i]) {
1891 blk_mq_free_rq_map(set, set->tags[i], i);
1892 set->tags[i] = NULL;
1893 }
1894 hctx->tags = NULL;
1895 continue;
1896 }
1897
1898 /* unmapped hw queue can be remapped after CPU topo changed */
1899 if (!set->tags[i])
1900 set->tags[i] = blk_mq_init_rq_map(set, i);
1901 hctx->tags = set->tags[i];
1902 WARN_ON(!hctx->tags);
1903
1904 /*
1905 * Set the map size to the number of mapped software queues.
1906 * This is more accurate and more efficient than looping
1907 * over all possibly mapped software queues.
1908 */
1909 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1910
1911 /*
1912 * Initialize batch roundrobin counts
1913 */
1914 hctx->next_cpu = cpumask_first(hctx->cpumask);
1915 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1916 }
1917}
1918
1919static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1920{
1921 struct blk_mq_hw_ctx *hctx;
1922 int i;
1923
1924 queue_for_each_hw_ctx(q, hctx, i) {
1925 if (shared)
1926 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1927 else
1928 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1929 }
1930}
1931
1932static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1933{
1934 struct request_queue *q;
1935
1936 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1937 blk_mq_freeze_queue(q);
1938 queue_set_hctx_shared(q, shared);
1939 blk_mq_unfreeze_queue(q);
1940 }
1941}
1942
1943static void blk_mq_del_queue_tag_set(struct request_queue *q)
1944{
1945 struct blk_mq_tag_set *set = q->tag_set;
1946
1947 mutex_lock(&set->tag_list_lock);
1948 list_del_init(&q->tag_set_list);
1949 if (list_is_singular(&set->tag_list)) {
1950 /* just transitioned to unshared */
1951 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1952 /* update existing queue */
1953 blk_mq_update_tag_set_depth(set, false);
1954 }
1955 mutex_unlock(&set->tag_list_lock);
1956}
1957
1958static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1959 struct request_queue *q)
1960{
1961 q->tag_set = set;
1962
1963 mutex_lock(&set->tag_list_lock);
1964
1965 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1966 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1967 set->flags |= BLK_MQ_F_TAG_SHARED;
1968 /* update existing queue */
1969 blk_mq_update_tag_set_depth(set, true);
1970 }
1971 if (set->flags & BLK_MQ_F_TAG_SHARED)
1972 queue_set_hctx_shared(q, true);
1973 list_add_tail(&q->tag_set_list, &set->tag_list);
1974
1975 mutex_unlock(&set->tag_list_lock);
1976}
1977
1978/*
1979 * It is the actual release handler for mq, but we do it from
1980 * request queue's release handler for avoiding use-after-free
1981 * and headache because q->mq_kobj shouldn't have been introduced,
1982 * but we can't group ctx/kctx kobj without it.
1983 */
1984void blk_mq_release(struct request_queue *q)
1985{
1986 struct blk_mq_hw_ctx *hctx;
1987 unsigned int i;
1988
1989 /* hctx kobj stays in hctx */
1990 queue_for_each_hw_ctx(q, hctx, i) {
1991 if (!hctx)
1992 continue;
1993 kfree(hctx->ctxs);
1994 kfree(hctx);
1995 }
1996
1997 q->mq_map = NULL;
1998
1999 kfree(q->queue_hw_ctx);
2000
2001 /* ctx kobj stays in queue_ctx */
2002 free_percpu(q->queue_ctx);
2003}
2004
2005struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2006{
2007 struct request_queue *uninit_q, *q;
2008
2009 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2010 if (!uninit_q)
2011 return ERR_PTR(-ENOMEM);
2012
2013 q = blk_mq_init_allocated_queue(set, uninit_q);
2014 if (IS_ERR(q))
2015 blk_cleanup_queue(uninit_q);
2016
2017 return q;
2018}
2019EXPORT_SYMBOL(blk_mq_init_queue);
2020
2021static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2022 struct request_queue *q)
2023{
2024 int i, j;
2025 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2026
2027 blk_mq_sysfs_unregister(q);
2028 for (i = 0; i < set->nr_hw_queues; i++) {
2029 int node;
2030
2031 if (hctxs[i])
2032 continue;
2033
2034 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2035 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2036 GFP_KERNEL, node);
2037 if (!hctxs[i])
2038 break;
2039
2040 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2041 node)) {
2042 kfree(hctxs[i]);
2043 hctxs[i] = NULL;
2044 break;
2045 }
2046
2047 atomic_set(&hctxs[i]->nr_active, 0);
2048 hctxs[i]->numa_node = node;
2049 hctxs[i]->queue_num = i;
2050
2051 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2052 free_cpumask_var(hctxs[i]->cpumask);
2053 kfree(hctxs[i]);
2054 hctxs[i] = NULL;
2055 break;
2056 }
2057 blk_mq_hctx_kobj_init(hctxs[i]);
2058 }
2059 for (j = i; j < q->nr_hw_queues; j++) {
2060 struct blk_mq_hw_ctx *hctx = hctxs[j];
2061
2062 if (hctx) {
2063 if (hctx->tags) {
2064 blk_mq_free_rq_map(set, hctx->tags, j);
2065 set->tags[j] = NULL;
2066 }
2067 blk_mq_exit_hctx(q, set, hctx, j);
2068 free_cpumask_var(hctx->cpumask);
2069 kobject_put(&hctx->kobj);
2070 kfree(hctx->ctxs);
2071 kfree(hctx);
2072 hctxs[j] = NULL;
2073
2074 }
2075 }
2076 q->nr_hw_queues = i;
2077 blk_mq_sysfs_register(q);
2078}
2079
2080struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2081 struct request_queue *q)
2082{
2083 /* mark the queue as mq asap */
2084 q->mq_ops = set->ops;
2085
2086 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2087 if (!q->queue_ctx)
2088 goto err_exit;
2089
2090 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2091 GFP_KERNEL, set->numa_node);
2092 if (!q->queue_hw_ctx)
2093 goto err_percpu;
2094
2095 q->mq_map = set->mq_map;
2096
2097 blk_mq_realloc_hw_ctxs(set, q);
2098 if (!q->nr_hw_queues)
2099 goto err_hctxs;
2100
2101 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2102 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2103
2104 q->nr_queues = nr_cpu_ids;
2105
2106 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2107
2108 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2109 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2110
2111 q->sg_reserved_size = INT_MAX;
2112
2113 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2114 INIT_LIST_HEAD(&q->requeue_list);
2115 spin_lock_init(&q->requeue_lock);
2116
2117 if (q->nr_hw_queues > 1)
2118 blk_queue_make_request(q, blk_mq_make_request);
2119 else
2120 blk_queue_make_request(q, blk_sq_make_request);
2121
2122 /*
2123 * Do this after blk_queue_make_request() overrides it...
2124 */
2125 q->nr_requests = set->queue_depth;
2126
2127 if (set->ops->complete)
2128 blk_queue_softirq_done(q, set->ops->complete);
2129
2130 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2131
2132 get_online_cpus();
2133 mutex_lock(&all_q_mutex);
2134
2135 list_add_tail(&q->all_q_node, &all_q_list);
2136 blk_mq_add_queue_tag_set(set, q);
2137 blk_mq_map_swqueue(q, cpu_online_mask);
2138
2139 mutex_unlock(&all_q_mutex);
2140 put_online_cpus();
2141
2142 return q;
2143
2144err_hctxs:
2145 kfree(q->queue_hw_ctx);
2146err_percpu:
2147 free_percpu(q->queue_ctx);
2148err_exit:
2149 q->mq_ops = NULL;
2150 return ERR_PTR(-ENOMEM);
2151}
2152EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2153
2154void blk_mq_free_queue(struct request_queue *q)
2155{
2156 struct blk_mq_tag_set *set = q->tag_set;
2157
2158 mutex_lock(&all_q_mutex);
2159 list_del_init(&q->all_q_node);
2160 mutex_unlock(&all_q_mutex);
2161
2162 wbt_exit(q);
2163
2164 blk_mq_del_queue_tag_set(q);
2165
2166 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2167 blk_mq_free_hw_queues(q, set);
2168}
2169
2170/* Basically redo blk_mq_init_queue with queue frozen */
2171static void blk_mq_queue_reinit(struct request_queue *q,
2172 const struct cpumask *online_mask)
2173{
2174 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2175
2176 blk_mq_sysfs_unregister(q);
2177
2178 /*
2179 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2180 * we should change hctx numa_node according to new topology (this
2181 * involves free and re-allocate memory, worthy doing?)
2182 */
2183
2184 blk_mq_map_swqueue(q, online_mask);
2185
2186 blk_mq_sysfs_register(q);
2187}
2188
2189/*
2190 * New online cpumask which is going to be set in this hotplug event.
2191 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2192 * one-by-one and dynamically allocating this could result in a failure.
2193 */
2194static struct cpumask cpuhp_online_new;
2195
2196static void blk_mq_queue_reinit_work(void)
2197{
2198 struct request_queue *q;
2199
2200 mutex_lock(&all_q_mutex);
2201 /*
2202 * We need to freeze and reinit all existing queues. Freezing
2203 * involves synchronous wait for an RCU grace period and doing it
2204 * one by one may take a long time. Start freezing all queues in
2205 * one swoop and then wait for the completions so that freezing can
2206 * take place in parallel.
2207 */
2208 list_for_each_entry(q, &all_q_list, all_q_node)
2209 blk_mq_freeze_queue_start(q);
2210 list_for_each_entry(q, &all_q_list, all_q_node) {
2211 blk_mq_freeze_queue_wait(q);
2212
2213 /*
2214 * timeout handler can't touch hw queue during the
2215 * reinitialization
2216 */
2217 del_timer_sync(&q->timeout);
2218 }
2219
2220 list_for_each_entry(q, &all_q_list, all_q_node)
2221 blk_mq_queue_reinit(q, &cpuhp_online_new);
2222
2223 list_for_each_entry(q, &all_q_list, all_q_node)
2224 blk_mq_unfreeze_queue(q);
2225
2226 mutex_unlock(&all_q_mutex);
2227}
2228
2229static int blk_mq_queue_reinit_dead(unsigned int cpu)
2230{
2231 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2232 blk_mq_queue_reinit_work();
2233 return 0;
2234}
2235
2236/*
2237 * Before hotadded cpu starts handling requests, new mappings must be
2238 * established. Otherwise, these requests in hw queue might never be
2239 * dispatched.
2240 *
2241 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2242 * for CPU0, and ctx1 for CPU1).
2243 *
2244 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2245 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2246 *
2247 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2248 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2249 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2250 * is ignored.
2251 */
2252static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2253{
2254 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2255 cpumask_set_cpu(cpu, &cpuhp_online_new);
2256 blk_mq_queue_reinit_work();
2257 return 0;
2258}
2259
2260static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2261{
2262 int i;
2263
2264 for (i = 0; i < set->nr_hw_queues; i++) {
2265 set->tags[i] = blk_mq_init_rq_map(set, i);
2266 if (!set->tags[i])
2267 goto out_unwind;
2268 }
2269
2270 return 0;
2271
2272out_unwind:
2273 while (--i >= 0)
2274 blk_mq_free_rq_map(set, set->tags[i], i);
2275
2276 return -ENOMEM;
2277}
2278
2279/*
2280 * Allocate the request maps associated with this tag_set. Note that this
2281 * may reduce the depth asked for, if memory is tight. set->queue_depth
2282 * will be updated to reflect the allocated depth.
2283 */
2284static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2285{
2286 unsigned int depth;
2287 int err;
2288
2289 depth = set->queue_depth;
2290 do {
2291 err = __blk_mq_alloc_rq_maps(set);
2292 if (!err)
2293 break;
2294
2295 set->queue_depth >>= 1;
2296 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2297 err = -ENOMEM;
2298 break;
2299 }
2300 } while (set->queue_depth);
2301
2302 if (!set->queue_depth || err) {
2303 pr_err("blk-mq: failed to allocate request map\n");
2304 return -ENOMEM;
2305 }
2306
2307 if (depth != set->queue_depth)
2308 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2309 depth, set->queue_depth);
2310
2311 return 0;
2312}
2313
2314/*
2315 * Alloc a tag set to be associated with one or more request queues.
2316 * May fail with EINVAL for various error conditions. May adjust the
2317 * requested depth down, if if it too large. In that case, the set
2318 * value will be stored in set->queue_depth.
2319 */
2320int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2321{
2322 int ret;
2323
2324 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2325
2326 if (!set->nr_hw_queues)
2327 return -EINVAL;
2328 if (!set->queue_depth)
2329 return -EINVAL;
2330 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2331 return -EINVAL;
2332
2333 if (!set->ops->queue_rq)
2334 return -EINVAL;
2335
2336 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2337 pr_info("blk-mq: reduced tag depth to %u\n",
2338 BLK_MQ_MAX_DEPTH);
2339 set->queue_depth = BLK_MQ_MAX_DEPTH;
2340 }
2341
2342 /*
2343 * If a crashdump is active, then we are potentially in a very
2344 * memory constrained environment. Limit us to 1 queue and
2345 * 64 tags to prevent using too much memory.
2346 */
2347 if (is_kdump_kernel()) {
2348 set->nr_hw_queues = 1;
2349 set->queue_depth = min(64U, set->queue_depth);
2350 }
2351 /*
2352 * There is no use for more h/w queues than cpus.
2353 */
2354 if (set->nr_hw_queues > nr_cpu_ids)
2355 set->nr_hw_queues = nr_cpu_ids;
2356
2357 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2358 GFP_KERNEL, set->numa_node);
2359 if (!set->tags)
2360 return -ENOMEM;
2361
2362 ret = -ENOMEM;
2363 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2364 GFP_KERNEL, set->numa_node);
2365 if (!set->mq_map)
2366 goto out_free_tags;
2367
2368 if (set->ops->map_queues)
2369 ret = set->ops->map_queues(set);
2370 else
2371 ret = blk_mq_map_queues(set);
2372 if (ret)
2373 goto out_free_mq_map;
2374
2375 ret = blk_mq_alloc_rq_maps(set);
2376 if (ret)
2377 goto out_free_mq_map;
2378
2379 mutex_init(&set->tag_list_lock);
2380 INIT_LIST_HEAD(&set->tag_list);
2381
2382 return 0;
2383
2384out_free_mq_map:
2385 kfree(set->mq_map);
2386 set->mq_map = NULL;
2387out_free_tags:
2388 kfree(set->tags);
2389 set->tags = NULL;
2390 return ret;
2391}
2392EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2393
2394void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2395{
2396 int i;
2397
2398 for (i = 0; i < nr_cpu_ids; i++) {
2399 if (set->tags[i])
2400 blk_mq_free_rq_map(set, set->tags[i], i);
2401 }
2402
2403 kfree(set->mq_map);
2404 set->mq_map = NULL;
2405
2406 kfree(set->tags);
2407 set->tags = NULL;
2408}
2409EXPORT_SYMBOL(blk_mq_free_tag_set);
2410
2411int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2412{
2413 struct blk_mq_tag_set *set = q->tag_set;
2414 struct blk_mq_hw_ctx *hctx;
2415 int i, ret;
2416
2417 if (!set || nr > set->queue_depth)
2418 return -EINVAL;
2419
2420 ret = 0;
2421 queue_for_each_hw_ctx(q, hctx, i) {
2422 if (!hctx->tags)
2423 continue;
2424 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2425 if (ret)
2426 break;
2427 }
2428
2429 if (!ret)
2430 q->nr_requests = nr;
2431
2432 return ret;
2433}
2434
2435void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2436{
2437 struct request_queue *q;
2438
2439 if (nr_hw_queues > nr_cpu_ids)
2440 nr_hw_queues = nr_cpu_ids;
2441 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2442 return;
2443
2444 list_for_each_entry(q, &set->tag_list, tag_set_list)
2445 blk_mq_freeze_queue(q);
2446
2447 set->nr_hw_queues = nr_hw_queues;
2448 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2449 blk_mq_realloc_hw_ctxs(set, q);
2450
2451 if (q->nr_hw_queues > 1)
2452 blk_queue_make_request(q, blk_mq_make_request);
2453 else
2454 blk_queue_make_request(q, blk_sq_make_request);
2455
2456 blk_mq_queue_reinit(q, cpu_online_mask);
2457 }
2458
2459 list_for_each_entry(q, &set->tag_list, tag_set_list)
2460 blk_mq_unfreeze_queue(q);
2461}
2462EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2463
2464void blk_mq_disable_hotplug(void)
2465{
2466 mutex_lock(&all_q_mutex);
2467}
2468
2469void blk_mq_enable_hotplug(void)
2470{
2471 mutex_unlock(&all_q_mutex);
2472}
2473
2474static int __init blk_mq_init(void)
2475{
2476 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2477 blk_mq_hctx_notify_dead);
2478
2479 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2480 blk_mq_queue_reinit_prepare,
2481 blk_mq_queue_reinit_dead);
2482 return 0;
2483}
2484subsys_initcall(blk_mq_init);