]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - block/blk-mq.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / block / blk-mq.c
... / ...
CommitLineData
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/kmemleak.h>
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/sched/topology.h>
24#include <linux/sched/signal.h>
25#include <linux/delay.h>
26#include <linux/crash_dump.h>
27#include <linux/prefetch.h>
28
29#include <trace/events/block.h>
30
31#include <linux/blk-mq.h>
32#include "blk.h"
33#include "blk-mq.h"
34#include "blk-mq-debugfs.h"
35#include "blk-mq-tag.h"
36#include "blk-stat.h"
37#include "blk-wbt.h"
38#include "blk-mq-sched.h"
39
40static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41static void blk_mq_poll_stats_start(struct request_queue *q);
42static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
43
44static int blk_mq_poll_stats_bkt(const struct request *rq)
45{
46 int ddir, bytes, bucket;
47
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
50
51 bucket = ddir + 2*(ilog2(bytes) - 9);
52
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
57
58 return bucket;
59}
60
61/*
62 * Check if any of the ctx's have pending work in this hardware queue
63 */
64static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65{
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
69}
70
71/*
72 * Mark this ctx as having pending work in this hardware queue
73 */
74static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
76{
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79}
80
81static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
83{
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85}
86
87struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
90};
91
92static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
95{
96 struct mq_inflight *mi = priv;
97
98 if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
99 !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
100 /*
101 * index[0] counts the specific partition that was asked
102 * for. index[1] counts the ones that are active on the
103 * whole device, so increment that if mi->part is indeed
104 * a partition, and not a whole device.
105 */
106 if (rq->part == mi->part)
107 mi->inflight[0]++;
108 if (mi->part->partno)
109 mi->inflight[1]++;
110 }
111}
112
113void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
114 unsigned int inflight[2])
115{
116 struct mq_inflight mi = { .part = part, .inflight = inflight, };
117
118 inflight[0] = inflight[1] = 0;
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120}
121
122static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 struct request *rq, void *priv,
124 bool reserved)
125{
126 struct mq_inflight *mi = priv;
127
128 if (rq->part == mi->part)
129 mi->inflight[rq_data_dir(rq)]++;
130}
131
132void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
133 unsigned int inflight[2])
134{
135 struct mq_inflight mi = { .part = part, .inflight = inflight, };
136
137 inflight[0] = inflight[1] = 0;
138 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
139}
140
141void blk_freeze_queue_start(struct request_queue *q)
142{
143 int freeze_depth;
144
145 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
146 if (freeze_depth == 1) {
147 percpu_ref_kill(&q->q_usage_counter);
148 if (q->mq_ops)
149 blk_mq_run_hw_queues(q, false);
150 }
151}
152EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
153
154void blk_mq_freeze_queue_wait(struct request_queue *q)
155{
156 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
157}
158EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
159
160int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
161 unsigned long timeout)
162{
163 return wait_event_timeout(q->mq_freeze_wq,
164 percpu_ref_is_zero(&q->q_usage_counter),
165 timeout);
166}
167EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
168
169/*
170 * Guarantee no request is in use, so we can change any data structure of
171 * the queue afterward.
172 */
173void blk_freeze_queue(struct request_queue *q)
174{
175 /*
176 * In the !blk_mq case we are only calling this to kill the
177 * q_usage_counter, otherwise this increases the freeze depth
178 * and waits for it to return to zero. For this reason there is
179 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
180 * exported to drivers as the only user for unfreeze is blk_mq.
181 */
182 blk_freeze_queue_start(q);
183 if (!q->mq_ops)
184 blk_drain_queue(q);
185 blk_mq_freeze_queue_wait(q);
186}
187
188void blk_mq_freeze_queue(struct request_queue *q)
189{
190 /*
191 * ...just an alias to keep freeze and unfreeze actions balanced
192 * in the blk_mq_* namespace
193 */
194 blk_freeze_queue(q);
195}
196EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
197
198void blk_mq_unfreeze_queue(struct request_queue *q)
199{
200 int freeze_depth;
201
202 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 WARN_ON_ONCE(freeze_depth < 0);
204 if (!freeze_depth) {
205 percpu_ref_reinit(&q->q_usage_counter);
206 wake_up_all(&q->mq_freeze_wq);
207 }
208}
209EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
210
211/*
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
214 */
215void blk_mq_quiesce_queue_nowait(struct request_queue *q)
216{
217 unsigned long flags;
218
219 spin_lock_irqsave(q->queue_lock, flags);
220 queue_flag_set(QUEUE_FLAG_QUIESCED, q);
221 spin_unlock_irqrestore(q->queue_lock, flags);
222}
223EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
224
225/**
226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
227 * @q: request queue.
228 *
229 * Note: this function does not prevent that the struct request end_io()
230 * callback function is invoked. Once this function is returned, we make
231 * sure no dispatch can happen until the queue is unquiesced via
232 * blk_mq_unquiesce_queue().
233 */
234void blk_mq_quiesce_queue(struct request_queue *q)
235{
236 struct blk_mq_hw_ctx *hctx;
237 unsigned int i;
238 bool rcu = false;
239
240 blk_mq_quiesce_queue_nowait(q);
241
242 queue_for_each_hw_ctx(q, hctx, i) {
243 if (hctx->flags & BLK_MQ_F_BLOCKING)
244 synchronize_srcu(hctx->queue_rq_srcu);
245 else
246 rcu = true;
247 }
248 if (rcu)
249 synchronize_rcu();
250}
251EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
252
253/*
254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
255 * @q: request queue.
256 *
257 * This function recovers queue into the state before quiescing
258 * which is done by blk_mq_quiesce_queue.
259 */
260void blk_mq_unquiesce_queue(struct request_queue *q)
261{
262 unsigned long flags;
263
264 spin_lock_irqsave(q->queue_lock, flags);
265 queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
266 spin_unlock_irqrestore(q->queue_lock, flags);
267
268 /* dispatch requests which are inserted during quiescing */
269 blk_mq_run_hw_queues(q, true);
270}
271EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272
273void blk_mq_wake_waiters(struct request_queue *q)
274{
275 struct blk_mq_hw_ctx *hctx;
276 unsigned int i;
277
278 queue_for_each_hw_ctx(q, hctx, i)
279 if (blk_mq_hw_queue_mapped(hctx))
280 blk_mq_tag_wakeup_all(hctx->tags, true);
281}
282
283bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
284{
285 return blk_mq_has_free_tags(hctx->tags);
286}
287EXPORT_SYMBOL(blk_mq_can_queue);
288
289static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
290 unsigned int tag, unsigned int op)
291{
292 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
293 struct request *rq = tags->static_rqs[tag];
294
295 rq->rq_flags = 0;
296
297 if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 rq->tag = -1;
299 rq->internal_tag = tag;
300 } else {
301 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302 rq->rq_flags = RQF_MQ_INFLIGHT;
303 atomic_inc(&data->hctx->nr_active);
304 }
305 rq->tag = tag;
306 rq->internal_tag = -1;
307 data->hctx->tags->rqs[rq->tag] = rq;
308 }
309
310 INIT_LIST_HEAD(&rq->queuelist);
311 /* csd/requeue_work/fifo_time is initialized before use */
312 rq->q = data->q;
313 rq->mq_ctx = data->ctx;
314 rq->cmd_flags = op;
315 if (data->flags & BLK_MQ_REQ_PREEMPT)
316 rq->rq_flags |= RQF_PREEMPT;
317 if (blk_queue_io_stat(data->q))
318 rq->rq_flags |= RQF_IO_STAT;
319 /* do not touch atomic flags, it needs atomic ops against the timer */
320 rq->cpu = -1;
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->rq_disk = NULL;
324 rq->part = NULL;
325 rq->start_time = jiffies;
326#ifdef CONFIG_BLK_CGROUP
327 rq->rl = NULL;
328 set_start_time_ns(rq);
329 rq->io_start_time_ns = 0;
330#endif
331 rq->nr_phys_segments = 0;
332#if defined(CONFIG_BLK_DEV_INTEGRITY)
333 rq->nr_integrity_segments = 0;
334#endif
335 rq->special = NULL;
336 /* tag was already set */
337 rq->extra_len = 0;
338
339 INIT_LIST_HEAD(&rq->timeout_list);
340 rq->timeout = 0;
341
342 rq->end_io = NULL;
343 rq->end_io_data = NULL;
344 rq->next_rq = NULL;
345
346 data->ctx->rq_dispatched[op_is_sync(op)]++;
347 return rq;
348}
349
350static struct request *blk_mq_get_request(struct request_queue *q,
351 struct bio *bio, unsigned int op,
352 struct blk_mq_alloc_data *data)
353{
354 struct elevator_queue *e = q->elevator;
355 struct request *rq;
356 unsigned int tag;
357 bool put_ctx_on_error = false;
358
359 blk_queue_enter_live(q);
360 data->q = q;
361 if (likely(!data->ctx)) {
362 data->ctx = blk_mq_get_ctx(q);
363 put_ctx_on_error = true;
364 }
365 if (likely(!data->hctx))
366 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
367 if (op & REQ_NOWAIT)
368 data->flags |= BLK_MQ_REQ_NOWAIT;
369
370 if (e) {
371 data->flags |= BLK_MQ_REQ_INTERNAL;
372
373 /*
374 * Flush requests are special and go directly to the
375 * dispatch list.
376 */
377 if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
378 e->type->ops.mq.limit_depth(op, data);
379 } else {
380 blk_mq_tag_busy(data->hctx);
381 }
382
383 tag = blk_mq_get_tag(data);
384 if (tag == BLK_MQ_TAG_FAIL) {
385 if (put_ctx_on_error) {
386 blk_mq_put_ctx(data->ctx);
387 data->ctx = NULL;
388 }
389 blk_queue_exit(q);
390 return NULL;
391 }
392
393 rq = blk_mq_rq_ctx_init(data, tag, op);
394 if (!op_is_flush(op)) {
395 rq->elv.icq = NULL;
396 if (e && e->type->ops.mq.prepare_request) {
397 if (e->type->icq_cache && rq_ioc(bio))
398 blk_mq_sched_assign_ioc(rq, bio);
399
400 e->type->ops.mq.prepare_request(rq, bio);
401 rq->rq_flags |= RQF_ELVPRIV;
402 }
403 }
404 data->hctx->queued++;
405 return rq;
406}
407
408struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
409 blk_mq_req_flags_t flags)
410{
411 struct blk_mq_alloc_data alloc_data = { .flags = flags };
412 struct request *rq;
413 int ret;
414
415 ret = blk_queue_enter(q, flags);
416 if (ret)
417 return ERR_PTR(ret);
418
419 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
420 blk_queue_exit(q);
421
422 if (!rq)
423 return ERR_PTR(-EWOULDBLOCK);
424
425 blk_mq_put_ctx(alloc_data.ctx);
426
427 rq->__data_len = 0;
428 rq->__sector = (sector_t) -1;
429 rq->bio = rq->biotail = NULL;
430 return rq;
431}
432EXPORT_SYMBOL(blk_mq_alloc_request);
433
434struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
435 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
436{
437 struct blk_mq_alloc_data alloc_data = { .flags = flags };
438 struct request *rq;
439 unsigned int cpu;
440 int ret;
441
442 /*
443 * If the tag allocator sleeps we could get an allocation for a
444 * different hardware context. No need to complicate the low level
445 * allocator for this for the rare use case of a command tied to
446 * a specific queue.
447 */
448 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
449 return ERR_PTR(-EINVAL);
450
451 if (hctx_idx >= q->nr_hw_queues)
452 return ERR_PTR(-EIO);
453
454 ret = blk_queue_enter(q, flags);
455 if (ret)
456 return ERR_PTR(ret);
457
458 /*
459 * Check if the hardware context is actually mapped to anything.
460 * If not tell the caller that it should skip this queue.
461 */
462 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
463 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
464 blk_queue_exit(q);
465 return ERR_PTR(-EXDEV);
466 }
467 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
468 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
469
470 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
471 blk_queue_exit(q);
472
473 if (!rq)
474 return ERR_PTR(-EWOULDBLOCK);
475
476 return rq;
477}
478EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
479
480void blk_mq_free_request(struct request *rq)
481{
482 struct request_queue *q = rq->q;
483 struct elevator_queue *e = q->elevator;
484 struct blk_mq_ctx *ctx = rq->mq_ctx;
485 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
486 const int sched_tag = rq->internal_tag;
487
488 if (rq->rq_flags & RQF_ELVPRIV) {
489 if (e && e->type->ops.mq.finish_request)
490 e->type->ops.mq.finish_request(rq);
491 if (rq->elv.icq) {
492 put_io_context(rq->elv.icq->ioc);
493 rq->elv.icq = NULL;
494 }
495 }
496
497 ctx->rq_completed[rq_is_sync(rq)]++;
498 if (rq->rq_flags & RQF_MQ_INFLIGHT)
499 atomic_dec(&hctx->nr_active);
500
501 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
502 laptop_io_completion(q->backing_dev_info);
503
504 wbt_done(q->rq_wb, &rq->issue_stat);
505
506 if (blk_rq_rl(rq))
507 blk_put_rl(blk_rq_rl(rq));
508
509 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
510 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
511 if (rq->tag != -1)
512 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
513 if (sched_tag != -1)
514 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
515 blk_mq_sched_restart(hctx);
516 blk_queue_exit(q);
517}
518EXPORT_SYMBOL_GPL(blk_mq_free_request);
519
520inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
521{
522 blk_account_io_done(rq);
523
524 if (rq->end_io) {
525 wbt_done(rq->q->rq_wb, &rq->issue_stat);
526 rq->end_io(rq, error);
527 } else {
528 if (unlikely(blk_bidi_rq(rq)))
529 blk_mq_free_request(rq->next_rq);
530 blk_mq_free_request(rq);
531 }
532}
533EXPORT_SYMBOL(__blk_mq_end_request);
534
535void blk_mq_end_request(struct request *rq, blk_status_t error)
536{
537 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
538 BUG();
539 __blk_mq_end_request(rq, error);
540}
541EXPORT_SYMBOL(blk_mq_end_request);
542
543static void __blk_mq_complete_request_remote(void *data)
544{
545 struct request *rq = data;
546
547 rq->q->softirq_done_fn(rq);
548}
549
550static void __blk_mq_complete_request(struct request *rq)
551{
552 struct blk_mq_ctx *ctx = rq->mq_ctx;
553 bool shared = false;
554 int cpu;
555
556 if (rq->internal_tag != -1)
557 blk_mq_sched_completed_request(rq);
558 if (rq->rq_flags & RQF_STATS) {
559 blk_mq_poll_stats_start(rq->q);
560 blk_stat_add(rq);
561 }
562
563 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
564 rq->q->softirq_done_fn(rq);
565 return;
566 }
567
568 cpu = get_cpu();
569 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
570 shared = cpus_share_cache(cpu, ctx->cpu);
571
572 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
573 rq->csd.func = __blk_mq_complete_request_remote;
574 rq->csd.info = rq;
575 rq->csd.flags = 0;
576 smp_call_function_single_async(ctx->cpu, &rq->csd);
577 } else {
578 rq->q->softirq_done_fn(rq);
579 }
580 put_cpu();
581}
582
583static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
584{
585 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
586 rcu_read_unlock();
587 else
588 srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
589}
590
591static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
592{
593 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
594 /* shut up gcc false positive */
595 *srcu_idx = 0;
596 rcu_read_lock();
597 } else
598 *srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
599}
600
601/**
602 * blk_mq_complete_request - end I/O on a request
603 * @rq: the request being processed
604 *
605 * Description:
606 * Ends all I/O on a request. It does not handle partial completions.
607 * The actual completion happens out-of-order, through a IPI handler.
608 **/
609void blk_mq_complete_request(struct request *rq)
610{
611 struct request_queue *q = rq->q;
612
613 if (unlikely(blk_should_fake_timeout(q)))
614 return;
615 if (!blk_mark_rq_complete(rq))
616 __blk_mq_complete_request(rq);
617}
618EXPORT_SYMBOL(blk_mq_complete_request);
619
620int blk_mq_request_started(struct request *rq)
621{
622 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
623}
624EXPORT_SYMBOL_GPL(blk_mq_request_started);
625
626void blk_mq_start_request(struct request *rq)
627{
628 struct request_queue *q = rq->q;
629
630 blk_mq_sched_started_request(rq);
631
632 trace_block_rq_issue(q, rq);
633
634 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
635 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
636 rq->rq_flags |= RQF_STATS;
637 wbt_issue(q->rq_wb, &rq->issue_stat);
638 }
639
640 blk_add_timer(rq);
641
642 WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
643
644 /*
645 * Mark us as started and clear complete. Complete might have been
646 * set if requeue raced with timeout, which then marked it as
647 * complete. So be sure to clear complete again when we start
648 * the request, otherwise we'll ignore the completion event.
649 *
650 * Ensure that ->deadline is visible before we set STARTED, such that
651 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
652 * it observes STARTED.
653 */
654 smp_wmb();
655 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
656 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
657 /*
658 * Coherence order guarantees these consecutive stores to a
659 * single variable propagate in the specified order. Thus the
660 * clear_bit() is ordered _after_ the set bit. See
661 * blk_mq_check_expired().
662 *
663 * (the bits must be part of the same byte for this to be
664 * true).
665 */
666 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
667 }
668
669 if (q->dma_drain_size && blk_rq_bytes(rq)) {
670 /*
671 * Make sure space for the drain appears. We know we can do
672 * this because max_hw_segments has been adjusted to be one
673 * fewer than the device can handle.
674 */
675 rq->nr_phys_segments++;
676 }
677}
678EXPORT_SYMBOL(blk_mq_start_request);
679
680/*
681 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
682 * flag isn't set yet, so there may be race with timeout handler,
683 * but given rq->deadline is just set in .queue_rq() under
684 * this situation, the race won't be possible in reality because
685 * rq->timeout should be set as big enough to cover the window
686 * between blk_mq_start_request() called from .queue_rq() and
687 * clearing REQ_ATOM_STARTED here.
688 */
689static void __blk_mq_requeue_request(struct request *rq)
690{
691 struct request_queue *q = rq->q;
692
693 blk_mq_put_driver_tag(rq);
694
695 trace_block_rq_requeue(q, rq);
696 wbt_requeue(q->rq_wb, &rq->issue_stat);
697
698 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
699 if (q->dma_drain_size && blk_rq_bytes(rq))
700 rq->nr_phys_segments--;
701 }
702}
703
704void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
705{
706 __blk_mq_requeue_request(rq);
707
708 /* this request will be re-inserted to io scheduler queue */
709 blk_mq_sched_requeue_request(rq);
710
711 BUG_ON(blk_queued_rq(rq));
712 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
713}
714EXPORT_SYMBOL(blk_mq_requeue_request);
715
716static void blk_mq_requeue_work(struct work_struct *work)
717{
718 struct request_queue *q =
719 container_of(work, struct request_queue, requeue_work.work);
720 LIST_HEAD(rq_list);
721 struct request *rq, *next;
722
723 spin_lock_irq(&q->requeue_lock);
724 list_splice_init(&q->requeue_list, &rq_list);
725 spin_unlock_irq(&q->requeue_lock);
726
727 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
728 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
729 continue;
730
731 rq->rq_flags &= ~RQF_SOFTBARRIER;
732 list_del_init(&rq->queuelist);
733 /*
734 * If RQF_DONTPREP, rq has contained some driver specific
735 * data, so insert it to hctx dispatch list to avoid any
736 * merge.
737 */
738 if (rq->rq_flags & RQF_DONTPREP)
739 blk_mq_request_bypass_insert(rq, false);
740 else
741 blk_mq_sched_insert_request(rq, true, false, false);
742 }
743
744 while (!list_empty(&rq_list)) {
745 rq = list_entry(rq_list.next, struct request, queuelist);
746 list_del_init(&rq->queuelist);
747 blk_mq_sched_insert_request(rq, false, false, false);
748 }
749
750 blk_mq_run_hw_queues(q, false);
751}
752
753void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
754 bool kick_requeue_list)
755{
756 struct request_queue *q = rq->q;
757 unsigned long flags;
758
759 /*
760 * We abuse this flag that is otherwise used by the I/O scheduler to
761 * request head insertion from the workqueue.
762 */
763 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
764
765 spin_lock_irqsave(&q->requeue_lock, flags);
766 if (at_head) {
767 rq->rq_flags |= RQF_SOFTBARRIER;
768 list_add(&rq->queuelist, &q->requeue_list);
769 } else {
770 list_add_tail(&rq->queuelist, &q->requeue_list);
771 }
772 spin_unlock_irqrestore(&q->requeue_lock, flags);
773
774 if (kick_requeue_list)
775 blk_mq_kick_requeue_list(q);
776}
777EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
778
779void blk_mq_kick_requeue_list(struct request_queue *q)
780{
781 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
782}
783EXPORT_SYMBOL(blk_mq_kick_requeue_list);
784
785void blk_mq_delay_kick_requeue_list(struct request_queue *q,
786 unsigned long msecs)
787{
788 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
789 msecs_to_jiffies(msecs));
790}
791EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
792
793struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
794{
795 if (tag < tags->nr_tags) {
796 prefetch(tags->rqs[tag]);
797 return tags->rqs[tag];
798 }
799
800 return NULL;
801}
802EXPORT_SYMBOL(blk_mq_tag_to_rq);
803
804struct blk_mq_timeout_data {
805 unsigned long next;
806 unsigned int next_set;
807};
808
809void blk_mq_rq_timed_out(struct request *req, bool reserved)
810{
811 const struct blk_mq_ops *ops = req->q->mq_ops;
812 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
813
814 /*
815 * We know that complete is set at this point. If STARTED isn't set
816 * anymore, then the request isn't active and the "timeout" should
817 * just be ignored. This can happen due to the bitflag ordering.
818 * Timeout first checks if STARTED is set, and if it is, assumes
819 * the request is active. But if we race with completion, then
820 * both flags will get cleared. So check here again, and ignore
821 * a timeout event with a request that isn't active.
822 */
823 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
824 return;
825
826 if (ops->timeout)
827 ret = ops->timeout(req, reserved);
828
829 switch (ret) {
830 case BLK_EH_HANDLED:
831 __blk_mq_complete_request(req);
832 break;
833 case BLK_EH_RESET_TIMER:
834 blk_add_timer(req);
835 blk_clear_rq_complete(req);
836 break;
837 case BLK_EH_NOT_HANDLED:
838 break;
839 default:
840 printk(KERN_ERR "block: bad eh return: %d\n", ret);
841 break;
842 }
843}
844
845static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
846 struct request *rq, void *priv, bool reserved)
847{
848 struct blk_mq_timeout_data *data = priv;
849 unsigned long deadline;
850
851 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
852 return;
853
854 /*
855 * Ensures that if we see STARTED we must also see our
856 * up-to-date deadline, see blk_mq_start_request().
857 */
858 smp_rmb();
859
860 deadline = READ_ONCE(rq->deadline);
861
862 /*
863 * The rq being checked may have been freed and reallocated
864 * out already here, we avoid this race by checking rq->deadline
865 * and REQ_ATOM_COMPLETE flag together:
866 *
867 * - if rq->deadline is observed as new value because of
868 * reusing, the rq won't be timed out because of timing.
869 * - if rq->deadline is observed as previous value,
870 * REQ_ATOM_COMPLETE flag won't be cleared in reuse path
871 * because we put a barrier between setting rq->deadline
872 * and clearing the flag in blk_mq_start_request(), so
873 * this rq won't be timed out too.
874 */
875 if (time_after_eq(jiffies, deadline)) {
876 if (!blk_mark_rq_complete(rq)) {
877 /*
878 * Again coherence order ensures that consecutive reads
879 * from the same variable must be in that order. This
880 * ensures that if we see COMPLETE clear, we must then
881 * see STARTED set and we'll ignore this timeout.
882 *
883 * (There's also the MB implied by the test_and_clear())
884 */
885 blk_mq_rq_timed_out(rq, reserved);
886 }
887 } else if (!data->next_set || time_after(data->next, deadline)) {
888 data->next = deadline;
889 data->next_set = 1;
890 }
891}
892
893static void blk_mq_timeout_work(struct work_struct *work)
894{
895 struct request_queue *q =
896 container_of(work, struct request_queue, timeout_work);
897 struct blk_mq_timeout_data data = {
898 .next = 0,
899 .next_set = 0,
900 };
901 int i;
902
903 /* A deadlock might occur if a request is stuck requiring a
904 * timeout at the same time a queue freeze is waiting
905 * completion, since the timeout code would not be able to
906 * acquire the queue reference here.
907 *
908 * That's why we don't use blk_queue_enter here; instead, we use
909 * percpu_ref_tryget directly, because we need to be able to
910 * obtain a reference even in the short window between the queue
911 * starting to freeze, by dropping the first reference in
912 * blk_freeze_queue_start, and the moment the last request is
913 * consumed, marked by the instant q_usage_counter reaches
914 * zero.
915 */
916 if (!percpu_ref_tryget(&q->q_usage_counter))
917 return;
918
919 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
920
921 if (data.next_set) {
922 data.next = blk_rq_timeout(round_jiffies_up(data.next));
923 mod_timer(&q->timeout, data.next);
924 } else {
925 struct blk_mq_hw_ctx *hctx;
926
927 queue_for_each_hw_ctx(q, hctx, i) {
928 /* the hctx may be unmapped, so check it here */
929 if (blk_mq_hw_queue_mapped(hctx))
930 blk_mq_tag_idle(hctx);
931 }
932 }
933 blk_queue_exit(q);
934}
935
936struct flush_busy_ctx_data {
937 struct blk_mq_hw_ctx *hctx;
938 struct list_head *list;
939};
940
941static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
942{
943 struct flush_busy_ctx_data *flush_data = data;
944 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
945 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
946
947 sbitmap_clear_bit(sb, bitnr);
948 spin_lock(&ctx->lock);
949 list_splice_tail_init(&ctx->rq_list, flush_data->list);
950 spin_unlock(&ctx->lock);
951 return true;
952}
953
954/*
955 * Process software queues that have been marked busy, splicing them
956 * to the for-dispatch
957 */
958void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
959{
960 struct flush_busy_ctx_data data = {
961 .hctx = hctx,
962 .list = list,
963 };
964
965 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
966}
967EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
968
969struct dispatch_rq_data {
970 struct blk_mq_hw_ctx *hctx;
971 struct request *rq;
972};
973
974static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
975 void *data)
976{
977 struct dispatch_rq_data *dispatch_data = data;
978 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
979 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
980
981 spin_lock(&ctx->lock);
982 if (unlikely(!list_empty(&ctx->rq_list))) {
983 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
984 list_del_init(&dispatch_data->rq->queuelist);
985 if (list_empty(&ctx->rq_list))
986 sbitmap_clear_bit(sb, bitnr);
987 }
988 spin_unlock(&ctx->lock);
989
990 return !dispatch_data->rq;
991}
992
993struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
994 struct blk_mq_ctx *start)
995{
996 unsigned off = start ? start->index_hw : 0;
997 struct dispatch_rq_data data = {
998 .hctx = hctx,
999 .rq = NULL,
1000 };
1001
1002 __sbitmap_for_each_set(&hctx->ctx_map, off,
1003 dispatch_rq_from_ctx, &data);
1004
1005 return data.rq;
1006}
1007
1008static inline unsigned int queued_to_index(unsigned int queued)
1009{
1010 if (!queued)
1011 return 0;
1012
1013 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1014}
1015
1016bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
1017 bool wait)
1018{
1019 struct blk_mq_alloc_data data = {
1020 .q = rq->q,
1021 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
1022 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
1023 };
1024 bool shared;
1025
1026 might_sleep_if(wait);
1027
1028 if (rq->tag != -1)
1029 goto done;
1030
1031 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1032 data.flags |= BLK_MQ_REQ_RESERVED;
1033
1034 shared = blk_mq_tag_busy(data.hctx);
1035 rq->tag = blk_mq_get_tag(&data);
1036 if (rq->tag >= 0) {
1037 if (shared) {
1038 rq->rq_flags |= RQF_MQ_INFLIGHT;
1039 atomic_inc(&data.hctx->nr_active);
1040 }
1041 data.hctx->tags->rqs[rq->tag] = rq;
1042 }
1043
1044done:
1045 if (hctx)
1046 *hctx = data.hctx;
1047 return rq->tag != -1;
1048}
1049
1050static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1051 int flags, void *key)
1052{
1053 struct blk_mq_hw_ctx *hctx;
1054
1055 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1056
1057 list_del_init(&wait->entry);
1058 blk_mq_run_hw_queue(hctx, true);
1059 return 1;
1060}
1061
1062/*
1063 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1064 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
1065 * restart. For both caes, take care to check the condition again after
1066 * marking us as waiting.
1067 */
1068static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
1069 struct request *rq)
1070{
1071 struct blk_mq_hw_ctx *this_hctx = *hctx;
1072 bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1073 struct sbq_wait_state *ws;
1074 wait_queue_entry_t *wait;
1075 bool ret;
1076
1077 if (!shared_tags) {
1078 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
1079 set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
1080 } else {
1081 wait = &this_hctx->dispatch_wait;
1082 if (!list_empty_careful(&wait->entry))
1083 return false;
1084
1085 spin_lock(&this_hctx->lock);
1086 if (!list_empty(&wait->entry)) {
1087 spin_unlock(&this_hctx->lock);
1088 return false;
1089 }
1090
1091 ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
1092 add_wait_queue(&ws->wait, wait);
1093 }
1094
1095 /*
1096 * It's possible that a tag was freed in the window between the
1097 * allocation failure and adding the hardware queue to the wait
1098 * queue.
1099 */
1100 ret = blk_mq_get_driver_tag(rq, hctx, false);
1101
1102 if (!shared_tags) {
1103 /*
1104 * Don't clear RESTART here, someone else could have set it.
1105 * At most this will cost an extra queue run.
1106 */
1107 return ret;
1108 } else {
1109 if (!ret) {
1110 spin_unlock(&this_hctx->lock);
1111 return false;
1112 }
1113
1114 /*
1115 * We got a tag, remove ourselves from the wait queue to ensure
1116 * someone else gets the wakeup.
1117 */
1118 spin_lock_irq(&ws->wait.lock);
1119 list_del_init(&wait->entry);
1120 spin_unlock_irq(&ws->wait.lock);
1121 spin_unlock(&this_hctx->lock);
1122 return true;
1123 }
1124}
1125
1126#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1127#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1128/*
1129 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1130 * - EWMA is one simple way to compute running average value
1131 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1132 * - take 4 as factor for avoiding to get too small(0) result, and this
1133 * factor doesn't matter because EWMA decreases exponentially
1134 */
1135static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1136{
1137 unsigned int ewma;
1138
1139 if (hctx->queue->elevator)
1140 return;
1141
1142 ewma = hctx->dispatch_busy;
1143
1144 if (!ewma && !busy)
1145 return;
1146
1147 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1148 if (busy)
1149 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1150 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1151
1152 hctx->dispatch_busy = ewma;
1153}
1154
1155#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1156
1157/*
1158 * Returns true if we did some work AND can potentially do more.
1159 */
1160bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1161 bool got_budget)
1162{
1163 struct blk_mq_hw_ctx *hctx;
1164 struct request *rq, *nxt;
1165 bool no_tag = false;
1166 int errors, queued;
1167 blk_status_t ret = BLK_STS_OK;
1168
1169 if (list_empty(list))
1170 return false;
1171
1172 WARN_ON(!list_is_singular(list) && got_budget);
1173
1174 /*
1175 * Now process all the entries, sending them to the driver.
1176 */
1177 errors = queued = 0;
1178 do {
1179 struct blk_mq_queue_data bd;
1180
1181 rq = list_first_entry(list, struct request, queuelist);
1182
1183 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1184 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1185 break;
1186
1187 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1188 /*
1189 * The initial allocation attempt failed, so we need to
1190 * rerun the hardware queue when a tag is freed. The
1191 * waitqueue takes care of that. If the queue is run
1192 * before we add this entry back on the dispatch list,
1193 * we'll re-run it below.
1194 */
1195 if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1196 blk_mq_put_dispatch_budget(hctx);
1197 /*
1198 * For non-shared tags, the RESTART check
1199 * will suffice.
1200 */
1201 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1202 no_tag = true;
1203 break;
1204 }
1205 }
1206
1207 list_del_init(&rq->queuelist);
1208
1209 bd.rq = rq;
1210
1211 /*
1212 * Flag last if we have no more requests, or if we have more
1213 * but can't assign a driver tag to it.
1214 */
1215 if (list_empty(list))
1216 bd.last = true;
1217 else {
1218 nxt = list_first_entry(list, struct request, queuelist);
1219 bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1220 }
1221
1222 ret = q->mq_ops->queue_rq(hctx, &bd);
1223 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1224 /*
1225 * If an I/O scheduler has been configured and we got a
1226 * driver tag for the next request already, free it
1227 * again.
1228 */
1229 if (!list_empty(list)) {
1230 nxt = list_first_entry(list, struct request, queuelist);
1231 blk_mq_put_driver_tag(nxt);
1232 }
1233 list_add(&rq->queuelist, list);
1234 __blk_mq_requeue_request(rq);
1235 break;
1236 }
1237
1238 if (unlikely(ret != BLK_STS_OK)) {
1239 errors++;
1240 blk_mq_end_request(rq, BLK_STS_IOERR);
1241 continue;
1242 }
1243
1244 queued++;
1245 } while (!list_empty(list));
1246
1247 hctx->dispatched[queued_to_index(queued)]++;
1248
1249 /*
1250 * Any items that need requeuing? Stuff them into hctx->dispatch,
1251 * that is where we will continue on next queue run.
1252 */
1253 if (!list_empty(list)) {
1254 bool needs_restart;
1255
1256 spin_lock(&hctx->lock);
1257 list_splice_init(list, &hctx->dispatch);
1258 spin_unlock(&hctx->lock);
1259
1260 /*
1261 * If SCHED_RESTART was set by the caller of this function and
1262 * it is no longer set that means that it was cleared by another
1263 * thread and hence that a queue rerun is needed.
1264 *
1265 * If 'no_tag' is set, that means that we failed getting
1266 * a driver tag with an I/O scheduler attached. If our dispatch
1267 * waitqueue is no longer active, ensure that we run the queue
1268 * AFTER adding our entries back to the list.
1269 *
1270 * If no I/O scheduler has been configured it is possible that
1271 * the hardware queue got stopped and restarted before requests
1272 * were pushed back onto the dispatch list. Rerun the queue to
1273 * avoid starvation. Notes:
1274 * - blk_mq_run_hw_queue() checks whether or not a queue has
1275 * been stopped before rerunning a queue.
1276 * - Some but not all block drivers stop a queue before
1277 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1278 * and dm-rq.
1279 *
1280 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1281 * bit is set, run queue after a delay to avoid IO stalls
1282 * that could otherwise occur if the queue is idle.
1283 */
1284 needs_restart = blk_mq_sched_needs_restart(hctx);
1285 if (!needs_restart ||
1286 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1287 blk_mq_run_hw_queue(hctx, true);
1288 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1289 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1290
1291 blk_mq_update_dispatch_busy(hctx, true);
1292 return false;
1293 } else
1294 blk_mq_update_dispatch_busy(hctx, false);
1295
1296 /*
1297 * If the host/device is unable to accept more work, inform the
1298 * caller of that.
1299 */
1300 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1301 return false;
1302
1303 return (queued + errors) != 0;
1304}
1305
1306static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1307{
1308 int srcu_idx;
1309
1310 /*
1311 * We should be running this queue from one of the CPUs that
1312 * are mapped to it.
1313 *
1314 * There are at least two related races now between setting
1315 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1316 * __blk_mq_run_hw_queue():
1317 *
1318 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1319 * but later it becomes online, then this warning is harmless
1320 * at all
1321 *
1322 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1323 * but later it becomes offline, then the warning can't be
1324 * triggered, and we depend on blk-mq timeout handler to
1325 * handle dispatched requests to this hctx
1326 */
1327 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1328 cpu_online(hctx->next_cpu)) {
1329 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1330 raw_smp_processor_id(),
1331 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1332 dump_stack();
1333 }
1334
1335 /*
1336 * We can't run the queue inline with ints disabled. Ensure that
1337 * we catch bad users of this early.
1338 */
1339 WARN_ON_ONCE(in_interrupt());
1340
1341 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1342
1343 hctx_lock(hctx, &srcu_idx);
1344 blk_mq_sched_dispatch_requests(hctx);
1345 hctx_unlock(hctx, srcu_idx);
1346}
1347
1348static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1349{
1350 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1351
1352 if (cpu >= nr_cpu_ids)
1353 cpu = cpumask_first(hctx->cpumask);
1354 return cpu;
1355}
1356
1357/*
1358 * It'd be great if the workqueue API had a way to pass
1359 * in a mask and had some smarts for more clever placement.
1360 * For now we just round-robin here, switching for every
1361 * BLK_MQ_CPU_WORK_BATCH queued items.
1362 */
1363static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1364{
1365 bool tried = false;
1366 int next_cpu = hctx->next_cpu;
1367
1368 if (hctx->queue->nr_hw_queues == 1)
1369 return WORK_CPU_UNBOUND;
1370
1371 if (--hctx->next_cpu_batch <= 0) {
1372select_cpu:
1373 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1374 cpu_online_mask);
1375 if (next_cpu >= nr_cpu_ids)
1376 next_cpu = blk_mq_first_mapped_cpu(hctx);
1377 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1378 }
1379
1380 /*
1381 * Do unbound schedule if we can't find a online CPU for this hctx,
1382 * and it should only happen in the path of handling CPU DEAD.
1383 */
1384 if (!cpu_online(next_cpu)) {
1385 if (!tried) {
1386 tried = true;
1387 goto select_cpu;
1388 }
1389
1390 /*
1391 * Make sure to re-select CPU next time once after CPUs
1392 * in hctx->cpumask become online again.
1393 */
1394 hctx->next_cpu = next_cpu;
1395 hctx->next_cpu_batch = 1;
1396 return WORK_CPU_UNBOUND;
1397 }
1398
1399 hctx->next_cpu = next_cpu;
1400 return next_cpu;
1401}
1402
1403static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1404 unsigned long msecs)
1405{
1406 if (unlikely(blk_mq_hctx_stopped(hctx)))
1407 return;
1408
1409 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1410 int cpu = get_cpu();
1411 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1412 __blk_mq_run_hw_queue(hctx);
1413 put_cpu();
1414 return;
1415 }
1416
1417 put_cpu();
1418 }
1419
1420 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1421 msecs_to_jiffies(msecs));
1422}
1423
1424void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1425{
1426 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1427}
1428EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1429
1430bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1431{
1432 int srcu_idx;
1433 bool need_run;
1434
1435 /*
1436 * When queue is quiesced, we may be switching io scheduler, or
1437 * updating nr_hw_queues, or other things, and we can't run queue
1438 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1439 *
1440 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1441 * quiesced.
1442 */
1443 hctx_lock(hctx, &srcu_idx);
1444 need_run = !blk_queue_quiesced(hctx->queue) &&
1445 blk_mq_hctx_has_pending(hctx);
1446 hctx_unlock(hctx, srcu_idx);
1447
1448 if (need_run) {
1449 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1450 return true;
1451 }
1452
1453 return false;
1454}
1455EXPORT_SYMBOL(blk_mq_run_hw_queue);
1456
1457void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1458{
1459 struct blk_mq_hw_ctx *hctx;
1460 int i;
1461
1462 queue_for_each_hw_ctx(q, hctx, i) {
1463 if (blk_mq_hctx_stopped(hctx))
1464 continue;
1465
1466 blk_mq_run_hw_queue(hctx, async);
1467 }
1468}
1469EXPORT_SYMBOL(blk_mq_run_hw_queues);
1470
1471/**
1472 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1473 * @q: request queue.
1474 *
1475 * The caller is responsible for serializing this function against
1476 * blk_mq_{start,stop}_hw_queue().
1477 */
1478bool blk_mq_queue_stopped(struct request_queue *q)
1479{
1480 struct blk_mq_hw_ctx *hctx;
1481 int i;
1482
1483 queue_for_each_hw_ctx(q, hctx, i)
1484 if (blk_mq_hctx_stopped(hctx))
1485 return true;
1486
1487 return false;
1488}
1489EXPORT_SYMBOL(blk_mq_queue_stopped);
1490
1491/*
1492 * This function is often used for pausing .queue_rq() by driver when
1493 * there isn't enough resource or some conditions aren't satisfied, and
1494 * BLK_STS_RESOURCE is usually returned.
1495 *
1496 * We do not guarantee that dispatch can be drained or blocked
1497 * after blk_mq_stop_hw_queue() returns. Please use
1498 * blk_mq_quiesce_queue() for that requirement.
1499 */
1500void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1501{
1502 cancel_delayed_work(&hctx->run_work);
1503
1504 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1505}
1506EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1507
1508/*
1509 * This function is often used for pausing .queue_rq() by driver when
1510 * there isn't enough resource or some conditions aren't satisfied, and
1511 * BLK_STS_RESOURCE is usually returned.
1512 *
1513 * We do not guarantee that dispatch can be drained or blocked
1514 * after blk_mq_stop_hw_queues() returns. Please use
1515 * blk_mq_quiesce_queue() for that requirement.
1516 */
1517void blk_mq_stop_hw_queues(struct request_queue *q)
1518{
1519 struct blk_mq_hw_ctx *hctx;
1520 int i;
1521
1522 queue_for_each_hw_ctx(q, hctx, i)
1523 blk_mq_stop_hw_queue(hctx);
1524}
1525EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1526
1527void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1528{
1529 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1530
1531 blk_mq_run_hw_queue(hctx, false);
1532}
1533EXPORT_SYMBOL(blk_mq_start_hw_queue);
1534
1535void blk_mq_start_hw_queues(struct request_queue *q)
1536{
1537 struct blk_mq_hw_ctx *hctx;
1538 int i;
1539
1540 queue_for_each_hw_ctx(q, hctx, i)
1541 blk_mq_start_hw_queue(hctx);
1542}
1543EXPORT_SYMBOL(blk_mq_start_hw_queues);
1544
1545void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1546{
1547 if (!blk_mq_hctx_stopped(hctx))
1548 return;
1549
1550 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1551 blk_mq_run_hw_queue(hctx, async);
1552}
1553EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1554
1555void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1556{
1557 struct blk_mq_hw_ctx *hctx;
1558 int i;
1559
1560 queue_for_each_hw_ctx(q, hctx, i)
1561 blk_mq_start_stopped_hw_queue(hctx, async);
1562}
1563EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1564
1565static void blk_mq_run_work_fn(struct work_struct *work)
1566{
1567 struct blk_mq_hw_ctx *hctx;
1568
1569 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1570
1571 /*
1572 * If we are stopped, don't run the queue. The exception is if
1573 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1574 * the STOPPED bit and run it.
1575 */
1576 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1577 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1578 return;
1579
1580 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1581 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1582 }
1583
1584 __blk_mq_run_hw_queue(hctx);
1585}
1586
1587
1588void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1589{
1590 if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1591 return;
1592
1593 /*
1594 * Stop the hw queue, then modify currently delayed work.
1595 * This should prevent us from running the queue prematurely.
1596 * Mark the queue as auto-clearing STOPPED when it runs.
1597 */
1598 blk_mq_stop_hw_queue(hctx);
1599 set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1600 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1601 &hctx->run_work,
1602 msecs_to_jiffies(msecs));
1603}
1604EXPORT_SYMBOL(blk_mq_delay_queue);
1605
1606static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1607 struct request *rq,
1608 bool at_head)
1609{
1610 struct blk_mq_ctx *ctx = rq->mq_ctx;
1611
1612 lockdep_assert_held(&ctx->lock);
1613
1614 trace_block_rq_insert(hctx->queue, rq);
1615
1616 if (at_head)
1617 list_add(&rq->queuelist, &ctx->rq_list);
1618 else
1619 list_add_tail(&rq->queuelist, &ctx->rq_list);
1620}
1621
1622void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1623 bool at_head)
1624{
1625 struct blk_mq_ctx *ctx = rq->mq_ctx;
1626
1627 lockdep_assert_held(&ctx->lock);
1628
1629 __blk_mq_insert_req_list(hctx, rq, at_head);
1630 blk_mq_hctx_mark_pending(hctx, ctx);
1631}
1632
1633/*
1634 * Should only be used carefully, when the caller knows we want to
1635 * bypass a potential IO scheduler on the target device.
1636 */
1637void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1638{
1639 struct blk_mq_ctx *ctx = rq->mq_ctx;
1640 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1641
1642 spin_lock(&hctx->lock);
1643 list_add_tail(&rq->queuelist, &hctx->dispatch);
1644 spin_unlock(&hctx->lock);
1645
1646 if (run_queue)
1647 blk_mq_run_hw_queue(hctx, false);
1648}
1649
1650void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1651 struct list_head *list)
1652
1653{
1654 /*
1655 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1656 * offline now
1657 */
1658 spin_lock(&ctx->lock);
1659 while (!list_empty(list)) {
1660 struct request *rq;
1661
1662 rq = list_first_entry(list, struct request, queuelist);
1663 BUG_ON(rq->mq_ctx != ctx);
1664 list_del_init(&rq->queuelist);
1665 __blk_mq_insert_req_list(hctx, rq, false);
1666 }
1667 blk_mq_hctx_mark_pending(hctx, ctx);
1668 spin_unlock(&ctx->lock);
1669}
1670
1671static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1672{
1673 struct request *rqa = container_of(a, struct request, queuelist);
1674 struct request *rqb = container_of(b, struct request, queuelist);
1675
1676 return !(rqa->mq_ctx < rqb->mq_ctx ||
1677 (rqa->mq_ctx == rqb->mq_ctx &&
1678 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1679}
1680
1681void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1682{
1683 struct blk_mq_ctx *this_ctx;
1684 struct request_queue *this_q;
1685 struct request *rq;
1686 LIST_HEAD(list);
1687 LIST_HEAD(ctx_list);
1688 unsigned int depth;
1689
1690 list_splice_init(&plug->mq_list, &list);
1691
1692 list_sort(NULL, &list, plug_ctx_cmp);
1693
1694 this_q = NULL;
1695 this_ctx = NULL;
1696 depth = 0;
1697
1698 while (!list_empty(&list)) {
1699 rq = list_entry_rq(list.next);
1700 list_del_init(&rq->queuelist);
1701 BUG_ON(!rq->q);
1702 if (rq->mq_ctx != this_ctx) {
1703 if (this_ctx) {
1704 trace_block_unplug(this_q, depth, !from_schedule);
1705 blk_mq_sched_insert_requests(this_q, this_ctx,
1706 &ctx_list,
1707 from_schedule);
1708 }
1709
1710 this_ctx = rq->mq_ctx;
1711 this_q = rq->q;
1712 depth = 0;
1713 }
1714
1715 depth++;
1716 list_add_tail(&rq->queuelist, &ctx_list);
1717 }
1718
1719 /*
1720 * If 'this_ctx' is set, we know we have entries to complete
1721 * on 'ctx_list'. Do those.
1722 */
1723 if (this_ctx) {
1724 trace_block_unplug(this_q, depth, !from_schedule);
1725 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1726 from_schedule);
1727 }
1728}
1729
1730static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1731{
1732 blk_init_request_from_bio(rq, bio);
1733
1734 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1735
1736 blk_account_io_start(rq, true);
1737}
1738
1739static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1740 struct blk_mq_ctx *ctx,
1741 struct request *rq)
1742{
1743 spin_lock(&ctx->lock);
1744 __blk_mq_insert_request(hctx, rq, false);
1745 spin_unlock(&ctx->lock);
1746}
1747
1748static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1749{
1750 if (rq->tag != -1)
1751 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1752
1753 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1754}
1755
1756static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1757 struct request *rq,
1758 blk_qc_t *cookie)
1759{
1760 struct request_queue *q = rq->q;
1761 struct blk_mq_queue_data bd = {
1762 .rq = rq,
1763 .last = true,
1764 };
1765 blk_qc_t new_cookie;
1766 blk_status_t ret;
1767
1768 new_cookie = request_to_qc_t(hctx, rq);
1769
1770 /*
1771 * For OK queue, we are done. For error, caller may kill it.
1772 * Any other error (busy), just add it to our list as we
1773 * previously would have done.
1774 */
1775 ret = q->mq_ops->queue_rq(hctx, &bd);
1776 switch (ret) {
1777 case BLK_STS_OK:
1778 blk_mq_update_dispatch_busy(hctx, false);
1779 *cookie = new_cookie;
1780 break;
1781 case BLK_STS_RESOURCE:
1782 case BLK_STS_DEV_RESOURCE:
1783 blk_mq_update_dispatch_busy(hctx, true);
1784 __blk_mq_requeue_request(rq);
1785 break;
1786 default:
1787 blk_mq_update_dispatch_busy(hctx, false);
1788 *cookie = BLK_QC_T_NONE;
1789 break;
1790 }
1791
1792 return ret;
1793}
1794
1795static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1796 struct request *rq,
1797 blk_qc_t *cookie,
1798 bool bypass_insert)
1799{
1800 struct request_queue *q = rq->q;
1801 bool run_queue = true;
1802
1803 /*
1804 * RCU or SRCU read lock is needed before checking quiesced flag.
1805 *
1806 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1807 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1808 * and avoid driver to try to dispatch again.
1809 */
1810 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1811 run_queue = false;
1812 bypass_insert = false;
1813 goto insert;
1814 }
1815
1816 if (q->elevator && !bypass_insert)
1817 goto insert;
1818
1819 if (!blk_mq_get_dispatch_budget(hctx))
1820 goto insert;
1821
1822 if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1823 blk_mq_put_dispatch_budget(hctx);
1824 goto insert;
1825 }
1826
1827 return __blk_mq_issue_directly(hctx, rq, cookie);
1828insert:
1829 if (bypass_insert)
1830 return BLK_STS_RESOURCE;
1831
1832 blk_mq_request_bypass_insert(rq, run_queue);
1833 return BLK_STS_OK;
1834}
1835
1836static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1837 struct request *rq, blk_qc_t *cookie)
1838{
1839 blk_status_t ret;
1840 int srcu_idx;
1841
1842 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1843
1844 hctx_lock(hctx, &srcu_idx);
1845
1846 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1847 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1848 blk_mq_request_bypass_insert(rq, true);
1849 else if (ret != BLK_STS_OK)
1850 blk_mq_end_request(rq, ret);
1851
1852 hctx_unlock(hctx, srcu_idx);
1853}
1854
1855blk_status_t blk_mq_request_issue_directly(struct request *rq)
1856{
1857 blk_status_t ret;
1858 int srcu_idx;
1859 blk_qc_t unused_cookie;
1860 struct blk_mq_ctx *ctx = rq->mq_ctx;
1861 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1862
1863 hctx_lock(hctx, &srcu_idx);
1864 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1865 hctx_unlock(hctx, srcu_idx);
1866
1867 return ret;
1868}
1869
1870void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1871 struct list_head *list)
1872{
1873 while (!list_empty(list)) {
1874 blk_status_t ret;
1875 struct request *rq = list_first_entry(list, struct request,
1876 queuelist);
1877
1878 list_del_init(&rq->queuelist);
1879 ret = blk_mq_request_issue_directly(rq);
1880 if (ret != BLK_STS_OK) {
1881 if (ret == BLK_STS_RESOURCE ||
1882 ret == BLK_STS_DEV_RESOURCE) {
1883 blk_mq_request_bypass_insert(rq,
1884 list_empty(list));
1885 break;
1886 }
1887 blk_mq_end_request(rq, ret);
1888 }
1889 }
1890}
1891
1892static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1893{
1894 const int is_sync = op_is_sync(bio->bi_opf);
1895 const int is_flush_fua = op_is_flush(bio->bi_opf);
1896 struct blk_mq_alloc_data data = { .flags = 0 };
1897 struct request *rq;
1898 unsigned int request_count = 0;
1899 struct blk_plug *plug;
1900 struct request *same_queue_rq = NULL;
1901 blk_qc_t cookie;
1902 unsigned int wb_acct;
1903
1904 blk_queue_bounce(q, &bio);
1905
1906 blk_queue_split(q, &bio);
1907
1908 if (!bio_integrity_prep(bio))
1909 return BLK_QC_T_NONE;
1910
1911 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1912 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1913 return BLK_QC_T_NONE;
1914
1915 if (blk_mq_sched_bio_merge(q, bio))
1916 return BLK_QC_T_NONE;
1917
1918 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1919
1920 trace_block_getrq(q, bio, bio->bi_opf);
1921
1922 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1923 if (unlikely(!rq)) {
1924 __wbt_done(q->rq_wb, wb_acct);
1925 if (bio->bi_opf & REQ_NOWAIT)
1926 bio_wouldblock_error(bio);
1927 return BLK_QC_T_NONE;
1928 }
1929
1930 wbt_track(&rq->issue_stat, wb_acct);
1931
1932 cookie = request_to_qc_t(data.hctx, rq);
1933
1934 plug = current->plug;
1935 if (unlikely(is_flush_fua)) {
1936 blk_mq_put_ctx(data.ctx);
1937 blk_mq_bio_to_request(rq, bio);
1938
1939 /* bypass scheduler for flush rq */
1940 blk_insert_flush(rq);
1941 blk_mq_run_hw_queue(data.hctx, true);
1942 } else if (plug && q->nr_hw_queues == 1) {
1943 struct request *last = NULL;
1944
1945 blk_mq_put_ctx(data.ctx);
1946 blk_mq_bio_to_request(rq, bio);
1947
1948 /*
1949 * @request_count may become stale because of schedule
1950 * out, so check the list again.
1951 */
1952 if (list_empty(&plug->mq_list))
1953 request_count = 0;
1954 else if (blk_queue_nomerges(q))
1955 request_count = blk_plug_queued_count(q);
1956
1957 if (!request_count)
1958 trace_block_plug(q);
1959 else
1960 last = list_entry_rq(plug->mq_list.prev);
1961
1962 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1963 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1964 blk_flush_plug_list(plug, false);
1965 trace_block_plug(q);
1966 }
1967
1968 list_add_tail(&rq->queuelist, &plug->mq_list);
1969 } else if (plug && !blk_queue_nomerges(q)) {
1970 blk_mq_bio_to_request(rq, bio);
1971
1972 /*
1973 * We do limited plugging. If the bio can be merged, do that.
1974 * Otherwise the existing request in the plug list will be
1975 * issued. So the plug list will have one request at most
1976 * The plug list might get flushed before this. If that happens,
1977 * the plug list is empty, and same_queue_rq is invalid.
1978 */
1979 if (list_empty(&plug->mq_list))
1980 same_queue_rq = NULL;
1981 if (same_queue_rq)
1982 list_del_init(&same_queue_rq->queuelist);
1983 list_add_tail(&rq->queuelist, &plug->mq_list);
1984
1985 blk_mq_put_ctx(data.ctx);
1986
1987 if (same_queue_rq) {
1988 data.hctx = blk_mq_map_queue(q,
1989 same_queue_rq->mq_ctx->cpu);
1990 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1991 &cookie);
1992 }
1993 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1994 !data.hctx->dispatch_busy)) {
1995 blk_mq_put_ctx(data.ctx);
1996 blk_mq_bio_to_request(rq, bio);
1997 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1998 } else if (q->elevator) {
1999 blk_mq_put_ctx(data.ctx);
2000 blk_mq_bio_to_request(rq, bio);
2001 blk_mq_sched_insert_request(rq, false, true, true);
2002 } else {
2003 blk_mq_put_ctx(data.ctx);
2004 blk_mq_bio_to_request(rq, bio);
2005 blk_mq_queue_io(data.hctx, data.ctx, rq);
2006 blk_mq_run_hw_queue(data.hctx, true);
2007 }
2008
2009 return cookie;
2010}
2011
2012void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2013 unsigned int hctx_idx)
2014{
2015 struct page *page;
2016
2017 if (tags->rqs && set->ops->exit_request) {
2018 int i;
2019
2020 for (i = 0; i < tags->nr_tags; i++) {
2021 struct request *rq = tags->static_rqs[i];
2022
2023 if (!rq)
2024 continue;
2025 set->ops->exit_request(set, rq, hctx_idx);
2026 tags->static_rqs[i] = NULL;
2027 }
2028 }
2029
2030 while (!list_empty(&tags->page_list)) {
2031 page = list_first_entry(&tags->page_list, struct page, lru);
2032 list_del_init(&page->lru);
2033 /*
2034 * Remove kmemleak object previously allocated in
2035 * blk_mq_init_rq_map().
2036 */
2037 kmemleak_free(page_address(page));
2038 __free_pages(page, page->private);
2039 }
2040}
2041
2042void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2043{
2044 kfree(tags->rqs);
2045 tags->rqs = NULL;
2046 kfree(tags->static_rqs);
2047 tags->static_rqs = NULL;
2048
2049 blk_mq_free_tags(tags);
2050}
2051
2052struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2053 unsigned int hctx_idx,
2054 unsigned int nr_tags,
2055 unsigned int reserved_tags)
2056{
2057 struct blk_mq_tags *tags;
2058 int node;
2059
2060 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2061 if (node == NUMA_NO_NODE)
2062 node = set->numa_node;
2063
2064 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2065 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2066 if (!tags)
2067 return NULL;
2068
2069 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2070 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2071 node);
2072 if (!tags->rqs) {
2073 blk_mq_free_tags(tags);
2074 return NULL;
2075 }
2076
2077 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2078 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2079 node);
2080 if (!tags->static_rqs) {
2081 kfree(tags->rqs);
2082 blk_mq_free_tags(tags);
2083 return NULL;
2084 }
2085
2086 return tags;
2087}
2088
2089static size_t order_to_size(unsigned int order)
2090{
2091 return (size_t)PAGE_SIZE << order;
2092}
2093
2094int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2095 unsigned int hctx_idx, unsigned int depth)
2096{
2097 unsigned int i, j, entries_per_page, max_order = 4;
2098 size_t rq_size, left;
2099 int node;
2100
2101 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2102 if (node == NUMA_NO_NODE)
2103 node = set->numa_node;
2104
2105 INIT_LIST_HEAD(&tags->page_list);
2106
2107 /*
2108 * rq_size is the size of the request plus driver payload, rounded
2109 * to the cacheline size
2110 */
2111 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2112 cache_line_size());
2113 left = rq_size * depth;
2114
2115 for (i = 0; i < depth; ) {
2116 int this_order = max_order;
2117 struct page *page;
2118 int to_do;
2119 void *p;
2120
2121 while (this_order && left < order_to_size(this_order - 1))
2122 this_order--;
2123
2124 do {
2125 page = alloc_pages_node(node,
2126 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2127 this_order);
2128 if (page)
2129 break;
2130 if (!this_order--)
2131 break;
2132 if (order_to_size(this_order) < rq_size)
2133 break;
2134 } while (1);
2135
2136 if (!page)
2137 goto fail;
2138
2139 page->private = this_order;
2140 list_add_tail(&page->lru, &tags->page_list);
2141
2142 p = page_address(page);
2143 /*
2144 * Allow kmemleak to scan these pages as they contain pointers
2145 * to additional allocations like via ops->init_request().
2146 */
2147 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2148 entries_per_page = order_to_size(this_order) / rq_size;
2149 to_do = min(entries_per_page, depth - i);
2150 left -= to_do * rq_size;
2151 for (j = 0; j < to_do; j++) {
2152 struct request *rq = p;
2153
2154 tags->static_rqs[i] = rq;
2155 if (set->ops->init_request) {
2156 if (set->ops->init_request(set, rq, hctx_idx,
2157 node)) {
2158 tags->static_rqs[i] = NULL;
2159 goto fail;
2160 }
2161 }
2162
2163 p += rq_size;
2164 i++;
2165 }
2166 }
2167 return 0;
2168
2169fail:
2170 blk_mq_free_rqs(set, tags, hctx_idx);
2171 return -ENOMEM;
2172}
2173
2174/*
2175 * 'cpu' is going away. splice any existing rq_list entries from this
2176 * software queue to the hw queue dispatch list, and ensure that it
2177 * gets run.
2178 */
2179static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2180{
2181 struct blk_mq_hw_ctx *hctx;
2182 struct blk_mq_ctx *ctx;
2183 LIST_HEAD(tmp);
2184
2185 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2186 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2187
2188 spin_lock(&ctx->lock);
2189 if (!list_empty(&ctx->rq_list)) {
2190 list_splice_init(&ctx->rq_list, &tmp);
2191 blk_mq_hctx_clear_pending(hctx, ctx);
2192 }
2193 spin_unlock(&ctx->lock);
2194
2195 if (list_empty(&tmp))
2196 return 0;
2197
2198 spin_lock(&hctx->lock);
2199 list_splice_tail_init(&tmp, &hctx->dispatch);
2200 spin_unlock(&hctx->lock);
2201
2202 blk_mq_run_hw_queue(hctx, true);
2203 return 0;
2204}
2205
2206static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2207{
2208 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2209 &hctx->cpuhp_dead);
2210}
2211
2212/* hctx->ctxs will be freed in queue's release handler */
2213static void blk_mq_exit_hctx(struct request_queue *q,
2214 struct blk_mq_tag_set *set,
2215 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2216{
2217 blk_mq_debugfs_unregister_hctx(hctx);
2218
2219 if (blk_mq_hw_queue_mapped(hctx))
2220 blk_mq_tag_idle(hctx);
2221
2222 if (set->ops->exit_request)
2223 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2224
2225 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2226
2227 if (set->ops->exit_hctx)
2228 set->ops->exit_hctx(hctx, hctx_idx);
2229
2230 blk_mq_remove_cpuhp(hctx);
2231}
2232
2233static void blk_mq_exit_hw_queues(struct request_queue *q,
2234 struct blk_mq_tag_set *set, int nr_queue)
2235{
2236 struct blk_mq_hw_ctx *hctx;
2237 unsigned int i;
2238
2239 queue_for_each_hw_ctx(q, hctx, i) {
2240 if (i == nr_queue)
2241 break;
2242 blk_mq_exit_hctx(q, set, hctx, i);
2243 }
2244}
2245
2246static int blk_mq_init_hctx(struct request_queue *q,
2247 struct blk_mq_tag_set *set,
2248 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2249{
2250 int node;
2251
2252 node = hctx->numa_node;
2253 if (node == NUMA_NO_NODE)
2254 node = hctx->numa_node = set->numa_node;
2255
2256 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2257 spin_lock_init(&hctx->lock);
2258 INIT_LIST_HEAD(&hctx->dispatch);
2259 hctx->queue = q;
2260 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2261
2262 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2263
2264 hctx->tags = set->tags[hctx_idx];
2265
2266 /*
2267 * Allocate space for all possible cpus to avoid allocation at
2268 * runtime
2269 */
2270 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2271 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2272 if (!hctx->ctxs)
2273 goto unregister_cpu_notifier;
2274
2275 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2276 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2277 goto free_ctxs;
2278
2279 hctx->nr_ctx = 0;
2280
2281 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2282 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2283
2284 if (set->ops->init_hctx &&
2285 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2286 goto free_bitmap;
2287
2288 if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
2289 goto exit_hctx;
2290
2291 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2292 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2293 if (!hctx->fq)
2294 goto sched_exit_hctx;
2295
2296 if (set->ops->init_request &&
2297 set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
2298 node))
2299 goto free_fq;
2300
2301 if (hctx->flags & BLK_MQ_F_BLOCKING)
2302 init_srcu_struct(hctx->queue_rq_srcu);
2303
2304 blk_mq_debugfs_register_hctx(q, hctx);
2305
2306 return 0;
2307
2308 free_fq:
2309 blk_free_flush_queue(hctx->fq);
2310 sched_exit_hctx:
2311 blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2312 exit_hctx:
2313 if (set->ops->exit_hctx)
2314 set->ops->exit_hctx(hctx, hctx_idx);
2315 free_bitmap:
2316 sbitmap_free(&hctx->ctx_map);
2317 free_ctxs:
2318 kfree(hctx->ctxs);
2319 unregister_cpu_notifier:
2320 blk_mq_remove_cpuhp(hctx);
2321 return -1;
2322}
2323
2324static void blk_mq_init_cpu_queues(struct request_queue *q,
2325 unsigned int nr_hw_queues)
2326{
2327 unsigned int i;
2328
2329 for_each_possible_cpu(i) {
2330 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2331 struct blk_mq_hw_ctx *hctx;
2332
2333 __ctx->cpu = i;
2334 spin_lock_init(&__ctx->lock);
2335 INIT_LIST_HEAD(&__ctx->rq_list);
2336 __ctx->queue = q;
2337
2338 /*
2339 * Set local node, IFF we have more than one hw queue. If
2340 * not, we remain on the home node of the device
2341 */
2342 hctx = blk_mq_map_queue(q, i);
2343 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2344 hctx->numa_node = local_memory_node(cpu_to_node(i));
2345 }
2346}
2347
2348static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2349{
2350 int ret = 0;
2351
2352 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2353 set->queue_depth, set->reserved_tags);
2354 if (!set->tags[hctx_idx])
2355 return false;
2356
2357 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2358 set->queue_depth);
2359 if (!ret)
2360 return true;
2361
2362 blk_mq_free_rq_map(set->tags[hctx_idx]);
2363 set->tags[hctx_idx] = NULL;
2364 return false;
2365}
2366
2367static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2368 unsigned int hctx_idx)
2369{
2370 if (set->tags[hctx_idx]) {
2371 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2372 blk_mq_free_rq_map(set->tags[hctx_idx]);
2373 set->tags[hctx_idx] = NULL;
2374 }
2375}
2376
2377static void blk_mq_map_swqueue(struct request_queue *q)
2378{
2379 unsigned int i, hctx_idx;
2380 struct blk_mq_hw_ctx *hctx;
2381 struct blk_mq_ctx *ctx;
2382 struct blk_mq_tag_set *set = q->tag_set;
2383
2384 /*
2385 * Avoid others reading imcomplete hctx->cpumask through sysfs
2386 */
2387 mutex_lock(&q->sysfs_lock);
2388
2389 queue_for_each_hw_ctx(q, hctx, i) {
2390 cpumask_clear(hctx->cpumask);
2391 hctx->nr_ctx = 0;
2392 }
2393
2394 /*
2395 * Map software to hardware queues.
2396 *
2397 * If the cpu isn't present, the cpu is mapped to first hctx.
2398 */
2399 for_each_possible_cpu(i) {
2400 hctx_idx = q->mq_map[i];
2401 /* unmapped hw queue can be remapped after CPU topo changed */
2402 if (!set->tags[hctx_idx] &&
2403 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2404 /*
2405 * If tags initialization fail for some hctx,
2406 * that hctx won't be brought online. In this
2407 * case, remap the current ctx to hctx[0] which
2408 * is guaranteed to always have tags allocated
2409 */
2410 q->mq_map[i] = 0;
2411 }
2412
2413 ctx = per_cpu_ptr(q->queue_ctx, i);
2414 hctx = blk_mq_map_queue(q, i);
2415
2416 cpumask_set_cpu(i, hctx->cpumask);
2417 ctx->index_hw = hctx->nr_ctx;
2418 hctx->ctxs[hctx->nr_ctx++] = ctx;
2419 }
2420
2421 mutex_unlock(&q->sysfs_lock);
2422
2423 queue_for_each_hw_ctx(q, hctx, i) {
2424 /*
2425 * If no software queues are mapped to this hardware queue,
2426 * disable it and free the request entries.
2427 */
2428 if (!hctx->nr_ctx) {
2429 /* Never unmap queue 0. We need it as a
2430 * fallback in case of a new remap fails
2431 * allocation
2432 */
2433 if (i && set->tags[i])
2434 blk_mq_free_map_and_requests(set, i);
2435
2436 hctx->tags = NULL;
2437 continue;
2438 }
2439
2440 hctx->tags = set->tags[i];
2441 WARN_ON(!hctx->tags);
2442
2443 /*
2444 * Set the map size to the number of mapped software queues.
2445 * This is more accurate and more efficient than looping
2446 * over all possibly mapped software queues.
2447 */
2448 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2449
2450 /*
2451 * Initialize batch roundrobin counts
2452 */
2453 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2454 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2455 }
2456}
2457
2458/*
2459 * Caller needs to ensure that we're either frozen/quiesced, or that
2460 * the queue isn't live yet.
2461 */
2462static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2463{
2464 struct blk_mq_hw_ctx *hctx;
2465 int i;
2466
2467 queue_for_each_hw_ctx(q, hctx, i) {
2468 if (shared) {
2469 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2470 atomic_inc(&q->shared_hctx_restart);
2471 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2472 } else {
2473 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
2474 atomic_dec(&q->shared_hctx_restart);
2475 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2476 }
2477 }
2478}
2479
2480static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2481 bool shared)
2482{
2483 struct request_queue *q;
2484
2485 lockdep_assert_held(&set->tag_list_lock);
2486
2487 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2488 blk_mq_freeze_queue(q);
2489 queue_set_hctx_shared(q, shared);
2490 blk_mq_unfreeze_queue(q);
2491 }
2492}
2493
2494static void blk_mq_del_queue_tag_set(struct request_queue *q)
2495{
2496 struct blk_mq_tag_set *set = q->tag_set;
2497
2498 mutex_lock(&set->tag_list_lock);
2499 list_del_rcu(&q->tag_set_list);
2500 if (list_is_singular(&set->tag_list)) {
2501 /* just transitioned to unshared */
2502 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2503 /* update existing queue */
2504 blk_mq_update_tag_set_depth(set, false);
2505 }
2506 mutex_unlock(&set->tag_list_lock);
2507 synchronize_rcu();
2508 INIT_LIST_HEAD(&q->tag_set_list);
2509}
2510
2511static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2512 struct request_queue *q)
2513{
2514 q->tag_set = set;
2515
2516 mutex_lock(&set->tag_list_lock);
2517
2518 /*
2519 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2520 */
2521 if (!list_empty(&set->tag_list) &&
2522 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2523 set->flags |= BLK_MQ_F_TAG_SHARED;
2524 /* update existing queue */
2525 blk_mq_update_tag_set_depth(set, true);
2526 }
2527 if (set->flags & BLK_MQ_F_TAG_SHARED)
2528 queue_set_hctx_shared(q, true);
2529 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2530
2531 mutex_unlock(&set->tag_list_lock);
2532}
2533
2534/*
2535 * It is the actual release handler for mq, but we do it from
2536 * request queue's release handler for avoiding use-after-free
2537 * and headache because q->mq_kobj shouldn't have been introduced,
2538 * but we can't group ctx/kctx kobj without it.
2539 */
2540void blk_mq_release(struct request_queue *q)
2541{
2542 struct blk_mq_hw_ctx *hctx;
2543 unsigned int i;
2544
2545 /* hctx kobj stays in hctx */
2546 queue_for_each_hw_ctx(q, hctx, i) {
2547 if (!hctx)
2548 continue;
2549 kobject_put(&hctx->kobj);
2550 }
2551
2552 q->mq_map = NULL;
2553
2554 kfree(q->queue_hw_ctx);
2555
2556 /*
2557 * release .mq_kobj and sw queue's kobject now because
2558 * both share lifetime with request queue.
2559 */
2560 blk_mq_sysfs_deinit(q);
2561
2562 free_percpu(q->queue_ctx);
2563}
2564
2565struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2566{
2567 struct request_queue *uninit_q, *q;
2568
2569 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2570 if (!uninit_q)
2571 return ERR_PTR(-ENOMEM);
2572
2573 q = blk_mq_init_allocated_queue(set, uninit_q);
2574 if (IS_ERR(q))
2575 blk_cleanup_queue(uninit_q);
2576
2577 return q;
2578}
2579EXPORT_SYMBOL(blk_mq_init_queue);
2580
2581static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2582{
2583 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2584
2585 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
2586 __alignof__(struct blk_mq_hw_ctx)) !=
2587 sizeof(struct blk_mq_hw_ctx));
2588
2589 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2590 hw_ctx_size += sizeof(struct srcu_struct);
2591
2592 return hw_ctx_size;
2593}
2594
2595static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2596 struct request_queue *q)
2597{
2598 int i, j;
2599 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2600
2601 blk_mq_sysfs_unregister(q);
2602
2603 /* protect against switching io scheduler */
2604 mutex_lock(&q->sysfs_lock);
2605 for (i = 0; i < set->nr_hw_queues; i++) {
2606 int node;
2607
2608 if (hctxs[i])
2609 continue;
2610
2611 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2612 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2613 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2614 node);
2615 if (!hctxs[i])
2616 break;
2617
2618 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask,
2619 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2620 node)) {
2621 kfree(hctxs[i]);
2622 hctxs[i] = NULL;
2623 break;
2624 }
2625
2626 atomic_set(&hctxs[i]->nr_active, 0);
2627 hctxs[i]->numa_node = node;
2628 hctxs[i]->queue_num = i;
2629
2630 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2631 free_cpumask_var(hctxs[i]->cpumask);
2632 kfree(hctxs[i]);
2633 hctxs[i] = NULL;
2634 break;
2635 }
2636 blk_mq_hctx_kobj_init(hctxs[i]);
2637 }
2638 for (j = i; j < q->nr_hw_queues; j++) {
2639 struct blk_mq_hw_ctx *hctx = hctxs[j];
2640
2641 if (hctx) {
2642 if (hctx->tags)
2643 blk_mq_free_map_and_requests(set, j);
2644 blk_mq_exit_hctx(q, set, hctx, j);
2645 kobject_put(&hctx->kobj);
2646 hctxs[j] = NULL;
2647
2648 }
2649 }
2650 q->nr_hw_queues = i;
2651 mutex_unlock(&q->sysfs_lock);
2652 blk_mq_sysfs_register(q);
2653}
2654
2655struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2656 struct request_queue *q)
2657{
2658 /* mark the queue as mq asap */
2659 q->mq_ops = set->ops;
2660
2661 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2662 blk_mq_poll_stats_bkt,
2663 BLK_MQ_POLL_STATS_BKTS, q);
2664 if (!q->poll_cb)
2665 goto err_exit;
2666
2667 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2668 if (!q->queue_ctx)
2669 goto err_exit;
2670
2671 /* init q->mq_kobj and sw queues' kobjects */
2672 blk_mq_sysfs_init(q);
2673
2674 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2675 GFP_KERNEL, set->numa_node);
2676 if (!q->queue_hw_ctx)
2677 goto err_percpu;
2678
2679 q->mq_map = set->mq_map;
2680
2681 blk_mq_realloc_hw_ctxs(set, q);
2682 if (!q->nr_hw_queues)
2683 goto err_hctxs;
2684
2685 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2686 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2687
2688 q->nr_queues = nr_cpu_ids;
2689
2690 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2691
2692 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2693 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2694
2695 q->sg_reserved_size = INT_MAX;
2696
2697 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2698 INIT_LIST_HEAD(&q->requeue_list);
2699 spin_lock_init(&q->requeue_lock);
2700
2701 blk_queue_make_request(q, blk_mq_make_request);
2702 if (q->mq_ops->poll)
2703 q->poll_fn = blk_mq_poll;
2704
2705 /*
2706 * Do this after blk_queue_make_request() overrides it...
2707 */
2708 q->nr_requests = set->queue_depth;
2709
2710 /*
2711 * Default to classic polling
2712 */
2713 q->poll_nsec = -1;
2714
2715 if (set->ops->complete)
2716 blk_queue_softirq_done(q, set->ops->complete);
2717
2718 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2719 blk_mq_add_queue_tag_set(set, q);
2720 blk_mq_map_swqueue(q);
2721
2722 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2723 int ret;
2724
2725 ret = blk_mq_sched_init(q);
2726 if (ret)
2727 return ERR_PTR(ret);
2728 }
2729
2730 return q;
2731
2732err_hctxs:
2733 kfree(q->queue_hw_ctx);
2734err_percpu:
2735 free_percpu(q->queue_ctx);
2736err_exit:
2737 q->mq_ops = NULL;
2738 return ERR_PTR(-ENOMEM);
2739}
2740EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2741
2742/* tags can _not_ be used after returning from blk_mq_exit_queue */
2743void blk_mq_exit_queue(struct request_queue *q)
2744{
2745 struct blk_mq_tag_set *set = q->tag_set;
2746
2747 blk_mq_del_queue_tag_set(q);
2748 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2749}
2750
2751/* Basically redo blk_mq_init_queue with queue frozen */
2752static void blk_mq_queue_reinit(struct request_queue *q)
2753{
2754 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2755
2756 blk_mq_debugfs_unregister_hctxs(q);
2757 blk_mq_sysfs_unregister(q);
2758
2759 /*
2760 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2761 * we should change hctx numa_node according to the new topology (this
2762 * involves freeing and re-allocating memory, worth doing?)
2763 */
2764 blk_mq_map_swqueue(q);
2765
2766 blk_mq_sysfs_register(q);
2767 blk_mq_debugfs_register_hctxs(q);
2768}
2769
2770static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2771{
2772 int i;
2773
2774 for (i = 0; i < set->nr_hw_queues; i++)
2775 if (!__blk_mq_alloc_rq_map(set, i))
2776 goto out_unwind;
2777
2778 return 0;
2779
2780out_unwind:
2781 while (--i >= 0)
2782 blk_mq_free_rq_map(set->tags[i]);
2783
2784 return -ENOMEM;
2785}
2786
2787/*
2788 * Allocate the request maps associated with this tag_set. Note that this
2789 * may reduce the depth asked for, if memory is tight. set->queue_depth
2790 * will be updated to reflect the allocated depth.
2791 */
2792static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2793{
2794 unsigned int depth;
2795 int err;
2796
2797 depth = set->queue_depth;
2798 do {
2799 err = __blk_mq_alloc_rq_maps(set);
2800 if (!err)
2801 break;
2802
2803 set->queue_depth >>= 1;
2804 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2805 err = -ENOMEM;
2806 break;
2807 }
2808 } while (set->queue_depth);
2809
2810 if (!set->queue_depth || err) {
2811 pr_err("blk-mq: failed to allocate request map\n");
2812 return -ENOMEM;
2813 }
2814
2815 if (depth != set->queue_depth)
2816 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2817 depth, set->queue_depth);
2818
2819 return 0;
2820}
2821
2822static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2823{
2824 if (set->ops->map_queues) {
2825 int cpu;
2826 /*
2827 * transport .map_queues is usually done in the following
2828 * way:
2829 *
2830 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2831 * mask = get_cpu_mask(queue)
2832 * for_each_cpu(cpu, mask)
2833 * set->mq_map[cpu] = queue;
2834 * }
2835 *
2836 * When we need to remap, the table has to be cleared for
2837 * killing stale mapping since one CPU may not be mapped
2838 * to any hw queue.
2839 */
2840 for_each_possible_cpu(cpu)
2841 set->mq_map[cpu] = 0;
2842
2843 return set->ops->map_queues(set);
2844 } else
2845 return blk_mq_map_queues(set);
2846}
2847
2848/*
2849 * Alloc a tag set to be associated with one or more request queues.
2850 * May fail with EINVAL for various error conditions. May adjust the
2851 * requested depth down, if if it too large. In that case, the set
2852 * value will be stored in set->queue_depth.
2853 */
2854int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2855{
2856 int ret;
2857
2858 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2859
2860 if (!set->nr_hw_queues)
2861 return -EINVAL;
2862 if (!set->queue_depth)
2863 return -EINVAL;
2864 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2865 return -EINVAL;
2866
2867 if (!set->ops->queue_rq)
2868 return -EINVAL;
2869
2870 if (!set->ops->get_budget ^ !set->ops->put_budget)
2871 return -EINVAL;
2872
2873 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2874 pr_info("blk-mq: reduced tag depth to %u\n",
2875 BLK_MQ_MAX_DEPTH);
2876 set->queue_depth = BLK_MQ_MAX_DEPTH;
2877 }
2878
2879 /*
2880 * If a crashdump is active, then we are potentially in a very
2881 * memory constrained environment. Limit us to 1 queue and
2882 * 64 tags to prevent using too much memory.
2883 */
2884 if (is_kdump_kernel()) {
2885 set->nr_hw_queues = 1;
2886 set->queue_depth = min(64U, set->queue_depth);
2887 }
2888 /*
2889 * There is no use for more h/w queues than cpus.
2890 */
2891 if (set->nr_hw_queues > nr_cpu_ids)
2892 set->nr_hw_queues = nr_cpu_ids;
2893
2894 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2895 GFP_KERNEL, set->numa_node);
2896 if (!set->tags)
2897 return -ENOMEM;
2898
2899 ret = -ENOMEM;
2900 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2901 GFP_KERNEL, set->numa_node);
2902 if (!set->mq_map)
2903 goto out_free_tags;
2904
2905 ret = blk_mq_update_queue_map(set);
2906 if (ret)
2907 goto out_free_mq_map;
2908
2909 ret = blk_mq_alloc_rq_maps(set);
2910 if (ret)
2911 goto out_free_mq_map;
2912
2913 mutex_init(&set->tag_list_lock);
2914 INIT_LIST_HEAD(&set->tag_list);
2915
2916 return 0;
2917
2918out_free_mq_map:
2919 kfree(set->mq_map);
2920 set->mq_map = NULL;
2921out_free_tags:
2922 kfree(set->tags);
2923 set->tags = NULL;
2924 return ret;
2925}
2926EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2927
2928void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2929{
2930 int i;
2931
2932 for (i = 0; i < nr_cpu_ids; i++)
2933 blk_mq_free_map_and_requests(set, i);
2934
2935 kfree(set->mq_map);
2936 set->mq_map = NULL;
2937
2938 kfree(set->tags);
2939 set->tags = NULL;
2940}
2941EXPORT_SYMBOL(blk_mq_free_tag_set);
2942
2943int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2944{
2945 struct blk_mq_tag_set *set = q->tag_set;
2946 struct blk_mq_hw_ctx *hctx;
2947 int i, ret;
2948
2949 if (!set)
2950 return -EINVAL;
2951
2952 if (q->nr_requests == nr)
2953 return 0;
2954
2955 blk_mq_freeze_queue(q);
2956 blk_mq_quiesce_queue(q);
2957
2958 ret = 0;
2959 queue_for_each_hw_ctx(q, hctx, i) {
2960 if (!hctx->tags)
2961 continue;
2962 /*
2963 * If we're using an MQ scheduler, just update the scheduler
2964 * queue depth. This is similar to what the old code would do.
2965 */
2966 if (!hctx->sched_tags) {
2967 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2968 false);
2969 } else {
2970 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2971 nr, true);
2972 }
2973 if (ret)
2974 break;
2975 }
2976
2977 if (!ret)
2978 q->nr_requests = nr;
2979
2980 blk_mq_unquiesce_queue(q);
2981 blk_mq_unfreeze_queue(q);
2982
2983 return ret;
2984}
2985
2986static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2987 int nr_hw_queues)
2988{
2989 struct request_queue *q;
2990
2991 lockdep_assert_held(&set->tag_list_lock);
2992
2993 if (nr_hw_queues > nr_cpu_ids)
2994 nr_hw_queues = nr_cpu_ids;
2995 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2996 return;
2997
2998 list_for_each_entry(q, &set->tag_list, tag_set_list)
2999 blk_mq_freeze_queue(q);
3000
3001 set->nr_hw_queues = nr_hw_queues;
3002 blk_mq_update_queue_map(set);
3003 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3004 blk_mq_realloc_hw_ctxs(set, q);
3005 blk_mq_queue_reinit(q);
3006 }
3007
3008 list_for_each_entry(q, &set->tag_list, tag_set_list)
3009 blk_mq_unfreeze_queue(q);
3010}
3011
3012void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3013{
3014 mutex_lock(&set->tag_list_lock);
3015 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3016 mutex_unlock(&set->tag_list_lock);
3017}
3018EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3019
3020/* Enable polling stats and return whether they were already enabled. */
3021static bool blk_poll_stats_enable(struct request_queue *q)
3022{
3023 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3024 test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
3025 return true;
3026 blk_stat_add_callback(q, q->poll_cb);
3027 return false;
3028}
3029
3030static void blk_mq_poll_stats_start(struct request_queue *q)
3031{
3032 /*
3033 * We don't arm the callback if polling stats are not enabled or the
3034 * callback is already active.
3035 */
3036 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3037 blk_stat_is_active(q->poll_cb))
3038 return;
3039
3040 blk_stat_activate_msecs(q->poll_cb, 100);
3041}
3042
3043static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3044{
3045 struct request_queue *q = cb->data;
3046 int bucket;
3047
3048 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3049 if (cb->stat[bucket].nr_samples)
3050 q->poll_stat[bucket] = cb->stat[bucket];
3051 }
3052}
3053
3054static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3055 struct blk_mq_hw_ctx *hctx,
3056 struct request *rq)
3057{
3058 unsigned long ret = 0;
3059 int bucket;
3060
3061 /*
3062 * If stats collection isn't on, don't sleep but turn it on for
3063 * future users
3064 */
3065 if (!blk_poll_stats_enable(q))
3066 return 0;
3067
3068 /*
3069 * As an optimistic guess, use half of the mean service time
3070 * for this type of request. We can (and should) make this smarter.
3071 * For instance, if the completion latencies are tight, we can
3072 * get closer than just half the mean. This is especially
3073 * important on devices where the completion latencies are longer
3074 * than ~10 usec. We do use the stats for the relevant IO size
3075 * if available which does lead to better estimates.
3076 */
3077 bucket = blk_mq_poll_stats_bkt(rq);
3078 if (bucket < 0)
3079 return ret;
3080
3081 if (q->poll_stat[bucket].nr_samples)
3082 ret = (q->poll_stat[bucket].mean + 1) / 2;
3083
3084 return ret;
3085}
3086
3087static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3088 struct blk_mq_hw_ctx *hctx,
3089 struct request *rq)
3090{
3091 struct hrtimer_sleeper hs;
3092 enum hrtimer_mode mode;
3093 unsigned int nsecs;
3094 ktime_t kt;
3095
3096 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
3097 return false;
3098
3099 /*
3100 * poll_nsec can be:
3101 *
3102 * -1: don't ever hybrid sleep
3103 * 0: use half of prev avg
3104 * >0: use this specific value
3105 */
3106 if (q->poll_nsec == -1)
3107 return false;
3108 else if (q->poll_nsec > 0)
3109 nsecs = q->poll_nsec;
3110 else
3111 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3112
3113 if (!nsecs)
3114 return false;
3115
3116 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
3117
3118 /*
3119 * This will be replaced with the stats tracking code, using
3120 * 'avg_completion_time / 2' as the pre-sleep target.
3121 */
3122 kt = nsecs;
3123
3124 mode = HRTIMER_MODE_REL;
3125 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3126 hrtimer_set_expires(&hs.timer, kt);
3127
3128 hrtimer_init_sleeper(&hs, current);
3129 do {
3130 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
3131 break;
3132 set_current_state(TASK_UNINTERRUPTIBLE);
3133 hrtimer_start_expires(&hs.timer, mode);
3134 if (hs.task)
3135 io_schedule();
3136 hrtimer_cancel(&hs.timer);
3137 mode = HRTIMER_MODE_ABS;
3138 } while (hs.task && !signal_pending(current));
3139
3140 __set_current_state(TASK_RUNNING);
3141 destroy_hrtimer_on_stack(&hs.timer);
3142 return true;
3143}
3144
3145static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3146{
3147 struct request_queue *q = hctx->queue;
3148 long state;
3149
3150 /*
3151 * If we sleep, have the caller restart the poll loop to reset
3152 * the state. Like for the other success return cases, the
3153 * caller is responsible for checking if the IO completed. If
3154 * the IO isn't complete, we'll get called again and will go
3155 * straight to the busy poll loop.
3156 */
3157 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3158 return true;
3159
3160 hctx->poll_considered++;
3161
3162 state = current->state;
3163 while (!need_resched()) {
3164 int ret;
3165
3166 hctx->poll_invoked++;
3167
3168 ret = q->mq_ops->poll(hctx, rq->tag);
3169 if (ret > 0) {
3170 hctx->poll_success++;
3171 set_current_state(TASK_RUNNING);
3172 return true;
3173 }
3174
3175 if (signal_pending_state(state, current))
3176 set_current_state(TASK_RUNNING);
3177
3178 if (current->state == TASK_RUNNING)
3179 return true;
3180 if (ret < 0)
3181 break;
3182 cpu_relax();
3183 }
3184
3185 return false;
3186}
3187
3188static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3189{
3190 struct blk_mq_hw_ctx *hctx;
3191 struct request *rq;
3192
3193 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3194 return false;
3195
3196 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3197 if (!blk_qc_t_is_internal(cookie))
3198 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3199 else {
3200 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3201 /*
3202 * With scheduling, if the request has completed, we'll
3203 * get a NULL return here, as we clear the sched tag when
3204 * that happens. The request still remains valid, like always,
3205 * so we should be safe with just the NULL check.
3206 */
3207 if (!rq)
3208 return false;
3209 }
3210
3211 return __blk_mq_poll(hctx, rq);
3212}
3213
3214static int __init blk_mq_init(void)
3215{
3216 /*
3217 * See comment in block/blk.h rq_atomic_flags enum
3218 */
3219 BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
3220 (REQ_ATOM_COMPLETE / BITS_PER_BYTE));
3221
3222 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3223 blk_mq_hctx_notify_dead);
3224 return 0;
3225}
3226subsys_initcall(blk_mq_init);