]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - block/blk-mq.c
blk-mq: move debugfs declarations to a separate header file
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
... / ...
CommitLineData
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/kmemleak.h>
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/sched/topology.h>
24#include <linux/sched/signal.h>
25#include <linux/delay.h>
26#include <linux/crash_dump.h>
27#include <linux/prefetch.h>
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
34#include "blk-mq-tag.h"
35#include "blk-stat.h"
36#include "blk-wbt.h"
37#include "blk-mq-sched.h"
38
39static DEFINE_MUTEX(all_q_mutex);
40static LIST_HEAD(all_q_list);
41
42static void blk_mq_poll_stats_start(struct request_queue *q);
43static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
45
46static int blk_mq_poll_stats_bkt(const struct request *rq)
47{
48 int ddir, bytes, bucket;
49
50 ddir = rq_data_dir(rq);
51 bytes = blk_rq_bytes(rq);
52
53 bucket = ddir + 2*(ilog2(bytes) - 9);
54
55 if (bucket < 0)
56 return -1;
57 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59
60 return bucket;
61}
62
63/*
64 * Check if any of the ctx's have pending work in this hardware queue
65 */
66bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67{
68 return sbitmap_any_bit_set(&hctx->ctx_map) ||
69 !list_empty_careful(&hctx->dispatch) ||
70 blk_mq_sched_has_work(hctx);
71}
72
73/*
74 * Mark this ctx as having pending work in this hardware queue
75 */
76static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
77 struct blk_mq_ctx *ctx)
78{
79 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
80 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81}
82
83static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 struct blk_mq_ctx *ctx)
85{
86 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87}
88
89void blk_freeze_queue_start(struct request_queue *q)
90{
91 int freeze_depth;
92
93 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
94 if (freeze_depth == 1) {
95 percpu_ref_kill(&q->q_usage_counter);
96 blk_mq_run_hw_queues(q, false);
97 }
98}
99EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
100
101void blk_mq_freeze_queue_wait(struct request_queue *q)
102{
103 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
104}
105EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
106
107int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
108 unsigned long timeout)
109{
110 return wait_event_timeout(q->mq_freeze_wq,
111 percpu_ref_is_zero(&q->q_usage_counter),
112 timeout);
113}
114EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
115
116/*
117 * Guarantee no request is in use, so we can change any data structure of
118 * the queue afterward.
119 */
120void blk_freeze_queue(struct request_queue *q)
121{
122 /*
123 * In the !blk_mq case we are only calling this to kill the
124 * q_usage_counter, otherwise this increases the freeze depth
125 * and waits for it to return to zero. For this reason there is
126 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
127 * exported to drivers as the only user for unfreeze is blk_mq.
128 */
129 blk_freeze_queue_start(q);
130 blk_mq_freeze_queue_wait(q);
131}
132
133void blk_mq_freeze_queue(struct request_queue *q)
134{
135 /*
136 * ...just an alias to keep freeze and unfreeze actions balanced
137 * in the blk_mq_* namespace
138 */
139 blk_freeze_queue(q);
140}
141EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142
143void blk_mq_unfreeze_queue(struct request_queue *q)
144{
145 int freeze_depth;
146
147 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
148 WARN_ON_ONCE(freeze_depth < 0);
149 if (!freeze_depth) {
150 percpu_ref_reinit(&q->q_usage_counter);
151 wake_up_all(&q->mq_freeze_wq);
152 }
153}
154EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155
156/**
157 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
158 * @q: request queue.
159 *
160 * Note: this function does not prevent that the struct request end_io()
161 * callback function is invoked. Additionally, it is not prevented that
162 * new queue_rq() calls occur unless the queue has been stopped first.
163 */
164void blk_mq_quiesce_queue(struct request_queue *q)
165{
166 struct blk_mq_hw_ctx *hctx;
167 unsigned int i;
168 bool rcu = false;
169
170 __blk_mq_stop_hw_queues(q, true);
171
172 queue_for_each_hw_ctx(q, hctx, i) {
173 if (hctx->flags & BLK_MQ_F_BLOCKING)
174 synchronize_srcu(&hctx->queue_rq_srcu);
175 else
176 rcu = true;
177 }
178 if (rcu)
179 synchronize_rcu();
180}
181EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
182
183void blk_mq_wake_waiters(struct request_queue *q)
184{
185 struct blk_mq_hw_ctx *hctx;
186 unsigned int i;
187
188 queue_for_each_hw_ctx(q, hctx, i)
189 if (blk_mq_hw_queue_mapped(hctx))
190 blk_mq_tag_wakeup_all(hctx->tags, true);
191
192 /*
193 * If we are called because the queue has now been marked as
194 * dying, we need to ensure that processes currently waiting on
195 * the queue are notified as well.
196 */
197 wake_up_all(&q->mq_freeze_wq);
198}
199
200bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
201{
202 return blk_mq_has_free_tags(hctx->tags);
203}
204EXPORT_SYMBOL(blk_mq_can_queue);
205
206void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
207 struct request *rq, unsigned int op)
208{
209 INIT_LIST_HEAD(&rq->queuelist);
210 /* csd/requeue_work/fifo_time is initialized before use */
211 rq->q = q;
212 rq->mq_ctx = ctx;
213 rq->cmd_flags = op;
214 if (blk_queue_io_stat(q))
215 rq->rq_flags |= RQF_IO_STAT;
216 /* do not touch atomic flags, it needs atomic ops against the timer */
217 rq->cpu = -1;
218 INIT_HLIST_NODE(&rq->hash);
219 RB_CLEAR_NODE(&rq->rb_node);
220 rq->rq_disk = NULL;
221 rq->part = NULL;
222 rq->start_time = jiffies;
223#ifdef CONFIG_BLK_CGROUP
224 rq->rl = NULL;
225 set_start_time_ns(rq);
226 rq->io_start_time_ns = 0;
227#endif
228 rq->nr_phys_segments = 0;
229#if defined(CONFIG_BLK_DEV_INTEGRITY)
230 rq->nr_integrity_segments = 0;
231#endif
232 rq->special = NULL;
233 /* tag was already set */
234 rq->extra_len = 0;
235
236 INIT_LIST_HEAD(&rq->timeout_list);
237 rq->timeout = 0;
238
239 rq->end_io = NULL;
240 rq->end_io_data = NULL;
241 rq->next_rq = NULL;
242
243 ctx->rq_dispatched[op_is_sync(op)]++;
244}
245EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
246
247struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
248 unsigned int op)
249{
250 struct request *rq;
251 unsigned int tag;
252
253 tag = blk_mq_get_tag(data);
254 if (tag != BLK_MQ_TAG_FAIL) {
255 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
256
257 rq = tags->static_rqs[tag];
258
259 if (data->flags & BLK_MQ_REQ_INTERNAL) {
260 rq->tag = -1;
261 rq->internal_tag = tag;
262 } else {
263 if (blk_mq_tag_busy(data->hctx)) {
264 rq->rq_flags = RQF_MQ_INFLIGHT;
265 atomic_inc(&data->hctx->nr_active);
266 }
267 rq->tag = tag;
268 rq->internal_tag = -1;
269 data->hctx->tags->rqs[rq->tag] = rq;
270 }
271
272 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
273 return rq;
274 }
275
276 return NULL;
277}
278EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
279
280struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
281 unsigned int flags)
282{
283 struct blk_mq_alloc_data alloc_data = { .flags = flags };
284 struct request *rq;
285 int ret;
286
287 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
288 if (ret)
289 return ERR_PTR(ret);
290
291 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
292
293 blk_mq_put_ctx(alloc_data.ctx);
294 blk_queue_exit(q);
295
296 if (!rq)
297 return ERR_PTR(-EWOULDBLOCK);
298
299 rq->__data_len = 0;
300 rq->__sector = (sector_t) -1;
301 rq->bio = rq->biotail = NULL;
302 return rq;
303}
304EXPORT_SYMBOL(blk_mq_alloc_request);
305
306struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
307 unsigned int flags, unsigned int hctx_idx)
308{
309 struct blk_mq_alloc_data alloc_data = { .flags = flags };
310 struct request *rq;
311 unsigned int cpu;
312 int ret;
313
314 /*
315 * If the tag allocator sleeps we could get an allocation for a
316 * different hardware context. No need to complicate the low level
317 * allocator for this for the rare use case of a command tied to
318 * a specific queue.
319 */
320 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
321 return ERR_PTR(-EINVAL);
322
323 if (hctx_idx >= q->nr_hw_queues)
324 return ERR_PTR(-EIO);
325
326 ret = blk_queue_enter(q, true);
327 if (ret)
328 return ERR_PTR(ret);
329
330 /*
331 * Check if the hardware context is actually mapped to anything.
332 * If not tell the caller that it should skip this queue.
333 */
334 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
335 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
336 blk_queue_exit(q);
337 return ERR_PTR(-EXDEV);
338 }
339 cpu = cpumask_first(alloc_data.hctx->cpumask);
340 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
341
342 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
343
344 blk_queue_exit(q);
345
346 if (!rq)
347 return ERR_PTR(-EWOULDBLOCK);
348
349 return rq;
350}
351EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
352
353void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
354 struct request *rq)
355{
356 const int sched_tag = rq->internal_tag;
357 struct request_queue *q = rq->q;
358
359 if (rq->rq_flags & RQF_MQ_INFLIGHT)
360 atomic_dec(&hctx->nr_active);
361
362 wbt_done(q->rq_wb, &rq->issue_stat);
363 rq->rq_flags = 0;
364
365 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
366 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
367 if (rq->tag != -1)
368 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
369 if (sched_tag != -1)
370 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
371 blk_mq_sched_restart(hctx);
372 blk_queue_exit(q);
373}
374
375static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
376 struct request *rq)
377{
378 struct blk_mq_ctx *ctx = rq->mq_ctx;
379
380 ctx->rq_completed[rq_is_sync(rq)]++;
381 __blk_mq_finish_request(hctx, ctx, rq);
382}
383
384void blk_mq_finish_request(struct request *rq)
385{
386 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
387}
388EXPORT_SYMBOL_GPL(blk_mq_finish_request);
389
390void blk_mq_free_request(struct request *rq)
391{
392 blk_mq_sched_put_request(rq);
393}
394EXPORT_SYMBOL_GPL(blk_mq_free_request);
395
396inline void __blk_mq_end_request(struct request *rq, int error)
397{
398 blk_account_io_done(rq);
399
400 if (rq->end_io) {
401 wbt_done(rq->q->rq_wb, &rq->issue_stat);
402 rq->end_io(rq, error);
403 } else {
404 if (unlikely(blk_bidi_rq(rq)))
405 blk_mq_free_request(rq->next_rq);
406 blk_mq_free_request(rq);
407 }
408}
409EXPORT_SYMBOL(__blk_mq_end_request);
410
411void blk_mq_end_request(struct request *rq, int error)
412{
413 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
414 BUG();
415 __blk_mq_end_request(rq, error);
416}
417EXPORT_SYMBOL(blk_mq_end_request);
418
419static void __blk_mq_complete_request_remote(void *data)
420{
421 struct request *rq = data;
422
423 rq->q->softirq_done_fn(rq);
424}
425
426static void __blk_mq_complete_request(struct request *rq)
427{
428 struct blk_mq_ctx *ctx = rq->mq_ctx;
429 bool shared = false;
430 int cpu;
431
432 if (rq->internal_tag != -1)
433 blk_mq_sched_completed_request(rq);
434 if (rq->rq_flags & RQF_STATS) {
435 blk_mq_poll_stats_start(rq->q);
436 blk_stat_add(rq);
437 }
438
439 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
440 rq->q->softirq_done_fn(rq);
441 return;
442 }
443
444 cpu = get_cpu();
445 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
446 shared = cpus_share_cache(cpu, ctx->cpu);
447
448 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
449 rq->csd.func = __blk_mq_complete_request_remote;
450 rq->csd.info = rq;
451 rq->csd.flags = 0;
452 smp_call_function_single_async(ctx->cpu, &rq->csd);
453 } else {
454 rq->q->softirq_done_fn(rq);
455 }
456 put_cpu();
457}
458
459/**
460 * blk_mq_complete_request - end I/O on a request
461 * @rq: the request being processed
462 *
463 * Description:
464 * Ends all I/O on a request. It does not handle partial completions.
465 * The actual completion happens out-of-order, through a IPI handler.
466 **/
467void blk_mq_complete_request(struct request *rq)
468{
469 struct request_queue *q = rq->q;
470
471 if (unlikely(blk_should_fake_timeout(q)))
472 return;
473 if (!blk_mark_rq_complete(rq))
474 __blk_mq_complete_request(rq);
475}
476EXPORT_SYMBOL(blk_mq_complete_request);
477
478int blk_mq_request_started(struct request *rq)
479{
480 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
481}
482EXPORT_SYMBOL_GPL(blk_mq_request_started);
483
484void blk_mq_start_request(struct request *rq)
485{
486 struct request_queue *q = rq->q;
487
488 blk_mq_sched_started_request(rq);
489
490 trace_block_rq_issue(q, rq);
491
492 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
493 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
494 rq->rq_flags |= RQF_STATS;
495 wbt_issue(q->rq_wb, &rq->issue_stat);
496 }
497
498 blk_add_timer(rq);
499
500 /*
501 * Ensure that ->deadline is visible before set the started
502 * flag and clear the completed flag.
503 */
504 smp_mb__before_atomic();
505
506 /*
507 * Mark us as started and clear complete. Complete might have been
508 * set if requeue raced with timeout, which then marked it as
509 * complete. So be sure to clear complete again when we start
510 * the request, otherwise we'll ignore the completion event.
511 */
512 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
513 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
514 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
515 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
516
517 if (q->dma_drain_size && blk_rq_bytes(rq)) {
518 /*
519 * Make sure space for the drain appears. We know we can do
520 * this because max_hw_segments has been adjusted to be one
521 * fewer than the device can handle.
522 */
523 rq->nr_phys_segments++;
524 }
525}
526EXPORT_SYMBOL(blk_mq_start_request);
527
528/*
529 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
530 * flag isn't set yet, so there may be race with timeout handler,
531 * but given rq->deadline is just set in .queue_rq() under
532 * this situation, the race won't be possible in reality because
533 * rq->timeout should be set as big enough to cover the window
534 * between blk_mq_start_request() called from .queue_rq() and
535 * clearing REQ_ATOM_STARTED here.
536 */
537static void __blk_mq_requeue_request(struct request *rq)
538{
539 struct request_queue *q = rq->q;
540
541 trace_block_rq_requeue(q, rq);
542 wbt_requeue(q->rq_wb, &rq->issue_stat);
543 blk_mq_sched_requeue_request(rq);
544
545 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
546 if (q->dma_drain_size && blk_rq_bytes(rq))
547 rq->nr_phys_segments--;
548 }
549}
550
551void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
552{
553 __blk_mq_requeue_request(rq);
554
555 BUG_ON(blk_queued_rq(rq));
556 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
557}
558EXPORT_SYMBOL(blk_mq_requeue_request);
559
560static void blk_mq_requeue_work(struct work_struct *work)
561{
562 struct request_queue *q =
563 container_of(work, struct request_queue, requeue_work.work);
564 LIST_HEAD(rq_list);
565 struct request *rq, *next;
566 unsigned long flags;
567
568 spin_lock_irqsave(&q->requeue_lock, flags);
569 list_splice_init(&q->requeue_list, &rq_list);
570 spin_unlock_irqrestore(&q->requeue_lock, flags);
571
572 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
573 if (!(rq->rq_flags & RQF_SOFTBARRIER))
574 continue;
575
576 rq->rq_flags &= ~RQF_SOFTBARRIER;
577 list_del_init(&rq->queuelist);
578 blk_mq_sched_insert_request(rq, true, false, false, true);
579 }
580
581 while (!list_empty(&rq_list)) {
582 rq = list_entry(rq_list.next, struct request, queuelist);
583 list_del_init(&rq->queuelist);
584 blk_mq_sched_insert_request(rq, false, false, false, true);
585 }
586
587 blk_mq_run_hw_queues(q, false);
588}
589
590void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
591 bool kick_requeue_list)
592{
593 struct request_queue *q = rq->q;
594 unsigned long flags;
595
596 /*
597 * We abuse this flag that is otherwise used by the I/O scheduler to
598 * request head insertation from the workqueue.
599 */
600 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
601
602 spin_lock_irqsave(&q->requeue_lock, flags);
603 if (at_head) {
604 rq->rq_flags |= RQF_SOFTBARRIER;
605 list_add(&rq->queuelist, &q->requeue_list);
606 } else {
607 list_add_tail(&rq->queuelist, &q->requeue_list);
608 }
609 spin_unlock_irqrestore(&q->requeue_lock, flags);
610
611 if (kick_requeue_list)
612 blk_mq_kick_requeue_list(q);
613}
614EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
615
616void blk_mq_kick_requeue_list(struct request_queue *q)
617{
618 kblockd_schedule_delayed_work(&q->requeue_work, 0);
619}
620EXPORT_SYMBOL(blk_mq_kick_requeue_list);
621
622void blk_mq_delay_kick_requeue_list(struct request_queue *q,
623 unsigned long msecs)
624{
625 kblockd_schedule_delayed_work(&q->requeue_work,
626 msecs_to_jiffies(msecs));
627}
628EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
629
630void blk_mq_abort_requeue_list(struct request_queue *q)
631{
632 unsigned long flags;
633 LIST_HEAD(rq_list);
634
635 spin_lock_irqsave(&q->requeue_lock, flags);
636 list_splice_init(&q->requeue_list, &rq_list);
637 spin_unlock_irqrestore(&q->requeue_lock, flags);
638
639 while (!list_empty(&rq_list)) {
640 struct request *rq;
641
642 rq = list_first_entry(&rq_list, struct request, queuelist);
643 list_del_init(&rq->queuelist);
644 blk_mq_end_request(rq, -EIO);
645 }
646}
647EXPORT_SYMBOL(blk_mq_abort_requeue_list);
648
649struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
650{
651 if (tag < tags->nr_tags) {
652 prefetch(tags->rqs[tag]);
653 return tags->rqs[tag];
654 }
655
656 return NULL;
657}
658EXPORT_SYMBOL(blk_mq_tag_to_rq);
659
660struct blk_mq_timeout_data {
661 unsigned long next;
662 unsigned int next_set;
663};
664
665void blk_mq_rq_timed_out(struct request *req, bool reserved)
666{
667 const struct blk_mq_ops *ops = req->q->mq_ops;
668 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
669
670 /*
671 * We know that complete is set at this point. If STARTED isn't set
672 * anymore, then the request isn't active and the "timeout" should
673 * just be ignored. This can happen due to the bitflag ordering.
674 * Timeout first checks if STARTED is set, and if it is, assumes
675 * the request is active. But if we race with completion, then
676 * both flags will get cleared. So check here again, and ignore
677 * a timeout event with a request that isn't active.
678 */
679 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
680 return;
681
682 if (ops->timeout)
683 ret = ops->timeout(req, reserved);
684
685 switch (ret) {
686 case BLK_EH_HANDLED:
687 __blk_mq_complete_request(req);
688 break;
689 case BLK_EH_RESET_TIMER:
690 blk_add_timer(req);
691 blk_clear_rq_complete(req);
692 break;
693 case BLK_EH_NOT_HANDLED:
694 break;
695 default:
696 printk(KERN_ERR "block: bad eh return: %d\n", ret);
697 break;
698 }
699}
700
701static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
702 struct request *rq, void *priv, bool reserved)
703{
704 struct blk_mq_timeout_data *data = priv;
705
706 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
707 return;
708
709 /*
710 * The rq being checked may have been freed and reallocated
711 * out already here, we avoid this race by checking rq->deadline
712 * and REQ_ATOM_COMPLETE flag together:
713 *
714 * - if rq->deadline is observed as new value because of
715 * reusing, the rq won't be timed out because of timing.
716 * - if rq->deadline is observed as previous value,
717 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
718 * because we put a barrier between setting rq->deadline
719 * and clearing the flag in blk_mq_start_request(), so
720 * this rq won't be timed out too.
721 */
722 if (time_after_eq(jiffies, rq->deadline)) {
723 if (!blk_mark_rq_complete(rq))
724 blk_mq_rq_timed_out(rq, reserved);
725 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
726 data->next = rq->deadline;
727 data->next_set = 1;
728 }
729}
730
731static void blk_mq_timeout_work(struct work_struct *work)
732{
733 struct request_queue *q =
734 container_of(work, struct request_queue, timeout_work);
735 struct blk_mq_timeout_data data = {
736 .next = 0,
737 .next_set = 0,
738 };
739 int i;
740
741 /* A deadlock might occur if a request is stuck requiring a
742 * timeout at the same time a queue freeze is waiting
743 * completion, since the timeout code would not be able to
744 * acquire the queue reference here.
745 *
746 * That's why we don't use blk_queue_enter here; instead, we use
747 * percpu_ref_tryget directly, because we need to be able to
748 * obtain a reference even in the short window between the queue
749 * starting to freeze, by dropping the first reference in
750 * blk_freeze_queue_start, and the moment the last request is
751 * consumed, marked by the instant q_usage_counter reaches
752 * zero.
753 */
754 if (!percpu_ref_tryget(&q->q_usage_counter))
755 return;
756
757 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
758
759 if (data.next_set) {
760 data.next = blk_rq_timeout(round_jiffies_up(data.next));
761 mod_timer(&q->timeout, data.next);
762 } else {
763 struct blk_mq_hw_ctx *hctx;
764
765 queue_for_each_hw_ctx(q, hctx, i) {
766 /* the hctx may be unmapped, so check it here */
767 if (blk_mq_hw_queue_mapped(hctx))
768 blk_mq_tag_idle(hctx);
769 }
770 }
771 blk_queue_exit(q);
772}
773
774/*
775 * Reverse check our software queue for entries that we could potentially
776 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
777 * too much time checking for merges.
778 */
779static bool blk_mq_attempt_merge(struct request_queue *q,
780 struct blk_mq_ctx *ctx, struct bio *bio)
781{
782 struct request *rq;
783 int checked = 8;
784
785 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
786 bool merged = false;
787
788 if (!checked--)
789 break;
790
791 if (!blk_rq_merge_ok(rq, bio))
792 continue;
793
794 switch (blk_try_merge(rq, bio)) {
795 case ELEVATOR_BACK_MERGE:
796 if (blk_mq_sched_allow_merge(q, rq, bio))
797 merged = bio_attempt_back_merge(q, rq, bio);
798 break;
799 case ELEVATOR_FRONT_MERGE:
800 if (blk_mq_sched_allow_merge(q, rq, bio))
801 merged = bio_attempt_front_merge(q, rq, bio);
802 break;
803 case ELEVATOR_DISCARD_MERGE:
804 merged = bio_attempt_discard_merge(q, rq, bio);
805 break;
806 default:
807 continue;
808 }
809
810 if (merged)
811 ctx->rq_merged++;
812 return merged;
813 }
814
815 return false;
816}
817
818struct flush_busy_ctx_data {
819 struct blk_mq_hw_ctx *hctx;
820 struct list_head *list;
821};
822
823static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
824{
825 struct flush_busy_ctx_data *flush_data = data;
826 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
827 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
828
829 sbitmap_clear_bit(sb, bitnr);
830 spin_lock(&ctx->lock);
831 list_splice_tail_init(&ctx->rq_list, flush_data->list);
832 spin_unlock(&ctx->lock);
833 return true;
834}
835
836/*
837 * Process software queues that have been marked busy, splicing them
838 * to the for-dispatch
839 */
840void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
841{
842 struct flush_busy_ctx_data data = {
843 .hctx = hctx,
844 .list = list,
845 };
846
847 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
848}
849EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
850
851static inline unsigned int queued_to_index(unsigned int queued)
852{
853 if (!queued)
854 return 0;
855
856 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
857}
858
859bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
860 bool wait)
861{
862 struct blk_mq_alloc_data data = {
863 .q = rq->q,
864 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
865 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
866 };
867
868 might_sleep_if(wait);
869
870 if (rq->tag != -1)
871 goto done;
872
873 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
874 data.flags |= BLK_MQ_REQ_RESERVED;
875
876 rq->tag = blk_mq_get_tag(&data);
877 if (rq->tag >= 0) {
878 if (blk_mq_tag_busy(data.hctx)) {
879 rq->rq_flags |= RQF_MQ_INFLIGHT;
880 atomic_inc(&data.hctx->nr_active);
881 }
882 data.hctx->tags->rqs[rq->tag] = rq;
883 }
884
885done:
886 if (hctx)
887 *hctx = data.hctx;
888 return rq->tag != -1;
889}
890
891static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
892 struct request *rq)
893{
894 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
895 rq->tag = -1;
896
897 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
898 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
899 atomic_dec(&hctx->nr_active);
900 }
901}
902
903static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
904 struct request *rq)
905{
906 if (rq->tag == -1 || rq->internal_tag == -1)
907 return;
908
909 __blk_mq_put_driver_tag(hctx, rq);
910}
911
912static void blk_mq_put_driver_tag(struct request *rq)
913{
914 struct blk_mq_hw_ctx *hctx;
915
916 if (rq->tag == -1 || rq->internal_tag == -1)
917 return;
918
919 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
920 __blk_mq_put_driver_tag(hctx, rq);
921}
922
923/*
924 * If we fail getting a driver tag because all the driver tags are already
925 * assigned and on the dispatch list, BUT the first entry does not have a
926 * tag, then we could deadlock. For that case, move entries with assigned
927 * driver tags to the front, leaving the set of tagged requests in the
928 * same order, and the untagged set in the same order.
929 */
930static bool reorder_tags_to_front(struct list_head *list)
931{
932 struct request *rq, *tmp, *first = NULL;
933
934 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
935 if (rq == first)
936 break;
937 if (rq->tag != -1) {
938 list_move(&rq->queuelist, list);
939 if (!first)
940 first = rq;
941 }
942 }
943
944 return first != NULL;
945}
946
947static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
948 void *key)
949{
950 struct blk_mq_hw_ctx *hctx;
951
952 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
953
954 list_del(&wait->task_list);
955 clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
956 blk_mq_run_hw_queue(hctx, true);
957 return 1;
958}
959
960static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
961{
962 struct sbq_wait_state *ws;
963
964 /*
965 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
966 * The thread which wins the race to grab this bit adds the hardware
967 * queue to the wait queue.
968 */
969 if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
970 test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
971 return false;
972
973 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
974 ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
975
976 /*
977 * As soon as this returns, it's no longer safe to fiddle with
978 * hctx->dispatch_wait, since a completion can wake up the wait queue
979 * and unlock the bit.
980 */
981 add_wait_queue(&ws->wait, &hctx->dispatch_wait);
982 return true;
983}
984
985bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
986{
987 struct blk_mq_hw_ctx *hctx;
988 struct request *rq;
989 int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
990
991 if (list_empty(list))
992 return false;
993
994 /*
995 * Now process all the entries, sending them to the driver.
996 */
997 errors = queued = 0;
998 do {
999 struct blk_mq_queue_data bd;
1000
1001 rq = list_first_entry(list, struct request, queuelist);
1002 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1003 if (!queued && reorder_tags_to_front(list))
1004 continue;
1005
1006 /*
1007 * The initial allocation attempt failed, so we need to
1008 * rerun the hardware queue when a tag is freed.
1009 */
1010 if (!blk_mq_dispatch_wait_add(hctx))
1011 break;
1012
1013 /*
1014 * It's possible that a tag was freed in the window
1015 * between the allocation failure and adding the
1016 * hardware queue to the wait queue.
1017 */
1018 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1019 break;
1020 }
1021
1022 list_del_init(&rq->queuelist);
1023
1024 bd.rq = rq;
1025
1026 /*
1027 * Flag last if we have no more requests, or if we have more
1028 * but can't assign a driver tag to it.
1029 */
1030 if (list_empty(list))
1031 bd.last = true;
1032 else {
1033 struct request *nxt;
1034
1035 nxt = list_first_entry(list, struct request, queuelist);
1036 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1037 }
1038
1039 ret = q->mq_ops->queue_rq(hctx, &bd);
1040 switch (ret) {
1041 case BLK_MQ_RQ_QUEUE_OK:
1042 queued++;
1043 break;
1044 case BLK_MQ_RQ_QUEUE_BUSY:
1045 blk_mq_put_driver_tag_hctx(hctx, rq);
1046 list_add(&rq->queuelist, list);
1047 __blk_mq_requeue_request(rq);
1048 break;
1049 default:
1050 pr_err("blk-mq: bad return on queue: %d\n", ret);
1051 case BLK_MQ_RQ_QUEUE_ERROR:
1052 errors++;
1053 blk_mq_end_request(rq, -EIO);
1054 break;
1055 }
1056
1057 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1058 break;
1059 } while (!list_empty(list));
1060
1061 hctx->dispatched[queued_to_index(queued)]++;
1062
1063 /*
1064 * Any items that need requeuing? Stuff them into hctx->dispatch,
1065 * that is where we will continue on next queue run.
1066 */
1067 if (!list_empty(list)) {
1068 /*
1069 * If an I/O scheduler has been configured and we got a driver
1070 * tag for the next request already, free it again.
1071 */
1072 rq = list_first_entry(list, struct request, queuelist);
1073 blk_mq_put_driver_tag(rq);
1074
1075 spin_lock(&hctx->lock);
1076 list_splice_init(list, &hctx->dispatch);
1077 spin_unlock(&hctx->lock);
1078
1079 /*
1080 * If SCHED_RESTART was set by the caller of this function and
1081 * it is no longer set that means that it was cleared by another
1082 * thread and hence that a queue rerun is needed.
1083 *
1084 * If TAG_WAITING is set that means that an I/O scheduler has
1085 * been configured and another thread is waiting for a driver
1086 * tag. To guarantee fairness, do not rerun this hardware queue
1087 * but let the other thread grab the driver tag.
1088 *
1089 * If no I/O scheduler has been configured it is possible that
1090 * the hardware queue got stopped and restarted before requests
1091 * were pushed back onto the dispatch list. Rerun the queue to
1092 * avoid starvation. Notes:
1093 * - blk_mq_run_hw_queue() checks whether or not a queue has
1094 * been stopped before rerunning a queue.
1095 * - Some but not all block drivers stop a queue before
1096 * returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1097 * and dm-rq.
1098 */
1099 if (!blk_mq_sched_needs_restart(hctx) &&
1100 !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1101 blk_mq_run_hw_queue(hctx, true);
1102 }
1103
1104 return (queued + errors) != 0;
1105}
1106
1107static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1108{
1109 int srcu_idx;
1110
1111 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1112 cpu_online(hctx->next_cpu));
1113
1114 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1115 rcu_read_lock();
1116 blk_mq_sched_dispatch_requests(hctx);
1117 rcu_read_unlock();
1118 } else {
1119 might_sleep();
1120
1121 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1122 blk_mq_sched_dispatch_requests(hctx);
1123 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1124 }
1125}
1126
1127/*
1128 * It'd be great if the workqueue API had a way to pass
1129 * in a mask and had some smarts for more clever placement.
1130 * For now we just round-robin here, switching for every
1131 * BLK_MQ_CPU_WORK_BATCH queued items.
1132 */
1133static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1134{
1135 if (hctx->queue->nr_hw_queues == 1)
1136 return WORK_CPU_UNBOUND;
1137
1138 if (--hctx->next_cpu_batch <= 0) {
1139 int next_cpu;
1140
1141 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1142 if (next_cpu >= nr_cpu_ids)
1143 next_cpu = cpumask_first(hctx->cpumask);
1144
1145 hctx->next_cpu = next_cpu;
1146 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1147 }
1148
1149 return hctx->next_cpu;
1150}
1151
1152static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1153 unsigned long msecs)
1154{
1155 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1156 !blk_mq_hw_queue_mapped(hctx)))
1157 return;
1158
1159 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1160 int cpu = get_cpu();
1161 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1162 __blk_mq_run_hw_queue(hctx);
1163 put_cpu();
1164 return;
1165 }
1166
1167 put_cpu();
1168 }
1169
1170 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1171 &hctx->run_work,
1172 msecs_to_jiffies(msecs));
1173}
1174
1175void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1176{
1177 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1178}
1179EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1180
1181void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1182{
1183 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1184}
1185EXPORT_SYMBOL(blk_mq_run_hw_queue);
1186
1187void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1188{
1189 struct blk_mq_hw_ctx *hctx;
1190 int i;
1191
1192 queue_for_each_hw_ctx(q, hctx, i) {
1193 if (!blk_mq_hctx_has_pending(hctx) ||
1194 blk_mq_hctx_stopped(hctx))
1195 continue;
1196
1197 blk_mq_run_hw_queue(hctx, async);
1198 }
1199}
1200EXPORT_SYMBOL(blk_mq_run_hw_queues);
1201
1202/**
1203 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1204 * @q: request queue.
1205 *
1206 * The caller is responsible for serializing this function against
1207 * blk_mq_{start,stop}_hw_queue().
1208 */
1209bool blk_mq_queue_stopped(struct request_queue *q)
1210{
1211 struct blk_mq_hw_ctx *hctx;
1212 int i;
1213
1214 queue_for_each_hw_ctx(q, hctx, i)
1215 if (blk_mq_hctx_stopped(hctx))
1216 return true;
1217
1218 return false;
1219}
1220EXPORT_SYMBOL(blk_mq_queue_stopped);
1221
1222static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1223{
1224 if (sync)
1225 cancel_delayed_work_sync(&hctx->run_work);
1226 else
1227 cancel_delayed_work(&hctx->run_work);
1228
1229 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1230}
1231
1232void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1233{
1234 __blk_mq_stop_hw_queue(hctx, false);
1235}
1236EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1237
1238void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1239{
1240 struct blk_mq_hw_ctx *hctx;
1241 int i;
1242
1243 queue_for_each_hw_ctx(q, hctx, i)
1244 __blk_mq_stop_hw_queue(hctx, sync);
1245}
1246
1247void blk_mq_stop_hw_queues(struct request_queue *q)
1248{
1249 __blk_mq_stop_hw_queues(q, false);
1250}
1251EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1252
1253void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1254{
1255 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1256
1257 blk_mq_run_hw_queue(hctx, false);
1258}
1259EXPORT_SYMBOL(blk_mq_start_hw_queue);
1260
1261void blk_mq_start_hw_queues(struct request_queue *q)
1262{
1263 struct blk_mq_hw_ctx *hctx;
1264 int i;
1265
1266 queue_for_each_hw_ctx(q, hctx, i)
1267 blk_mq_start_hw_queue(hctx);
1268}
1269EXPORT_SYMBOL(blk_mq_start_hw_queues);
1270
1271void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1272{
1273 if (!blk_mq_hctx_stopped(hctx))
1274 return;
1275
1276 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1277 blk_mq_run_hw_queue(hctx, async);
1278}
1279EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1280
1281void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1282{
1283 struct blk_mq_hw_ctx *hctx;
1284 int i;
1285
1286 queue_for_each_hw_ctx(q, hctx, i)
1287 blk_mq_start_stopped_hw_queue(hctx, async);
1288}
1289EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1290
1291static void blk_mq_run_work_fn(struct work_struct *work)
1292{
1293 struct blk_mq_hw_ctx *hctx;
1294
1295 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1296
1297 /*
1298 * If we are stopped, don't run the queue. The exception is if
1299 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1300 * the STOPPED bit and run it.
1301 */
1302 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1303 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1304 return;
1305
1306 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1307 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1308 }
1309
1310 __blk_mq_run_hw_queue(hctx);
1311}
1312
1313
1314void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1315{
1316 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1317 return;
1318
1319 /*
1320 * Stop the hw queue, then modify currently delayed work.
1321 * This should prevent us from running the queue prematurely.
1322 * Mark the queue as auto-clearing STOPPED when it runs.
1323 */
1324 blk_mq_stop_hw_queue(hctx);
1325 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1326 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1327 &hctx->run_work,
1328 msecs_to_jiffies(msecs));
1329}
1330EXPORT_SYMBOL(blk_mq_delay_queue);
1331
1332static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1333 struct request *rq,
1334 bool at_head)
1335{
1336 struct blk_mq_ctx *ctx = rq->mq_ctx;
1337
1338 trace_block_rq_insert(hctx->queue, rq);
1339
1340 if (at_head)
1341 list_add(&rq->queuelist, &ctx->rq_list);
1342 else
1343 list_add_tail(&rq->queuelist, &ctx->rq_list);
1344}
1345
1346void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1347 bool at_head)
1348{
1349 struct blk_mq_ctx *ctx = rq->mq_ctx;
1350
1351 __blk_mq_insert_req_list(hctx, rq, at_head);
1352 blk_mq_hctx_mark_pending(hctx, ctx);
1353}
1354
1355void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1356 struct list_head *list)
1357
1358{
1359 /*
1360 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1361 * offline now
1362 */
1363 spin_lock(&ctx->lock);
1364 while (!list_empty(list)) {
1365 struct request *rq;
1366
1367 rq = list_first_entry(list, struct request, queuelist);
1368 BUG_ON(rq->mq_ctx != ctx);
1369 list_del_init(&rq->queuelist);
1370 __blk_mq_insert_req_list(hctx, rq, false);
1371 }
1372 blk_mq_hctx_mark_pending(hctx, ctx);
1373 spin_unlock(&ctx->lock);
1374}
1375
1376static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1377{
1378 struct request *rqa = container_of(a, struct request, queuelist);
1379 struct request *rqb = container_of(b, struct request, queuelist);
1380
1381 return !(rqa->mq_ctx < rqb->mq_ctx ||
1382 (rqa->mq_ctx == rqb->mq_ctx &&
1383 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1384}
1385
1386void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1387{
1388 struct blk_mq_ctx *this_ctx;
1389 struct request_queue *this_q;
1390 struct request *rq;
1391 LIST_HEAD(list);
1392 LIST_HEAD(ctx_list);
1393 unsigned int depth;
1394
1395 list_splice_init(&plug->mq_list, &list);
1396
1397 list_sort(NULL, &list, plug_ctx_cmp);
1398
1399 this_q = NULL;
1400 this_ctx = NULL;
1401 depth = 0;
1402
1403 while (!list_empty(&list)) {
1404 rq = list_entry_rq(list.next);
1405 list_del_init(&rq->queuelist);
1406 BUG_ON(!rq->q);
1407 if (rq->mq_ctx != this_ctx) {
1408 if (this_ctx) {
1409 trace_block_unplug(this_q, depth, from_schedule);
1410 blk_mq_sched_insert_requests(this_q, this_ctx,
1411 &ctx_list,
1412 from_schedule);
1413 }
1414
1415 this_ctx = rq->mq_ctx;
1416 this_q = rq->q;
1417 depth = 0;
1418 }
1419
1420 depth++;
1421 list_add_tail(&rq->queuelist, &ctx_list);
1422 }
1423
1424 /*
1425 * If 'this_ctx' is set, we know we have entries to complete
1426 * on 'ctx_list'. Do those.
1427 */
1428 if (this_ctx) {
1429 trace_block_unplug(this_q, depth, from_schedule);
1430 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1431 from_schedule);
1432 }
1433}
1434
1435static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1436{
1437 blk_init_request_from_bio(rq, bio);
1438
1439 blk_account_io_start(rq, true);
1440}
1441
1442static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1443{
1444 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1445 !blk_queue_nomerges(hctx->queue);
1446}
1447
1448static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1449 struct blk_mq_ctx *ctx,
1450 struct request *rq, struct bio *bio)
1451{
1452 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1453 blk_mq_bio_to_request(rq, bio);
1454 spin_lock(&ctx->lock);
1455insert_rq:
1456 __blk_mq_insert_request(hctx, rq, false);
1457 spin_unlock(&ctx->lock);
1458 return false;
1459 } else {
1460 struct request_queue *q = hctx->queue;
1461
1462 spin_lock(&ctx->lock);
1463 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1464 blk_mq_bio_to_request(rq, bio);
1465 goto insert_rq;
1466 }
1467
1468 spin_unlock(&ctx->lock);
1469 __blk_mq_finish_request(hctx, ctx, rq);
1470 return true;
1471 }
1472}
1473
1474static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1475{
1476 if (rq->tag != -1)
1477 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1478
1479 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1480}
1481
1482static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1483 bool may_sleep)
1484{
1485 struct request_queue *q = rq->q;
1486 struct blk_mq_queue_data bd = {
1487 .rq = rq,
1488 .last = true,
1489 };
1490 struct blk_mq_hw_ctx *hctx;
1491 blk_qc_t new_cookie;
1492 int ret;
1493
1494 if (q->elevator)
1495 goto insert;
1496
1497 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1498 goto insert;
1499
1500 new_cookie = request_to_qc_t(hctx, rq);
1501
1502 /*
1503 * For OK queue, we are done. For error, kill it. Any other
1504 * error (busy), just add it to our list as we previously
1505 * would have done
1506 */
1507 ret = q->mq_ops->queue_rq(hctx, &bd);
1508 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1509 *cookie = new_cookie;
1510 return;
1511 }
1512
1513 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1514 *cookie = BLK_QC_T_NONE;
1515 blk_mq_end_request(rq, -EIO);
1516 return;
1517 }
1518
1519 __blk_mq_requeue_request(rq);
1520insert:
1521 blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1522}
1523
1524static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1525 struct request *rq, blk_qc_t *cookie)
1526{
1527 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1528 rcu_read_lock();
1529 __blk_mq_try_issue_directly(rq, cookie, false);
1530 rcu_read_unlock();
1531 } else {
1532 unsigned int srcu_idx;
1533
1534 might_sleep();
1535
1536 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1537 __blk_mq_try_issue_directly(rq, cookie, true);
1538 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1539 }
1540}
1541
1542static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1543{
1544 const int is_sync = op_is_sync(bio->bi_opf);
1545 const int is_flush_fua = op_is_flush(bio->bi_opf);
1546 struct blk_mq_alloc_data data = { .flags = 0 };
1547 struct request *rq;
1548 unsigned int request_count = 0;
1549 struct blk_plug *plug;
1550 struct request *same_queue_rq = NULL;
1551 blk_qc_t cookie;
1552 unsigned int wb_acct;
1553
1554 blk_queue_bounce(q, &bio);
1555
1556 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1557 bio_io_error(bio);
1558 return BLK_QC_T_NONE;
1559 }
1560
1561 blk_queue_split(q, &bio, q->bio_split);
1562
1563 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1564 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1565 return BLK_QC_T_NONE;
1566
1567 if (blk_mq_sched_bio_merge(q, bio))
1568 return BLK_QC_T_NONE;
1569
1570 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1571
1572 trace_block_getrq(q, bio, bio->bi_opf);
1573
1574 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1575 if (unlikely(!rq)) {
1576 __wbt_done(q->rq_wb, wb_acct);
1577 return BLK_QC_T_NONE;
1578 }
1579
1580 wbt_track(&rq->issue_stat, wb_acct);
1581
1582 cookie = request_to_qc_t(data.hctx, rq);
1583
1584 plug = current->plug;
1585 if (unlikely(is_flush_fua)) {
1586 blk_mq_put_ctx(data.ctx);
1587 blk_mq_bio_to_request(rq, bio);
1588 if (q->elevator) {
1589 blk_mq_sched_insert_request(rq, false, true, true,
1590 true);
1591 } else {
1592 blk_insert_flush(rq);
1593 blk_mq_run_hw_queue(data.hctx, true);
1594 }
1595 } else if (plug && q->nr_hw_queues == 1) {
1596 struct request *last = NULL;
1597
1598 blk_mq_put_ctx(data.ctx);
1599 blk_mq_bio_to_request(rq, bio);
1600
1601 /*
1602 * @request_count may become stale because of schedule
1603 * out, so check the list again.
1604 */
1605 if (list_empty(&plug->mq_list))
1606 request_count = 0;
1607 else if (blk_queue_nomerges(q))
1608 request_count = blk_plug_queued_count(q);
1609
1610 if (!request_count)
1611 trace_block_plug(q);
1612 else
1613 last = list_entry_rq(plug->mq_list.prev);
1614
1615 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1616 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1617 blk_flush_plug_list(plug, false);
1618 trace_block_plug(q);
1619 }
1620
1621 list_add_tail(&rq->queuelist, &plug->mq_list);
1622 } else if (plug && !blk_queue_nomerges(q)) {
1623 blk_mq_bio_to_request(rq, bio);
1624
1625 /*
1626 * We do limited plugging. If the bio can be merged, do that.
1627 * Otherwise the existing request in the plug list will be
1628 * issued. So the plug list will have one request at most
1629 * The plug list might get flushed before this. If that happens,
1630 * the plug list is empty, and same_queue_rq is invalid.
1631 */
1632 if (list_empty(&plug->mq_list))
1633 same_queue_rq = NULL;
1634 if (same_queue_rq)
1635 list_del_init(&same_queue_rq->queuelist);
1636 list_add_tail(&rq->queuelist, &plug->mq_list);
1637
1638 blk_mq_put_ctx(data.ctx);
1639
1640 if (same_queue_rq)
1641 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1642 &cookie);
1643 } else if (q->nr_hw_queues > 1 && is_sync) {
1644 blk_mq_put_ctx(data.ctx);
1645 blk_mq_bio_to_request(rq, bio);
1646 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1647 } else if (q->elevator) {
1648 blk_mq_put_ctx(data.ctx);
1649 blk_mq_bio_to_request(rq, bio);
1650 blk_mq_sched_insert_request(rq, false, true, true, true);
1651 } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1652 blk_mq_put_ctx(data.ctx);
1653 blk_mq_run_hw_queue(data.hctx, true);
1654 } else
1655 blk_mq_put_ctx(data.ctx);
1656
1657 return cookie;
1658}
1659
1660void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1661 unsigned int hctx_idx)
1662{
1663 struct page *page;
1664
1665 if (tags->rqs && set->ops->exit_request) {
1666 int i;
1667
1668 for (i = 0; i < tags->nr_tags; i++) {
1669 struct request *rq = tags->static_rqs[i];
1670
1671 if (!rq)
1672 continue;
1673 set->ops->exit_request(set, rq, hctx_idx);
1674 tags->static_rqs[i] = NULL;
1675 }
1676 }
1677
1678 while (!list_empty(&tags->page_list)) {
1679 page = list_first_entry(&tags->page_list, struct page, lru);
1680 list_del_init(&page->lru);
1681 /*
1682 * Remove kmemleak object previously allocated in
1683 * blk_mq_init_rq_map().
1684 */
1685 kmemleak_free(page_address(page));
1686 __free_pages(page, page->private);
1687 }
1688}
1689
1690void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1691{
1692 kfree(tags->rqs);
1693 tags->rqs = NULL;
1694 kfree(tags->static_rqs);
1695 tags->static_rqs = NULL;
1696
1697 blk_mq_free_tags(tags);
1698}
1699
1700struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1701 unsigned int hctx_idx,
1702 unsigned int nr_tags,
1703 unsigned int reserved_tags)
1704{
1705 struct blk_mq_tags *tags;
1706 int node;
1707
1708 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1709 if (node == NUMA_NO_NODE)
1710 node = set->numa_node;
1711
1712 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1713 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1714 if (!tags)
1715 return NULL;
1716
1717 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1718 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1719 node);
1720 if (!tags->rqs) {
1721 blk_mq_free_tags(tags);
1722 return NULL;
1723 }
1724
1725 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1726 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1727 node);
1728 if (!tags->static_rqs) {
1729 kfree(tags->rqs);
1730 blk_mq_free_tags(tags);
1731 return NULL;
1732 }
1733
1734 return tags;
1735}
1736
1737static size_t order_to_size(unsigned int order)
1738{
1739 return (size_t)PAGE_SIZE << order;
1740}
1741
1742int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1743 unsigned int hctx_idx, unsigned int depth)
1744{
1745 unsigned int i, j, entries_per_page, max_order = 4;
1746 size_t rq_size, left;
1747 int node;
1748
1749 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1750 if (node == NUMA_NO_NODE)
1751 node = set->numa_node;
1752
1753 INIT_LIST_HEAD(&tags->page_list);
1754
1755 /*
1756 * rq_size is the size of the request plus driver payload, rounded
1757 * to the cacheline size
1758 */
1759 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1760 cache_line_size());
1761 left = rq_size * depth;
1762
1763 for (i = 0; i < depth; ) {
1764 int this_order = max_order;
1765 struct page *page;
1766 int to_do;
1767 void *p;
1768
1769 while (this_order && left < order_to_size(this_order - 1))
1770 this_order--;
1771
1772 do {
1773 page = alloc_pages_node(node,
1774 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1775 this_order);
1776 if (page)
1777 break;
1778 if (!this_order--)
1779 break;
1780 if (order_to_size(this_order) < rq_size)
1781 break;
1782 } while (1);
1783
1784 if (!page)
1785 goto fail;
1786
1787 page->private = this_order;
1788 list_add_tail(&page->lru, &tags->page_list);
1789
1790 p = page_address(page);
1791 /*
1792 * Allow kmemleak to scan these pages as they contain pointers
1793 * to additional allocations like via ops->init_request().
1794 */
1795 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1796 entries_per_page = order_to_size(this_order) / rq_size;
1797 to_do = min(entries_per_page, depth - i);
1798 left -= to_do * rq_size;
1799 for (j = 0; j < to_do; j++) {
1800 struct request *rq = p;
1801
1802 tags->static_rqs[i] = rq;
1803 if (set->ops->init_request) {
1804 if (set->ops->init_request(set, rq, hctx_idx,
1805 node)) {
1806 tags->static_rqs[i] = NULL;
1807 goto fail;
1808 }
1809 }
1810
1811 p += rq_size;
1812 i++;
1813 }
1814 }
1815 return 0;
1816
1817fail:
1818 blk_mq_free_rqs(set, tags, hctx_idx);
1819 return -ENOMEM;
1820}
1821
1822/*
1823 * 'cpu' is going away. splice any existing rq_list entries from this
1824 * software queue to the hw queue dispatch list, and ensure that it
1825 * gets run.
1826 */
1827static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1828{
1829 struct blk_mq_hw_ctx *hctx;
1830 struct blk_mq_ctx *ctx;
1831 LIST_HEAD(tmp);
1832
1833 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1834 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1835
1836 spin_lock(&ctx->lock);
1837 if (!list_empty(&ctx->rq_list)) {
1838 list_splice_init(&ctx->rq_list, &tmp);
1839 blk_mq_hctx_clear_pending(hctx, ctx);
1840 }
1841 spin_unlock(&ctx->lock);
1842
1843 if (list_empty(&tmp))
1844 return 0;
1845
1846 spin_lock(&hctx->lock);
1847 list_splice_tail_init(&tmp, &hctx->dispatch);
1848 spin_unlock(&hctx->lock);
1849
1850 blk_mq_run_hw_queue(hctx, true);
1851 return 0;
1852}
1853
1854static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1855{
1856 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1857 &hctx->cpuhp_dead);
1858}
1859
1860/* hctx->ctxs will be freed in queue's release handler */
1861static void blk_mq_exit_hctx(struct request_queue *q,
1862 struct blk_mq_tag_set *set,
1863 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1864{
1865 blk_mq_tag_idle(hctx);
1866
1867 if (set->ops->exit_request)
1868 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1869
1870 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1871
1872 if (set->ops->exit_hctx)
1873 set->ops->exit_hctx(hctx, hctx_idx);
1874
1875 if (hctx->flags & BLK_MQ_F_BLOCKING)
1876 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1877
1878 blk_mq_remove_cpuhp(hctx);
1879 blk_free_flush_queue(hctx->fq);
1880 sbitmap_free(&hctx->ctx_map);
1881}
1882
1883static void blk_mq_exit_hw_queues(struct request_queue *q,
1884 struct blk_mq_tag_set *set, int nr_queue)
1885{
1886 struct blk_mq_hw_ctx *hctx;
1887 unsigned int i;
1888
1889 queue_for_each_hw_ctx(q, hctx, i) {
1890 if (i == nr_queue)
1891 break;
1892 blk_mq_exit_hctx(q, set, hctx, i);
1893 }
1894}
1895
1896static int blk_mq_init_hctx(struct request_queue *q,
1897 struct blk_mq_tag_set *set,
1898 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1899{
1900 int node;
1901
1902 node = hctx->numa_node;
1903 if (node == NUMA_NO_NODE)
1904 node = hctx->numa_node = set->numa_node;
1905
1906 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1907 spin_lock_init(&hctx->lock);
1908 INIT_LIST_HEAD(&hctx->dispatch);
1909 hctx->queue = q;
1910 hctx->queue_num = hctx_idx;
1911 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1912
1913 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1914
1915 hctx->tags = set->tags[hctx_idx];
1916
1917 /*
1918 * Allocate space for all possible cpus to avoid allocation at
1919 * runtime
1920 */
1921 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1922 GFP_KERNEL, node);
1923 if (!hctx->ctxs)
1924 goto unregister_cpu_notifier;
1925
1926 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1927 node))
1928 goto free_ctxs;
1929
1930 hctx->nr_ctx = 0;
1931
1932 if (set->ops->init_hctx &&
1933 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1934 goto free_bitmap;
1935
1936 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1937 goto exit_hctx;
1938
1939 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1940 if (!hctx->fq)
1941 goto sched_exit_hctx;
1942
1943 if (set->ops->init_request &&
1944 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1945 node))
1946 goto free_fq;
1947
1948 if (hctx->flags & BLK_MQ_F_BLOCKING)
1949 init_srcu_struct(&hctx->queue_rq_srcu);
1950
1951 return 0;
1952
1953 free_fq:
1954 kfree(hctx->fq);
1955 sched_exit_hctx:
1956 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1957 exit_hctx:
1958 if (set->ops->exit_hctx)
1959 set->ops->exit_hctx(hctx, hctx_idx);
1960 free_bitmap:
1961 sbitmap_free(&hctx->ctx_map);
1962 free_ctxs:
1963 kfree(hctx->ctxs);
1964 unregister_cpu_notifier:
1965 blk_mq_remove_cpuhp(hctx);
1966 return -1;
1967}
1968
1969static void blk_mq_init_cpu_queues(struct request_queue *q,
1970 unsigned int nr_hw_queues)
1971{
1972 unsigned int i;
1973
1974 for_each_possible_cpu(i) {
1975 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1976 struct blk_mq_hw_ctx *hctx;
1977
1978 __ctx->cpu = i;
1979 spin_lock_init(&__ctx->lock);
1980 INIT_LIST_HEAD(&__ctx->rq_list);
1981 __ctx->queue = q;
1982
1983 /* If the cpu isn't online, the cpu is mapped to first hctx */
1984 if (!cpu_online(i))
1985 continue;
1986
1987 hctx = blk_mq_map_queue(q, i);
1988
1989 /*
1990 * Set local node, IFF we have more than one hw queue. If
1991 * not, we remain on the home node of the device
1992 */
1993 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1994 hctx->numa_node = local_memory_node(cpu_to_node(i));
1995 }
1996}
1997
1998static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1999{
2000 int ret = 0;
2001
2002 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2003 set->queue_depth, set->reserved_tags);
2004 if (!set->tags[hctx_idx])
2005 return false;
2006
2007 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2008 set->queue_depth);
2009 if (!ret)
2010 return true;
2011
2012 blk_mq_free_rq_map(set->tags[hctx_idx]);
2013 set->tags[hctx_idx] = NULL;
2014 return false;
2015}
2016
2017static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2018 unsigned int hctx_idx)
2019{
2020 if (set->tags[hctx_idx]) {
2021 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2022 blk_mq_free_rq_map(set->tags[hctx_idx]);
2023 set->tags[hctx_idx] = NULL;
2024 }
2025}
2026
2027static void blk_mq_map_swqueue(struct request_queue *q,
2028 const struct cpumask *online_mask)
2029{
2030 unsigned int i, hctx_idx;
2031 struct blk_mq_hw_ctx *hctx;
2032 struct blk_mq_ctx *ctx;
2033 struct blk_mq_tag_set *set = q->tag_set;
2034
2035 /*
2036 * Avoid others reading imcomplete hctx->cpumask through sysfs
2037 */
2038 mutex_lock(&q->sysfs_lock);
2039
2040 queue_for_each_hw_ctx(q, hctx, i) {
2041 cpumask_clear(hctx->cpumask);
2042 hctx->nr_ctx = 0;
2043 }
2044
2045 /*
2046 * Map software to hardware queues
2047 */
2048 for_each_possible_cpu(i) {
2049 /* If the cpu isn't online, the cpu is mapped to first hctx */
2050 if (!cpumask_test_cpu(i, online_mask))
2051 continue;
2052
2053 hctx_idx = q->mq_map[i];
2054 /* unmapped hw queue can be remapped after CPU topo changed */
2055 if (!set->tags[hctx_idx] &&
2056 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2057 /*
2058 * If tags initialization fail for some hctx,
2059 * that hctx won't be brought online. In this
2060 * case, remap the current ctx to hctx[0] which
2061 * is guaranteed to always have tags allocated
2062 */
2063 q->mq_map[i] = 0;
2064 }
2065
2066 ctx = per_cpu_ptr(q->queue_ctx, i);
2067 hctx = blk_mq_map_queue(q, i);
2068
2069 cpumask_set_cpu(i, hctx->cpumask);
2070 ctx->index_hw = hctx->nr_ctx;
2071 hctx->ctxs[hctx->nr_ctx++] = ctx;
2072 }
2073
2074 mutex_unlock(&q->sysfs_lock);
2075
2076 queue_for_each_hw_ctx(q, hctx, i) {
2077 /*
2078 * If no software queues are mapped to this hardware queue,
2079 * disable it and free the request entries.
2080 */
2081 if (!hctx->nr_ctx) {
2082 /* Never unmap queue 0. We need it as a
2083 * fallback in case of a new remap fails
2084 * allocation
2085 */
2086 if (i && set->tags[i])
2087 blk_mq_free_map_and_requests(set, i);
2088
2089 hctx->tags = NULL;
2090 continue;
2091 }
2092
2093 hctx->tags = set->tags[i];
2094 WARN_ON(!hctx->tags);
2095
2096 /*
2097 * Set the map size to the number of mapped software queues.
2098 * This is more accurate and more efficient than looping
2099 * over all possibly mapped software queues.
2100 */
2101 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2102
2103 /*
2104 * Initialize batch roundrobin counts
2105 */
2106 hctx->next_cpu = cpumask_first(hctx->cpumask);
2107 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2108 }
2109}
2110
2111static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2112{
2113 struct blk_mq_hw_ctx *hctx;
2114 int i;
2115
2116 queue_for_each_hw_ctx(q, hctx, i) {
2117 if (shared)
2118 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2119 else
2120 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2121 }
2122}
2123
2124static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2125{
2126 struct request_queue *q;
2127
2128 lockdep_assert_held(&set->tag_list_lock);
2129
2130 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2131 blk_mq_freeze_queue(q);
2132 queue_set_hctx_shared(q, shared);
2133 blk_mq_unfreeze_queue(q);
2134 }
2135}
2136
2137static void blk_mq_del_queue_tag_set(struct request_queue *q)
2138{
2139 struct blk_mq_tag_set *set = q->tag_set;
2140
2141 mutex_lock(&set->tag_list_lock);
2142 list_del_rcu(&q->tag_set_list);
2143 INIT_LIST_HEAD(&q->tag_set_list);
2144 if (list_is_singular(&set->tag_list)) {
2145 /* just transitioned to unshared */
2146 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2147 /* update existing queue */
2148 blk_mq_update_tag_set_depth(set, false);
2149 }
2150 mutex_unlock(&set->tag_list_lock);
2151
2152 synchronize_rcu();
2153}
2154
2155static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2156 struct request_queue *q)
2157{
2158 q->tag_set = set;
2159
2160 mutex_lock(&set->tag_list_lock);
2161
2162 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2163 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2164 set->flags |= BLK_MQ_F_TAG_SHARED;
2165 /* update existing queue */
2166 blk_mq_update_tag_set_depth(set, true);
2167 }
2168 if (set->flags & BLK_MQ_F_TAG_SHARED)
2169 queue_set_hctx_shared(q, true);
2170 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2171
2172 mutex_unlock(&set->tag_list_lock);
2173}
2174
2175/*
2176 * It is the actual release handler for mq, but we do it from
2177 * request queue's release handler for avoiding use-after-free
2178 * and headache because q->mq_kobj shouldn't have been introduced,
2179 * but we can't group ctx/kctx kobj without it.
2180 */
2181void blk_mq_release(struct request_queue *q)
2182{
2183 struct blk_mq_hw_ctx *hctx;
2184 unsigned int i;
2185
2186 /* hctx kobj stays in hctx */
2187 queue_for_each_hw_ctx(q, hctx, i) {
2188 if (!hctx)
2189 continue;
2190 kobject_put(&hctx->kobj);
2191 }
2192
2193 q->mq_map = NULL;
2194
2195 kfree(q->queue_hw_ctx);
2196
2197 /*
2198 * release .mq_kobj and sw queue's kobject now because
2199 * both share lifetime with request queue.
2200 */
2201 blk_mq_sysfs_deinit(q);
2202
2203 free_percpu(q->queue_ctx);
2204}
2205
2206struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2207{
2208 struct request_queue *uninit_q, *q;
2209
2210 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2211 if (!uninit_q)
2212 return ERR_PTR(-ENOMEM);
2213
2214 q = blk_mq_init_allocated_queue(set, uninit_q);
2215 if (IS_ERR(q))
2216 blk_cleanup_queue(uninit_q);
2217
2218 return q;
2219}
2220EXPORT_SYMBOL(blk_mq_init_queue);
2221
2222static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2223 struct request_queue *q)
2224{
2225 int i, j;
2226 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2227
2228 blk_mq_sysfs_unregister(q);
2229 for (i = 0; i < set->nr_hw_queues; i++) {
2230 int node;
2231
2232 if (hctxs[i])
2233 continue;
2234
2235 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2236 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2237 GFP_KERNEL, node);
2238 if (!hctxs[i])
2239 break;
2240
2241 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2242 node)) {
2243 kfree(hctxs[i]);
2244 hctxs[i] = NULL;
2245 break;
2246 }
2247
2248 atomic_set(&hctxs[i]->nr_active, 0);
2249 hctxs[i]->numa_node = node;
2250 hctxs[i]->queue_num = i;
2251
2252 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2253 free_cpumask_var(hctxs[i]->cpumask);
2254 kfree(hctxs[i]);
2255 hctxs[i] = NULL;
2256 break;
2257 }
2258 blk_mq_hctx_kobj_init(hctxs[i]);
2259 }
2260 for (j = i; j < q->nr_hw_queues; j++) {
2261 struct blk_mq_hw_ctx *hctx = hctxs[j];
2262
2263 if (hctx) {
2264 if (hctx->tags)
2265 blk_mq_free_map_and_requests(set, j);
2266 blk_mq_exit_hctx(q, set, hctx, j);
2267 kobject_put(&hctx->kobj);
2268 hctxs[j] = NULL;
2269
2270 }
2271 }
2272 q->nr_hw_queues = i;
2273 blk_mq_sysfs_register(q);
2274}
2275
2276struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2277 struct request_queue *q)
2278{
2279 /* mark the queue as mq asap */
2280 q->mq_ops = set->ops;
2281
2282 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2283 blk_mq_poll_stats_bkt,
2284 BLK_MQ_POLL_STATS_BKTS, q);
2285 if (!q->poll_cb)
2286 goto err_exit;
2287
2288 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2289 if (!q->queue_ctx)
2290 goto err_exit;
2291
2292 /* init q->mq_kobj and sw queues' kobjects */
2293 blk_mq_sysfs_init(q);
2294
2295 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2296 GFP_KERNEL, set->numa_node);
2297 if (!q->queue_hw_ctx)
2298 goto err_percpu;
2299
2300 q->mq_map = set->mq_map;
2301
2302 blk_mq_realloc_hw_ctxs(set, q);
2303 if (!q->nr_hw_queues)
2304 goto err_hctxs;
2305
2306 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2307 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2308
2309 q->nr_queues = nr_cpu_ids;
2310
2311 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2312
2313 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2314 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2315
2316 q->sg_reserved_size = INT_MAX;
2317
2318 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2319 INIT_LIST_HEAD(&q->requeue_list);
2320 spin_lock_init(&q->requeue_lock);
2321
2322 blk_queue_make_request(q, blk_mq_make_request);
2323
2324 /*
2325 * Do this after blk_queue_make_request() overrides it...
2326 */
2327 q->nr_requests = set->queue_depth;
2328
2329 /*
2330 * Default to classic polling
2331 */
2332 q->poll_nsec = -1;
2333
2334 if (set->ops->complete)
2335 blk_queue_softirq_done(q, set->ops->complete);
2336
2337 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2338
2339 mutex_lock(&all_q_mutex);
2340 get_online_cpus();
2341
2342 list_add_tail(&q->all_q_node, &all_q_list);
2343 blk_mq_add_queue_tag_set(set, q);
2344 blk_mq_map_swqueue(q, cpu_online_mask);
2345
2346 put_online_cpus();
2347 mutex_unlock(&all_q_mutex);
2348
2349 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2350 int ret;
2351
2352 ret = blk_mq_sched_init(q);
2353 if (ret)
2354 return ERR_PTR(ret);
2355 }
2356
2357 return q;
2358
2359err_hctxs:
2360 kfree(q->queue_hw_ctx);
2361err_percpu:
2362 free_percpu(q->queue_ctx);
2363err_exit:
2364 q->mq_ops = NULL;
2365 return ERR_PTR(-ENOMEM);
2366}
2367EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2368
2369void blk_mq_free_queue(struct request_queue *q)
2370{
2371 struct blk_mq_tag_set *set = q->tag_set;
2372
2373 mutex_lock(&all_q_mutex);
2374 list_del_init(&q->all_q_node);
2375 mutex_unlock(&all_q_mutex);
2376
2377 blk_mq_del_queue_tag_set(q);
2378
2379 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2380}
2381
2382/* Basically redo blk_mq_init_queue with queue frozen */
2383static void blk_mq_queue_reinit(struct request_queue *q,
2384 const struct cpumask *online_mask)
2385{
2386 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2387
2388 blk_mq_sysfs_unregister(q);
2389
2390 /*
2391 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2392 * we should change hctx numa_node according to new topology (this
2393 * involves free and re-allocate memory, worthy doing?)
2394 */
2395
2396 blk_mq_map_swqueue(q, online_mask);
2397
2398 blk_mq_sysfs_register(q);
2399}
2400
2401/*
2402 * New online cpumask which is going to be set in this hotplug event.
2403 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2404 * one-by-one and dynamically allocating this could result in a failure.
2405 */
2406static struct cpumask cpuhp_online_new;
2407
2408static void blk_mq_queue_reinit_work(void)
2409{
2410 struct request_queue *q;
2411
2412 mutex_lock(&all_q_mutex);
2413 /*
2414 * We need to freeze and reinit all existing queues. Freezing
2415 * involves synchronous wait for an RCU grace period and doing it
2416 * one by one may take a long time. Start freezing all queues in
2417 * one swoop and then wait for the completions so that freezing can
2418 * take place in parallel.
2419 */
2420 list_for_each_entry(q, &all_q_list, all_q_node)
2421 blk_freeze_queue_start(q);
2422 list_for_each_entry(q, &all_q_list, all_q_node)
2423 blk_mq_freeze_queue_wait(q);
2424
2425 list_for_each_entry(q, &all_q_list, all_q_node)
2426 blk_mq_queue_reinit(q, &cpuhp_online_new);
2427
2428 list_for_each_entry(q, &all_q_list, all_q_node)
2429 blk_mq_unfreeze_queue(q);
2430
2431 mutex_unlock(&all_q_mutex);
2432}
2433
2434static int blk_mq_queue_reinit_dead(unsigned int cpu)
2435{
2436 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2437 blk_mq_queue_reinit_work();
2438 return 0;
2439}
2440
2441/*
2442 * Before hotadded cpu starts handling requests, new mappings must be
2443 * established. Otherwise, these requests in hw queue might never be
2444 * dispatched.
2445 *
2446 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2447 * for CPU0, and ctx1 for CPU1).
2448 *
2449 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2450 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2451 *
2452 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2453 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2454 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2455 * ignored.
2456 */
2457static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2458{
2459 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2460 cpumask_set_cpu(cpu, &cpuhp_online_new);
2461 blk_mq_queue_reinit_work();
2462 return 0;
2463}
2464
2465static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2466{
2467 int i;
2468
2469 for (i = 0; i < set->nr_hw_queues; i++)
2470 if (!__blk_mq_alloc_rq_map(set, i))
2471 goto out_unwind;
2472
2473 return 0;
2474
2475out_unwind:
2476 while (--i >= 0)
2477 blk_mq_free_rq_map(set->tags[i]);
2478
2479 return -ENOMEM;
2480}
2481
2482/*
2483 * Allocate the request maps associated with this tag_set. Note that this
2484 * may reduce the depth asked for, if memory is tight. set->queue_depth
2485 * will be updated to reflect the allocated depth.
2486 */
2487static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2488{
2489 unsigned int depth;
2490 int err;
2491
2492 depth = set->queue_depth;
2493 do {
2494 err = __blk_mq_alloc_rq_maps(set);
2495 if (!err)
2496 break;
2497
2498 set->queue_depth >>= 1;
2499 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2500 err = -ENOMEM;
2501 break;
2502 }
2503 } while (set->queue_depth);
2504
2505 if (!set->queue_depth || err) {
2506 pr_err("blk-mq: failed to allocate request map\n");
2507 return -ENOMEM;
2508 }
2509
2510 if (depth != set->queue_depth)
2511 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2512 depth, set->queue_depth);
2513
2514 return 0;
2515}
2516
2517static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2518{
2519 if (set->ops->map_queues)
2520 return set->ops->map_queues(set);
2521 else
2522 return blk_mq_map_queues(set);
2523}
2524
2525/*
2526 * Alloc a tag set to be associated with one or more request queues.
2527 * May fail with EINVAL for various error conditions. May adjust the
2528 * requested depth down, if if it too large. In that case, the set
2529 * value will be stored in set->queue_depth.
2530 */
2531int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2532{
2533 int ret;
2534
2535 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2536
2537 if (!set->nr_hw_queues)
2538 return -EINVAL;
2539 if (!set->queue_depth)
2540 return -EINVAL;
2541 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2542 return -EINVAL;
2543
2544 if (!set->ops->queue_rq)
2545 return -EINVAL;
2546
2547 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2548 pr_info("blk-mq: reduced tag depth to %u\n",
2549 BLK_MQ_MAX_DEPTH);
2550 set->queue_depth = BLK_MQ_MAX_DEPTH;
2551 }
2552
2553 /*
2554 * If a crashdump is active, then we are potentially in a very
2555 * memory constrained environment. Limit us to 1 queue and
2556 * 64 tags to prevent using too much memory.
2557 */
2558 if (is_kdump_kernel()) {
2559 set->nr_hw_queues = 1;
2560 set->queue_depth = min(64U, set->queue_depth);
2561 }
2562 /*
2563 * There is no use for more h/w queues than cpus.
2564 */
2565 if (set->nr_hw_queues > nr_cpu_ids)
2566 set->nr_hw_queues = nr_cpu_ids;
2567
2568 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2569 GFP_KERNEL, set->numa_node);
2570 if (!set->tags)
2571 return -ENOMEM;
2572
2573 ret = -ENOMEM;
2574 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2575 GFP_KERNEL, set->numa_node);
2576 if (!set->mq_map)
2577 goto out_free_tags;
2578
2579 ret = blk_mq_update_queue_map(set);
2580 if (ret)
2581 goto out_free_mq_map;
2582
2583 ret = blk_mq_alloc_rq_maps(set);
2584 if (ret)
2585 goto out_free_mq_map;
2586
2587 mutex_init(&set->tag_list_lock);
2588 INIT_LIST_HEAD(&set->tag_list);
2589
2590 return 0;
2591
2592out_free_mq_map:
2593 kfree(set->mq_map);
2594 set->mq_map = NULL;
2595out_free_tags:
2596 kfree(set->tags);
2597 set->tags = NULL;
2598 return ret;
2599}
2600EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2601
2602void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2603{
2604 int i;
2605
2606 for (i = 0; i < nr_cpu_ids; i++)
2607 blk_mq_free_map_and_requests(set, i);
2608
2609 kfree(set->mq_map);
2610 set->mq_map = NULL;
2611
2612 kfree(set->tags);
2613 set->tags = NULL;
2614}
2615EXPORT_SYMBOL(blk_mq_free_tag_set);
2616
2617int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2618{
2619 struct blk_mq_tag_set *set = q->tag_set;
2620 struct blk_mq_hw_ctx *hctx;
2621 int i, ret;
2622
2623 if (!set)
2624 return -EINVAL;
2625
2626 blk_mq_freeze_queue(q);
2627
2628 ret = 0;
2629 queue_for_each_hw_ctx(q, hctx, i) {
2630 if (!hctx->tags)
2631 continue;
2632 /*
2633 * If we're using an MQ scheduler, just update the scheduler
2634 * queue depth. This is similar to what the old code would do.
2635 */
2636 if (!hctx->sched_tags) {
2637 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2638 min(nr, set->queue_depth),
2639 false);
2640 } else {
2641 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2642 nr, true);
2643 }
2644 if (ret)
2645 break;
2646 }
2647
2648 if (!ret)
2649 q->nr_requests = nr;
2650
2651 blk_mq_unfreeze_queue(q);
2652
2653 return ret;
2654}
2655
2656void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2657{
2658 struct request_queue *q;
2659
2660 lockdep_assert_held(&set->tag_list_lock);
2661
2662 if (nr_hw_queues > nr_cpu_ids)
2663 nr_hw_queues = nr_cpu_ids;
2664 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2665 return;
2666
2667 list_for_each_entry(q, &set->tag_list, tag_set_list)
2668 blk_mq_freeze_queue(q);
2669
2670 set->nr_hw_queues = nr_hw_queues;
2671 blk_mq_update_queue_map(set);
2672 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2673 blk_mq_realloc_hw_ctxs(set, q);
2674 blk_mq_queue_reinit(q, cpu_online_mask);
2675 }
2676
2677 list_for_each_entry(q, &set->tag_list, tag_set_list)
2678 blk_mq_unfreeze_queue(q);
2679}
2680EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2681
2682/* Enable polling stats and return whether they were already enabled. */
2683static bool blk_poll_stats_enable(struct request_queue *q)
2684{
2685 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2686 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2687 return true;
2688 blk_stat_add_callback(q, q->poll_cb);
2689 return false;
2690}
2691
2692static void blk_mq_poll_stats_start(struct request_queue *q)
2693{
2694 /*
2695 * We don't arm the callback if polling stats are not enabled or the
2696 * callback is already active.
2697 */
2698 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2699 blk_stat_is_active(q->poll_cb))
2700 return;
2701
2702 blk_stat_activate_msecs(q->poll_cb, 100);
2703}
2704
2705static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2706{
2707 struct request_queue *q = cb->data;
2708 int bucket;
2709
2710 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2711 if (cb->stat[bucket].nr_samples)
2712 q->poll_stat[bucket] = cb->stat[bucket];
2713 }
2714}
2715
2716static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2717 struct blk_mq_hw_ctx *hctx,
2718 struct request *rq)
2719{
2720 unsigned long ret = 0;
2721 int bucket;
2722
2723 /*
2724 * If stats collection isn't on, don't sleep but turn it on for
2725 * future users
2726 */
2727 if (!blk_poll_stats_enable(q))
2728 return 0;
2729
2730 /*
2731 * As an optimistic guess, use half of the mean service time
2732 * for this type of request. We can (and should) make this smarter.
2733 * For instance, if the completion latencies are tight, we can
2734 * get closer than just half the mean. This is especially
2735 * important on devices where the completion latencies are longer
2736 * than ~10 usec. We do use the stats for the relevant IO size
2737 * if available which does lead to better estimates.
2738 */
2739 bucket = blk_mq_poll_stats_bkt(rq);
2740 if (bucket < 0)
2741 return ret;
2742
2743 if (q->poll_stat[bucket].nr_samples)
2744 ret = (q->poll_stat[bucket].mean + 1) / 2;
2745
2746 return ret;
2747}
2748
2749static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2750 struct blk_mq_hw_ctx *hctx,
2751 struct request *rq)
2752{
2753 struct hrtimer_sleeper hs;
2754 enum hrtimer_mode mode;
2755 unsigned int nsecs;
2756 ktime_t kt;
2757
2758 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2759 return false;
2760
2761 /*
2762 * poll_nsec can be:
2763 *
2764 * -1: don't ever hybrid sleep
2765 * 0: use half of prev avg
2766 * >0: use this specific value
2767 */
2768 if (q->poll_nsec == -1)
2769 return false;
2770 else if (q->poll_nsec > 0)
2771 nsecs = q->poll_nsec;
2772 else
2773 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2774
2775 if (!nsecs)
2776 return false;
2777
2778 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2779
2780 /*
2781 * This will be replaced with the stats tracking code, using
2782 * 'avg_completion_time / 2' as the pre-sleep target.
2783 */
2784 kt = nsecs;
2785
2786 mode = HRTIMER_MODE_REL;
2787 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2788 hrtimer_set_expires(&hs.timer, kt);
2789
2790 hrtimer_init_sleeper(&hs, current);
2791 do {
2792 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2793 break;
2794 set_current_state(TASK_UNINTERRUPTIBLE);
2795 hrtimer_start_expires(&hs.timer, mode);
2796 if (hs.task)
2797 io_schedule();
2798 hrtimer_cancel(&hs.timer);
2799 mode = HRTIMER_MODE_ABS;
2800 } while (hs.task && !signal_pending(current));
2801
2802 __set_current_state(TASK_RUNNING);
2803 destroy_hrtimer_on_stack(&hs.timer);
2804 return true;
2805}
2806
2807static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2808{
2809 struct request_queue *q = hctx->queue;
2810 long state;
2811
2812 /*
2813 * If we sleep, have the caller restart the poll loop to reset
2814 * the state. Like for the other success return cases, the
2815 * caller is responsible for checking if the IO completed. If
2816 * the IO isn't complete, we'll get called again and will go
2817 * straight to the busy poll loop.
2818 */
2819 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2820 return true;
2821
2822 hctx->poll_considered++;
2823
2824 state = current->state;
2825 while (!need_resched()) {
2826 int ret;
2827
2828 hctx->poll_invoked++;
2829
2830 ret = q->mq_ops->poll(hctx, rq->tag);
2831 if (ret > 0) {
2832 hctx->poll_success++;
2833 set_current_state(TASK_RUNNING);
2834 return true;
2835 }
2836
2837 if (signal_pending_state(state, current))
2838 set_current_state(TASK_RUNNING);
2839
2840 if (current->state == TASK_RUNNING)
2841 return true;
2842 if (ret < 0)
2843 break;
2844 cpu_relax();
2845 }
2846
2847 return false;
2848}
2849
2850bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2851{
2852 struct blk_mq_hw_ctx *hctx;
2853 struct blk_plug *plug;
2854 struct request *rq;
2855
2856 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2857 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2858 return false;
2859
2860 plug = current->plug;
2861 if (plug)
2862 blk_flush_plug_list(plug, false);
2863
2864 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2865 if (!blk_qc_t_is_internal(cookie))
2866 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2867 else {
2868 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2869 /*
2870 * With scheduling, if the request has completed, we'll
2871 * get a NULL return here, as we clear the sched tag when
2872 * that happens. The request still remains valid, like always,
2873 * so we should be safe with just the NULL check.
2874 */
2875 if (!rq)
2876 return false;
2877 }
2878
2879 return __blk_mq_poll(hctx, rq);
2880}
2881EXPORT_SYMBOL_GPL(blk_mq_poll);
2882
2883void blk_mq_disable_hotplug(void)
2884{
2885 mutex_lock(&all_q_mutex);
2886}
2887
2888void blk_mq_enable_hotplug(void)
2889{
2890 mutex_unlock(&all_q_mutex);
2891}
2892
2893static int __init blk_mq_init(void)
2894{
2895 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2896 blk_mq_hctx_notify_dead);
2897
2898 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2899 blk_mq_queue_reinit_prepare,
2900 blk_mq_queue_reinit_dead);
2901 return 0;
2902}
2903subsys_initcall(blk_mq_init);