]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - block/cfq-iosched.c
blkcg: drop BLKCG_STAT_{PRIV|POL|OFF} macros
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
... / ...
CommitLineData
1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "blk.h"
18#include "blk-cgroup.h"
19
20static struct blkio_policy_type blkio_policy_cfq;
21
22/*
23 * tunables
24 */
25/* max queue in one round of service */
26static const int cfq_quantum = 8;
27static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
28/* maximum backwards seek, in KiB */
29static const int cfq_back_max = 16 * 1024;
30/* penalty of a backwards seek */
31static const int cfq_back_penalty = 2;
32static const int cfq_slice_sync = HZ / 10;
33static int cfq_slice_async = HZ / 25;
34static const int cfq_slice_async_rq = 2;
35static int cfq_slice_idle = HZ / 125;
36static int cfq_group_idle = HZ / 125;
37static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
38static const int cfq_hist_divisor = 4;
39
40/*
41 * offset from end of service tree
42 */
43#define CFQ_IDLE_DELAY (HZ / 5)
44
45/*
46 * below this threshold, we consider thinktime immediate
47 */
48#define CFQ_MIN_TT (2)
49
50#define CFQ_SLICE_SCALE (5)
51#define CFQ_HW_QUEUE_MIN (5)
52#define CFQ_SERVICE_SHIFT 12
53
54#define CFQQ_SEEK_THR (sector_t)(8 * 100)
55#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
56#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
57#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
58
59#define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
60#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
61#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
62
63static struct kmem_cache *cfq_pool;
64
65#define CFQ_PRIO_LISTS IOPRIO_BE_NR
66#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
69#define sample_valid(samples) ((samples) > 80)
70#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
71
72struct cfq_ttime {
73 unsigned long last_end_request;
74
75 unsigned long ttime_total;
76 unsigned long ttime_samples;
77 unsigned long ttime_mean;
78};
79
80/*
81 * Most of our rbtree usage is for sorting with min extraction, so
82 * if we cache the leftmost node we don't have to walk down the tree
83 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
84 * move this into the elevator for the rq sorting as well.
85 */
86struct cfq_rb_root {
87 struct rb_root rb;
88 struct rb_node *left;
89 unsigned count;
90 unsigned total_weight;
91 u64 min_vdisktime;
92 struct cfq_ttime ttime;
93};
94#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
95 .ttime = {.last_end_request = jiffies,},}
96
97/*
98 * Per process-grouping structure
99 */
100struct cfq_queue {
101 /* reference count */
102 int ref;
103 /* various state flags, see below */
104 unsigned int flags;
105 /* parent cfq_data */
106 struct cfq_data *cfqd;
107 /* service_tree member */
108 struct rb_node rb_node;
109 /* service_tree key */
110 unsigned long rb_key;
111 /* prio tree member */
112 struct rb_node p_node;
113 /* prio tree root we belong to, if any */
114 struct rb_root *p_root;
115 /* sorted list of pending requests */
116 struct rb_root sort_list;
117 /* if fifo isn't expired, next request to serve */
118 struct request *next_rq;
119 /* requests queued in sort_list */
120 int queued[2];
121 /* currently allocated requests */
122 int allocated[2];
123 /* fifo list of requests in sort_list */
124 struct list_head fifo;
125
126 /* time when queue got scheduled in to dispatch first request. */
127 unsigned long dispatch_start;
128 unsigned int allocated_slice;
129 unsigned int slice_dispatch;
130 /* time when first request from queue completed and slice started. */
131 unsigned long slice_start;
132 unsigned long slice_end;
133 long slice_resid;
134
135 /* pending priority requests */
136 int prio_pending;
137 /* number of requests that are on the dispatch list or inside driver */
138 int dispatched;
139
140 /* io prio of this group */
141 unsigned short ioprio, org_ioprio;
142 unsigned short ioprio_class;
143
144 pid_t pid;
145
146 u32 seek_history;
147 sector_t last_request_pos;
148
149 struct cfq_rb_root *service_tree;
150 struct cfq_queue *new_cfqq;
151 struct cfq_group *cfqg;
152 /* Number of sectors dispatched from queue in single dispatch round */
153 unsigned long nr_sectors;
154};
155
156/*
157 * First index in the service_trees.
158 * IDLE is handled separately, so it has negative index
159 */
160enum wl_prio_t {
161 BE_WORKLOAD = 0,
162 RT_WORKLOAD = 1,
163 IDLE_WORKLOAD = 2,
164 CFQ_PRIO_NR,
165};
166
167/*
168 * Second index in the service_trees.
169 */
170enum wl_type_t {
171 ASYNC_WORKLOAD = 0,
172 SYNC_NOIDLE_WORKLOAD = 1,
173 SYNC_WORKLOAD = 2
174};
175
176struct cfqg_stats {
177#ifdef CONFIG_CFQ_GROUP_IOSCHED
178 /* total bytes transferred */
179 struct blkg_rwstat service_bytes;
180 /* total IOs serviced, post merge */
181 struct blkg_rwstat serviced;
182 /* number of ios merged */
183 struct blkg_rwstat merged;
184 /* total time spent on device in ns, may not be accurate w/ queueing */
185 struct blkg_rwstat service_time;
186 /* total time spent waiting in scheduler queue in ns */
187 struct blkg_rwstat wait_time;
188 /* number of IOs queued up */
189 struct blkg_rwstat queued;
190 /* total sectors transferred */
191 struct blkg_stat sectors;
192 /* total disk time and nr sectors dispatched by this group */
193 struct blkg_stat time;
194#ifdef CONFIG_DEBUG_BLK_CGROUP
195 /* time not charged to this cgroup */
196 struct blkg_stat unaccounted_time;
197 /* sum of number of ios queued across all samples */
198 struct blkg_stat avg_queue_size_sum;
199 /* count of samples taken for average */
200 struct blkg_stat avg_queue_size_samples;
201 /* how many times this group has been removed from service tree */
202 struct blkg_stat dequeue;
203 /* total time spent waiting for it to be assigned a timeslice. */
204 struct blkg_stat group_wait_time;
205 /* time spent idling for this blkio_group */
206 struct blkg_stat idle_time;
207 /* total time with empty current active q with other requests queued */
208 struct blkg_stat empty_time;
209 /* fields after this shouldn't be cleared on stat reset */
210 uint64_t start_group_wait_time;
211 uint64_t start_idle_time;
212 uint64_t start_empty_time;
213 uint16_t flags;
214#endif /* CONFIG_DEBUG_BLK_CGROUP */
215#endif /* CONFIG_CFQ_GROUP_IOSCHED */
216};
217
218/* This is per cgroup per device grouping structure */
219struct cfq_group {
220 /* group service_tree member */
221 struct rb_node rb_node;
222
223 /* group service_tree key */
224 u64 vdisktime;
225 unsigned int weight;
226 unsigned int new_weight;
227 unsigned int dev_weight;
228
229 /* number of cfqq currently on this group */
230 int nr_cfqq;
231
232 /*
233 * Per group busy queues average. Useful for workload slice calc. We
234 * create the array for each prio class but at run time it is used
235 * only for RT and BE class and slot for IDLE class remains unused.
236 * This is primarily done to avoid confusion and a gcc warning.
237 */
238 unsigned int busy_queues_avg[CFQ_PRIO_NR];
239 /*
240 * rr lists of queues with requests. We maintain service trees for
241 * RT and BE classes. These trees are subdivided in subclasses
242 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
243 * class there is no subclassification and all the cfq queues go on
244 * a single tree service_tree_idle.
245 * Counts are embedded in the cfq_rb_root
246 */
247 struct cfq_rb_root service_trees[2][3];
248 struct cfq_rb_root service_tree_idle;
249
250 unsigned long saved_workload_slice;
251 enum wl_type_t saved_workload;
252 enum wl_prio_t saved_serving_prio;
253
254 /* number of requests that are on the dispatch list or inside driver */
255 int dispatched;
256 struct cfq_ttime ttime;
257 struct cfqg_stats stats;
258};
259
260struct cfq_io_cq {
261 struct io_cq icq; /* must be the first member */
262 struct cfq_queue *cfqq[2];
263 struct cfq_ttime ttime;
264 int ioprio; /* the current ioprio */
265#ifdef CONFIG_CFQ_GROUP_IOSCHED
266 uint64_t blkcg_id; /* the current blkcg ID */
267#endif
268};
269
270/*
271 * Per block device queue structure
272 */
273struct cfq_data {
274 struct request_queue *queue;
275 /* Root service tree for cfq_groups */
276 struct cfq_rb_root grp_service_tree;
277 struct cfq_group *root_group;
278
279 /*
280 * The priority currently being served
281 */
282 enum wl_prio_t serving_prio;
283 enum wl_type_t serving_type;
284 unsigned long workload_expires;
285 struct cfq_group *serving_group;
286
287 /*
288 * Each priority tree is sorted by next_request position. These
289 * trees are used when determining if two or more queues are
290 * interleaving requests (see cfq_close_cooperator).
291 */
292 struct rb_root prio_trees[CFQ_PRIO_LISTS];
293
294 unsigned int busy_queues;
295 unsigned int busy_sync_queues;
296
297 int rq_in_driver;
298 int rq_in_flight[2];
299
300 /*
301 * queue-depth detection
302 */
303 int rq_queued;
304 int hw_tag;
305 /*
306 * hw_tag can be
307 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
308 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
309 * 0 => no NCQ
310 */
311 int hw_tag_est_depth;
312 unsigned int hw_tag_samples;
313
314 /*
315 * idle window management
316 */
317 struct timer_list idle_slice_timer;
318 struct work_struct unplug_work;
319
320 struct cfq_queue *active_queue;
321 struct cfq_io_cq *active_cic;
322
323 /*
324 * async queue for each priority case
325 */
326 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
327 struct cfq_queue *async_idle_cfqq;
328
329 sector_t last_position;
330
331 /*
332 * tunables, see top of file
333 */
334 unsigned int cfq_quantum;
335 unsigned int cfq_fifo_expire[2];
336 unsigned int cfq_back_penalty;
337 unsigned int cfq_back_max;
338 unsigned int cfq_slice[2];
339 unsigned int cfq_slice_async_rq;
340 unsigned int cfq_slice_idle;
341 unsigned int cfq_group_idle;
342 unsigned int cfq_latency;
343
344 /*
345 * Fallback dummy cfqq for extreme OOM conditions
346 */
347 struct cfq_queue oom_cfqq;
348
349 unsigned long last_delayed_sync;
350};
351
352static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
353
354static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
355 enum wl_prio_t prio,
356 enum wl_type_t type)
357{
358 if (!cfqg)
359 return NULL;
360
361 if (prio == IDLE_WORKLOAD)
362 return &cfqg->service_tree_idle;
363
364 return &cfqg->service_trees[prio][type];
365}
366
367enum cfqq_state_flags {
368 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
369 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
370 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
371 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
372 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
373 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
374 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
375 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
376 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
377 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
378 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
379 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
380 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
381};
382
383#define CFQ_CFQQ_FNS(name) \
384static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
385{ \
386 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
387} \
388static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
389{ \
390 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
391} \
392static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
393{ \
394 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
395}
396
397CFQ_CFQQ_FNS(on_rr);
398CFQ_CFQQ_FNS(wait_request);
399CFQ_CFQQ_FNS(must_dispatch);
400CFQ_CFQQ_FNS(must_alloc_slice);
401CFQ_CFQQ_FNS(fifo_expire);
402CFQ_CFQQ_FNS(idle_window);
403CFQ_CFQQ_FNS(prio_changed);
404CFQ_CFQQ_FNS(slice_new);
405CFQ_CFQQ_FNS(sync);
406CFQ_CFQQ_FNS(coop);
407CFQ_CFQQ_FNS(split_coop);
408CFQ_CFQQ_FNS(deep);
409CFQ_CFQQ_FNS(wait_busy);
410#undef CFQ_CFQQ_FNS
411
412#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
413
414/* cfqg stats flags */
415enum cfqg_stats_flags {
416 CFQG_stats_waiting = 0,
417 CFQG_stats_idling,
418 CFQG_stats_empty,
419};
420
421#define CFQG_FLAG_FNS(name) \
422static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
423{ \
424 stats->flags |= (1 << CFQG_stats_##name); \
425} \
426static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
427{ \
428 stats->flags &= ~(1 << CFQG_stats_##name); \
429} \
430static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
431{ \
432 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
433} \
434
435CFQG_FLAG_FNS(waiting)
436CFQG_FLAG_FNS(idling)
437CFQG_FLAG_FNS(empty)
438#undef CFQG_FLAG_FNS
439
440/* This should be called with the queue_lock held. */
441static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
442{
443 unsigned long long now;
444
445 if (!cfqg_stats_waiting(stats))
446 return;
447
448 now = sched_clock();
449 if (time_after64(now, stats->start_group_wait_time))
450 blkg_stat_add(&stats->group_wait_time,
451 now - stats->start_group_wait_time);
452 cfqg_stats_clear_waiting(stats);
453}
454
455/* This should be called with the queue_lock held. */
456static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
457 struct cfq_group *curr_cfqg)
458{
459 struct cfqg_stats *stats = &cfqg->stats;
460
461 if (cfqg_stats_waiting(stats))
462 return;
463 if (cfqg == curr_cfqg)
464 return;
465 stats->start_group_wait_time = sched_clock();
466 cfqg_stats_mark_waiting(stats);
467}
468
469/* This should be called with the queue_lock held. */
470static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
471{
472 unsigned long long now;
473
474 if (!cfqg_stats_empty(stats))
475 return;
476
477 now = sched_clock();
478 if (time_after64(now, stats->start_empty_time))
479 blkg_stat_add(&stats->empty_time,
480 now - stats->start_empty_time);
481 cfqg_stats_clear_empty(stats);
482}
483
484static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
485{
486 blkg_stat_add(&cfqg->stats.dequeue, 1);
487}
488
489static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
490{
491 struct cfqg_stats *stats = &cfqg->stats;
492
493 if (blkg_rwstat_sum(&stats->queued))
494 return;
495
496 /*
497 * group is already marked empty. This can happen if cfqq got new
498 * request in parent group and moved to this group while being added
499 * to service tree. Just ignore the event and move on.
500 */
501 if (cfqg_stats_empty(stats))
502 return;
503
504 stats->start_empty_time = sched_clock();
505 cfqg_stats_mark_empty(stats);
506}
507
508static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
509{
510 struct cfqg_stats *stats = &cfqg->stats;
511
512 if (cfqg_stats_idling(stats)) {
513 unsigned long long now = sched_clock();
514
515 if (time_after64(now, stats->start_idle_time))
516 blkg_stat_add(&stats->idle_time,
517 now - stats->start_idle_time);
518 cfqg_stats_clear_idling(stats);
519 }
520}
521
522static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
523{
524 struct cfqg_stats *stats = &cfqg->stats;
525
526 BUG_ON(cfqg_stats_idling(stats));
527
528 stats->start_idle_time = sched_clock();
529 cfqg_stats_mark_idling(stats);
530}
531
532static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
533{
534 struct cfqg_stats *stats = &cfqg->stats;
535
536 blkg_stat_add(&stats->avg_queue_size_sum,
537 blkg_rwstat_sum(&stats->queued));
538 blkg_stat_add(&stats->avg_queue_size_samples, 1);
539 cfqg_stats_update_group_wait_time(stats);
540}
541
542#else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
543
544static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
545 struct cfq_group *curr_cfqg) { }
546static void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
547static void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
548static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
549static void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
550static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
551static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
552
553#endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
554
555#ifdef CONFIG_CFQ_GROUP_IOSCHED
556
557static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg)
558{
559 return blkg_to_pdata(blkg, &blkio_policy_cfq);
560}
561
562static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg)
563{
564 return pdata_to_blkg(cfqg);
565}
566
567static inline void cfqg_get(struct cfq_group *cfqg)
568{
569 return blkg_get(cfqg_to_blkg(cfqg));
570}
571
572static inline void cfqg_put(struct cfq_group *cfqg)
573{
574 return blkg_put(cfqg_to_blkg(cfqg));
575}
576
577#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
578 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
579 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
580 blkg_path(cfqg_to_blkg((cfqq)->cfqg)), ##args)
581
582#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
583 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
584 blkg_path(cfqg_to_blkg((cfqg))), ##args) \
585
586static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
587 struct cfq_group *curr_cfqg, int rw)
588{
589 blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
590 cfqg_stats_end_empty_time(&cfqg->stats);
591 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
592}
593
594static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
595 unsigned long time, unsigned long unaccounted_time)
596{
597 blkg_stat_add(&cfqg->stats.time, time);
598#ifdef CONFIG_DEBUG_BLK_CGROUP
599 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
600#endif
601}
602
603static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
604{
605 blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
606}
607
608static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
609{
610 blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
611}
612
613static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
614 uint64_t bytes, int rw)
615{
616 blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
617 blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
618 blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
619}
620
621static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
622 uint64_t start_time, uint64_t io_start_time, int rw)
623{
624 struct cfqg_stats *stats = &cfqg->stats;
625 unsigned long long now = sched_clock();
626
627 if (time_after64(now, io_start_time))
628 blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
629 if (time_after64(io_start_time, start_time))
630 blkg_rwstat_add(&stats->wait_time, rw,
631 io_start_time - start_time);
632}
633
634static void cfqg_stats_reset(struct blkio_group *blkg)
635{
636 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
637 struct cfqg_stats *stats = &cfqg->stats;
638
639 /* queued stats shouldn't be cleared */
640 blkg_rwstat_reset(&stats->service_bytes);
641 blkg_rwstat_reset(&stats->serviced);
642 blkg_rwstat_reset(&stats->merged);
643 blkg_rwstat_reset(&stats->service_time);
644 blkg_rwstat_reset(&stats->wait_time);
645 blkg_stat_reset(&stats->time);
646#ifdef CONFIG_DEBUG_BLK_CGROUP
647 blkg_stat_reset(&stats->unaccounted_time);
648 blkg_stat_reset(&stats->avg_queue_size_sum);
649 blkg_stat_reset(&stats->avg_queue_size_samples);
650 blkg_stat_reset(&stats->dequeue);
651 blkg_stat_reset(&stats->group_wait_time);
652 blkg_stat_reset(&stats->idle_time);
653 blkg_stat_reset(&stats->empty_time);
654#endif
655}
656
657#else /* CONFIG_CFQ_GROUP_IOSCHED */
658
659static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg) { return NULL; }
660static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg) { return NULL; }
661static inline void cfqg_get(struct cfq_group *cfqg) { }
662static inline void cfqg_put(struct cfq_group *cfqg) { }
663
664#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
665 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
666#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
667
668static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
669 struct cfq_group *curr_cfqg, int rw) { }
670static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
671 unsigned long time, unsigned long unaccounted_time) { }
672static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
673static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
674static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
675 uint64_t bytes, int rw) { }
676static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
677 uint64_t start_time, uint64_t io_start_time, int rw) { }
678
679#endif /* CONFIG_CFQ_GROUP_IOSCHED */
680
681#define cfq_log(cfqd, fmt, args...) \
682 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
683
684/* Traverses through cfq group service trees */
685#define for_each_cfqg_st(cfqg, i, j, st) \
686 for (i = 0; i <= IDLE_WORKLOAD; i++) \
687 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
688 : &cfqg->service_tree_idle; \
689 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
690 (i == IDLE_WORKLOAD && j == 0); \
691 j++, st = i < IDLE_WORKLOAD ? \
692 &cfqg->service_trees[i][j]: NULL) \
693
694static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
695 struct cfq_ttime *ttime, bool group_idle)
696{
697 unsigned long slice;
698 if (!sample_valid(ttime->ttime_samples))
699 return false;
700 if (group_idle)
701 slice = cfqd->cfq_group_idle;
702 else
703 slice = cfqd->cfq_slice_idle;
704 return ttime->ttime_mean > slice;
705}
706
707static inline bool iops_mode(struct cfq_data *cfqd)
708{
709 /*
710 * If we are not idling on queues and it is a NCQ drive, parallel
711 * execution of requests is on and measuring time is not possible
712 * in most of the cases until and unless we drive shallower queue
713 * depths and that becomes a performance bottleneck. In such cases
714 * switch to start providing fairness in terms of number of IOs.
715 */
716 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
717 return true;
718 else
719 return false;
720}
721
722static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
723{
724 if (cfq_class_idle(cfqq))
725 return IDLE_WORKLOAD;
726 if (cfq_class_rt(cfqq))
727 return RT_WORKLOAD;
728 return BE_WORKLOAD;
729}
730
731
732static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
733{
734 if (!cfq_cfqq_sync(cfqq))
735 return ASYNC_WORKLOAD;
736 if (!cfq_cfqq_idle_window(cfqq))
737 return SYNC_NOIDLE_WORKLOAD;
738 return SYNC_WORKLOAD;
739}
740
741static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
742 struct cfq_data *cfqd,
743 struct cfq_group *cfqg)
744{
745 if (wl == IDLE_WORKLOAD)
746 return cfqg->service_tree_idle.count;
747
748 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
749 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
750 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
751}
752
753static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
754 struct cfq_group *cfqg)
755{
756 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
757 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
758}
759
760static void cfq_dispatch_insert(struct request_queue *, struct request *);
761static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
762 struct cfq_io_cq *cic, struct bio *bio,
763 gfp_t gfp_mask);
764
765static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
766{
767 /* cic->icq is the first member, %NULL will convert to %NULL */
768 return container_of(icq, struct cfq_io_cq, icq);
769}
770
771static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
772 struct io_context *ioc)
773{
774 if (ioc)
775 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
776 return NULL;
777}
778
779static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
780{
781 return cic->cfqq[is_sync];
782}
783
784static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
785 bool is_sync)
786{
787 cic->cfqq[is_sync] = cfqq;
788}
789
790static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
791{
792 return cic->icq.q->elevator->elevator_data;
793}
794
795/*
796 * We regard a request as SYNC, if it's either a read or has the SYNC bit
797 * set (in which case it could also be direct WRITE).
798 */
799static inline bool cfq_bio_sync(struct bio *bio)
800{
801 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
802}
803
804/*
805 * scheduler run of queue, if there are requests pending and no one in the
806 * driver that will restart queueing
807 */
808static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
809{
810 if (cfqd->busy_queues) {
811 cfq_log(cfqd, "schedule dispatch");
812 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
813 }
814}
815
816/*
817 * Scale schedule slice based on io priority. Use the sync time slice only
818 * if a queue is marked sync and has sync io queued. A sync queue with async
819 * io only, should not get full sync slice length.
820 */
821static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
822 unsigned short prio)
823{
824 const int base_slice = cfqd->cfq_slice[sync];
825
826 WARN_ON(prio >= IOPRIO_BE_NR);
827
828 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
829}
830
831static inline int
832cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
833{
834 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
835}
836
837static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
838{
839 u64 d = delta << CFQ_SERVICE_SHIFT;
840
841 d = d * CFQ_WEIGHT_DEFAULT;
842 do_div(d, cfqg->weight);
843 return d;
844}
845
846static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
847{
848 s64 delta = (s64)(vdisktime - min_vdisktime);
849 if (delta > 0)
850 min_vdisktime = vdisktime;
851
852 return min_vdisktime;
853}
854
855static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
856{
857 s64 delta = (s64)(vdisktime - min_vdisktime);
858 if (delta < 0)
859 min_vdisktime = vdisktime;
860
861 return min_vdisktime;
862}
863
864static void update_min_vdisktime(struct cfq_rb_root *st)
865{
866 struct cfq_group *cfqg;
867
868 if (st->left) {
869 cfqg = rb_entry_cfqg(st->left);
870 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
871 cfqg->vdisktime);
872 }
873}
874
875/*
876 * get averaged number of queues of RT/BE priority.
877 * average is updated, with a formula that gives more weight to higher numbers,
878 * to quickly follows sudden increases and decrease slowly
879 */
880
881static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
882 struct cfq_group *cfqg, bool rt)
883{
884 unsigned min_q, max_q;
885 unsigned mult = cfq_hist_divisor - 1;
886 unsigned round = cfq_hist_divisor / 2;
887 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
888
889 min_q = min(cfqg->busy_queues_avg[rt], busy);
890 max_q = max(cfqg->busy_queues_avg[rt], busy);
891 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
892 cfq_hist_divisor;
893 return cfqg->busy_queues_avg[rt];
894}
895
896static inline unsigned
897cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
898{
899 struct cfq_rb_root *st = &cfqd->grp_service_tree;
900
901 return cfq_target_latency * cfqg->weight / st->total_weight;
902}
903
904static inline unsigned
905cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
906{
907 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
908 if (cfqd->cfq_latency) {
909 /*
910 * interested queues (we consider only the ones with the same
911 * priority class in the cfq group)
912 */
913 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
914 cfq_class_rt(cfqq));
915 unsigned sync_slice = cfqd->cfq_slice[1];
916 unsigned expect_latency = sync_slice * iq;
917 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
918
919 if (expect_latency > group_slice) {
920 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
921 /* scale low_slice according to IO priority
922 * and sync vs async */
923 unsigned low_slice =
924 min(slice, base_low_slice * slice / sync_slice);
925 /* the adapted slice value is scaled to fit all iqs
926 * into the target latency */
927 slice = max(slice * group_slice / expect_latency,
928 low_slice);
929 }
930 }
931 return slice;
932}
933
934static inline void
935cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
936{
937 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
938
939 cfqq->slice_start = jiffies;
940 cfqq->slice_end = jiffies + slice;
941 cfqq->allocated_slice = slice;
942 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
943}
944
945/*
946 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
947 * isn't valid until the first request from the dispatch is activated
948 * and the slice time set.
949 */
950static inline bool cfq_slice_used(struct cfq_queue *cfqq)
951{
952 if (cfq_cfqq_slice_new(cfqq))
953 return false;
954 if (time_before(jiffies, cfqq->slice_end))
955 return false;
956
957 return true;
958}
959
960/*
961 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
962 * We choose the request that is closest to the head right now. Distance
963 * behind the head is penalized and only allowed to a certain extent.
964 */
965static struct request *
966cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
967{
968 sector_t s1, s2, d1 = 0, d2 = 0;
969 unsigned long back_max;
970#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
971#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
972 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
973
974 if (rq1 == NULL || rq1 == rq2)
975 return rq2;
976 if (rq2 == NULL)
977 return rq1;
978
979 if (rq_is_sync(rq1) != rq_is_sync(rq2))
980 return rq_is_sync(rq1) ? rq1 : rq2;
981
982 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
983 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
984
985 s1 = blk_rq_pos(rq1);
986 s2 = blk_rq_pos(rq2);
987
988 /*
989 * by definition, 1KiB is 2 sectors
990 */
991 back_max = cfqd->cfq_back_max * 2;
992
993 /*
994 * Strict one way elevator _except_ in the case where we allow
995 * short backward seeks which are biased as twice the cost of a
996 * similar forward seek.
997 */
998 if (s1 >= last)
999 d1 = s1 - last;
1000 else if (s1 + back_max >= last)
1001 d1 = (last - s1) * cfqd->cfq_back_penalty;
1002 else
1003 wrap |= CFQ_RQ1_WRAP;
1004
1005 if (s2 >= last)
1006 d2 = s2 - last;
1007 else if (s2 + back_max >= last)
1008 d2 = (last - s2) * cfqd->cfq_back_penalty;
1009 else
1010 wrap |= CFQ_RQ2_WRAP;
1011
1012 /* Found required data */
1013
1014 /*
1015 * By doing switch() on the bit mask "wrap" we avoid having to
1016 * check two variables for all permutations: --> faster!
1017 */
1018 switch (wrap) {
1019 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1020 if (d1 < d2)
1021 return rq1;
1022 else if (d2 < d1)
1023 return rq2;
1024 else {
1025 if (s1 >= s2)
1026 return rq1;
1027 else
1028 return rq2;
1029 }
1030
1031 case CFQ_RQ2_WRAP:
1032 return rq1;
1033 case CFQ_RQ1_WRAP:
1034 return rq2;
1035 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1036 default:
1037 /*
1038 * Since both rqs are wrapped,
1039 * start with the one that's further behind head
1040 * (--> only *one* back seek required),
1041 * since back seek takes more time than forward.
1042 */
1043 if (s1 <= s2)
1044 return rq1;
1045 else
1046 return rq2;
1047 }
1048}
1049
1050/*
1051 * The below is leftmost cache rbtree addon
1052 */
1053static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1054{
1055 /* Service tree is empty */
1056 if (!root->count)
1057 return NULL;
1058
1059 if (!root->left)
1060 root->left = rb_first(&root->rb);
1061
1062 if (root->left)
1063 return rb_entry(root->left, struct cfq_queue, rb_node);
1064
1065 return NULL;
1066}
1067
1068static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1069{
1070 if (!root->left)
1071 root->left = rb_first(&root->rb);
1072
1073 if (root->left)
1074 return rb_entry_cfqg(root->left);
1075
1076 return NULL;
1077}
1078
1079static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1080{
1081 rb_erase(n, root);
1082 RB_CLEAR_NODE(n);
1083}
1084
1085static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1086{
1087 if (root->left == n)
1088 root->left = NULL;
1089 rb_erase_init(n, &root->rb);
1090 --root->count;
1091}
1092
1093/*
1094 * would be nice to take fifo expire time into account as well
1095 */
1096static struct request *
1097cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1098 struct request *last)
1099{
1100 struct rb_node *rbnext = rb_next(&last->rb_node);
1101 struct rb_node *rbprev = rb_prev(&last->rb_node);
1102 struct request *next = NULL, *prev = NULL;
1103
1104 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1105
1106 if (rbprev)
1107 prev = rb_entry_rq(rbprev);
1108
1109 if (rbnext)
1110 next = rb_entry_rq(rbnext);
1111 else {
1112 rbnext = rb_first(&cfqq->sort_list);
1113 if (rbnext && rbnext != &last->rb_node)
1114 next = rb_entry_rq(rbnext);
1115 }
1116
1117 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1118}
1119
1120static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1121 struct cfq_queue *cfqq)
1122{
1123 /*
1124 * just an approximation, should be ok.
1125 */
1126 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1127 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1128}
1129
1130static inline s64
1131cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1132{
1133 return cfqg->vdisktime - st->min_vdisktime;
1134}
1135
1136static void
1137__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1138{
1139 struct rb_node **node = &st->rb.rb_node;
1140 struct rb_node *parent = NULL;
1141 struct cfq_group *__cfqg;
1142 s64 key = cfqg_key(st, cfqg);
1143 int left = 1;
1144
1145 while (*node != NULL) {
1146 parent = *node;
1147 __cfqg = rb_entry_cfqg(parent);
1148
1149 if (key < cfqg_key(st, __cfqg))
1150 node = &parent->rb_left;
1151 else {
1152 node = &parent->rb_right;
1153 left = 0;
1154 }
1155 }
1156
1157 if (left)
1158 st->left = &cfqg->rb_node;
1159
1160 rb_link_node(&cfqg->rb_node, parent, node);
1161 rb_insert_color(&cfqg->rb_node, &st->rb);
1162}
1163
1164static void
1165cfq_update_group_weight(struct cfq_group *cfqg)
1166{
1167 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1168 if (cfqg->new_weight) {
1169 cfqg->weight = cfqg->new_weight;
1170 cfqg->new_weight = 0;
1171 }
1172}
1173
1174static void
1175cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1176{
1177 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1178
1179 cfq_update_group_weight(cfqg);
1180 __cfq_group_service_tree_add(st, cfqg);
1181 st->total_weight += cfqg->weight;
1182}
1183
1184static void
1185cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1186{
1187 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1188 struct cfq_group *__cfqg;
1189 struct rb_node *n;
1190
1191 cfqg->nr_cfqq++;
1192 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1193 return;
1194
1195 /*
1196 * Currently put the group at the end. Later implement something
1197 * so that groups get lesser vtime based on their weights, so that
1198 * if group does not loose all if it was not continuously backlogged.
1199 */
1200 n = rb_last(&st->rb);
1201 if (n) {
1202 __cfqg = rb_entry_cfqg(n);
1203 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1204 } else
1205 cfqg->vdisktime = st->min_vdisktime;
1206 cfq_group_service_tree_add(st, cfqg);
1207}
1208
1209static void
1210cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1211{
1212 st->total_weight -= cfqg->weight;
1213 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1214 cfq_rb_erase(&cfqg->rb_node, st);
1215}
1216
1217static void
1218cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1219{
1220 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1221
1222 BUG_ON(cfqg->nr_cfqq < 1);
1223 cfqg->nr_cfqq--;
1224
1225 /* If there are other cfq queues under this group, don't delete it */
1226 if (cfqg->nr_cfqq)
1227 return;
1228
1229 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1230 cfq_group_service_tree_del(st, cfqg);
1231 cfqg->saved_workload_slice = 0;
1232 cfqg_stats_update_dequeue(cfqg);
1233}
1234
1235static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1236 unsigned int *unaccounted_time)
1237{
1238 unsigned int slice_used;
1239
1240 /*
1241 * Queue got expired before even a single request completed or
1242 * got expired immediately after first request completion.
1243 */
1244 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1245 /*
1246 * Also charge the seek time incurred to the group, otherwise
1247 * if there are mutiple queues in the group, each can dispatch
1248 * a single request on seeky media and cause lots of seek time
1249 * and group will never know it.
1250 */
1251 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1252 1);
1253 } else {
1254 slice_used = jiffies - cfqq->slice_start;
1255 if (slice_used > cfqq->allocated_slice) {
1256 *unaccounted_time = slice_used - cfqq->allocated_slice;
1257 slice_used = cfqq->allocated_slice;
1258 }
1259 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1260 *unaccounted_time += cfqq->slice_start -
1261 cfqq->dispatch_start;
1262 }
1263
1264 return slice_used;
1265}
1266
1267static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1268 struct cfq_queue *cfqq)
1269{
1270 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1271 unsigned int used_sl, charge, unaccounted_sl = 0;
1272 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1273 - cfqg->service_tree_idle.count;
1274
1275 BUG_ON(nr_sync < 0);
1276 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1277
1278 if (iops_mode(cfqd))
1279 charge = cfqq->slice_dispatch;
1280 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1281 charge = cfqq->allocated_slice;
1282
1283 /* Can't update vdisktime while group is on service tree */
1284 cfq_group_service_tree_del(st, cfqg);
1285 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
1286 /* If a new weight was requested, update now, off tree */
1287 cfq_group_service_tree_add(st, cfqg);
1288
1289 /* This group is being expired. Save the context */
1290 if (time_after(cfqd->workload_expires, jiffies)) {
1291 cfqg->saved_workload_slice = cfqd->workload_expires
1292 - jiffies;
1293 cfqg->saved_workload = cfqd->serving_type;
1294 cfqg->saved_serving_prio = cfqd->serving_prio;
1295 } else
1296 cfqg->saved_workload_slice = 0;
1297
1298 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1299 st->min_vdisktime);
1300 cfq_log_cfqq(cfqq->cfqd, cfqq,
1301 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1302 used_sl, cfqq->slice_dispatch, charge,
1303 iops_mode(cfqd), cfqq->nr_sectors);
1304 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1305 cfqg_stats_set_start_empty_time(cfqg);
1306}
1307
1308/**
1309 * cfq_init_cfqg_base - initialize base part of a cfq_group
1310 * @cfqg: cfq_group to initialize
1311 *
1312 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1313 * is enabled or not.
1314 */
1315static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1316{
1317 struct cfq_rb_root *st;
1318 int i, j;
1319
1320 for_each_cfqg_st(cfqg, i, j, st)
1321 *st = CFQ_RB_ROOT;
1322 RB_CLEAR_NODE(&cfqg->rb_node);
1323
1324 cfqg->ttime.last_end_request = jiffies;
1325}
1326
1327#ifdef CONFIG_CFQ_GROUP_IOSCHED
1328static void cfq_init_blkio_group(struct blkio_group *blkg)
1329{
1330 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1331
1332 cfq_init_cfqg_base(cfqg);
1333 cfqg->weight = blkg->blkcg->cfq_weight;
1334}
1335
1336/*
1337 * Search for the cfq group current task belongs to. request_queue lock must
1338 * be held.
1339 */
1340static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1341 struct blkio_cgroup *blkcg)
1342{
1343 struct request_queue *q = cfqd->queue;
1344 struct cfq_group *cfqg = NULL;
1345
1346 /* avoid lookup for the common case where there's no blkio cgroup */
1347 if (blkcg == &blkio_root_cgroup) {
1348 cfqg = cfqd->root_group;
1349 } else {
1350 struct blkio_group *blkg;
1351
1352 blkg = blkg_lookup_create(blkcg, q, false);
1353 if (!IS_ERR(blkg))
1354 cfqg = blkg_to_cfqg(blkg);
1355 }
1356
1357 return cfqg;
1358}
1359
1360static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1361{
1362 /* Currently, all async queues are mapped to root group */
1363 if (!cfq_cfqq_sync(cfqq))
1364 cfqg = cfqq->cfqd->root_group;
1365
1366 cfqq->cfqg = cfqg;
1367 /* cfqq reference on cfqg */
1368 cfqg_get(cfqg);
1369}
1370
1371static u64 cfqg_prfill_weight_device(struct seq_file *sf, void *pdata, int off)
1372{
1373 struct cfq_group *cfqg = pdata;
1374
1375 if (!cfqg->dev_weight)
1376 return 0;
1377 return __blkg_prfill_u64(sf, pdata, cfqg->dev_weight);
1378}
1379
1380static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
1381 struct seq_file *sf)
1382{
1383 blkcg_print_blkgs(sf, cgroup_to_blkio_cgroup(cgrp),
1384 cfqg_prfill_weight_device, BLKIO_POLICY_PROP, 0,
1385 false);
1386 return 0;
1387}
1388
1389static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
1390 struct seq_file *sf)
1391{
1392 seq_printf(sf, "%u\n", cgroup_to_blkio_cgroup(cgrp)->cfq_weight);
1393 return 0;
1394}
1395
1396static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1397 const char *buf)
1398{
1399 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
1400 struct blkg_conf_ctx ctx;
1401 struct cfq_group *cfqg;
1402 int ret;
1403
1404 ret = blkg_conf_prep(blkcg, buf, &ctx);
1405 if (ret)
1406 return ret;
1407
1408 ret = -EINVAL;
1409 cfqg = blkg_to_cfqg(ctx.blkg);
1410 if (cfqg && (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN &&
1411 ctx.v <= CFQ_WEIGHT_MAX))) {
1412 cfqg->dev_weight = ctx.v;
1413 cfqg->new_weight = cfqg->dev_weight ?: blkcg->cfq_weight;
1414 ret = 0;
1415 }
1416
1417 blkg_conf_finish(&ctx);
1418 return ret;
1419}
1420
1421static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1422{
1423 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
1424 struct blkio_group *blkg;
1425 struct hlist_node *n;
1426
1427 if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1428 return -EINVAL;
1429
1430 spin_lock_irq(&blkcg->lock);
1431 blkcg->cfq_weight = (unsigned int)val;
1432
1433 hlist_for_each_entry(blkg, n, &blkcg->blkg_list, blkcg_node) {
1434 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1435
1436 if (cfqg && !cfqg->dev_weight)
1437 cfqg->new_weight = blkcg->cfq_weight;
1438 }
1439
1440 spin_unlock_irq(&blkcg->lock);
1441 return 0;
1442}
1443
1444static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
1445 struct seq_file *sf)
1446{
1447 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
1448
1449 blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, BLKIO_POLICY_PROP,
1450 cft->private, false);
1451 return 0;
1452}
1453
1454static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
1455 struct seq_file *sf)
1456{
1457 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
1458
1459 blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, BLKIO_POLICY_PROP,
1460 cft->private, true);
1461 return 0;
1462}
1463
1464#ifdef CONFIG_DEBUG_BLK_CGROUP
1465static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf, void *pdata, int off)
1466{
1467 struct cfq_group *cfqg = pdata;
1468 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1469 u64 v = 0;
1470
1471 if (samples) {
1472 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1473 do_div(v, samples);
1474 }
1475 __blkg_prfill_u64(sf, pdata, v);
1476 return 0;
1477}
1478
1479/* print avg_queue_size */
1480static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
1481 struct seq_file *sf)
1482{
1483 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
1484
1485 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
1486 BLKIO_POLICY_PROP, 0, false);
1487 return 0;
1488}
1489#endif /* CONFIG_DEBUG_BLK_CGROUP */
1490
1491static struct cftype cfq_blkcg_files[] = {
1492 {
1493 .name = "weight_device",
1494 .read_seq_string = cfqg_print_weight_device,
1495 .write_string = cfqg_set_weight_device,
1496 .max_write_len = 256,
1497 },
1498 {
1499 .name = "weight",
1500 .read_seq_string = cfq_print_weight,
1501 .write_u64 = cfq_set_weight,
1502 },
1503 {
1504 .name = "time",
1505 .private = offsetof(struct cfq_group, stats.time),
1506 .read_seq_string = cfqg_print_stat,
1507 },
1508 {
1509 .name = "sectors",
1510 .private = offsetof(struct cfq_group, stats.sectors),
1511 .read_seq_string = cfqg_print_stat,
1512 },
1513 {
1514 .name = "io_service_bytes",
1515 .private = offsetof(struct cfq_group, stats.service_bytes),
1516 .read_seq_string = cfqg_print_rwstat,
1517 },
1518 {
1519 .name = "io_serviced",
1520 .private = offsetof(struct cfq_group, stats.serviced),
1521 .read_seq_string = cfqg_print_rwstat,
1522 },
1523 {
1524 .name = "io_service_time",
1525 .private = offsetof(struct cfq_group, stats.service_time),
1526 .read_seq_string = cfqg_print_rwstat,
1527 },
1528 {
1529 .name = "io_wait_time",
1530 .private = offsetof(struct cfq_group, stats.wait_time),
1531 .read_seq_string = cfqg_print_rwstat,
1532 },
1533 {
1534 .name = "io_merged",
1535 .private = offsetof(struct cfq_group, stats.merged),
1536 .read_seq_string = cfqg_print_rwstat,
1537 },
1538 {
1539 .name = "io_queued",
1540 .private = offsetof(struct cfq_group, stats.queued),
1541 .read_seq_string = cfqg_print_rwstat,
1542 },
1543#ifdef CONFIG_DEBUG_BLK_CGROUP
1544 {
1545 .name = "avg_queue_size",
1546 .read_seq_string = cfqg_print_avg_queue_size,
1547 },
1548 {
1549 .name = "group_wait_time",
1550 .private = offsetof(struct cfq_group, stats.group_wait_time),
1551 .read_seq_string = cfqg_print_stat,
1552 },
1553 {
1554 .name = "idle_time",
1555 .private = offsetof(struct cfq_group, stats.idle_time),
1556 .read_seq_string = cfqg_print_stat,
1557 },
1558 {
1559 .name = "empty_time",
1560 .private = offsetof(struct cfq_group, stats.empty_time),
1561 .read_seq_string = cfqg_print_stat,
1562 },
1563 {
1564 .name = "dequeue",
1565 .private = offsetof(struct cfq_group, stats.dequeue),
1566 .read_seq_string = cfqg_print_stat,
1567 },
1568 {
1569 .name = "unaccounted_time",
1570 .private = offsetof(struct cfq_group, stats.unaccounted_time),
1571 .read_seq_string = cfqg_print_stat,
1572 },
1573#endif /* CONFIG_DEBUG_BLK_CGROUP */
1574 { } /* terminate */
1575};
1576#else /* GROUP_IOSCHED */
1577static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1578 struct blkio_cgroup *blkcg)
1579{
1580 return cfqd->root_group;
1581}
1582
1583static inline void
1584cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1585 cfqq->cfqg = cfqg;
1586}
1587
1588#endif /* GROUP_IOSCHED */
1589
1590/*
1591 * The cfqd->service_trees holds all pending cfq_queue's that have
1592 * requests waiting to be processed. It is sorted in the order that
1593 * we will service the queues.
1594 */
1595static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1596 bool add_front)
1597{
1598 struct rb_node **p, *parent;
1599 struct cfq_queue *__cfqq;
1600 unsigned long rb_key;
1601 struct cfq_rb_root *service_tree;
1602 int left;
1603 int new_cfqq = 1;
1604
1605 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1606 cfqq_type(cfqq));
1607 if (cfq_class_idle(cfqq)) {
1608 rb_key = CFQ_IDLE_DELAY;
1609 parent = rb_last(&service_tree->rb);
1610 if (parent && parent != &cfqq->rb_node) {
1611 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1612 rb_key += __cfqq->rb_key;
1613 } else
1614 rb_key += jiffies;
1615 } else if (!add_front) {
1616 /*
1617 * Get our rb key offset. Subtract any residual slice
1618 * value carried from last service. A negative resid
1619 * count indicates slice overrun, and this should position
1620 * the next service time further away in the tree.
1621 */
1622 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1623 rb_key -= cfqq->slice_resid;
1624 cfqq->slice_resid = 0;
1625 } else {
1626 rb_key = -HZ;
1627 __cfqq = cfq_rb_first(service_tree);
1628 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1629 }
1630
1631 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1632 new_cfqq = 0;
1633 /*
1634 * same position, nothing more to do
1635 */
1636 if (rb_key == cfqq->rb_key &&
1637 cfqq->service_tree == service_tree)
1638 return;
1639
1640 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1641 cfqq->service_tree = NULL;
1642 }
1643
1644 left = 1;
1645 parent = NULL;
1646 cfqq->service_tree = service_tree;
1647 p = &service_tree->rb.rb_node;
1648 while (*p) {
1649 struct rb_node **n;
1650
1651 parent = *p;
1652 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1653
1654 /*
1655 * sort by key, that represents service time.
1656 */
1657 if (time_before(rb_key, __cfqq->rb_key))
1658 n = &(*p)->rb_left;
1659 else {
1660 n = &(*p)->rb_right;
1661 left = 0;
1662 }
1663
1664 p = n;
1665 }
1666
1667 if (left)
1668 service_tree->left = &cfqq->rb_node;
1669
1670 cfqq->rb_key = rb_key;
1671 rb_link_node(&cfqq->rb_node, parent, p);
1672 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1673 service_tree->count++;
1674 if (add_front || !new_cfqq)
1675 return;
1676 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1677}
1678
1679static struct cfq_queue *
1680cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1681 sector_t sector, struct rb_node **ret_parent,
1682 struct rb_node ***rb_link)
1683{
1684 struct rb_node **p, *parent;
1685 struct cfq_queue *cfqq = NULL;
1686
1687 parent = NULL;
1688 p = &root->rb_node;
1689 while (*p) {
1690 struct rb_node **n;
1691
1692 parent = *p;
1693 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1694
1695 /*
1696 * Sort strictly based on sector. Smallest to the left,
1697 * largest to the right.
1698 */
1699 if (sector > blk_rq_pos(cfqq->next_rq))
1700 n = &(*p)->rb_right;
1701 else if (sector < blk_rq_pos(cfqq->next_rq))
1702 n = &(*p)->rb_left;
1703 else
1704 break;
1705 p = n;
1706 cfqq = NULL;
1707 }
1708
1709 *ret_parent = parent;
1710 if (rb_link)
1711 *rb_link = p;
1712 return cfqq;
1713}
1714
1715static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1716{
1717 struct rb_node **p, *parent;
1718 struct cfq_queue *__cfqq;
1719
1720 if (cfqq->p_root) {
1721 rb_erase(&cfqq->p_node, cfqq->p_root);
1722 cfqq->p_root = NULL;
1723 }
1724
1725 if (cfq_class_idle(cfqq))
1726 return;
1727 if (!cfqq->next_rq)
1728 return;
1729
1730 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1731 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1732 blk_rq_pos(cfqq->next_rq), &parent, &p);
1733 if (!__cfqq) {
1734 rb_link_node(&cfqq->p_node, parent, p);
1735 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1736 } else
1737 cfqq->p_root = NULL;
1738}
1739
1740/*
1741 * Update cfqq's position in the service tree.
1742 */
1743static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1744{
1745 /*
1746 * Resorting requires the cfqq to be on the RR list already.
1747 */
1748 if (cfq_cfqq_on_rr(cfqq)) {
1749 cfq_service_tree_add(cfqd, cfqq, 0);
1750 cfq_prio_tree_add(cfqd, cfqq);
1751 }
1752}
1753
1754/*
1755 * add to busy list of queues for service, trying to be fair in ordering
1756 * the pending list according to last request service
1757 */
1758static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1759{
1760 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1761 BUG_ON(cfq_cfqq_on_rr(cfqq));
1762 cfq_mark_cfqq_on_rr(cfqq);
1763 cfqd->busy_queues++;
1764 if (cfq_cfqq_sync(cfqq))
1765 cfqd->busy_sync_queues++;
1766
1767 cfq_resort_rr_list(cfqd, cfqq);
1768}
1769
1770/*
1771 * Called when the cfqq no longer has requests pending, remove it from
1772 * the service tree.
1773 */
1774static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1775{
1776 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1777 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1778 cfq_clear_cfqq_on_rr(cfqq);
1779
1780 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1781 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1782 cfqq->service_tree = NULL;
1783 }
1784 if (cfqq->p_root) {
1785 rb_erase(&cfqq->p_node, cfqq->p_root);
1786 cfqq->p_root = NULL;
1787 }
1788
1789 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1790 BUG_ON(!cfqd->busy_queues);
1791 cfqd->busy_queues--;
1792 if (cfq_cfqq_sync(cfqq))
1793 cfqd->busy_sync_queues--;
1794}
1795
1796/*
1797 * rb tree support functions
1798 */
1799static void cfq_del_rq_rb(struct request *rq)
1800{
1801 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1802 const int sync = rq_is_sync(rq);
1803
1804 BUG_ON(!cfqq->queued[sync]);
1805 cfqq->queued[sync]--;
1806
1807 elv_rb_del(&cfqq->sort_list, rq);
1808
1809 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1810 /*
1811 * Queue will be deleted from service tree when we actually
1812 * expire it later. Right now just remove it from prio tree
1813 * as it is empty.
1814 */
1815 if (cfqq->p_root) {
1816 rb_erase(&cfqq->p_node, cfqq->p_root);
1817 cfqq->p_root = NULL;
1818 }
1819 }
1820}
1821
1822static void cfq_add_rq_rb(struct request *rq)
1823{
1824 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1825 struct cfq_data *cfqd = cfqq->cfqd;
1826 struct request *prev;
1827
1828 cfqq->queued[rq_is_sync(rq)]++;
1829
1830 elv_rb_add(&cfqq->sort_list, rq);
1831
1832 if (!cfq_cfqq_on_rr(cfqq))
1833 cfq_add_cfqq_rr(cfqd, cfqq);
1834
1835 /*
1836 * check if this request is a better next-serve candidate
1837 */
1838 prev = cfqq->next_rq;
1839 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1840
1841 /*
1842 * adjust priority tree position, if ->next_rq changes
1843 */
1844 if (prev != cfqq->next_rq)
1845 cfq_prio_tree_add(cfqd, cfqq);
1846
1847 BUG_ON(!cfqq->next_rq);
1848}
1849
1850static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1851{
1852 elv_rb_del(&cfqq->sort_list, rq);
1853 cfqq->queued[rq_is_sync(rq)]--;
1854 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
1855 cfq_add_rq_rb(rq);
1856 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
1857 rq->cmd_flags);
1858}
1859
1860static struct request *
1861cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1862{
1863 struct task_struct *tsk = current;
1864 struct cfq_io_cq *cic;
1865 struct cfq_queue *cfqq;
1866
1867 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1868 if (!cic)
1869 return NULL;
1870
1871 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1872 if (cfqq) {
1873 sector_t sector = bio->bi_sector + bio_sectors(bio);
1874
1875 return elv_rb_find(&cfqq->sort_list, sector);
1876 }
1877
1878 return NULL;
1879}
1880
1881static void cfq_activate_request(struct request_queue *q, struct request *rq)
1882{
1883 struct cfq_data *cfqd = q->elevator->elevator_data;
1884
1885 cfqd->rq_in_driver++;
1886 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1887 cfqd->rq_in_driver);
1888
1889 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1890}
1891
1892static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1893{
1894 struct cfq_data *cfqd = q->elevator->elevator_data;
1895
1896 WARN_ON(!cfqd->rq_in_driver);
1897 cfqd->rq_in_driver--;
1898 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1899 cfqd->rq_in_driver);
1900}
1901
1902static void cfq_remove_request(struct request *rq)
1903{
1904 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1905
1906 if (cfqq->next_rq == rq)
1907 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1908
1909 list_del_init(&rq->queuelist);
1910 cfq_del_rq_rb(rq);
1911
1912 cfqq->cfqd->rq_queued--;
1913 cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
1914 if (rq->cmd_flags & REQ_PRIO) {
1915 WARN_ON(!cfqq->prio_pending);
1916 cfqq->prio_pending--;
1917 }
1918}
1919
1920static int cfq_merge(struct request_queue *q, struct request **req,
1921 struct bio *bio)
1922{
1923 struct cfq_data *cfqd = q->elevator->elevator_data;
1924 struct request *__rq;
1925
1926 __rq = cfq_find_rq_fmerge(cfqd, bio);
1927 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1928 *req = __rq;
1929 return ELEVATOR_FRONT_MERGE;
1930 }
1931
1932 return ELEVATOR_NO_MERGE;
1933}
1934
1935static void cfq_merged_request(struct request_queue *q, struct request *req,
1936 int type)
1937{
1938 if (type == ELEVATOR_FRONT_MERGE) {
1939 struct cfq_queue *cfqq = RQ_CFQQ(req);
1940
1941 cfq_reposition_rq_rb(cfqq, req);
1942 }
1943}
1944
1945static void cfq_bio_merged(struct request_queue *q, struct request *req,
1946 struct bio *bio)
1947{
1948 cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
1949}
1950
1951static void
1952cfq_merged_requests(struct request_queue *q, struct request *rq,
1953 struct request *next)
1954{
1955 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1956 struct cfq_data *cfqd = q->elevator->elevator_data;
1957
1958 /*
1959 * reposition in fifo if next is older than rq
1960 */
1961 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1962 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1963 list_move(&rq->queuelist, &next->queuelist);
1964 rq_set_fifo_time(rq, rq_fifo_time(next));
1965 }
1966
1967 if (cfqq->next_rq == next)
1968 cfqq->next_rq = rq;
1969 cfq_remove_request(next);
1970 cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
1971
1972 cfqq = RQ_CFQQ(next);
1973 /*
1974 * all requests of this queue are merged to other queues, delete it
1975 * from the service tree. If it's the active_queue,
1976 * cfq_dispatch_requests() will choose to expire it or do idle
1977 */
1978 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1979 cfqq != cfqd->active_queue)
1980 cfq_del_cfqq_rr(cfqd, cfqq);
1981}
1982
1983static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1984 struct bio *bio)
1985{
1986 struct cfq_data *cfqd = q->elevator->elevator_data;
1987 struct cfq_io_cq *cic;
1988 struct cfq_queue *cfqq;
1989
1990 /*
1991 * Disallow merge of a sync bio into an async request.
1992 */
1993 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1994 return false;
1995
1996 /*
1997 * Lookup the cfqq that this bio will be queued with and allow
1998 * merge only if rq is queued there.
1999 */
2000 cic = cfq_cic_lookup(cfqd, current->io_context);
2001 if (!cic)
2002 return false;
2003
2004 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2005 return cfqq == RQ_CFQQ(rq);
2006}
2007
2008static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2009{
2010 del_timer(&cfqd->idle_slice_timer);
2011 cfqg_stats_update_idle_time(cfqq->cfqg);
2012}
2013
2014static void __cfq_set_active_queue(struct cfq_data *cfqd,
2015 struct cfq_queue *cfqq)
2016{
2017 if (cfqq) {
2018 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
2019 cfqd->serving_prio, cfqd->serving_type);
2020 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2021 cfqq->slice_start = 0;
2022 cfqq->dispatch_start = jiffies;
2023 cfqq->allocated_slice = 0;
2024 cfqq->slice_end = 0;
2025 cfqq->slice_dispatch = 0;
2026 cfqq->nr_sectors = 0;
2027
2028 cfq_clear_cfqq_wait_request(cfqq);
2029 cfq_clear_cfqq_must_dispatch(cfqq);
2030 cfq_clear_cfqq_must_alloc_slice(cfqq);
2031 cfq_clear_cfqq_fifo_expire(cfqq);
2032 cfq_mark_cfqq_slice_new(cfqq);
2033
2034 cfq_del_timer(cfqd, cfqq);
2035 }
2036
2037 cfqd->active_queue = cfqq;
2038}
2039
2040/*
2041 * current cfqq expired its slice (or was too idle), select new one
2042 */
2043static void
2044__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2045 bool timed_out)
2046{
2047 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2048
2049 if (cfq_cfqq_wait_request(cfqq))
2050 cfq_del_timer(cfqd, cfqq);
2051
2052 cfq_clear_cfqq_wait_request(cfqq);
2053 cfq_clear_cfqq_wait_busy(cfqq);
2054
2055 /*
2056 * If this cfqq is shared between multiple processes, check to
2057 * make sure that those processes are still issuing I/Os within
2058 * the mean seek distance. If not, it may be time to break the
2059 * queues apart again.
2060 */
2061 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2062 cfq_mark_cfqq_split_coop(cfqq);
2063
2064 /*
2065 * store what was left of this slice, if the queue idled/timed out
2066 */
2067 if (timed_out) {
2068 if (cfq_cfqq_slice_new(cfqq))
2069 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2070 else
2071 cfqq->slice_resid = cfqq->slice_end - jiffies;
2072 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2073 }
2074
2075 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2076
2077 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2078 cfq_del_cfqq_rr(cfqd, cfqq);
2079
2080 cfq_resort_rr_list(cfqd, cfqq);
2081
2082 if (cfqq == cfqd->active_queue)
2083 cfqd->active_queue = NULL;
2084
2085 if (cfqd->active_cic) {
2086 put_io_context(cfqd->active_cic->icq.ioc);
2087 cfqd->active_cic = NULL;
2088 }
2089}
2090
2091static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2092{
2093 struct cfq_queue *cfqq = cfqd->active_queue;
2094
2095 if (cfqq)
2096 __cfq_slice_expired(cfqd, cfqq, timed_out);
2097}
2098
2099/*
2100 * Get next queue for service. Unless we have a queue preemption,
2101 * we'll simply select the first cfqq in the service tree.
2102 */
2103static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2104{
2105 struct cfq_rb_root *service_tree =
2106 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
2107 cfqd->serving_type);
2108
2109 if (!cfqd->rq_queued)
2110 return NULL;
2111
2112 /* There is nothing to dispatch */
2113 if (!service_tree)
2114 return NULL;
2115 if (RB_EMPTY_ROOT(&service_tree->rb))
2116 return NULL;
2117 return cfq_rb_first(service_tree);
2118}
2119
2120static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2121{
2122 struct cfq_group *cfqg;
2123 struct cfq_queue *cfqq;
2124 int i, j;
2125 struct cfq_rb_root *st;
2126
2127 if (!cfqd->rq_queued)
2128 return NULL;
2129
2130 cfqg = cfq_get_next_cfqg(cfqd);
2131 if (!cfqg)
2132 return NULL;
2133
2134 for_each_cfqg_st(cfqg, i, j, st)
2135 if ((cfqq = cfq_rb_first(st)) != NULL)
2136 return cfqq;
2137 return NULL;
2138}
2139
2140/*
2141 * Get and set a new active queue for service.
2142 */
2143static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2144 struct cfq_queue *cfqq)
2145{
2146 if (!cfqq)
2147 cfqq = cfq_get_next_queue(cfqd);
2148
2149 __cfq_set_active_queue(cfqd, cfqq);
2150 return cfqq;
2151}
2152
2153static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2154 struct request *rq)
2155{
2156 if (blk_rq_pos(rq) >= cfqd->last_position)
2157 return blk_rq_pos(rq) - cfqd->last_position;
2158 else
2159 return cfqd->last_position - blk_rq_pos(rq);
2160}
2161
2162static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2163 struct request *rq)
2164{
2165 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2166}
2167
2168static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2169 struct cfq_queue *cur_cfqq)
2170{
2171 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2172 struct rb_node *parent, *node;
2173 struct cfq_queue *__cfqq;
2174 sector_t sector = cfqd->last_position;
2175
2176 if (RB_EMPTY_ROOT(root))
2177 return NULL;
2178
2179 /*
2180 * First, if we find a request starting at the end of the last
2181 * request, choose it.
2182 */
2183 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2184 if (__cfqq)
2185 return __cfqq;
2186
2187 /*
2188 * If the exact sector wasn't found, the parent of the NULL leaf
2189 * will contain the closest sector.
2190 */
2191 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2192 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2193 return __cfqq;
2194
2195 if (blk_rq_pos(__cfqq->next_rq) < sector)
2196 node = rb_next(&__cfqq->p_node);
2197 else
2198 node = rb_prev(&__cfqq->p_node);
2199 if (!node)
2200 return NULL;
2201
2202 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2203 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2204 return __cfqq;
2205
2206 return NULL;
2207}
2208
2209/*
2210 * cfqd - obvious
2211 * cur_cfqq - passed in so that we don't decide that the current queue is
2212 * closely cooperating with itself.
2213 *
2214 * So, basically we're assuming that that cur_cfqq has dispatched at least
2215 * one request, and that cfqd->last_position reflects a position on the disk
2216 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2217 * assumption.
2218 */
2219static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2220 struct cfq_queue *cur_cfqq)
2221{
2222 struct cfq_queue *cfqq;
2223
2224 if (cfq_class_idle(cur_cfqq))
2225 return NULL;
2226 if (!cfq_cfqq_sync(cur_cfqq))
2227 return NULL;
2228 if (CFQQ_SEEKY(cur_cfqq))
2229 return NULL;
2230
2231 /*
2232 * Don't search priority tree if it's the only queue in the group.
2233 */
2234 if (cur_cfqq->cfqg->nr_cfqq == 1)
2235 return NULL;
2236
2237 /*
2238 * We should notice if some of the queues are cooperating, eg
2239 * working closely on the same area of the disk. In that case,
2240 * we can group them together and don't waste time idling.
2241 */
2242 cfqq = cfqq_close(cfqd, cur_cfqq);
2243 if (!cfqq)
2244 return NULL;
2245
2246 /* If new queue belongs to different cfq_group, don't choose it */
2247 if (cur_cfqq->cfqg != cfqq->cfqg)
2248 return NULL;
2249
2250 /*
2251 * It only makes sense to merge sync queues.
2252 */
2253 if (!cfq_cfqq_sync(cfqq))
2254 return NULL;
2255 if (CFQQ_SEEKY(cfqq))
2256 return NULL;
2257
2258 /*
2259 * Do not merge queues of different priority classes
2260 */
2261 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2262 return NULL;
2263
2264 return cfqq;
2265}
2266
2267/*
2268 * Determine whether we should enforce idle window for this queue.
2269 */
2270
2271static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2272{
2273 enum wl_prio_t prio = cfqq_prio(cfqq);
2274 struct cfq_rb_root *service_tree = cfqq->service_tree;
2275
2276 BUG_ON(!service_tree);
2277 BUG_ON(!service_tree->count);
2278
2279 if (!cfqd->cfq_slice_idle)
2280 return false;
2281
2282 /* We never do for idle class queues. */
2283 if (prio == IDLE_WORKLOAD)
2284 return false;
2285
2286 /* We do for queues that were marked with idle window flag. */
2287 if (cfq_cfqq_idle_window(cfqq) &&
2288 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2289 return true;
2290
2291 /*
2292 * Otherwise, we do only if they are the last ones
2293 * in their service tree.
2294 */
2295 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
2296 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
2297 return true;
2298 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
2299 service_tree->count);
2300 return false;
2301}
2302
2303static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2304{
2305 struct cfq_queue *cfqq = cfqd->active_queue;
2306 struct cfq_io_cq *cic;
2307 unsigned long sl, group_idle = 0;
2308
2309 /*
2310 * SSD device without seek penalty, disable idling. But only do so
2311 * for devices that support queuing, otherwise we still have a problem
2312 * with sync vs async workloads.
2313 */
2314 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2315 return;
2316
2317 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2318 WARN_ON(cfq_cfqq_slice_new(cfqq));
2319
2320 /*
2321 * idle is disabled, either manually or by past process history
2322 */
2323 if (!cfq_should_idle(cfqd, cfqq)) {
2324 /* no queue idling. Check for group idling */
2325 if (cfqd->cfq_group_idle)
2326 group_idle = cfqd->cfq_group_idle;
2327 else
2328 return;
2329 }
2330
2331 /*
2332 * still active requests from this queue, don't idle
2333 */
2334 if (cfqq->dispatched)
2335 return;
2336
2337 /*
2338 * task has exited, don't wait
2339 */
2340 cic = cfqd->active_cic;
2341 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2342 return;
2343
2344 /*
2345 * If our average think time is larger than the remaining time
2346 * slice, then don't idle. This avoids overrunning the allotted
2347 * time slice.
2348 */
2349 if (sample_valid(cic->ttime.ttime_samples) &&
2350 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2351 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2352 cic->ttime.ttime_mean);
2353 return;
2354 }
2355
2356 /* There are other queues in the group, don't do group idle */
2357 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2358 return;
2359
2360 cfq_mark_cfqq_wait_request(cfqq);
2361
2362 if (group_idle)
2363 sl = cfqd->cfq_group_idle;
2364 else
2365 sl = cfqd->cfq_slice_idle;
2366
2367 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2368 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2369 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2370 group_idle ? 1 : 0);
2371}
2372
2373/*
2374 * Move request from internal lists to the request queue dispatch list.
2375 */
2376static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2377{
2378 struct cfq_data *cfqd = q->elevator->elevator_data;
2379 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2380
2381 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2382
2383 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2384 cfq_remove_request(rq);
2385 cfqq->dispatched++;
2386 (RQ_CFQG(rq))->dispatched++;
2387 elv_dispatch_sort(q, rq);
2388
2389 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2390 cfqq->nr_sectors += blk_rq_sectors(rq);
2391 cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2392}
2393
2394/*
2395 * return expired entry, or NULL to just start from scratch in rbtree
2396 */
2397static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2398{
2399 struct request *rq = NULL;
2400
2401 if (cfq_cfqq_fifo_expire(cfqq))
2402 return NULL;
2403
2404 cfq_mark_cfqq_fifo_expire(cfqq);
2405
2406 if (list_empty(&cfqq->fifo))
2407 return NULL;
2408
2409 rq = rq_entry_fifo(cfqq->fifo.next);
2410 if (time_before(jiffies, rq_fifo_time(rq)))
2411 rq = NULL;
2412
2413 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2414 return rq;
2415}
2416
2417static inline int
2418cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2419{
2420 const int base_rq = cfqd->cfq_slice_async_rq;
2421
2422 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2423
2424 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2425}
2426
2427/*
2428 * Must be called with the queue_lock held.
2429 */
2430static int cfqq_process_refs(struct cfq_queue *cfqq)
2431{
2432 int process_refs, io_refs;
2433
2434 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2435 process_refs = cfqq->ref - io_refs;
2436 BUG_ON(process_refs < 0);
2437 return process_refs;
2438}
2439
2440static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2441{
2442 int process_refs, new_process_refs;
2443 struct cfq_queue *__cfqq;
2444
2445 /*
2446 * If there are no process references on the new_cfqq, then it is
2447 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2448 * chain may have dropped their last reference (not just their
2449 * last process reference).
2450 */
2451 if (!cfqq_process_refs(new_cfqq))
2452 return;
2453
2454 /* Avoid a circular list and skip interim queue merges */
2455 while ((__cfqq = new_cfqq->new_cfqq)) {
2456 if (__cfqq == cfqq)
2457 return;
2458 new_cfqq = __cfqq;
2459 }
2460
2461 process_refs = cfqq_process_refs(cfqq);
2462 new_process_refs = cfqq_process_refs(new_cfqq);
2463 /*
2464 * If the process for the cfqq has gone away, there is no
2465 * sense in merging the queues.
2466 */
2467 if (process_refs == 0 || new_process_refs == 0)
2468 return;
2469
2470 /*
2471 * Merge in the direction of the lesser amount of work.
2472 */
2473 if (new_process_refs >= process_refs) {
2474 cfqq->new_cfqq = new_cfqq;
2475 new_cfqq->ref += process_refs;
2476 } else {
2477 new_cfqq->new_cfqq = cfqq;
2478 cfqq->ref += new_process_refs;
2479 }
2480}
2481
2482static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2483 struct cfq_group *cfqg, enum wl_prio_t prio)
2484{
2485 struct cfq_queue *queue;
2486 int i;
2487 bool key_valid = false;
2488 unsigned long lowest_key = 0;
2489 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2490
2491 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2492 /* select the one with lowest rb_key */
2493 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2494 if (queue &&
2495 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2496 lowest_key = queue->rb_key;
2497 cur_best = i;
2498 key_valid = true;
2499 }
2500 }
2501
2502 return cur_best;
2503}
2504
2505static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2506{
2507 unsigned slice;
2508 unsigned count;
2509 struct cfq_rb_root *st;
2510 unsigned group_slice;
2511 enum wl_prio_t original_prio = cfqd->serving_prio;
2512
2513 /* Choose next priority. RT > BE > IDLE */
2514 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2515 cfqd->serving_prio = RT_WORKLOAD;
2516 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2517 cfqd->serving_prio = BE_WORKLOAD;
2518 else {
2519 cfqd->serving_prio = IDLE_WORKLOAD;
2520 cfqd->workload_expires = jiffies + 1;
2521 return;
2522 }
2523
2524 if (original_prio != cfqd->serving_prio)
2525 goto new_workload;
2526
2527 /*
2528 * For RT and BE, we have to choose also the type
2529 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2530 * expiration time
2531 */
2532 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2533 count = st->count;
2534
2535 /*
2536 * check workload expiration, and that we still have other queues ready
2537 */
2538 if (count && !time_after(jiffies, cfqd->workload_expires))
2539 return;
2540
2541new_workload:
2542 /* otherwise select new workload type */
2543 cfqd->serving_type =
2544 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2545 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2546 count = st->count;
2547
2548 /*
2549 * the workload slice is computed as a fraction of target latency
2550 * proportional to the number of queues in that workload, over
2551 * all the queues in the same priority class
2552 */
2553 group_slice = cfq_group_slice(cfqd, cfqg);
2554
2555 slice = group_slice * count /
2556 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2557 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2558
2559 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2560 unsigned int tmp;
2561
2562 /*
2563 * Async queues are currently system wide. Just taking
2564 * proportion of queues with-in same group will lead to higher
2565 * async ratio system wide as generally root group is going
2566 * to have higher weight. A more accurate thing would be to
2567 * calculate system wide asnc/sync ratio.
2568 */
2569 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2570 tmp = tmp/cfqd->busy_queues;
2571 slice = min_t(unsigned, slice, tmp);
2572
2573 /* async workload slice is scaled down according to
2574 * the sync/async slice ratio. */
2575 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2576 } else
2577 /* sync workload slice is at least 2 * cfq_slice_idle */
2578 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2579
2580 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2581 cfq_log(cfqd, "workload slice:%d", slice);
2582 cfqd->workload_expires = jiffies + slice;
2583}
2584
2585static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2586{
2587 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2588 struct cfq_group *cfqg;
2589
2590 if (RB_EMPTY_ROOT(&st->rb))
2591 return NULL;
2592 cfqg = cfq_rb_first_group(st);
2593 update_min_vdisktime(st);
2594 return cfqg;
2595}
2596
2597static void cfq_choose_cfqg(struct cfq_data *cfqd)
2598{
2599 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2600
2601 cfqd->serving_group = cfqg;
2602
2603 /* Restore the workload type data */
2604 if (cfqg->saved_workload_slice) {
2605 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2606 cfqd->serving_type = cfqg->saved_workload;
2607 cfqd->serving_prio = cfqg->saved_serving_prio;
2608 } else
2609 cfqd->workload_expires = jiffies - 1;
2610
2611 choose_service_tree(cfqd, cfqg);
2612}
2613
2614/*
2615 * Select a queue for service. If we have a current active queue,
2616 * check whether to continue servicing it, or retrieve and set a new one.
2617 */
2618static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2619{
2620 struct cfq_queue *cfqq, *new_cfqq = NULL;
2621
2622 cfqq = cfqd->active_queue;
2623 if (!cfqq)
2624 goto new_queue;
2625
2626 if (!cfqd->rq_queued)
2627 return NULL;
2628
2629 /*
2630 * We were waiting for group to get backlogged. Expire the queue
2631 */
2632 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2633 goto expire;
2634
2635 /*
2636 * The active queue has run out of time, expire it and select new.
2637 */
2638 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2639 /*
2640 * If slice had not expired at the completion of last request
2641 * we might not have turned on wait_busy flag. Don't expire
2642 * the queue yet. Allow the group to get backlogged.
2643 *
2644 * The very fact that we have used the slice, that means we
2645 * have been idling all along on this queue and it should be
2646 * ok to wait for this request to complete.
2647 */
2648 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2649 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2650 cfqq = NULL;
2651 goto keep_queue;
2652 } else
2653 goto check_group_idle;
2654 }
2655
2656 /*
2657 * The active queue has requests and isn't expired, allow it to
2658 * dispatch.
2659 */
2660 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2661 goto keep_queue;
2662
2663 /*
2664 * If another queue has a request waiting within our mean seek
2665 * distance, let it run. The expire code will check for close
2666 * cooperators and put the close queue at the front of the service
2667 * tree. If possible, merge the expiring queue with the new cfqq.
2668 */
2669 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2670 if (new_cfqq) {
2671 if (!cfqq->new_cfqq)
2672 cfq_setup_merge(cfqq, new_cfqq);
2673 goto expire;
2674 }
2675
2676 /*
2677 * No requests pending. If the active queue still has requests in
2678 * flight or is idling for a new request, allow either of these
2679 * conditions to happen (or time out) before selecting a new queue.
2680 */
2681 if (timer_pending(&cfqd->idle_slice_timer)) {
2682 cfqq = NULL;
2683 goto keep_queue;
2684 }
2685
2686 /*
2687 * This is a deep seek queue, but the device is much faster than
2688 * the queue can deliver, don't idle
2689 **/
2690 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2691 (cfq_cfqq_slice_new(cfqq) ||
2692 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2693 cfq_clear_cfqq_deep(cfqq);
2694 cfq_clear_cfqq_idle_window(cfqq);
2695 }
2696
2697 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2698 cfqq = NULL;
2699 goto keep_queue;
2700 }
2701
2702 /*
2703 * If group idle is enabled and there are requests dispatched from
2704 * this group, wait for requests to complete.
2705 */
2706check_group_idle:
2707 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2708 cfqq->cfqg->dispatched &&
2709 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2710 cfqq = NULL;
2711 goto keep_queue;
2712 }
2713
2714expire:
2715 cfq_slice_expired(cfqd, 0);
2716new_queue:
2717 /*
2718 * Current queue expired. Check if we have to switch to a new
2719 * service tree
2720 */
2721 if (!new_cfqq)
2722 cfq_choose_cfqg(cfqd);
2723
2724 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2725keep_queue:
2726 return cfqq;
2727}
2728
2729static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2730{
2731 int dispatched = 0;
2732
2733 while (cfqq->next_rq) {
2734 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2735 dispatched++;
2736 }
2737
2738 BUG_ON(!list_empty(&cfqq->fifo));
2739
2740 /* By default cfqq is not expired if it is empty. Do it explicitly */
2741 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2742 return dispatched;
2743}
2744
2745/*
2746 * Drain our current requests. Used for barriers and when switching
2747 * io schedulers on-the-fly.
2748 */
2749static int cfq_forced_dispatch(struct cfq_data *cfqd)
2750{
2751 struct cfq_queue *cfqq;
2752 int dispatched = 0;
2753
2754 /* Expire the timeslice of the current active queue first */
2755 cfq_slice_expired(cfqd, 0);
2756 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2757 __cfq_set_active_queue(cfqd, cfqq);
2758 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2759 }
2760
2761 BUG_ON(cfqd->busy_queues);
2762
2763 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2764 return dispatched;
2765}
2766
2767static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2768 struct cfq_queue *cfqq)
2769{
2770 /* the queue hasn't finished any request, can't estimate */
2771 if (cfq_cfqq_slice_new(cfqq))
2772 return true;
2773 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2774 cfqq->slice_end))
2775 return true;
2776
2777 return false;
2778}
2779
2780static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2781{
2782 unsigned int max_dispatch;
2783
2784 /*
2785 * Drain async requests before we start sync IO
2786 */
2787 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2788 return false;
2789
2790 /*
2791 * If this is an async queue and we have sync IO in flight, let it wait
2792 */
2793 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2794 return false;
2795
2796 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2797 if (cfq_class_idle(cfqq))
2798 max_dispatch = 1;
2799
2800 /*
2801 * Does this cfqq already have too much IO in flight?
2802 */
2803 if (cfqq->dispatched >= max_dispatch) {
2804 bool promote_sync = false;
2805 /*
2806 * idle queue must always only have a single IO in flight
2807 */
2808 if (cfq_class_idle(cfqq))
2809 return false;
2810
2811 /*
2812 * If there is only one sync queue
2813 * we can ignore async queue here and give the sync
2814 * queue no dispatch limit. The reason is a sync queue can
2815 * preempt async queue, limiting the sync queue doesn't make
2816 * sense. This is useful for aiostress test.
2817 */
2818 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2819 promote_sync = true;
2820
2821 /*
2822 * We have other queues, don't allow more IO from this one
2823 */
2824 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2825 !promote_sync)
2826 return false;
2827
2828 /*
2829 * Sole queue user, no limit
2830 */
2831 if (cfqd->busy_queues == 1 || promote_sync)
2832 max_dispatch = -1;
2833 else
2834 /*
2835 * Normally we start throttling cfqq when cfq_quantum/2
2836 * requests have been dispatched. But we can drive
2837 * deeper queue depths at the beginning of slice
2838 * subjected to upper limit of cfq_quantum.
2839 * */
2840 max_dispatch = cfqd->cfq_quantum;
2841 }
2842
2843 /*
2844 * Async queues must wait a bit before being allowed dispatch.
2845 * We also ramp up the dispatch depth gradually for async IO,
2846 * based on the last sync IO we serviced
2847 */
2848 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2849 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2850 unsigned int depth;
2851
2852 depth = last_sync / cfqd->cfq_slice[1];
2853 if (!depth && !cfqq->dispatched)
2854 depth = 1;
2855 if (depth < max_dispatch)
2856 max_dispatch = depth;
2857 }
2858
2859 /*
2860 * If we're below the current max, allow a dispatch
2861 */
2862 return cfqq->dispatched < max_dispatch;
2863}
2864
2865/*
2866 * Dispatch a request from cfqq, moving them to the request queue
2867 * dispatch list.
2868 */
2869static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2870{
2871 struct request *rq;
2872
2873 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2874
2875 if (!cfq_may_dispatch(cfqd, cfqq))
2876 return false;
2877
2878 /*
2879 * follow expired path, else get first next available
2880 */
2881 rq = cfq_check_fifo(cfqq);
2882 if (!rq)
2883 rq = cfqq->next_rq;
2884
2885 /*
2886 * insert request into driver dispatch list
2887 */
2888 cfq_dispatch_insert(cfqd->queue, rq);
2889
2890 if (!cfqd->active_cic) {
2891 struct cfq_io_cq *cic = RQ_CIC(rq);
2892
2893 atomic_long_inc(&cic->icq.ioc->refcount);
2894 cfqd->active_cic = cic;
2895 }
2896
2897 return true;
2898}
2899
2900/*
2901 * Find the cfqq that we need to service and move a request from that to the
2902 * dispatch list
2903 */
2904static int cfq_dispatch_requests(struct request_queue *q, int force)
2905{
2906 struct cfq_data *cfqd = q->elevator->elevator_data;
2907 struct cfq_queue *cfqq;
2908
2909 if (!cfqd->busy_queues)
2910 return 0;
2911
2912 if (unlikely(force))
2913 return cfq_forced_dispatch(cfqd);
2914
2915 cfqq = cfq_select_queue(cfqd);
2916 if (!cfqq)
2917 return 0;
2918
2919 /*
2920 * Dispatch a request from this cfqq, if it is allowed
2921 */
2922 if (!cfq_dispatch_request(cfqd, cfqq))
2923 return 0;
2924
2925 cfqq->slice_dispatch++;
2926 cfq_clear_cfqq_must_dispatch(cfqq);
2927
2928 /*
2929 * expire an async queue immediately if it has used up its slice. idle
2930 * queue always expire after 1 dispatch round.
2931 */
2932 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2933 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2934 cfq_class_idle(cfqq))) {
2935 cfqq->slice_end = jiffies + 1;
2936 cfq_slice_expired(cfqd, 0);
2937 }
2938
2939 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2940 return 1;
2941}
2942
2943/*
2944 * task holds one reference to the queue, dropped when task exits. each rq
2945 * in-flight on this queue also holds a reference, dropped when rq is freed.
2946 *
2947 * Each cfq queue took a reference on the parent group. Drop it now.
2948 * queue lock must be held here.
2949 */
2950static void cfq_put_queue(struct cfq_queue *cfqq)
2951{
2952 struct cfq_data *cfqd = cfqq->cfqd;
2953 struct cfq_group *cfqg;
2954
2955 BUG_ON(cfqq->ref <= 0);
2956
2957 cfqq->ref--;
2958 if (cfqq->ref)
2959 return;
2960
2961 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2962 BUG_ON(rb_first(&cfqq->sort_list));
2963 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2964 cfqg = cfqq->cfqg;
2965
2966 if (unlikely(cfqd->active_queue == cfqq)) {
2967 __cfq_slice_expired(cfqd, cfqq, 0);
2968 cfq_schedule_dispatch(cfqd);
2969 }
2970
2971 BUG_ON(cfq_cfqq_on_rr(cfqq));
2972 kmem_cache_free(cfq_pool, cfqq);
2973 cfqg_put(cfqg);
2974}
2975
2976static void cfq_put_cooperator(struct cfq_queue *cfqq)
2977{
2978 struct cfq_queue *__cfqq, *next;
2979
2980 /*
2981 * If this queue was scheduled to merge with another queue, be
2982 * sure to drop the reference taken on that queue (and others in
2983 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2984 */
2985 __cfqq = cfqq->new_cfqq;
2986 while (__cfqq) {
2987 if (__cfqq == cfqq) {
2988 WARN(1, "cfqq->new_cfqq loop detected\n");
2989 break;
2990 }
2991 next = __cfqq->new_cfqq;
2992 cfq_put_queue(__cfqq);
2993 __cfqq = next;
2994 }
2995}
2996
2997static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2998{
2999 if (unlikely(cfqq == cfqd->active_queue)) {
3000 __cfq_slice_expired(cfqd, cfqq, 0);
3001 cfq_schedule_dispatch(cfqd);
3002 }
3003
3004 cfq_put_cooperator(cfqq);
3005
3006 cfq_put_queue(cfqq);
3007}
3008
3009static void cfq_init_icq(struct io_cq *icq)
3010{
3011 struct cfq_io_cq *cic = icq_to_cic(icq);
3012
3013 cic->ttime.last_end_request = jiffies;
3014}
3015
3016static void cfq_exit_icq(struct io_cq *icq)
3017{
3018 struct cfq_io_cq *cic = icq_to_cic(icq);
3019 struct cfq_data *cfqd = cic_to_cfqd(cic);
3020
3021 if (cic->cfqq[BLK_RW_ASYNC]) {
3022 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3023 cic->cfqq[BLK_RW_ASYNC] = NULL;
3024 }
3025
3026 if (cic->cfqq[BLK_RW_SYNC]) {
3027 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3028 cic->cfqq[BLK_RW_SYNC] = NULL;
3029 }
3030}
3031
3032static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3033{
3034 struct task_struct *tsk = current;
3035 int ioprio_class;
3036
3037 if (!cfq_cfqq_prio_changed(cfqq))
3038 return;
3039
3040 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3041 switch (ioprio_class) {
3042 default:
3043 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3044 case IOPRIO_CLASS_NONE:
3045 /*
3046 * no prio set, inherit CPU scheduling settings
3047 */
3048 cfqq->ioprio = task_nice_ioprio(tsk);
3049 cfqq->ioprio_class = task_nice_ioclass(tsk);
3050 break;
3051 case IOPRIO_CLASS_RT:
3052 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3053 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3054 break;
3055 case IOPRIO_CLASS_BE:
3056 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3057 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3058 break;
3059 case IOPRIO_CLASS_IDLE:
3060 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3061 cfqq->ioprio = 7;
3062 cfq_clear_cfqq_idle_window(cfqq);
3063 break;
3064 }
3065
3066 /*
3067 * keep track of original prio settings in case we have to temporarily
3068 * elevate the priority of this queue
3069 */
3070 cfqq->org_ioprio = cfqq->ioprio;
3071 cfq_clear_cfqq_prio_changed(cfqq);
3072}
3073
3074static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3075{
3076 int ioprio = cic->icq.ioc->ioprio;
3077 struct cfq_data *cfqd = cic_to_cfqd(cic);
3078 struct cfq_queue *cfqq;
3079
3080 /*
3081 * Check whether ioprio has changed. The condition may trigger
3082 * spuriously on a newly created cic but there's no harm.
3083 */
3084 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3085 return;
3086
3087 cfqq = cic->cfqq[BLK_RW_ASYNC];
3088 if (cfqq) {
3089 struct cfq_queue *new_cfqq;
3090 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3091 GFP_ATOMIC);
3092 if (new_cfqq) {
3093 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3094 cfq_put_queue(cfqq);
3095 }
3096 }
3097
3098 cfqq = cic->cfqq[BLK_RW_SYNC];
3099 if (cfqq)
3100 cfq_mark_cfqq_prio_changed(cfqq);
3101
3102 cic->ioprio = ioprio;
3103}
3104
3105static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3106 pid_t pid, bool is_sync)
3107{
3108 RB_CLEAR_NODE(&cfqq->rb_node);
3109 RB_CLEAR_NODE(&cfqq->p_node);
3110 INIT_LIST_HEAD(&cfqq->fifo);
3111
3112 cfqq->ref = 0;
3113 cfqq->cfqd = cfqd;
3114
3115 cfq_mark_cfqq_prio_changed(cfqq);
3116
3117 if (is_sync) {
3118 if (!cfq_class_idle(cfqq))
3119 cfq_mark_cfqq_idle_window(cfqq);
3120 cfq_mark_cfqq_sync(cfqq);
3121 }
3122 cfqq->pid = pid;
3123}
3124
3125#ifdef CONFIG_CFQ_GROUP_IOSCHED
3126static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3127{
3128 struct cfq_data *cfqd = cic_to_cfqd(cic);
3129 struct cfq_queue *sync_cfqq;
3130 uint64_t id;
3131
3132 rcu_read_lock();
3133 id = bio_blkio_cgroup(bio)->id;
3134 rcu_read_unlock();
3135
3136 /*
3137 * Check whether blkcg has changed. The condition may trigger
3138 * spuriously on a newly created cic but there's no harm.
3139 */
3140 if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3141 return;
3142
3143 sync_cfqq = cic_to_cfqq(cic, 1);
3144 if (sync_cfqq) {
3145 /*
3146 * Drop reference to sync queue. A new sync queue will be
3147 * assigned in new group upon arrival of a fresh request.
3148 */
3149 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3150 cic_set_cfqq(cic, NULL, 1);
3151 cfq_put_queue(sync_cfqq);
3152 }
3153
3154 cic->blkcg_id = id;
3155}
3156#else
3157static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3158#endif /* CONFIG_CFQ_GROUP_IOSCHED */
3159
3160static struct cfq_queue *
3161cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3162 struct bio *bio, gfp_t gfp_mask)
3163{
3164 struct blkio_cgroup *blkcg;
3165 struct cfq_queue *cfqq, *new_cfqq = NULL;
3166 struct cfq_group *cfqg;
3167
3168retry:
3169 rcu_read_lock();
3170
3171 blkcg = bio_blkio_cgroup(bio);
3172 cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3173 cfqq = cic_to_cfqq(cic, is_sync);
3174
3175 /*
3176 * Always try a new alloc if we fell back to the OOM cfqq
3177 * originally, since it should just be a temporary situation.
3178 */
3179 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3180 cfqq = NULL;
3181 if (new_cfqq) {
3182 cfqq = new_cfqq;
3183 new_cfqq = NULL;
3184 } else if (gfp_mask & __GFP_WAIT) {
3185 rcu_read_unlock();
3186 spin_unlock_irq(cfqd->queue->queue_lock);
3187 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3188 gfp_mask | __GFP_ZERO,
3189 cfqd->queue->node);
3190 spin_lock_irq(cfqd->queue->queue_lock);
3191 if (new_cfqq)
3192 goto retry;
3193 } else {
3194 cfqq = kmem_cache_alloc_node(cfq_pool,
3195 gfp_mask | __GFP_ZERO,
3196 cfqd->queue->node);
3197 }
3198
3199 if (cfqq) {
3200 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3201 cfq_init_prio_data(cfqq, cic);
3202 cfq_link_cfqq_cfqg(cfqq, cfqg);
3203 cfq_log_cfqq(cfqd, cfqq, "alloced");
3204 } else
3205 cfqq = &cfqd->oom_cfqq;
3206 }
3207
3208 if (new_cfqq)
3209 kmem_cache_free(cfq_pool, new_cfqq);
3210
3211 rcu_read_unlock();
3212 return cfqq;
3213}
3214
3215static struct cfq_queue **
3216cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3217{
3218 switch (ioprio_class) {
3219 case IOPRIO_CLASS_RT:
3220 return &cfqd->async_cfqq[0][ioprio];
3221 case IOPRIO_CLASS_NONE:
3222 ioprio = IOPRIO_NORM;
3223 /* fall through */
3224 case IOPRIO_CLASS_BE:
3225 return &cfqd->async_cfqq[1][ioprio];
3226 case IOPRIO_CLASS_IDLE:
3227 return &cfqd->async_idle_cfqq;
3228 default:
3229 BUG();
3230 }
3231}
3232
3233static struct cfq_queue *
3234cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3235 struct bio *bio, gfp_t gfp_mask)
3236{
3237 const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3238 const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3239 struct cfq_queue **async_cfqq = NULL;
3240 struct cfq_queue *cfqq = NULL;
3241
3242 if (!is_sync) {
3243 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3244 cfqq = *async_cfqq;
3245 }
3246
3247 if (!cfqq)
3248 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3249
3250 /*
3251 * pin the queue now that it's allocated, scheduler exit will prune it
3252 */
3253 if (!is_sync && !(*async_cfqq)) {
3254 cfqq->ref++;
3255 *async_cfqq = cfqq;
3256 }
3257
3258 cfqq->ref++;
3259 return cfqq;
3260}
3261
3262static void
3263__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3264{
3265 unsigned long elapsed = jiffies - ttime->last_end_request;
3266 elapsed = min(elapsed, 2UL * slice_idle);
3267
3268 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3269 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3270 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3271}
3272
3273static void
3274cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3275 struct cfq_io_cq *cic)
3276{
3277 if (cfq_cfqq_sync(cfqq)) {
3278 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3279 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3280 cfqd->cfq_slice_idle);
3281 }
3282#ifdef CONFIG_CFQ_GROUP_IOSCHED
3283 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3284#endif
3285}
3286
3287static void
3288cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3289 struct request *rq)
3290{
3291 sector_t sdist = 0;
3292 sector_t n_sec = blk_rq_sectors(rq);
3293 if (cfqq->last_request_pos) {
3294 if (cfqq->last_request_pos < blk_rq_pos(rq))
3295 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3296 else
3297 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3298 }
3299
3300 cfqq->seek_history <<= 1;
3301 if (blk_queue_nonrot(cfqd->queue))
3302 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3303 else
3304 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3305}
3306
3307/*
3308 * Disable idle window if the process thinks too long or seeks so much that
3309 * it doesn't matter
3310 */
3311static void
3312cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3313 struct cfq_io_cq *cic)
3314{
3315 int old_idle, enable_idle;
3316
3317 /*
3318 * Don't idle for async or idle io prio class
3319 */
3320 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3321 return;
3322
3323 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3324
3325 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3326 cfq_mark_cfqq_deep(cfqq);
3327
3328 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3329 enable_idle = 0;
3330 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3331 !cfqd->cfq_slice_idle ||
3332 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3333 enable_idle = 0;
3334 else if (sample_valid(cic->ttime.ttime_samples)) {
3335 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3336 enable_idle = 0;
3337 else
3338 enable_idle = 1;
3339 }
3340
3341 if (old_idle != enable_idle) {
3342 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3343 if (enable_idle)
3344 cfq_mark_cfqq_idle_window(cfqq);
3345 else
3346 cfq_clear_cfqq_idle_window(cfqq);
3347 }
3348}
3349
3350/*
3351 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3352 * no or if we aren't sure, a 1 will cause a preempt.
3353 */
3354static bool
3355cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3356 struct request *rq)
3357{
3358 struct cfq_queue *cfqq;
3359
3360 cfqq = cfqd->active_queue;
3361 if (!cfqq)
3362 return false;
3363
3364 if (cfq_class_idle(new_cfqq))
3365 return false;
3366
3367 if (cfq_class_idle(cfqq))
3368 return true;
3369
3370 /*
3371 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3372 */
3373 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3374 return false;
3375
3376 /*
3377 * if the new request is sync, but the currently running queue is
3378 * not, let the sync request have priority.
3379 */
3380 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3381 return true;
3382
3383 if (new_cfqq->cfqg != cfqq->cfqg)
3384 return false;
3385
3386 if (cfq_slice_used(cfqq))
3387 return true;
3388
3389 /* Allow preemption only if we are idling on sync-noidle tree */
3390 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3391 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3392 new_cfqq->service_tree->count == 2 &&
3393 RB_EMPTY_ROOT(&cfqq->sort_list))
3394 return true;
3395
3396 /*
3397 * So both queues are sync. Let the new request get disk time if
3398 * it's a metadata request and the current queue is doing regular IO.
3399 */
3400 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3401 return true;
3402
3403 /*
3404 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3405 */
3406 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3407 return true;
3408
3409 /* An idle queue should not be idle now for some reason */
3410 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3411 return true;
3412
3413 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3414 return false;
3415
3416 /*
3417 * if this request is as-good as one we would expect from the
3418 * current cfqq, let it preempt
3419 */
3420 if (cfq_rq_close(cfqd, cfqq, rq))
3421 return true;
3422
3423 return false;
3424}
3425
3426/*
3427 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3428 * let it have half of its nominal slice.
3429 */
3430static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3431{
3432 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3433
3434 cfq_log_cfqq(cfqd, cfqq, "preempt");
3435 cfq_slice_expired(cfqd, 1);
3436
3437 /*
3438 * workload type is changed, don't save slice, otherwise preempt
3439 * doesn't happen
3440 */
3441 if (old_type != cfqq_type(cfqq))
3442 cfqq->cfqg->saved_workload_slice = 0;
3443
3444 /*
3445 * Put the new queue at the front of the of the current list,
3446 * so we know that it will be selected next.
3447 */
3448 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3449
3450 cfq_service_tree_add(cfqd, cfqq, 1);
3451
3452 cfqq->slice_end = 0;
3453 cfq_mark_cfqq_slice_new(cfqq);
3454}
3455
3456/*
3457 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3458 * something we should do about it
3459 */
3460static void
3461cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3462 struct request *rq)
3463{
3464 struct cfq_io_cq *cic = RQ_CIC(rq);
3465
3466 cfqd->rq_queued++;
3467 if (rq->cmd_flags & REQ_PRIO)
3468 cfqq->prio_pending++;
3469
3470 cfq_update_io_thinktime(cfqd, cfqq, cic);
3471 cfq_update_io_seektime(cfqd, cfqq, rq);
3472 cfq_update_idle_window(cfqd, cfqq, cic);
3473
3474 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3475
3476 if (cfqq == cfqd->active_queue) {
3477 /*
3478 * Remember that we saw a request from this process, but
3479 * don't start queuing just yet. Otherwise we risk seeing lots
3480 * of tiny requests, because we disrupt the normal plugging
3481 * and merging. If the request is already larger than a single
3482 * page, let it rip immediately. For that case we assume that
3483 * merging is already done. Ditto for a busy system that
3484 * has other work pending, don't risk delaying until the
3485 * idle timer unplug to continue working.
3486 */
3487 if (cfq_cfqq_wait_request(cfqq)) {
3488 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3489 cfqd->busy_queues > 1) {
3490 cfq_del_timer(cfqd, cfqq);
3491 cfq_clear_cfqq_wait_request(cfqq);
3492 __blk_run_queue(cfqd->queue);
3493 } else {
3494 cfqg_stats_update_idle_time(cfqq->cfqg);
3495 cfq_mark_cfqq_must_dispatch(cfqq);
3496 }
3497 }
3498 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3499 /*
3500 * not the active queue - expire current slice if it is
3501 * idle and has expired it's mean thinktime or this new queue
3502 * has some old slice time left and is of higher priority or
3503 * this new queue is RT and the current one is BE
3504 */
3505 cfq_preempt_queue(cfqd, cfqq);
3506 __blk_run_queue(cfqd->queue);
3507 }
3508}
3509
3510static void cfq_insert_request(struct request_queue *q, struct request *rq)
3511{
3512 struct cfq_data *cfqd = q->elevator->elevator_data;
3513 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3514
3515 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3516 cfq_init_prio_data(cfqq, RQ_CIC(rq));
3517
3518 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3519 list_add_tail(&rq->queuelist, &cfqq->fifo);
3520 cfq_add_rq_rb(rq);
3521 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3522 rq->cmd_flags);
3523 cfq_rq_enqueued(cfqd, cfqq, rq);
3524}
3525
3526/*
3527 * Update hw_tag based on peak queue depth over 50 samples under
3528 * sufficient load.
3529 */
3530static void cfq_update_hw_tag(struct cfq_data *cfqd)
3531{
3532 struct cfq_queue *cfqq = cfqd->active_queue;
3533
3534 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3535 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3536
3537 if (cfqd->hw_tag == 1)
3538 return;
3539
3540 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3541 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3542 return;
3543
3544 /*
3545 * If active queue hasn't enough requests and can idle, cfq might not
3546 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3547 * case
3548 */
3549 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3550 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3551 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3552 return;
3553
3554 if (cfqd->hw_tag_samples++ < 50)
3555 return;
3556
3557 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3558 cfqd->hw_tag = 1;
3559 else
3560 cfqd->hw_tag = 0;
3561}
3562
3563static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3564{
3565 struct cfq_io_cq *cic = cfqd->active_cic;
3566
3567 /* If the queue already has requests, don't wait */
3568 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3569 return false;
3570
3571 /* If there are other queues in the group, don't wait */
3572 if (cfqq->cfqg->nr_cfqq > 1)
3573 return false;
3574
3575 /* the only queue in the group, but think time is big */
3576 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3577 return false;
3578
3579 if (cfq_slice_used(cfqq))
3580 return true;
3581
3582 /* if slice left is less than think time, wait busy */
3583 if (cic && sample_valid(cic->ttime.ttime_samples)
3584 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3585 return true;
3586
3587 /*
3588 * If think times is less than a jiffy than ttime_mean=0 and above
3589 * will not be true. It might happen that slice has not expired yet
3590 * but will expire soon (4-5 ns) during select_queue(). To cover the
3591 * case where think time is less than a jiffy, mark the queue wait
3592 * busy if only 1 jiffy is left in the slice.
3593 */
3594 if (cfqq->slice_end - jiffies == 1)
3595 return true;
3596
3597 return false;
3598}
3599
3600static void cfq_completed_request(struct request_queue *q, struct request *rq)
3601{
3602 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3603 struct cfq_data *cfqd = cfqq->cfqd;
3604 const int sync = rq_is_sync(rq);
3605 unsigned long now;
3606
3607 now = jiffies;
3608 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3609 !!(rq->cmd_flags & REQ_NOIDLE));
3610
3611 cfq_update_hw_tag(cfqd);
3612
3613 WARN_ON(!cfqd->rq_in_driver);
3614 WARN_ON(!cfqq->dispatched);
3615 cfqd->rq_in_driver--;
3616 cfqq->dispatched--;
3617 (RQ_CFQG(rq))->dispatched--;
3618 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
3619 rq_io_start_time_ns(rq), rq->cmd_flags);
3620
3621 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3622
3623 if (sync) {
3624 struct cfq_rb_root *service_tree;
3625
3626 RQ_CIC(rq)->ttime.last_end_request = now;
3627
3628 if (cfq_cfqq_on_rr(cfqq))
3629 service_tree = cfqq->service_tree;
3630 else
3631 service_tree = service_tree_for(cfqq->cfqg,
3632 cfqq_prio(cfqq), cfqq_type(cfqq));
3633 service_tree->ttime.last_end_request = now;
3634 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3635 cfqd->last_delayed_sync = now;
3636 }
3637
3638#ifdef CONFIG_CFQ_GROUP_IOSCHED
3639 cfqq->cfqg->ttime.last_end_request = now;
3640#endif
3641
3642 /*
3643 * If this is the active queue, check if it needs to be expired,
3644 * or if we want to idle in case it has no pending requests.
3645 */
3646 if (cfqd->active_queue == cfqq) {
3647 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3648
3649 if (cfq_cfqq_slice_new(cfqq)) {
3650 cfq_set_prio_slice(cfqd, cfqq);
3651 cfq_clear_cfqq_slice_new(cfqq);
3652 }
3653
3654 /*
3655 * Should we wait for next request to come in before we expire
3656 * the queue.
3657 */
3658 if (cfq_should_wait_busy(cfqd, cfqq)) {
3659 unsigned long extend_sl = cfqd->cfq_slice_idle;
3660 if (!cfqd->cfq_slice_idle)
3661 extend_sl = cfqd->cfq_group_idle;
3662 cfqq->slice_end = jiffies + extend_sl;
3663 cfq_mark_cfqq_wait_busy(cfqq);
3664 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3665 }
3666
3667 /*
3668 * Idling is not enabled on:
3669 * - expired queues
3670 * - idle-priority queues
3671 * - async queues
3672 * - queues with still some requests queued
3673 * - when there is a close cooperator
3674 */
3675 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3676 cfq_slice_expired(cfqd, 1);
3677 else if (sync && cfqq_empty &&
3678 !cfq_close_cooperator(cfqd, cfqq)) {
3679 cfq_arm_slice_timer(cfqd);
3680 }
3681 }
3682
3683 if (!cfqd->rq_in_driver)
3684 cfq_schedule_dispatch(cfqd);
3685}
3686
3687static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3688{
3689 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3690 cfq_mark_cfqq_must_alloc_slice(cfqq);
3691 return ELV_MQUEUE_MUST;
3692 }
3693
3694 return ELV_MQUEUE_MAY;
3695}
3696
3697static int cfq_may_queue(struct request_queue *q, int rw)
3698{
3699 struct cfq_data *cfqd = q->elevator->elevator_data;
3700 struct task_struct *tsk = current;
3701 struct cfq_io_cq *cic;
3702 struct cfq_queue *cfqq;
3703
3704 /*
3705 * don't force setup of a queue from here, as a call to may_queue
3706 * does not necessarily imply that a request actually will be queued.
3707 * so just lookup a possibly existing queue, or return 'may queue'
3708 * if that fails
3709 */
3710 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3711 if (!cic)
3712 return ELV_MQUEUE_MAY;
3713
3714 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3715 if (cfqq) {
3716 cfq_init_prio_data(cfqq, cic);
3717
3718 return __cfq_may_queue(cfqq);
3719 }
3720
3721 return ELV_MQUEUE_MAY;
3722}
3723
3724/*
3725 * queue lock held here
3726 */
3727static void cfq_put_request(struct request *rq)
3728{
3729 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3730
3731 if (cfqq) {
3732 const int rw = rq_data_dir(rq);
3733
3734 BUG_ON(!cfqq->allocated[rw]);
3735 cfqq->allocated[rw]--;
3736
3737 /* Put down rq reference on cfqg */
3738 cfqg_put(RQ_CFQG(rq));
3739 rq->elv.priv[0] = NULL;
3740 rq->elv.priv[1] = NULL;
3741
3742 cfq_put_queue(cfqq);
3743 }
3744}
3745
3746static struct cfq_queue *
3747cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3748 struct cfq_queue *cfqq)
3749{
3750 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3751 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3752 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3753 cfq_put_queue(cfqq);
3754 return cic_to_cfqq(cic, 1);
3755}
3756
3757/*
3758 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3759 * was the last process referring to said cfqq.
3760 */
3761static struct cfq_queue *
3762split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3763{
3764 if (cfqq_process_refs(cfqq) == 1) {
3765 cfqq->pid = current->pid;
3766 cfq_clear_cfqq_coop(cfqq);
3767 cfq_clear_cfqq_split_coop(cfqq);
3768 return cfqq;
3769 }
3770
3771 cic_set_cfqq(cic, NULL, 1);
3772
3773 cfq_put_cooperator(cfqq);
3774
3775 cfq_put_queue(cfqq);
3776 return NULL;
3777}
3778/*
3779 * Allocate cfq data structures associated with this request.
3780 */
3781static int
3782cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
3783 gfp_t gfp_mask)
3784{
3785 struct cfq_data *cfqd = q->elevator->elevator_data;
3786 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
3787 const int rw = rq_data_dir(rq);
3788 const bool is_sync = rq_is_sync(rq);
3789 struct cfq_queue *cfqq;
3790
3791 might_sleep_if(gfp_mask & __GFP_WAIT);
3792
3793 spin_lock_irq(q->queue_lock);
3794
3795 check_ioprio_changed(cic, bio);
3796 check_blkcg_changed(cic, bio);
3797new_queue:
3798 cfqq = cic_to_cfqq(cic, is_sync);
3799 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3800 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
3801 cic_set_cfqq(cic, cfqq, is_sync);
3802 } else {
3803 /*
3804 * If the queue was seeky for too long, break it apart.
3805 */
3806 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3807 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3808 cfqq = split_cfqq(cic, cfqq);
3809 if (!cfqq)
3810 goto new_queue;
3811 }
3812
3813 /*
3814 * Check to see if this queue is scheduled to merge with
3815 * another, closely cooperating queue. The merging of
3816 * queues happens here as it must be done in process context.
3817 * The reference on new_cfqq was taken in merge_cfqqs.
3818 */
3819 if (cfqq->new_cfqq)
3820 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3821 }
3822
3823 cfqq->allocated[rw]++;
3824
3825 cfqq->ref++;
3826 cfqg_get(cfqq->cfqg);
3827 rq->elv.priv[0] = cfqq;
3828 rq->elv.priv[1] = cfqq->cfqg;
3829 spin_unlock_irq(q->queue_lock);
3830 return 0;
3831}
3832
3833static void cfq_kick_queue(struct work_struct *work)
3834{
3835 struct cfq_data *cfqd =
3836 container_of(work, struct cfq_data, unplug_work);
3837 struct request_queue *q = cfqd->queue;
3838
3839 spin_lock_irq(q->queue_lock);
3840 __blk_run_queue(cfqd->queue);
3841 spin_unlock_irq(q->queue_lock);
3842}
3843
3844/*
3845 * Timer running if the active_queue is currently idling inside its time slice
3846 */
3847static void cfq_idle_slice_timer(unsigned long data)
3848{
3849 struct cfq_data *cfqd = (struct cfq_data *) data;
3850 struct cfq_queue *cfqq;
3851 unsigned long flags;
3852 int timed_out = 1;
3853
3854 cfq_log(cfqd, "idle timer fired");
3855
3856 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3857
3858 cfqq = cfqd->active_queue;
3859 if (cfqq) {
3860 timed_out = 0;
3861
3862 /*
3863 * We saw a request before the queue expired, let it through
3864 */
3865 if (cfq_cfqq_must_dispatch(cfqq))
3866 goto out_kick;
3867
3868 /*
3869 * expired
3870 */
3871 if (cfq_slice_used(cfqq))
3872 goto expire;
3873
3874 /*
3875 * only expire and reinvoke request handler, if there are
3876 * other queues with pending requests
3877 */
3878 if (!cfqd->busy_queues)
3879 goto out_cont;
3880
3881 /*
3882 * not expired and it has a request pending, let it dispatch
3883 */
3884 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3885 goto out_kick;
3886
3887 /*
3888 * Queue depth flag is reset only when the idle didn't succeed
3889 */
3890 cfq_clear_cfqq_deep(cfqq);
3891 }
3892expire:
3893 cfq_slice_expired(cfqd, timed_out);
3894out_kick:
3895 cfq_schedule_dispatch(cfqd);
3896out_cont:
3897 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3898}
3899
3900static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3901{
3902 del_timer_sync(&cfqd->idle_slice_timer);
3903 cancel_work_sync(&cfqd->unplug_work);
3904}
3905
3906static void cfq_put_async_queues(struct cfq_data *cfqd)
3907{
3908 int i;
3909
3910 for (i = 0; i < IOPRIO_BE_NR; i++) {
3911 if (cfqd->async_cfqq[0][i])
3912 cfq_put_queue(cfqd->async_cfqq[0][i]);
3913 if (cfqd->async_cfqq[1][i])
3914 cfq_put_queue(cfqd->async_cfqq[1][i]);
3915 }
3916
3917 if (cfqd->async_idle_cfqq)
3918 cfq_put_queue(cfqd->async_idle_cfqq);
3919}
3920
3921static void cfq_exit_queue(struct elevator_queue *e)
3922{
3923 struct cfq_data *cfqd = e->elevator_data;
3924 struct request_queue *q = cfqd->queue;
3925
3926 cfq_shutdown_timer_wq(cfqd);
3927
3928 spin_lock_irq(q->queue_lock);
3929
3930 if (cfqd->active_queue)
3931 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3932
3933 cfq_put_async_queues(cfqd);
3934
3935 spin_unlock_irq(q->queue_lock);
3936
3937 cfq_shutdown_timer_wq(cfqd);
3938
3939#ifndef CONFIG_CFQ_GROUP_IOSCHED
3940 kfree(cfqd->root_group);
3941#endif
3942 update_root_blkg_pd(q, BLKIO_POLICY_PROP);
3943 kfree(cfqd);
3944}
3945
3946static int cfq_init_queue(struct request_queue *q)
3947{
3948 struct cfq_data *cfqd;
3949 struct blkio_group *blkg __maybe_unused;
3950 int i;
3951
3952 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3953 if (!cfqd)
3954 return -ENOMEM;
3955
3956 cfqd->queue = q;
3957 q->elevator->elevator_data = cfqd;
3958
3959 /* Init root service tree */
3960 cfqd->grp_service_tree = CFQ_RB_ROOT;
3961
3962 /* Init root group and prefer root group over other groups by default */
3963#ifdef CONFIG_CFQ_GROUP_IOSCHED
3964 rcu_read_lock();
3965 spin_lock_irq(q->queue_lock);
3966
3967 blkg = blkg_lookup_create(&blkio_root_cgroup, q, true);
3968 if (!IS_ERR(blkg))
3969 cfqd->root_group = blkg_to_cfqg(blkg);
3970
3971 spin_unlock_irq(q->queue_lock);
3972 rcu_read_unlock();
3973#else
3974 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
3975 GFP_KERNEL, cfqd->queue->node);
3976 if (cfqd->root_group)
3977 cfq_init_cfqg_base(cfqd->root_group);
3978#endif
3979 if (!cfqd->root_group) {
3980 kfree(cfqd);
3981 return -ENOMEM;
3982 }
3983
3984 cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
3985
3986 /*
3987 * Not strictly needed (since RB_ROOT just clears the node and we
3988 * zeroed cfqd on alloc), but better be safe in case someone decides
3989 * to add magic to the rb code
3990 */
3991 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3992 cfqd->prio_trees[i] = RB_ROOT;
3993
3994 /*
3995 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3996 * Grab a permanent reference to it, so that the normal code flow
3997 * will not attempt to free it. oom_cfqq is linked to root_group
3998 * but shouldn't hold a reference as it'll never be unlinked. Lose
3999 * the reference from linking right away.
4000 */
4001 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4002 cfqd->oom_cfqq.ref++;
4003
4004 spin_lock_irq(q->queue_lock);
4005 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4006 cfqg_put(cfqd->root_group);
4007 spin_unlock_irq(q->queue_lock);
4008
4009 init_timer(&cfqd->idle_slice_timer);
4010 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4011 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4012
4013 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4014
4015 cfqd->cfq_quantum = cfq_quantum;
4016 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4017 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4018 cfqd->cfq_back_max = cfq_back_max;
4019 cfqd->cfq_back_penalty = cfq_back_penalty;
4020 cfqd->cfq_slice[0] = cfq_slice_async;
4021 cfqd->cfq_slice[1] = cfq_slice_sync;
4022 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4023 cfqd->cfq_slice_idle = cfq_slice_idle;
4024 cfqd->cfq_group_idle = cfq_group_idle;
4025 cfqd->cfq_latency = 1;
4026 cfqd->hw_tag = -1;
4027 /*
4028 * we optimistically start assuming sync ops weren't delayed in last
4029 * second, in order to have larger depth for async operations.
4030 */
4031 cfqd->last_delayed_sync = jiffies - HZ;
4032 return 0;
4033}
4034
4035/*
4036 * sysfs parts below -->
4037 */
4038static ssize_t
4039cfq_var_show(unsigned int var, char *page)
4040{
4041 return sprintf(page, "%d\n", var);
4042}
4043
4044static ssize_t
4045cfq_var_store(unsigned int *var, const char *page, size_t count)
4046{
4047 char *p = (char *) page;
4048
4049 *var = simple_strtoul(p, &p, 10);
4050 return count;
4051}
4052
4053#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4054static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4055{ \
4056 struct cfq_data *cfqd = e->elevator_data; \
4057 unsigned int __data = __VAR; \
4058 if (__CONV) \
4059 __data = jiffies_to_msecs(__data); \
4060 return cfq_var_show(__data, (page)); \
4061}
4062SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4063SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4064SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4065SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4066SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4067SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4068SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4069SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4070SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4071SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4072SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4073#undef SHOW_FUNCTION
4074
4075#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4076static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4077{ \
4078 struct cfq_data *cfqd = e->elevator_data; \
4079 unsigned int __data; \
4080 int ret = cfq_var_store(&__data, (page), count); \
4081 if (__data < (MIN)) \
4082 __data = (MIN); \
4083 else if (__data > (MAX)) \
4084 __data = (MAX); \
4085 if (__CONV) \
4086 *(__PTR) = msecs_to_jiffies(__data); \
4087 else \
4088 *(__PTR) = __data; \
4089 return ret; \
4090}
4091STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4092STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4093 UINT_MAX, 1);
4094STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4095 UINT_MAX, 1);
4096STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4097STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4098 UINT_MAX, 0);
4099STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4100STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4101STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4102STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4103STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4104 UINT_MAX, 0);
4105STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4106#undef STORE_FUNCTION
4107
4108#define CFQ_ATTR(name) \
4109 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4110
4111static struct elv_fs_entry cfq_attrs[] = {
4112 CFQ_ATTR(quantum),
4113 CFQ_ATTR(fifo_expire_sync),
4114 CFQ_ATTR(fifo_expire_async),
4115 CFQ_ATTR(back_seek_max),
4116 CFQ_ATTR(back_seek_penalty),
4117 CFQ_ATTR(slice_sync),
4118 CFQ_ATTR(slice_async),
4119 CFQ_ATTR(slice_async_rq),
4120 CFQ_ATTR(slice_idle),
4121 CFQ_ATTR(group_idle),
4122 CFQ_ATTR(low_latency),
4123 __ATTR_NULL
4124};
4125
4126static struct elevator_type iosched_cfq = {
4127 .ops = {
4128 .elevator_merge_fn = cfq_merge,
4129 .elevator_merged_fn = cfq_merged_request,
4130 .elevator_merge_req_fn = cfq_merged_requests,
4131 .elevator_allow_merge_fn = cfq_allow_merge,
4132 .elevator_bio_merged_fn = cfq_bio_merged,
4133 .elevator_dispatch_fn = cfq_dispatch_requests,
4134 .elevator_add_req_fn = cfq_insert_request,
4135 .elevator_activate_req_fn = cfq_activate_request,
4136 .elevator_deactivate_req_fn = cfq_deactivate_request,
4137 .elevator_completed_req_fn = cfq_completed_request,
4138 .elevator_former_req_fn = elv_rb_former_request,
4139 .elevator_latter_req_fn = elv_rb_latter_request,
4140 .elevator_init_icq_fn = cfq_init_icq,
4141 .elevator_exit_icq_fn = cfq_exit_icq,
4142 .elevator_set_req_fn = cfq_set_request,
4143 .elevator_put_req_fn = cfq_put_request,
4144 .elevator_may_queue_fn = cfq_may_queue,
4145 .elevator_init_fn = cfq_init_queue,
4146 .elevator_exit_fn = cfq_exit_queue,
4147 },
4148 .icq_size = sizeof(struct cfq_io_cq),
4149 .icq_align = __alignof__(struct cfq_io_cq),
4150 .elevator_attrs = cfq_attrs,
4151 .elevator_name = "cfq",
4152 .elevator_owner = THIS_MODULE,
4153};
4154
4155#ifdef CONFIG_CFQ_GROUP_IOSCHED
4156static struct blkio_policy_type blkio_policy_cfq = {
4157 .ops = {
4158 .blkio_init_group_fn = cfq_init_blkio_group,
4159 .blkio_reset_group_stats_fn = cfqg_stats_reset,
4160 },
4161 .plid = BLKIO_POLICY_PROP,
4162 .pdata_size = sizeof(struct cfq_group),
4163 .cftypes = cfq_blkcg_files,
4164};
4165#endif
4166
4167static int __init cfq_init(void)
4168{
4169 int ret;
4170
4171 /*
4172 * could be 0 on HZ < 1000 setups
4173 */
4174 if (!cfq_slice_async)
4175 cfq_slice_async = 1;
4176 if (!cfq_slice_idle)
4177 cfq_slice_idle = 1;
4178
4179#ifdef CONFIG_CFQ_GROUP_IOSCHED
4180 if (!cfq_group_idle)
4181 cfq_group_idle = 1;
4182#else
4183 cfq_group_idle = 0;
4184#endif
4185 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4186 if (!cfq_pool)
4187 return -ENOMEM;
4188
4189 ret = elv_register(&iosched_cfq);
4190 if (ret) {
4191 kmem_cache_destroy(cfq_pool);
4192 return ret;
4193 }
4194
4195#ifdef CONFIG_CFQ_GROUP_IOSCHED
4196 blkio_policy_register(&blkio_policy_cfq);
4197#endif
4198 return 0;
4199}
4200
4201static void __exit cfq_exit(void)
4202{
4203#ifdef CONFIG_CFQ_GROUP_IOSCHED
4204 blkio_policy_unregister(&blkio_policy_cfq);
4205#endif
4206 elv_unregister(&iosched_cfq);
4207 kmem_cache_destroy(cfq_pool);
4208}
4209
4210module_init(cfq_init);
4211module_exit(cfq_exit);
4212
4213MODULE_AUTHOR("Jens Axboe");
4214MODULE_LICENSE("GPL");
4215MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");