]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - block/cfq-iosched.c
blkcg: make blkcg_[rw]stat per-cpu
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
... / ...
CommitLineData
1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include <linux/blk-cgroup.h>
18#include "blk.h"
19
20/*
21 * tunables
22 */
23/* max queue in one round of service */
24static const int cfq_quantum = 8;
25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
30static const int cfq_slice_sync = HZ / 10;
31static int cfq_slice_async = HZ / 25;
32static const int cfq_slice_async_rq = 2;
33static int cfq_slice_idle = HZ / 125;
34static int cfq_group_idle = HZ / 125;
35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
37
38/*
39 * offset from end of service tree
40 */
41#define CFQ_IDLE_DELAY (HZ / 5)
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT (2)
47
48#define CFQ_SLICE_SCALE (5)
49#define CFQ_HW_QUEUE_MIN (5)
50#define CFQ_SERVICE_SHIFT 12
51
52#define CFQQ_SEEK_THR (sector_t)(8 * 100)
53#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57#define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61static struct kmem_cache *cfq_pool;
62
63#define CFQ_PRIO_LISTS IOPRIO_BE_NR
64#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67#define sample_valid(samples) ((samples) > 80)
68#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70/* blkio-related constants */
71#define CFQ_WEIGHT_MIN 10
72#define CFQ_WEIGHT_MAX 1000
73#define CFQ_WEIGHT_DEFAULT 500
74
75struct cfq_ttime {
76 unsigned long last_end_request;
77
78 unsigned long ttime_total;
79 unsigned long ttime_samples;
80 unsigned long ttime_mean;
81};
82
83/*
84 * Most of our rbtree usage is for sorting with min extraction, so
85 * if we cache the leftmost node we don't have to walk down the tree
86 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
87 * move this into the elevator for the rq sorting as well.
88 */
89struct cfq_rb_root {
90 struct rb_root rb;
91 struct rb_node *left;
92 unsigned count;
93 u64 min_vdisktime;
94 struct cfq_ttime ttime;
95};
96#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
97 .ttime = {.last_end_request = jiffies,},}
98
99/*
100 * Per process-grouping structure
101 */
102struct cfq_queue {
103 /* reference count */
104 int ref;
105 /* various state flags, see below */
106 unsigned int flags;
107 /* parent cfq_data */
108 struct cfq_data *cfqd;
109 /* service_tree member */
110 struct rb_node rb_node;
111 /* service_tree key */
112 unsigned long rb_key;
113 /* prio tree member */
114 struct rb_node p_node;
115 /* prio tree root we belong to, if any */
116 struct rb_root *p_root;
117 /* sorted list of pending requests */
118 struct rb_root sort_list;
119 /* if fifo isn't expired, next request to serve */
120 struct request *next_rq;
121 /* requests queued in sort_list */
122 int queued[2];
123 /* currently allocated requests */
124 int allocated[2];
125 /* fifo list of requests in sort_list */
126 struct list_head fifo;
127
128 /* time when queue got scheduled in to dispatch first request. */
129 unsigned long dispatch_start;
130 unsigned int allocated_slice;
131 unsigned int slice_dispatch;
132 /* time when first request from queue completed and slice started. */
133 unsigned long slice_start;
134 unsigned long slice_end;
135 long slice_resid;
136
137 /* pending priority requests */
138 int prio_pending;
139 /* number of requests that are on the dispatch list or inside driver */
140 int dispatched;
141
142 /* io prio of this group */
143 unsigned short ioprio, org_ioprio;
144 unsigned short ioprio_class;
145
146 pid_t pid;
147
148 u32 seek_history;
149 sector_t last_request_pos;
150
151 struct cfq_rb_root *service_tree;
152 struct cfq_queue *new_cfqq;
153 struct cfq_group *cfqg;
154 /* Number of sectors dispatched from queue in single dispatch round */
155 unsigned long nr_sectors;
156};
157
158/*
159 * First index in the service_trees.
160 * IDLE is handled separately, so it has negative index
161 */
162enum wl_class_t {
163 BE_WORKLOAD = 0,
164 RT_WORKLOAD = 1,
165 IDLE_WORKLOAD = 2,
166 CFQ_PRIO_NR,
167};
168
169/*
170 * Second index in the service_trees.
171 */
172enum wl_type_t {
173 ASYNC_WORKLOAD = 0,
174 SYNC_NOIDLE_WORKLOAD = 1,
175 SYNC_WORKLOAD = 2
176};
177
178struct cfqg_stats {
179#ifdef CONFIG_CFQ_GROUP_IOSCHED
180 /* total bytes transferred */
181 struct blkg_rwstat service_bytes;
182 /* total IOs serviced, post merge */
183 struct blkg_rwstat serviced;
184 /* number of ios merged */
185 struct blkg_rwstat merged;
186 /* total time spent on device in ns, may not be accurate w/ queueing */
187 struct blkg_rwstat service_time;
188 /* total time spent waiting in scheduler queue in ns */
189 struct blkg_rwstat wait_time;
190 /* number of IOs queued up */
191 struct blkg_rwstat queued;
192 /* total sectors transferred */
193 struct blkg_stat sectors;
194 /* total disk time and nr sectors dispatched by this group */
195 struct blkg_stat time;
196#ifdef CONFIG_DEBUG_BLK_CGROUP
197 /* time not charged to this cgroup */
198 struct blkg_stat unaccounted_time;
199 /* sum of number of ios queued across all samples */
200 struct blkg_stat avg_queue_size_sum;
201 /* count of samples taken for average */
202 struct blkg_stat avg_queue_size_samples;
203 /* how many times this group has been removed from service tree */
204 struct blkg_stat dequeue;
205 /* total time spent waiting for it to be assigned a timeslice. */
206 struct blkg_stat group_wait_time;
207 /* time spent idling for this blkcg_gq */
208 struct blkg_stat idle_time;
209 /* total time with empty current active q with other requests queued */
210 struct blkg_stat empty_time;
211 /* fields after this shouldn't be cleared on stat reset */
212 uint64_t start_group_wait_time;
213 uint64_t start_idle_time;
214 uint64_t start_empty_time;
215 uint16_t flags;
216#endif /* CONFIG_DEBUG_BLK_CGROUP */
217#endif /* CONFIG_CFQ_GROUP_IOSCHED */
218};
219
220/* Per-cgroup data */
221struct cfq_group_data {
222 /* must be the first member */
223 struct blkcg_policy_data cpd;
224
225 unsigned int weight;
226 unsigned int leaf_weight;
227};
228
229/* This is per cgroup per device grouping structure */
230struct cfq_group {
231 /* must be the first member */
232 struct blkg_policy_data pd;
233
234 /* group service_tree member */
235 struct rb_node rb_node;
236
237 /* group service_tree key */
238 u64 vdisktime;
239
240 /*
241 * The number of active cfqgs and sum of their weights under this
242 * cfqg. This covers this cfqg's leaf_weight and all children's
243 * weights, but does not cover weights of further descendants.
244 *
245 * If a cfqg is on the service tree, it's active. An active cfqg
246 * also activates its parent and contributes to the children_weight
247 * of the parent.
248 */
249 int nr_active;
250 unsigned int children_weight;
251
252 /*
253 * vfraction is the fraction of vdisktime that the tasks in this
254 * cfqg are entitled to. This is determined by compounding the
255 * ratios walking up from this cfqg to the root.
256 *
257 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
258 * vfractions on a service tree is approximately 1. The sum may
259 * deviate a bit due to rounding errors and fluctuations caused by
260 * cfqgs entering and leaving the service tree.
261 */
262 unsigned int vfraction;
263
264 /*
265 * There are two weights - (internal) weight is the weight of this
266 * cfqg against the sibling cfqgs. leaf_weight is the wight of
267 * this cfqg against the child cfqgs. For the root cfqg, both
268 * weights are kept in sync for backward compatibility.
269 */
270 unsigned int weight;
271 unsigned int new_weight;
272 unsigned int dev_weight;
273
274 unsigned int leaf_weight;
275 unsigned int new_leaf_weight;
276 unsigned int dev_leaf_weight;
277
278 /* number of cfqq currently on this group */
279 int nr_cfqq;
280
281 /*
282 * Per group busy queues average. Useful for workload slice calc. We
283 * create the array for each prio class but at run time it is used
284 * only for RT and BE class and slot for IDLE class remains unused.
285 * This is primarily done to avoid confusion and a gcc warning.
286 */
287 unsigned int busy_queues_avg[CFQ_PRIO_NR];
288 /*
289 * rr lists of queues with requests. We maintain service trees for
290 * RT and BE classes. These trees are subdivided in subclasses
291 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
292 * class there is no subclassification and all the cfq queues go on
293 * a single tree service_tree_idle.
294 * Counts are embedded in the cfq_rb_root
295 */
296 struct cfq_rb_root service_trees[2][3];
297 struct cfq_rb_root service_tree_idle;
298
299 unsigned long saved_wl_slice;
300 enum wl_type_t saved_wl_type;
301 enum wl_class_t saved_wl_class;
302
303 /* number of requests that are on the dispatch list or inside driver */
304 int dispatched;
305 struct cfq_ttime ttime;
306 struct cfqg_stats stats; /* stats for this cfqg */
307
308 /* async queue for each priority case */
309 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
310 struct cfq_queue *async_idle_cfqq;
311
312};
313
314struct cfq_io_cq {
315 struct io_cq icq; /* must be the first member */
316 struct cfq_queue *cfqq[2];
317 struct cfq_ttime ttime;
318 int ioprio; /* the current ioprio */
319#ifdef CONFIG_CFQ_GROUP_IOSCHED
320 uint64_t blkcg_serial_nr; /* the current blkcg serial */
321#endif
322};
323
324/*
325 * Per block device queue structure
326 */
327struct cfq_data {
328 struct request_queue *queue;
329 /* Root service tree for cfq_groups */
330 struct cfq_rb_root grp_service_tree;
331 struct cfq_group *root_group;
332
333 /*
334 * The priority currently being served
335 */
336 enum wl_class_t serving_wl_class;
337 enum wl_type_t serving_wl_type;
338 unsigned long workload_expires;
339 struct cfq_group *serving_group;
340
341 /*
342 * Each priority tree is sorted by next_request position. These
343 * trees are used when determining if two or more queues are
344 * interleaving requests (see cfq_close_cooperator).
345 */
346 struct rb_root prio_trees[CFQ_PRIO_LISTS];
347
348 unsigned int busy_queues;
349 unsigned int busy_sync_queues;
350
351 int rq_in_driver;
352 int rq_in_flight[2];
353
354 /*
355 * queue-depth detection
356 */
357 int rq_queued;
358 int hw_tag;
359 /*
360 * hw_tag can be
361 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
362 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
363 * 0 => no NCQ
364 */
365 int hw_tag_est_depth;
366 unsigned int hw_tag_samples;
367
368 /*
369 * idle window management
370 */
371 struct timer_list idle_slice_timer;
372 struct work_struct unplug_work;
373
374 struct cfq_queue *active_queue;
375 struct cfq_io_cq *active_cic;
376
377 sector_t last_position;
378
379 /*
380 * tunables, see top of file
381 */
382 unsigned int cfq_quantum;
383 unsigned int cfq_fifo_expire[2];
384 unsigned int cfq_back_penalty;
385 unsigned int cfq_back_max;
386 unsigned int cfq_slice[2];
387 unsigned int cfq_slice_async_rq;
388 unsigned int cfq_slice_idle;
389 unsigned int cfq_group_idle;
390 unsigned int cfq_latency;
391 unsigned int cfq_target_latency;
392
393 /*
394 * Fallback dummy cfqq for extreme OOM conditions
395 */
396 struct cfq_queue oom_cfqq;
397
398 unsigned long last_delayed_sync;
399};
400
401static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
402static void cfq_put_queue(struct cfq_queue *cfqq);
403
404static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
405 enum wl_class_t class,
406 enum wl_type_t type)
407{
408 if (!cfqg)
409 return NULL;
410
411 if (class == IDLE_WORKLOAD)
412 return &cfqg->service_tree_idle;
413
414 return &cfqg->service_trees[class][type];
415}
416
417enum cfqq_state_flags {
418 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
419 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
420 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
421 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
422 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
423 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
424 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
425 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
426 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
427 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
428 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
429 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
430 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
431};
432
433#define CFQ_CFQQ_FNS(name) \
434static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
435{ \
436 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
437} \
438static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
439{ \
440 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
441} \
442static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
443{ \
444 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
445}
446
447CFQ_CFQQ_FNS(on_rr);
448CFQ_CFQQ_FNS(wait_request);
449CFQ_CFQQ_FNS(must_dispatch);
450CFQ_CFQQ_FNS(must_alloc_slice);
451CFQ_CFQQ_FNS(fifo_expire);
452CFQ_CFQQ_FNS(idle_window);
453CFQ_CFQQ_FNS(prio_changed);
454CFQ_CFQQ_FNS(slice_new);
455CFQ_CFQQ_FNS(sync);
456CFQ_CFQQ_FNS(coop);
457CFQ_CFQQ_FNS(split_coop);
458CFQ_CFQQ_FNS(deep);
459CFQ_CFQQ_FNS(wait_busy);
460#undef CFQ_CFQQ_FNS
461
462#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
463
464/* cfqg stats flags */
465enum cfqg_stats_flags {
466 CFQG_stats_waiting = 0,
467 CFQG_stats_idling,
468 CFQG_stats_empty,
469};
470
471#define CFQG_FLAG_FNS(name) \
472static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
473{ \
474 stats->flags |= (1 << CFQG_stats_##name); \
475} \
476static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
477{ \
478 stats->flags &= ~(1 << CFQG_stats_##name); \
479} \
480static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
481{ \
482 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
483} \
484
485CFQG_FLAG_FNS(waiting)
486CFQG_FLAG_FNS(idling)
487CFQG_FLAG_FNS(empty)
488#undef CFQG_FLAG_FNS
489
490/* This should be called with the queue_lock held. */
491static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
492{
493 unsigned long long now;
494
495 if (!cfqg_stats_waiting(stats))
496 return;
497
498 now = sched_clock();
499 if (time_after64(now, stats->start_group_wait_time))
500 blkg_stat_add(&stats->group_wait_time,
501 now - stats->start_group_wait_time);
502 cfqg_stats_clear_waiting(stats);
503}
504
505/* This should be called with the queue_lock held. */
506static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
507 struct cfq_group *curr_cfqg)
508{
509 struct cfqg_stats *stats = &cfqg->stats;
510
511 if (cfqg_stats_waiting(stats))
512 return;
513 if (cfqg == curr_cfqg)
514 return;
515 stats->start_group_wait_time = sched_clock();
516 cfqg_stats_mark_waiting(stats);
517}
518
519/* This should be called with the queue_lock held. */
520static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
521{
522 unsigned long long now;
523
524 if (!cfqg_stats_empty(stats))
525 return;
526
527 now = sched_clock();
528 if (time_after64(now, stats->start_empty_time))
529 blkg_stat_add(&stats->empty_time,
530 now - stats->start_empty_time);
531 cfqg_stats_clear_empty(stats);
532}
533
534static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
535{
536 blkg_stat_add(&cfqg->stats.dequeue, 1);
537}
538
539static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
540{
541 struct cfqg_stats *stats = &cfqg->stats;
542
543 if (blkg_rwstat_total(&stats->queued))
544 return;
545
546 /*
547 * group is already marked empty. This can happen if cfqq got new
548 * request in parent group and moved to this group while being added
549 * to service tree. Just ignore the event and move on.
550 */
551 if (cfqg_stats_empty(stats))
552 return;
553
554 stats->start_empty_time = sched_clock();
555 cfqg_stats_mark_empty(stats);
556}
557
558static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
559{
560 struct cfqg_stats *stats = &cfqg->stats;
561
562 if (cfqg_stats_idling(stats)) {
563 unsigned long long now = sched_clock();
564
565 if (time_after64(now, stats->start_idle_time))
566 blkg_stat_add(&stats->idle_time,
567 now - stats->start_idle_time);
568 cfqg_stats_clear_idling(stats);
569 }
570}
571
572static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
573{
574 struct cfqg_stats *stats = &cfqg->stats;
575
576 BUG_ON(cfqg_stats_idling(stats));
577
578 stats->start_idle_time = sched_clock();
579 cfqg_stats_mark_idling(stats);
580}
581
582static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
583{
584 struct cfqg_stats *stats = &cfqg->stats;
585
586 blkg_stat_add(&stats->avg_queue_size_sum,
587 blkg_rwstat_total(&stats->queued));
588 blkg_stat_add(&stats->avg_queue_size_samples, 1);
589 cfqg_stats_update_group_wait_time(stats);
590}
591
592#else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
593
594static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
595static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
596static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
597static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
598static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
599static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
600static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
601
602#endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
603
604#ifdef CONFIG_CFQ_GROUP_IOSCHED
605
606static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
607{
608 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
609}
610
611static struct cfq_group_data
612*cpd_to_cfqgd(struct blkcg_policy_data *cpd)
613{
614 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
615}
616
617static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
618{
619 return pd_to_blkg(&cfqg->pd);
620}
621
622static struct blkcg_policy blkcg_policy_cfq;
623
624static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
625{
626 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
627}
628
629static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
630{
631 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
632}
633
634static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
635{
636 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
637
638 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
639}
640
641static inline void cfqg_get(struct cfq_group *cfqg)
642{
643 return blkg_get(cfqg_to_blkg(cfqg));
644}
645
646static inline void cfqg_put(struct cfq_group *cfqg)
647{
648 return blkg_put(cfqg_to_blkg(cfqg));
649}
650
651#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
652 char __pbuf[128]; \
653 \
654 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
655 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
656 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
657 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
658 __pbuf, ##args); \
659} while (0)
660
661#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
662 char __pbuf[128]; \
663 \
664 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
665 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
666} while (0)
667
668static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
669 struct cfq_group *curr_cfqg, int rw)
670{
671 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
672 cfqg_stats_end_empty_time(&cfqg->stats);
673 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
674}
675
676static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
677 unsigned long time, unsigned long unaccounted_time)
678{
679 blkg_stat_add(&cfqg->stats.time, time);
680#ifdef CONFIG_DEBUG_BLK_CGROUP
681 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
682#endif
683}
684
685static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
686{
687 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
688}
689
690static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
691{
692 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
693}
694
695static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
696 uint64_t bytes, int rw)
697{
698 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
699 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
700 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
701}
702
703static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
704 uint64_t start_time, uint64_t io_start_time, int rw)
705{
706 struct cfqg_stats *stats = &cfqg->stats;
707 unsigned long long now = sched_clock();
708
709 if (time_after64(now, io_start_time))
710 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
711 if (time_after64(io_start_time, start_time))
712 blkg_rwstat_add(&stats->wait_time, rw,
713 io_start_time - start_time);
714}
715
716/* @stats = 0 */
717static void cfqg_stats_reset(struct cfqg_stats *stats)
718{
719 /* queued stats shouldn't be cleared */
720 blkg_rwstat_reset(&stats->service_bytes);
721 blkg_rwstat_reset(&stats->serviced);
722 blkg_rwstat_reset(&stats->merged);
723 blkg_rwstat_reset(&stats->service_time);
724 blkg_rwstat_reset(&stats->wait_time);
725 blkg_stat_reset(&stats->time);
726#ifdef CONFIG_DEBUG_BLK_CGROUP
727 blkg_stat_reset(&stats->unaccounted_time);
728 blkg_stat_reset(&stats->avg_queue_size_sum);
729 blkg_stat_reset(&stats->avg_queue_size_samples);
730 blkg_stat_reset(&stats->dequeue);
731 blkg_stat_reset(&stats->group_wait_time);
732 blkg_stat_reset(&stats->idle_time);
733 blkg_stat_reset(&stats->empty_time);
734#endif
735}
736
737/* @to += @from */
738static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
739{
740 /* queued stats shouldn't be cleared */
741 blkg_rwstat_add_aux(&to->service_bytes, &from->service_bytes);
742 blkg_rwstat_add_aux(&to->serviced, &from->serviced);
743 blkg_rwstat_add_aux(&to->merged, &from->merged);
744 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
745 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
746 blkg_stat_add_aux(&from->time, &from->time);
747#ifdef CONFIG_DEBUG_BLK_CGROUP
748 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
749 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
750 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
751 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
752 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
753 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
754 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
755#endif
756}
757
758/*
759 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
760 * recursive stats can still account for the amount used by this cfqg after
761 * it's gone.
762 */
763static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
764{
765 struct cfq_group *parent = cfqg_parent(cfqg);
766
767 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
768
769 if (unlikely(!parent))
770 return;
771
772 cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
773 cfqg_stats_reset(&cfqg->stats);
774}
775
776#else /* CONFIG_CFQ_GROUP_IOSCHED */
777
778static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
779static inline void cfqg_get(struct cfq_group *cfqg) { }
780static inline void cfqg_put(struct cfq_group *cfqg) { }
781
782#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
783 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
784 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
785 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
786 ##args)
787#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
788
789static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
790 struct cfq_group *curr_cfqg, int rw) { }
791static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
792 unsigned long time, unsigned long unaccounted_time) { }
793static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
794static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
795static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
796 uint64_t bytes, int rw) { }
797static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
798 uint64_t start_time, uint64_t io_start_time, int rw) { }
799
800#endif /* CONFIG_CFQ_GROUP_IOSCHED */
801
802#define cfq_log(cfqd, fmt, args...) \
803 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
804
805/* Traverses through cfq group service trees */
806#define for_each_cfqg_st(cfqg, i, j, st) \
807 for (i = 0; i <= IDLE_WORKLOAD; i++) \
808 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
809 : &cfqg->service_tree_idle; \
810 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
811 (i == IDLE_WORKLOAD && j == 0); \
812 j++, st = i < IDLE_WORKLOAD ? \
813 &cfqg->service_trees[i][j]: NULL) \
814
815static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
816 struct cfq_ttime *ttime, bool group_idle)
817{
818 unsigned long slice;
819 if (!sample_valid(ttime->ttime_samples))
820 return false;
821 if (group_idle)
822 slice = cfqd->cfq_group_idle;
823 else
824 slice = cfqd->cfq_slice_idle;
825 return ttime->ttime_mean > slice;
826}
827
828static inline bool iops_mode(struct cfq_data *cfqd)
829{
830 /*
831 * If we are not idling on queues and it is a NCQ drive, parallel
832 * execution of requests is on and measuring time is not possible
833 * in most of the cases until and unless we drive shallower queue
834 * depths and that becomes a performance bottleneck. In such cases
835 * switch to start providing fairness in terms of number of IOs.
836 */
837 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
838 return true;
839 else
840 return false;
841}
842
843static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
844{
845 if (cfq_class_idle(cfqq))
846 return IDLE_WORKLOAD;
847 if (cfq_class_rt(cfqq))
848 return RT_WORKLOAD;
849 return BE_WORKLOAD;
850}
851
852
853static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
854{
855 if (!cfq_cfqq_sync(cfqq))
856 return ASYNC_WORKLOAD;
857 if (!cfq_cfqq_idle_window(cfqq))
858 return SYNC_NOIDLE_WORKLOAD;
859 return SYNC_WORKLOAD;
860}
861
862static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
863 struct cfq_data *cfqd,
864 struct cfq_group *cfqg)
865{
866 if (wl_class == IDLE_WORKLOAD)
867 return cfqg->service_tree_idle.count;
868
869 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
870 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
871 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
872}
873
874static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
875 struct cfq_group *cfqg)
876{
877 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
878 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
879}
880
881static void cfq_dispatch_insert(struct request_queue *, struct request *);
882static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
883 struct cfq_io_cq *cic, struct bio *bio);
884
885static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
886{
887 /* cic->icq is the first member, %NULL will convert to %NULL */
888 return container_of(icq, struct cfq_io_cq, icq);
889}
890
891static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
892 struct io_context *ioc)
893{
894 if (ioc)
895 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
896 return NULL;
897}
898
899static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
900{
901 return cic->cfqq[is_sync];
902}
903
904static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
905 bool is_sync)
906{
907 cic->cfqq[is_sync] = cfqq;
908}
909
910static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
911{
912 return cic->icq.q->elevator->elevator_data;
913}
914
915/*
916 * We regard a request as SYNC, if it's either a read or has the SYNC bit
917 * set (in which case it could also be direct WRITE).
918 */
919static inline bool cfq_bio_sync(struct bio *bio)
920{
921 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
922}
923
924/*
925 * scheduler run of queue, if there are requests pending and no one in the
926 * driver that will restart queueing
927 */
928static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
929{
930 if (cfqd->busy_queues) {
931 cfq_log(cfqd, "schedule dispatch");
932 kblockd_schedule_work(&cfqd->unplug_work);
933 }
934}
935
936/*
937 * Scale schedule slice based on io priority. Use the sync time slice only
938 * if a queue is marked sync and has sync io queued. A sync queue with async
939 * io only, should not get full sync slice length.
940 */
941static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
942 unsigned short prio)
943{
944 const int base_slice = cfqd->cfq_slice[sync];
945
946 WARN_ON(prio >= IOPRIO_BE_NR);
947
948 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
949}
950
951static inline int
952cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
953{
954 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
955}
956
957/**
958 * cfqg_scale_charge - scale disk time charge according to cfqg weight
959 * @charge: disk time being charged
960 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
961 *
962 * Scale @charge according to @vfraction, which is in range (0, 1]. The
963 * scaling is inversely proportional.
964 *
965 * scaled = charge / vfraction
966 *
967 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
968 */
969static inline u64 cfqg_scale_charge(unsigned long charge,
970 unsigned int vfraction)
971{
972 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
973
974 /* charge / vfraction */
975 c <<= CFQ_SERVICE_SHIFT;
976 do_div(c, vfraction);
977 return c;
978}
979
980static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
981{
982 s64 delta = (s64)(vdisktime - min_vdisktime);
983 if (delta > 0)
984 min_vdisktime = vdisktime;
985
986 return min_vdisktime;
987}
988
989static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
990{
991 s64 delta = (s64)(vdisktime - min_vdisktime);
992 if (delta < 0)
993 min_vdisktime = vdisktime;
994
995 return min_vdisktime;
996}
997
998static void update_min_vdisktime(struct cfq_rb_root *st)
999{
1000 struct cfq_group *cfqg;
1001
1002 if (st->left) {
1003 cfqg = rb_entry_cfqg(st->left);
1004 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
1005 cfqg->vdisktime);
1006 }
1007}
1008
1009/*
1010 * get averaged number of queues of RT/BE priority.
1011 * average is updated, with a formula that gives more weight to higher numbers,
1012 * to quickly follows sudden increases and decrease slowly
1013 */
1014
1015static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1016 struct cfq_group *cfqg, bool rt)
1017{
1018 unsigned min_q, max_q;
1019 unsigned mult = cfq_hist_divisor - 1;
1020 unsigned round = cfq_hist_divisor / 2;
1021 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1022
1023 min_q = min(cfqg->busy_queues_avg[rt], busy);
1024 max_q = max(cfqg->busy_queues_avg[rt], busy);
1025 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1026 cfq_hist_divisor;
1027 return cfqg->busy_queues_avg[rt];
1028}
1029
1030static inline unsigned
1031cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1032{
1033 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1034}
1035
1036static inline unsigned
1037cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1038{
1039 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1040 if (cfqd->cfq_latency) {
1041 /*
1042 * interested queues (we consider only the ones with the same
1043 * priority class in the cfq group)
1044 */
1045 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1046 cfq_class_rt(cfqq));
1047 unsigned sync_slice = cfqd->cfq_slice[1];
1048 unsigned expect_latency = sync_slice * iq;
1049 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1050
1051 if (expect_latency > group_slice) {
1052 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1053 /* scale low_slice according to IO priority
1054 * and sync vs async */
1055 unsigned low_slice =
1056 min(slice, base_low_slice * slice / sync_slice);
1057 /* the adapted slice value is scaled to fit all iqs
1058 * into the target latency */
1059 slice = max(slice * group_slice / expect_latency,
1060 low_slice);
1061 }
1062 }
1063 return slice;
1064}
1065
1066static inline void
1067cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1068{
1069 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1070
1071 cfqq->slice_start = jiffies;
1072 cfqq->slice_end = jiffies + slice;
1073 cfqq->allocated_slice = slice;
1074 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1075}
1076
1077/*
1078 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1079 * isn't valid until the first request from the dispatch is activated
1080 * and the slice time set.
1081 */
1082static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1083{
1084 if (cfq_cfqq_slice_new(cfqq))
1085 return false;
1086 if (time_before(jiffies, cfqq->slice_end))
1087 return false;
1088
1089 return true;
1090}
1091
1092/*
1093 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1094 * We choose the request that is closest to the head right now. Distance
1095 * behind the head is penalized and only allowed to a certain extent.
1096 */
1097static struct request *
1098cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1099{
1100 sector_t s1, s2, d1 = 0, d2 = 0;
1101 unsigned long back_max;
1102#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1103#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1104 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1105
1106 if (rq1 == NULL || rq1 == rq2)
1107 return rq2;
1108 if (rq2 == NULL)
1109 return rq1;
1110
1111 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1112 return rq_is_sync(rq1) ? rq1 : rq2;
1113
1114 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1115 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1116
1117 s1 = blk_rq_pos(rq1);
1118 s2 = blk_rq_pos(rq2);
1119
1120 /*
1121 * by definition, 1KiB is 2 sectors
1122 */
1123 back_max = cfqd->cfq_back_max * 2;
1124
1125 /*
1126 * Strict one way elevator _except_ in the case where we allow
1127 * short backward seeks which are biased as twice the cost of a
1128 * similar forward seek.
1129 */
1130 if (s1 >= last)
1131 d1 = s1 - last;
1132 else if (s1 + back_max >= last)
1133 d1 = (last - s1) * cfqd->cfq_back_penalty;
1134 else
1135 wrap |= CFQ_RQ1_WRAP;
1136
1137 if (s2 >= last)
1138 d2 = s2 - last;
1139 else if (s2 + back_max >= last)
1140 d2 = (last - s2) * cfqd->cfq_back_penalty;
1141 else
1142 wrap |= CFQ_RQ2_WRAP;
1143
1144 /* Found required data */
1145
1146 /*
1147 * By doing switch() on the bit mask "wrap" we avoid having to
1148 * check two variables for all permutations: --> faster!
1149 */
1150 switch (wrap) {
1151 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1152 if (d1 < d2)
1153 return rq1;
1154 else if (d2 < d1)
1155 return rq2;
1156 else {
1157 if (s1 >= s2)
1158 return rq1;
1159 else
1160 return rq2;
1161 }
1162
1163 case CFQ_RQ2_WRAP:
1164 return rq1;
1165 case CFQ_RQ1_WRAP:
1166 return rq2;
1167 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1168 default:
1169 /*
1170 * Since both rqs are wrapped,
1171 * start with the one that's further behind head
1172 * (--> only *one* back seek required),
1173 * since back seek takes more time than forward.
1174 */
1175 if (s1 <= s2)
1176 return rq1;
1177 else
1178 return rq2;
1179 }
1180}
1181
1182/*
1183 * The below is leftmost cache rbtree addon
1184 */
1185static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1186{
1187 /* Service tree is empty */
1188 if (!root->count)
1189 return NULL;
1190
1191 if (!root->left)
1192 root->left = rb_first(&root->rb);
1193
1194 if (root->left)
1195 return rb_entry(root->left, struct cfq_queue, rb_node);
1196
1197 return NULL;
1198}
1199
1200static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1201{
1202 if (!root->left)
1203 root->left = rb_first(&root->rb);
1204
1205 if (root->left)
1206 return rb_entry_cfqg(root->left);
1207
1208 return NULL;
1209}
1210
1211static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1212{
1213 rb_erase(n, root);
1214 RB_CLEAR_NODE(n);
1215}
1216
1217static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1218{
1219 if (root->left == n)
1220 root->left = NULL;
1221 rb_erase_init(n, &root->rb);
1222 --root->count;
1223}
1224
1225/*
1226 * would be nice to take fifo expire time into account as well
1227 */
1228static struct request *
1229cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1230 struct request *last)
1231{
1232 struct rb_node *rbnext = rb_next(&last->rb_node);
1233 struct rb_node *rbprev = rb_prev(&last->rb_node);
1234 struct request *next = NULL, *prev = NULL;
1235
1236 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1237
1238 if (rbprev)
1239 prev = rb_entry_rq(rbprev);
1240
1241 if (rbnext)
1242 next = rb_entry_rq(rbnext);
1243 else {
1244 rbnext = rb_first(&cfqq->sort_list);
1245 if (rbnext && rbnext != &last->rb_node)
1246 next = rb_entry_rq(rbnext);
1247 }
1248
1249 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1250}
1251
1252static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1253 struct cfq_queue *cfqq)
1254{
1255 /*
1256 * just an approximation, should be ok.
1257 */
1258 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1259 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1260}
1261
1262static inline s64
1263cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1264{
1265 return cfqg->vdisktime - st->min_vdisktime;
1266}
1267
1268static void
1269__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1270{
1271 struct rb_node **node = &st->rb.rb_node;
1272 struct rb_node *parent = NULL;
1273 struct cfq_group *__cfqg;
1274 s64 key = cfqg_key(st, cfqg);
1275 int left = 1;
1276
1277 while (*node != NULL) {
1278 parent = *node;
1279 __cfqg = rb_entry_cfqg(parent);
1280
1281 if (key < cfqg_key(st, __cfqg))
1282 node = &parent->rb_left;
1283 else {
1284 node = &parent->rb_right;
1285 left = 0;
1286 }
1287 }
1288
1289 if (left)
1290 st->left = &cfqg->rb_node;
1291
1292 rb_link_node(&cfqg->rb_node, parent, node);
1293 rb_insert_color(&cfqg->rb_node, &st->rb);
1294}
1295
1296/*
1297 * This has to be called only on activation of cfqg
1298 */
1299static void
1300cfq_update_group_weight(struct cfq_group *cfqg)
1301{
1302 if (cfqg->new_weight) {
1303 cfqg->weight = cfqg->new_weight;
1304 cfqg->new_weight = 0;
1305 }
1306}
1307
1308static void
1309cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1310{
1311 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1312
1313 if (cfqg->new_leaf_weight) {
1314 cfqg->leaf_weight = cfqg->new_leaf_weight;
1315 cfqg->new_leaf_weight = 0;
1316 }
1317}
1318
1319static void
1320cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1321{
1322 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1323 struct cfq_group *pos = cfqg;
1324 struct cfq_group *parent;
1325 bool propagate;
1326
1327 /* add to the service tree */
1328 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1329
1330 /*
1331 * Update leaf_weight. We cannot update weight at this point
1332 * because cfqg might already have been activated and is
1333 * contributing its current weight to the parent's child_weight.
1334 */
1335 cfq_update_group_leaf_weight(cfqg);
1336 __cfq_group_service_tree_add(st, cfqg);
1337
1338 /*
1339 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1340 * entitled to. vfraction is calculated by walking the tree
1341 * towards the root calculating the fraction it has at each level.
1342 * The compounded ratio is how much vfraction @cfqg owns.
1343 *
1344 * Start with the proportion tasks in this cfqg has against active
1345 * children cfqgs - its leaf_weight against children_weight.
1346 */
1347 propagate = !pos->nr_active++;
1348 pos->children_weight += pos->leaf_weight;
1349 vfr = vfr * pos->leaf_weight / pos->children_weight;
1350
1351 /*
1352 * Compound ->weight walking up the tree. Both activation and
1353 * vfraction calculation are done in the same loop. Propagation
1354 * stops once an already activated node is met. vfraction
1355 * calculation should always continue to the root.
1356 */
1357 while ((parent = cfqg_parent(pos))) {
1358 if (propagate) {
1359 cfq_update_group_weight(pos);
1360 propagate = !parent->nr_active++;
1361 parent->children_weight += pos->weight;
1362 }
1363 vfr = vfr * pos->weight / parent->children_weight;
1364 pos = parent;
1365 }
1366
1367 cfqg->vfraction = max_t(unsigned, vfr, 1);
1368}
1369
1370static void
1371cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1372{
1373 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1374 struct cfq_group *__cfqg;
1375 struct rb_node *n;
1376
1377 cfqg->nr_cfqq++;
1378 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1379 return;
1380
1381 /*
1382 * Currently put the group at the end. Later implement something
1383 * so that groups get lesser vtime based on their weights, so that
1384 * if group does not loose all if it was not continuously backlogged.
1385 */
1386 n = rb_last(&st->rb);
1387 if (n) {
1388 __cfqg = rb_entry_cfqg(n);
1389 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1390 } else
1391 cfqg->vdisktime = st->min_vdisktime;
1392 cfq_group_service_tree_add(st, cfqg);
1393}
1394
1395static void
1396cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1397{
1398 struct cfq_group *pos = cfqg;
1399 bool propagate;
1400
1401 /*
1402 * Undo activation from cfq_group_service_tree_add(). Deactivate
1403 * @cfqg and propagate deactivation upwards.
1404 */
1405 propagate = !--pos->nr_active;
1406 pos->children_weight -= pos->leaf_weight;
1407
1408 while (propagate) {
1409 struct cfq_group *parent = cfqg_parent(pos);
1410
1411 /* @pos has 0 nr_active at this point */
1412 WARN_ON_ONCE(pos->children_weight);
1413 pos->vfraction = 0;
1414
1415 if (!parent)
1416 break;
1417
1418 propagate = !--parent->nr_active;
1419 parent->children_weight -= pos->weight;
1420 pos = parent;
1421 }
1422
1423 /* remove from the service tree */
1424 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1425 cfq_rb_erase(&cfqg->rb_node, st);
1426}
1427
1428static void
1429cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1430{
1431 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1432
1433 BUG_ON(cfqg->nr_cfqq < 1);
1434 cfqg->nr_cfqq--;
1435
1436 /* If there are other cfq queues under this group, don't delete it */
1437 if (cfqg->nr_cfqq)
1438 return;
1439
1440 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1441 cfq_group_service_tree_del(st, cfqg);
1442 cfqg->saved_wl_slice = 0;
1443 cfqg_stats_update_dequeue(cfqg);
1444}
1445
1446static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1447 unsigned int *unaccounted_time)
1448{
1449 unsigned int slice_used;
1450
1451 /*
1452 * Queue got expired before even a single request completed or
1453 * got expired immediately after first request completion.
1454 */
1455 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1456 /*
1457 * Also charge the seek time incurred to the group, otherwise
1458 * if there are mutiple queues in the group, each can dispatch
1459 * a single request on seeky media and cause lots of seek time
1460 * and group will never know it.
1461 */
1462 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1463 1);
1464 } else {
1465 slice_used = jiffies - cfqq->slice_start;
1466 if (slice_used > cfqq->allocated_slice) {
1467 *unaccounted_time = slice_used - cfqq->allocated_slice;
1468 slice_used = cfqq->allocated_slice;
1469 }
1470 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1471 *unaccounted_time += cfqq->slice_start -
1472 cfqq->dispatch_start;
1473 }
1474
1475 return slice_used;
1476}
1477
1478static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1479 struct cfq_queue *cfqq)
1480{
1481 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1482 unsigned int used_sl, charge, unaccounted_sl = 0;
1483 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1484 - cfqg->service_tree_idle.count;
1485 unsigned int vfr;
1486
1487 BUG_ON(nr_sync < 0);
1488 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1489
1490 if (iops_mode(cfqd))
1491 charge = cfqq->slice_dispatch;
1492 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1493 charge = cfqq->allocated_slice;
1494
1495 /*
1496 * Can't update vdisktime while on service tree and cfqg->vfraction
1497 * is valid only while on it. Cache vfr, leave the service tree,
1498 * update vdisktime and go back on. The re-addition to the tree
1499 * will also update the weights as necessary.
1500 */
1501 vfr = cfqg->vfraction;
1502 cfq_group_service_tree_del(st, cfqg);
1503 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1504 cfq_group_service_tree_add(st, cfqg);
1505
1506 /* This group is being expired. Save the context */
1507 if (time_after(cfqd->workload_expires, jiffies)) {
1508 cfqg->saved_wl_slice = cfqd->workload_expires
1509 - jiffies;
1510 cfqg->saved_wl_type = cfqd->serving_wl_type;
1511 cfqg->saved_wl_class = cfqd->serving_wl_class;
1512 } else
1513 cfqg->saved_wl_slice = 0;
1514
1515 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1516 st->min_vdisktime);
1517 cfq_log_cfqq(cfqq->cfqd, cfqq,
1518 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1519 used_sl, cfqq->slice_dispatch, charge,
1520 iops_mode(cfqd), cfqq->nr_sectors);
1521 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1522 cfqg_stats_set_start_empty_time(cfqg);
1523}
1524
1525/**
1526 * cfq_init_cfqg_base - initialize base part of a cfq_group
1527 * @cfqg: cfq_group to initialize
1528 *
1529 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1530 * is enabled or not.
1531 */
1532static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1533{
1534 struct cfq_rb_root *st;
1535 int i, j;
1536
1537 for_each_cfqg_st(cfqg, i, j, st)
1538 *st = CFQ_RB_ROOT;
1539 RB_CLEAR_NODE(&cfqg->rb_node);
1540
1541 cfqg->ttime.last_end_request = jiffies;
1542}
1543
1544#ifdef CONFIG_CFQ_GROUP_IOSCHED
1545static void cfqg_stats_exit(struct cfqg_stats *stats)
1546{
1547 blkg_rwstat_exit(&stats->service_bytes);
1548 blkg_rwstat_exit(&stats->serviced);
1549 blkg_rwstat_exit(&stats->merged);
1550 blkg_rwstat_exit(&stats->service_time);
1551 blkg_rwstat_exit(&stats->wait_time);
1552 blkg_rwstat_exit(&stats->queued);
1553
1554 blkg_stat_exit(&stats->sectors);
1555 blkg_stat_exit(&stats->time);
1556#ifdef CONFIG_DEBUG_BLK_CGROUP
1557 blkg_stat_exit(&stats->unaccounted_time);
1558 blkg_stat_exit(&stats->avg_queue_size_sum);
1559 blkg_stat_exit(&stats->avg_queue_size_samples);
1560 blkg_stat_exit(&stats->dequeue);
1561 blkg_stat_exit(&stats->group_wait_time);
1562 blkg_stat_exit(&stats->idle_time);
1563 blkg_stat_exit(&stats->empty_time);
1564#endif
1565}
1566
1567static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1568{
1569 if (blkg_rwstat_init(&stats->service_bytes, gfp) ||
1570 blkg_rwstat_init(&stats->serviced, gfp) ||
1571 blkg_rwstat_init(&stats->merged, gfp) ||
1572 blkg_rwstat_init(&stats->service_time, gfp) ||
1573 blkg_rwstat_init(&stats->wait_time, gfp) ||
1574 blkg_rwstat_init(&stats->queued, gfp) ||
1575
1576 blkg_stat_init(&stats->sectors, gfp) ||
1577 blkg_stat_init(&stats->time, gfp))
1578 goto err;
1579
1580#ifdef CONFIG_DEBUG_BLK_CGROUP
1581 if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1582 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1583 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1584 blkg_stat_init(&stats->dequeue, gfp) ||
1585 blkg_stat_init(&stats->group_wait_time, gfp) ||
1586 blkg_stat_init(&stats->idle_time, gfp) ||
1587 blkg_stat_init(&stats->empty_time, gfp))
1588 goto err;
1589#endif
1590 return 0;
1591err:
1592 cfqg_stats_exit(stats);
1593 return -ENOMEM;
1594}
1595
1596static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1597{
1598 struct cfq_group_data *cgd;
1599
1600 cgd = kzalloc(sizeof(*cgd), GFP_KERNEL);
1601 if (!cgd)
1602 return NULL;
1603 return &cgd->cpd;
1604}
1605
1606static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1607{
1608 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1609
1610 if (cpd_to_blkcg(cpd) == &blkcg_root) {
1611 cgd->weight = 2 * CFQ_WEIGHT_DEFAULT;
1612 cgd->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
1613 } else {
1614 cgd->weight = CFQ_WEIGHT_DEFAULT;
1615 cgd->leaf_weight = CFQ_WEIGHT_DEFAULT;
1616 }
1617}
1618
1619static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1620{
1621 kfree(cpd_to_cfqgd(cpd));
1622}
1623
1624static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1625{
1626 struct cfq_group *cfqg;
1627
1628 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1629 if (!cfqg)
1630 return NULL;
1631
1632 cfq_init_cfqg_base(cfqg);
1633 if (cfqg_stats_init(&cfqg->stats, gfp)) {
1634 kfree(cfqg);
1635 return NULL;
1636 }
1637
1638 return &cfqg->pd;
1639}
1640
1641static void cfq_pd_init(struct blkg_policy_data *pd)
1642{
1643 struct cfq_group *cfqg = pd_to_cfqg(pd);
1644 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1645
1646 cfqg->weight = cgd->weight;
1647 cfqg->leaf_weight = cgd->leaf_weight;
1648}
1649
1650static void cfq_pd_offline(struct blkg_policy_data *pd)
1651{
1652 struct cfq_group *cfqg = pd_to_cfqg(pd);
1653 int i;
1654
1655 for (i = 0; i < IOPRIO_BE_NR; i++) {
1656 if (cfqg->async_cfqq[0][i])
1657 cfq_put_queue(cfqg->async_cfqq[0][i]);
1658 if (cfqg->async_cfqq[1][i])
1659 cfq_put_queue(cfqg->async_cfqq[1][i]);
1660 }
1661
1662 if (cfqg->async_idle_cfqq)
1663 cfq_put_queue(cfqg->async_idle_cfqq);
1664
1665 /*
1666 * @blkg is going offline and will be ignored by
1667 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1668 * that they don't get lost. If IOs complete after this point, the
1669 * stats for them will be lost. Oh well...
1670 */
1671 cfqg_stats_xfer_dead(cfqg);
1672}
1673
1674static void cfq_pd_free(struct blkg_policy_data *pd)
1675{
1676 struct cfq_group *cfqg = pd_to_cfqg(pd);
1677
1678 cfqg_stats_exit(&cfqg->stats);
1679 return kfree(cfqg);
1680}
1681
1682static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1683{
1684 struct cfq_group *cfqg = pd_to_cfqg(pd);
1685
1686 cfqg_stats_reset(&cfqg->stats);
1687}
1688
1689static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1690 struct blkcg *blkcg)
1691{
1692 struct blkcg_gq *blkg;
1693
1694 blkg = blkg_lookup(blkcg, cfqd->queue);
1695 if (likely(blkg))
1696 return blkg_to_cfqg(blkg);
1697 return NULL;
1698}
1699
1700static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1701{
1702 cfqq->cfqg = cfqg;
1703 /* cfqq reference on cfqg */
1704 cfqg_get(cfqg);
1705}
1706
1707static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1708 struct blkg_policy_data *pd, int off)
1709{
1710 struct cfq_group *cfqg = pd_to_cfqg(pd);
1711
1712 if (!cfqg->dev_weight)
1713 return 0;
1714 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1715}
1716
1717static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1718{
1719 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1720 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1721 0, false);
1722 return 0;
1723}
1724
1725static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1726 struct blkg_policy_data *pd, int off)
1727{
1728 struct cfq_group *cfqg = pd_to_cfqg(pd);
1729
1730 if (!cfqg->dev_leaf_weight)
1731 return 0;
1732 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1733}
1734
1735static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1736{
1737 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1738 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1739 0, false);
1740 return 0;
1741}
1742
1743static int cfq_print_weight(struct seq_file *sf, void *v)
1744{
1745 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1746 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1747 unsigned int val = 0;
1748
1749 if (cgd)
1750 val = cgd->weight;
1751
1752 seq_printf(sf, "%u\n", val);
1753 return 0;
1754}
1755
1756static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1757{
1758 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1759 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1760 unsigned int val = 0;
1761
1762 if (cgd)
1763 val = cgd->leaf_weight;
1764
1765 seq_printf(sf, "%u\n", val);
1766 return 0;
1767}
1768
1769static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1770 char *buf, size_t nbytes, loff_t off,
1771 bool is_leaf_weight)
1772{
1773 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1774 struct blkg_conf_ctx ctx;
1775 struct cfq_group *cfqg;
1776 struct cfq_group_data *cfqgd;
1777 int ret;
1778
1779 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1780 if (ret)
1781 return ret;
1782
1783 ret = -EINVAL;
1784 cfqg = blkg_to_cfqg(ctx.blkg);
1785 cfqgd = blkcg_to_cfqgd(blkcg);
1786 if (!cfqg || !cfqgd)
1787 goto err;
1788
1789 if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1790 if (!is_leaf_weight) {
1791 cfqg->dev_weight = ctx.v;
1792 cfqg->new_weight = ctx.v ?: cfqgd->weight;
1793 } else {
1794 cfqg->dev_leaf_weight = ctx.v;
1795 cfqg->new_leaf_weight = ctx.v ?: cfqgd->leaf_weight;
1796 }
1797 ret = 0;
1798 }
1799
1800err:
1801 blkg_conf_finish(&ctx);
1802 return ret ?: nbytes;
1803}
1804
1805static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1806 char *buf, size_t nbytes, loff_t off)
1807{
1808 return __cfqg_set_weight_device(of, buf, nbytes, off, false);
1809}
1810
1811static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1812 char *buf, size_t nbytes, loff_t off)
1813{
1814 return __cfqg_set_weight_device(of, buf, nbytes, off, true);
1815}
1816
1817static int __cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1818 u64 val, bool is_leaf_weight)
1819{
1820 struct blkcg *blkcg = css_to_blkcg(css);
1821 struct blkcg_gq *blkg;
1822 struct cfq_group_data *cfqgd;
1823 int ret = 0;
1824
1825 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1826 return -EINVAL;
1827
1828 spin_lock_irq(&blkcg->lock);
1829 cfqgd = blkcg_to_cfqgd(blkcg);
1830 if (!cfqgd) {
1831 ret = -EINVAL;
1832 goto out;
1833 }
1834
1835 if (!is_leaf_weight)
1836 cfqgd->weight = val;
1837 else
1838 cfqgd->leaf_weight = val;
1839
1840 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1841 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1842
1843 if (!cfqg)
1844 continue;
1845
1846 if (!is_leaf_weight) {
1847 if (!cfqg->dev_weight)
1848 cfqg->new_weight = cfqgd->weight;
1849 } else {
1850 if (!cfqg->dev_leaf_weight)
1851 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1852 }
1853 }
1854
1855out:
1856 spin_unlock_irq(&blkcg->lock);
1857 return ret;
1858}
1859
1860static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1861 u64 val)
1862{
1863 return __cfq_set_weight(css, cft, val, false);
1864}
1865
1866static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1867 struct cftype *cft, u64 val)
1868{
1869 return __cfq_set_weight(css, cft, val, true);
1870}
1871
1872static int cfqg_print_stat(struct seq_file *sf, void *v)
1873{
1874 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1875 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1876 return 0;
1877}
1878
1879static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1880{
1881 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1882 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1883 return 0;
1884}
1885
1886static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1887 struct blkg_policy_data *pd, int off)
1888{
1889 u64 sum = blkg_stat_recursive_sum(pd, off);
1890
1891 return __blkg_prfill_u64(sf, pd, sum);
1892}
1893
1894static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1895 struct blkg_policy_data *pd, int off)
1896{
1897 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd, off);
1898
1899 return __blkg_prfill_rwstat(sf, pd, &sum);
1900}
1901
1902static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1903{
1904 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1905 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1906 seq_cft(sf)->private, false);
1907 return 0;
1908}
1909
1910static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1911{
1912 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1913 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1914 seq_cft(sf)->private, true);
1915 return 0;
1916}
1917
1918#ifdef CONFIG_DEBUG_BLK_CGROUP
1919static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1920 struct blkg_policy_data *pd, int off)
1921{
1922 struct cfq_group *cfqg = pd_to_cfqg(pd);
1923 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1924 u64 v = 0;
1925
1926 if (samples) {
1927 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1928 v = div64_u64(v, samples);
1929 }
1930 __blkg_prfill_u64(sf, pd, v);
1931 return 0;
1932}
1933
1934/* print avg_queue_size */
1935static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1936{
1937 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1938 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1939 0, false);
1940 return 0;
1941}
1942#endif /* CONFIG_DEBUG_BLK_CGROUP */
1943
1944static struct cftype cfq_blkcg_files[] = {
1945 /* on root, weight is mapped to leaf_weight */
1946 {
1947 .name = "weight_device",
1948 .flags = CFTYPE_ONLY_ON_ROOT,
1949 .seq_show = cfqg_print_leaf_weight_device,
1950 .write = cfqg_set_leaf_weight_device,
1951 },
1952 {
1953 .name = "weight",
1954 .flags = CFTYPE_ONLY_ON_ROOT,
1955 .seq_show = cfq_print_leaf_weight,
1956 .write_u64 = cfq_set_leaf_weight,
1957 },
1958
1959 /* no such mapping necessary for !roots */
1960 {
1961 .name = "weight_device",
1962 .flags = CFTYPE_NOT_ON_ROOT,
1963 .seq_show = cfqg_print_weight_device,
1964 .write = cfqg_set_weight_device,
1965 },
1966 {
1967 .name = "weight",
1968 .flags = CFTYPE_NOT_ON_ROOT,
1969 .seq_show = cfq_print_weight,
1970 .write_u64 = cfq_set_weight,
1971 },
1972
1973 {
1974 .name = "leaf_weight_device",
1975 .seq_show = cfqg_print_leaf_weight_device,
1976 .write = cfqg_set_leaf_weight_device,
1977 },
1978 {
1979 .name = "leaf_weight",
1980 .seq_show = cfq_print_leaf_weight,
1981 .write_u64 = cfq_set_leaf_weight,
1982 },
1983
1984 /* statistics, covers only the tasks in the cfqg */
1985 {
1986 .name = "time",
1987 .private = offsetof(struct cfq_group, stats.time),
1988 .seq_show = cfqg_print_stat,
1989 },
1990 {
1991 .name = "sectors",
1992 .private = offsetof(struct cfq_group, stats.sectors),
1993 .seq_show = cfqg_print_stat,
1994 },
1995 {
1996 .name = "io_service_bytes",
1997 .private = offsetof(struct cfq_group, stats.service_bytes),
1998 .seq_show = cfqg_print_rwstat,
1999 },
2000 {
2001 .name = "io_serviced",
2002 .private = offsetof(struct cfq_group, stats.serviced),
2003 .seq_show = cfqg_print_rwstat,
2004 },
2005 {
2006 .name = "io_service_time",
2007 .private = offsetof(struct cfq_group, stats.service_time),
2008 .seq_show = cfqg_print_rwstat,
2009 },
2010 {
2011 .name = "io_wait_time",
2012 .private = offsetof(struct cfq_group, stats.wait_time),
2013 .seq_show = cfqg_print_rwstat,
2014 },
2015 {
2016 .name = "io_merged",
2017 .private = offsetof(struct cfq_group, stats.merged),
2018 .seq_show = cfqg_print_rwstat,
2019 },
2020 {
2021 .name = "io_queued",
2022 .private = offsetof(struct cfq_group, stats.queued),
2023 .seq_show = cfqg_print_rwstat,
2024 },
2025
2026 /* the same statictics which cover the cfqg and its descendants */
2027 {
2028 .name = "time_recursive",
2029 .private = offsetof(struct cfq_group, stats.time),
2030 .seq_show = cfqg_print_stat_recursive,
2031 },
2032 {
2033 .name = "sectors_recursive",
2034 .private = offsetof(struct cfq_group, stats.sectors),
2035 .seq_show = cfqg_print_stat_recursive,
2036 },
2037 {
2038 .name = "io_service_bytes_recursive",
2039 .private = offsetof(struct cfq_group, stats.service_bytes),
2040 .seq_show = cfqg_print_rwstat_recursive,
2041 },
2042 {
2043 .name = "io_serviced_recursive",
2044 .private = offsetof(struct cfq_group, stats.serviced),
2045 .seq_show = cfqg_print_rwstat_recursive,
2046 },
2047 {
2048 .name = "io_service_time_recursive",
2049 .private = offsetof(struct cfq_group, stats.service_time),
2050 .seq_show = cfqg_print_rwstat_recursive,
2051 },
2052 {
2053 .name = "io_wait_time_recursive",
2054 .private = offsetof(struct cfq_group, stats.wait_time),
2055 .seq_show = cfqg_print_rwstat_recursive,
2056 },
2057 {
2058 .name = "io_merged_recursive",
2059 .private = offsetof(struct cfq_group, stats.merged),
2060 .seq_show = cfqg_print_rwstat_recursive,
2061 },
2062 {
2063 .name = "io_queued_recursive",
2064 .private = offsetof(struct cfq_group, stats.queued),
2065 .seq_show = cfqg_print_rwstat_recursive,
2066 },
2067#ifdef CONFIG_DEBUG_BLK_CGROUP
2068 {
2069 .name = "avg_queue_size",
2070 .seq_show = cfqg_print_avg_queue_size,
2071 },
2072 {
2073 .name = "group_wait_time",
2074 .private = offsetof(struct cfq_group, stats.group_wait_time),
2075 .seq_show = cfqg_print_stat,
2076 },
2077 {
2078 .name = "idle_time",
2079 .private = offsetof(struct cfq_group, stats.idle_time),
2080 .seq_show = cfqg_print_stat,
2081 },
2082 {
2083 .name = "empty_time",
2084 .private = offsetof(struct cfq_group, stats.empty_time),
2085 .seq_show = cfqg_print_stat,
2086 },
2087 {
2088 .name = "dequeue",
2089 .private = offsetof(struct cfq_group, stats.dequeue),
2090 .seq_show = cfqg_print_stat,
2091 },
2092 {
2093 .name = "unaccounted_time",
2094 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2095 .seq_show = cfqg_print_stat,
2096 },
2097#endif /* CONFIG_DEBUG_BLK_CGROUP */
2098 { } /* terminate */
2099};
2100#else /* GROUP_IOSCHED */
2101static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2102 struct blkcg *blkcg)
2103{
2104 return cfqd->root_group;
2105}
2106
2107static inline void
2108cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2109 cfqq->cfqg = cfqg;
2110}
2111
2112#endif /* GROUP_IOSCHED */
2113
2114/*
2115 * The cfqd->service_trees holds all pending cfq_queue's that have
2116 * requests waiting to be processed. It is sorted in the order that
2117 * we will service the queues.
2118 */
2119static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2120 bool add_front)
2121{
2122 struct rb_node **p, *parent;
2123 struct cfq_queue *__cfqq;
2124 unsigned long rb_key;
2125 struct cfq_rb_root *st;
2126 int left;
2127 int new_cfqq = 1;
2128
2129 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2130 if (cfq_class_idle(cfqq)) {
2131 rb_key = CFQ_IDLE_DELAY;
2132 parent = rb_last(&st->rb);
2133 if (parent && parent != &cfqq->rb_node) {
2134 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2135 rb_key += __cfqq->rb_key;
2136 } else
2137 rb_key += jiffies;
2138 } else if (!add_front) {
2139 /*
2140 * Get our rb key offset. Subtract any residual slice
2141 * value carried from last service. A negative resid
2142 * count indicates slice overrun, and this should position
2143 * the next service time further away in the tree.
2144 */
2145 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2146 rb_key -= cfqq->slice_resid;
2147 cfqq->slice_resid = 0;
2148 } else {
2149 rb_key = -HZ;
2150 __cfqq = cfq_rb_first(st);
2151 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2152 }
2153
2154 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2155 new_cfqq = 0;
2156 /*
2157 * same position, nothing more to do
2158 */
2159 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2160 return;
2161
2162 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2163 cfqq->service_tree = NULL;
2164 }
2165
2166 left = 1;
2167 parent = NULL;
2168 cfqq->service_tree = st;
2169 p = &st->rb.rb_node;
2170 while (*p) {
2171 parent = *p;
2172 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2173
2174 /*
2175 * sort by key, that represents service time.
2176 */
2177 if (time_before(rb_key, __cfqq->rb_key))
2178 p = &parent->rb_left;
2179 else {
2180 p = &parent->rb_right;
2181 left = 0;
2182 }
2183 }
2184
2185 if (left)
2186 st->left = &cfqq->rb_node;
2187
2188 cfqq->rb_key = rb_key;
2189 rb_link_node(&cfqq->rb_node, parent, p);
2190 rb_insert_color(&cfqq->rb_node, &st->rb);
2191 st->count++;
2192 if (add_front || !new_cfqq)
2193 return;
2194 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2195}
2196
2197static struct cfq_queue *
2198cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2199 sector_t sector, struct rb_node **ret_parent,
2200 struct rb_node ***rb_link)
2201{
2202 struct rb_node **p, *parent;
2203 struct cfq_queue *cfqq = NULL;
2204
2205 parent = NULL;
2206 p = &root->rb_node;
2207 while (*p) {
2208 struct rb_node **n;
2209
2210 parent = *p;
2211 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2212
2213 /*
2214 * Sort strictly based on sector. Smallest to the left,
2215 * largest to the right.
2216 */
2217 if (sector > blk_rq_pos(cfqq->next_rq))
2218 n = &(*p)->rb_right;
2219 else if (sector < blk_rq_pos(cfqq->next_rq))
2220 n = &(*p)->rb_left;
2221 else
2222 break;
2223 p = n;
2224 cfqq = NULL;
2225 }
2226
2227 *ret_parent = parent;
2228 if (rb_link)
2229 *rb_link = p;
2230 return cfqq;
2231}
2232
2233static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2234{
2235 struct rb_node **p, *parent;
2236 struct cfq_queue *__cfqq;
2237
2238 if (cfqq->p_root) {
2239 rb_erase(&cfqq->p_node, cfqq->p_root);
2240 cfqq->p_root = NULL;
2241 }
2242
2243 if (cfq_class_idle(cfqq))
2244 return;
2245 if (!cfqq->next_rq)
2246 return;
2247
2248 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2249 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2250 blk_rq_pos(cfqq->next_rq), &parent, &p);
2251 if (!__cfqq) {
2252 rb_link_node(&cfqq->p_node, parent, p);
2253 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2254 } else
2255 cfqq->p_root = NULL;
2256}
2257
2258/*
2259 * Update cfqq's position in the service tree.
2260 */
2261static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2262{
2263 /*
2264 * Resorting requires the cfqq to be on the RR list already.
2265 */
2266 if (cfq_cfqq_on_rr(cfqq)) {
2267 cfq_service_tree_add(cfqd, cfqq, 0);
2268 cfq_prio_tree_add(cfqd, cfqq);
2269 }
2270}
2271
2272/*
2273 * add to busy list of queues for service, trying to be fair in ordering
2274 * the pending list according to last request service
2275 */
2276static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2277{
2278 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2279 BUG_ON(cfq_cfqq_on_rr(cfqq));
2280 cfq_mark_cfqq_on_rr(cfqq);
2281 cfqd->busy_queues++;
2282 if (cfq_cfqq_sync(cfqq))
2283 cfqd->busy_sync_queues++;
2284
2285 cfq_resort_rr_list(cfqd, cfqq);
2286}
2287
2288/*
2289 * Called when the cfqq no longer has requests pending, remove it from
2290 * the service tree.
2291 */
2292static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2293{
2294 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2295 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2296 cfq_clear_cfqq_on_rr(cfqq);
2297
2298 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2299 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2300 cfqq->service_tree = NULL;
2301 }
2302 if (cfqq->p_root) {
2303 rb_erase(&cfqq->p_node, cfqq->p_root);
2304 cfqq->p_root = NULL;
2305 }
2306
2307 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2308 BUG_ON(!cfqd->busy_queues);
2309 cfqd->busy_queues--;
2310 if (cfq_cfqq_sync(cfqq))
2311 cfqd->busy_sync_queues--;
2312}
2313
2314/*
2315 * rb tree support functions
2316 */
2317static void cfq_del_rq_rb(struct request *rq)
2318{
2319 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2320 const int sync = rq_is_sync(rq);
2321
2322 BUG_ON(!cfqq->queued[sync]);
2323 cfqq->queued[sync]--;
2324
2325 elv_rb_del(&cfqq->sort_list, rq);
2326
2327 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2328 /*
2329 * Queue will be deleted from service tree when we actually
2330 * expire it later. Right now just remove it from prio tree
2331 * as it is empty.
2332 */
2333 if (cfqq->p_root) {
2334 rb_erase(&cfqq->p_node, cfqq->p_root);
2335 cfqq->p_root = NULL;
2336 }
2337 }
2338}
2339
2340static void cfq_add_rq_rb(struct request *rq)
2341{
2342 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2343 struct cfq_data *cfqd = cfqq->cfqd;
2344 struct request *prev;
2345
2346 cfqq->queued[rq_is_sync(rq)]++;
2347
2348 elv_rb_add(&cfqq->sort_list, rq);
2349
2350 if (!cfq_cfqq_on_rr(cfqq))
2351 cfq_add_cfqq_rr(cfqd, cfqq);
2352
2353 /*
2354 * check if this request is a better next-serve candidate
2355 */
2356 prev = cfqq->next_rq;
2357 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2358
2359 /*
2360 * adjust priority tree position, if ->next_rq changes
2361 */
2362 if (prev != cfqq->next_rq)
2363 cfq_prio_tree_add(cfqd, cfqq);
2364
2365 BUG_ON(!cfqq->next_rq);
2366}
2367
2368static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2369{
2370 elv_rb_del(&cfqq->sort_list, rq);
2371 cfqq->queued[rq_is_sync(rq)]--;
2372 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2373 cfq_add_rq_rb(rq);
2374 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2375 rq->cmd_flags);
2376}
2377
2378static struct request *
2379cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2380{
2381 struct task_struct *tsk = current;
2382 struct cfq_io_cq *cic;
2383 struct cfq_queue *cfqq;
2384
2385 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2386 if (!cic)
2387 return NULL;
2388
2389 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2390 if (cfqq)
2391 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2392
2393 return NULL;
2394}
2395
2396static void cfq_activate_request(struct request_queue *q, struct request *rq)
2397{
2398 struct cfq_data *cfqd = q->elevator->elevator_data;
2399
2400 cfqd->rq_in_driver++;
2401 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2402 cfqd->rq_in_driver);
2403
2404 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2405}
2406
2407static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2408{
2409 struct cfq_data *cfqd = q->elevator->elevator_data;
2410
2411 WARN_ON(!cfqd->rq_in_driver);
2412 cfqd->rq_in_driver--;
2413 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2414 cfqd->rq_in_driver);
2415}
2416
2417static void cfq_remove_request(struct request *rq)
2418{
2419 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2420
2421 if (cfqq->next_rq == rq)
2422 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2423
2424 list_del_init(&rq->queuelist);
2425 cfq_del_rq_rb(rq);
2426
2427 cfqq->cfqd->rq_queued--;
2428 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2429 if (rq->cmd_flags & REQ_PRIO) {
2430 WARN_ON(!cfqq->prio_pending);
2431 cfqq->prio_pending--;
2432 }
2433}
2434
2435static int cfq_merge(struct request_queue *q, struct request **req,
2436 struct bio *bio)
2437{
2438 struct cfq_data *cfqd = q->elevator->elevator_data;
2439 struct request *__rq;
2440
2441 __rq = cfq_find_rq_fmerge(cfqd, bio);
2442 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2443 *req = __rq;
2444 return ELEVATOR_FRONT_MERGE;
2445 }
2446
2447 return ELEVATOR_NO_MERGE;
2448}
2449
2450static void cfq_merged_request(struct request_queue *q, struct request *req,
2451 int type)
2452{
2453 if (type == ELEVATOR_FRONT_MERGE) {
2454 struct cfq_queue *cfqq = RQ_CFQQ(req);
2455
2456 cfq_reposition_rq_rb(cfqq, req);
2457 }
2458}
2459
2460static void cfq_bio_merged(struct request_queue *q, struct request *req,
2461 struct bio *bio)
2462{
2463 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2464}
2465
2466static void
2467cfq_merged_requests(struct request_queue *q, struct request *rq,
2468 struct request *next)
2469{
2470 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2471 struct cfq_data *cfqd = q->elevator->elevator_data;
2472
2473 /*
2474 * reposition in fifo if next is older than rq
2475 */
2476 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2477 time_before(next->fifo_time, rq->fifo_time) &&
2478 cfqq == RQ_CFQQ(next)) {
2479 list_move(&rq->queuelist, &next->queuelist);
2480 rq->fifo_time = next->fifo_time;
2481 }
2482
2483 if (cfqq->next_rq == next)
2484 cfqq->next_rq = rq;
2485 cfq_remove_request(next);
2486 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2487
2488 cfqq = RQ_CFQQ(next);
2489 /*
2490 * all requests of this queue are merged to other queues, delete it
2491 * from the service tree. If it's the active_queue,
2492 * cfq_dispatch_requests() will choose to expire it or do idle
2493 */
2494 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2495 cfqq != cfqd->active_queue)
2496 cfq_del_cfqq_rr(cfqd, cfqq);
2497}
2498
2499static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2500 struct bio *bio)
2501{
2502 struct cfq_data *cfqd = q->elevator->elevator_data;
2503 struct cfq_io_cq *cic;
2504 struct cfq_queue *cfqq;
2505
2506 /*
2507 * Disallow merge of a sync bio into an async request.
2508 */
2509 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2510 return false;
2511
2512 /*
2513 * Lookup the cfqq that this bio will be queued with and allow
2514 * merge only if rq is queued there.
2515 */
2516 cic = cfq_cic_lookup(cfqd, current->io_context);
2517 if (!cic)
2518 return false;
2519
2520 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2521 return cfqq == RQ_CFQQ(rq);
2522}
2523
2524static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2525{
2526 del_timer(&cfqd->idle_slice_timer);
2527 cfqg_stats_update_idle_time(cfqq->cfqg);
2528}
2529
2530static void __cfq_set_active_queue(struct cfq_data *cfqd,
2531 struct cfq_queue *cfqq)
2532{
2533 if (cfqq) {
2534 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2535 cfqd->serving_wl_class, cfqd->serving_wl_type);
2536 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2537 cfqq->slice_start = 0;
2538 cfqq->dispatch_start = jiffies;
2539 cfqq->allocated_slice = 0;
2540 cfqq->slice_end = 0;
2541 cfqq->slice_dispatch = 0;
2542 cfqq->nr_sectors = 0;
2543
2544 cfq_clear_cfqq_wait_request(cfqq);
2545 cfq_clear_cfqq_must_dispatch(cfqq);
2546 cfq_clear_cfqq_must_alloc_slice(cfqq);
2547 cfq_clear_cfqq_fifo_expire(cfqq);
2548 cfq_mark_cfqq_slice_new(cfqq);
2549
2550 cfq_del_timer(cfqd, cfqq);
2551 }
2552
2553 cfqd->active_queue = cfqq;
2554}
2555
2556/*
2557 * current cfqq expired its slice (or was too idle), select new one
2558 */
2559static void
2560__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2561 bool timed_out)
2562{
2563 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2564
2565 if (cfq_cfqq_wait_request(cfqq))
2566 cfq_del_timer(cfqd, cfqq);
2567
2568 cfq_clear_cfqq_wait_request(cfqq);
2569 cfq_clear_cfqq_wait_busy(cfqq);
2570
2571 /*
2572 * If this cfqq is shared between multiple processes, check to
2573 * make sure that those processes are still issuing I/Os within
2574 * the mean seek distance. If not, it may be time to break the
2575 * queues apart again.
2576 */
2577 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2578 cfq_mark_cfqq_split_coop(cfqq);
2579
2580 /*
2581 * store what was left of this slice, if the queue idled/timed out
2582 */
2583 if (timed_out) {
2584 if (cfq_cfqq_slice_new(cfqq))
2585 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2586 else
2587 cfqq->slice_resid = cfqq->slice_end - jiffies;
2588 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2589 }
2590
2591 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2592
2593 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2594 cfq_del_cfqq_rr(cfqd, cfqq);
2595
2596 cfq_resort_rr_list(cfqd, cfqq);
2597
2598 if (cfqq == cfqd->active_queue)
2599 cfqd->active_queue = NULL;
2600
2601 if (cfqd->active_cic) {
2602 put_io_context(cfqd->active_cic->icq.ioc);
2603 cfqd->active_cic = NULL;
2604 }
2605}
2606
2607static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2608{
2609 struct cfq_queue *cfqq = cfqd->active_queue;
2610
2611 if (cfqq)
2612 __cfq_slice_expired(cfqd, cfqq, timed_out);
2613}
2614
2615/*
2616 * Get next queue for service. Unless we have a queue preemption,
2617 * we'll simply select the first cfqq in the service tree.
2618 */
2619static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2620{
2621 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2622 cfqd->serving_wl_class, cfqd->serving_wl_type);
2623
2624 if (!cfqd->rq_queued)
2625 return NULL;
2626
2627 /* There is nothing to dispatch */
2628 if (!st)
2629 return NULL;
2630 if (RB_EMPTY_ROOT(&st->rb))
2631 return NULL;
2632 return cfq_rb_first(st);
2633}
2634
2635static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2636{
2637 struct cfq_group *cfqg;
2638 struct cfq_queue *cfqq;
2639 int i, j;
2640 struct cfq_rb_root *st;
2641
2642 if (!cfqd->rq_queued)
2643 return NULL;
2644
2645 cfqg = cfq_get_next_cfqg(cfqd);
2646 if (!cfqg)
2647 return NULL;
2648
2649 for_each_cfqg_st(cfqg, i, j, st)
2650 if ((cfqq = cfq_rb_first(st)) != NULL)
2651 return cfqq;
2652 return NULL;
2653}
2654
2655/*
2656 * Get and set a new active queue for service.
2657 */
2658static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2659 struct cfq_queue *cfqq)
2660{
2661 if (!cfqq)
2662 cfqq = cfq_get_next_queue(cfqd);
2663
2664 __cfq_set_active_queue(cfqd, cfqq);
2665 return cfqq;
2666}
2667
2668static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2669 struct request *rq)
2670{
2671 if (blk_rq_pos(rq) >= cfqd->last_position)
2672 return blk_rq_pos(rq) - cfqd->last_position;
2673 else
2674 return cfqd->last_position - blk_rq_pos(rq);
2675}
2676
2677static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2678 struct request *rq)
2679{
2680 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2681}
2682
2683static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2684 struct cfq_queue *cur_cfqq)
2685{
2686 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2687 struct rb_node *parent, *node;
2688 struct cfq_queue *__cfqq;
2689 sector_t sector = cfqd->last_position;
2690
2691 if (RB_EMPTY_ROOT(root))
2692 return NULL;
2693
2694 /*
2695 * First, if we find a request starting at the end of the last
2696 * request, choose it.
2697 */
2698 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2699 if (__cfqq)
2700 return __cfqq;
2701
2702 /*
2703 * If the exact sector wasn't found, the parent of the NULL leaf
2704 * will contain the closest sector.
2705 */
2706 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2707 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2708 return __cfqq;
2709
2710 if (blk_rq_pos(__cfqq->next_rq) < sector)
2711 node = rb_next(&__cfqq->p_node);
2712 else
2713 node = rb_prev(&__cfqq->p_node);
2714 if (!node)
2715 return NULL;
2716
2717 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2718 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2719 return __cfqq;
2720
2721 return NULL;
2722}
2723
2724/*
2725 * cfqd - obvious
2726 * cur_cfqq - passed in so that we don't decide that the current queue is
2727 * closely cooperating with itself.
2728 *
2729 * So, basically we're assuming that that cur_cfqq has dispatched at least
2730 * one request, and that cfqd->last_position reflects a position on the disk
2731 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2732 * assumption.
2733 */
2734static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2735 struct cfq_queue *cur_cfqq)
2736{
2737 struct cfq_queue *cfqq;
2738
2739 if (cfq_class_idle(cur_cfqq))
2740 return NULL;
2741 if (!cfq_cfqq_sync(cur_cfqq))
2742 return NULL;
2743 if (CFQQ_SEEKY(cur_cfqq))
2744 return NULL;
2745
2746 /*
2747 * Don't search priority tree if it's the only queue in the group.
2748 */
2749 if (cur_cfqq->cfqg->nr_cfqq == 1)
2750 return NULL;
2751
2752 /*
2753 * We should notice if some of the queues are cooperating, eg
2754 * working closely on the same area of the disk. In that case,
2755 * we can group them together and don't waste time idling.
2756 */
2757 cfqq = cfqq_close(cfqd, cur_cfqq);
2758 if (!cfqq)
2759 return NULL;
2760
2761 /* If new queue belongs to different cfq_group, don't choose it */
2762 if (cur_cfqq->cfqg != cfqq->cfqg)
2763 return NULL;
2764
2765 /*
2766 * It only makes sense to merge sync queues.
2767 */
2768 if (!cfq_cfqq_sync(cfqq))
2769 return NULL;
2770 if (CFQQ_SEEKY(cfqq))
2771 return NULL;
2772
2773 /*
2774 * Do not merge queues of different priority classes
2775 */
2776 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2777 return NULL;
2778
2779 return cfqq;
2780}
2781
2782/*
2783 * Determine whether we should enforce idle window for this queue.
2784 */
2785
2786static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2787{
2788 enum wl_class_t wl_class = cfqq_class(cfqq);
2789 struct cfq_rb_root *st = cfqq->service_tree;
2790
2791 BUG_ON(!st);
2792 BUG_ON(!st->count);
2793
2794 if (!cfqd->cfq_slice_idle)
2795 return false;
2796
2797 /* We never do for idle class queues. */
2798 if (wl_class == IDLE_WORKLOAD)
2799 return false;
2800
2801 /* We do for queues that were marked with idle window flag. */
2802 if (cfq_cfqq_idle_window(cfqq) &&
2803 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2804 return true;
2805
2806 /*
2807 * Otherwise, we do only if they are the last ones
2808 * in their service tree.
2809 */
2810 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2811 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2812 return true;
2813 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2814 return false;
2815}
2816
2817static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2818{
2819 struct cfq_queue *cfqq = cfqd->active_queue;
2820 struct cfq_io_cq *cic;
2821 unsigned long sl, group_idle = 0;
2822
2823 /*
2824 * SSD device without seek penalty, disable idling. But only do so
2825 * for devices that support queuing, otherwise we still have a problem
2826 * with sync vs async workloads.
2827 */
2828 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2829 return;
2830
2831 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2832 WARN_ON(cfq_cfqq_slice_new(cfqq));
2833
2834 /*
2835 * idle is disabled, either manually or by past process history
2836 */
2837 if (!cfq_should_idle(cfqd, cfqq)) {
2838 /* no queue idling. Check for group idling */
2839 if (cfqd->cfq_group_idle)
2840 group_idle = cfqd->cfq_group_idle;
2841 else
2842 return;
2843 }
2844
2845 /*
2846 * still active requests from this queue, don't idle
2847 */
2848 if (cfqq->dispatched)
2849 return;
2850
2851 /*
2852 * task has exited, don't wait
2853 */
2854 cic = cfqd->active_cic;
2855 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2856 return;
2857
2858 /*
2859 * If our average think time is larger than the remaining time
2860 * slice, then don't idle. This avoids overrunning the allotted
2861 * time slice.
2862 */
2863 if (sample_valid(cic->ttime.ttime_samples) &&
2864 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2865 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2866 cic->ttime.ttime_mean);
2867 return;
2868 }
2869
2870 /* There are other queues in the group, don't do group idle */
2871 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2872 return;
2873
2874 cfq_mark_cfqq_wait_request(cfqq);
2875
2876 if (group_idle)
2877 sl = cfqd->cfq_group_idle;
2878 else
2879 sl = cfqd->cfq_slice_idle;
2880
2881 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2882 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2883 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2884 group_idle ? 1 : 0);
2885}
2886
2887/*
2888 * Move request from internal lists to the request queue dispatch list.
2889 */
2890static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2891{
2892 struct cfq_data *cfqd = q->elevator->elevator_data;
2893 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2894
2895 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2896
2897 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2898 cfq_remove_request(rq);
2899 cfqq->dispatched++;
2900 (RQ_CFQG(rq))->dispatched++;
2901 elv_dispatch_sort(q, rq);
2902
2903 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2904 cfqq->nr_sectors += blk_rq_sectors(rq);
2905 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2906}
2907
2908/*
2909 * return expired entry, or NULL to just start from scratch in rbtree
2910 */
2911static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2912{
2913 struct request *rq = NULL;
2914
2915 if (cfq_cfqq_fifo_expire(cfqq))
2916 return NULL;
2917
2918 cfq_mark_cfqq_fifo_expire(cfqq);
2919
2920 if (list_empty(&cfqq->fifo))
2921 return NULL;
2922
2923 rq = rq_entry_fifo(cfqq->fifo.next);
2924 if (time_before(jiffies, rq->fifo_time))
2925 rq = NULL;
2926
2927 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2928 return rq;
2929}
2930
2931static inline int
2932cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2933{
2934 const int base_rq = cfqd->cfq_slice_async_rq;
2935
2936 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2937
2938 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2939}
2940
2941/*
2942 * Must be called with the queue_lock held.
2943 */
2944static int cfqq_process_refs(struct cfq_queue *cfqq)
2945{
2946 int process_refs, io_refs;
2947
2948 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2949 process_refs = cfqq->ref - io_refs;
2950 BUG_ON(process_refs < 0);
2951 return process_refs;
2952}
2953
2954static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2955{
2956 int process_refs, new_process_refs;
2957 struct cfq_queue *__cfqq;
2958
2959 /*
2960 * If there are no process references on the new_cfqq, then it is
2961 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2962 * chain may have dropped their last reference (not just their
2963 * last process reference).
2964 */
2965 if (!cfqq_process_refs(new_cfqq))
2966 return;
2967
2968 /* Avoid a circular list and skip interim queue merges */
2969 while ((__cfqq = new_cfqq->new_cfqq)) {
2970 if (__cfqq == cfqq)
2971 return;
2972 new_cfqq = __cfqq;
2973 }
2974
2975 process_refs = cfqq_process_refs(cfqq);
2976 new_process_refs = cfqq_process_refs(new_cfqq);
2977 /*
2978 * If the process for the cfqq has gone away, there is no
2979 * sense in merging the queues.
2980 */
2981 if (process_refs == 0 || new_process_refs == 0)
2982 return;
2983
2984 /*
2985 * Merge in the direction of the lesser amount of work.
2986 */
2987 if (new_process_refs >= process_refs) {
2988 cfqq->new_cfqq = new_cfqq;
2989 new_cfqq->ref += process_refs;
2990 } else {
2991 new_cfqq->new_cfqq = cfqq;
2992 cfqq->ref += new_process_refs;
2993 }
2994}
2995
2996static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2997 struct cfq_group *cfqg, enum wl_class_t wl_class)
2998{
2999 struct cfq_queue *queue;
3000 int i;
3001 bool key_valid = false;
3002 unsigned long lowest_key = 0;
3003 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3004
3005 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3006 /* select the one with lowest rb_key */
3007 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3008 if (queue &&
3009 (!key_valid || time_before(queue->rb_key, lowest_key))) {
3010 lowest_key = queue->rb_key;
3011 cur_best = i;
3012 key_valid = true;
3013 }
3014 }
3015
3016 return cur_best;
3017}
3018
3019static void
3020choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3021{
3022 unsigned slice;
3023 unsigned count;
3024 struct cfq_rb_root *st;
3025 unsigned group_slice;
3026 enum wl_class_t original_class = cfqd->serving_wl_class;
3027
3028 /* Choose next priority. RT > BE > IDLE */
3029 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3030 cfqd->serving_wl_class = RT_WORKLOAD;
3031 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3032 cfqd->serving_wl_class = BE_WORKLOAD;
3033 else {
3034 cfqd->serving_wl_class = IDLE_WORKLOAD;
3035 cfqd->workload_expires = jiffies + 1;
3036 return;
3037 }
3038
3039 if (original_class != cfqd->serving_wl_class)
3040 goto new_workload;
3041
3042 /*
3043 * For RT and BE, we have to choose also the type
3044 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3045 * expiration time
3046 */
3047 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3048 count = st->count;
3049
3050 /*
3051 * check workload expiration, and that we still have other queues ready
3052 */
3053 if (count && !time_after(jiffies, cfqd->workload_expires))
3054 return;
3055
3056new_workload:
3057 /* otherwise select new workload type */
3058 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3059 cfqd->serving_wl_class);
3060 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3061 count = st->count;
3062
3063 /*
3064 * the workload slice is computed as a fraction of target latency
3065 * proportional to the number of queues in that workload, over
3066 * all the queues in the same priority class
3067 */
3068 group_slice = cfq_group_slice(cfqd, cfqg);
3069
3070 slice = group_slice * count /
3071 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3072 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3073 cfqg));
3074
3075 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3076 unsigned int tmp;
3077
3078 /*
3079 * Async queues are currently system wide. Just taking
3080 * proportion of queues with-in same group will lead to higher
3081 * async ratio system wide as generally root group is going
3082 * to have higher weight. A more accurate thing would be to
3083 * calculate system wide asnc/sync ratio.
3084 */
3085 tmp = cfqd->cfq_target_latency *
3086 cfqg_busy_async_queues(cfqd, cfqg);
3087 tmp = tmp/cfqd->busy_queues;
3088 slice = min_t(unsigned, slice, tmp);
3089
3090 /* async workload slice is scaled down according to
3091 * the sync/async slice ratio. */
3092 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
3093 } else
3094 /* sync workload slice is at least 2 * cfq_slice_idle */
3095 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3096
3097 slice = max_t(unsigned, slice, CFQ_MIN_TT);
3098 cfq_log(cfqd, "workload slice:%d", slice);
3099 cfqd->workload_expires = jiffies + slice;
3100}
3101
3102static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3103{
3104 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3105 struct cfq_group *cfqg;
3106
3107 if (RB_EMPTY_ROOT(&st->rb))
3108 return NULL;
3109 cfqg = cfq_rb_first_group(st);
3110 update_min_vdisktime(st);
3111 return cfqg;
3112}
3113
3114static void cfq_choose_cfqg(struct cfq_data *cfqd)
3115{
3116 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3117
3118 cfqd->serving_group = cfqg;
3119
3120 /* Restore the workload type data */
3121 if (cfqg->saved_wl_slice) {
3122 cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3123 cfqd->serving_wl_type = cfqg->saved_wl_type;
3124 cfqd->serving_wl_class = cfqg->saved_wl_class;
3125 } else
3126 cfqd->workload_expires = jiffies - 1;
3127
3128 choose_wl_class_and_type(cfqd, cfqg);
3129}
3130
3131/*
3132 * Select a queue for service. If we have a current active queue,
3133 * check whether to continue servicing it, or retrieve and set a new one.
3134 */
3135static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3136{
3137 struct cfq_queue *cfqq, *new_cfqq = NULL;
3138
3139 cfqq = cfqd->active_queue;
3140 if (!cfqq)
3141 goto new_queue;
3142
3143 if (!cfqd->rq_queued)
3144 return NULL;
3145
3146 /*
3147 * We were waiting for group to get backlogged. Expire the queue
3148 */
3149 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3150 goto expire;
3151
3152 /*
3153 * The active queue has run out of time, expire it and select new.
3154 */
3155 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3156 /*
3157 * If slice had not expired at the completion of last request
3158 * we might not have turned on wait_busy flag. Don't expire
3159 * the queue yet. Allow the group to get backlogged.
3160 *
3161 * The very fact that we have used the slice, that means we
3162 * have been idling all along on this queue and it should be
3163 * ok to wait for this request to complete.
3164 */
3165 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3166 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3167 cfqq = NULL;
3168 goto keep_queue;
3169 } else
3170 goto check_group_idle;
3171 }
3172
3173 /*
3174 * The active queue has requests and isn't expired, allow it to
3175 * dispatch.
3176 */
3177 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3178 goto keep_queue;
3179
3180 /*
3181 * If another queue has a request waiting within our mean seek
3182 * distance, let it run. The expire code will check for close
3183 * cooperators and put the close queue at the front of the service
3184 * tree. If possible, merge the expiring queue with the new cfqq.
3185 */
3186 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3187 if (new_cfqq) {
3188 if (!cfqq->new_cfqq)
3189 cfq_setup_merge(cfqq, new_cfqq);
3190 goto expire;
3191 }
3192
3193 /*
3194 * No requests pending. If the active queue still has requests in
3195 * flight or is idling for a new request, allow either of these
3196 * conditions to happen (or time out) before selecting a new queue.
3197 */
3198 if (timer_pending(&cfqd->idle_slice_timer)) {
3199 cfqq = NULL;
3200 goto keep_queue;
3201 }
3202
3203 /*
3204 * This is a deep seek queue, but the device is much faster than
3205 * the queue can deliver, don't idle
3206 **/
3207 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3208 (cfq_cfqq_slice_new(cfqq) ||
3209 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3210 cfq_clear_cfqq_deep(cfqq);
3211 cfq_clear_cfqq_idle_window(cfqq);
3212 }
3213
3214 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3215 cfqq = NULL;
3216 goto keep_queue;
3217 }
3218
3219 /*
3220 * If group idle is enabled and there are requests dispatched from
3221 * this group, wait for requests to complete.
3222 */
3223check_group_idle:
3224 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3225 cfqq->cfqg->dispatched &&
3226 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3227 cfqq = NULL;
3228 goto keep_queue;
3229 }
3230
3231expire:
3232 cfq_slice_expired(cfqd, 0);
3233new_queue:
3234 /*
3235 * Current queue expired. Check if we have to switch to a new
3236 * service tree
3237 */
3238 if (!new_cfqq)
3239 cfq_choose_cfqg(cfqd);
3240
3241 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3242keep_queue:
3243 return cfqq;
3244}
3245
3246static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3247{
3248 int dispatched = 0;
3249
3250 while (cfqq->next_rq) {
3251 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3252 dispatched++;
3253 }
3254
3255 BUG_ON(!list_empty(&cfqq->fifo));
3256
3257 /* By default cfqq is not expired if it is empty. Do it explicitly */
3258 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3259 return dispatched;
3260}
3261
3262/*
3263 * Drain our current requests. Used for barriers and when switching
3264 * io schedulers on-the-fly.
3265 */
3266static int cfq_forced_dispatch(struct cfq_data *cfqd)
3267{
3268 struct cfq_queue *cfqq;
3269 int dispatched = 0;
3270
3271 /* Expire the timeslice of the current active queue first */
3272 cfq_slice_expired(cfqd, 0);
3273 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3274 __cfq_set_active_queue(cfqd, cfqq);
3275 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3276 }
3277
3278 BUG_ON(cfqd->busy_queues);
3279
3280 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3281 return dispatched;
3282}
3283
3284static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3285 struct cfq_queue *cfqq)
3286{
3287 /* the queue hasn't finished any request, can't estimate */
3288 if (cfq_cfqq_slice_new(cfqq))
3289 return true;
3290 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3291 cfqq->slice_end))
3292 return true;
3293
3294 return false;
3295}
3296
3297static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3298{
3299 unsigned int max_dispatch;
3300
3301 /*
3302 * Drain async requests before we start sync IO
3303 */
3304 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3305 return false;
3306
3307 /*
3308 * If this is an async queue and we have sync IO in flight, let it wait
3309 */
3310 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3311 return false;
3312
3313 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3314 if (cfq_class_idle(cfqq))
3315 max_dispatch = 1;
3316
3317 /*
3318 * Does this cfqq already have too much IO in flight?
3319 */
3320 if (cfqq->dispatched >= max_dispatch) {
3321 bool promote_sync = false;
3322 /*
3323 * idle queue must always only have a single IO in flight
3324 */
3325 if (cfq_class_idle(cfqq))
3326 return false;
3327
3328 /*
3329 * If there is only one sync queue
3330 * we can ignore async queue here and give the sync
3331 * queue no dispatch limit. The reason is a sync queue can
3332 * preempt async queue, limiting the sync queue doesn't make
3333 * sense. This is useful for aiostress test.
3334 */
3335 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3336 promote_sync = true;
3337
3338 /*
3339 * We have other queues, don't allow more IO from this one
3340 */
3341 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3342 !promote_sync)
3343 return false;
3344
3345 /*
3346 * Sole queue user, no limit
3347 */
3348 if (cfqd->busy_queues == 1 || promote_sync)
3349 max_dispatch = -1;
3350 else
3351 /*
3352 * Normally we start throttling cfqq when cfq_quantum/2
3353 * requests have been dispatched. But we can drive
3354 * deeper queue depths at the beginning of slice
3355 * subjected to upper limit of cfq_quantum.
3356 * */
3357 max_dispatch = cfqd->cfq_quantum;
3358 }
3359
3360 /*
3361 * Async queues must wait a bit before being allowed dispatch.
3362 * We also ramp up the dispatch depth gradually for async IO,
3363 * based on the last sync IO we serviced
3364 */
3365 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3366 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3367 unsigned int depth;
3368
3369 depth = last_sync / cfqd->cfq_slice[1];
3370 if (!depth && !cfqq->dispatched)
3371 depth = 1;
3372 if (depth < max_dispatch)
3373 max_dispatch = depth;
3374 }
3375
3376 /*
3377 * If we're below the current max, allow a dispatch
3378 */
3379 return cfqq->dispatched < max_dispatch;
3380}
3381
3382/*
3383 * Dispatch a request from cfqq, moving them to the request queue
3384 * dispatch list.
3385 */
3386static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3387{
3388 struct request *rq;
3389
3390 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3391
3392 if (!cfq_may_dispatch(cfqd, cfqq))
3393 return false;
3394
3395 /*
3396 * follow expired path, else get first next available
3397 */
3398 rq = cfq_check_fifo(cfqq);
3399 if (!rq)
3400 rq = cfqq->next_rq;
3401
3402 /*
3403 * insert request into driver dispatch list
3404 */
3405 cfq_dispatch_insert(cfqd->queue, rq);
3406
3407 if (!cfqd->active_cic) {
3408 struct cfq_io_cq *cic = RQ_CIC(rq);
3409
3410 atomic_long_inc(&cic->icq.ioc->refcount);
3411 cfqd->active_cic = cic;
3412 }
3413
3414 return true;
3415}
3416
3417/*
3418 * Find the cfqq that we need to service and move a request from that to the
3419 * dispatch list
3420 */
3421static int cfq_dispatch_requests(struct request_queue *q, int force)
3422{
3423 struct cfq_data *cfqd = q->elevator->elevator_data;
3424 struct cfq_queue *cfqq;
3425
3426 if (!cfqd->busy_queues)
3427 return 0;
3428
3429 if (unlikely(force))
3430 return cfq_forced_dispatch(cfqd);
3431
3432 cfqq = cfq_select_queue(cfqd);
3433 if (!cfqq)
3434 return 0;
3435
3436 /*
3437 * Dispatch a request from this cfqq, if it is allowed
3438 */
3439 if (!cfq_dispatch_request(cfqd, cfqq))
3440 return 0;
3441
3442 cfqq->slice_dispatch++;
3443 cfq_clear_cfqq_must_dispatch(cfqq);
3444
3445 /*
3446 * expire an async queue immediately if it has used up its slice. idle
3447 * queue always expire after 1 dispatch round.
3448 */
3449 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3450 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3451 cfq_class_idle(cfqq))) {
3452 cfqq->slice_end = jiffies + 1;
3453 cfq_slice_expired(cfqd, 0);
3454 }
3455
3456 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3457 return 1;
3458}
3459
3460/*
3461 * task holds one reference to the queue, dropped when task exits. each rq
3462 * in-flight on this queue also holds a reference, dropped when rq is freed.
3463 *
3464 * Each cfq queue took a reference on the parent group. Drop it now.
3465 * queue lock must be held here.
3466 */
3467static void cfq_put_queue(struct cfq_queue *cfqq)
3468{
3469 struct cfq_data *cfqd = cfqq->cfqd;
3470 struct cfq_group *cfqg;
3471
3472 BUG_ON(cfqq->ref <= 0);
3473
3474 cfqq->ref--;
3475 if (cfqq->ref)
3476 return;
3477
3478 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3479 BUG_ON(rb_first(&cfqq->sort_list));
3480 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3481 cfqg = cfqq->cfqg;
3482
3483 if (unlikely(cfqd->active_queue == cfqq)) {
3484 __cfq_slice_expired(cfqd, cfqq, 0);
3485 cfq_schedule_dispatch(cfqd);
3486 }
3487
3488 BUG_ON(cfq_cfqq_on_rr(cfqq));
3489 kmem_cache_free(cfq_pool, cfqq);
3490 cfqg_put(cfqg);
3491}
3492
3493static void cfq_put_cooperator(struct cfq_queue *cfqq)
3494{
3495 struct cfq_queue *__cfqq, *next;
3496
3497 /*
3498 * If this queue was scheduled to merge with another queue, be
3499 * sure to drop the reference taken on that queue (and others in
3500 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3501 */
3502 __cfqq = cfqq->new_cfqq;
3503 while (__cfqq) {
3504 if (__cfqq == cfqq) {
3505 WARN(1, "cfqq->new_cfqq loop detected\n");
3506 break;
3507 }
3508 next = __cfqq->new_cfqq;
3509 cfq_put_queue(__cfqq);
3510 __cfqq = next;
3511 }
3512}
3513
3514static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3515{
3516 if (unlikely(cfqq == cfqd->active_queue)) {
3517 __cfq_slice_expired(cfqd, cfqq, 0);
3518 cfq_schedule_dispatch(cfqd);
3519 }
3520
3521 cfq_put_cooperator(cfqq);
3522
3523 cfq_put_queue(cfqq);
3524}
3525
3526static void cfq_init_icq(struct io_cq *icq)
3527{
3528 struct cfq_io_cq *cic = icq_to_cic(icq);
3529
3530 cic->ttime.last_end_request = jiffies;
3531}
3532
3533static void cfq_exit_icq(struct io_cq *icq)
3534{
3535 struct cfq_io_cq *cic = icq_to_cic(icq);
3536 struct cfq_data *cfqd = cic_to_cfqd(cic);
3537
3538 if (cic_to_cfqq(cic, false)) {
3539 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3540 cic_set_cfqq(cic, NULL, false);
3541 }
3542
3543 if (cic_to_cfqq(cic, true)) {
3544 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3545 cic_set_cfqq(cic, NULL, true);
3546 }
3547}
3548
3549static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3550{
3551 struct task_struct *tsk = current;
3552 int ioprio_class;
3553
3554 if (!cfq_cfqq_prio_changed(cfqq))
3555 return;
3556
3557 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3558 switch (ioprio_class) {
3559 default:
3560 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3561 case IOPRIO_CLASS_NONE:
3562 /*
3563 * no prio set, inherit CPU scheduling settings
3564 */
3565 cfqq->ioprio = task_nice_ioprio(tsk);
3566 cfqq->ioprio_class = task_nice_ioclass(tsk);
3567 break;
3568 case IOPRIO_CLASS_RT:
3569 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3570 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3571 break;
3572 case IOPRIO_CLASS_BE:
3573 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3574 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3575 break;
3576 case IOPRIO_CLASS_IDLE:
3577 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3578 cfqq->ioprio = 7;
3579 cfq_clear_cfqq_idle_window(cfqq);
3580 break;
3581 }
3582
3583 /*
3584 * keep track of original prio settings in case we have to temporarily
3585 * elevate the priority of this queue
3586 */
3587 cfqq->org_ioprio = cfqq->ioprio;
3588 cfq_clear_cfqq_prio_changed(cfqq);
3589}
3590
3591static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3592{
3593 int ioprio = cic->icq.ioc->ioprio;
3594 struct cfq_data *cfqd = cic_to_cfqd(cic);
3595 struct cfq_queue *cfqq;
3596
3597 /*
3598 * Check whether ioprio has changed. The condition may trigger
3599 * spuriously on a newly created cic but there's no harm.
3600 */
3601 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3602 return;
3603
3604 cfqq = cic_to_cfqq(cic, false);
3605 if (cfqq) {
3606 cfq_put_queue(cfqq);
3607 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3608 cic_set_cfqq(cic, cfqq, false);
3609 }
3610
3611 cfqq = cic_to_cfqq(cic, true);
3612 if (cfqq)
3613 cfq_mark_cfqq_prio_changed(cfqq);
3614
3615 cic->ioprio = ioprio;
3616}
3617
3618static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3619 pid_t pid, bool is_sync)
3620{
3621 RB_CLEAR_NODE(&cfqq->rb_node);
3622 RB_CLEAR_NODE(&cfqq->p_node);
3623 INIT_LIST_HEAD(&cfqq->fifo);
3624
3625 cfqq->ref = 0;
3626 cfqq->cfqd = cfqd;
3627
3628 cfq_mark_cfqq_prio_changed(cfqq);
3629
3630 if (is_sync) {
3631 if (!cfq_class_idle(cfqq))
3632 cfq_mark_cfqq_idle_window(cfqq);
3633 cfq_mark_cfqq_sync(cfqq);
3634 }
3635 cfqq->pid = pid;
3636}
3637
3638#ifdef CONFIG_CFQ_GROUP_IOSCHED
3639static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3640{
3641 struct cfq_data *cfqd = cic_to_cfqd(cic);
3642 struct cfq_queue *cfqq;
3643 uint64_t serial_nr;
3644
3645 rcu_read_lock();
3646 serial_nr = bio_blkcg(bio)->css.serial_nr;
3647 rcu_read_unlock();
3648
3649 /*
3650 * Check whether blkcg has changed. The condition may trigger
3651 * spuriously on a newly created cic but there's no harm.
3652 */
3653 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3654 return;
3655
3656 /*
3657 * Drop reference to queues. New queues will be assigned in new
3658 * group upon arrival of fresh requests.
3659 */
3660 cfqq = cic_to_cfqq(cic, false);
3661 if (cfqq) {
3662 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3663 cic_set_cfqq(cic, NULL, false);
3664 cfq_put_queue(cfqq);
3665 }
3666
3667 cfqq = cic_to_cfqq(cic, true);
3668 if (cfqq) {
3669 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3670 cic_set_cfqq(cic, NULL, true);
3671 cfq_put_queue(cfqq);
3672 }
3673
3674 cic->blkcg_serial_nr = serial_nr;
3675}
3676#else
3677static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3678#endif /* CONFIG_CFQ_GROUP_IOSCHED */
3679
3680static struct cfq_queue **
3681cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3682{
3683 switch (ioprio_class) {
3684 case IOPRIO_CLASS_RT:
3685 return &cfqg->async_cfqq[0][ioprio];
3686 case IOPRIO_CLASS_NONE:
3687 ioprio = IOPRIO_NORM;
3688 /* fall through */
3689 case IOPRIO_CLASS_BE:
3690 return &cfqg->async_cfqq[1][ioprio];
3691 case IOPRIO_CLASS_IDLE:
3692 return &cfqg->async_idle_cfqq;
3693 default:
3694 BUG();
3695 }
3696}
3697
3698static struct cfq_queue *
3699cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3700 struct bio *bio)
3701{
3702 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3703 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3704 struct cfq_queue **async_cfqq = NULL;
3705 struct cfq_queue *cfqq;
3706 struct cfq_group *cfqg;
3707
3708 rcu_read_lock();
3709 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3710 if (!cfqg) {
3711 cfqq = &cfqd->oom_cfqq;
3712 goto out;
3713 }
3714
3715 if (!is_sync) {
3716 if (!ioprio_valid(cic->ioprio)) {
3717 struct task_struct *tsk = current;
3718 ioprio = task_nice_ioprio(tsk);
3719 ioprio_class = task_nice_ioclass(tsk);
3720 }
3721 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3722 cfqq = *async_cfqq;
3723 if (cfqq)
3724 goto out;
3725 }
3726
3727 cfqq = kmem_cache_alloc_node(cfq_pool, GFP_NOWAIT | __GFP_ZERO,
3728 cfqd->queue->node);
3729 if (!cfqq) {
3730 cfqq = &cfqd->oom_cfqq;
3731 goto out;
3732 }
3733
3734 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3735 cfq_init_prio_data(cfqq, cic);
3736 cfq_link_cfqq_cfqg(cfqq, cfqg);
3737 cfq_log_cfqq(cfqd, cfqq, "alloced");
3738
3739 if (async_cfqq) {
3740 /* a new async queue is created, pin and remember */
3741 cfqq->ref++;
3742 *async_cfqq = cfqq;
3743 }
3744out:
3745 cfqq->ref++;
3746 rcu_read_unlock();
3747 return cfqq;
3748}
3749
3750static void
3751__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3752{
3753 unsigned long elapsed = jiffies - ttime->last_end_request;
3754 elapsed = min(elapsed, 2UL * slice_idle);
3755
3756 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3757 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3758 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3759}
3760
3761static void
3762cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3763 struct cfq_io_cq *cic)
3764{
3765 if (cfq_cfqq_sync(cfqq)) {
3766 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3767 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3768 cfqd->cfq_slice_idle);
3769 }
3770#ifdef CONFIG_CFQ_GROUP_IOSCHED
3771 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3772#endif
3773}
3774
3775static void
3776cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3777 struct request *rq)
3778{
3779 sector_t sdist = 0;
3780 sector_t n_sec = blk_rq_sectors(rq);
3781 if (cfqq->last_request_pos) {
3782 if (cfqq->last_request_pos < blk_rq_pos(rq))
3783 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3784 else
3785 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3786 }
3787
3788 cfqq->seek_history <<= 1;
3789 if (blk_queue_nonrot(cfqd->queue))
3790 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3791 else
3792 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3793}
3794
3795/*
3796 * Disable idle window if the process thinks too long or seeks so much that
3797 * it doesn't matter
3798 */
3799static void
3800cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3801 struct cfq_io_cq *cic)
3802{
3803 int old_idle, enable_idle;
3804
3805 /*
3806 * Don't idle for async or idle io prio class
3807 */
3808 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3809 return;
3810
3811 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3812
3813 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3814 cfq_mark_cfqq_deep(cfqq);
3815
3816 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3817 enable_idle = 0;
3818 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3819 !cfqd->cfq_slice_idle ||
3820 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3821 enable_idle = 0;
3822 else if (sample_valid(cic->ttime.ttime_samples)) {
3823 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3824 enable_idle = 0;
3825 else
3826 enable_idle = 1;
3827 }
3828
3829 if (old_idle != enable_idle) {
3830 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3831 if (enable_idle)
3832 cfq_mark_cfqq_idle_window(cfqq);
3833 else
3834 cfq_clear_cfqq_idle_window(cfqq);
3835 }
3836}
3837
3838/*
3839 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3840 * no or if we aren't sure, a 1 will cause a preempt.
3841 */
3842static bool
3843cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3844 struct request *rq)
3845{
3846 struct cfq_queue *cfqq;
3847
3848 cfqq = cfqd->active_queue;
3849 if (!cfqq)
3850 return false;
3851
3852 if (cfq_class_idle(new_cfqq))
3853 return false;
3854
3855 if (cfq_class_idle(cfqq))
3856 return true;
3857
3858 /*
3859 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3860 */
3861 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3862 return false;
3863
3864 /*
3865 * if the new request is sync, but the currently running queue is
3866 * not, let the sync request have priority.
3867 */
3868 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3869 return true;
3870
3871 if (new_cfqq->cfqg != cfqq->cfqg)
3872 return false;
3873
3874 if (cfq_slice_used(cfqq))
3875 return true;
3876
3877 /* Allow preemption only if we are idling on sync-noidle tree */
3878 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3879 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3880 new_cfqq->service_tree->count == 2 &&
3881 RB_EMPTY_ROOT(&cfqq->sort_list))
3882 return true;
3883
3884 /*
3885 * So both queues are sync. Let the new request get disk time if
3886 * it's a metadata request and the current queue is doing regular IO.
3887 */
3888 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3889 return true;
3890
3891 /*
3892 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3893 */
3894 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3895 return true;
3896
3897 /* An idle queue should not be idle now for some reason */
3898 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3899 return true;
3900
3901 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3902 return false;
3903
3904 /*
3905 * if this request is as-good as one we would expect from the
3906 * current cfqq, let it preempt
3907 */
3908 if (cfq_rq_close(cfqd, cfqq, rq))
3909 return true;
3910
3911 return false;
3912}
3913
3914/*
3915 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3916 * let it have half of its nominal slice.
3917 */
3918static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3919{
3920 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3921
3922 cfq_log_cfqq(cfqd, cfqq, "preempt");
3923 cfq_slice_expired(cfqd, 1);
3924
3925 /*
3926 * workload type is changed, don't save slice, otherwise preempt
3927 * doesn't happen
3928 */
3929 if (old_type != cfqq_type(cfqq))
3930 cfqq->cfqg->saved_wl_slice = 0;
3931
3932 /*
3933 * Put the new queue at the front of the of the current list,
3934 * so we know that it will be selected next.
3935 */
3936 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3937
3938 cfq_service_tree_add(cfqd, cfqq, 1);
3939
3940 cfqq->slice_end = 0;
3941 cfq_mark_cfqq_slice_new(cfqq);
3942}
3943
3944/*
3945 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3946 * something we should do about it
3947 */
3948static void
3949cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3950 struct request *rq)
3951{
3952 struct cfq_io_cq *cic = RQ_CIC(rq);
3953
3954 cfqd->rq_queued++;
3955 if (rq->cmd_flags & REQ_PRIO)
3956 cfqq->prio_pending++;
3957
3958 cfq_update_io_thinktime(cfqd, cfqq, cic);
3959 cfq_update_io_seektime(cfqd, cfqq, rq);
3960 cfq_update_idle_window(cfqd, cfqq, cic);
3961
3962 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3963
3964 if (cfqq == cfqd->active_queue) {
3965 /*
3966 * Remember that we saw a request from this process, but
3967 * don't start queuing just yet. Otherwise we risk seeing lots
3968 * of tiny requests, because we disrupt the normal plugging
3969 * and merging. If the request is already larger than a single
3970 * page, let it rip immediately. For that case we assume that
3971 * merging is already done. Ditto for a busy system that
3972 * has other work pending, don't risk delaying until the
3973 * idle timer unplug to continue working.
3974 */
3975 if (cfq_cfqq_wait_request(cfqq)) {
3976 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3977 cfqd->busy_queues > 1) {
3978 cfq_del_timer(cfqd, cfqq);
3979 cfq_clear_cfqq_wait_request(cfqq);
3980 __blk_run_queue(cfqd->queue);
3981 } else {
3982 cfqg_stats_update_idle_time(cfqq->cfqg);
3983 cfq_mark_cfqq_must_dispatch(cfqq);
3984 }
3985 }
3986 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3987 /*
3988 * not the active queue - expire current slice if it is
3989 * idle and has expired it's mean thinktime or this new queue
3990 * has some old slice time left and is of higher priority or
3991 * this new queue is RT and the current one is BE
3992 */
3993 cfq_preempt_queue(cfqd, cfqq);
3994 __blk_run_queue(cfqd->queue);
3995 }
3996}
3997
3998static void cfq_insert_request(struct request_queue *q, struct request *rq)
3999{
4000 struct cfq_data *cfqd = q->elevator->elevator_data;
4001 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4002
4003 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4004 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4005
4006 rq->fifo_time = jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4007 list_add_tail(&rq->queuelist, &cfqq->fifo);
4008 cfq_add_rq_rb(rq);
4009 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4010 rq->cmd_flags);
4011 cfq_rq_enqueued(cfqd, cfqq, rq);
4012}
4013
4014/*
4015 * Update hw_tag based on peak queue depth over 50 samples under
4016 * sufficient load.
4017 */
4018static void cfq_update_hw_tag(struct cfq_data *cfqd)
4019{
4020 struct cfq_queue *cfqq = cfqd->active_queue;
4021
4022 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4023 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4024
4025 if (cfqd->hw_tag == 1)
4026 return;
4027
4028 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4029 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4030 return;
4031
4032 /*
4033 * If active queue hasn't enough requests and can idle, cfq might not
4034 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4035 * case
4036 */
4037 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4038 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4039 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4040 return;
4041
4042 if (cfqd->hw_tag_samples++ < 50)
4043 return;
4044
4045 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4046 cfqd->hw_tag = 1;
4047 else
4048 cfqd->hw_tag = 0;
4049}
4050
4051static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4052{
4053 struct cfq_io_cq *cic = cfqd->active_cic;
4054
4055 /* If the queue already has requests, don't wait */
4056 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4057 return false;
4058
4059 /* If there are other queues in the group, don't wait */
4060 if (cfqq->cfqg->nr_cfqq > 1)
4061 return false;
4062
4063 /* the only queue in the group, but think time is big */
4064 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4065 return false;
4066
4067 if (cfq_slice_used(cfqq))
4068 return true;
4069
4070 /* if slice left is less than think time, wait busy */
4071 if (cic && sample_valid(cic->ttime.ttime_samples)
4072 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
4073 return true;
4074
4075 /*
4076 * If think times is less than a jiffy than ttime_mean=0 and above
4077 * will not be true. It might happen that slice has not expired yet
4078 * but will expire soon (4-5 ns) during select_queue(). To cover the
4079 * case where think time is less than a jiffy, mark the queue wait
4080 * busy if only 1 jiffy is left in the slice.
4081 */
4082 if (cfqq->slice_end - jiffies == 1)
4083 return true;
4084
4085 return false;
4086}
4087
4088static void cfq_completed_request(struct request_queue *q, struct request *rq)
4089{
4090 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4091 struct cfq_data *cfqd = cfqq->cfqd;
4092 const int sync = rq_is_sync(rq);
4093 unsigned long now;
4094
4095 now = jiffies;
4096 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4097 !!(rq->cmd_flags & REQ_NOIDLE));
4098
4099 cfq_update_hw_tag(cfqd);
4100
4101 WARN_ON(!cfqd->rq_in_driver);
4102 WARN_ON(!cfqq->dispatched);
4103 cfqd->rq_in_driver--;
4104 cfqq->dispatched--;
4105 (RQ_CFQG(rq))->dispatched--;
4106 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4107 rq_io_start_time_ns(rq), rq->cmd_flags);
4108
4109 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4110
4111 if (sync) {
4112 struct cfq_rb_root *st;
4113
4114 RQ_CIC(rq)->ttime.last_end_request = now;
4115
4116 if (cfq_cfqq_on_rr(cfqq))
4117 st = cfqq->service_tree;
4118 else
4119 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4120 cfqq_type(cfqq));
4121
4122 st->ttime.last_end_request = now;
4123 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4124 cfqd->last_delayed_sync = now;
4125 }
4126
4127#ifdef CONFIG_CFQ_GROUP_IOSCHED
4128 cfqq->cfqg->ttime.last_end_request = now;
4129#endif
4130
4131 /*
4132 * If this is the active queue, check if it needs to be expired,
4133 * or if we want to idle in case it has no pending requests.
4134 */
4135 if (cfqd->active_queue == cfqq) {
4136 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4137
4138 if (cfq_cfqq_slice_new(cfqq)) {
4139 cfq_set_prio_slice(cfqd, cfqq);
4140 cfq_clear_cfqq_slice_new(cfqq);
4141 }
4142
4143 /*
4144 * Should we wait for next request to come in before we expire
4145 * the queue.
4146 */
4147 if (cfq_should_wait_busy(cfqd, cfqq)) {
4148 unsigned long extend_sl = cfqd->cfq_slice_idle;
4149 if (!cfqd->cfq_slice_idle)
4150 extend_sl = cfqd->cfq_group_idle;
4151 cfqq->slice_end = jiffies + extend_sl;
4152 cfq_mark_cfqq_wait_busy(cfqq);
4153 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4154 }
4155
4156 /*
4157 * Idling is not enabled on:
4158 * - expired queues
4159 * - idle-priority queues
4160 * - async queues
4161 * - queues with still some requests queued
4162 * - when there is a close cooperator
4163 */
4164 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4165 cfq_slice_expired(cfqd, 1);
4166 else if (sync && cfqq_empty &&
4167 !cfq_close_cooperator(cfqd, cfqq)) {
4168 cfq_arm_slice_timer(cfqd);
4169 }
4170 }
4171
4172 if (!cfqd->rq_in_driver)
4173 cfq_schedule_dispatch(cfqd);
4174}
4175
4176static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4177{
4178 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4179 cfq_mark_cfqq_must_alloc_slice(cfqq);
4180 return ELV_MQUEUE_MUST;
4181 }
4182
4183 return ELV_MQUEUE_MAY;
4184}
4185
4186static int cfq_may_queue(struct request_queue *q, int rw)
4187{
4188 struct cfq_data *cfqd = q->elevator->elevator_data;
4189 struct task_struct *tsk = current;
4190 struct cfq_io_cq *cic;
4191 struct cfq_queue *cfqq;
4192
4193 /*
4194 * don't force setup of a queue from here, as a call to may_queue
4195 * does not necessarily imply that a request actually will be queued.
4196 * so just lookup a possibly existing queue, or return 'may queue'
4197 * if that fails
4198 */
4199 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4200 if (!cic)
4201 return ELV_MQUEUE_MAY;
4202
4203 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4204 if (cfqq) {
4205 cfq_init_prio_data(cfqq, cic);
4206
4207 return __cfq_may_queue(cfqq);
4208 }
4209
4210 return ELV_MQUEUE_MAY;
4211}
4212
4213/*
4214 * queue lock held here
4215 */
4216static void cfq_put_request(struct request *rq)
4217{
4218 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4219
4220 if (cfqq) {
4221 const int rw = rq_data_dir(rq);
4222
4223 BUG_ON(!cfqq->allocated[rw]);
4224 cfqq->allocated[rw]--;
4225
4226 /* Put down rq reference on cfqg */
4227 cfqg_put(RQ_CFQG(rq));
4228 rq->elv.priv[0] = NULL;
4229 rq->elv.priv[1] = NULL;
4230
4231 cfq_put_queue(cfqq);
4232 }
4233}
4234
4235static struct cfq_queue *
4236cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4237 struct cfq_queue *cfqq)
4238{
4239 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4240 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4241 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4242 cfq_put_queue(cfqq);
4243 return cic_to_cfqq(cic, 1);
4244}
4245
4246/*
4247 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4248 * was the last process referring to said cfqq.
4249 */
4250static struct cfq_queue *
4251split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4252{
4253 if (cfqq_process_refs(cfqq) == 1) {
4254 cfqq->pid = current->pid;
4255 cfq_clear_cfqq_coop(cfqq);
4256 cfq_clear_cfqq_split_coop(cfqq);
4257 return cfqq;
4258 }
4259
4260 cic_set_cfqq(cic, NULL, 1);
4261
4262 cfq_put_cooperator(cfqq);
4263
4264 cfq_put_queue(cfqq);
4265 return NULL;
4266}
4267/*
4268 * Allocate cfq data structures associated with this request.
4269 */
4270static int
4271cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4272 gfp_t gfp_mask)
4273{
4274 struct cfq_data *cfqd = q->elevator->elevator_data;
4275 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4276 const int rw = rq_data_dir(rq);
4277 const bool is_sync = rq_is_sync(rq);
4278 struct cfq_queue *cfqq;
4279
4280 spin_lock_irq(q->queue_lock);
4281
4282 check_ioprio_changed(cic, bio);
4283 check_blkcg_changed(cic, bio);
4284new_queue:
4285 cfqq = cic_to_cfqq(cic, is_sync);
4286 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4287 if (cfqq)
4288 cfq_put_queue(cfqq);
4289 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4290 cic_set_cfqq(cic, cfqq, is_sync);
4291 } else {
4292 /*
4293 * If the queue was seeky for too long, break it apart.
4294 */
4295 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4296 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4297 cfqq = split_cfqq(cic, cfqq);
4298 if (!cfqq)
4299 goto new_queue;
4300 }
4301
4302 /*
4303 * Check to see if this queue is scheduled to merge with
4304 * another, closely cooperating queue. The merging of
4305 * queues happens here as it must be done in process context.
4306 * The reference on new_cfqq was taken in merge_cfqqs.
4307 */
4308 if (cfqq->new_cfqq)
4309 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4310 }
4311
4312 cfqq->allocated[rw]++;
4313
4314 cfqq->ref++;
4315 cfqg_get(cfqq->cfqg);
4316 rq->elv.priv[0] = cfqq;
4317 rq->elv.priv[1] = cfqq->cfqg;
4318 spin_unlock_irq(q->queue_lock);
4319 return 0;
4320}
4321
4322static void cfq_kick_queue(struct work_struct *work)
4323{
4324 struct cfq_data *cfqd =
4325 container_of(work, struct cfq_data, unplug_work);
4326 struct request_queue *q = cfqd->queue;
4327
4328 spin_lock_irq(q->queue_lock);
4329 __blk_run_queue(cfqd->queue);
4330 spin_unlock_irq(q->queue_lock);
4331}
4332
4333/*
4334 * Timer running if the active_queue is currently idling inside its time slice
4335 */
4336static void cfq_idle_slice_timer(unsigned long data)
4337{
4338 struct cfq_data *cfqd = (struct cfq_data *) data;
4339 struct cfq_queue *cfqq;
4340 unsigned long flags;
4341 int timed_out = 1;
4342
4343 cfq_log(cfqd, "idle timer fired");
4344
4345 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4346
4347 cfqq = cfqd->active_queue;
4348 if (cfqq) {
4349 timed_out = 0;
4350
4351 /*
4352 * We saw a request before the queue expired, let it through
4353 */
4354 if (cfq_cfqq_must_dispatch(cfqq))
4355 goto out_kick;
4356
4357 /*
4358 * expired
4359 */
4360 if (cfq_slice_used(cfqq))
4361 goto expire;
4362
4363 /*
4364 * only expire and reinvoke request handler, if there are
4365 * other queues with pending requests
4366 */
4367 if (!cfqd->busy_queues)
4368 goto out_cont;
4369
4370 /*
4371 * not expired and it has a request pending, let it dispatch
4372 */
4373 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4374 goto out_kick;
4375
4376 /*
4377 * Queue depth flag is reset only when the idle didn't succeed
4378 */
4379 cfq_clear_cfqq_deep(cfqq);
4380 }
4381expire:
4382 cfq_slice_expired(cfqd, timed_out);
4383out_kick:
4384 cfq_schedule_dispatch(cfqd);
4385out_cont:
4386 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4387}
4388
4389static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4390{
4391 del_timer_sync(&cfqd->idle_slice_timer);
4392 cancel_work_sync(&cfqd->unplug_work);
4393}
4394
4395static void cfq_exit_queue(struct elevator_queue *e)
4396{
4397 struct cfq_data *cfqd = e->elevator_data;
4398 struct request_queue *q = cfqd->queue;
4399
4400 cfq_shutdown_timer_wq(cfqd);
4401
4402 spin_lock_irq(q->queue_lock);
4403
4404 if (cfqd->active_queue)
4405 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4406
4407 spin_unlock_irq(q->queue_lock);
4408
4409 cfq_shutdown_timer_wq(cfqd);
4410
4411#ifdef CONFIG_CFQ_GROUP_IOSCHED
4412 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4413#else
4414 kfree(cfqd->root_group);
4415#endif
4416 kfree(cfqd);
4417}
4418
4419static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4420{
4421 struct cfq_data *cfqd;
4422 struct blkcg_gq *blkg __maybe_unused;
4423 int i, ret;
4424 struct elevator_queue *eq;
4425
4426 eq = elevator_alloc(q, e);
4427 if (!eq)
4428 return -ENOMEM;
4429
4430 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4431 if (!cfqd) {
4432 kobject_put(&eq->kobj);
4433 return -ENOMEM;
4434 }
4435 eq->elevator_data = cfqd;
4436
4437 cfqd->queue = q;
4438 spin_lock_irq(q->queue_lock);
4439 q->elevator = eq;
4440 spin_unlock_irq(q->queue_lock);
4441
4442 /* Init root service tree */
4443 cfqd->grp_service_tree = CFQ_RB_ROOT;
4444
4445 /* Init root group and prefer root group over other groups by default */
4446#ifdef CONFIG_CFQ_GROUP_IOSCHED
4447 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4448 if (ret)
4449 goto out_free;
4450
4451 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4452#else
4453 ret = -ENOMEM;
4454 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4455 GFP_KERNEL, cfqd->queue->node);
4456 if (!cfqd->root_group)
4457 goto out_free;
4458
4459 cfq_init_cfqg_base(cfqd->root_group);
4460#endif
4461 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4462 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4463
4464 /*
4465 * Not strictly needed (since RB_ROOT just clears the node and we
4466 * zeroed cfqd on alloc), but better be safe in case someone decides
4467 * to add magic to the rb code
4468 */
4469 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4470 cfqd->prio_trees[i] = RB_ROOT;
4471
4472 /*
4473 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4474 * Grab a permanent reference to it, so that the normal code flow
4475 * will not attempt to free it. oom_cfqq is linked to root_group
4476 * but shouldn't hold a reference as it'll never be unlinked. Lose
4477 * the reference from linking right away.
4478 */
4479 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4480 cfqd->oom_cfqq.ref++;
4481
4482 spin_lock_irq(q->queue_lock);
4483 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4484 cfqg_put(cfqd->root_group);
4485 spin_unlock_irq(q->queue_lock);
4486
4487 init_timer(&cfqd->idle_slice_timer);
4488 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4489 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4490
4491 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4492
4493 cfqd->cfq_quantum = cfq_quantum;
4494 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4495 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4496 cfqd->cfq_back_max = cfq_back_max;
4497 cfqd->cfq_back_penalty = cfq_back_penalty;
4498 cfqd->cfq_slice[0] = cfq_slice_async;
4499 cfqd->cfq_slice[1] = cfq_slice_sync;
4500 cfqd->cfq_target_latency = cfq_target_latency;
4501 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4502 cfqd->cfq_slice_idle = cfq_slice_idle;
4503 cfqd->cfq_group_idle = cfq_group_idle;
4504 cfqd->cfq_latency = 1;
4505 cfqd->hw_tag = -1;
4506 /*
4507 * we optimistically start assuming sync ops weren't delayed in last
4508 * second, in order to have larger depth for async operations.
4509 */
4510 cfqd->last_delayed_sync = jiffies - HZ;
4511 return 0;
4512
4513out_free:
4514 kfree(cfqd);
4515 kobject_put(&eq->kobj);
4516 return ret;
4517}
4518
4519static void cfq_registered_queue(struct request_queue *q)
4520{
4521 struct elevator_queue *e = q->elevator;
4522 struct cfq_data *cfqd = e->elevator_data;
4523
4524 /*
4525 * Default to IOPS mode with no idling for SSDs
4526 */
4527 if (blk_queue_nonrot(q))
4528 cfqd->cfq_slice_idle = 0;
4529}
4530
4531/*
4532 * sysfs parts below -->
4533 */
4534static ssize_t
4535cfq_var_show(unsigned int var, char *page)
4536{
4537 return sprintf(page, "%u\n", var);
4538}
4539
4540static ssize_t
4541cfq_var_store(unsigned int *var, const char *page, size_t count)
4542{
4543 char *p = (char *) page;
4544
4545 *var = simple_strtoul(p, &p, 10);
4546 return count;
4547}
4548
4549#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4550static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4551{ \
4552 struct cfq_data *cfqd = e->elevator_data; \
4553 unsigned int __data = __VAR; \
4554 if (__CONV) \
4555 __data = jiffies_to_msecs(__data); \
4556 return cfq_var_show(__data, (page)); \
4557}
4558SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4559SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4560SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4561SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4562SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4563SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4564SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4565SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4566SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4567SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4568SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4569SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4570#undef SHOW_FUNCTION
4571
4572#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4573static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4574{ \
4575 struct cfq_data *cfqd = e->elevator_data; \
4576 unsigned int __data; \
4577 int ret = cfq_var_store(&__data, (page), count); \
4578 if (__data < (MIN)) \
4579 __data = (MIN); \
4580 else if (__data > (MAX)) \
4581 __data = (MAX); \
4582 if (__CONV) \
4583 *(__PTR) = msecs_to_jiffies(__data); \
4584 else \
4585 *(__PTR) = __data; \
4586 return ret; \
4587}
4588STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4589STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4590 UINT_MAX, 1);
4591STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4592 UINT_MAX, 1);
4593STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4594STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4595 UINT_MAX, 0);
4596STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4597STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4598STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4599STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4600STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4601 UINT_MAX, 0);
4602STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4603STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4604#undef STORE_FUNCTION
4605
4606#define CFQ_ATTR(name) \
4607 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4608
4609static struct elv_fs_entry cfq_attrs[] = {
4610 CFQ_ATTR(quantum),
4611 CFQ_ATTR(fifo_expire_sync),
4612 CFQ_ATTR(fifo_expire_async),
4613 CFQ_ATTR(back_seek_max),
4614 CFQ_ATTR(back_seek_penalty),
4615 CFQ_ATTR(slice_sync),
4616 CFQ_ATTR(slice_async),
4617 CFQ_ATTR(slice_async_rq),
4618 CFQ_ATTR(slice_idle),
4619 CFQ_ATTR(group_idle),
4620 CFQ_ATTR(low_latency),
4621 CFQ_ATTR(target_latency),
4622 __ATTR_NULL
4623};
4624
4625static struct elevator_type iosched_cfq = {
4626 .ops = {
4627 .elevator_merge_fn = cfq_merge,
4628 .elevator_merged_fn = cfq_merged_request,
4629 .elevator_merge_req_fn = cfq_merged_requests,
4630 .elevator_allow_merge_fn = cfq_allow_merge,
4631 .elevator_bio_merged_fn = cfq_bio_merged,
4632 .elevator_dispatch_fn = cfq_dispatch_requests,
4633 .elevator_add_req_fn = cfq_insert_request,
4634 .elevator_activate_req_fn = cfq_activate_request,
4635 .elevator_deactivate_req_fn = cfq_deactivate_request,
4636 .elevator_completed_req_fn = cfq_completed_request,
4637 .elevator_former_req_fn = elv_rb_former_request,
4638 .elevator_latter_req_fn = elv_rb_latter_request,
4639 .elevator_init_icq_fn = cfq_init_icq,
4640 .elevator_exit_icq_fn = cfq_exit_icq,
4641 .elevator_set_req_fn = cfq_set_request,
4642 .elevator_put_req_fn = cfq_put_request,
4643 .elevator_may_queue_fn = cfq_may_queue,
4644 .elevator_init_fn = cfq_init_queue,
4645 .elevator_exit_fn = cfq_exit_queue,
4646 .elevator_registered_fn = cfq_registered_queue,
4647 },
4648 .icq_size = sizeof(struct cfq_io_cq),
4649 .icq_align = __alignof__(struct cfq_io_cq),
4650 .elevator_attrs = cfq_attrs,
4651 .elevator_name = "cfq",
4652 .elevator_owner = THIS_MODULE,
4653};
4654
4655#ifdef CONFIG_CFQ_GROUP_IOSCHED
4656static struct blkcg_policy blkcg_policy_cfq = {
4657 .cftypes = cfq_blkcg_files,
4658
4659 .cpd_alloc_fn = cfq_cpd_alloc,
4660 .cpd_init_fn = cfq_cpd_init,
4661 .cpd_free_fn = cfq_cpd_free,
4662
4663 .pd_alloc_fn = cfq_pd_alloc,
4664 .pd_init_fn = cfq_pd_init,
4665 .pd_offline_fn = cfq_pd_offline,
4666 .pd_free_fn = cfq_pd_free,
4667 .pd_reset_stats_fn = cfq_pd_reset_stats,
4668};
4669#endif
4670
4671static int __init cfq_init(void)
4672{
4673 int ret;
4674
4675 /*
4676 * could be 0 on HZ < 1000 setups
4677 */
4678 if (!cfq_slice_async)
4679 cfq_slice_async = 1;
4680 if (!cfq_slice_idle)
4681 cfq_slice_idle = 1;
4682
4683#ifdef CONFIG_CFQ_GROUP_IOSCHED
4684 if (!cfq_group_idle)
4685 cfq_group_idle = 1;
4686
4687 ret = blkcg_policy_register(&blkcg_policy_cfq);
4688 if (ret)
4689 return ret;
4690#else
4691 cfq_group_idle = 0;
4692#endif
4693
4694 ret = -ENOMEM;
4695 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4696 if (!cfq_pool)
4697 goto err_pol_unreg;
4698
4699 ret = elv_register(&iosched_cfq);
4700 if (ret)
4701 goto err_free_pool;
4702
4703 return 0;
4704
4705err_free_pool:
4706 kmem_cache_destroy(cfq_pool);
4707err_pol_unreg:
4708#ifdef CONFIG_CFQ_GROUP_IOSCHED
4709 blkcg_policy_unregister(&blkcg_policy_cfq);
4710#endif
4711 return ret;
4712}
4713
4714static void __exit cfq_exit(void)
4715{
4716#ifdef CONFIG_CFQ_GROUP_IOSCHED
4717 blkcg_policy_unregister(&blkcg_policy_cfq);
4718#endif
4719 elv_unregister(&iosched_cfq);
4720 kmem_cache_destroy(cfq_pool);
4721}
4722
4723module_init(cfq_init);
4724module_exit(cfq_exit);
4725
4726MODULE_AUTHOR("Jens Axboe");
4727MODULE_LICENSE("GPL");
4728MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");