]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - block/cfq-iosched.c
blkio: Export disk time and sectors used by a group to user space
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
... / ...
CommitLineData
1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/jiffies.h>
13#include <linux/rbtree.h>
14#include <linux/ioprio.h>
15#include <linux/blktrace_api.h>
16#include "blk-cgroup.h"
17
18/*
19 * tunables
20 */
21/* max queue in one round of service */
22static const int cfq_quantum = 4;
23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
28static const int cfq_slice_sync = HZ / 10;
29static int cfq_slice_async = HZ / 25;
30static const int cfq_slice_async_rq = 2;
31static int cfq_slice_idle = HZ / 125;
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
34
35/*
36 * offset from end of service tree
37 */
38#define CFQ_IDLE_DELAY (HZ / 5)
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT (2)
44
45/*
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
48 */
49#define CFQQ_COOP_TOUT (HZ)
50
51#define CFQ_SLICE_SCALE (5)
52#define CFQ_HW_QUEUE_MIN (5)
53#define CFQ_SERVICE_SHIFT 12
54
55#define RQ_CIC(rq) \
56 ((struct cfq_io_context *) (rq)->elevator_private)
57#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
58
59static struct kmem_cache *cfq_pool;
60static struct kmem_cache *cfq_ioc_pool;
61
62static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63static struct completion *ioc_gone;
64static DEFINE_SPINLOCK(ioc_gone_lock);
65
66#define CFQ_PRIO_LISTS IOPRIO_BE_NR
67#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
70#define sample_valid(samples) ((samples) > 80)
71#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
72
73/*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79struct cfq_rb_root {
80 struct rb_root rb;
81 struct rb_node *left;
82 unsigned count;
83 u64 min_vdisktime;
84 struct rb_node *active;
85 unsigned total_weight;
86};
87#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
94 atomic_t ref;
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
120 /* time when first request from queue completed and slice started. */
121 unsigned long slice_start;
122 unsigned long slice_end;
123 long slice_resid;
124 unsigned int slice_dispatch;
125
126 /* pending metadata requests */
127 int meta_pending;
128 /* number of requests that are on the dispatch list or inside driver */
129 int dispatched;
130
131 /* io prio of this group */
132 unsigned short ioprio, org_ioprio;
133 unsigned short ioprio_class, org_ioprio_class;
134
135 unsigned int seek_samples;
136 u64 seek_total;
137 sector_t seek_mean;
138 sector_t last_request_pos;
139 unsigned long seeky_start;
140
141 pid_t pid;
142
143 struct cfq_rb_root *service_tree;
144 struct cfq_queue *new_cfqq;
145 struct cfq_group *cfqg;
146 /* Sectors dispatched in current dispatch round */
147 unsigned long nr_sectors;
148};
149
150/*
151 * First index in the service_trees.
152 * IDLE is handled separately, so it has negative index
153 */
154enum wl_prio_t {
155 BE_WORKLOAD = 0,
156 RT_WORKLOAD = 1,
157 IDLE_WORKLOAD = 2,
158};
159
160/*
161 * Second index in the service_trees.
162 */
163enum wl_type_t {
164 ASYNC_WORKLOAD = 0,
165 SYNC_NOIDLE_WORKLOAD = 1,
166 SYNC_WORKLOAD = 2
167};
168
169/* This is per cgroup per device grouping structure */
170struct cfq_group {
171 /* group service_tree member */
172 struct rb_node rb_node;
173
174 /* group service_tree key */
175 u64 vdisktime;
176 unsigned int weight;
177 bool on_st;
178
179 /* number of cfqq currently on this group */
180 int nr_cfqq;
181
182 /* Per group busy queus average. Useful for workload slice calc. */
183 unsigned int busy_queues_avg[2];
184 /*
185 * rr lists of queues with requests, onle rr for each priority class.
186 * Counts are embedded in the cfq_rb_root
187 */
188 struct cfq_rb_root service_trees[2][3];
189 struct cfq_rb_root service_tree_idle;
190
191 unsigned long saved_workload_slice;
192 enum wl_type_t saved_workload;
193 enum wl_prio_t saved_serving_prio;
194 struct blkio_group blkg;
195#ifdef CONFIG_CFQ_GROUP_IOSCHED
196 struct hlist_node cfqd_node;
197 atomic_t ref;
198#endif
199};
200
201/*
202 * Per block device queue structure
203 */
204struct cfq_data {
205 struct request_queue *queue;
206 /* Root service tree for cfq_groups */
207 struct cfq_rb_root grp_service_tree;
208 struct cfq_group root_group;
209 /* Number of active cfq groups on group service tree */
210 int nr_groups;
211
212 /*
213 * The priority currently being served
214 */
215 enum wl_prio_t serving_prio;
216 enum wl_type_t serving_type;
217 unsigned long workload_expires;
218 struct cfq_group *serving_group;
219 bool noidle_tree_requires_idle;
220
221 /*
222 * Each priority tree is sorted by next_request position. These
223 * trees are used when determining if two or more queues are
224 * interleaving requests (see cfq_close_cooperator).
225 */
226 struct rb_root prio_trees[CFQ_PRIO_LISTS];
227
228 unsigned int busy_queues;
229
230 int rq_in_driver[2];
231 int sync_flight;
232
233 /*
234 * queue-depth detection
235 */
236 int rq_queued;
237 int hw_tag;
238 /*
239 * hw_tag can be
240 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
241 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
242 * 0 => no NCQ
243 */
244 int hw_tag_est_depth;
245 unsigned int hw_tag_samples;
246
247 /*
248 * idle window management
249 */
250 struct timer_list idle_slice_timer;
251 struct work_struct unplug_work;
252
253 struct cfq_queue *active_queue;
254 struct cfq_io_context *active_cic;
255
256 /*
257 * async queue for each priority case
258 */
259 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
260 struct cfq_queue *async_idle_cfqq;
261
262 sector_t last_position;
263
264 /*
265 * tunables, see top of file
266 */
267 unsigned int cfq_quantum;
268 unsigned int cfq_fifo_expire[2];
269 unsigned int cfq_back_penalty;
270 unsigned int cfq_back_max;
271 unsigned int cfq_slice[2];
272 unsigned int cfq_slice_async_rq;
273 unsigned int cfq_slice_idle;
274 unsigned int cfq_latency;
275
276 struct list_head cic_list;
277
278 /*
279 * Fallback dummy cfqq for extreme OOM conditions
280 */
281 struct cfq_queue oom_cfqq;
282
283 unsigned long last_end_sync_rq;
284
285 /* List of cfq groups being managed on this device*/
286 struct hlist_head cfqg_list;
287};
288
289static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
290
291static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
292 enum wl_prio_t prio,
293 enum wl_type_t type,
294 struct cfq_data *cfqd)
295{
296 if (!cfqg)
297 return NULL;
298
299 if (prio == IDLE_WORKLOAD)
300 return &cfqg->service_tree_idle;
301
302 return &cfqg->service_trees[prio][type];
303}
304
305enum cfqq_state_flags {
306 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
307 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
308 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
309 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
310 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
311 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
312 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
313 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
314 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
315 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
316 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
317};
318
319#define CFQ_CFQQ_FNS(name) \
320static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
321{ \
322 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
323} \
324static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
325{ \
326 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
327} \
328static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
329{ \
330 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
331}
332
333CFQ_CFQQ_FNS(on_rr);
334CFQ_CFQQ_FNS(wait_request);
335CFQ_CFQQ_FNS(must_dispatch);
336CFQ_CFQQ_FNS(must_alloc_slice);
337CFQ_CFQQ_FNS(fifo_expire);
338CFQ_CFQQ_FNS(idle_window);
339CFQ_CFQQ_FNS(prio_changed);
340CFQ_CFQQ_FNS(slice_new);
341CFQ_CFQQ_FNS(sync);
342CFQ_CFQQ_FNS(coop);
343CFQ_CFQQ_FNS(deep);
344#undef CFQ_CFQQ_FNS
345
346#ifdef CONFIG_DEBUG_CFQ_IOSCHED
347#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
348 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350 blkg_path(&(cfqq)->cfqg->blkg), ##args);
351
352#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
353 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
354 blkg_path(&(cfqg)->blkg), ##args); \
355
356#else
357#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
358 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
359#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
360#endif
361#define cfq_log(cfqd, fmt, args...) \
362 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
363
364/* Traverses through cfq group service trees */
365#define for_each_cfqg_st(cfqg, i, j, st) \
366 for (i = 0; i <= IDLE_WORKLOAD; i++) \
367 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368 : &cfqg->service_tree_idle; \
369 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370 (i == IDLE_WORKLOAD && j == 0); \
371 j++, st = i < IDLE_WORKLOAD ? \
372 &cfqg->service_trees[i][j]: NULL) \
373
374
375static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
376{
377 if (cfq_class_idle(cfqq))
378 return IDLE_WORKLOAD;
379 if (cfq_class_rt(cfqq))
380 return RT_WORKLOAD;
381 return BE_WORKLOAD;
382}
383
384
385static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
386{
387 if (!cfq_cfqq_sync(cfqq))
388 return ASYNC_WORKLOAD;
389 if (!cfq_cfqq_idle_window(cfqq))
390 return SYNC_NOIDLE_WORKLOAD;
391 return SYNC_WORKLOAD;
392}
393
394static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
395 struct cfq_data *cfqd,
396 struct cfq_group *cfqg)
397{
398 if (wl == IDLE_WORKLOAD)
399 return cfqg->service_tree_idle.count;
400
401 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
402 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
403 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
404}
405
406static void cfq_dispatch_insert(struct request_queue *, struct request *);
407static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
408 struct io_context *, gfp_t);
409static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
410 struct io_context *);
411
412static inline int rq_in_driver(struct cfq_data *cfqd)
413{
414 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
415}
416
417static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
418 bool is_sync)
419{
420 return cic->cfqq[is_sync];
421}
422
423static inline void cic_set_cfqq(struct cfq_io_context *cic,
424 struct cfq_queue *cfqq, bool is_sync)
425{
426 cic->cfqq[is_sync] = cfqq;
427}
428
429/*
430 * We regard a request as SYNC, if it's either a read or has the SYNC bit
431 * set (in which case it could also be direct WRITE).
432 */
433static inline bool cfq_bio_sync(struct bio *bio)
434{
435 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
436}
437
438/*
439 * scheduler run of queue, if there are requests pending and no one in the
440 * driver that will restart queueing
441 */
442static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
443{
444 if (cfqd->busy_queues) {
445 cfq_log(cfqd, "schedule dispatch");
446 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
447 }
448}
449
450static int cfq_queue_empty(struct request_queue *q)
451{
452 struct cfq_data *cfqd = q->elevator->elevator_data;
453
454 return !cfqd->rq_queued;
455}
456
457/*
458 * Scale schedule slice based on io priority. Use the sync time slice only
459 * if a queue is marked sync and has sync io queued. A sync queue with async
460 * io only, should not get full sync slice length.
461 */
462static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
463 unsigned short prio)
464{
465 const int base_slice = cfqd->cfq_slice[sync];
466
467 WARN_ON(prio >= IOPRIO_BE_NR);
468
469 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
470}
471
472static inline int
473cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
474{
475 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
476}
477
478static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
479{
480 u64 d = delta << CFQ_SERVICE_SHIFT;
481
482 d = d * BLKIO_WEIGHT_DEFAULT;
483 do_div(d, cfqg->weight);
484 return d;
485}
486
487static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
488{
489 s64 delta = (s64)(vdisktime - min_vdisktime);
490 if (delta > 0)
491 min_vdisktime = vdisktime;
492
493 return min_vdisktime;
494}
495
496static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
497{
498 s64 delta = (s64)(vdisktime - min_vdisktime);
499 if (delta < 0)
500 min_vdisktime = vdisktime;
501
502 return min_vdisktime;
503}
504
505static void update_min_vdisktime(struct cfq_rb_root *st)
506{
507 u64 vdisktime = st->min_vdisktime;
508 struct cfq_group *cfqg;
509
510 if (st->active) {
511 cfqg = rb_entry_cfqg(st->active);
512 vdisktime = cfqg->vdisktime;
513 }
514
515 if (st->left) {
516 cfqg = rb_entry_cfqg(st->left);
517 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
518 }
519
520 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
521}
522
523/*
524 * get averaged number of queues of RT/BE priority.
525 * average is updated, with a formula that gives more weight to higher numbers,
526 * to quickly follows sudden increases and decrease slowly
527 */
528
529static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
530 struct cfq_group *cfqg, bool rt)
531{
532 unsigned min_q, max_q;
533 unsigned mult = cfq_hist_divisor - 1;
534 unsigned round = cfq_hist_divisor / 2;
535 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
536
537 min_q = min(cfqg->busy_queues_avg[rt], busy);
538 max_q = max(cfqg->busy_queues_avg[rt], busy);
539 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
540 cfq_hist_divisor;
541 return cfqg->busy_queues_avg[rt];
542}
543
544static inline unsigned
545cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
546{
547 struct cfq_rb_root *st = &cfqd->grp_service_tree;
548
549 return cfq_target_latency * cfqg->weight / st->total_weight;
550}
551
552static inline void
553cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
554{
555 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
556 if (cfqd->cfq_latency) {
557 /*
558 * interested queues (we consider only the ones with the same
559 * priority class in the cfq group)
560 */
561 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
562 cfq_class_rt(cfqq));
563 unsigned sync_slice = cfqd->cfq_slice[1];
564 unsigned expect_latency = sync_slice * iq;
565 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
566
567 if (expect_latency > group_slice) {
568 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
569 /* scale low_slice according to IO priority
570 * and sync vs async */
571 unsigned low_slice =
572 min(slice, base_low_slice * slice / sync_slice);
573 /* the adapted slice value is scaled to fit all iqs
574 * into the target latency */
575 slice = max(slice * group_slice / expect_latency,
576 low_slice);
577 }
578 }
579 cfqq->slice_start = jiffies;
580 cfqq->slice_end = jiffies + slice;
581 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
582}
583
584/*
585 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
586 * isn't valid until the first request from the dispatch is activated
587 * and the slice time set.
588 */
589static inline bool cfq_slice_used(struct cfq_queue *cfqq)
590{
591 if (cfq_cfqq_slice_new(cfqq))
592 return 0;
593 if (time_before(jiffies, cfqq->slice_end))
594 return 0;
595
596 return 1;
597}
598
599/*
600 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
601 * We choose the request that is closest to the head right now. Distance
602 * behind the head is penalized and only allowed to a certain extent.
603 */
604static struct request *
605cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
606{
607 sector_t s1, s2, d1 = 0, d2 = 0;
608 unsigned long back_max;
609#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
610#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
611 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
612
613 if (rq1 == NULL || rq1 == rq2)
614 return rq2;
615 if (rq2 == NULL)
616 return rq1;
617
618 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
619 return rq1;
620 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
621 return rq2;
622 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
623 return rq1;
624 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
625 return rq2;
626
627 s1 = blk_rq_pos(rq1);
628 s2 = blk_rq_pos(rq2);
629
630 /*
631 * by definition, 1KiB is 2 sectors
632 */
633 back_max = cfqd->cfq_back_max * 2;
634
635 /*
636 * Strict one way elevator _except_ in the case where we allow
637 * short backward seeks which are biased as twice the cost of a
638 * similar forward seek.
639 */
640 if (s1 >= last)
641 d1 = s1 - last;
642 else if (s1 + back_max >= last)
643 d1 = (last - s1) * cfqd->cfq_back_penalty;
644 else
645 wrap |= CFQ_RQ1_WRAP;
646
647 if (s2 >= last)
648 d2 = s2 - last;
649 else if (s2 + back_max >= last)
650 d2 = (last - s2) * cfqd->cfq_back_penalty;
651 else
652 wrap |= CFQ_RQ2_WRAP;
653
654 /* Found required data */
655
656 /*
657 * By doing switch() on the bit mask "wrap" we avoid having to
658 * check two variables for all permutations: --> faster!
659 */
660 switch (wrap) {
661 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
662 if (d1 < d2)
663 return rq1;
664 else if (d2 < d1)
665 return rq2;
666 else {
667 if (s1 >= s2)
668 return rq1;
669 else
670 return rq2;
671 }
672
673 case CFQ_RQ2_WRAP:
674 return rq1;
675 case CFQ_RQ1_WRAP:
676 return rq2;
677 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
678 default:
679 /*
680 * Since both rqs are wrapped,
681 * start with the one that's further behind head
682 * (--> only *one* back seek required),
683 * since back seek takes more time than forward.
684 */
685 if (s1 <= s2)
686 return rq1;
687 else
688 return rq2;
689 }
690}
691
692/*
693 * The below is leftmost cache rbtree addon
694 */
695static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
696{
697 /* Service tree is empty */
698 if (!root->count)
699 return NULL;
700
701 if (!root->left)
702 root->left = rb_first(&root->rb);
703
704 if (root->left)
705 return rb_entry(root->left, struct cfq_queue, rb_node);
706
707 return NULL;
708}
709
710static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
711{
712 if (!root->left)
713 root->left = rb_first(&root->rb);
714
715 if (root->left)
716 return rb_entry_cfqg(root->left);
717
718 return NULL;
719}
720
721static void rb_erase_init(struct rb_node *n, struct rb_root *root)
722{
723 rb_erase(n, root);
724 RB_CLEAR_NODE(n);
725}
726
727static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
728{
729 if (root->left == n)
730 root->left = NULL;
731 rb_erase_init(n, &root->rb);
732 --root->count;
733}
734
735/*
736 * would be nice to take fifo expire time into account as well
737 */
738static struct request *
739cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
740 struct request *last)
741{
742 struct rb_node *rbnext = rb_next(&last->rb_node);
743 struct rb_node *rbprev = rb_prev(&last->rb_node);
744 struct request *next = NULL, *prev = NULL;
745
746 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
747
748 if (rbprev)
749 prev = rb_entry_rq(rbprev);
750
751 if (rbnext)
752 next = rb_entry_rq(rbnext);
753 else {
754 rbnext = rb_first(&cfqq->sort_list);
755 if (rbnext && rbnext != &last->rb_node)
756 next = rb_entry_rq(rbnext);
757 }
758
759 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
760}
761
762static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
763 struct cfq_queue *cfqq)
764{
765 /*
766 * just an approximation, should be ok.
767 */
768 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
769 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
770}
771
772static inline s64
773cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
774{
775 return cfqg->vdisktime - st->min_vdisktime;
776}
777
778static void
779__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
780{
781 struct rb_node **node = &st->rb.rb_node;
782 struct rb_node *parent = NULL;
783 struct cfq_group *__cfqg;
784 s64 key = cfqg_key(st, cfqg);
785 int left = 1;
786
787 while (*node != NULL) {
788 parent = *node;
789 __cfqg = rb_entry_cfqg(parent);
790
791 if (key < cfqg_key(st, __cfqg))
792 node = &parent->rb_left;
793 else {
794 node = &parent->rb_right;
795 left = 0;
796 }
797 }
798
799 if (left)
800 st->left = &cfqg->rb_node;
801
802 rb_link_node(&cfqg->rb_node, parent, node);
803 rb_insert_color(&cfqg->rb_node, &st->rb);
804}
805
806static void
807cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
808{
809 struct cfq_rb_root *st = &cfqd->grp_service_tree;
810 struct cfq_group *__cfqg;
811 struct rb_node *n;
812
813 cfqg->nr_cfqq++;
814 if (cfqg->on_st)
815 return;
816
817 /*
818 * Currently put the group at the end. Later implement something
819 * so that groups get lesser vtime based on their weights, so that
820 * if group does not loose all if it was not continously backlogged.
821 */
822 n = rb_last(&st->rb);
823 if (n) {
824 __cfqg = rb_entry_cfqg(n);
825 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
826 } else
827 cfqg->vdisktime = st->min_vdisktime;
828
829 __cfq_group_service_tree_add(st, cfqg);
830 cfqg->on_st = true;
831 cfqd->nr_groups++;
832 st->total_weight += cfqg->weight;
833}
834
835static void
836cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
837{
838 struct cfq_rb_root *st = &cfqd->grp_service_tree;
839
840 if (st->active == &cfqg->rb_node)
841 st->active = NULL;
842
843 BUG_ON(cfqg->nr_cfqq < 1);
844 cfqg->nr_cfqq--;
845
846 /* If there are other cfq queues under this group, don't delete it */
847 if (cfqg->nr_cfqq)
848 return;
849
850 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
851 cfqg->on_st = false;
852 cfqd->nr_groups--;
853 st->total_weight -= cfqg->weight;
854 if (!RB_EMPTY_NODE(&cfqg->rb_node))
855 cfq_rb_erase(&cfqg->rb_node, st);
856 cfqg->saved_workload_slice = 0;
857 blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
858}
859
860static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
861{
862 unsigned int slice_used, allocated_slice;
863
864 /*
865 * Queue got expired before even a single request completed or
866 * got expired immediately after first request completion.
867 */
868 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
869 /*
870 * Also charge the seek time incurred to the group, otherwise
871 * if there are mutiple queues in the group, each can dispatch
872 * a single request on seeky media and cause lots of seek time
873 * and group will never know it.
874 */
875 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
876 1);
877 } else {
878 slice_used = jiffies - cfqq->slice_start;
879 allocated_slice = cfqq->slice_end - cfqq->slice_start;
880 if (slice_used > allocated_slice)
881 slice_used = allocated_slice;
882 }
883
884 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
885 cfqq->nr_sectors);
886 return slice_used;
887}
888
889static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
890 struct cfq_queue *cfqq)
891{
892 struct cfq_rb_root *st = &cfqd->grp_service_tree;
893 unsigned int used_sl;
894
895 used_sl = cfq_cfqq_slice_usage(cfqq);
896
897 /* Can't update vdisktime while group is on service tree */
898 cfq_rb_erase(&cfqg->rb_node, st);
899 cfqg->vdisktime += cfq_scale_slice(used_sl, cfqg);
900 __cfq_group_service_tree_add(st, cfqg);
901
902 /* This group is being expired. Save the context */
903 if (time_after(cfqd->workload_expires, jiffies)) {
904 cfqg->saved_workload_slice = cfqd->workload_expires
905 - jiffies;
906 cfqg->saved_workload = cfqd->serving_type;
907 cfqg->saved_serving_prio = cfqd->serving_prio;
908 } else
909 cfqg->saved_workload_slice = 0;
910
911 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
912 st->min_vdisktime);
913 blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
914 cfqq->nr_sectors);
915}
916
917#ifdef CONFIG_CFQ_GROUP_IOSCHED
918static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
919{
920 if (blkg)
921 return container_of(blkg, struct cfq_group, blkg);
922 return NULL;
923}
924
925static struct cfq_group *
926cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
927{
928 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
929 struct cfq_group *cfqg = NULL;
930 void *key = cfqd;
931 int i, j;
932 struct cfq_rb_root *st;
933 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
934 unsigned int major, minor;
935
936 /* Do we need to take this reference */
937 if (!css_tryget(&blkcg->css))
938 return NULL;;
939
940 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
941 if (cfqg || !create)
942 goto done;
943
944 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
945 if (!cfqg)
946 goto done;
947
948 cfqg->weight = blkcg->weight;
949 for_each_cfqg_st(cfqg, i, j, st)
950 *st = CFQ_RB_ROOT;
951 RB_CLEAR_NODE(&cfqg->rb_node);
952
953 /*
954 * Take the initial reference that will be released on destroy
955 * This can be thought of a joint reference by cgroup and
956 * elevator which will be dropped by either elevator exit
957 * or cgroup deletion path depending on who is exiting first.
958 */
959 atomic_set(&cfqg->ref, 1);
960
961 /* Add group onto cgroup list */
962 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
963 blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
964 MKDEV(major, minor));
965
966 /* Add group on cfqd list */
967 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
968
969done:
970 css_put(&blkcg->css);
971 return cfqg;
972}
973
974/*
975 * Search for the cfq group current task belongs to. If create = 1, then also
976 * create the cfq group if it does not exist. request_queue lock must be held.
977 */
978static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
979{
980 struct cgroup *cgroup;
981 struct cfq_group *cfqg = NULL;
982
983 rcu_read_lock();
984 cgroup = task_cgroup(current, blkio_subsys_id);
985 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
986 if (!cfqg && create)
987 cfqg = &cfqd->root_group;
988 rcu_read_unlock();
989 return cfqg;
990}
991
992static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
993{
994 /* Currently, all async queues are mapped to root group */
995 if (!cfq_cfqq_sync(cfqq))
996 cfqg = &cfqq->cfqd->root_group;
997
998 cfqq->cfqg = cfqg;
999 /* cfqq reference on cfqg */
1000 atomic_inc(&cfqq->cfqg->ref);
1001}
1002
1003static void cfq_put_cfqg(struct cfq_group *cfqg)
1004{
1005 struct cfq_rb_root *st;
1006 int i, j;
1007
1008 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1009 if (!atomic_dec_and_test(&cfqg->ref))
1010 return;
1011 for_each_cfqg_st(cfqg, i, j, st)
1012 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1013 kfree(cfqg);
1014}
1015
1016static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1017{
1018 /* Something wrong if we are trying to remove same group twice */
1019 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1020
1021 hlist_del_init(&cfqg->cfqd_node);
1022
1023 /*
1024 * Put the reference taken at the time of creation so that when all
1025 * queues are gone, group can be destroyed.
1026 */
1027 cfq_put_cfqg(cfqg);
1028}
1029
1030static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1031{
1032 struct hlist_node *pos, *n;
1033 struct cfq_group *cfqg;
1034
1035 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1036 /*
1037 * If cgroup removal path got to blk_group first and removed
1038 * it from cgroup list, then it will take care of destroying
1039 * cfqg also.
1040 */
1041 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1042 cfq_destroy_cfqg(cfqd, cfqg);
1043 }
1044}
1045
1046/*
1047 * Blk cgroup controller notification saying that blkio_group object is being
1048 * delinked as associated cgroup object is going away. That also means that
1049 * no new IO will come in this group. So get rid of this group as soon as
1050 * any pending IO in the group is finished.
1051 *
1052 * This function is called under rcu_read_lock(). key is the rcu protected
1053 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1054 * read lock.
1055 *
1056 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1057 * it should not be NULL as even if elevator was exiting, cgroup deltion
1058 * path got to it first.
1059 */
1060void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1061{
1062 unsigned long flags;
1063 struct cfq_data *cfqd = key;
1064
1065 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1066 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1067 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1068}
1069
1070#else /* GROUP_IOSCHED */
1071static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1072{
1073 return &cfqd->root_group;
1074}
1075static inline void
1076cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1077 cfqq->cfqg = cfqg;
1078}
1079
1080static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1081static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1082
1083#endif /* GROUP_IOSCHED */
1084
1085/*
1086 * The cfqd->service_trees holds all pending cfq_queue's that have
1087 * requests waiting to be processed. It is sorted in the order that
1088 * we will service the queues.
1089 */
1090static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1091 bool add_front)
1092{
1093 struct rb_node **p, *parent;
1094 struct cfq_queue *__cfqq;
1095 unsigned long rb_key;
1096 struct cfq_rb_root *service_tree;
1097 int left;
1098 int new_cfqq = 1;
1099
1100 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1101 cfqq_type(cfqq), cfqd);
1102 if (cfq_class_idle(cfqq)) {
1103 rb_key = CFQ_IDLE_DELAY;
1104 parent = rb_last(&service_tree->rb);
1105 if (parent && parent != &cfqq->rb_node) {
1106 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1107 rb_key += __cfqq->rb_key;
1108 } else
1109 rb_key += jiffies;
1110 } else if (!add_front) {
1111 /*
1112 * Get our rb key offset. Subtract any residual slice
1113 * value carried from last service. A negative resid
1114 * count indicates slice overrun, and this should position
1115 * the next service time further away in the tree.
1116 */
1117 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1118 rb_key -= cfqq->slice_resid;
1119 cfqq->slice_resid = 0;
1120 } else {
1121 rb_key = -HZ;
1122 __cfqq = cfq_rb_first(service_tree);
1123 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1124 }
1125
1126 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1127 new_cfqq = 0;
1128 /*
1129 * same position, nothing more to do
1130 */
1131 if (rb_key == cfqq->rb_key &&
1132 cfqq->service_tree == service_tree)
1133 return;
1134
1135 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1136 cfqq->service_tree = NULL;
1137 }
1138
1139 left = 1;
1140 parent = NULL;
1141 cfqq->service_tree = service_tree;
1142 p = &service_tree->rb.rb_node;
1143 while (*p) {
1144 struct rb_node **n;
1145
1146 parent = *p;
1147 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1148
1149 /*
1150 * sort by key, that represents service time.
1151 */
1152 if (time_before(rb_key, __cfqq->rb_key))
1153 n = &(*p)->rb_left;
1154 else {
1155 n = &(*p)->rb_right;
1156 left = 0;
1157 }
1158
1159 p = n;
1160 }
1161
1162 if (left)
1163 service_tree->left = &cfqq->rb_node;
1164
1165 cfqq->rb_key = rb_key;
1166 rb_link_node(&cfqq->rb_node, parent, p);
1167 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1168 service_tree->count++;
1169 if (add_front || !new_cfqq)
1170 return;
1171 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1172}
1173
1174static struct cfq_queue *
1175cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1176 sector_t sector, struct rb_node **ret_parent,
1177 struct rb_node ***rb_link)
1178{
1179 struct rb_node **p, *parent;
1180 struct cfq_queue *cfqq = NULL;
1181
1182 parent = NULL;
1183 p = &root->rb_node;
1184 while (*p) {
1185 struct rb_node **n;
1186
1187 parent = *p;
1188 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1189
1190 /*
1191 * Sort strictly based on sector. Smallest to the left,
1192 * largest to the right.
1193 */
1194 if (sector > blk_rq_pos(cfqq->next_rq))
1195 n = &(*p)->rb_right;
1196 else if (sector < blk_rq_pos(cfqq->next_rq))
1197 n = &(*p)->rb_left;
1198 else
1199 break;
1200 p = n;
1201 cfqq = NULL;
1202 }
1203
1204 *ret_parent = parent;
1205 if (rb_link)
1206 *rb_link = p;
1207 return cfqq;
1208}
1209
1210static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1211{
1212 struct rb_node **p, *parent;
1213 struct cfq_queue *__cfqq;
1214
1215 if (cfqq->p_root) {
1216 rb_erase(&cfqq->p_node, cfqq->p_root);
1217 cfqq->p_root = NULL;
1218 }
1219
1220 if (cfq_class_idle(cfqq))
1221 return;
1222 if (!cfqq->next_rq)
1223 return;
1224
1225 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1226 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1227 blk_rq_pos(cfqq->next_rq), &parent, &p);
1228 if (!__cfqq) {
1229 rb_link_node(&cfqq->p_node, parent, p);
1230 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1231 } else
1232 cfqq->p_root = NULL;
1233}
1234
1235/*
1236 * Update cfqq's position in the service tree.
1237 */
1238static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1239{
1240 /*
1241 * Resorting requires the cfqq to be on the RR list already.
1242 */
1243 if (cfq_cfqq_on_rr(cfqq)) {
1244 cfq_service_tree_add(cfqd, cfqq, 0);
1245 cfq_prio_tree_add(cfqd, cfqq);
1246 }
1247}
1248
1249/*
1250 * add to busy list of queues for service, trying to be fair in ordering
1251 * the pending list according to last request service
1252 */
1253static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1254{
1255 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1256 BUG_ON(cfq_cfqq_on_rr(cfqq));
1257 cfq_mark_cfqq_on_rr(cfqq);
1258 cfqd->busy_queues++;
1259
1260 cfq_resort_rr_list(cfqd, cfqq);
1261}
1262
1263/*
1264 * Called when the cfqq no longer has requests pending, remove it from
1265 * the service tree.
1266 */
1267static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1268{
1269 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1270 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1271 cfq_clear_cfqq_on_rr(cfqq);
1272
1273 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1274 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1275 cfqq->service_tree = NULL;
1276 }
1277 if (cfqq->p_root) {
1278 rb_erase(&cfqq->p_node, cfqq->p_root);
1279 cfqq->p_root = NULL;
1280 }
1281
1282 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1283 BUG_ON(!cfqd->busy_queues);
1284 cfqd->busy_queues--;
1285}
1286
1287/*
1288 * rb tree support functions
1289 */
1290static void cfq_del_rq_rb(struct request *rq)
1291{
1292 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1293 const int sync = rq_is_sync(rq);
1294
1295 BUG_ON(!cfqq->queued[sync]);
1296 cfqq->queued[sync]--;
1297
1298 elv_rb_del(&cfqq->sort_list, rq);
1299
1300 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1301 /*
1302 * Queue will be deleted from service tree when we actually
1303 * expire it later. Right now just remove it from prio tree
1304 * as it is empty.
1305 */
1306 if (cfqq->p_root) {
1307 rb_erase(&cfqq->p_node, cfqq->p_root);
1308 cfqq->p_root = NULL;
1309 }
1310 }
1311}
1312
1313static void cfq_add_rq_rb(struct request *rq)
1314{
1315 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1316 struct cfq_data *cfqd = cfqq->cfqd;
1317 struct request *__alias, *prev;
1318
1319 cfqq->queued[rq_is_sync(rq)]++;
1320
1321 /*
1322 * looks a little odd, but the first insert might return an alias.
1323 * if that happens, put the alias on the dispatch list
1324 */
1325 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1326 cfq_dispatch_insert(cfqd->queue, __alias);
1327
1328 if (!cfq_cfqq_on_rr(cfqq))
1329 cfq_add_cfqq_rr(cfqd, cfqq);
1330
1331 /*
1332 * check if this request is a better next-serve candidate
1333 */
1334 prev = cfqq->next_rq;
1335 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1336
1337 /*
1338 * adjust priority tree position, if ->next_rq changes
1339 */
1340 if (prev != cfqq->next_rq)
1341 cfq_prio_tree_add(cfqd, cfqq);
1342
1343 BUG_ON(!cfqq->next_rq);
1344}
1345
1346static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1347{
1348 elv_rb_del(&cfqq->sort_list, rq);
1349 cfqq->queued[rq_is_sync(rq)]--;
1350 cfq_add_rq_rb(rq);
1351}
1352
1353static struct request *
1354cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1355{
1356 struct task_struct *tsk = current;
1357 struct cfq_io_context *cic;
1358 struct cfq_queue *cfqq;
1359
1360 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1361 if (!cic)
1362 return NULL;
1363
1364 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1365 if (cfqq) {
1366 sector_t sector = bio->bi_sector + bio_sectors(bio);
1367
1368 return elv_rb_find(&cfqq->sort_list, sector);
1369 }
1370
1371 return NULL;
1372}
1373
1374static void cfq_activate_request(struct request_queue *q, struct request *rq)
1375{
1376 struct cfq_data *cfqd = q->elevator->elevator_data;
1377
1378 cfqd->rq_in_driver[rq_is_sync(rq)]++;
1379 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1380 rq_in_driver(cfqd));
1381
1382 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1383}
1384
1385static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1386{
1387 struct cfq_data *cfqd = q->elevator->elevator_data;
1388 const int sync = rq_is_sync(rq);
1389
1390 WARN_ON(!cfqd->rq_in_driver[sync]);
1391 cfqd->rq_in_driver[sync]--;
1392 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1393 rq_in_driver(cfqd));
1394}
1395
1396static void cfq_remove_request(struct request *rq)
1397{
1398 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1399
1400 if (cfqq->next_rq == rq)
1401 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1402
1403 list_del_init(&rq->queuelist);
1404 cfq_del_rq_rb(rq);
1405
1406 cfqq->cfqd->rq_queued--;
1407 if (rq_is_meta(rq)) {
1408 WARN_ON(!cfqq->meta_pending);
1409 cfqq->meta_pending--;
1410 }
1411}
1412
1413static int cfq_merge(struct request_queue *q, struct request **req,
1414 struct bio *bio)
1415{
1416 struct cfq_data *cfqd = q->elevator->elevator_data;
1417 struct request *__rq;
1418
1419 __rq = cfq_find_rq_fmerge(cfqd, bio);
1420 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1421 *req = __rq;
1422 return ELEVATOR_FRONT_MERGE;
1423 }
1424
1425 return ELEVATOR_NO_MERGE;
1426}
1427
1428static void cfq_merged_request(struct request_queue *q, struct request *req,
1429 int type)
1430{
1431 if (type == ELEVATOR_FRONT_MERGE) {
1432 struct cfq_queue *cfqq = RQ_CFQQ(req);
1433
1434 cfq_reposition_rq_rb(cfqq, req);
1435 }
1436}
1437
1438static void
1439cfq_merged_requests(struct request_queue *q, struct request *rq,
1440 struct request *next)
1441{
1442 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1443 /*
1444 * reposition in fifo if next is older than rq
1445 */
1446 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1447 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1448 list_move(&rq->queuelist, &next->queuelist);
1449 rq_set_fifo_time(rq, rq_fifo_time(next));
1450 }
1451
1452 if (cfqq->next_rq == next)
1453 cfqq->next_rq = rq;
1454 cfq_remove_request(next);
1455}
1456
1457static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1458 struct bio *bio)
1459{
1460 struct cfq_data *cfqd = q->elevator->elevator_data;
1461 struct cfq_io_context *cic;
1462 struct cfq_queue *cfqq;
1463
1464 /*
1465 * Disallow merge of a sync bio into an async request.
1466 */
1467 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1468 return false;
1469
1470 /*
1471 * Lookup the cfqq that this bio will be queued with. Allow
1472 * merge only if rq is queued there.
1473 */
1474 cic = cfq_cic_lookup(cfqd, current->io_context);
1475 if (!cic)
1476 return false;
1477
1478 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1479 return cfqq == RQ_CFQQ(rq);
1480}
1481
1482static void __cfq_set_active_queue(struct cfq_data *cfqd,
1483 struct cfq_queue *cfqq)
1484{
1485 if (cfqq) {
1486 cfq_log_cfqq(cfqd, cfqq, "set_active");
1487 cfqq->slice_start = 0;
1488 cfqq->dispatch_start = jiffies;
1489 cfqq->slice_end = 0;
1490 cfqq->slice_dispatch = 0;
1491 cfqq->nr_sectors = 0;
1492
1493 cfq_clear_cfqq_wait_request(cfqq);
1494 cfq_clear_cfqq_must_dispatch(cfqq);
1495 cfq_clear_cfqq_must_alloc_slice(cfqq);
1496 cfq_clear_cfqq_fifo_expire(cfqq);
1497 cfq_mark_cfqq_slice_new(cfqq);
1498
1499 del_timer(&cfqd->idle_slice_timer);
1500 }
1501
1502 cfqd->active_queue = cfqq;
1503}
1504
1505/*
1506 * current cfqq expired its slice (or was too idle), select new one
1507 */
1508static void
1509__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1510 bool timed_out)
1511{
1512 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1513
1514 if (cfq_cfqq_wait_request(cfqq))
1515 del_timer(&cfqd->idle_slice_timer);
1516
1517 cfq_clear_cfqq_wait_request(cfqq);
1518
1519 /*
1520 * store what was left of this slice, if the queue idled/timed out
1521 */
1522 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1523 cfqq->slice_resid = cfqq->slice_end - jiffies;
1524 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1525 }
1526
1527 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1528
1529 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1530 cfq_del_cfqq_rr(cfqd, cfqq);
1531
1532 cfq_resort_rr_list(cfqd, cfqq);
1533
1534 if (cfqq == cfqd->active_queue)
1535 cfqd->active_queue = NULL;
1536
1537 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1538 cfqd->grp_service_tree.active = NULL;
1539
1540 if (cfqd->active_cic) {
1541 put_io_context(cfqd->active_cic->ioc);
1542 cfqd->active_cic = NULL;
1543 }
1544}
1545
1546static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1547{
1548 struct cfq_queue *cfqq = cfqd->active_queue;
1549
1550 if (cfqq)
1551 __cfq_slice_expired(cfqd, cfqq, timed_out);
1552}
1553
1554/*
1555 * Get next queue for service. Unless we have a queue preemption,
1556 * we'll simply select the first cfqq in the service tree.
1557 */
1558static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1559{
1560 struct cfq_rb_root *service_tree =
1561 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1562 cfqd->serving_type, cfqd);
1563
1564 if (!cfqd->rq_queued)
1565 return NULL;
1566
1567 /* There is nothing to dispatch */
1568 if (!service_tree)
1569 return NULL;
1570 if (RB_EMPTY_ROOT(&service_tree->rb))
1571 return NULL;
1572 return cfq_rb_first(service_tree);
1573}
1574
1575static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1576{
1577 struct cfq_group *cfqg;
1578 struct cfq_queue *cfqq;
1579 int i, j;
1580 struct cfq_rb_root *st;
1581
1582 if (!cfqd->rq_queued)
1583 return NULL;
1584
1585 cfqg = cfq_get_next_cfqg(cfqd);
1586 if (!cfqg)
1587 return NULL;
1588
1589 for_each_cfqg_st(cfqg, i, j, st)
1590 if ((cfqq = cfq_rb_first(st)) != NULL)
1591 return cfqq;
1592 return NULL;
1593}
1594
1595/*
1596 * Get and set a new active queue for service.
1597 */
1598static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1599 struct cfq_queue *cfqq)
1600{
1601 if (!cfqq)
1602 cfqq = cfq_get_next_queue(cfqd);
1603
1604 __cfq_set_active_queue(cfqd, cfqq);
1605 return cfqq;
1606}
1607
1608static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1609 struct request *rq)
1610{
1611 if (blk_rq_pos(rq) >= cfqd->last_position)
1612 return blk_rq_pos(rq) - cfqd->last_position;
1613 else
1614 return cfqd->last_position - blk_rq_pos(rq);
1615}
1616
1617#define CFQQ_SEEK_THR 8 * 1024
1618#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1619
1620static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1621 struct request *rq)
1622{
1623 sector_t sdist = cfqq->seek_mean;
1624
1625 if (!sample_valid(cfqq->seek_samples))
1626 sdist = CFQQ_SEEK_THR;
1627
1628 return cfq_dist_from_last(cfqd, rq) <= sdist;
1629}
1630
1631static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1632 struct cfq_queue *cur_cfqq)
1633{
1634 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1635 struct rb_node *parent, *node;
1636 struct cfq_queue *__cfqq;
1637 sector_t sector = cfqd->last_position;
1638
1639 if (RB_EMPTY_ROOT(root))
1640 return NULL;
1641
1642 /*
1643 * First, if we find a request starting at the end of the last
1644 * request, choose it.
1645 */
1646 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1647 if (__cfqq)
1648 return __cfqq;
1649
1650 /*
1651 * If the exact sector wasn't found, the parent of the NULL leaf
1652 * will contain the closest sector.
1653 */
1654 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1655 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1656 return __cfqq;
1657
1658 if (blk_rq_pos(__cfqq->next_rq) < sector)
1659 node = rb_next(&__cfqq->p_node);
1660 else
1661 node = rb_prev(&__cfqq->p_node);
1662 if (!node)
1663 return NULL;
1664
1665 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1666 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1667 return __cfqq;
1668
1669 return NULL;
1670}
1671
1672/*
1673 * cfqd - obvious
1674 * cur_cfqq - passed in so that we don't decide that the current queue is
1675 * closely cooperating with itself.
1676 *
1677 * So, basically we're assuming that that cur_cfqq has dispatched at least
1678 * one request, and that cfqd->last_position reflects a position on the disk
1679 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1680 * assumption.
1681 */
1682static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1683 struct cfq_queue *cur_cfqq)
1684{
1685 struct cfq_queue *cfqq;
1686
1687 if (!cfq_cfqq_sync(cur_cfqq))
1688 return NULL;
1689 if (CFQQ_SEEKY(cur_cfqq))
1690 return NULL;
1691
1692 /*
1693 * We should notice if some of the queues are cooperating, eg
1694 * working closely on the same area of the disk. In that case,
1695 * we can group them together and don't waste time idling.
1696 */
1697 cfqq = cfqq_close(cfqd, cur_cfqq);
1698 if (!cfqq)
1699 return NULL;
1700
1701 /*
1702 * It only makes sense to merge sync queues.
1703 */
1704 if (!cfq_cfqq_sync(cfqq))
1705 return NULL;
1706 if (CFQQ_SEEKY(cfqq))
1707 return NULL;
1708
1709 /*
1710 * Do not merge queues of different priority classes
1711 */
1712 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1713 return NULL;
1714
1715 return cfqq;
1716}
1717
1718/*
1719 * Determine whether we should enforce idle window for this queue.
1720 */
1721
1722static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1723{
1724 enum wl_prio_t prio = cfqq_prio(cfqq);
1725 struct cfq_rb_root *service_tree = cfqq->service_tree;
1726
1727 BUG_ON(!service_tree);
1728 BUG_ON(!service_tree->count);
1729
1730 /* We never do for idle class queues. */
1731 if (prio == IDLE_WORKLOAD)
1732 return false;
1733
1734 /* We do for queues that were marked with idle window flag. */
1735 if (cfq_cfqq_idle_window(cfqq))
1736 return true;
1737
1738 /*
1739 * Otherwise, we do only if they are the last ones
1740 * in their service tree.
1741 */
1742 return service_tree->count == 1;
1743}
1744
1745static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1746{
1747 struct cfq_queue *cfqq = cfqd->active_queue;
1748 struct cfq_io_context *cic;
1749 unsigned long sl;
1750
1751 /*
1752 * SSD device without seek penalty, disable idling. But only do so
1753 * for devices that support queuing, otherwise we still have a problem
1754 * with sync vs async workloads.
1755 */
1756 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1757 return;
1758
1759 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1760 WARN_ON(cfq_cfqq_slice_new(cfqq));
1761
1762 /*
1763 * idle is disabled, either manually or by past process history
1764 */
1765 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1766 return;
1767
1768 /*
1769 * still active requests from this queue, don't idle
1770 */
1771 if (cfqq->dispatched)
1772 return;
1773
1774 /*
1775 * task has exited, don't wait
1776 */
1777 cic = cfqd->active_cic;
1778 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1779 return;
1780
1781 /*
1782 * If our average think time is larger than the remaining time
1783 * slice, then don't idle. This avoids overrunning the allotted
1784 * time slice.
1785 */
1786 if (sample_valid(cic->ttime_samples) &&
1787 (cfqq->slice_end - jiffies < cic->ttime_mean))
1788 return;
1789
1790 cfq_mark_cfqq_wait_request(cfqq);
1791
1792 sl = cfqd->cfq_slice_idle;
1793
1794 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1795 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1796}
1797
1798/*
1799 * Move request from internal lists to the request queue dispatch list.
1800 */
1801static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1802{
1803 struct cfq_data *cfqd = q->elevator->elevator_data;
1804 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1805
1806 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1807
1808 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1809 cfq_remove_request(rq);
1810 cfqq->dispatched++;
1811 elv_dispatch_sort(q, rq);
1812
1813 if (cfq_cfqq_sync(cfqq))
1814 cfqd->sync_flight++;
1815 cfqq->nr_sectors += blk_rq_sectors(rq);
1816}
1817
1818/*
1819 * return expired entry, or NULL to just start from scratch in rbtree
1820 */
1821static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1822{
1823 struct request *rq = NULL;
1824
1825 if (cfq_cfqq_fifo_expire(cfqq))
1826 return NULL;
1827
1828 cfq_mark_cfqq_fifo_expire(cfqq);
1829
1830 if (list_empty(&cfqq->fifo))
1831 return NULL;
1832
1833 rq = rq_entry_fifo(cfqq->fifo.next);
1834 if (time_before(jiffies, rq_fifo_time(rq)))
1835 rq = NULL;
1836
1837 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1838 return rq;
1839}
1840
1841static inline int
1842cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1843{
1844 const int base_rq = cfqd->cfq_slice_async_rq;
1845
1846 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1847
1848 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1849}
1850
1851/*
1852 * Must be called with the queue_lock held.
1853 */
1854static int cfqq_process_refs(struct cfq_queue *cfqq)
1855{
1856 int process_refs, io_refs;
1857
1858 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1859 process_refs = atomic_read(&cfqq->ref) - io_refs;
1860 BUG_ON(process_refs < 0);
1861 return process_refs;
1862}
1863
1864static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1865{
1866 int process_refs, new_process_refs;
1867 struct cfq_queue *__cfqq;
1868
1869 /* Avoid a circular list and skip interim queue merges */
1870 while ((__cfqq = new_cfqq->new_cfqq)) {
1871 if (__cfqq == cfqq)
1872 return;
1873 new_cfqq = __cfqq;
1874 }
1875
1876 process_refs = cfqq_process_refs(cfqq);
1877 /*
1878 * If the process for the cfqq has gone away, there is no
1879 * sense in merging the queues.
1880 */
1881 if (process_refs == 0)
1882 return;
1883
1884 /*
1885 * Merge in the direction of the lesser amount of work.
1886 */
1887 new_process_refs = cfqq_process_refs(new_cfqq);
1888 if (new_process_refs >= process_refs) {
1889 cfqq->new_cfqq = new_cfqq;
1890 atomic_add(process_refs, &new_cfqq->ref);
1891 } else {
1892 new_cfqq->new_cfqq = cfqq;
1893 atomic_add(new_process_refs, &cfqq->ref);
1894 }
1895}
1896
1897static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1898 struct cfq_group *cfqg, enum wl_prio_t prio,
1899 bool prio_changed)
1900{
1901 struct cfq_queue *queue;
1902 int i;
1903 bool key_valid = false;
1904 unsigned long lowest_key = 0;
1905 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1906
1907 if (prio_changed) {
1908 /*
1909 * When priorities switched, we prefer starting
1910 * from SYNC_NOIDLE (first choice), or just SYNC
1911 * over ASYNC
1912 */
1913 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1914 return cur_best;
1915 cur_best = SYNC_WORKLOAD;
1916 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1917 return cur_best;
1918
1919 return ASYNC_WORKLOAD;
1920 }
1921
1922 for (i = 0; i < 3; ++i) {
1923 /* otherwise, select the one with lowest rb_key */
1924 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1925 if (queue &&
1926 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1927 lowest_key = queue->rb_key;
1928 cur_best = i;
1929 key_valid = true;
1930 }
1931 }
1932
1933 return cur_best;
1934}
1935
1936static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1937{
1938 enum wl_prio_t previous_prio = cfqd->serving_prio;
1939 bool prio_changed;
1940 unsigned slice;
1941 unsigned count;
1942 struct cfq_rb_root *st;
1943 unsigned group_slice;
1944
1945 if (!cfqg) {
1946 cfqd->serving_prio = IDLE_WORKLOAD;
1947 cfqd->workload_expires = jiffies + 1;
1948 return;
1949 }
1950
1951 /* Choose next priority. RT > BE > IDLE */
1952 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1953 cfqd->serving_prio = RT_WORKLOAD;
1954 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1955 cfqd->serving_prio = BE_WORKLOAD;
1956 else {
1957 cfqd->serving_prio = IDLE_WORKLOAD;
1958 cfqd->workload_expires = jiffies + 1;
1959 return;
1960 }
1961
1962 /*
1963 * For RT and BE, we have to choose also the type
1964 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1965 * expiration time
1966 */
1967 prio_changed = (cfqd->serving_prio != previous_prio);
1968 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1969 cfqd);
1970 count = st->count;
1971
1972 /*
1973 * If priority didn't change, check workload expiration,
1974 * and that we still have other queues ready
1975 */
1976 if (!prio_changed && count &&
1977 !time_after(jiffies, cfqd->workload_expires))
1978 return;
1979
1980 /* otherwise select new workload type */
1981 cfqd->serving_type =
1982 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1983 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1984 cfqd);
1985 count = st->count;
1986
1987 /*
1988 * the workload slice is computed as a fraction of target latency
1989 * proportional to the number of queues in that workload, over
1990 * all the queues in the same priority class
1991 */
1992 group_slice = cfq_group_slice(cfqd, cfqg);
1993
1994 slice = group_slice * count /
1995 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
1996 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
1997
1998 if (cfqd->serving_type == ASYNC_WORKLOAD)
1999 /* async workload slice is scaled down according to
2000 * the sync/async slice ratio. */
2001 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2002 else
2003 /* sync workload slice is at least 2 * cfq_slice_idle */
2004 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2005
2006 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2007 cfqd->workload_expires = jiffies + slice;
2008 cfqd->noidle_tree_requires_idle = false;
2009}
2010
2011static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2012{
2013 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2014 struct cfq_group *cfqg;
2015
2016 if (RB_EMPTY_ROOT(&st->rb))
2017 return NULL;
2018 cfqg = cfq_rb_first_group(st);
2019 st->active = &cfqg->rb_node;
2020 update_min_vdisktime(st);
2021 return cfqg;
2022}
2023
2024static void cfq_choose_cfqg(struct cfq_data *cfqd)
2025{
2026 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2027
2028 cfqd->serving_group = cfqg;
2029
2030 /* Restore the workload type data */
2031 if (cfqg->saved_workload_slice) {
2032 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2033 cfqd->serving_type = cfqg->saved_workload;
2034 cfqd->serving_prio = cfqg->saved_serving_prio;
2035 }
2036 choose_service_tree(cfqd, cfqg);
2037}
2038
2039/*
2040 * Select a queue for service. If we have a current active queue,
2041 * check whether to continue servicing it, or retrieve and set a new one.
2042 */
2043static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2044{
2045 struct cfq_queue *cfqq, *new_cfqq = NULL;
2046
2047 cfqq = cfqd->active_queue;
2048 if (!cfqq)
2049 goto new_queue;
2050
2051 if (!cfqd->rq_queued)
2052 return NULL;
2053 /*
2054 * The active queue has run out of time, expire it and select new.
2055 */
2056 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
2057 goto expire;
2058
2059 /*
2060 * The active queue has requests and isn't expired, allow it to
2061 * dispatch.
2062 */
2063 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2064 goto keep_queue;
2065
2066 /*
2067 * If another queue has a request waiting within our mean seek
2068 * distance, let it run. The expire code will check for close
2069 * cooperators and put the close queue at the front of the service
2070 * tree. If possible, merge the expiring queue with the new cfqq.
2071 */
2072 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2073 if (new_cfqq) {
2074 if (!cfqq->new_cfqq)
2075 cfq_setup_merge(cfqq, new_cfqq);
2076 goto expire;
2077 }
2078
2079 /*
2080 * No requests pending. If the active queue still has requests in
2081 * flight or is idling for a new request, allow either of these
2082 * conditions to happen (or time out) before selecting a new queue.
2083 */
2084 if (timer_pending(&cfqd->idle_slice_timer) ||
2085 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2086 cfqq = NULL;
2087 goto keep_queue;
2088 }
2089
2090expire:
2091 cfq_slice_expired(cfqd, 0);
2092new_queue:
2093 /*
2094 * Current queue expired. Check if we have to switch to a new
2095 * service tree
2096 */
2097 if (!new_cfqq)
2098 cfq_choose_cfqg(cfqd);
2099
2100 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2101keep_queue:
2102 return cfqq;
2103}
2104
2105static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2106{
2107 int dispatched = 0;
2108
2109 while (cfqq->next_rq) {
2110 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2111 dispatched++;
2112 }
2113
2114 BUG_ON(!list_empty(&cfqq->fifo));
2115
2116 /* By default cfqq is not expired if it is empty. Do it explicitly */
2117 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2118 return dispatched;
2119}
2120
2121/*
2122 * Drain our current requests. Used for barriers and when switching
2123 * io schedulers on-the-fly.
2124 */
2125static int cfq_forced_dispatch(struct cfq_data *cfqd)
2126{
2127 struct cfq_queue *cfqq;
2128 int dispatched = 0;
2129
2130 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2131 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2132
2133 cfq_slice_expired(cfqd, 0);
2134 BUG_ON(cfqd->busy_queues);
2135
2136 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2137 return dispatched;
2138}
2139
2140static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2141{
2142 unsigned int max_dispatch;
2143
2144 /*
2145 * Drain async requests before we start sync IO
2146 */
2147 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2148 return false;
2149
2150 /*
2151 * If this is an async queue and we have sync IO in flight, let it wait
2152 */
2153 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2154 return false;
2155
2156 max_dispatch = cfqd->cfq_quantum;
2157 if (cfq_class_idle(cfqq))
2158 max_dispatch = 1;
2159
2160 /*
2161 * Does this cfqq already have too much IO in flight?
2162 */
2163 if (cfqq->dispatched >= max_dispatch) {
2164 /*
2165 * idle queue must always only have a single IO in flight
2166 */
2167 if (cfq_class_idle(cfqq))
2168 return false;
2169
2170 /*
2171 * We have other queues, don't allow more IO from this one
2172 */
2173 if (cfqd->busy_queues > 1)
2174 return false;
2175
2176 /*
2177 * Sole queue user, no limit
2178 */
2179 max_dispatch = -1;
2180 }
2181
2182 /*
2183 * Async queues must wait a bit before being allowed dispatch.
2184 * We also ramp up the dispatch depth gradually for async IO,
2185 * based on the last sync IO we serviced
2186 */
2187 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2188 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2189 unsigned int depth;
2190
2191 depth = last_sync / cfqd->cfq_slice[1];
2192 if (!depth && !cfqq->dispatched)
2193 depth = 1;
2194 if (depth < max_dispatch)
2195 max_dispatch = depth;
2196 }
2197
2198 /*
2199 * If we're below the current max, allow a dispatch
2200 */
2201 return cfqq->dispatched < max_dispatch;
2202}
2203
2204/*
2205 * Dispatch a request from cfqq, moving them to the request queue
2206 * dispatch list.
2207 */
2208static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2209{
2210 struct request *rq;
2211
2212 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2213
2214 if (!cfq_may_dispatch(cfqd, cfqq))
2215 return false;
2216
2217 /*
2218 * follow expired path, else get first next available
2219 */
2220 rq = cfq_check_fifo(cfqq);
2221 if (!rq)
2222 rq = cfqq->next_rq;
2223
2224 /*
2225 * insert request into driver dispatch list
2226 */
2227 cfq_dispatch_insert(cfqd->queue, rq);
2228
2229 if (!cfqd->active_cic) {
2230 struct cfq_io_context *cic = RQ_CIC(rq);
2231
2232 atomic_long_inc(&cic->ioc->refcount);
2233 cfqd->active_cic = cic;
2234 }
2235
2236 return true;
2237}
2238
2239/*
2240 * Find the cfqq that we need to service and move a request from that to the
2241 * dispatch list
2242 */
2243static int cfq_dispatch_requests(struct request_queue *q, int force)
2244{
2245 struct cfq_data *cfqd = q->elevator->elevator_data;
2246 struct cfq_queue *cfqq;
2247
2248 if (!cfqd->busy_queues)
2249 return 0;
2250
2251 if (unlikely(force))
2252 return cfq_forced_dispatch(cfqd);
2253
2254 cfqq = cfq_select_queue(cfqd);
2255 if (!cfqq)
2256 return 0;
2257
2258 /*
2259 * Dispatch a request from this cfqq, if it is allowed
2260 */
2261 if (!cfq_dispatch_request(cfqd, cfqq))
2262 return 0;
2263
2264 cfqq->slice_dispatch++;
2265 cfq_clear_cfqq_must_dispatch(cfqq);
2266
2267 /*
2268 * expire an async queue immediately if it has used up its slice. idle
2269 * queue always expire after 1 dispatch round.
2270 */
2271 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2272 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2273 cfq_class_idle(cfqq))) {
2274 cfqq->slice_end = jiffies + 1;
2275 cfq_slice_expired(cfqd, 0);
2276 }
2277
2278 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2279 return 1;
2280}
2281
2282/*
2283 * task holds one reference to the queue, dropped when task exits. each rq
2284 * in-flight on this queue also holds a reference, dropped when rq is freed.
2285 *
2286 * Each cfq queue took a reference on the parent group. Drop it now.
2287 * queue lock must be held here.
2288 */
2289static void cfq_put_queue(struct cfq_queue *cfqq)
2290{
2291 struct cfq_data *cfqd = cfqq->cfqd;
2292 struct cfq_group *cfqg;
2293
2294 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2295
2296 if (!atomic_dec_and_test(&cfqq->ref))
2297 return;
2298
2299 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2300 BUG_ON(rb_first(&cfqq->sort_list));
2301 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2302 cfqg = cfqq->cfqg;
2303
2304 if (unlikely(cfqd->active_queue == cfqq)) {
2305 __cfq_slice_expired(cfqd, cfqq, 0);
2306 cfq_schedule_dispatch(cfqd);
2307 }
2308
2309 BUG_ON(cfq_cfqq_on_rr(cfqq));
2310 kmem_cache_free(cfq_pool, cfqq);
2311 cfq_put_cfqg(cfqg);
2312}
2313
2314/*
2315 * Must always be called with the rcu_read_lock() held
2316 */
2317static void
2318__call_for_each_cic(struct io_context *ioc,
2319 void (*func)(struct io_context *, struct cfq_io_context *))
2320{
2321 struct cfq_io_context *cic;
2322 struct hlist_node *n;
2323
2324 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2325 func(ioc, cic);
2326}
2327
2328/*
2329 * Call func for each cic attached to this ioc.
2330 */
2331static void
2332call_for_each_cic(struct io_context *ioc,
2333 void (*func)(struct io_context *, struct cfq_io_context *))
2334{
2335 rcu_read_lock();
2336 __call_for_each_cic(ioc, func);
2337 rcu_read_unlock();
2338}
2339
2340static void cfq_cic_free_rcu(struct rcu_head *head)
2341{
2342 struct cfq_io_context *cic;
2343
2344 cic = container_of(head, struct cfq_io_context, rcu_head);
2345
2346 kmem_cache_free(cfq_ioc_pool, cic);
2347 elv_ioc_count_dec(cfq_ioc_count);
2348
2349 if (ioc_gone) {
2350 /*
2351 * CFQ scheduler is exiting, grab exit lock and check
2352 * the pending io context count. If it hits zero,
2353 * complete ioc_gone and set it back to NULL
2354 */
2355 spin_lock(&ioc_gone_lock);
2356 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2357 complete(ioc_gone);
2358 ioc_gone = NULL;
2359 }
2360 spin_unlock(&ioc_gone_lock);
2361 }
2362}
2363
2364static void cfq_cic_free(struct cfq_io_context *cic)
2365{
2366 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2367}
2368
2369static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2370{
2371 unsigned long flags;
2372
2373 BUG_ON(!cic->dead_key);
2374
2375 spin_lock_irqsave(&ioc->lock, flags);
2376 radix_tree_delete(&ioc->radix_root, cic->dead_key);
2377 hlist_del_rcu(&cic->cic_list);
2378 spin_unlock_irqrestore(&ioc->lock, flags);
2379
2380 cfq_cic_free(cic);
2381}
2382
2383/*
2384 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2385 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2386 * and ->trim() which is called with the task lock held
2387 */
2388static void cfq_free_io_context(struct io_context *ioc)
2389{
2390 /*
2391 * ioc->refcount is zero here, or we are called from elv_unregister(),
2392 * so no more cic's are allowed to be linked into this ioc. So it
2393 * should be ok to iterate over the known list, we will see all cic's
2394 * since no new ones are added.
2395 */
2396 __call_for_each_cic(ioc, cic_free_func);
2397}
2398
2399static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2400{
2401 struct cfq_queue *__cfqq, *next;
2402
2403 if (unlikely(cfqq == cfqd->active_queue)) {
2404 __cfq_slice_expired(cfqd, cfqq, 0);
2405 cfq_schedule_dispatch(cfqd);
2406 }
2407
2408 /*
2409 * If this queue was scheduled to merge with another queue, be
2410 * sure to drop the reference taken on that queue (and others in
2411 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2412 */
2413 __cfqq = cfqq->new_cfqq;
2414 while (__cfqq) {
2415 if (__cfqq == cfqq) {
2416 WARN(1, "cfqq->new_cfqq loop detected\n");
2417 break;
2418 }
2419 next = __cfqq->new_cfqq;
2420 cfq_put_queue(__cfqq);
2421 __cfqq = next;
2422 }
2423
2424 cfq_put_queue(cfqq);
2425}
2426
2427static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2428 struct cfq_io_context *cic)
2429{
2430 struct io_context *ioc = cic->ioc;
2431
2432 list_del_init(&cic->queue_list);
2433
2434 /*
2435 * Make sure key == NULL is seen for dead queues
2436 */
2437 smp_wmb();
2438 cic->dead_key = (unsigned long) cic->key;
2439 cic->key = NULL;
2440
2441 if (ioc->ioc_data == cic)
2442 rcu_assign_pointer(ioc->ioc_data, NULL);
2443
2444 if (cic->cfqq[BLK_RW_ASYNC]) {
2445 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2446 cic->cfqq[BLK_RW_ASYNC] = NULL;
2447 }
2448
2449 if (cic->cfqq[BLK_RW_SYNC]) {
2450 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2451 cic->cfqq[BLK_RW_SYNC] = NULL;
2452 }
2453}
2454
2455static void cfq_exit_single_io_context(struct io_context *ioc,
2456 struct cfq_io_context *cic)
2457{
2458 struct cfq_data *cfqd = cic->key;
2459
2460 if (cfqd) {
2461 struct request_queue *q = cfqd->queue;
2462 unsigned long flags;
2463
2464 spin_lock_irqsave(q->queue_lock, flags);
2465
2466 /*
2467 * Ensure we get a fresh copy of the ->key to prevent
2468 * race between exiting task and queue
2469 */
2470 smp_read_barrier_depends();
2471 if (cic->key)
2472 __cfq_exit_single_io_context(cfqd, cic);
2473
2474 spin_unlock_irqrestore(q->queue_lock, flags);
2475 }
2476}
2477
2478/*
2479 * The process that ioc belongs to has exited, we need to clean up
2480 * and put the internal structures we have that belongs to that process.
2481 */
2482static void cfq_exit_io_context(struct io_context *ioc)
2483{
2484 call_for_each_cic(ioc, cfq_exit_single_io_context);
2485}
2486
2487static struct cfq_io_context *
2488cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2489{
2490 struct cfq_io_context *cic;
2491
2492 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2493 cfqd->queue->node);
2494 if (cic) {
2495 cic->last_end_request = jiffies;
2496 INIT_LIST_HEAD(&cic->queue_list);
2497 INIT_HLIST_NODE(&cic->cic_list);
2498 cic->dtor = cfq_free_io_context;
2499 cic->exit = cfq_exit_io_context;
2500 elv_ioc_count_inc(cfq_ioc_count);
2501 }
2502
2503 return cic;
2504}
2505
2506static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2507{
2508 struct task_struct *tsk = current;
2509 int ioprio_class;
2510
2511 if (!cfq_cfqq_prio_changed(cfqq))
2512 return;
2513
2514 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2515 switch (ioprio_class) {
2516 default:
2517 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2518 case IOPRIO_CLASS_NONE:
2519 /*
2520 * no prio set, inherit CPU scheduling settings
2521 */
2522 cfqq->ioprio = task_nice_ioprio(tsk);
2523 cfqq->ioprio_class = task_nice_ioclass(tsk);
2524 break;
2525 case IOPRIO_CLASS_RT:
2526 cfqq->ioprio = task_ioprio(ioc);
2527 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2528 break;
2529 case IOPRIO_CLASS_BE:
2530 cfqq->ioprio = task_ioprio(ioc);
2531 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2532 break;
2533 case IOPRIO_CLASS_IDLE:
2534 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2535 cfqq->ioprio = 7;
2536 cfq_clear_cfqq_idle_window(cfqq);
2537 break;
2538 }
2539
2540 /*
2541 * keep track of original prio settings in case we have to temporarily
2542 * elevate the priority of this queue
2543 */
2544 cfqq->org_ioprio = cfqq->ioprio;
2545 cfqq->org_ioprio_class = cfqq->ioprio_class;
2546 cfq_clear_cfqq_prio_changed(cfqq);
2547}
2548
2549static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2550{
2551 struct cfq_data *cfqd = cic->key;
2552 struct cfq_queue *cfqq;
2553 unsigned long flags;
2554
2555 if (unlikely(!cfqd))
2556 return;
2557
2558 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2559
2560 cfqq = cic->cfqq[BLK_RW_ASYNC];
2561 if (cfqq) {
2562 struct cfq_queue *new_cfqq;
2563 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2564 GFP_ATOMIC);
2565 if (new_cfqq) {
2566 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2567 cfq_put_queue(cfqq);
2568 }
2569 }
2570
2571 cfqq = cic->cfqq[BLK_RW_SYNC];
2572 if (cfqq)
2573 cfq_mark_cfqq_prio_changed(cfqq);
2574
2575 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2576}
2577
2578static void cfq_ioc_set_ioprio(struct io_context *ioc)
2579{
2580 call_for_each_cic(ioc, changed_ioprio);
2581 ioc->ioprio_changed = 0;
2582}
2583
2584static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2585 pid_t pid, bool is_sync)
2586{
2587 RB_CLEAR_NODE(&cfqq->rb_node);
2588 RB_CLEAR_NODE(&cfqq->p_node);
2589 INIT_LIST_HEAD(&cfqq->fifo);
2590
2591 atomic_set(&cfqq->ref, 0);
2592 cfqq->cfqd = cfqd;
2593
2594 cfq_mark_cfqq_prio_changed(cfqq);
2595
2596 if (is_sync) {
2597 if (!cfq_class_idle(cfqq))
2598 cfq_mark_cfqq_idle_window(cfqq);
2599 cfq_mark_cfqq_sync(cfqq);
2600 }
2601 cfqq->pid = pid;
2602}
2603
2604static struct cfq_queue *
2605cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2606 struct io_context *ioc, gfp_t gfp_mask)
2607{
2608 struct cfq_queue *cfqq, *new_cfqq = NULL;
2609 struct cfq_io_context *cic;
2610 struct cfq_group *cfqg;
2611
2612retry:
2613 cfqg = cfq_get_cfqg(cfqd, 1);
2614 cic = cfq_cic_lookup(cfqd, ioc);
2615 /* cic always exists here */
2616 cfqq = cic_to_cfqq(cic, is_sync);
2617
2618 /*
2619 * Always try a new alloc if we fell back to the OOM cfqq
2620 * originally, since it should just be a temporary situation.
2621 */
2622 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2623 cfqq = NULL;
2624 if (new_cfqq) {
2625 cfqq = new_cfqq;
2626 new_cfqq = NULL;
2627 } else if (gfp_mask & __GFP_WAIT) {
2628 spin_unlock_irq(cfqd->queue->queue_lock);
2629 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2630 gfp_mask | __GFP_ZERO,
2631 cfqd->queue->node);
2632 spin_lock_irq(cfqd->queue->queue_lock);
2633 if (new_cfqq)
2634 goto retry;
2635 } else {
2636 cfqq = kmem_cache_alloc_node(cfq_pool,
2637 gfp_mask | __GFP_ZERO,
2638 cfqd->queue->node);
2639 }
2640
2641 if (cfqq) {
2642 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2643 cfq_init_prio_data(cfqq, ioc);
2644 cfq_link_cfqq_cfqg(cfqq, cfqg);
2645 cfq_log_cfqq(cfqd, cfqq, "alloced");
2646 } else
2647 cfqq = &cfqd->oom_cfqq;
2648 }
2649
2650 if (new_cfqq)
2651 kmem_cache_free(cfq_pool, new_cfqq);
2652
2653 return cfqq;
2654}
2655
2656static struct cfq_queue **
2657cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2658{
2659 switch (ioprio_class) {
2660 case IOPRIO_CLASS_RT:
2661 return &cfqd->async_cfqq[0][ioprio];
2662 case IOPRIO_CLASS_BE:
2663 return &cfqd->async_cfqq[1][ioprio];
2664 case IOPRIO_CLASS_IDLE:
2665 return &cfqd->async_idle_cfqq;
2666 default:
2667 BUG();
2668 }
2669}
2670
2671static struct cfq_queue *
2672cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2673 gfp_t gfp_mask)
2674{
2675 const int ioprio = task_ioprio(ioc);
2676 const int ioprio_class = task_ioprio_class(ioc);
2677 struct cfq_queue **async_cfqq = NULL;
2678 struct cfq_queue *cfqq = NULL;
2679
2680 if (!is_sync) {
2681 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2682 cfqq = *async_cfqq;
2683 }
2684
2685 if (!cfqq)
2686 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2687
2688 /*
2689 * pin the queue now that it's allocated, scheduler exit will prune it
2690 */
2691 if (!is_sync && !(*async_cfqq)) {
2692 atomic_inc(&cfqq->ref);
2693 *async_cfqq = cfqq;
2694 }
2695
2696 atomic_inc(&cfqq->ref);
2697 return cfqq;
2698}
2699
2700/*
2701 * We drop cfq io contexts lazily, so we may find a dead one.
2702 */
2703static void
2704cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2705 struct cfq_io_context *cic)
2706{
2707 unsigned long flags;
2708
2709 WARN_ON(!list_empty(&cic->queue_list));
2710
2711 spin_lock_irqsave(&ioc->lock, flags);
2712
2713 BUG_ON(ioc->ioc_data == cic);
2714
2715 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2716 hlist_del_rcu(&cic->cic_list);
2717 spin_unlock_irqrestore(&ioc->lock, flags);
2718
2719 cfq_cic_free(cic);
2720}
2721
2722static struct cfq_io_context *
2723cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2724{
2725 struct cfq_io_context *cic;
2726 unsigned long flags;
2727 void *k;
2728
2729 if (unlikely(!ioc))
2730 return NULL;
2731
2732 rcu_read_lock();
2733
2734 /*
2735 * we maintain a last-hit cache, to avoid browsing over the tree
2736 */
2737 cic = rcu_dereference(ioc->ioc_data);
2738 if (cic && cic->key == cfqd) {
2739 rcu_read_unlock();
2740 return cic;
2741 }
2742
2743 do {
2744 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2745 rcu_read_unlock();
2746 if (!cic)
2747 break;
2748 /* ->key must be copied to avoid race with cfq_exit_queue() */
2749 k = cic->key;
2750 if (unlikely(!k)) {
2751 cfq_drop_dead_cic(cfqd, ioc, cic);
2752 rcu_read_lock();
2753 continue;
2754 }
2755
2756 spin_lock_irqsave(&ioc->lock, flags);
2757 rcu_assign_pointer(ioc->ioc_data, cic);
2758 spin_unlock_irqrestore(&ioc->lock, flags);
2759 break;
2760 } while (1);
2761
2762 return cic;
2763}
2764
2765/*
2766 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2767 * the process specific cfq io context when entered from the block layer.
2768 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2769 */
2770static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2771 struct cfq_io_context *cic, gfp_t gfp_mask)
2772{
2773 unsigned long flags;
2774 int ret;
2775
2776 ret = radix_tree_preload(gfp_mask);
2777 if (!ret) {
2778 cic->ioc = ioc;
2779 cic->key = cfqd;
2780
2781 spin_lock_irqsave(&ioc->lock, flags);
2782 ret = radix_tree_insert(&ioc->radix_root,
2783 (unsigned long) cfqd, cic);
2784 if (!ret)
2785 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2786 spin_unlock_irqrestore(&ioc->lock, flags);
2787
2788 radix_tree_preload_end();
2789
2790 if (!ret) {
2791 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2792 list_add(&cic->queue_list, &cfqd->cic_list);
2793 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2794 }
2795 }
2796
2797 if (ret)
2798 printk(KERN_ERR "cfq: cic link failed!\n");
2799
2800 return ret;
2801}
2802
2803/*
2804 * Setup general io context and cfq io context. There can be several cfq
2805 * io contexts per general io context, if this process is doing io to more
2806 * than one device managed by cfq.
2807 */
2808static struct cfq_io_context *
2809cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2810{
2811 struct io_context *ioc = NULL;
2812 struct cfq_io_context *cic;
2813
2814 might_sleep_if(gfp_mask & __GFP_WAIT);
2815
2816 ioc = get_io_context(gfp_mask, cfqd->queue->node);
2817 if (!ioc)
2818 return NULL;
2819
2820 cic = cfq_cic_lookup(cfqd, ioc);
2821 if (cic)
2822 goto out;
2823
2824 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2825 if (cic == NULL)
2826 goto err;
2827
2828 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2829 goto err_free;
2830
2831out:
2832 smp_read_barrier_depends();
2833 if (unlikely(ioc->ioprio_changed))
2834 cfq_ioc_set_ioprio(ioc);
2835
2836 return cic;
2837err_free:
2838 cfq_cic_free(cic);
2839err:
2840 put_io_context(ioc);
2841 return NULL;
2842}
2843
2844static void
2845cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2846{
2847 unsigned long elapsed = jiffies - cic->last_end_request;
2848 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2849
2850 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2851 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2852 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2853}
2854
2855static void
2856cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2857 struct request *rq)
2858{
2859 sector_t sdist;
2860 u64 total;
2861
2862 if (!cfqq->last_request_pos)
2863 sdist = 0;
2864 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2865 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2866 else
2867 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2868
2869 /*
2870 * Don't allow the seek distance to get too large from the
2871 * odd fragment, pagein, etc
2872 */
2873 if (cfqq->seek_samples <= 60) /* second&third seek */
2874 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2875 else
2876 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2877
2878 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2879 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2880 total = cfqq->seek_total + (cfqq->seek_samples/2);
2881 do_div(total, cfqq->seek_samples);
2882 cfqq->seek_mean = (sector_t)total;
2883
2884 /*
2885 * If this cfqq is shared between multiple processes, check to
2886 * make sure that those processes are still issuing I/Os within
2887 * the mean seek distance. If not, it may be time to break the
2888 * queues apart again.
2889 */
2890 if (cfq_cfqq_coop(cfqq)) {
2891 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2892 cfqq->seeky_start = jiffies;
2893 else if (!CFQQ_SEEKY(cfqq))
2894 cfqq->seeky_start = 0;
2895 }
2896}
2897
2898/*
2899 * Disable idle window if the process thinks too long or seeks so much that
2900 * it doesn't matter
2901 */
2902static void
2903cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2904 struct cfq_io_context *cic)
2905{
2906 int old_idle, enable_idle;
2907
2908 /*
2909 * Don't idle for async or idle io prio class
2910 */
2911 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2912 return;
2913
2914 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2915
2916 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2917 cfq_mark_cfqq_deep(cfqq);
2918
2919 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2920 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2921 && CFQQ_SEEKY(cfqq)))
2922 enable_idle = 0;
2923 else if (sample_valid(cic->ttime_samples)) {
2924 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2925 enable_idle = 0;
2926 else
2927 enable_idle = 1;
2928 }
2929
2930 if (old_idle != enable_idle) {
2931 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2932 if (enable_idle)
2933 cfq_mark_cfqq_idle_window(cfqq);
2934 else
2935 cfq_clear_cfqq_idle_window(cfqq);
2936 }
2937}
2938
2939/*
2940 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2941 * no or if we aren't sure, a 1 will cause a preempt.
2942 */
2943static bool
2944cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2945 struct request *rq)
2946{
2947 struct cfq_queue *cfqq;
2948
2949 cfqq = cfqd->active_queue;
2950 if (!cfqq)
2951 return false;
2952
2953 if (cfq_slice_used(cfqq))
2954 return true;
2955
2956 if (cfq_class_idle(new_cfqq))
2957 return false;
2958
2959 if (cfq_class_idle(cfqq))
2960 return true;
2961
2962 /* Allow preemption only if we are idling on sync-noidle tree */
2963 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2964 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2965 new_cfqq->service_tree->count == 2 &&
2966 RB_EMPTY_ROOT(&cfqq->sort_list))
2967 return true;
2968
2969 /*
2970 * if the new request is sync, but the currently running queue is
2971 * not, let the sync request have priority.
2972 */
2973 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2974 return true;
2975
2976 /*
2977 * So both queues are sync. Let the new request get disk time if
2978 * it's a metadata request and the current queue is doing regular IO.
2979 */
2980 if (rq_is_meta(rq) && !cfqq->meta_pending)
2981 return true;
2982
2983 /*
2984 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2985 */
2986 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2987 return true;
2988
2989 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2990 return false;
2991
2992 /*
2993 * if this request is as-good as one we would expect from the
2994 * current cfqq, let it preempt
2995 */
2996 if (cfq_rq_close(cfqd, cfqq, rq))
2997 return true;
2998
2999 return false;
3000}
3001
3002/*
3003 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3004 * let it have half of its nominal slice.
3005 */
3006static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3007{
3008 cfq_log_cfqq(cfqd, cfqq, "preempt");
3009 cfq_slice_expired(cfqd, 1);
3010
3011 /*
3012 * Put the new queue at the front of the of the current list,
3013 * so we know that it will be selected next.
3014 */
3015 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3016
3017 cfq_service_tree_add(cfqd, cfqq, 1);
3018
3019 cfqq->slice_end = 0;
3020 cfq_mark_cfqq_slice_new(cfqq);
3021}
3022
3023/*
3024 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3025 * something we should do about it
3026 */
3027static void
3028cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3029 struct request *rq)
3030{
3031 struct cfq_io_context *cic = RQ_CIC(rq);
3032
3033 cfqd->rq_queued++;
3034 if (rq_is_meta(rq))
3035 cfqq->meta_pending++;
3036
3037 cfq_update_io_thinktime(cfqd, cic);
3038 cfq_update_io_seektime(cfqd, cfqq, rq);
3039 cfq_update_idle_window(cfqd, cfqq, cic);
3040
3041 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3042
3043 if (cfqq == cfqd->active_queue) {
3044 /*
3045 * Remember that we saw a request from this process, but
3046 * don't start queuing just yet. Otherwise we risk seeing lots
3047 * of tiny requests, because we disrupt the normal plugging
3048 * and merging. If the request is already larger than a single
3049 * page, let it rip immediately. For that case we assume that
3050 * merging is already done. Ditto for a busy system that
3051 * has other work pending, don't risk delaying until the
3052 * idle timer unplug to continue working.
3053 */
3054 if (cfq_cfqq_wait_request(cfqq)) {
3055 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3056 cfqd->busy_queues > 1) {
3057 del_timer(&cfqd->idle_slice_timer);
3058 __blk_run_queue(cfqd->queue);
3059 } else
3060 cfq_mark_cfqq_must_dispatch(cfqq);
3061 }
3062 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3063 /*
3064 * not the active queue - expire current slice if it is
3065 * idle and has expired it's mean thinktime or this new queue
3066 * has some old slice time left and is of higher priority or
3067 * this new queue is RT and the current one is BE
3068 */
3069 cfq_preempt_queue(cfqd, cfqq);
3070 __blk_run_queue(cfqd->queue);
3071 }
3072}
3073
3074static void cfq_insert_request(struct request_queue *q, struct request *rq)
3075{
3076 struct cfq_data *cfqd = q->elevator->elevator_data;
3077 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3078
3079 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3080 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3081
3082 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3083 list_add_tail(&rq->queuelist, &cfqq->fifo);
3084 cfq_add_rq_rb(rq);
3085
3086 cfq_rq_enqueued(cfqd, cfqq, rq);
3087}
3088
3089/*
3090 * Update hw_tag based on peak queue depth over 50 samples under
3091 * sufficient load.
3092 */
3093static void cfq_update_hw_tag(struct cfq_data *cfqd)
3094{
3095 struct cfq_queue *cfqq = cfqd->active_queue;
3096
3097 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3098 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3099
3100 if (cfqd->hw_tag == 1)
3101 return;
3102
3103 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3104 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3105 return;
3106
3107 /*
3108 * If active queue hasn't enough requests and can idle, cfq might not
3109 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3110 * case
3111 */
3112 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3113 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3114 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3115 return;
3116
3117 if (cfqd->hw_tag_samples++ < 50)
3118 return;
3119
3120 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3121 cfqd->hw_tag = 1;
3122 else
3123 cfqd->hw_tag = 0;
3124}
3125
3126static void cfq_completed_request(struct request_queue *q, struct request *rq)
3127{
3128 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3129 struct cfq_data *cfqd = cfqq->cfqd;
3130 const int sync = rq_is_sync(rq);
3131 unsigned long now;
3132
3133 now = jiffies;
3134 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3135
3136 cfq_update_hw_tag(cfqd);
3137
3138 WARN_ON(!cfqd->rq_in_driver[sync]);
3139 WARN_ON(!cfqq->dispatched);
3140 cfqd->rq_in_driver[sync]--;
3141 cfqq->dispatched--;
3142
3143 if (cfq_cfqq_sync(cfqq))
3144 cfqd->sync_flight--;
3145
3146 if (sync) {
3147 RQ_CIC(rq)->last_end_request = now;
3148 cfqd->last_end_sync_rq = now;
3149 }
3150
3151 /*
3152 * If this is the active queue, check if it needs to be expired,
3153 * or if we want to idle in case it has no pending requests.
3154 */
3155 if (cfqd->active_queue == cfqq) {
3156 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3157
3158 if (cfq_cfqq_slice_new(cfqq)) {
3159 cfq_set_prio_slice(cfqd, cfqq);
3160 cfq_clear_cfqq_slice_new(cfqq);
3161 }
3162 /*
3163 * Idling is not enabled on:
3164 * - expired queues
3165 * - idle-priority queues
3166 * - async queues
3167 * - queues with still some requests queued
3168 * - when there is a close cooperator
3169 */
3170 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3171 cfq_slice_expired(cfqd, 1);
3172 else if (sync && cfqq_empty &&
3173 !cfq_close_cooperator(cfqd, cfqq)) {
3174 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3175 /*
3176 * Idling is enabled for SYNC_WORKLOAD.
3177 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3178 * only if we processed at least one !rq_noidle request
3179 */
3180 if (cfqd->serving_type == SYNC_WORKLOAD
3181 || cfqd->noidle_tree_requires_idle)
3182 cfq_arm_slice_timer(cfqd);
3183 }
3184 }
3185
3186 if (!rq_in_driver(cfqd))
3187 cfq_schedule_dispatch(cfqd);
3188}
3189
3190/*
3191 * we temporarily boost lower priority queues if they are holding fs exclusive
3192 * resources. they are boosted to normal prio (CLASS_BE/4)
3193 */
3194static void cfq_prio_boost(struct cfq_queue *cfqq)
3195{
3196 if (has_fs_excl()) {
3197 /*
3198 * boost idle prio on transactions that would lock out other
3199 * users of the filesystem
3200 */
3201 if (cfq_class_idle(cfqq))
3202 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3203 if (cfqq->ioprio > IOPRIO_NORM)
3204 cfqq->ioprio = IOPRIO_NORM;
3205 } else {
3206 /*
3207 * unboost the queue (if needed)
3208 */
3209 cfqq->ioprio_class = cfqq->org_ioprio_class;
3210 cfqq->ioprio = cfqq->org_ioprio;
3211 }
3212}
3213
3214static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3215{
3216 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3217 cfq_mark_cfqq_must_alloc_slice(cfqq);
3218 return ELV_MQUEUE_MUST;
3219 }
3220
3221 return ELV_MQUEUE_MAY;
3222}
3223
3224static int cfq_may_queue(struct request_queue *q, int rw)
3225{
3226 struct cfq_data *cfqd = q->elevator->elevator_data;
3227 struct task_struct *tsk = current;
3228 struct cfq_io_context *cic;
3229 struct cfq_queue *cfqq;
3230
3231 /*
3232 * don't force setup of a queue from here, as a call to may_queue
3233 * does not necessarily imply that a request actually will be queued.
3234 * so just lookup a possibly existing queue, or return 'may queue'
3235 * if that fails
3236 */
3237 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3238 if (!cic)
3239 return ELV_MQUEUE_MAY;
3240
3241 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3242 if (cfqq) {
3243 cfq_init_prio_data(cfqq, cic->ioc);
3244 cfq_prio_boost(cfqq);
3245
3246 return __cfq_may_queue(cfqq);
3247 }
3248
3249 return ELV_MQUEUE_MAY;
3250}
3251
3252/*
3253 * queue lock held here
3254 */
3255static void cfq_put_request(struct request *rq)
3256{
3257 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3258
3259 if (cfqq) {
3260 const int rw = rq_data_dir(rq);
3261
3262 BUG_ON(!cfqq->allocated[rw]);
3263 cfqq->allocated[rw]--;
3264
3265 put_io_context(RQ_CIC(rq)->ioc);
3266
3267 rq->elevator_private = NULL;
3268 rq->elevator_private2 = NULL;
3269
3270 cfq_put_queue(cfqq);
3271 }
3272}
3273
3274static struct cfq_queue *
3275cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3276 struct cfq_queue *cfqq)
3277{
3278 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3279 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3280 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3281 cfq_put_queue(cfqq);
3282 return cic_to_cfqq(cic, 1);
3283}
3284
3285static int should_split_cfqq(struct cfq_queue *cfqq)
3286{
3287 if (cfqq->seeky_start &&
3288 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3289 return 1;
3290 return 0;
3291}
3292
3293/*
3294 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3295 * was the last process referring to said cfqq.
3296 */
3297static struct cfq_queue *
3298split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3299{
3300 if (cfqq_process_refs(cfqq) == 1) {
3301 cfqq->seeky_start = 0;
3302 cfqq->pid = current->pid;
3303 cfq_clear_cfqq_coop(cfqq);
3304 return cfqq;
3305 }
3306
3307 cic_set_cfqq(cic, NULL, 1);
3308 cfq_put_queue(cfqq);
3309 return NULL;
3310}
3311/*
3312 * Allocate cfq data structures associated with this request.
3313 */
3314static int
3315cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3316{
3317 struct cfq_data *cfqd = q->elevator->elevator_data;
3318 struct cfq_io_context *cic;
3319 const int rw = rq_data_dir(rq);
3320 const bool is_sync = rq_is_sync(rq);
3321 struct cfq_queue *cfqq;
3322 unsigned long flags;
3323
3324 might_sleep_if(gfp_mask & __GFP_WAIT);
3325
3326 cic = cfq_get_io_context(cfqd, gfp_mask);
3327
3328 spin_lock_irqsave(q->queue_lock, flags);
3329
3330 if (!cic)
3331 goto queue_fail;
3332
3333new_queue:
3334 cfqq = cic_to_cfqq(cic, is_sync);
3335 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3336 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3337 cic_set_cfqq(cic, cfqq, is_sync);
3338 } else {
3339 /*
3340 * If the queue was seeky for too long, break it apart.
3341 */
3342 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3343 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3344 cfqq = split_cfqq(cic, cfqq);
3345 if (!cfqq)
3346 goto new_queue;
3347 }
3348
3349 /*
3350 * Check to see if this queue is scheduled to merge with
3351 * another, closely cooperating queue. The merging of
3352 * queues happens here as it must be done in process context.
3353 * The reference on new_cfqq was taken in merge_cfqqs.
3354 */
3355 if (cfqq->new_cfqq)
3356 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3357 }
3358
3359 cfqq->allocated[rw]++;
3360 atomic_inc(&cfqq->ref);
3361
3362 spin_unlock_irqrestore(q->queue_lock, flags);
3363
3364 rq->elevator_private = cic;
3365 rq->elevator_private2 = cfqq;
3366 return 0;
3367
3368queue_fail:
3369 if (cic)
3370 put_io_context(cic->ioc);
3371
3372 cfq_schedule_dispatch(cfqd);
3373 spin_unlock_irqrestore(q->queue_lock, flags);
3374 cfq_log(cfqd, "set_request fail");
3375 return 1;
3376}
3377
3378static void cfq_kick_queue(struct work_struct *work)
3379{
3380 struct cfq_data *cfqd =
3381 container_of(work, struct cfq_data, unplug_work);
3382 struct request_queue *q = cfqd->queue;
3383
3384 spin_lock_irq(q->queue_lock);
3385 __blk_run_queue(cfqd->queue);
3386 spin_unlock_irq(q->queue_lock);
3387}
3388
3389/*
3390 * Timer running if the active_queue is currently idling inside its time slice
3391 */
3392static void cfq_idle_slice_timer(unsigned long data)
3393{
3394 struct cfq_data *cfqd = (struct cfq_data *) data;
3395 struct cfq_queue *cfqq;
3396 unsigned long flags;
3397 int timed_out = 1;
3398
3399 cfq_log(cfqd, "idle timer fired");
3400
3401 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3402
3403 cfqq = cfqd->active_queue;
3404 if (cfqq) {
3405 timed_out = 0;
3406
3407 /*
3408 * We saw a request before the queue expired, let it through
3409 */
3410 if (cfq_cfqq_must_dispatch(cfqq))
3411 goto out_kick;
3412
3413 /*
3414 * expired
3415 */
3416 if (cfq_slice_used(cfqq))
3417 goto expire;
3418
3419 /*
3420 * only expire and reinvoke request handler, if there are
3421 * other queues with pending requests
3422 */
3423 if (!cfqd->busy_queues)
3424 goto out_cont;
3425
3426 /*
3427 * not expired and it has a request pending, let it dispatch
3428 */
3429 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3430 goto out_kick;
3431
3432 /*
3433 * Queue depth flag is reset only when the idle didn't succeed
3434 */
3435 cfq_clear_cfqq_deep(cfqq);
3436 }
3437expire:
3438 cfq_slice_expired(cfqd, timed_out);
3439out_kick:
3440 cfq_schedule_dispatch(cfqd);
3441out_cont:
3442 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3443}
3444
3445static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3446{
3447 del_timer_sync(&cfqd->idle_slice_timer);
3448 cancel_work_sync(&cfqd->unplug_work);
3449}
3450
3451static void cfq_put_async_queues(struct cfq_data *cfqd)
3452{
3453 int i;
3454
3455 for (i = 0; i < IOPRIO_BE_NR; i++) {
3456 if (cfqd->async_cfqq[0][i])
3457 cfq_put_queue(cfqd->async_cfqq[0][i]);
3458 if (cfqd->async_cfqq[1][i])
3459 cfq_put_queue(cfqd->async_cfqq[1][i]);
3460 }
3461
3462 if (cfqd->async_idle_cfqq)
3463 cfq_put_queue(cfqd->async_idle_cfqq);
3464}
3465
3466static void cfq_exit_queue(struct elevator_queue *e)
3467{
3468 struct cfq_data *cfqd = e->elevator_data;
3469 struct request_queue *q = cfqd->queue;
3470
3471 cfq_shutdown_timer_wq(cfqd);
3472
3473 spin_lock_irq(q->queue_lock);
3474
3475 if (cfqd->active_queue)
3476 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3477
3478 while (!list_empty(&cfqd->cic_list)) {
3479 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3480 struct cfq_io_context,
3481 queue_list);
3482
3483 __cfq_exit_single_io_context(cfqd, cic);
3484 }
3485
3486 cfq_put_async_queues(cfqd);
3487 cfq_release_cfq_groups(cfqd);
3488 blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3489
3490 spin_unlock_irq(q->queue_lock);
3491
3492 cfq_shutdown_timer_wq(cfqd);
3493
3494 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3495 synchronize_rcu();
3496 kfree(cfqd);
3497}
3498
3499static void *cfq_init_queue(struct request_queue *q)
3500{
3501 struct cfq_data *cfqd;
3502 int i, j;
3503 struct cfq_group *cfqg;
3504 struct cfq_rb_root *st;
3505
3506 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3507 if (!cfqd)
3508 return NULL;
3509
3510 /* Init root service tree */
3511 cfqd->grp_service_tree = CFQ_RB_ROOT;
3512
3513 /* Init root group */
3514 cfqg = &cfqd->root_group;
3515 for_each_cfqg_st(cfqg, i, j, st)
3516 *st = CFQ_RB_ROOT;
3517 RB_CLEAR_NODE(&cfqg->rb_node);
3518
3519 /* Give preference to root group over other groups */
3520 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3521
3522#ifdef CONFIG_CFQ_GROUP_IOSCHED
3523 /*
3524 * Take a reference to root group which we never drop. This is just
3525 * to make sure that cfq_put_cfqg() does not try to kfree root group
3526 */
3527 atomic_set(&cfqg->ref, 1);
3528 blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3529 0);
3530#endif
3531 /*
3532 * Not strictly needed (since RB_ROOT just clears the node and we
3533 * zeroed cfqd on alloc), but better be safe in case someone decides
3534 * to add magic to the rb code
3535 */
3536 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3537 cfqd->prio_trees[i] = RB_ROOT;
3538
3539 /*
3540 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3541 * Grab a permanent reference to it, so that the normal code flow
3542 * will not attempt to free it.
3543 */
3544 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3545 atomic_inc(&cfqd->oom_cfqq.ref);
3546 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3547
3548 INIT_LIST_HEAD(&cfqd->cic_list);
3549
3550 cfqd->queue = q;
3551
3552 init_timer(&cfqd->idle_slice_timer);
3553 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3554 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3555
3556 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3557
3558 cfqd->cfq_quantum = cfq_quantum;
3559 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3560 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3561 cfqd->cfq_back_max = cfq_back_max;
3562 cfqd->cfq_back_penalty = cfq_back_penalty;
3563 cfqd->cfq_slice[0] = cfq_slice_async;
3564 cfqd->cfq_slice[1] = cfq_slice_sync;
3565 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3566 cfqd->cfq_slice_idle = cfq_slice_idle;
3567 cfqd->cfq_latency = 1;
3568 cfqd->hw_tag = -1;
3569 cfqd->last_end_sync_rq = jiffies;
3570 return cfqd;
3571}
3572
3573static void cfq_slab_kill(void)
3574{
3575 /*
3576 * Caller already ensured that pending RCU callbacks are completed,
3577 * so we should have no busy allocations at this point.
3578 */
3579 if (cfq_pool)
3580 kmem_cache_destroy(cfq_pool);
3581 if (cfq_ioc_pool)
3582 kmem_cache_destroy(cfq_ioc_pool);
3583}
3584
3585static int __init cfq_slab_setup(void)
3586{
3587 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3588 if (!cfq_pool)
3589 goto fail;
3590
3591 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3592 if (!cfq_ioc_pool)
3593 goto fail;
3594
3595 return 0;
3596fail:
3597 cfq_slab_kill();
3598 return -ENOMEM;
3599}
3600
3601/*
3602 * sysfs parts below -->
3603 */
3604static ssize_t
3605cfq_var_show(unsigned int var, char *page)
3606{
3607 return sprintf(page, "%d\n", var);
3608}
3609
3610static ssize_t
3611cfq_var_store(unsigned int *var, const char *page, size_t count)
3612{
3613 char *p = (char *) page;
3614
3615 *var = simple_strtoul(p, &p, 10);
3616 return count;
3617}
3618
3619#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3620static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3621{ \
3622 struct cfq_data *cfqd = e->elevator_data; \
3623 unsigned int __data = __VAR; \
3624 if (__CONV) \
3625 __data = jiffies_to_msecs(__data); \
3626 return cfq_var_show(__data, (page)); \
3627}
3628SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3629SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3630SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3631SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3632SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3633SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3634SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3635SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3636SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3637SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3638#undef SHOW_FUNCTION
3639
3640#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3641static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3642{ \
3643 struct cfq_data *cfqd = e->elevator_data; \
3644 unsigned int __data; \
3645 int ret = cfq_var_store(&__data, (page), count); \
3646 if (__data < (MIN)) \
3647 __data = (MIN); \
3648 else if (__data > (MAX)) \
3649 __data = (MAX); \
3650 if (__CONV) \
3651 *(__PTR) = msecs_to_jiffies(__data); \
3652 else \
3653 *(__PTR) = __data; \
3654 return ret; \
3655}
3656STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3657STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3658 UINT_MAX, 1);
3659STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3660 UINT_MAX, 1);
3661STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3662STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3663 UINT_MAX, 0);
3664STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3665STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3666STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3667STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3668 UINT_MAX, 0);
3669STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3670#undef STORE_FUNCTION
3671
3672#define CFQ_ATTR(name) \
3673 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3674
3675static struct elv_fs_entry cfq_attrs[] = {
3676 CFQ_ATTR(quantum),
3677 CFQ_ATTR(fifo_expire_sync),
3678 CFQ_ATTR(fifo_expire_async),
3679 CFQ_ATTR(back_seek_max),
3680 CFQ_ATTR(back_seek_penalty),
3681 CFQ_ATTR(slice_sync),
3682 CFQ_ATTR(slice_async),
3683 CFQ_ATTR(slice_async_rq),
3684 CFQ_ATTR(slice_idle),
3685 CFQ_ATTR(low_latency),
3686 __ATTR_NULL
3687};
3688
3689static struct elevator_type iosched_cfq = {
3690 .ops = {
3691 .elevator_merge_fn = cfq_merge,
3692 .elevator_merged_fn = cfq_merged_request,
3693 .elevator_merge_req_fn = cfq_merged_requests,
3694 .elevator_allow_merge_fn = cfq_allow_merge,
3695 .elevator_dispatch_fn = cfq_dispatch_requests,
3696 .elevator_add_req_fn = cfq_insert_request,
3697 .elevator_activate_req_fn = cfq_activate_request,
3698 .elevator_deactivate_req_fn = cfq_deactivate_request,
3699 .elevator_queue_empty_fn = cfq_queue_empty,
3700 .elevator_completed_req_fn = cfq_completed_request,
3701 .elevator_former_req_fn = elv_rb_former_request,
3702 .elevator_latter_req_fn = elv_rb_latter_request,
3703 .elevator_set_req_fn = cfq_set_request,
3704 .elevator_put_req_fn = cfq_put_request,
3705 .elevator_may_queue_fn = cfq_may_queue,
3706 .elevator_init_fn = cfq_init_queue,
3707 .elevator_exit_fn = cfq_exit_queue,
3708 .trim = cfq_free_io_context,
3709 },
3710 .elevator_attrs = cfq_attrs,
3711 .elevator_name = "cfq",
3712 .elevator_owner = THIS_MODULE,
3713};
3714
3715static int __init cfq_init(void)
3716{
3717 /*
3718 * could be 0 on HZ < 1000 setups
3719 */
3720 if (!cfq_slice_async)
3721 cfq_slice_async = 1;
3722 if (!cfq_slice_idle)
3723 cfq_slice_idle = 1;
3724
3725 if (cfq_slab_setup())
3726 return -ENOMEM;
3727
3728 elv_register(&iosched_cfq);
3729
3730 return 0;
3731}
3732
3733static void __exit cfq_exit(void)
3734{
3735 DECLARE_COMPLETION_ONSTACK(all_gone);
3736 elv_unregister(&iosched_cfq);
3737 ioc_gone = &all_gone;
3738 /* ioc_gone's update must be visible before reading ioc_count */
3739 smp_wmb();
3740
3741 /*
3742 * this also protects us from entering cfq_slab_kill() with
3743 * pending RCU callbacks
3744 */
3745 if (elv_ioc_count_read(cfq_ioc_count))
3746 wait_for_completion(&all_gone);
3747 cfq_slab_kill();
3748}
3749
3750module_init(cfq_init);
3751module_exit(cfq_exit);
3752
3753MODULE_AUTHOR("Jens Axboe");
3754MODULE_LICENSE("GPL");
3755MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");