]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame_incremental - block/cfq-iosched.c
fs: assign sb->s_bdi to default_backing_dev_info if the bdi is going away
[mirror_ubuntu-eoan-kernel.git] / block / cfq-iosched.c
... / ...
CommitLineData
1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "cfq.h"
18
19/*
20 * tunables
21 */
22/* max queue in one round of service */
23static const int cfq_quantum = 8;
24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
29static const int cfq_slice_sync = HZ / 10;
30static int cfq_slice_async = HZ / 25;
31static const int cfq_slice_async_rq = 2;
32static int cfq_slice_idle = HZ / 125;
33static int cfq_group_idle = HZ / 125;
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
36
37/*
38 * offset from end of service tree
39 */
40#define CFQ_IDLE_DELAY (HZ / 5)
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT (2)
46
47#define CFQ_SLICE_SCALE (5)
48#define CFQ_HW_QUEUE_MIN (5)
49#define CFQ_SERVICE_SHIFT 12
50
51#define CFQQ_SEEK_THR (sector_t)(8 * 100)
52#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
55
56#define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
60
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
63
64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65static struct completion *ioc_gone;
66static DEFINE_SPINLOCK(ioc_gone_lock);
67
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
71#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75#define sample_valid(samples) ((samples) > 80)
76#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
77
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
90};
91#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
93
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98 /* reference count */
99 int ref;
100 /* various state flags, see below */
101 unsigned int flags;
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
117 int queued[2];
118 /* currently allocated requests */
119 int allocated[2];
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
122
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
130 long slice_resid;
131
132 /* pending metadata requests */
133 int meta_pending;
134 /* number of requests that are on the dispatch list or inside driver */
135 int dispatched;
136
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
140
141 pid_t pid;
142
143 u32 seek_history;
144 sector_t last_request_pos;
145
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
151};
152
153/*
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
156 */
157enum wl_prio_t {
158 BE_WORKLOAD = 0,
159 RT_WORKLOAD = 1,
160 IDLE_WORKLOAD = 2,
161 CFQ_PRIO_NR,
162};
163
164/*
165 * Second index in the service_trees.
166 */
167enum wl_type_t {
168 ASYNC_WORKLOAD = 0,
169 SYNC_NOIDLE_WORKLOAD = 1,
170 SYNC_WORKLOAD = 2
171};
172
173/* This is per cgroup per device grouping structure */
174struct cfq_group {
175 /* group service_tree member */
176 struct rb_node rb_node;
177
178 /* group service_tree key */
179 u64 vdisktime;
180 unsigned int weight;
181
182 /* number of cfqq currently on this group */
183 int nr_cfqq;
184
185 /*
186 * Per group busy queus average. Useful for workload slice calc. We
187 * create the array for each prio class but at run time it is used
188 * only for RT and BE class and slot for IDLE class remains unused.
189 * This is primarily done to avoid confusion and a gcc warning.
190 */
191 unsigned int busy_queues_avg[CFQ_PRIO_NR];
192 /*
193 * rr lists of queues with requests. We maintain service trees for
194 * RT and BE classes. These trees are subdivided in subclasses
195 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
196 * class there is no subclassification and all the cfq queues go on
197 * a single tree service_tree_idle.
198 * Counts are embedded in the cfq_rb_root
199 */
200 struct cfq_rb_root service_trees[2][3];
201 struct cfq_rb_root service_tree_idle;
202
203 unsigned long saved_workload_slice;
204 enum wl_type_t saved_workload;
205 enum wl_prio_t saved_serving_prio;
206 struct blkio_group blkg;
207#ifdef CONFIG_CFQ_GROUP_IOSCHED
208 struct hlist_node cfqd_node;
209 int ref;
210#endif
211 /* number of requests that are on the dispatch list or inside driver */
212 int dispatched;
213};
214
215/*
216 * Per block device queue structure
217 */
218struct cfq_data {
219 struct request_queue *queue;
220 /* Root service tree for cfq_groups */
221 struct cfq_rb_root grp_service_tree;
222 struct cfq_group root_group;
223
224 /*
225 * The priority currently being served
226 */
227 enum wl_prio_t serving_prio;
228 enum wl_type_t serving_type;
229 unsigned long workload_expires;
230 struct cfq_group *serving_group;
231
232 /*
233 * Each priority tree is sorted by next_request position. These
234 * trees are used when determining if two or more queues are
235 * interleaving requests (see cfq_close_cooperator).
236 */
237 struct rb_root prio_trees[CFQ_PRIO_LISTS];
238
239 unsigned int busy_queues;
240 unsigned int busy_sync_queues;
241
242 int rq_in_driver;
243 int rq_in_flight[2];
244
245 /*
246 * queue-depth detection
247 */
248 int rq_queued;
249 int hw_tag;
250 /*
251 * hw_tag can be
252 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
253 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
254 * 0 => no NCQ
255 */
256 int hw_tag_est_depth;
257 unsigned int hw_tag_samples;
258
259 /*
260 * idle window management
261 */
262 struct timer_list idle_slice_timer;
263 struct work_struct unplug_work;
264
265 struct cfq_queue *active_queue;
266 struct cfq_io_context *active_cic;
267
268 /*
269 * async queue for each priority case
270 */
271 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
272 struct cfq_queue *async_idle_cfqq;
273
274 sector_t last_position;
275
276 /*
277 * tunables, see top of file
278 */
279 unsigned int cfq_quantum;
280 unsigned int cfq_fifo_expire[2];
281 unsigned int cfq_back_penalty;
282 unsigned int cfq_back_max;
283 unsigned int cfq_slice[2];
284 unsigned int cfq_slice_async_rq;
285 unsigned int cfq_slice_idle;
286 unsigned int cfq_group_idle;
287 unsigned int cfq_latency;
288
289 unsigned int cic_index;
290 struct list_head cic_list;
291
292 /*
293 * Fallback dummy cfqq for extreme OOM conditions
294 */
295 struct cfq_queue oom_cfqq;
296
297 unsigned long last_delayed_sync;
298
299 /* List of cfq groups being managed on this device*/
300 struct hlist_head cfqg_list;
301 struct rcu_head rcu;
302};
303
304static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
305
306static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
307 enum wl_prio_t prio,
308 enum wl_type_t type)
309{
310 if (!cfqg)
311 return NULL;
312
313 if (prio == IDLE_WORKLOAD)
314 return &cfqg->service_tree_idle;
315
316 return &cfqg->service_trees[prio][type];
317}
318
319enum cfqq_state_flags {
320 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
321 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
322 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
323 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
324 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
325 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
326 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
327 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
328 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
329 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
330 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
331 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
332 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
333};
334
335#define CFQ_CFQQ_FNS(name) \
336static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
337{ \
338 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
339} \
340static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
341{ \
342 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
343} \
344static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
345{ \
346 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
347}
348
349CFQ_CFQQ_FNS(on_rr);
350CFQ_CFQQ_FNS(wait_request);
351CFQ_CFQQ_FNS(must_dispatch);
352CFQ_CFQQ_FNS(must_alloc_slice);
353CFQ_CFQQ_FNS(fifo_expire);
354CFQ_CFQQ_FNS(idle_window);
355CFQ_CFQQ_FNS(prio_changed);
356CFQ_CFQQ_FNS(slice_new);
357CFQ_CFQQ_FNS(sync);
358CFQ_CFQQ_FNS(coop);
359CFQ_CFQQ_FNS(split_coop);
360CFQ_CFQQ_FNS(deep);
361CFQ_CFQQ_FNS(wait_busy);
362#undef CFQ_CFQQ_FNS
363
364#ifdef CONFIG_CFQ_GROUP_IOSCHED
365#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
366 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
367 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
368 blkg_path(&(cfqq)->cfqg->blkg), ##args);
369
370#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
371 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
372 blkg_path(&(cfqg)->blkg), ##args); \
373
374#else
375#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
376 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
377#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
378#endif
379#define cfq_log(cfqd, fmt, args...) \
380 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
381
382/* Traverses through cfq group service trees */
383#define for_each_cfqg_st(cfqg, i, j, st) \
384 for (i = 0; i <= IDLE_WORKLOAD; i++) \
385 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
386 : &cfqg->service_tree_idle; \
387 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
388 (i == IDLE_WORKLOAD && j == 0); \
389 j++, st = i < IDLE_WORKLOAD ? \
390 &cfqg->service_trees[i][j]: NULL) \
391
392
393static inline bool iops_mode(struct cfq_data *cfqd)
394{
395 /*
396 * If we are not idling on queues and it is a NCQ drive, parallel
397 * execution of requests is on and measuring time is not possible
398 * in most of the cases until and unless we drive shallower queue
399 * depths and that becomes a performance bottleneck. In such cases
400 * switch to start providing fairness in terms of number of IOs.
401 */
402 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
403 return true;
404 else
405 return false;
406}
407
408static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
409{
410 if (cfq_class_idle(cfqq))
411 return IDLE_WORKLOAD;
412 if (cfq_class_rt(cfqq))
413 return RT_WORKLOAD;
414 return BE_WORKLOAD;
415}
416
417
418static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
419{
420 if (!cfq_cfqq_sync(cfqq))
421 return ASYNC_WORKLOAD;
422 if (!cfq_cfqq_idle_window(cfqq))
423 return SYNC_NOIDLE_WORKLOAD;
424 return SYNC_WORKLOAD;
425}
426
427static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
428 struct cfq_data *cfqd,
429 struct cfq_group *cfqg)
430{
431 if (wl == IDLE_WORKLOAD)
432 return cfqg->service_tree_idle.count;
433
434 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
435 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
436 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
437}
438
439static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
440 struct cfq_group *cfqg)
441{
442 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
443 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
444}
445
446static void cfq_dispatch_insert(struct request_queue *, struct request *);
447static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
448 struct io_context *, gfp_t);
449static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
450 struct io_context *);
451
452static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
453 bool is_sync)
454{
455 return cic->cfqq[is_sync];
456}
457
458static inline void cic_set_cfqq(struct cfq_io_context *cic,
459 struct cfq_queue *cfqq, bool is_sync)
460{
461 cic->cfqq[is_sync] = cfqq;
462}
463
464#define CIC_DEAD_KEY 1ul
465#define CIC_DEAD_INDEX_SHIFT 1
466
467static inline void *cfqd_dead_key(struct cfq_data *cfqd)
468{
469 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
470}
471
472static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
473{
474 struct cfq_data *cfqd = cic->key;
475
476 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
477 return NULL;
478
479 return cfqd;
480}
481
482/*
483 * We regard a request as SYNC, if it's either a read or has the SYNC bit
484 * set (in which case it could also be direct WRITE).
485 */
486static inline bool cfq_bio_sync(struct bio *bio)
487{
488 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
489}
490
491/*
492 * scheduler run of queue, if there are requests pending and no one in the
493 * driver that will restart queueing
494 */
495static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
496{
497 if (cfqd->busy_queues) {
498 cfq_log(cfqd, "schedule dispatch");
499 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
500 }
501}
502
503/*
504 * Scale schedule slice based on io priority. Use the sync time slice only
505 * if a queue is marked sync and has sync io queued. A sync queue with async
506 * io only, should not get full sync slice length.
507 */
508static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
509 unsigned short prio)
510{
511 const int base_slice = cfqd->cfq_slice[sync];
512
513 WARN_ON(prio >= IOPRIO_BE_NR);
514
515 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
516}
517
518static inline int
519cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
520{
521 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
522}
523
524static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
525{
526 u64 d = delta << CFQ_SERVICE_SHIFT;
527
528 d = d * BLKIO_WEIGHT_DEFAULT;
529 do_div(d, cfqg->weight);
530 return d;
531}
532
533static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
534{
535 s64 delta = (s64)(vdisktime - min_vdisktime);
536 if (delta > 0)
537 min_vdisktime = vdisktime;
538
539 return min_vdisktime;
540}
541
542static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
543{
544 s64 delta = (s64)(vdisktime - min_vdisktime);
545 if (delta < 0)
546 min_vdisktime = vdisktime;
547
548 return min_vdisktime;
549}
550
551static void update_min_vdisktime(struct cfq_rb_root *st)
552{
553 struct cfq_group *cfqg;
554
555 if (st->left) {
556 cfqg = rb_entry_cfqg(st->left);
557 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
558 cfqg->vdisktime);
559 }
560}
561
562/*
563 * get averaged number of queues of RT/BE priority.
564 * average is updated, with a formula that gives more weight to higher numbers,
565 * to quickly follows sudden increases and decrease slowly
566 */
567
568static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
569 struct cfq_group *cfqg, bool rt)
570{
571 unsigned min_q, max_q;
572 unsigned mult = cfq_hist_divisor - 1;
573 unsigned round = cfq_hist_divisor / 2;
574 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
575
576 min_q = min(cfqg->busy_queues_avg[rt], busy);
577 max_q = max(cfqg->busy_queues_avg[rt], busy);
578 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
579 cfq_hist_divisor;
580 return cfqg->busy_queues_avg[rt];
581}
582
583static inline unsigned
584cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
585{
586 struct cfq_rb_root *st = &cfqd->grp_service_tree;
587
588 return cfq_target_latency * cfqg->weight / st->total_weight;
589}
590
591static inline unsigned
592cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
593{
594 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
595 if (cfqd->cfq_latency) {
596 /*
597 * interested queues (we consider only the ones with the same
598 * priority class in the cfq group)
599 */
600 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
601 cfq_class_rt(cfqq));
602 unsigned sync_slice = cfqd->cfq_slice[1];
603 unsigned expect_latency = sync_slice * iq;
604 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
605
606 if (expect_latency > group_slice) {
607 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
608 /* scale low_slice according to IO priority
609 * and sync vs async */
610 unsigned low_slice =
611 min(slice, base_low_slice * slice / sync_slice);
612 /* the adapted slice value is scaled to fit all iqs
613 * into the target latency */
614 slice = max(slice * group_slice / expect_latency,
615 low_slice);
616 }
617 }
618 return slice;
619}
620
621static inline void
622cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
623{
624 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
625
626 cfqq->slice_start = jiffies;
627 cfqq->slice_end = jiffies + slice;
628 cfqq->allocated_slice = slice;
629 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
630}
631
632/*
633 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
634 * isn't valid until the first request from the dispatch is activated
635 * and the slice time set.
636 */
637static inline bool cfq_slice_used(struct cfq_queue *cfqq)
638{
639 if (cfq_cfqq_slice_new(cfqq))
640 return false;
641 if (time_before(jiffies, cfqq->slice_end))
642 return false;
643
644 return true;
645}
646
647/*
648 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
649 * We choose the request that is closest to the head right now. Distance
650 * behind the head is penalized and only allowed to a certain extent.
651 */
652static struct request *
653cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
654{
655 sector_t s1, s2, d1 = 0, d2 = 0;
656 unsigned long back_max;
657#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
658#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
659 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
660
661 if (rq1 == NULL || rq1 == rq2)
662 return rq2;
663 if (rq2 == NULL)
664 return rq1;
665
666 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
667 return rq1;
668 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
669 return rq2;
670 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
671 return rq1;
672 else if ((rq2->cmd_flags & REQ_META) &&
673 !(rq1->cmd_flags & REQ_META))
674 return rq2;
675
676 s1 = blk_rq_pos(rq1);
677 s2 = blk_rq_pos(rq2);
678
679 /*
680 * by definition, 1KiB is 2 sectors
681 */
682 back_max = cfqd->cfq_back_max * 2;
683
684 /*
685 * Strict one way elevator _except_ in the case where we allow
686 * short backward seeks which are biased as twice the cost of a
687 * similar forward seek.
688 */
689 if (s1 >= last)
690 d1 = s1 - last;
691 else if (s1 + back_max >= last)
692 d1 = (last - s1) * cfqd->cfq_back_penalty;
693 else
694 wrap |= CFQ_RQ1_WRAP;
695
696 if (s2 >= last)
697 d2 = s2 - last;
698 else if (s2 + back_max >= last)
699 d2 = (last - s2) * cfqd->cfq_back_penalty;
700 else
701 wrap |= CFQ_RQ2_WRAP;
702
703 /* Found required data */
704
705 /*
706 * By doing switch() on the bit mask "wrap" we avoid having to
707 * check two variables for all permutations: --> faster!
708 */
709 switch (wrap) {
710 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
711 if (d1 < d2)
712 return rq1;
713 else if (d2 < d1)
714 return rq2;
715 else {
716 if (s1 >= s2)
717 return rq1;
718 else
719 return rq2;
720 }
721
722 case CFQ_RQ2_WRAP:
723 return rq1;
724 case CFQ_RQ1_WRAP:
725 return rq2;
726 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
727 default:
728 /*
729 * Since both rqs are wrapped,
730 * start with the one that's further behind head
731 * (--> only *one* back seek required),
732 * since back seek takes more time than forward.
733 */
734 if (s1 <= s2)
735 return rq1;
736 else
737 return rq2;
738 }
739}
740
741/*
742 * The below is leftmost cache rbtree addon
743 */
744static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
745{
746 /* Service tree is empty */
747 if (!root->count)
748 return NULL;
749
750 if (!root->left)
751 root->left = rb_first(&root->rb);
752
753 if (root->left)
754 return rb_entry(root->left, struct cfq_queue, rb_node);
755
756 return NULL;
757}
758
759static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
760{
761 if (!root->left)
762 root->left = rb_first(&root->rb);
763
764 if (root->left)
765 return rb_entry_cfqg(root->left);
766
767 return NULL;
768}
769
770static void rb_erase_init(struct rb_node *n, struct rb_root *root)
771{
772 rb_erase(n, root);
773 RB_CLEAR_NODE(n);
774}
775
776static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
777{
778 if (root->left == n)
779 root->left = NULL;
780 rb_erase_init(n, &root->rb);
781 --root->count;
782}
783
784/*
785 * would be nice to take fifo expire time into account as well
786 */
787static struct request *
788cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
789 struct request *last)
790{
791 struct rb_node *rbnext = rb_next(&last->rb_node);
792 struct rb_node *rbprev = rb_prev(&last->rb_node);
793 struct request *next = NULL, *prev = NULL;
794
795 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
796
797 if (rbprev)
798 prev = rb_entry_rq(rbprev);
799
800 if (rbnext)
801 next = rb_entry_rq(rbnext);
802 else {
803 rbnext = rb_first(&cfqq->sort_list);
804 if (rbnext && rbnext != &last->rb_node)
805 next = rb_entry_rq(rbnext);
806 }
807
808 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
809}
810
811static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
812 struct cfq_queue *cfqq)
813{
814 /*
815 * just an approximation, should be ok.
816 */
817 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
818 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
819}
820
821static inline s64
822cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
823{
824 return cfqg->vdisktime - st->min_vdisktime;
825}
826
827static void
828__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
829{
830 struct rb_node **node = &st->rb.rb_node;
831 struct rb_node *parent = NULL;
832 struct cfq_group *__cfqg;
833 s64 key = cfqg_key(st, cfqg);
834 int left = 1;
835
836 while (*node != NULL) {
837 parent = *node;
838 __cfqg = rb_entry_cfqg(parent);
839
840 if (key < cfqg_key(st, __cfqg))
841 node = &parent->rb_left;
842 else {
843 node = &parent->rb_right;
844 left = 0;
845 }
846 }
847
848 if (left)
849 st->left = &cfqg->rb_node;
850
851 rb_link_node(&cfqg->rb_node, parent, node);
852 rb_insert_color(&cfqg->rb_node, &st->rb);
853}
854
855static void
856cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
857{
858 struct cfq_rb_root *st = &cfqd->grp_service_tree;
859 struct cfq_group *__cfqg;
860 struct rb_node *n;
861
862 cfqg->nr_cfqq++;
863 if (!RB_EMPTY_NODE(&cfqg->rb_node))
864 return;
865
866 /*
867 * Currently put the group at the end. Later implement something
868 * so that groups get lesser vtime based on their weights, so that
869 * if group does not loose all if it was not continously backlogged.
870 */
871 n = rb_last(&st->rb);
872 if (n) {
873 __cfqg = rb_entry_cfqg(n);
874 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
875 } else
876 cfqg->vdisktime = st->min_vdisktime;
877
878 __cfq_group_service_tree_add(st, cfqg);
879 st->total_weight += cfqg->weight;
880}
881
882static void
883cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
884{
885 struct cfq_rb_root *st = &cfqd->grp_service_tree;
886
887 BUG_ON(cfqg->nr_cfqq < 1);
888 cfqg->nr_cfqq--;
889
890 /* If there are other cfq queues under this group, don't delete it */
891 if (cfqg->nr_cfqq)
892 return;
893
894 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
895 st->total_weight -= cfqg->weight;
896 if (!RB_EMPTY_NODE(&cfqg->rb_node))
897 cfq_rb_erase(&cfqg->rb_node, st);
898 cfqg->saved_workload_slice = 0;
899 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
900}
901
902static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
903 unsigned int *unaccounted_time)
904{
905 unsigned int slice_used;
906
907 /*
908 * Queue got expired before even a single request completed or
909 * got expired immediately after first request completion.
910 */
911 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
912 /*
913 * Also charge the seek time incurred to the group, otherwise
914 * if there are mutiple queues in the group, each can dispatch
915 * a single request on seeky media and cause lots of seek time
916 * and group will never know it.
917 */
918 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
919 1);
920 } else {
921 slice_used = jiffies - cfqq->slice_start;
922 if (slice_used > cfqq->allocated_slice) {
923 *unaccounted_time = slice_used - cfqq->allocated_slice;
924 slice_used = cfqq->allocated_slice;
925 }
926 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
927 *unaccounted_time += cfqq->slice_start -
928 cfqq->dispatch_start;
929 }
930
931 return slice_used;
932}
933
934static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
935 struct cfq_queue *cfqq)
936{
937 struct cfq_rb_root *st = &cfqd->grp_service_tree;
938 unsigned int used_sl, charge, unaccounted_sl = 0;
939 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
940 - cfqg->service_tree_idle.count;
941
942 BUG_ON(nr_sync < 0);
943 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
944
945 if (iops_mode(cfqd))
946 charge = cfqq->slice_dispatch;
947 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
948 charge = cfqq->allocated_slice;
949
950 /* Can't update vdisktime while group is on service tree */
951 cfq_rb_erase(&cfqg->rb_node, st);
952 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
953 __cfq_group_service_tree_add(st, cfqg);
954
955 /* This group is being expired. Save the context */
956 if (time_after(cfqd->workload_expires, jiffies)) {
957 cfqg->saved_workload_slice = cfqd->workload_expires
958 - jiffies;
959 cfqg->saved_workload = cfqd->serving_type;
960 cfqg->saved_serving_prio = cfqd->serving_prio;
961 } else
962 cfqg->saved_workload_slice = 0;
963
964 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
965 st->min_vdisktime);
966 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
967 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
968 iops_mode(cfqd), cfqq->nr_sectors);
969 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
970 unaccounted_sl);
971 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
972}
973
974#ifdef CONFIG_CFQ_GROUP_IOSCHED
975static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
976{
977 if (blkg)
978 return container_of(blkg, struct cfq_group, blkg);
979 return NULL;
980}
981
982void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
983 unsigned int weight)
984{
985 cfqg_of_blkg(blkg)->weight = weight;
986}
987
988static struct cfq_group *
989cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
990{
991 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
992 struct cfq_group *cfqg = NULL;
993 void *key = cfqd;
994 int i, j;
995 struct cfq_rb_root *st;
996 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
997 unsigned int major, minor;
998
999 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1000 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1001 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1002 cfqg->blkg.dev = MKDEV(major, minor);
1003 goto done;
1004 }
1005 if (cfqg || !create)
1006 goto done;
1007
1008 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1009 if (!cfqg)
1010 goto done;
1011
1012 for_each_cfqg_st(cfqg, i, j, st)
1013 *st = CFQ_RB_ROOT;
1014 RB_CLEAR_NODE(&cfqg->rb_node);
1015
1016 /*
1017 * Take the initial reference that will be released on destroy
1018 * This can be thought of a joint reference by cgroup and
1019 * elevator which will be dropped by either elevator exit
1020 * or cgroup deletion path depending on who is exiting first.
1021 */
1022 cfqg->ref = 1;
1023
1024 /*
1025 * Add group onto cgroup list. It might happen that bdi->dev is
1026 * not initialized yet. Initialize this new group without major
1027 * and minor info and this info will be filled in once a new thread
1028 * comes for IO. See code above.
1029 */
1030 if (bdi->dev) {
1031 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1032 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1033 MKDEV(major, minor));
1034 } else
1035 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1036 0);
1037
1038 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1039
1040 /* Add group on cfqd list */
1041 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1042
1043done:
1044 return cfqg;
1045}
1046
1047/*
1048 * Search for the cfq group current task belongs to. If create = 1, then also
1049 * create the cfq group if it does not exist. request_queue lock must be held.
1050 */
1051static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1052{
1053 struct cgroup *cgroup;
1054 struct cfq_group *cfqg = NULL;
1055
1056 rcu_read_lock();
1057 cgroup = task_cgroup(current, blkio_subsys_id);
1058 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1059 if (!cfqg && create)
1060 cfqg = &cfqd->root_group;
1061 rcu_read_unlock();
1062 return cfqg;
1063}
1064
1065static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1066{
1067 cfqg->ref++;
1068 return cfqg;
1069}
1070
1071static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1072{
1073 /* Currently, all async queues are mapped to root group */
1074 if (!cfq_cfqq_sync(cfqq))
1075 cfqg = &cfqq->cfqd->root_group;
1076
1077 cfqq->cfqg = cfqg;
1078 /* cfqq reference on cfqg */
1079 cfqq->cfqg->ref++;
1080}
1081
1082static void cfq_put_cfqg(struct cfq_group *cfqg)
1083{
1084 struct cfq_rb_root *st;
1085 int i, j;
1086
1087 BUG_ON(cfqg->ref <= 0);
1088 cfqg->ref--;
1089 if (cfqg->ref)
1090 return;
1091 for_each_cfqg_st(cfqg, i, j, st)
1092 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1093 kfree(cfqg);
1094}
1095
1096static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1097{
1098 /* Something wrong if we are trying to remove same group twice */
1099 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1100
1101 hlist_del_init(&cfqg->cfqd_node);
1102
1103 /*
1104 * Put the reference taken at the time of creation so that when all
1105 * queues are gone, group can be destroyed.
1106 */
1107 cfq_put_cfqg(cfqg);
1108}
1109
1110static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1111{
1112 struct hlist_node *pos, *n;
1113 struct cfq_group *cfqg;
1114
1115 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1116 /*
1117 * If cgroup removal path got to blk_group first and removed
1118 * it from cgroup list, then it will take care of destroying
1119 * cfqg also.
1120 */
1121 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1122 cfq_destroy_cfqg(cfqd, cfqg);
1123 }
1124}
1125
1126/*
1127 * Blk cgroup controller notification saying that blkio_group object is being
1128 * delinked as associated cgroup object is going away. That also means that
1129 * no new IO will come in this group. So get rid of this group as soon as
1130 * any pending IO in the group is finished.
1131 *
1132 * This function is called under rcu_read_lock(). key is the rcu protected
1133 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1134 * read lock.
1135 *
1136 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1137 * it should not be NULL as even if elevator was exiting, cgroup deltion
1138 * path got to it first.
1139 */
1140void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1141{
1142 unsigned long flags;
1143 struct cfq_data *cfqd = key;
1144
1145 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1146 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1147 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1148}
1149
1150#else /* GROUP_IOSCHED */
1151static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1152{
1153 return &cfqd->root_group;
1154}
1155
1156static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1157{
1158 return cfqg;
1159}
1160
1161static inline void
1162cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1163 cfqq->cfqg = cfqg;
1164}
1165
1166static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1167static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1168
1169#endif /* GROUP_IOSCHED */
1170
1171/*
1172 * The cfqd->service_trees holds all pending cfq_queue's that have
1173 * requests waiting to be processed. It is sorted in the order that
1174 * we will service the queues.
1175 */
1176static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1177 bool add_front)
1178{
1179 struct rb_node **p, *parent;
1180 struct cfq_queue *__cfqq;
1181 unsigned long rb_key;
1182 struct cfq_rb_root *service_tree;
1183 int left;
1184 int new_cfqq = 1;
1185 int group_changed = 0;
1186
1187 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1188 cfqq_type(cfqq));
1189 if (cfq_class_idle(cfqq)) {
1190 rb_key = CFQ_IDLE_DELAY;
1191 parent = rb_last(&service_tree->rb);
1192 if (parent && parent != &cfqq->rb_node) {
1193 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1194 rb_key += __cfqq->rb_key;
1195 } else
1196 rb_key += jiffies;
1197 } else if (!add_front) {
1198 /*
1199 * Get our rb key offset. Subtract any residual slice
1200 * value carried from last service. A negative resid
1201 * count indicates slice overrun, and this should position
1202 * the next service time further away in the tree.
1203 */
1204 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1205 rb_key -= cfqq->slice_resid;
1206 cfqq->slice_resid = 0;
1207 } else {
1208 rb_key = -HZ;
1209 __cfqq = cfq_rb_first(service_tree);
1210 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1211 }
1212
1213 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1214 new_cfqq = 0;
1215 /*
1216 * same position, nothing more to do
1217 */
1218 if (rb_key == cfqq->rb_key &&
1219 cfqq->service_tree == service_tree)
1220 return;
1221
1222 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1223 cfqq->service_tree = NULL;
1224 }
1225
1226 left = 1;
1227 parent = NULL;
1228 cfqq->service_tree = service_tree;
1229 p = &service_tree->rb.rb_node;
1230 while (*p) {
1231 struct rb_node **n;
1232
1233 parent = *p;
1234 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1235
1236 /*
1237 * sort by key, that represents service time.
1238 */
1239 if (time_before(rb_key, __cfqq->rb_key))
1240 n = &(*p)->rb_left;
1241 else {
1242 n = &(*p)->rb_right;
1243 left = 0;
1244 }
1245
1246 p = n;
1247 }
1248
1249 if (left)
1250 service_tree->left = &cfqq->rb_node;
1251
1252 cfqq->rb_key = rb_key;
1253 rb_link_node(&cfqq->rb_node, parent, p);
1254 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1255 service_tree->count++;
1256 if ((add_front || !new_cfqq) && !group_changed)
1257 return;
1258 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1259}
1260
1261static struct cfq_queue *
1262cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1263 sector_t sector, struct rb_node **ret_parent,
1264 struct rb_node ***rb_link)
1265{
1266 struct rb_node **p, *parent;
1267 struct cfq_queue *cfqq = NULL;
1268
1269 parent = NULL;
1270 p = &root->rb_node;
1271 while (*p) {
1272 struct rb_node **n;
1273
1274 parent = *p;
1275 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1276
1277 /*
1278 * Sort strictly based on sector. Smallest to the left,
1279 * largest to the right.
1280 */
1281 if (sector > blk_rq_pos(cfqq->next_rq))
1282 n = &(*p)->rb_right;
1283 else if (sector < blk_rq_pos(cfqq->next_rq))
1284 n = &(*p)->rb_left;
1285 else
1286 break;
1287 p = n;
1288 cfqq = NULL;
1289 }
1290
1291 *ret_parent = parent;
1292 if (rb_link)
1293 *rb_link = p;
1294 return cfqq;
1295}
1296
1297static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1298{
1299 struct rb_node **p, *parent;
1300 struct cfq_queue *__cfqq;
1301
1302 if (cfqq->p_root) {
1303 rb_erase(&cfqq->p_node, cfqq->p_root);
1304 cfqq->p_root = NULL;
1305 }
1306
1307 if (cfq_class_idle(cfqq))
1308 return;
1309 if (!cfqq->next_rq)
1310 return;
1311
1312 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1313 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1314 blk_rq_pos(cfqq->next_rq), &parent, &p);
1315 if (!__cfqq) {
1316 rb_link_node(&cfqq->p_node, parent, p);
1317 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1318 } else
1319 cfqq->p_root = NULL;
1320}
1321
1322/*
1323 * Update cfqq's position in the service tree.
1324 */
1325static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1326{
1327 /*
1328 * Resorting requires the cfqq to be on the RR list already.
1329 */
1330 if (cfq_cfqq_on_rr(cfqq)) {
1331 cfq_service_tree_add(cfqd, cfqq, 0);
1332 cfq_prio_tree_add(cfqd, cfqq);
1333 }
1334}
1335
1336/*
1337 * add to busy list of queues for service, trying to be fair in ordering
1338 * the pending list according to last request service
1339 */
1340static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1341{
1342 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1343 BUG_ON(cfq_cfqq_on_rr(cfqq));
1344 cfq_mark_cfqq_on_rr(cfqq);
1345 cfqd->busy_queues++;
1346 if (cfq_cfqq_sync(cfqq))
1347 cfqd->busy_sync_queues++;
1348
1349 cfq_resort_rr_list(cfqd, cfqq);
1350}
1351
1352/*
1353 * Called when the cfqq no longer has requests pending, remove it from
1354 * the service tree.
1355 */
1356static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1357{
1358 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1359 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1360 cfq_clear_cfqq_on_rr(cfqq);
1361
1362 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1363 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1364 cfqq->service_tree = NULL;
1365 }
1366 if (cfqq->p_root) {
1367 rb_erase(&cfqq->p_node, cfqq->p_root);
1368 cfqq->p_root = NULL;
1369 }
1370
1371 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1372 BUG_ON(!cfqd->busy_queues);
1373 cfqd->busy_queues--;
1374 if (cfq_cfqq_sync(cfqq))
1375 cfqd->busy_sync_queues--;
1376}
1377
1378/*
1379 * rb tree support functions
1380 */
1381static void cfq_del_rq_rb(struct request *rq)
1382{
1383 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1384 const int sync = rq_is_sync(rq);
1385
1386 BUG_ON(!cfqq->queued[sync]);
1387 cfqq->queued[sync]--;
1388
1389 elv_rb_del(&cfqq->sort_list, rq);
1390
1391 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1392 /*
1393 * Queue will be deleted from service tree when we actually
1394 * expire it later. Right now just remove it from prio tree
1395 * as it is empty.
1396 */
1397 if (cfqq->p_root) {
1398 rb_erase(&cfqq->p_node, cfqq->p_root);
1399 cfqq->p_root = NULL;
1400 }
1401 }
1402}
1403
1404static void cfq_add_rq_rb(struct request *rq)
1405{
1406 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1407 struct cfq_data *cfqd = cfqq->cfqd;
1408 struct request *__alias, *prev;
1409
1410 cfqq->queued[rq_is_sync(rq)]++;
1411
1412 /*
1413 * looks a little odd, but the first insert might return an alias.
1414 * if that happens, put the alias on the dispatch list
1415 */
1416 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1417 cfq_dispatch_insert(cfqd->queue, __alias);
1418
1419 if (!cfq_cfqq_on_rr(cfqq))
1420 cfq_add_cfqq_rr(cfqd, cfqq);
1421
1422 /*
1423 * check if this request is a better next-serve candidate
1424 */
1425 prev = cfqq->next_rq;
1426 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1427
1428 /*
1429 * adjust priority tree position, if ->next_rq changes
1430 */
1431 if (prev != cfqq->next_rq)
1432 cfq_prio_tree_add(cfqd, cfqq);
1433
1434 BUG_ON(!cfqq->next_rq);
1435}
1436
1437static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1438{
1439 elv_rb_del(&cfqq->sort_list, rq);
1440 cfqq->queued[rq_is_sync(rq)]--;
1441 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1442 rq_data_dir(rq), rq_is_sync(rq));
1443 cfq_add_rq_rb(rq);
1444 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1445 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1446 rq_is_sync(rq));
1447}
1448
1449static struct request *
1450cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1451{
1452 struct task_struct *tsk = current;
1453 struct cfq_io_context *cic;
1454 struct cfq_queue *cfqq;
1455
1456 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1457 if (!cic)
1458 return NULL;
1459
1460 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1461 if (cfqq) {
1462 sector_t sector = bio->bi_sector + bio_sectors(bio);
1463
1464 return elv_rb_find(&cfqq->sort_list, sector);
1465 }
1466
1467 return NULL;
1468}
1469
1470static void cfq_activate_request(struct request_queue *q, struct request *rq)
1471{
1472 struct cfq_data *cfqd = q->elevator->elevator_data;
1473
1474 cfqd->rq_in_driver++;
1475 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1476 cfqd->rq_in_driver);
1477
1478 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1479}
1480
1481static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1482{
1483 struct cfq_data *cfqd = q->elevator->elevator_data;
1484
1485 WARN_ON(!cfqd->rq_in_driver);
1486 cfqd->rq_in_driver--;
1487 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1488 cfqd->rq_in_driver);
1489}
1490
1491static void cfq_remove_request(struct request *rq)
1492{
1493 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1494
1495 if (cfqq->next_rq == rq)
1496 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1497
1498 list_del_init(&rq->queuelist);
1499 cfq_del_rq_rb(rq);
1500
1501 cfqq->cfqd->rq_queued--;
1502 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1503 rq_data_dir(rq), rq_is_sync(rq));
1504 if (rq->cmd_flags & REQ_META) {
1505 WARN_ON(!cfqq->meta_pending);
1506 cfqq->meta_pending--;
1507 }
1508}
1509
1510static int cfq_merge(struct request_queue *q, struct request **req,
1511 struct bio *bio)
1512{
1513 struct cfq_data *cfqd = q->elevator->elevator_data;
1514 struct request *__rq;
1515
1516 __rq = cfq_find_rq_fmerge(cfqd, bio);
1517 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1518 *req = __rq;
1519 return ELEVATOR_FRONT_MERGE;
1520 }
1521
1522 return ELEVATOR_NO_MERGE;
1523}
1524
1525static void cfq_merged_request(struct request_queue *q, struct request *req,
1526 int type)
1527{
1528 if (type == ELEVATOR_FRONT_MERGE) {
1529 struct cfq_queue *cfqq = RQ_CFQQ(req);
1530
1531 cfq_reposition_rq_rb(cfqq, req);
1532 }
1533}
1534
1535static void cfq_bio_merged(struct request_queue *q, struct request *req,
1536 struct bio *bio)
1537{
1538 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1539 bio_data_dir(bio), cfq_bio_sync(bio));
1540}
1541
1542static void
1543cfq_merged_requests(struct request_queue *q, struct request *rq,
1544 struct request *next)
1545{
1546 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1547 /*
1548 * reposition in fifo if next is older than rq
1549 */
1550 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1551 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1552 list_move(&rq->queuelist, &next->queuelist);
1553 rq_set_fifo_time(rq, rq_fifo_time(next));
1554 }
1555
1556 if (cfqq->next_rq == next)
1557 cfqq->next_rq = rq;
1558 cfq_remove_request(next);
1559 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1560 rq_data_dir(next), rq_is_sync(next));
1561}
1562
1563static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1564 struct bio *bio)
1565{
1566 struct cfq_data *cfqd = q->elevator->elevator_data;
1567 struct cfq_io_context *cic;
1568 struct cfq_queue *cfqq;
1569
1570 /*
1571 * Disallow merge of a sync bio into an async request.
1572 */
1573 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1574 return false;
1575
1576 /*
1577 * Lookup the cfqq that this bio will be queued with. Allow
1578 * merge only if rq is queued there.
1579 */
1580 cic = cfq_cic_lookup(cfqd, current->io_context);
1581 if (!cic)
1582 return false;
1583
1584 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1585 return cfqq == RQ_CFQQ(rq);
1586}
1587
1588static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1589{
1590 del_timer(&cfqd->idle_slice_timer);
1591 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1592}
1593
1594static void __cfq_set_active_queue(struct cfq_data *cfqd,
1595 struct cfq_queue *cfqq)
1596{
1597 if (cfqq) {
1598 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1599 cfqd->serving_prio, cfqd->serving_type);
1600 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1601 cfqq->slice_start = 0;
1602 cfqq->dispatch_start = jiffies;
1603 cfqq->allocated_slice = 0;
1604 cfqq->slice_end = 0;
1605 cfqq->slice_dispatch = 0;
1606 cfqq->nr_sectors = 0;
1607
1608 cfq_clear_cfqq_wait_request(cfqq);
1609 cfq_clear_cfqq_must_dispatch(cfqq);
1610 cfq_clear_cfqq_must_alloc_slice(cfqq);
1611 cfq_clear_cfqq_fifo_expire(cfqq);
1612 cfq_mark_cfqq_slice_new(cfqq);
1613
1614 cfq_del_timer(cfqd, cfqq);
1615 }
1616
1617 cfqd->active_queue = cfqq;
1618}
1619
1620/*
1621 * current cfqq expired its slice (or was too idle), select new one
1622 */
1623static void
1624__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1625 bool timed_out)
1626{
1627 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1628
1629 if (cfq_cfqq_wait_request(cfqq))
1630 cfq_del_timer(cfqd, cfqq);
1631
1632 cfq_clear_cfqq_wait_request(cfqq);
1633 cfq_clear_cfqq_wait_busy(cfqq);
1634
1635 /*
1636 * If this cfqq is shared between multiple processes, check to
1637 * make sure that those processes are still issuing I/Os within
1638 * the mean seek distance. If not, it may be time to break the
1639 * queues apart again.
1640 */
1641 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1642 cfq_mark_cfqq_split_coop(cfqq);
1643
1644 /*
1645 * store what was left of this slice, if the queue idled/timed out
1646 */
1647 if (timed_out) {
1648 if (cfq_cfqq_slice_new(cfqq))
1649 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1650 else
1651 cfqq->slice_resid = cfqq->slice_end - jiffies;
1652 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1653 }
1654
1655 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1656
1657 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1658 cfq_del_cfqq_rr(cfqd, cfqq);
1659
1660 cfq_resort_rr_list(cfqd, cfqq);
1661
1662 if (cfqq == cfqd->active_queue)
1663 cfqd->active_queue = NULL;
1664
1665 if (cfqd->active_cic) {
1666 put_io_context(cfqd->active_cic->ioc);
1667 cfqd->active_cic = NULL;
1668 }
1669}
1670
1671static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1672{
1673 struct cfq_queue *cfqq = cfqd->active_queue;
1674
1675 if (cfqq)
1676 __cfq_slice_expired(cfqd, cfqq, timed_out);
1677}
1678
1679/*
1680 * Get next queue for service. Unless we have a queue preemption,
1681 * we'll simply select the first cfqq in the service tree.
1682 */
1683static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1684{
1685 struct cfq_rb_root *service_tree =
1686 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1687 cfqd->serving_type);
1688
1689 if (!cfqd->rq_queued)
1690 return NULL;
1691
1692 /* There is nothing to dispatch */
1693 if (!service_tree)
1694 return NULL;
1695 if (RB_EMPTY_ROOT(&service_tree->rb))
1696 return NULL;
1697 return cfq_rb_first(service_tree);
1698}
1699
1700static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1701{
1702 struct cfq_group *cfqg;
1703 struct cfq_queue *cfqq;
1704 int i, j;
1705 struct cfq_rb_root *st;
1706
1707 if (!cfqd->rq_queued)
1708 return NULL;
1709
1710 cfqg = cfq_get_next_cfqg(cfqd);
1711 if (!cfqg)
1712 return NULL;
1713
1714 for_each_cfqg_st(cfqg, i, j, st)
1715 if ((cfqq = cfq_rb_first(st)) != NULL)
1716 return cfqq;
1717 return NULL;
1718}
1719
1720/*
1721 * Get and set a new active queue for service.
1722 */
1723static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1724 struct cfq_queue *cfqq)
1725{
1726 if (!cfqq)
1727 cfqq = cfq_get_next_queue(cfqd);
1728
1729 __cfq_set_active_queue(cfqd, cfqq);
1730 return cfqq;
1731}
1732
1733static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1734 struct request *rq)
1735{
1736 if (blk_rq_pos(rq) >= cfqd->last_position)
1737 return blk_rq_pos(rq) - cfqd->last_position;
1738 else
1739 return cfqd->last_position - blk_rq_pos(rq);
1740}
1741
1742static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1743 struct request *rq)
1744{
1745 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1746}
1747
1748static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1749 struct cfq_queue *cur_cfqq)
1750{
1751 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1752 struct rb_node *parent, *node;
1753 struct cfq_queue *__cfqq;
1754 sector_t sector = cfqd->last_position;
1755
1756 if (RB_EMPTY_ROOT(root))
1757 return NULL;
1758
1759 /*
1760 * First, if we find a request starting at the end of the last
1761 * request, choose it.
1762 */
1763 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1764 if (__cfqq)
1765 return __cfqq;
1766
1767 /*
1768 * If the exact sector wasn't found, the parent of the NULL leaf
1769 * will contain the closest sector.
1770 */
1771 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1772 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1773 return __cfqq;
1774
1775 if (blk_rq_pos(__cfqq->next_rq) < sector)
1776 node = rb_next(&__cfqq->p_node);
1777 else
1778 node = rb_prev(&__cfqq->p_node);
1779 if (!node)
1780 return NULL;
1781
1782 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1783 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1784 return __cfqq;
1785
1786 return NULL;
1787}
1788
1789/*
1790 * cfqd - obvious
1791 * cur_cfqq - passed in so that we don't decide that the current queue is
1792 * closely cooperating with itself.
1793 *
1794 * So, basically we're assuming that that cur_cfqq has dispatched at least
1795 * one request, and that cfqd->last_position reflects a position on the disk
1796 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1797 * assumption.
1798 */
1799static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1800 struct cfq_queue *cur_cfqq)
1801{
1802 struct cfq_queue *cfqq;
1803
1804 if (cfq_class_idle(cur_cfqq))
1805 return NULL;
1806 if (!cfq_cfqq_sync(cur_cfqq))
1807 return NULL;
1808 if (CFQQ_SEEKY(cur_cfqq))
1809 return NULL;
1810
1811 /*
1812 * Don't search priority tree if it's the only queue in the group.
1813 */
1814 if (cur_cfqq->cfqg->nr_cfqq == 1)
1815 return NULL;
1816
1817 /*
1818 * We should notice if some of the queues are cooperating, eg
1819 * working closely on the same area of the disk. In that case,
1820 * we can group them together and don't waste time idling.
1821 */
1822 cfqq = cfqq_close(cfqd, cur_cfqq);
1823 if (!cfqq)
1824 return NULL;
1825
1826 /* If new queue belongs to different cfq_group, don't choose it */
1827 if (cur_cfqq->cfqg != cfqq->cfqg)
1828 return NULL;
1829
1830 /*
1831 * It only makes sense to merge sync queues.
1832 */
1833 if (!cfq_cfqq_sync(cfqq))
1834 return NULL;
1835 if (CFQQ_SEEKY(cfqq))
1836 return NULL;
1837
1838 /*
1839 * Do not merge queues of different priority classes
1840 */
1841 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1842 return NULL;
1843
1844 return cfqq;
1845}
1846
1847/*
1848 * Determine whether we should enforce idle window for this queue.
1849 */
1850
1851static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1852{
1853 enum wl_prio_t prio = cfqq_prio(cfqq);
1854 struct cfq_rb_root *service_tree = cfqq->service_tree;
1855
1856 BUG_ON(!service_tree);
1857 BUG_ON(!service_tree->count);
1858
1859 if (!cfqd->cfq_slice_idle)
1860 return false;
1861
1862 /* We never do for idle class queues. */
1863 if (prio == IDLE_WORKLOAD)
1864 return false;
1865
1866 /* We do for queues that were marked with idle window flag. */
1867 if (cfq_cfqq_idle_window(cfqq) &&
1868 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1869 return true;
1870
1871 /*
1872 * Otherwise, we do only if they are the last ones
1873 * in their service tree.
1874 */
1875 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1876 return true;
1877 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1878 service_tree->count);
1879 return false;
1880}
1881
1882static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1883{
1884 struct cfq_queue *cfqq = cfqd->active_queue;
1885 struct cfq_io_context *cic;
1886 unsigned long sl, group_idle = 0;
1887
1888 /*
1889 * SSD device without seek penalty, disable idling. But only do so
1890 * for devices that support queuing, otherwise we still have a problem
1891 * with sync vs async workloads.
1892 */
1893 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1894 return;
1895
1896 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1897 WARN_ON(cfq_cfqq_slice_new(cfqq));
1898
1899 /*
1900 * idle is disabled, either manually or by past process history
1901 */
1902 if (!cfq_should_idle(cfqd, cfqq)) {
1903 /* no queue idling. Check for group idling */
1904 if (cfqd->cfq_group_idle)
1905 group_idle = cfqd->cfq_group_idle;
1906 else
1907 return;
1908 }
1909
1910 /*
1911 * still active requests from this queue, don't idle
1912 */
1913 if (cfqq->dispatched)
1914 return;
1915
1916 /*
1917 * task has exited, don't wait
1918 */
1919 cic = cfqd->active_cic;
1920 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1921 return;
1922
1923 /*
1924 * If our average think time is larger than the remaining time
1925 * slice, then don't idle. This avoids overrunning the allotted
1926 * time slice.
1927 */
1928 if (sample_valid(cic->ttime_samples) &&
1929 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1930 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1931 cic->ttime_mean);
1932 return;
1933 }
1934
1935 /* There are other queues in the group, don't do group idle */
1936 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1937 return;
1938
1939 cfq_mark_cfqq_wait_request(cfqq);
1940
1941 if (group_idle)
1942 sl = cfqd->cfq_group_idle;
1943 else
1944 sl = cfqd->cfq_slice_idle;
1945
1946 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1947 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1948 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1949 group_idle ? 1 : 0);
1950}
1951
1952/*
1953 * Move request from internal lists to the request queue dispatch list.
1954 */
1955static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1956{
1957 struct cfq_data *cfqd = q->elevator->elevator_data;
1958 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1959
1960 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1961
1962 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1963 cfq_remove_request(rq);
1964 cfqq->dispatched++;
1965 (RQ_CFQG(rq))->dispatched++;
1966 elv_dispatch_sort(q, rq);
1967
1968 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1969 cfqq->nr_sectors += blk_rq_sectors(rq);
1970 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1971 rq_data_dir(rq), rq_is_sync(rq));
1972}
1973
1974/*
1975 * return expired entry, or NULL to just start from scratch in rbtree
1976 */
1977static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1978{
1979 struct request *rq = NULL;
1980
1981 if (cfq_cfqq_fifo_expire(cfqq))
1982 return NULL;
1983
1984 cfq_mark_cfqq_fifo_expire(cfqq);
1985
1986 if (list_empty(&cfqq->fifo))
1987 return NULL;
1988
1989 rq = rq_entry_fifo(cfqq->fifo.next);
1990 if (time_before(jiffies, rq_fifo_time(rq)))
1991 rq = NULL;
1992
1993 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1994 return rq;
1995}
1996
1997static inline int
1998cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1999{
2000 const int base_rq = cfqd->cfq_slice_async_rq;
2001
2002 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2003
2004 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
2005}
2006
2007/*
2008 * Must be called with the queue_lock held.
2009 */
2010static int cfqq_process_refs(struct cfq_queue *cfqq)
2011{
2012 int process_refs, io_refs;
2013
2014 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2015 process_refs = cfqq->ref - io_refs;
2016 BUG_ON(process_refs < 0);
2017 return process_refs;
2018}
2019
2020static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2021{
2022 int process_refs, new_process_refs;
2023 struct cfq_queue *__cfqq;
2024
2025 /*
2026 * If there are no process references on the new_cfqq, then it is
2027 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2028 * chain may have dropped their last reference (not just their
2029 * last process reference).
2030 */
2031 if (!cfqq_process_refs(new_cfqq))
2032 return;
2033
2034 /* Avoid a circular list and skip interim queue merges */
2035 while ((__cfqq = new_cfqq->new_cfqq)) {
2036 if (__cfqq == cfqq)
2037 return;
2038 new_cfqq = __cfqq;
2039 }
2040
2041 process_refs = cfqq_process_refs(cfqq);
2042 new_process_refs = cfqq_process_refs(new_cfqq);
2043 /*
2044 * If the process for the cfqq has gone away, there is no
2045 * sense in merging the queues.
2046 */
2047 if (process_refs == 0 || new_process_refs == 0)
2048 return;
2049
2050 /*
2051 * Merge in the direction of the lesser amount of work.
2052 */
2053 if (new_process_refs >= process_refs) {
2054 cfqq->new_cfqq = new_cfqq;
2055 new_cfqq->ref += process_refs;
2056 } else {
2057 new_cfqq->new_cfqq = cfqq;
2058 cfqq->ref += new_process_refs;
2059 }
2060}
2061
2062static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2063 struct cfq_group *cfqg, enum wl_prio_t prio)
2064{
2065 struct cfq_queue *queue;
2066 int i;
2067 bool key_valid = false;
2068 unsigned long lowest_key = 0;
2069 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2070
2071 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2072 /* select the one with lowest rb_key */
2073 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2074 if (queue &&
2075 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2076 lowest_key = queue->rb_key;
2077 cur_best = i;
2078 key_valid = true;
2079 }
2080 }
2081
2082 return cur_best;
2083}
2084
2085static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2086{
2087 unsigned slice;
2088 unsigned count;
2089 struct cfq_rb_root *st;
2090 unsigned group_slice;
2091 enum wl_prio_t original_prio = cfqd->serving_prio;
2092
2093 /* Choose next priority. RT > BE > IDLE */
2094 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2095 cfqd->serving_prio = RT_WORKLOAD;
2096 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2097 cfqd->serving_prio = BE_WORKLOAD;
2098 else {
2099 cfqd->serving_prio = IDLE_WORKLOAD;
2100 cfqd->workload_expires = jiffies + 1;
2101 return;
2102 }
2103
2104 if (original_prio != cfqd->serving_prio)
2105 goto new_workload;
2106
2107 /*
2108 * For RT and BE, we have to choose also the type
2109 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2110 * expiration time
2111 */
2112 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2113 count = st->count;
2114
2115 /*
2116 * check workload expiration, and that we still have other queues ready
2117 */
2118 if (count && !time_after(jiffies, cfqd->workload_expires))
2119 return;
2120
2121new_workload:
2122 /* otherwise select new workload type */
2123 cfqd->serving_type =
2124 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2125 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2126 count = st->count;
2127
2128 /*
2129 * the workload slice is computed as a fraction of target latency
2130 * proportional to the number of queues in that workload, over
2131 * all the queues in the same priority class
2132 */
2133 group_slice = cfq_group_slice(cfqd, cfqg);
2134
2135 slice = group_slice * count /
2136 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2137 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2138
2139 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2140 unsigned int tmp;
2141
2142 /*
2143 * Async queues are currently system wide. Just taking
2144 * proportion of queues with-in same group will lead to higher
2145 * async ratio system wide as generally root group is going
2146 * to have higher weight. A more accurate thing would be to
2147 * calculate system wide asnc/sync ratio.
2148 */
2149 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2150 tmp = tmp/cfqd->busy_queues;
2151 slice = min_t(unsigned, slice, tmp);
2152
2153 /* async workload slice is scaled down according to
2154 * the sync/async slice ratio. */
2155 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2156 } else
2157 /* sync workload slice is at least 2 * cfq_slice_idle */
2158 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2159
2160 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2161 cfq_log(cfqd, "workload slice:%d", slice);
2162 cfqd->workload_expires = jiffies + slice;
2163}
2164
2165static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2166{
2167 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2168 struct cfq_group *cfqg;
2169
2170 if (RB_EMPTY_ROOT(&st->rb))
2171 return NULL;
2172 cfqg = cfq_rb_first_group(st);
2173 update_min_vdisktime(st);
2174 return cfqg;
2175}
2176
2177static void cfq_choose_cfqg(struct cfq_data *cfqd)
2178{
2179 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2180
2181 cfqd->serving_group = cfqg;
2182
2183 /* Restore the workload type data */
2184 if (cfqg->saved_workload_slice) {
2185 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2186 cfqd->serving_type = cfqg->saved_workload;
2187 cfqd->serving_prio = cfqg->saved_serving_prio;
2188 } else
2189 cfqd->workload_expires = jiffies - 1;
2190
2191 choose_service_tree(cfqd, cfqg);
2192}
2193
2194/*
2195 * Select a queue for service. If we have a current active queue,
2196 * check whether to continue servicing it, or retrieve and set a new one.
2197 */
2198static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2199{
2200 struct cfq_queue *cfqq, *new_cfqq = NULL;
2201
2202 cfqq = cfqd->active_queue;
2203 if (!cfqq)
2204 goto new_queue;
2205
2206 if (!cfqd->rq_queued)
2207 return NULL;
2208
2209 /*
2210 * We were waiting for group to get backlogged. Expire the queue
2211 */
2212 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2213 goto expire;
2214
2215 /*
2216 * The active queue has run out of time, expire it and select new.
2217 */
2218 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2219 /*
2220 * If slice had not expired at the completion of last request
2221 * we might not have turned on wait_busy flag. Don't expire
2222 * the queue yet. Allow the group to get backlogged.
2223 *
2224 * The very fact that we have used the slice, that means we
2225 * have been idling all along on this queue and it should be
2226 * ok to wait for this request to complete.
2227 */
2228 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2229 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2230 cfqq = NULL;
2231 goto keep_queue;
2232 } else
2233 goto check_group_idle;
2234 }
2235
2236 /*
2237 * The active queue has requests and isn't expired, allow it to
2238 * dispatch.
2239 */
2240 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2241 goto keep_queue;
2242
2243 /*
2244 * If another queue has a request waiting within our mean seek
2245 * distance, let it run. The expire code will check for close
2246 * cooperators and put the close queue at the front of the service
2247 * tree. If possible, merge the expiring queue with the new cfqq.
2248 */
2249 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2250 if (new_cfqq) {
2251 if (!cfqq->new_cfqq)
2252 cfq_setup_merge(cfqq, new_cfqq);
2253 goto expire;
2254 }
2255
2256 /*
2257 * No requests pending. If the active queue still has requests in
2258 * flight or is idling for a new request, allow either of these
2259 * conditions to happen (or time out) before selecting a new queue.
2260 */
2261 if (timer_pending(&cfqd->idle_slice_timer)) {
2262 cfqq = NULL;
2263 goto keep_queue;
2264 }
2265
2266 /*
2267 * This is a deep seek queue, but the device is much faster than
2268 * the queue can deliver, don't idle
2269 **/
2270 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2271 (cfq_cfqq_slice_new(cfqq) ||
2272 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2273 cfq_clear_cfqq_deep(cfqq);
2274 cfq_clear_cfqq_idle_window(cfqq);
2275 }
2276
2277 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2278 cfqq = NULL;
2279 goto keep_queue;
2280 }
2281
2282 /*
2283 * If group idle is enabled and there are requests dispatched from
2284 * this group, wait for requests to complete.
2285 */
2286check_group_idle:
2287 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2288 && cfqq->cfqg->dispatched) {
2289 cfqq = NULL;
2290 goto keep_queue;
2291 }
2292
2293expire:
2294 cfq_slice_expired(cfqd, 0);
2295new_queue:
2296 /*
2297 * Current queue expired. Check if we have to switch to a new
2298 * service tree
2299 */
2300 if (!new_cfqq)
2301 cfq_choose_cfqg(cfqd);
2302
2303 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2304keep_queue:
2305 return cfqq;
2306}
2307
2308static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2309{
2310 int dispatched = 0;
2311
2312 while (cfqq->next_rq) {
2313 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2314 dispatched++;
2315 }
2316
2317 BUG_ON(!list_empty(&cfqq->fifo));
2318
2319 /* By default cfqq is not expired if it is empty. Do it explicitly */
2320 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2321 return dispatched;
2322}
2323
2324/*
2325 * Drain our current requests. Used for barriers and when switching
2326 * io schedulers on-the-fly.
2327 */
2328static int cfq_forced_dispatch(struct cfq_data *cfqd)
2329{
2330 struct cfq_queue *cfqq;
2331 int dispatched = 0;
2332
2333 /* Expire the timeslice of the current active queue first */
2334 cfq_slice_expired(cfqd, 0);
2335 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2336 __cfq_set_active_queue(cfqd, cfqq);
2337 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2338 }
2339
2340 BUG_ON(cfqd->busy_queues);
2341
2342 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2343 return dispatched;
2344}
2345
2346static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2347 struct cfq_queue *cfqq)
2348{
2349 /* the queue hasn't finished any request, can't estimate */
2350 if (cfq_cfqq_slice_new(cfqq))
2351 return true;
2352 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2353 cfqq->slice_end))
2354 return true;
2355
2356 return false;
2357}
2358
2359static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2360{
2361 unsigned int max_dispatch;
2362
2363 /*
2364 * Drain async requests before we start sync IO
2365 */
2366 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2367 return false;
2368
2369 /*
2370 * If this is an async queue and we have sync IO in flight, let it wait
2371 */
2372 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2373 return false;
2374
2375 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2376 if (cfq_class_idle(cfqq))
2377 max_dispatch = 1;
2378
2379 /*
2380 * Does this cfqq already have too much IO in flight?
2381 */
2382 if (cfqq->dispatched >= max_dispatch) {
2383 bool promote_sync = false;
2384 /*
2385 * idle queue must always only have a single IO in flight
2386 */
2387 if (cfq_class_idle(cfqq))
2388 return false;
2389
2390 /*
2391 * If there is only one sync queue, and its think time is
2392 * small, we can ignore async queue here and give the sync
2393 * queue no dispatch limit. The reason is a sync queue can
2394 * preempt async queue, limiting the sync queue doesn't make
2395 * sense. This is useful for aiostress test.
2396 */
2397 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1) {
2398 struct cfq_io_context *cic = RQ_CIC(cfqq->next_rq);
2399
2400 if (sample_valid(cic->ttime_samples) &&
2401 cic->ttime_mean < cfqd->cfq_slice_idle)
2402 promote_sync = true;
2403 }
2404
2405 /*
2406 * We have other queues, don't allow more IO from this one
2407 */
2408 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2409 !promote_sync)
2410 return false;
2411
2412 /*
2413 * Sole queue user, no limit
2414 */
2415 if (cfqd->busy_queues == 1 || promote_sync)
2416 max_dispatch = -1;
2417 else
2418 /*
2419 * Normally we start throttling cfqq when cfq_quantum/2
2420 * requests have been dispatched. But we can drive
2421 * deeper queue depths at the beginning of slice
2422 * subjected to upper limit of cfq_quantum.
2423 * */
2424 max_dispatch = cfqd->cfq_quantum;
2425 }
2426
2427 /*
2428 * Async queues must wait a bit before being allowed dispatch.
2429 * We also ramp up the dispatch depth gradually for async IO,
2430 * based on the last sync IO we serviced
2431 */
2432 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2433 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2434 unsigned int depth;
2435
2436 depth = last_sync / cfqd->cfq_slice[1];
2437 if (!depth && !cfqq->dispatched)
2438 depth = 1;
2439 if (depth < max_dispatch)
2440 max_dispatch = depth;
2441 }
2442
2443 /*
2444 * If we're below the current max, allow a dispatch
2445 */
2446 return cfqq->dispatched < max_dispatch;
2447}
2448
2449/*
2450 * Dispatch a request from cfqq, moving them to the request queue
2451 * dispatch list.
2452 */
2453static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2454{
2455 struct request *rq;
2456
2457 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2458
2459 if (!cfq_may_dispatch(cfqd, cfqq))
2460 return false;
2461
2462 /*
2463 * follow expired path, else get first next available
2464 */
2465 rq = cfq_check_fifo(cfqq);
2466 if (!rq)
2467 rq = cfqq->next_rq;
2468
2469 /*
2470 * insert request into driver dispatch list
2471 */
2472 cfq_dispatch_insert(cfqd->queue, rq);
2473
2474 if (!cfqd->active_cic) {
2475 struct cfq_io_context *cic = RQ_CIC(rq);
2476
2477 atomic_long_inc(&cic->ioc->refcount);
2478 cfqd->active_cic = cic;
2479 }
2480
2481 return true;
2482}
2483
2484/*
2485 * Find the cfqq that we need to service and move a request from that to the
2486 * dispatch list
2487 */
2488static int cfq_dispatch_requests(struct request_queue *q, int force)
2489{
2490 struct cfq_data *cfqd = q->elevator->elevator_data;
2491 struct cfq_queue *cfqq;
2492
2493 if (!cfqd->busy_queues)
2494 return 0;
2495
2496 if (unlikely(force))
2497 return cfq_forced_dispatch(cfqd);
2498
2499 cfqq = cfq_select_queue(cfqd);
2500 if (!cfqq)
2501 return 0;
2502
2503 /*
2504 * Dispatch a request from this cfqq, if it is allowed
2505 */
2506 if (!cfq_dispatch_request(cfqd, cfqq))
2507 return 0;
2508
2509 cfqq->slice_dispatch++;
2510 cfq_clear_cfqq_must_dispatch(cfqq);
2511
2512 /*
2513 * expire an async queue immediately if it has used up its slice. idle
2514 * queue always expire after 1 dispatch round.
2515 */
2516 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2517 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2518 cfq_class_idle(cfqq))) {
2519 cfqq->slice_end = jiffies + 1;
2520 cfq_slice_expired(cfqd, 0);
2521 }
2522
2523 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2524 return 1;
2525}
2526
2527/*
2528 * task holds one reference to the queue, dropped when task exits. each rq
2529 * in-flight on this queue also holds a reference, dropped when rq is freed.
2530 *
2531 * Each cfq queue took a reference on the parent group. Drop it now.
2532 * queue lock must be held here.
2533 */
2534static void cfq_put_queue(struct cfq_queue *cfqq)
2535{
2536 struct cfq_data *cfqd = cfqq->cfqd;
2537 struct cfq_group *cfqg;
2538
2539 BUG_ON(cfqq->ref <= 0);
2540
2541 cfqq->ref--;
2542 if (cfqq->ref)
2543 return;
2544
2545 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2546 BUG_ON(rb_first(&cfqq->sort_list));
2547 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2548 cfqg = cfqq->cfqg;
2549
2550 if (unlikely(cfqd->active_queue == cfqq)) {
2551 __cfq_slice_expired(cfqd, cfqq, 0);
2552 cfq_schedule_dispatch(cfqd);
2553 }
2554
2555 BUG_ON(cfq_cfqq_on_rr(cfqq));
2556 kmem_cache_free(cfq_pool, cfqq);
2557 cfq_put_cfqg(cfqg);
2558}
2559
2560/*
2561 * Must always be called with the rcu_read_lock() held
2562 */
2563static void
2564__call_for_each_cic(struct io_context *ioc,
2565 void (*func)(struct io_context *, struct cfq_io_context *))
2566{
2567 struct cfq_io_context *cic;
2568 struct hlist_node *n;
2569
2570 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2571 func(ioc, cic);
2572}
2573
2574/*
2575 * Call func for each cic attached to this ioc.
2576 */
2577static void
2578call_for_each_cic(struct io_context *ioc,
2579 void (*func)(struct io_context *, struct cfq_io_context *))
2580{
2581 rcu_read_lock();
2582 __call_for_each_cic(ioc, func);
2583 rcu_read_unlock();
2584}
2585
2586static void cfq_cic_free_rcu(struct rcu_head *head)
2587{
2588 struct cfq_io_context *cic;
2589
2590 cic = container_of(head, struct cfq_io_context, rcu_head);
2591
2592 kmem_cache_free(cfq_ioc_pool, cic);
2593 elv_ioc_count_dec(cfq_ioc_count);
2594
2595 if (ioc_gone) {
2596 /*
2597 * CFQ scheduler is exiting, grab exit lock and check
2598 * the pending io context count. If it hits zero,
2599 * complete ioc_gone and set it back to NULL
2600 */
2601 spin_lock(&ioc_gone_lock);
2602 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2603 complete(ioc_gone);
2604 ioc_gone = NULL;
2605 }
2606 spin_unlock(&ioc_gone_lock);
2607 }
2608}
2609
2610static void cfq_cic_free(struct cfq_io_context *cic)
2611{
2612 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2613}
2614
2615static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2616{
2617 unsigned long flags;
2618 unsigned long dead_key = (unsigned long) cic->key;
2619
2620 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2621
2622 spin_lock_irqsave(&ioc->lock, flags);
2623 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2624 hlist_del_rcu(&cic->cic_list);
2625 spin_unlock_irqrestore(&ioc->lock, flags);
2626
2627 cfq_cic_free(cic);
2628}
2629
2630/*
2631 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2632 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2633 * and ->trim() which is called with the task lock held
2634 */
2635static void cfq_free_io_context(struct io_context *ioc)
2636{
2637 /*
2638 * ioc->refcount is zero here, or we are called from elv_unregister(),
2639 * so no more cic's are allowed to be linked into this ioc. So it
2640 * should be ok to iterate over the known list, we will see all cic's
2641 * since no new ones are added.
2642 */
2643 __call_for_each_cic(ioc, cic_free_func);
2644}
2645
2646static void cfq_put_cooperator(struct cfq_queue *cfqq)
2647{
2648 struct cfq_queue *__cfqq, *next;
2649
2650 /*
2651 * If this queue was scheduled to merge with another queue, be
2652 * sure to drop the reference taken on that queue (and others in
2653 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2654 */
2655 __cfqq = cfqq->new_cfqq;
2656 while (__cfqq) {
2657 if (__cfqq == cfqq) {
2658 WARN(1, "cfqq->new_cfqq loop detected\n");
2659 break;
2660 }
2661 next = __cfqq->new_cfqq;
2662 cfq_put_queue(__cfqq);
2663 __cfqq = next;
2664 }
2665}
2666
2667static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2668{
2669 if (unlikely(cfqq == cfqd->active_queue)) {
2670 __cfq_slice_expired(cfqd, cfqq, 0);
2671 cfq_schedule_dispatch(cfqd);
2672 }
2673
2674 cfq_put_cooperator(cfqq);
2675
2676 cfq_put_queue(cfqq);
2677}
2678
2679static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2680 struct cfq_io_context *cic)
2681{
2682 struct io_context *ioc = cic->ioc;
2683
2684 list_del_init(&cic->queue_list);
2685
2686 /*
2687 * Make sure dead mark is seen for dead queues
2688 */
2689 smp_wmb();
2690 cic->key = cfqd_dead_key(cfqd);
2691
2692 if (ioc->ioc_data == cic)
2693 rcu_assign_pointer(ioc->ioc_data, NULL);
2694
2695 if (cic->cfqq[BLK_RW_ASYNC]) {
2696 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2697 cic->cfqq[BLK_RW_ASYNC] = NULL;
2698 }
2699
2700 if (cic->cfqq[BLK_RW_SYNC]) {
2701 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2702 cic->cfqq[BLK_RW_SYNC] = NULL;
2703 }
2704}
2705
2706static void cfq_exit_single_io_context(struct io_context *ioc,
2707 struct cfq_io_context *cic)
2708{
2709 struct cfq_data *cfqd = cic_to_cfqd(cic);
2710
2711 if (cfqd) {
2712 struct request_queue *q = cfqd->queue;
2713 unsigned long flags;
2714
2715 spin_lock_irqsave(q->queue_lock, flags);
2716
2717 /*
2718 * Ensure we get a fresh copy of the ->key to prevent
2719 * race between exiting task and queue
2720 */
2721 smp_read_barrier_depends();
2722 if (cic->key == cfqd)
2723 __cfq_exit_single_io_context(cfqd, cic);
2724
2725 spin_unlock_irqrestore(q->queue_lock, flags);
2726 }
2727}
2728
2729/*
2730 * The process that ioc belongs to has exited, we need to clean up
2731 * and put the internal structures we have that belongs to that process.
2732 */
2733static void cfq_exit_io_context(struct io_context *ioc)
2734{
2735 call_for_each_cic(ioc, cfq_exit_single_io_context);
2736}
2737
2738static struct cfq_io_context *
2739cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2740{
2741 struct cfq_io_context *cic;
2742
2743 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2744 cfqd->queue->node);
2745 if (cic) {
2746 cic->last_end_request = jiffies;
2747 INIT_LIST_HEAD(&cic->queue_list);
2748 INIT_HLIST_NODE(&cic->cic_list);
2749 cic->dtor = cfq_free_io_context;
2750 cic->exit = cfq_exit_io_context;
2751 elv_ioc_count_inc(cfq_ioc_count);
2752 }
2753
2754 return cic;
2755}
2756
2757static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2758{
2759 struct task_struct *tsk = current;
2760 int ioprio_class;
2761
2762 if (!cfq_cfqq_prio_changed(cfqq))
2763 return;
2764
2765 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2766 switch (ioprio_class) {
2767 default:
2768 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2769 case IOPRIO_CLASS_NONE:
2770 /*
2771 * no prio set, inherit CPU scheduling settings
2772 */
2773 cfqq->ioprio = task_nice_ioprio(tsk);
2774 cfqq->ioprio_class = task_nice_ioclass(tsk);
2775 break;
2776 case IOPRIO_CLASS_RT:
2777 cfqq->ioprio = task_ioprio(ioc);
2778 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2779 break;
2780 case IOPRIO_CLASS_BE:
2781 cfqq->ioprio = task_ioprio(ioc);
2782 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2783 break;
2784 case IOPRIO_CLASS_IDLE:
2785 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2786 cfqq->ioprio = 7;
2787 cfq_clear_cfqq_idle_window(cfqq);
2788 break;
2789 }
2790
2791 /*
2792 * keep track of original prio settings in case we have to temporarily
2793 * elevate the priority of this queue
2794 */
2795 cfqq->org_ioprio = cfqq->ioprio;
2796 cfqq->org_ioprio_class = cfqq->ioprio_class;
2797 cfq_clear_cfqq_prio_changed(cfqq);
2798}
2799
2800static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2801{
2802 struct cfq_data *cfqd = cic_to_cfqd(cic);
2803 struct cfq_queue *cfqq;
2804 unsigned long flags;
2805
2806 if (unlikely(!cfqd))
2807 return;
2808
2809 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2810
2811 cfqq = cic->cfqq[BLK_RW_ASYNC];
2812 if (cfqq) {
2813 struct cfq_queue *new_cfqq;
2814 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2815 GFP_ATOMIC);
2816 if (new_cfqq) {
2817 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2818 cfq_put_queue(cfqq);
2819 }
2820 }
2821
2822 cfqq = cic->cfqq[BLK_RW_SYNC];
2823 if (cfqq)
2824 cfq_mark_cfqq_prio_changed(cfqq);
2825
2826 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2827}
2828
2829static void cfq_ioc_set_ioprio(struct io_context *ioc)
2830{
2831 call_for_each_cic(ioc, changed_ioprio);
2832 ioc->ioprio_changed = 0;
2833}
2834
2835static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2836 pid_t pid, bool is_sync)
2837{
2838 RB_CLEAR_NODE(&cfqq->rb_node);
2839 RB_CLEAR_NODE(&cfqq->p_node);
2840 INIT_LIST_HEAD(&cfqq->fifo);
2841
2842 cfqq->ref = 0;
2843 cfqq->cfqd = cfqd;
2844
2845 cfq_mark_cfqq_prio_changed(cfqq);
2846
2847 if (is_sync) {
2848 if (!cfq_class_idle(cfqq))
2849 cfq_mark_cfqq_idle_window(cfqq);
2850 cfq_mark_cfqq_sync(cfqq);
2851 }
2852 cfqq->pid = pid;
2853}
2854
2855#ifdef CONFIG_CFQ_GROUP_IOSCHED
2856static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2857{
2858 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2859 struct cfq_data *cfqd = cic_to_cfqd(cic);
2860 unsigned long flags;
2861 struct request_queue *q;
2862
2863 if (unlikely(!cfqd))
2864 return;
2865
2866 q = cfqd->queue;
2867
2868 spin_lock_irqsave(q->queue_lock, flags);
2869
2870 if (sync_cfqq) {
2871 /*
2872 * Drop reference to sync queue. A new sync queue will be
2873 * assigned in new group upon arrival of a fresh request.
2874 */
2875 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2876 cic_set_cfqq(cic, NULL, 1);
2877 cfq_put_queue(sync_cfqq);
2878 }
2879
2880 spin_unlock_irqrestore(q->queue_lock, flags);
2881}
2882
2883static void cfq_ioc_set_cgroup(struct io_context *ioc)
2884{
2885 call_for_each_cic(ioc, changed_cgroup);
2886 ioc->cgroup_changed = 0;
2887}
2888#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2889
2890static struct cfq_queue *
2891cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2892 struct io_context *ioc, gfp_t gfp_mask)
2893{
2894 struct cfq_queue *cfqq, *new_cfqq = NULL;
2895 struct cfq_io_context *cic;
2896 struct cfq_group *cfqg;
2897
2898retry:
2899 cfqg = cfq_get_cfqg(cfqd, 1);
2900 cic = cfq_cic_lookup(cfqd, ioc);
2901 /* cic always exists here */
2902 cfqq = cic_to_cfqq(cic, is_sync);
2903
2904 /*
2905 * Always try a new alloc if we fell back to the OOM cfqq
2906 * originally, since it should just be a temporary situation.
2907 */
2908 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2909 cfqq = NULL;
2910 if (new_cfqq) {
2911 cfqq = new_cfqq;
2912 new_cfqq = NULL;
2913 } else if (gfp_mask & __GFP_WAIT) {
2914 spin_unlock_irq(cfqd->queue->queue_lock);
2915 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2916 gfp_mask | __GFP_ZERO,
2917 cfqd->queue->node);
2918 spin_lock_irq(cfqd->queue->queue_lock);
2919 if (new_cfqq)
2920 goto retry;
2921 } else {
2922 cfqq = kmem_cache_alloc_node(cfq_pool,
2923 gfp_mask | __GFP_ZERO,
2924 cfqd->queue->node);
2925 }
2926
2927 if (cfqq) {
2928 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2929 cfq_init_prio_data(cfqq, ioc);
2930 cfq_link_cfqq_cfqg(cfqq, cfqg);
2931 cfq_log_cfqq(cfqd, cfqq, "alloced");
2932 } else
2933 cfqq = &cfqd->oom_cfqq;
2934 }
2935
2936 if (new_cfqq)
2937 kmem_cache_free(cfq_pool, new_cfqq);
2938
2939 return cfqq;
2940}
2941
2942static struct cfq_queue **
2943cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2944{
2945 switch (ioprio_class) {
2946 case IOPRIO_CLASS_RT:
2947 return &cfqd->async_cfqq[0][ioprio];
2948 case IOPRIO_CLASS_BE:
2949 return &cfqd->async_cfqq[1][ioprio];
2950 case IOPRIO_CLASS_IDLE:
2951 return &cfqd->async_idle_cfqq;
2952 default:
2953 BUG();
2954 }
2955}
2956
2957static struct cfq_queue *
2958cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2959 gfp_t gfp_mask)
2960{
2961 const int ioprio = task_ioprio(ioc);
2962 const int ioprio_class = task_ioprio_class(ioc);
2963 struct cfq_queue **async_cfqq = NULL;
2964 struct cfq_queue *cfqq = NULL;
2965
2966 if (!is_sync) {
2967 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2968 cfqq = *async_cfqq;
2969 }
2970
2971 if (!cfqq)
2972 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2973
2974 /*
2975 * pin the queue now that it's allocated, scheduler exit will prune it
2976 */
2977 if (!is_sync && !(*async_cfqq)) {
2978 cfqq->ref++;
2979 *async_cfqq = cfqq;
2980 }
2981
2982 cfqq->ref++;
2983 return cfqq;
2984}
2985
2986/*
2987 * We drop cfq io contexts lazily, so we may find a dead one.
2988 */
2989static void
2990cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2991 struct cfq_io_context *cic)
2992{
2993 unsigned long flags;
2994
2995 WARN_ON(!list_empty(&cic->queue_list));
2996 BUG_ON(cic->key != cfqd_dead_key(cfqd));
2997
2998 spin_lock_irqsave(&ioc->lock, flags);
2999
3000 BUG_ON(ioc->ioc_data == cic);
3001
3002 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3003 hlist_del_rcu(&cic->cic_list);
3004 spin_unlock_irqrestore(&ioc->lock, flags);
3005
3006 cfq_cic_free(cic);
3007}
3008
3009static struct cfq_io_context *
3010cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3011{
3012 struct cfq_io_context *cic;
3013 unsigned long flags;
3014
3015 if (unlikely(!ioc))
3016 return NULL;
3017
3018 rcu_read_lock();
3019
3020 /*
3021 * we maintain a last-hit cache, to avoid browsing over the tree
3022 */
3023 cic = rcu_dereference(ioc->ioc_data);
3024 if (cic && cic->key == cfqd) {
3025 rcu_read_unlock();
3026 return cic;
3027 }
3028
3029 do {
3030 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3031 rcu_read_unlock();
3032 if (!cic)
3033 break;
3034 if (unlikely(cic->key != cfqd)) {
3035 cfq_drop_dead_cic(cfqd, ioc, cic);
3036 rcu_read_lock();
3037 continue;
3038 }
3039
3040 spin_lock_irqsave(&ioc->lock, flags);
3041 rcu_assign_pointer(ioc->ioc_data, cic);
3042 spin_unlock_irqrestore(&ioc->lock, flags);
3043 break;
3044 } while (1);
3045
3046 return cic;
3047}
3048
3049/*
3050 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3051 * the process specific cfq io context when entered from the block layer.
3052 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3053 */
3054static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3055 struct cfq_io_context *cic, gfp_t gfp_mask)
3056{
3057 unsigned long flags;
3058 int ret;
3059
3060 ret = radix_tree_preload(gfp_mask);
3061 if (!ret) {
3062 cic->ioc = ioc;
3063 cic->key = cfqd;
3064
3065 spin_lock_irqsave(&ioc->lock, flags);
3066 ret = radix_tree_insert(&ioc->radix_root,
3067 cfqd->cic_index, cic);
3068 if (!ret)
3069 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3070 spin_unlock_irqrestore(&ioc->lock, flags);
3071
3072 radix_tree_preload_end();
3073
3074 if (!ret) {
3075 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3076 list_add(&cic->queue_list, &cfqd->cic_list);
3077 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3078 }
3079 }
3080
3081 if (ret)
3082 printk(KERN_ERR "cfq: cic link failed!\n");
3083
3084 return ret;
3085}
3086
3087/*
3088 * Setup general io context and cfq io context. There can be several cfq
3089 * io contexts per general io context, if this process is doing io to more
3090 * than one device managed by cfq.
3091 */
3092static struct cfq_io_context *
3093cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3094{
3095 struct io_context *ioc = NULL;
3096 struct cfq_io_context *cic;
3097
3098 might_sleep_if(gfp_mask & __GFP_WAIT);
3099
3100 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3101 if (!ioc)
3102 return NULL;
3103
3104 cic = cfq_cic_lookup(cfqd, ioc);
3105 if (cic)
3106 goto out;
3107
3108 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3109 if (cic == NULL)
3110 goto err;
3111
3112 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3113 goto err_free;
3114
3115out:
3116 smp_read_barrier_depends();
3117 if (unlikely(ioc->ioprio_changed))
3118 cfq_ioc_set_ioprio(ioc);
3119
3120#ifdef CONFIG_CFQ_GROUP_IOSCHED
3121 if (unlikely(ioc->cgroup_changed))
3122 cfq_ioc_set_cgroup(ioc);
3123#endif
3124 return cic;
3125err_free:
3126 cfq_cic_free(cic);
3127err:
3128 put_io_context(ioc);
3129 return NULL;
3130}
3131
3132static void
3133cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3134{
3135 unsigned long elapsed = jiffies - cic->last_end_request;
3136 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3137
3138 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3139 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3140 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3141}
3142
3143static void
3144cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3145 struct request *rq)
3146{
3147 sector_t sdist = 0;
3148 sector_t n_sec = blk_rq_sectors(rq);
3149 if (cfqq->last_request_pos) {
3150 if (cfqq->last_request_pos < blk_rq_pos(rq))
3151 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3152 else
3153 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3154 }
3155
3156 cfqq->seek_history <<= 1;
3157 if (blk_queue_nonrot(cfqd->queue))
3158 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3159 else
3160 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3161}
3162
3163/*
3164 * Disable idle window if the process thinks too long or seeks so much that
3165 * it doesn't matter
3166 */
3167static void
3168cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3169 struct cfq_io_context *cic)
3170{
3171 int old_idle, enable_idle;
3172
3173 /*
3174 * Don't idle for async or idle io prio class
3175 */
3176 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3177 return;
3178
3179 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3180
3181 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3182 cfq_mark_cfqq_deep(cfqq);
3183
3184 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3185 enable_idle = 0;
3186 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3187 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3188 enable_idle = 0;
3189 else if (sample_valid(cic->ttime_samples)) {
3190 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3191 enable_idle = 0;
3192 else
3193 enable_idle = 1;
3194 }
3195
3196 if (old_idle != enable_idle) {
3197 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3198 if (enable_idle)
3199 cfq_mark_cfqq_idle_window(cfqq);
3200 else
3201 cfq_clear_cfqq_idle_window(cfqq);
3202 }
3203}
3204
3205/*
3206 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3207 * no or if we aren't sure, a 1 will cause a preempt.
3208 */
3209static bool
3210cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3211 struct request *rq)
3212{
3213 struct cfq_queue *cfqq;
3214
3215 cfqq = cfqd->active_queue;
3216 if (!cfqq)
3217 return false;
3218
3219 if (cfq_class_idle(new_cfqq))
3220 return false;
3221
3222 if (cfq_class_idle(cfqq))
3223 return true;
3224
3225 /*
3226 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3227 */
3228 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3229 return false;
3230
3231 /*
3232 * if the new request is sync, but the currently running queue is
3233 * not, let the sync request have priority.
3234 */
3235 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3236 return true;
3237
3238 if (new_cfqq->cfqg != cfqq->cfqg)
3239 return false;
3240
3241 if (cfq_slice_used(cfqq))
3242 return true;
3243
3244 /* Allow preemption only if we are idling on sync-noidle tree */
3245 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3246 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3247 new_cfqq->service_tree->count == 2 &&
3248 RB_EMPTY_ROOT(&cfqq->sort_list))
3249 return true;
3250
3251 /*
3252 * So both queues are sync. Let the new request get disk time if
3253 * it's a metadata request and the current queue is doing regular IO.
3254 */
3255 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3256 return true;
3257
3258 /*
3259 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3260 */
3261 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3262 return true;
3263
3264 /* An idle queue should not be idle now for some reason */
3265 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3266 return true;
3267
3268 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3269 return false;
3270
3271 /*
3272 * if this request is as-good as one we would expect from the
3273 * current cfqq, let it preempt
3274 */
3275 if (cfq_rq_close(cfqd, cfqq, rq))
3276 return true;
3277
3278 return false;
3279}
3280
3281/*
3282 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3283 * let it have half of its nominal slice.
3284 */
3285static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3286{
3287 struct cfq_queue *old_cfqq = cfqd->active_queue;
3288
3289 cfq_log_cfqq(cfqd, cfqq, "preempt");
3290 cfq_slice_expired(cfqd, 1);
3291
3292 /*
3293 * workload type is changed, don't save slice, otherwise preempt
3294 * doesn't happen
3295 */
3296 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3297 cfqq->cfqg->saved_workload_slice = 0;
3298
3299 /*
3300 * Put the new queue at the front of the of the current list,
3301 * so we know that it will be selected next.
3302 */
3303 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3304
3305 cfq_service_tree_add(cfqd, cfqq, 1);
3306 __cfq_set_active_queue(cfqd, cfqq);
3307}
3308
3309/*
3310 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3311 * something we should do about it
3312 */
3313static void
3314cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3315 struct request *rq)
3316{
3317 struct cfq_io_context *cic = RQ_CIC(rq);
3318
3319 cfqd->rq_queued++;
3320 if (rq->cmd_flags & REQ_META)
3321 cfqq->meta_pending++;
3322
3323 cfq_update_io_thinktime(cfqd, cic);
3324 cfq_update_io_seektime(cfqd, cfqq, rq);
3325 cfq_update_idle_window(cfqd, cfqq, cic);
3326
3327 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3328
3329 if (cfqq == cfqd->active_queue) {
3330 /*
3331 * Remember that we saw a request from this process, but
3332 * don't start queuing just yet. Otherwise we risk seeing lots
3333 * of tiny requests, because we disrupt the normal plugging
3334 * and merging. If the request is already larger than a single
3335 * page, let it rip immediately. For that case we assume that
3336 * merging is already done. Ditto for a busy system that
3337 * has other work pending, don't risk delaying until the
3338 * idle timer unplug to continue working.
3339 */
3340 if (cfq_cfqq_wait_request(cfqq)) {
3341 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3342 cfqd->busy_queues > 1) {
3343 cfq_del_timer(cfqd, cfqq);
3344 cfq_clear_cfqq_wait_request(cfqq);
3345 __blk_run_queue(cfqd->queue, false);
3346 } else {
3347 cfq_blkiocg_update_idle_time_stats(
3348 &cfqq->cfqg->blkg);
3349 cfq_mark_cfqq_must_dispatch(cfqq);
3350 }
3351 }
3352 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3353 /*
3354 * not the active queue - expire current slice if it is
3355 * idle and has expired it's mean thinktime or this new queue
3356 * has some old slice time left and is of higher priority or
3357 * this new queue is RT and the current one is BE
3358 */
3359 cfq_preempt_queue(cfqd, cfqq);
3360 __blk_run_queue(cfqd->queue, false);
3361 }
3362}
3363
3364static void cfq_insert_request(struct request_queue *q, struct request *rq)
3365{
3366 struct cfq_data *cfqd = q->elevator->elevator_data;
3367 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3368
3369 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3370 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3371
3372 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3373 list_add_tail(&rq->queuelist, &cfqq->fifo);
3374 cfq_add_rq_rb(rq);
3375 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3376 &cfqd->serving_group->blkg, rq_data_dir(rq),
3377 rq_is_sync(rq));
3378 cfq_rq_enqueued(cfqd, cfqq, rq);
3379}
3380
3381/*
3382 * Update hw_tag based on peak queue depth over 50 samples under
3383 * sufficient load.
3384 */
3385static void cfq_update_hw_tag(struct cfq_data *cfqd)
3386{
3387 struct cfq_queue *cfqq = cfqd->active_queue;
3388
3389 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3390 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3391
3392 if (cfqd->hw_tag == 1)
3393 return;
3394
3395 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3396 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3397 return;
3398
3399 /*
3400 * If active queue hasn't enough requests and can idle, cfq might not
3401 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3402 * case
3403 */
3404 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3405 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3406 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3407 return;
3408
3409 if (cfqd->hw_tag_samples++ < 50)
3410 return;
3411
3412 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3413 cfqd->hw_tag = 1;
3414 else
3415 cfqd->hw_tag = 0;
3416}
3417
3418static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3419{
3420 struct cfq_io_context *cic = cfqd->active_cic;
3421
3422 /* If the queue already has requests, don't wait */
3423 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3424 return false;
3425
3426 /* If there are other queues in the group, don't wait */
3427 if (cfqq->cfqg->nr_cfqq > 1)
3428 return false;
3429
3430 if (cfq_slice_used(cfqq))
3431 return true;
3432
3433 /* if slice left is less than think time, wait busy */
3434 if (cic && sample_valid(cic->ttime_samples)
3435 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3436 return true;
3437
3438 /*
3439 * If think times is less than a jiffy than ttime_mean=0 and above
3440 * will not be true. It might happen that slice has not expired yet
3441 * but will expire soon (4-5 ns) during select_queue(). To cover the
3442 * case where think time is less than a jiffy, mark the queue wait
3443 * busy if only 1 jiffy is left in the slice.
3444 */
3445 if (cfqq->slice_end - jiffies == 1)
3446 return true;
3447
3448 return false;
3449}
3450
3451static void cfq_completed_request(struct request_queue *q, struct request *rq)
3452{
3453 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3454 struct cfq_data *cfqd = cfqq->cfqd;
3455 const int sync = rq_is_sync(rq);
3456 unsigned long now;
3457
3458 now = jiffies;
3459 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3460 !!(rq->cmd_flags & REQ_NOIDLE));
3461
3462 cfq_update_hw_tag(cfqd);
3463
3464 WARN_ON(!cfqd->rq_in_driver);
3465 WARN_ON(!cfqq->dispatched);
3466 cfqd->rq_in_driver--;
3467 cfqq->dispatched--;
3468 (RQ_CFQG(rq))->dispatched--;
3469 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3470 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3471 rq_data_dir(rq), rq_is_sync(rq));
3472
3473 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3474
3475 if (sync) {
3476 RQ_CIC(rq)->last_end_request = now;
3477 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3478 cfqd->last_delayed_sync = now;
3479 }
3480
3481 /*
3482 * If this is the active queue, check if it needs to be expired,
3483 * or if we want to idle in case it has no pending requests.
3484 */
3485 if (cfqd->active_queue == cfqq) {
3486 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3487
3488 if (cfq_cfqq_slice_new(cfqq)) {
3489 cfq_set_prio_slice(cfqd, cfqq);
3490 cfq_clear_cfqq_slice_new(cfqq);
3491 }
3492
3493 /*
3494 * Should we wait for next request to come in before we expire
3495 * the queue.
3496 */
3497 if (cfq_should_wait_busy(cfqd, cfqq)) {
3498 unsigned long extend_sl = cfqd->cfq_slice_idle;
3499 if (!cfqd->cfq_slice_idle)
3500 extend_sl = cfqd->cfq_group_idle;
3501 cfqq->slice_end = jiffies + extend_sl;
3502 cfq_mark_cfqq_wait_busy(cfqq);
3503 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3504 }
3505
3506 /*
3507 * Idling is not enabled on:
3508 * - expired queues
3509 * - idle-priority queues
3510 * - async queues
3511 * - queues with still some requests queued
3512 * - when there is a close cooperator
3513 */
3514 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3515 cfq_slice_expired(cfqd, 1);
3516 else if (sync && cfqq_empty &&
3517 !cfq_close_cooperator(cfqd, cfqq)) {
3518 cfq_arm_slice_timer(cfqd);
3519 }
3520 }
3521
3522 if (!cfqd->rq_in_driver)
3523 cfq_schedule_dispatch(cfqd);
3524}
3525
3526/*
3527 * we temporarily boost lower priority queues if they are holding fs exclusive
3528 * resources. they are boosted to normal prio (CLASS_BE/4)
3529 */
3530static void cfq_prio_boost(struct cfq_queue *cfqq)
3531{
3532 if (has_fs_excl()) {
3533 /*
3534 * boost idle prio on transactions that would lock out other
3535 * users of the filesystem
3536 */
3537 if (cfq_class_idle(cfqq))
3538 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3539 if (cfqq->ioprio > IOPRIO_NORM)
3540 cfqq->ioprio = IOPRIO_NORM;
3541 } else {
3542 /*
3543 * unboost the queue (if needed)
3544 */
3545 cfqq->ioprio_class = cfqq->org_ioprio_class;
3546 cfqq->ioprio = cfqq->org_ioprio;
3547 }
3548}
3549
3550static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3551{
3552 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3553 cfq_mark_cfqq_must_alloc_slice(cfqq);
3554 return ELV_MQUEUE_MUST;
3555 }
3556
3557 return ELV_MQUEUE_MAY;
3558}
3559
3560static int cfq_may_queue(struct request_queue *q, int rw)
3561{
3562 struct cfq_data *cfqd = q->elevator->elevator_data;
3563 struct task_struct *tsk = current;
3564 struct cfq_io_context *cic;
3565 struct cfq_queue *cfqq;
3566
3567 /*
3568 * don't force setup of a queue from here, as a call to may_queue
3569 * does not necessarily imply that a request actually will be queued.
3570 * so just lookup a possibly existing queue, or return 'may queue'
3571 * if that fails
3572 */
3573 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3574 if (!cic)
3575 return ELV_MQUEUE_MAY;
3576
3577 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3578 if (cfqq) {
3579 cfq_init_prio_data(cfqq, cic->ioc);
3580 cfq_prio_boost(cfqq);
3581
3582 return __cfq_may_queue(cfqq);
3583 }
3584
3585 return ELV_MQUEUE_MAY;
3586}
3587
3588/*
3589 * queue lock held here
3590 */
3591static void cfq_put_request(struct request *rq)
3592{
3593 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3594
3595 if (cfqq) {
3596 const int rw = rq_data_dir(rq);
3597
3598 BUG_ON(!cfqq->allocated[rw]);
3599 cfqq->allocated[rw]--;
3600
3601 put_io_context(RQ_CIC(rq)->ioc);
3602
3603 rq->elevator_private[0] = NULL;
3604 rq->elevator_private[1] = NULL;
3605
3606 /* Put down rq reference on cfqg */
3607 cfq_put_cfqg(RQ_CFQG(rq));
3608 rq->elevator_private[2] = NULL;
3609
3610 cfq_put_queue(cfqq);
3611 }
3612}
3613
3614static struct cfq_queue *
3615cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3616 struct cfq_queue *cfqq)
3617{
3618 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3619 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3620 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3621 cfq_put_queue(cfqq);
3622 return cic_to_cfqq(cic, 1);
3623}
3624
3625/*
3626 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3627 * was the last process referring to said cfqq.
3628 */
3629static struct cfq_queue *
3630split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3631{
3632 if (cfqq_process_refs(cfqq) == 1) {
3633 cfqq->pid = current->pid;
3634 cfq_clear_cfqq_coop(cfqq);
3635 cfq_clear_cfqq_split_coop(cfqq);
3636 return cfqq;
3637 }
3638
3639 cic_set_cfqq(cic, NULL, 1);
3640
3641 cfq_put_cooperator(cfqq);
3642
3643 cfq_put_queue(cfqq);
3644 return NULL;
3645}
3646/*
3647 * Allocate cfq data structures associated with this request.
3648 */
3649static int
3650cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3651{
3652 struct cfq_data *cfqd = q->elevator->elevator_data;
3653 struct cfq_io_context *cic;
3654 const int rw = rq_data_dir(rq);
3655 const bool is_sync = rq_is_sync(rq);
3656 struct cfq_queue *cfqq;
3657 unsigned long flags;
3658
3659 might_sleep_if(gfp_mask & __GFP_WAIT);
3660
3661 cic = cfq_get_io_context(cfqd, gfp_mask);
3662
3663 spin_lock_irqsave(q->queue_lock, flags);
3664
3665 if (!cic)
3666 goto queue_fail;
3667
3668new_queue:
3669 cfqq = cic_to_cfqq(cic, is_sync);
3670 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3671 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3672 cic_set_cfqq(cic, cfqq, is_sync);
3673 } else {
3674 /*
3675 * If the queue was seeky for too long, break it apart.
3676 */
3677 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3678 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3679 cfqq = split_cfqq(cic, cfqq);
3680 if (!cfqq)
3681 goto new_queue;
3682 }
3683
3684 /*
3685 * Check to see if this queue is scheduled to merge with
3686 * another, closely cooperating queue. The merging of
3687 * queues happens here as it must be done in process context.
3688 * The reference on new_cfqq was taken in merge_cfqqs.
3689 */
3690 if (cfqq->new_cfqq)
3691 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3692 }
3693
3694 cfqq->allocated[rw]++;
3695
3696 cfqq->ref++;
3697 rq->elevator_private[0] = cic;
3698 rq->elevator_private[1] = cfqq;
3699 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3700 spin_unlock_irqrestore(q->queue_lock, flags);
3701 return 0;
3702
3703queue_fail:
3704 if (cic)
3705 put_io_context(cic->ioc);
3706
3707 cfq_schedule_dispatch(cfqd);
3708 spin_unlock_irqrestore(q->queue_lock, flags);
3709 cfq_log(cfqd, "set_request fail");
3710 return 1;
3711}
3712
3713static void cfq_kick_queue(struct work_struct *work)
3714{
3715 struct cfq_data *cfqd =
3716 container_of(work, struct cfq_data, unplug_work);
3717 struct request_queue *q = cfqd->queue;
3718
3719 spin_lock_irq(q->queue_lock);
3720 __blk_run_queue(cfqd->queue, false);
3721 spin_unlock_irq(q->queue_lock);
3722}
3723
3724/*
3725 * Timer running if the active_queue is currently idling inside its time slice
3726 */
3727static void cfq_idle_slice_timer(unsigned long data)
3728{
3729 struct cfq_data *cfqd = (struct cfq_data *) data;
3730 struct cfq_queue *cfqq;
3731 unsigned long flags;
3732 int timed_out = 1;
3733
3734 cfq_log(cfqd, "idle timer fired");
3735
3736 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3737
3738 cfqq = cfqd->active_queue;
3739 if (cfqq) {
3740 timed_out = 0;
3741
3742 /*
3743 * We saw a request before the queue expired, let it through
3744 */
3745 if (cfq_cfqq_must_dispatch(cfqq))
3746 goto out_kick;
3747
3748 /*
3749 * expired
3750 */
3751 if (cfq_slice_used(cfqq))
3752 goto expire;
3753
3754 /*
3755 * only expire and reinvoke request handler, if there are
3756 * other queues with pending requests
3757 */
3758 if (!cfqd->busy_queues)
3759 goto out_cont;
3760
3761 /*
3762 * not expired and it has a request pending, let it dispatch
3763 */
3764 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3765 goto out_kick;
3766
3767 /*
3768 * Queue depth flag is reset only when the idle didn't succeed
3769 */
3770 cfq_clear_cfqq_deep(cfqq);
3771 }
3772expire:
3773 cfq_slice_expired(cfqd, timed_out);
3774out_kick:
3775 cfq_schedule_dispatch(cfqd);
3776out_cont:
3777 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3778}
3779
3780static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3781{
3782 del_timer_sync(&cfqd->idle_slice_timer);
3783 cancel_work_sync(&cfqd->unplug_work);
3784}
3785
3786static void cfq_put_async_queues(struct cfq_data *cfqd)
3787{
3788 int i;
3789
3790 for (i = 0; i < IOPRIO_BE_NR; i++) {
3791 if (cfqd->async_cfqq[0][i])
3792 cfq_put_queue(cfqd->async_cfqq[0][i]);
3793 if (cfqd->async_cfqq[1][i])
3794 cfq_put_queue(cfqd->async_cfqq[1][i]);
3795 }
3796
3797 if (cfqd->async_idle_cfqq)
3798 cfq_put_queue(cfqd->async_idle_cfqq);
3799}
3800
3801static void cfq_cfqd_free(struct rcu_head *head)
3802{
3803 kfree(container_of(head, struct cfq_data, rcu));
3804}
3805
3806static void cfq_exit_queue(struct elevator_queue *e)
3807{
3808 struct cfq_data *cfqd = e->elevator_data;
3809 struct request_queue *q = cfqd->queue;
3810
3811 cfq_shutdown_timer_wq(cfqd);
3812
3813 spin_lock_irq(q->queue_lock);
3814
3815 if (cfqd->active_queue)
3816 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3817
3818 while (!list_empty(&cfqd->cic_list)) {
3819 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3820 struct cfq_io_context,
3821 queue_list);
3822
3823 __cfq_exit_single_io_context(cfqd, cic);
3824 }
3825
3826 cfq_put_async_queues(cfqd);
3827 cfq_release_cfq_groups(cfqd);
3828 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3829
3830 spin_unlock_irq(q->queue_lock);
3831
3832 cfq_shutdown_timer_wq(cfqd);
3833
3834 spin_lock(&cic_index_lock);
3835 ida_remove(&cic_index_ida, cfqd->cic_index);
3836 spin_unlock(&cic_index_lock);
3837
3838 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3839 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3840}
3841
3842static int cfq_alloc_cic_index(void)
3843{
3844 int index, error;
3845
3846 do {
3847 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3848 return -ENOMEM;
3849
3850 spin_lock(&cic_index_lock);
3851 error = ida_get_new(&cic_index_ida, &index);
3852 spin_unlock(&cic_index_lock);
3853 if (error && error != -EAGAIN)
3854 return error;
3855 } while (error);
3856
3857 return index;
3858}
3859
3860static void *cfq_init_queue(struct request_queue *q)
3861{
3862 struct cfq_data *cfqd;
3863 int i, j;
3864 struct cfq_group *cfqg;
3865 struct cfq_rb_root *st;
3866
3867 i = cfq_alloc_cic_index();
3868 if (i < 0)
3869 return NULL;
3870
3871 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3872 if (!cfqd)
3873 return NULL;
3874
3875 /*
3876 * Don't need take queue_lock in the routine, since we are
3877 * initializing the ioscheduler, and nobody is using cfqd
3878 */
3879 cfqd->cic_index = i;
3880
3881 /* Init root service tree */
3882 cfqd->grp_service_tree = CFQ_RB_ROOT;
3883
3884 /* Init root group */
3885 cfqg = &cfqd->root_group;
3886 for_each_cfqg_st(cfqg, i, j, st)
3887 *st = CFQ_RB_ROOT;
3888 RB_CLEAR_NODE(&cfqg->rb_node);
3889
3890 /* Give preference to root group over other groups */
3891 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3892
3893#ifdef CONFIG_CFQ_GROUP_IOSCHED
3894 /*
3895 * Take a reference to root group which we never drop. This is just
3896 * to make sure that cfq_put_cfqg() does not try to kfree root group
3897 */
3898 cfqg->ref = 1;
3899 rcu_read_lock();
3900 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3901 (void *)cfqd, 0);
3902 rcu_read_unlock();
3903#endif
3904 /*
3905 * Not strictly needed (since RB_ROOT just clears the node and we
3906 * zeroed cfqd on alloc), but better be safe in case someone decides
3907 * to add magic to the rb code
3908 */
3909 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3910 cfqd->prio_trees[i] = RB_ROOT;
3911
3912 /*
3913 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3914 * Grab a permanent reference to it, so that the normal code flow
3915 * will not attempt to free it.
3916 */
3917 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3918 cfqd->oom_cfqq.ref++;
3919 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3920
3921 INIT_LIST_HEAD(&cfqd->cic_list);
3922
3923 cfqd->queue = q;
3924
3925 init_timer(&cfqd->idle_slice_timer);
3926 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3927 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3928
3929 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3930
3931 cfqd->cfq_quantum = cfq_quantum;
3932 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3933 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3934 cfqd->cfq_back_max = cfq_back_max;
3935 cfqd->cfq_back_penalty = cfq_back_penalty;
3936 cfqd->cfq_slice[0] = cfq_slice_async;
3937 cfqd->cfq_slice[1] = cfq_slice_sync;
3938 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3939 cfqd->cfq_slice_idle = cfq_slice_idle;
3940 cfqd->cfq_group_idle = cfq_group_idle;
3941 cfqd->cfq_latency = 1;
3942 cfqd->hw_tag = -1;
3943 /*
3944 * we optimistically start assuming sync ops weren't delayed in last
3945 * second, in order to have larger depth for async operations.
3946 */
3947 cfqd->last_delayed_sync = jiffies - HZ;
3948 return cfqd;
3949}
3950
3951static void cfq_slab_kill(void)
3952{
3953 /*
3954 * Caller already ensured that pending RCU callbacks are completed,
3955 * so we should have no busy allocations at this point.
3956 */
3957 if (cfq_pool)
3958 kmem_cache_destroy(cfq_pool);
3959 if (cfq_ioc_pool)
3960 kmem_cache_destroy(cfq_ioc_pool);
3961}
3962
3963static int __init cfq_slab_setup(void)
3964{
3965 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3966 if (!cfq_pool)
3967 goto fail;
3968
3969 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3970 if (!cfq_ioc_pool)
3971 goto fail;
3972
3973 return 0;
3974fail:
3975 cfq_slab_kill();
3976 return -ENOMEM;
3977}
3978
3979/*
3980 * sysfs parts below -->
3981 */
3982static ssize_t
3983cfq_var_show(unsigned int var, char *page)
3984{
3985 return sprintf(page, "%d\n", var);
3986}
3987
3988static ssize_t
3989cfq_var_store(unsigned int *var, const char *page, size_t count)
3990{
3991 char *p = (char *) page;
3992
3993 *var = simple_strtoul(p, &p, 10);
3994 return count;
3995}
3996
3997#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3998static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3999{ \
4000 struct cfq_data *cfqd = e->elevator_data; \
4001 unsigned int __data = __VAR; \
4002 if (__CONV) \
4003 __data = jiffies_to_msecs(__data); \
4004 return cfq_var_show(__data, (page)); \
4005}
4006SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4007SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4008SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4009SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4010SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4011SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4012SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4013SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4014SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4015SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4016SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4017#undef SHOW_FUNCTION
4018
4019#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4020static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4021{ \
4022 struct cfq_data *cfqd = e->elevator_data; \
4023 unsigned int __data; \
4024 int ret = cfq_var_store(&__data, (page), count); \
4025 if (__data < (MIN)) \
4026 __data = (MIN); \
4027 else if (__data > (MAX)) \
4028 __data = (MAX); \
4029 if (__CONV) \
4030 *(__PTR) = msecs_to_jiffies(__data); \
4031 else \
4032 *(__PTR) = __data; \
4033 return ret; \
4034}
4035STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4036STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4037 UINT_MAX, 1);
4038STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4039 UINT_MAX, 1);
4040STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4041STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4042 UINT_MAX, 0);
4043STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4044STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4045STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4046STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4047STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4048 UINT_MAX, 0);
4049STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4050#undef STORE_FUNCTION
4051
4052#define CFQ_ATTR(name) \
4053 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4054
4055static struct elv_fs_entry cfq_attrs[] = {
4056 CFQ_ATTR(quantum),
4057 CFQ_ATTR(fifo_expire_sync),
4058 CFQ_ATTR(fifo_expire_async),
4059 CFQ_ATTR(back_seek_max),
4060 CFQ_ATTR(back_seek_penalty),
4061 CFQ_ATTR(slice_sync),
4062 CFQ_ATTR(slice_async),
4063 CFQ_ATTR(slice_async_rq),
4064 CFQ_ATTR(slice_idle),
4065 CFQ_ATTR(group_idle),
4066 CFQ_ATTR(low_latency),
4067 __ATTR_NULL
4068};
4069
4070static struct elevator_type iosched_cfq = {
4071 .ops = {
4072 .elevator_merge_fn = cfq_merge,
4073 .elevator_merged_fn = cfq_merged_request,
4074 .elevator_merge_req_fn = cfq_merged_requests,
4075 .elevator_allow_merge_fn = cfq_allow_merge,
4076 .elevator_bio_merged_fn = cfq_bio_merged,
4077 .elevator_dispatch_fn = cfq_dispatch_requests,
4078 .elevator_add_req_fn = cfq_insert_request,
4079 .elevator_activate_req_fn = cfq_activate_request,
4080 .elevator_deactivate_req_fn = cfq_deactivate_request,
4081 .elevator_completed_req_fn = cfq_completed_request,
4082 .elevator_former_req_fn = elv_rb_former_request,
4083 .elevator_latter_req_fn = elv_rb_latter_request,
4084 .elevator_set_req_fn = cfq_set_request,
4085 .elevator_put_req_fn = cfq_put_request,
4086 .elevator_may_queue_fn = cfq_may_queue,
4087 .elevator_init_fn = cfq_init_queue,
4088 .elevator_exit_fn = cfq_exit_queue,
4089 .trim = cfq_free_io_context,
4090 },
4091 .elevator_attrs = cfq_attrs,
4092 .elevator_name = "cfq",
4093 .elevator_owner = THIS_MODULE,
4094};
4095
4096#ifdef CONFIG_CFQ_GROUP_IOSCHED
4097static struct blkio_policy_type blkio_policy_cfq = {
4098 .ops = {
4099 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4100 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4101 },
4102 .plid = BLKIO_POLICY_PROP,
4103};
4104#else
4105static struct blkio_policy_type blkio_policy_cfq;
4106#endif
4107
4108static int __init cfq_init(void)
4109{
4110 /*
4111 * could be 0 on HZ < 1000 setups
4112 */
4113 if (!cfq_slice_async)
4114 cfq_slice_async = 1;
4115 if (!cfq_slice_idle)
4116 cfq_slice_idle = 1;
4117
4118#ifdef CONFIG_CFQ_GROUP_IOSCHED
4119 if (!cfq_group_idle)
4120 cfq_group_idle = 1;
4121#else
4122 cfq_group_idle = 0;
4123#endif
4124 if (cfq_slab_setup())
4125 return -ENOMEM;
4126
4127 elv_register(&iosched_cfq);
4128 blkio_policy_register(&blkio_policy_cfq);
4129
4130 return 0;
4131}
4132
4133static void __exit cfq_exit(void)
4134{
4135 DECLARE_COMPLETION_ONSTACK(all_gone);
4136 blkio_policy_unregister(&blkio_policy_cfq);
4137 elv_unregister(&iosched_cfq);
4138 ioc_gone = &all_gone;
4139 /* ioc_gone's update must be visible before reading ioc_count */
4140 smp_wmb();
4141
4142 /*
4143 * this also protects us from entering cfq_slab_kill() with
4144 * pending RCU callbacks
4145 */
4146 if (elv_ioc_count_read(cfq_ioc_count))
4147 wait_for_completion(&all_gone);
4148 ida_destroy(&cic_index_ida);
4149 cfq_slab_kill();
4150}
4151
4152module_init(cfq_init);
4153module_exit(cfq_exit);
4154
4155MODULE_AUTHOR("Jens Axboe");
4156MODULE_LICENSE("GPL");
4157MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");