]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - block/cfq-iosched.c
cfq-iosched: Convert from jiffies to nanoseconds
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
... / ...
CommitLineData
1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/ktime.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include <linux/blk-cgroup.h>
18#include "blk.h"
19
20/*
21 * tunables
22 */
23/* max queue in one round of service */
24static const int cfq_quantum = 8;
25static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
30static const u64 cfq_slice_sync = NSEC_PER_SEC / 10;
31static u64 cfq_slice_async = NSEC_PER_SEC / 25;
32static const int cfq_slice_async_rq = 2;
33static u64 cfq_slice_idle = NSEC_PER_SEC / 125;
34static u64 cfq_group_idle = NSEC_PER_SEC / 125;
35static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
37
38/*
39 * offset from end of service tree
40 */
41#define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
47
48#define CFQ_SLICE_SCALE (5)
49#define CFQ_HW_QUEUE_MIN (5)
50#define CFQ_SERVICE_SHIFT 12
51
52#define CFQQ_SEEK_THR (sector_t)(8 * 100)
53#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56
57#define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
60
61static struct kmem_cache *cfq_pool;
62
63#define CFQ_PRIO_LISTS IOPRIO_BE_NR
64#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67#define sample_valid(samples) ((samples) > 80)
68#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
69
70/* blkio-related constants */
71#define CFQ_WEIGHT_LEGACY_MIN 10
72#define CFQ_WEIGHT_LEGACY_DFL 500
73#define CFQ_WEIGHT_LEGACY_MAX 1000
74
75struct cfq_ttime {
76 u64 last_end_request;
77
78 u64 ttime_total;
79 u64 ttime_mean;
80 unsigned long ttime_samples;
81};
82
83/*
84 * Most of our rbtree usage is for sorting with min extraction, so
85 * if we cache the leftmost node we don't have to walk down the tree
86 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
87 * move this into the elevator for the rq sorting as well.
88 */
89struct cfq_rb_root {
90 struct rb_root rb;
91 struct rb_node *left;
92 unsigned count;
93 u64 min_vdisktime;
94 struct cfq_ttime ttime;
95};
96#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
97 .ttime = {.last_end_request = ktime_get_ns(),},}
98
99/*
100 * Per process-grouping structure
101 */
102struct cfq_queue {
103 /* reference count */
104 int ref;
105 /* various state flags, see below */
106 unsigned int flags;
107 /* parent cfq_data */
108 struct cfq_data *cfqd;
109 /* service_tree member */
110 struct rb_node rb_node;
111 /* service_tree key */
112 u64 rb_key;
113 /* prio tree member */
114 struct rb_node p_node;
115 /* prio tree root we belong to, if any */
116 struct rb_root *p_root;
117 /* sorted list of pending requests */
118 struct rb_root sort_list;
119 /* if fifo isn't expired, next request to serve */
120 struct request *next_rq;
121 /* requests queued in sort_list */
122 int queued[2];
123 /* currently allocated requests */
124 int allocated[2];
125 /* fifo list of requests in sort_list */
126 struct list_head fifo;
127
128 /* time when queue got scheduled in to dispatch first request. */
129 u64 dispatch_start;
130 u64 allocated_slice;
131 u64 slice_dispatch;
132 /* time when first request from queue completed and slice started. */
133 u64 slice_start;
134 u64 slice_end;
135 u64 slice_resid;
136
137 /* pending priority requests */
138 int prio_pending;
139 /* number of requests that are on the dispatch list or inside driver */
140 int dispatched;
141
142 /* io prio of this group */
143 unsigned short ioprio, org_ioprio;
144 unsigned short ioprio_class;
145
146 pid_t pid;
147
148 u32 seek_history;
149 sector_t last_request_pos;
150
151 struct cfq_rb_root *service_tree;
152 struct cfq_queue *new_cfqq;
153 struct cfq_group *cfqg;
154 /* Number of sectors dispatched from queue in single dispatch round */
155 unsigned long nr_sectors;
156};
157
158/*
159 * First index in the service_trees.
160 * IDLE is handled separately, so it has negative index
161 */
162enum wl_class_t {
163 BE_WORKLOAD = 0,
164 RT_WORKLOAD = 1,
165 IDLE_WORKLOAD = 2,
166 CFQ_PRIO_NR,
167};
168
169/*
170 * Second index in the service_trees.
171 */
172enum wl_type_t {
173 ASYNC_WORKLOAD = 0,
174 SYNC_NOIDLE_WORKLOAD = 1,
175 SYNC_WORKLOAD = 2
176};
177
178struct cfqg_stats {
179#ifdef CONFIG_CFQ_GROUP_IOSCHED
180 /* number of ios merged */
181 struct blkg_rwstat merged;
182 /* total time spent on device in ns, may not be accurate w/ queueing */
183 struct blkg_rwstat service_time;
184 /* total time spent waiting in scheduler queue in ns */
185 struct blkg_rwstat wait_time;
186 /* number of IOs queued up */
187 struct blkg_rwstat queued;
188 /* total disk time and nr sectors dispatched by this group */
189 struct blkg_stat time;
190#ifdef CONFIG_DEBUG_BLK_CGROUP
191 /* time not charged to this cgroup */
192 struct blkg_stat unaccounted_time;
193 /* sum of number of ios queued across all samples */
194 struct blkg_stat avg_queue_size_sum;
195 /* count of samples taken for average */
196 struct blkg_stat avg_queue_size_samples;
197 /* how many times this group has been removed from service tree */
198 struct blkg_stat dequeue;
199 /* total time spent waiting for it to be assigned a timeslice. */
200 struct blkg_stat group_wait_time;
201 /* time spent idling for this blkcg_gq */
202 struct blkg_stat idle_time;
203 /* total time with empty current active q with other requests queued */
204 struct blkg_stat empty_time;
205 /* fields after this shouldn't be cleared on stat reset */
206 uint64_t start_group_wait_time;
207 uint64_t start_idle_time;
208 uint64_t start_empty_time;
209 uint16_t flags;
210#endif /* CONFIG_DEBUG_BLK_CGROUP */
211#endif /* CONFIG_CFQ_GROUP_IOSCHED */
212};
213
214/* Per-cgroup data */
215struct cfq_group_data {
216 /* must be the first member */
217 struct blkcg_policy_data cpd;
218
219 unsigned int weight;
220 unsigned int leaf_weight;
221};
222
223/* This is per cgroup per device grouping structure */
224struct cfq_group {
225 /* must be the first member */
226 struct blkg_policy_data pd;
227
228 /* group service_tree member */
229 struct rb_node rb_node;
230
231 /* group service_tree key */
232 u64 vdisktime;
233
234 /*
235 * The number of active cfqgs and sum of their weights under this
236 * cfqg. This covers this cfqg's leaf_weight and all children's
237 * weights, but does not cover weights of further descendants.
238 *
239 * If a cfqg is on the service tree, it's active. An active cfqg
240 * also activates its parent and contributes to the children_weight
241 * of the parent.
242 */
243 int nr_active;
244 unsigned int children_weight;
245
246 /*
247 * vfraction is the fraction of vdisktime that the tasks in this
248 * cfqg are entitled to. This is determined by compounding the
249 * ratios walking up from this cfqg to the root.
250 *
251 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
252 * vfractions on a service tree is approximately 1. The sum may
253 * deviate a bit due to rounding errors and fluctuations caused by
254 * cfqgs entering and leaving the service tree.
255 */
256 unsigned int vfraction;
257
258 /*
259 * There are two weights - (internal) weight is the weight of this
260 * cfqg against the sibling cfqgs. leaf_weight is the wight of
261 * this cfqg against the child cfqgs. For the root cfqg, both
262 * weights are kept in sync for backward compatibility.
263 */
264 unsigned int weight;
265 unsigned int new_weight;
266 unsigned int dev_weight;
267
268 unsigned int leaf_weight;
269 unsigned int new_leaf_weight;
270 unsigned int dev_leaf_weight;
271
272 /* number of cfqq currently on this group */
273 int nr_cfqq;
274
275 /*
276 * Per group busy queues average. Useful for workload slice calc. We
277 * create the array for each prio class but at run time it is used
278 * only for RT and BE class and slot for IDLE class remains unused.
279 * This is primarily done to avoid confusion and a gcc warning.
280 */
281 unsigned int busy_queues_avg[CFQ_PRIO_NR];
282 /*
283 * rr lists of queues with requests. We maintain service trees for
284 * RT and BE classes. These trees are subdivided in subclasses
285 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
286 * class there is no subclassification and all the cfq queues go on
287 * a single tree service_tree_idle.
288 * Counts are embedded in the cfq_rb_root
289 */
290 struct cfq_rb_root service_trees[2][3];
291 struct cfq_rb_root service_tree_idle;
292
293 u64 saved_wl_slice;
294 enum wl_type_t saved_wl_type;
295 enum wl_class_t saved_wl_class;
296
297 /* number of requests that are on the dispatch list or inside driver */
298 int dispatched;
299 struct cfq_ttime ttime;
300 struct cfqg_stats stats; /* stats for this cfqg */
301
302 /* async queue for each priority case */
303 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
304 struct cfq_queue *async_idle_cfqq;
305
306};
307
308struct cfq_io_cq {
309 struct io_cq icq; /* must be the first member */
310 struct cfq_queue *cfqq[2];
311 struct cfq_ttime ttime;
312 int ioprio; /* the current ioprio */
313#ifdef CONFIG_CFQ_GROUP_IOSCHED
314 uint64_t blkcg_serial_nr; /* the current blkcg serial */
315#endif
316};
317
318/*
319 * Per block device queue structure
320 */
321struct cfq_data {
322 struct request_queue *queue;
323 /* Root service tree for cfq_groups */
324 struct cfq_rb_root grp_service_tree;
325 struct cfq_group *root_group;
326
327 /*
328 * The priority currently being served
329 */
330 enum wl_class_t serving_wl_class;
331 enum wl_type_t serving_wl_type;
332 u64 workload_expires;
333 struct cfq_group *serving_group;
334
335 /*
336 * Each priority tree is sorted by next_request position. These
337 * trees are used when determining if two or more queues are
338 * interleaving requests (see cfq_close_cooperator).
339 */
340 struct rb_root prio_trees[CFQ_PRIO_LISTS];
341
342 unsigned int busy_queues;
343 unsigned int busy_sync_queues;
344
345 int rq_in_driver;
346 int rq_in_flight[2];
347
348 /*
349 * queue-depth detection
350 */
351 int rq_queued;
352 int hw_tag;
353 /*
354 * hw_tag can be
355 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
356 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
357 * 0 => no NCQ
358 */
359 int hw_tag_est_depth;
360 unsigned int hw_tag_samples;
361
362 /*
363 * idle window management
364 */
365 struct timer_list idle_slice_timer;
366 struct work_struct unplug_work;
367
368 struct cfq_queue *active_queue;
369 struct cfq_io_cq *active_cic;
370
371 sector_t last_position;
372
373 /*
374 * tunables, see top of file
375 */
376 unsigned int cfq_quantum;
377 unsigned int cfq_back_penalty;
378 unsigned int cfq_back_max;
379 unsigned int cfq_slice_async_rq;
380 unsigned int cfq_latency;
381 u64 cfq_fifo_expire[2];
382 u64 cfq_slice[2];
383 u64 cfq_slice_idle;
384 u64 cfq_group_idle;
385 u64 cfq_target_latency;
386
387 /*
388 * Fallback dummy cfqq for extreme OOM conditions
389 */
390 struct cfq_queue oom_cfqq;
391
392 u64 last_delayed_sync;
393};
394
395static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
396static void cfq_put_queue(struct cfq_queue *cfqq);
397
398static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
399 enum wl_class_t class,
400 enum wl_type_t type)
401{
402 if (!cfqg)
403 return NULL;
404
405 if (class == IDLE_WORKLOAD)
406 return &cfqg->service_tree_idle;
407
408 return &cfqg->service_trees[class][type];
409}
410
411enum cfqq_state_flags {
412 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
413 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
414 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
415 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
416 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
417 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
418 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
419 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
420 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
421 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
422 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
423 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
424 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
425};
426
427#define CFQ_CFQQ_FNS(name) \
428static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
429{ \
430 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
431} \
432static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
433{ \
434 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
435} \
436static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
437{ \
438 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
439}
440
441CFQ_CFQQ_FNS(on_rr);
442CFQ_CFQQ_FNS(wait_request);
443CFQ_CFQQ_FNS(must_dispatch);
444CFQ_CFQQ_FNS(must_alloc_slice);
445CFQ_CFQQ_FNS(fifo_expire);
446CFQ_CFQQ_FNS(idle_window);
447CFQ_CFQQ_FNS(prio_changed);
448CFQ_CFQQ_FNS(slice_new);
449CFQ_CFQQ_FNS(sync);
450CFQ_CFQQ_FNS(coop);
451CFQ_CFQQ_FNS(split_coop);
452CFQ_CFQQ_FNS(deep);
453CFQ_CFQQ_FNS(wait_busy);
454#undef CFQ_CFQQ_FNS
455
456#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
457
458/* cfqg stats flags */
459enum cfqg_stats_flags {
460 CFQG_stats_waiting = 0,
461 CFQG_stats_idling,
462 CFQG_stats_empty,
463};
464
465#define CFQG_FLAG_FNS(name) \
466static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
467{ \
468 stats->flags |= (1 << CFQG_stats_##name); \
469} \
470static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
471{ \
472 stats->flags &= ~(1 << CFQG_stats_##name); \
473} \
474static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
475{ \
476 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
477} \
478
479CFQG_FLAG_FNS(waiting)
480CFQG_FLAG_FNS(idling)
481CFQG_FLAG_FNS(empty)
482#undef CFQG_FLAG_FNS
483
484/* This should be called with the queue_lock held. */
485static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
486{
487 unsigned long long now;
488
489 if (!cfqg_stats_waiting(stats))
490 return;
491
492 now = sched_clock();
493 if (time_after64(now, stats->start_group_wait_time))
494 blkg_stat_add(&stats->group_wait_time,
495 now - stats->start_group_wait_time);
496 cfqg_stats_clear_waiting(stats);
497}
498
499/* This should be called with the queue_lock held. */
500static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
501 struct cfq_group *curr_cfqg)
502{
503 struct cfqg_stats *stats = &cfqg->stats;
504
505 if (cfqg_stats_waiting(stats))
506 return;
507 if (cfqg == curr_cfqg)
508 return;
509 stats->start_group_wait_time = sched_clock();
510 cfqg_stats_mark_waiting(stats);
511}
512
513/* This should be called with the queue_lock held. */
514static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
515{
516 unsigned long long now;
517
518 if (!cfqg_stats_empty(stats))
519 return;
520
521 now = sched_clock();
522 if (time_after64(now, stats->start_empty_time))
523 blkg_stat_add(&stats->empty_time,
524 now - stats->start_empty_time);
525 cfqg_stats_clear_empty(stats);
526}
527
528static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
529{
530 blkg_stat_add(&cfqg->stats.dequeue, 1);
531}
532
533static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
534{
535 struct cfqg_stats *stats = &cfqg->stats;
536
537 if (blkg_rwstat_total(&stats->queued))
538 return;
539
540 /*
541 * group is already marked empty. This can happen if cfqq got new
542 * request in parent group and moved to this group while being added
543 * to service tree. Just ignore the event and move on.
544 */
545 if (cfqg_stats_empty(stats))
546 return;
547
548 stats->start_empty_time = sched_clock();
549 cfqg_stats_mark_empty(stats);
550}
551
552static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
553{
554 struct cfqg_stats *stats = &cfqg->stats;
555
556 if (cfqg_stats_idling(stats)) {
557 unsigned long long now = sched_clock();
558
559 if (time_after64(now, stats->start_idle_time))
560 blkg_stat_add(&stats->idle_time,
561 now - stats->start_idle_time);
562 cfqg_stats_clear_idling(stats);
563 }
564}
565
566static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
567{
568 struct cfqg_stats *stats = &cfqg->stats;
569
570 BUG_ON(cfqg_stats_idling(stats));
571
572 stats->start_idle_time = sched_clock();
573 cfqg_stats_mark_idling(stats);
574}
575
576static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
577{
578 struct cfqg_stats *stats = &cfqg->stats;
579
580 blkg_stat_add(&stats->avg_queue_size_sum,
581 blkg_rwstat_total(&stats->queued));
582 blkg_stat_add(&stats->avg_queue_size_samples, 1);
583 cfqg_stats_update_group_wait_time(stats);
584}
585
586#else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
587
588static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
589static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
590static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
591static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
592static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
593static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
594static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
595
596#endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
597
598#ifdef CONFIG_CFQ_GROUP_IOSCHED
599
600static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
601{
602 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
603}
604
605static struct cfq_group_data
606*cpd_to_cfqgd(struct blkcg_policy_data *cpd)
607{
608 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
609}
610
611static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
612{
613 return pd_to_blkg(&cfqg->pd);
614}
615
616static struct blkcg_policy blkcg_policy_cfq;
617
618static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
619{
620 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
621}
622
623static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
624{
625 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
626}
627
628static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
629{
630 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
631
632 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
633}
634
635static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
636 struct cfq_group *ancestor)
637{
638 return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup,
639 cfqg_to_blkg(ancestor)->blkcg->css.cgroup);
640}
641
642static inline void cfqg_get(struct cfq_group *cfqg)
643{
644 return blkg_get(cfqg_to_blkg(cfqg));
645}
646
647static inline void cfqg_put(struct cfq_group *cfqg)
648{
649 return blkg_put(cfqg_to_blkg(cfqg));
650}
651
652#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
653 char __pbuf[128]; \
654 \
655 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
656 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
657 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
658 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
659 __pbuf, ##args); \
660} while (0)
661
662#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
663 char __pbuf[128]; \
664 \
665 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
666 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
667} while (0)
668
669static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
670 struct cfq_group *curr_cfqg, int op,
671 int op_flags)
672{
673 blkg_rwstat_add(&cfqg->stats.queued, op, op_flags, 1);
674 cfqg_stats_end_empty_time(&cfqg->stats);
675 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
676}
677
678static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
679 uint64_t time, unsigned long unaccounted_time)
680{
681 blkg_stat_add(&cfqg->stats.time, time);
682#ifdef CONFIG_DEBUG_BLK_CGROUP
683 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
684#endif
685}
686
687static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int op,
688 int op_flags)
689{
690 blkg_rwstat_add(&cfqg->stats.queued, op, op_flags, -1);
691}
692
693static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int op,
694 int op_flags)
695{
696 blkg_rwstat_add(&cfqg->stats.merged, op, op_flags, 1);
697}
698
699static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
700 uint64_t start_time, uint64_t io_start_time, int op,
701 int op_flags)
702{
703 struct cfqg_stats *stats = &cfqg->stats;
704 unsigned long long now = sched_clock();
705
706 if (time_after64(now, io_start_time))
707 blkg_rwstat_add(&stats->service_time, op, op_flags,
708 now - io_start_time);
709 if (time_after64(io_start_time, start_time))
710 blkg_rwstat_add(&stats->wait_time, op, op_flags,
711 io_start_time - start_time);
712}
713
714/* @stats = 0 */
715static void cfqg_stats_reset(struct cfqg_stats *stats)
716{
717 /* queued stats shouldn't be cleared */
718 blkg_rwstat_reset(&stats->merged);
719 blkg_rwstat_reset(&stats->service_time);
720 blkg_rwstat_reset(&stats->wait_time);
721 blkg_stat_reset(&stats->time);
722#ifdef CONFIG_DEBUG_BLK_CGROUP
723 blkg_stat_reset(&stats->unaccounted_time);
724 blkg_stat_reset(&stats->avg_queue_size_sum);
725 blkg_stat_reset(&stats->avg_queue_size_samples);
726 blkg_stat_reset(&stats->dequeue);
727 blkg_stat_reset(&stats->group_wait_time);
728 blkg_stat_reset(&stats->idle_time);
729 blkg_stat_reset(&stats->empty_time);
730#endif
731}
732
733/* @to += @from */
734static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
735{
736 /* queued stats shouldn't be cleared */
737 blkg_rwstat_add_aux(&to->merged, &from->merged);
738 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
739 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
740 blkg_stat_add_aux(&from->time, &from->time);
741#ifdef CONFIG_DEBUG_BLK_CGROUP
742 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
743 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
744 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
745 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
746 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
747 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
748 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
749#endif
750}
751
752/*
753 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
754 * recursive stats can still account for the amount used by this cfqg after
755 * it's gone.
756 */
757static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
758{
759 struct cfq_group *parent = cfqg_parent(cfqg);
760
761 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
762
763 if (unlikely(!parent))
764 return;
765
766 cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
767 cfqg_stats_reset(&cfqg->stats);
768}
769
770#else /* CONFIG_CFQ_GROUP_IOSCHED */
771
772static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
773static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
774 struct cfq_group *ancestor)
775{
776 return true;
777}
778static inline void cfqg_get(struct cfq_group *cfqg) { }
779static inline void cfqg_put(struct cfq_group *cfqg) { }
780
781#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
782 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
783 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
784 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
785 ##args)
786#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
787
788static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
789 struct cfq_group *curr_cfqg, int op, int op_flags) { }
790static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
791 uint64_t time, unsigned long unaccounted_time) { }
792static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int op,
793 int op_flags) { }
794static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int op,
795 int op_flags) { }
796static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
797 uint64_t start_time, uint64_t io_start_time, int op,
798 int op_flags) { }
799
800#endif /* CONFIG_CFQ_GROUP_IOSCHED */
801
802#define cfq_log(cfqd, fmt, args...) \
803 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
804
805/* Traverses through cfq group service trees */
806#define for_each_cfqg_st(cfqg, i, j, st) \
807 for (i = 0; i <= IDLE_WORKLOAD; i++) \
808 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
809 : &cfqg->service_tree_idle; \
810 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
811 (i == IDLE_WORKLOAD && j == 0); \
812 j++, st = i < IDLE_WORKLOAD ? \
813 &cfqg->service_trees[i][j]: NULL) \
814
815static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
816 struct cfq_ttime *ttime, bool group_idle)
817{
818 u64 slice;
819 if (!sample_valid(ttime->ttime_samples))
820 return false;
821 if (group_idle)
822 slice = cfqd->cfq_group_idle;
823 else
824 slice = cfqd->cfq_slice_idle;
825 return ttime->ttime_mean > slice;
826}
827
828static inline bool iops_mode(struct cfq_data *cfqd)
829{
830 /*
831 * If we are not idling on queues and it is a NCQ drive, parallel
832 * execution of requests is on and measuring time is not possible
833 * in most of the cases until and unless we drive shallower queue
834 * depths and that becomes a performance bottleneck. In such cases
835 * switch to start providing fairness in terms of number of IOs.
836 */
837 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
838 return true;
839 else
840 return false;
841}
842
843static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
844{
845 if (cfq_class_idle(cfqq))
846 return IDLE_WORKLOAD;
847 if (cfq_class_rt(cfqq))
848 return RT_WORKLOAD;
849 return BE_WORKLOAD;
850}
851
852
853static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
854{
855 if (!cfq_cfqq_sync(cfqq))
856 return ASYNC_WORKLOAD;
857 if (!cfq_cfqq_idle_window(cfqq))
858 return SYNC_NOIDLE_WORKLOAD;
859 return SYNC_WORKLOAD;
860}
861
862static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
863 struct cfq_data *cfqd,
864 struct cfq_group *cfqg)
865{
866 if (wl_class == IDLE_WORKLOAD)
867 return cfqg->service_tree_idle.count;
868
869 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
870 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
871 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
872}
873
874static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
875 struct cfq_group *cfqg)
876{
877 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
878 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
879}
880
881static void cfq_dispatch_insert(struct request_queue *, struct request *);
882static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
883 struct cfq_io_cq *cic, struct bio *bio);
884
885static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
886{
887 /* cic->icq is the first member, %NULL will convert to %NULL */
888 return container_of(icq, struct cfq_io_cq, icq);
889}
890
891static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
892 struct io_context *ioc)
893{
894 if (ioc)
895 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
896 return NULL;
897}
898
899static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
900{
901 return cic->cfqq[is_sync];
902}
903
904static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
905 bool is_sync)
906{
907 cic->cfqq[is_sync] = cfqq;
908}
909
910static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
911{
912 return cic->icq.q->elevator->elevator_data;
913}
914
915/*
916 * We regard a request as SYNC, if it's either a read or has the SYNC bit
917 * set (in which case it could also be direct WRITE).
918 */
919static inline bool cfq_bio_sync(struct bio *bio)
920{
921 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
922}
923
924/*
925 * scheduler run of queue, if there are requests pending and no one in the
926 * driver that will restart queueing
927 */
928static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
929{
930 if (cfqd->busy_queues) {
931 cfq_log(cfqd, "schedule dispatch");
932 kblockd_schedule_work(&cfqd->unplug_work);
933 }
934}
935
936/*
937 * Scale schedule slice based on io priority. Use the sync time slice only
938 * if a queue is marked sync and has sync io queued. A sync queue with async
939 * io only, should not get full sync slice length.
940 */
941static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync,
942 unsigned short prio)
943{
944 u64 base_slice = cfqd->cfq_slice[sync];
945 u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE);
946
947 WARN_ON(prio >= IOPRIO_BE_NR);
948
949 return base_slice + (slice * (4 - prio));
950}
951
952static inline u64
953cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
954{
955 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
956}
957
958/**
959 * cfqg_scale_charge - scale disk time charge according to cfqg weight
960 * @charge: disk time being charged
961 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
962 *
963 * Scale @charge according to @vfraction, which is in range (0, 1]. The
964 * scaling is inversely proportional.
965 *
966 * scaled = charge / vfraction
967 *
968 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
969 */
970static inline u64 cfqg_scale_charge(u64 charge,
971 unsigned int vfraction)
972{
973 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
974
975 /* charge / vfraction */
976 c <<= CFQ_SERVICE_SHIFT;
977 return div_u64(c, vfraction);
978}
979
980static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
981{
982 s64 delta = (s64)(vdisktime - min_vdisktime);
983 if (delta > 0)
984 min_vdisktime = vdisktime;
985
986 return min_vdisktime;
987}
988
989static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
990{
991 s64 delta = (s64)(vdisktime - min_vdisktime);
992 if (delta < 0)
993 min_vdisktime = vdisktime;
994
995 return min_vdisktime;
996}
997
998static void update_min_vdisktime(struct cfq_rb_root *st)
999{
1000 struct cfq_group *cfqg;
1001
1002 if (st->left) {
1003 cfqg = rb_entry_cfqg(st->left);
1004 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
1005 cfqg->vdisktime);
1006 }
1007}
1008
1009/*
1010 * get averaged number of queues of RT/BE priority.
1011 * average is updated, with a formula that gives more weight to higher numbers,
1012 * to quickly follows sudden increases and decrease slowly
1013 */
1014
1015static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1016 struct cfq_group *cfqg, bool rt)
1017{
1018 unsigned min_q, max_q;
1019 unsigned mult = cfq_hist_divisor - 1;
1020 unsigned round = cfq_hist_divisor / 2;
1021 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1022
1023 min_q = min(cfqg->busy_queues_avg[rt], busy);
1024 max_q = max(cfqg->busy_queues_avg[rt], busy);
1025 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1026 cfq_hist_divisor;
1027 return cfqg->busy_queues_avg[rt];
1028}
1029
1030static inline u64
1031cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1032{
1033 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1034}
1035
1036static inline u64
1037cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1038{
1039 u64 slice = cfq_prio_to_slice(cfqd, cfqq);
1040 if (cfqd->cfq_latency) {
1041 /*
1042 * interested queues (we consider only the ones with the same
1043 * priority class in the cfq group)
1044 */
1045 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1046 cfq_class_rt(cfqq));
1047 u64 sync_slice = cfqd->cfq_slice[1];
1048 u64 expect_latency = sync_slice * iq;
1049 u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1050
1051 if (expect_latency > group_slice) {
1052 u64 base_low_slice = 2 * cfqd->cfq_slice_idle;
1053 u64 low_slice;
1054
1055 /* scale low_slice according to IO priority
1056 * and sync vs async */
1057 low_slice = div64_u64(base_low_slice*slice, sync_slice);
1058 low_slice = min(slice, low_slice);
1059 /* the adapted slice value is scaled to fit all iqs
1060 * into the target latency */
1061 slice = div64_u64(slice*group_slice, expect_latency);
1062 slice = max(slice, low_slice);
1063 }
1064 }
1065 return slice;
1066}
1067
1068static inline void
1069cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1070{
1071 u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1072 u64 now = ktime_get_ns();
1073
1074 cfqq->slice_start = now;
1075 cfqq->slice_end = now + slice;
1076 cfqq->allocated_slice = slice;
1077 cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now);
1078}
1079
1080/*
1081 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1082 * isn't valid until the first request from the dispatch is activated
1083 * and the slice time set.
1084 */
1085static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1086{
1087 if (cfq_cfqq_slice_new(cfqq))
1088 return false;
1089 if (ktime_get_ns() < cfqq->slice_end)
1090 return false;
1091
1092 return true;
1093}
1094
1095/*
1096 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1097 * We choose the request that is closest to the head right now. Distance
1098 * behind the head is penalized and only allowed to a certain extent.
1099 */
1100static struct request *
1101cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1102{
1103 sector_t s1, s2, d1 = 0, d2 = 0;
1104 unsigned long back_max;
1105#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1106#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1107 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1108
1109 if (rq1 == NULL || rq1 == rq2)
1110 return rq2;
1111 if (rq2 == NULL)
1112 return rq1;
1113
1114 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1115 return rq_is_sync(rq1) ? rq1 : rq2;
1116
1117 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1118 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1119
1120 s1 = blk_rq_pos(rq1);
1121 s2 = blk_rq_pos(rq2);
1122
1123 /*
1124 * by definition, 1KiB is 2 sectors
1125 */
1126 back_max = cfqd->cfq_back_max * 2;
1127
1128 /*
1129 * Strict one way elevator _except_ in the case where we allow
1130 * short backward seeks which are biased as twice the cost of a
1131 * similar forward seek.
1132 */
1133 if (s1 >= last)
1134 d1 = s1 - last;
1135 else if (s1 + back_max >= last)
1136 d1 = (last - s1) * cfqd->cfq_back_penalty;
1137 else
1138 wrap |= CFQ_RQ1_WRAP;
1139
1140 if (s2 >= last)
1141 d2 = s2 - last;
1142 else if (s2 + back_max >= last)
1143 d2 = (last - s2) * cfqd->cfq_back_penalty;
1144 else
1145 wrap |= CFQ_RQ2_WRAP;
1146
1147 /* Found required data */
1148
1149 /*
1150 * By doing switch() on the bit mask "wrap" we avoid having to
1151 * check two variables for all permutations: --> faster!
1152 */
1153 switch (wrap) {
1154 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1155 if (d1 < d2)
1156 return rq1;
1157 else if (d2 < d1)
1158 return rq2;
1159 else {
1160 if (s1 >= s2)
1161 return rq1;
1162 else
1163 return rq2;
1164 }
1165
1166 case CFQ_RQ2_WRAP:
1167 return rq1;
1168 case CFQ_RQ1_WRAP:
1169 return rq2;
1170 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1171 default:
1172 /*
1173 * Since both rqs are wrapped,
1174 * start with the one that's further behind head
1175 * (--> only *one* back seek required),
1176 * since back seek takes more time than forward.
1177 */
1178 if (s1 <= s2)
1179 return rq1;
1180 else
1181 return rq2;
1182 }
1183}
1184
1185/*
1186 * The below is leftmost cache rbtree addon
1187 */
1188static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1189{
1190 /* Service tree is empty */
1191 if (!root->count)
1192 return NULL;
1193
1194 if (!root->left)
1195 root->left = rb_first(&root->rb);
1196
1197 if (root->left)
1198 return rb_entry(root->left, struct cfq_queue, rb_node);
1199
1200 return NULL;
1201}
1202
1203static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1204{
1205 if (!root->left)
1206 root->left = rb_first(&root->rb);
1207
1208 if (root->left)
1209 return rb_entry_cfqg(root->left);
1210
1211 return NULL;
1212}
1213
1214static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1215{
1216 rb_erase(n, root);
1217 RB_CLEAR_NODE(n);
1218}
1219
1220static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1221{
1222 if (root->left == n)
1223 root->left = NULL;
1224 rb_erase_init(n, &root->rb);
1225 --root->count;
1226}
1227
1228/*
1229 * would be nice to take fifo expire time into account as well
1230 */
1231static struct request *
1232cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1233 struct request *last)
1234{
1235 struct rb_node *rbnext = rb_next(&last->rb_node);
1236 struct rb_node *rbprev = rb_prev(&last->rb_node);
1237 struct request *next = NULL, *prev = NULL;
1238
1239 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1240
1241 if (rbprev)
1242 prev = rb_entry_rq(rbprev);
1243
1244 if (rbnext)
1245 next = rb_entry_rq(rbnext);
1246 else {
1247 rbnext = rb_first(&cfqq->sort_list);
1248 if (rbnext && rbnext != &last->rb_node)
1249 next = rb_entry_rq(rbnext);
1250 }
1251
1252 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1253}
1254
1255static u64 cfq_slice_offset(struct cfq_data *cfqd,
1256 struct cfq_queue *cfqq)
1257{
1258 /*
1259 * just an approximation, should be ok.
1260 */
1261 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1262 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1263}
1264
1265static inline s64
1266cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1267{
1268 return cfqg->vdisktime - st->min_vdisktime;
1269}
1270
1271static void
1272__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1273{
1274 struct rb_node **node = &st->rb.rb_node;
1275 struct rb_node *parent = NULL;
1276 struct cfq_group *__cfqg;
1277 s64 key = cfqg_key(st, cfqg);
1278 int left = 1;
1279
1280 while (*node != NULL) {
1281 parent = *node;
1282 __cfqg = rb_entry_cfqg(parent);
1283
1284 if (key < cfqg_key(st, __cfqg))
1285 node = &parent->rb_left;
1286 else {
1287 node = &parent->rb_right;
1288 left = 0;
1289 }
1290 }
1291
1292 if (left)
1293 st->left = &cfqg->rb_node;
1294
1295 rb_link_node(&cfqg->rb_node, parent, node);
1296 rb_insert_color(&cfqg->rb_node, &st->rb);
1297}
1298
1299/*
1300 * This has to be called only on activation of cfqg
1301 */
1302static void
1303cfq_update_group_weight(struct cfq_group *cfqg)
1304{
1305 if (cfqg->new_weight) {
1306 cfqg->weight = cfqg->new_weight;
1307 cfqg->new_weight = 0;
1308 }
1309}
1310
1311static void
1312cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1313{
1314 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1315
1316 if (cfqg->new_leaf_weight) {
1317 cfqg->leaf_weight = cfqg->new_leaf_weight;
1318 cfqg->new_leaf_weight = 0;
1319 }
1320}
1321
1322static void
1323cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1324{
1325 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1326 struct cfq_group *pos = cfqg;
1327 struct cfq_group *parent;
1328 bool propagate;
1329
1330 /* add to the service tree */
1331 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1332
1333 /*
1334 * Update leaf_weight. We cannot update weight at this point
1335 * because cfqg might already have been activated and is
1336 * contributing its current weight to the parent's child_weight.
1337 */
1338 cfq_update_group_leaf_weight(cfqg);
1339 __cfq_group_service_tree_add(st, cfqg);
1340
1341 /*
1342 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1343 * entitled to. vfraction is calculated by walking the tree
1344 * towards the root calculating the fraction it has at each level.
1345 * The compounded ratio is how much vfraction @cfqg owns.
1346 *
1347 * Start with the proportion tasks in this cfqg has against active
1348 * children cfqgs - its leaf_weight against children_weight.
1349 */
1350 propagate = !pos->nr_active++;
1351 pos->children_weight += pos->leaf_weight;
1352 vfr = vfr * pos->leaf_weight / pos->children_weight;
1353
1354 /*
1355 * Compound ->weight walking up the tree. Both activation and
1356 * vfraction calculation are done in the same loop. Propagation
1357 * stops once an already activated node is met. vfraction
1358 * calculation should always continue to the root.
1359 */
1360 while ((parent = cfqg_parent(pos))) {
1361 if (propagate) {
1362 cfq_update_group_weight(pos);
1363 propagate = !parent->nr_active++;
1364 parent->children_weight += pos->weight;
1365 }
1366 vfr = vfr * pos->weight / parent->children_weight;
1367 pos = parent;
1368 }
1369
1370 cfqg->vfraction = max_t(unsigned, vfr, 1);
1371}
1372
1373static void
1374cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1375{
1376 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1377 struct cfq_group *__cfqg;
1378 struct rb_node *n;
1379
1380 cfqg->nr_cfqq++;
1381 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1382 return;
1383
1384 /*
1385 * Currently put the group at the end. Later implement something
1386 * so that groups get lesser vtime based on their weights, so that
1387 * if group does not loose all if it was not continuously backlogged.
1388 */
1389 n = rb_last(&st->rb);
1390 if (n) {
1391 __cfqg = rb_entry_cfqg(n);
1392 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1393 } else
1394 cfqg->vdisktime = st->min_vdisktime;
1395 cfq_group_service_tree_add(st, cfqg);
1396}
1397
1398static void
1399cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1400{
1401 struct cfq_group *pos = cfqg;
1402 bool propagate;
1403
1404 /*
1405 * Undo activation from cfq_group_service_tree_add(). Deactivate
1406 * @cfqg and propagate deactivation upwards.
1407 */
1408 propagate = !--pos->nr_active;
1409 pos->children_weight -= pos->leaf_weight;
1410
1411 while (propagate) {
1412 struct cfq_group *parent = cfqg_parent(pos);
1413
1414 /* @pos has 0 nr_active at this point */
1415 WARN_ON_ONCE(pos->children_weight);
1416 pos->vfraction = 0;
1417
1418 if (!parent)
1419 break;
1420
1421 propagate = !--parent->nr_active;
1422 parent->children_weight -= pos->weight;
1423 pos = parent;
1424 }
1425
1426 /* remove from the service tree */
1427 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1428 cfq_rb_erase(&cfqg->rb_node, st);
1429}
1430
1431static void
1432cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1433{
1434 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1435
1436 BUG_ON(cfqg->nr_cfqq < 1);
1437 cfqg->nr_cfqq--;
1438
1439 /* If there are other cfq queues under this group, don't delete it */
1440 if (cfqg->nr_cfqq)
1441 return;
1442
1443 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1444 cfq_group_service_tree_del(st, cfqg);
1445 cfqg->saved_wl_slice = 0;
1446 cfqg_stats_update_dequeue(cfqg);
1447}
1448
1449static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1450 u64 *unaccounted_time)
1451{
1452 u64 slice_used;
1453 u64 now = ktime_get_ns();
1454
1455 /*
1456 * Queue got expired before even a single request completed or
1457 * got expired immediately after first request completion.
1458 */
1459 if (!cfqq->slice_start || cfqq->slice_start == now) {
1460 /*
1461 * Also charge the seek time incurred to the group, otherwise
1462 * if there are mutiple queues in the group, each can dispatch
1463 * a single request on seeky media and cause lots of seek time
1464 * and group will never know it.
1465 */
1466 slice_used = max_t(u64, (now - cfqq->dispatch_start), 1);
1467 } else {
1468 slice_used = now - cfqq->slice_start;
1469 if (slice_used > cfqq->allocated_slice) {
1470 *unaccounted_time = slice_used - cfqq->allocated_slice;
1471 slice_used = cfqq->allocated_slice;
1472 }
1473 if (cfqq->slice_start > cfqq->dispatch_start)
1474 *unaccounted_time += cfqq->slice_start -
1475 cfqq->dispatch_start;
1476 }
1477
1478 return slice_used;
1479}
1480
1481static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1482 struct cfq_queue *cfqq)
1483{
1484 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1485 u64 used_sl, charge, unaccounted_sl = 0;
1486 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1487 - cfqg->service_tree_idle.count;
1488 unsigned int vfr;
1489 u64 now = ktime_get_ns();
1490
1491 BUG_ON(nr_sync < 0);
1492 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1493
1494 if (iops_mode(cfqd))
1495 charge = cfqq->slice_dispatch;
1496 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1497 charge = cfqq->allocated_slice;
1498
1499 /*
1500 * Can't update vdisktime while on service tree and cfqg->vfraction
1501 * is valid only while on it. Cache vfr, leave the service tree,
1502 * update vdisktime and go back on. The re-addition to the tree
1503 * will also update the weights as necessary.
1504 */
1505 vfr = cfqg->vfraction;
1506 cfq_group_service_tree_del(st, cfqg);
1507 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1508 cfq_group_service_tree_add(st, cfqg);
1509
1510 /* This group is being expired. Save the context */
1511 if (cfqd->workload_expires > now) {
1512 cfqg->saved_wl_slice = cfqd->workload_expires - now;
1513 cfqg->saved_wl_type = cfqd->serving_wl_type;
1514 cfqg->saved_wl_class = cfqd->serving_wl_class;
1515 } else
1516 cfqg->saved_wl_slice = 0;
1517
1518 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1519 st->min_vdisktime);
1520 cfq_log_cfqq(cfqq->cfqd, cfqq,
1521 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1522 used_sl, cfqq->slice_dispatch, charge,
1523 iops_mode(cfqd), cfqq->nr_sectors);
1524 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1525 cfqg_stats_set_start_empty_time(cfqg);
1526}
1527
1528/**
1529 * cfq_init_cfqg_base - initialize base part of a cfq_group
1530 * @cfqg: cfq_group to initialize
1531 *
1532 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1533 * is enabled or not.
1534 */
1535static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1536{
1537 struct cfq_rb_root *st;
1538 int i, j;
1539
1540 for_each_cfqg_st(cfqg, i, j, st)
1541 *st = CFQ_RB_ROOT;
1542 RB_CLEAR_NODE(&cfqg->rb_node);
1543
1544 cfqg->ttime.last_end_request = ktime_get_ns();
1545}
1546
1547#ifdef CONFIG_CFQ_GROUP_IOSCHED
1548static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1549 bool on_dfl, bool reset_dev, bool is_leaf_weight);
1550
1551static void cfqg_stats_exit(struct cfqg_stats *stats)
1552{
1553 blkg_rwstat_exit(&stats->merged);
1554 blkg_rwstat_exit(&stats->service_time);
1555 blkg_rwstat_exit(&stats->wait_time);
1556 blkg_rwstat_exit(&stats->queued);
1557 blkg_stat_exit(&stats->time);
1558#ifdef CONFIG_DEBUG_BLK_CGROUP
1559 blkg_stat_exit(&stats->unaccounted_time);
1560 blkg_stat_exit(&stats->avg_queue_size_sum);
1561 blkg_stat_exit(&stats->avg_queue_size_samples);
1562 blkg_stat_exit(&stats->dequeue);
1563 blkg_stat_exit(&stats->group_wait_time);
1564 blkg_stat_exit(&stats->idle_time);
1565 blkg_stat_exit(&stats->empty_time);
1566#endif
1567}
1568
1569static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1570{
1571 if (blkg_rwstat_init(&stats->merged, gfp) ||
1572 blkg_rwstat_init(&stats->service_time, gfp) ||
1573 blkg_rwstat_init(&stats->wait_time, gfp) ||
1574 blkg_rwstat_init(&stats->queued, gfp) ||
1575 blkg_stat_init(&stats->time, gfp))
1576 goto err;
1577
1578#ifdef CONFIG_DEBUG_BLK_CGROUP
1579 if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1580 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1581 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1582 blkg_stat_init(&stats->dequeue, gfp) ||
1583 blkg_stat_init(&stats->group_wait_time, gfp) ||
1584 blkg_stat_init(&stats->idle_time, gfp) ||
1585 blkg_stat_init(&stats->empty_time, gfp))
1586 goto err;
1587#endif
1588 return 0;
1589err:
1590 cfqg_stats_exit(stats);
1591 return -ENOMEM;
1592}
1593
1594static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1595{
1596 struct cfq_group_data *cgd;
1597
1598 cgd = kzalloc(sizeof(*cgd), GFP_KERNEL);
1599 if (!cgd)
1600 return NULL;
1601 return &cgd->cpd;
1602}
1603
1604static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1605{
1606 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1607 unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1608 CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1609
1610 if (cpd_to_blkcg(cpd) == &blkcg_root)
1611 weight *= 2;
1612
1613 cgd->weight = weight;
1614 cgd->leaf_weight = weight;
1615}
1616
1617static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1618{
1619 kfree(cpd_to_cfqgd(cpd));
1620}
1621
1622static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1623{
1624 struct blkcg *blkcg = cpd_to_blkcg(cpd);
1625 bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1626 unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1627
1628 if (blkcg == &blkcg_root)
1629 weight *= 2;
1630
1631 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1632 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1633}
1634
1635static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1636{
1637 struct cfq_group *cfqg;
1638
1639 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1640 if (!cfqg)
1641 return NULL;
1642
1643 cfq_init_cfqg_base(cfqg);
1644 if (cfqg_stats_init(&cfqg->stats, gfp)) {
1645 kfree(cfqg);
1646 return NULL;
1647 }
1648
1649 return &cfqg->pd;
1650}
1651
1652static void cfq_pd_init(struct blkg_policy_data *pd)
1653{
1654 struct cfq_group *cfqg = pd_to_cfqg(pd);
1655 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1656
1657 cfqg->weight = cgd->weight;
1658 cfqg->leaf_weight = cgd->leaf_weight;
1659}
1660
1661static void cfq_pd_offline(struct blkg_policy_data *pd)
1662{
1663 struct cfq_group *cfqg = pd_to_cfqg(pd);
1664 int i;
1665
1666 for (i = 0; i < IOPRIO_BE_NR; i++) {
1667 if (cfqg->async_cfqq[0][i])
1668 cfq_put_queue(cfqg->async_cfqq[0][i]);
1669 if (cfqg->async_cfqq[1][i])
1670 cfq_put_queue(cfqg->async_cfqq[1][i]);
1671 }
1672
1673 if (cfqg->async_idle_cfqq)
1674 cfq_put_queue(cfqg->async_idle_cfqq);
1675
1676 /*
1677 * @blkg is going offline and will be ignored by
1678 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1679 * that they don't get lost. If IOs complete after this point, the
1680 * stats for them will be lost. Oh well...
1681 */
1682 cfqg_stats_xfer_dead(cfqg);
1683}
1684
1685static void cfq_pd_free(struct blkg_policy_data *pd)
1686{
1687 struct cfq_group *cfqg = pd_to_cfqg(pd);
1688
1689 cfqg_stats_exit(&cfqg->stats);
1690 return kfree(cfqg);
1691}
1692
1693static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1694{
1695 struct cfq_group *cfqg = pd_to_cfqg(pd);
1696
1697 cfqg_stats_reset(&cfqg->stats);
1698}
1699
1700static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1701 struct blkcg *blkcg)
1702{
1703 struct blkcg_gq *blkg;
1704
1705 blkg = blkg_lookup(blkcg, cfqd->queue);
1706 if (likely(blkg))
1707 return blkg_to_cfqg(blkg);
1708 return NULL;
1709}
1710
1711static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1712{
1713 cfqq->cfqg = cfqg;
1714 /* cfqq reference on cfqg */
1715 cfqg_get(cfqg);
1716}
1717
1718static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1719 struct blkg_policy_data *pd, int off)
1720{
1721 struct cfq_group *cfqg = pd_to_cfqg(pd);
1722
1723 if (!cfqg->dev_weight)
1724 return 0;
1725 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1726}
1727
1728static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1729{
1730 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1731 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1732 0, false);
1733 return 0;
1734}
1735
1736static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1737 struct blkg_policy_data *pd, int off)
1738{
1739 struct cfq_group *cfqg = pd_to_cfqg(pd);
1740
1741 if (!cfqg->dev_leaf_weight)
1742 return 0;
1743 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1744}
1745
1746static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1747{
1748 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1749 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1750 0, false);
1751 return 0;
1752}
1753
1754static int cfq_print_weight(struct seq_file *sf, void *v)
1755{
1756 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1757 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1758 unsigned int val = 0;
1759
1760 if (cgd)
1761 val = cgd->weight;
1762
1763 seq_printf(sf, "%u\n", val);
1764 return 0;
1765}
1766
1767static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1768{
1769 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1770 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1771 unsigned int val = 0;
1772
1773 if (cgd)
1774 val = cgd->leaf_weight;
1775
1776 seq_printf(sf, "%u\n", val);
1777 return 0;
1778}
1779
1780static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1781 char *buf, size_t nbytes, loff_t off,
1782 bool on_dfl, bool is_leaf_weight)
1783{
1784 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1785 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1786 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1787 struct blkg_conf_ctx ctx;
1788 struct cfq_group *cfqg;
1789 struct cfq_group_data *cfqgd;
1790 int ret;
1791 u64 v;
1792
1793 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1794 if (ret)
1795 return ret;
1796
1797 if (sscanf(ctx.body, "%llu", &v) == 1) {
1798 /* require "default" on dfl */
1799 ret = -ERANGE;
1800 if (!v && on_dfl)
1801 goto out_finish;
1802 } else if (!strcmp(strim(ctx.body), "default")) {
1803 v = 0;
1804 } else {
1805 ret = -EINVAL;
1806 goto out_finish;
1807 }
1808
1809 cfqg = blkg_to_cfqg(ctx.blkg);
1810 cfqgd = blkcg_to_cfqgd(blkcg);
1811
1812 ret = -ERANGE;
1813 if (!v || (v >= min && v <= max)) {
1814 if (!is_leaf_weight) {
1815 cfqg->dev_weight = v;
1816 cfqg->new_weight = v ?: cfqgd->weight;
1817 } else {
1818 cfqg->dev_leaf_weight = v;
1819 cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1820 }
1821 ret = 0;
1822 }
1823out_finish:
1824 blkg_conf_finish(&ctx);
1825 return ret ?: nbytes;
1826}
1827
1828static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1829 char *buf, size_t nbytes, loff_t off)
1830{
1831 return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1832}
1833
1834static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1835 char *buf, size_t nbytes, loff_t off)
1836{
1837 return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1838}
1839
1840static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1841 bool on_dfl, bool reset_dev, bool is_leaf_weight)
1842{
1843 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1844 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1845 struct blkcg *blkcg = css_to_blkcg(css);
1846 struct blkcg_gq *blkg;
1847 struct cfq_group_data *cfqgd;
1848 int ret = 0;
1849
1850 if (val < min || val > max)
1851 return -ERANGE;
1852
1853 spin_lock_irq(&blkcg->lock);
1854 cfqgd = blkcg_to_cfqgd(blkcg);
1855 if (!cfqgd) {
1856 ret = -EINVAL;
1857 goto out;
1858 }
1859
1860 if (!is_leaf_weight)
1861 cfqgd->weight = val;
1862 else
1863 cfqgd->leaf_weight = val;
1864
1865 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1866 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1867
1868 if (!cfqg)
1869 continue;
1870
1871 if (!is_leaf_weight) {
1872 if (reset_dev)
1873 cfqg->dev_weight = 0;
1874 if (!cfqg->dev_weight)
1875 cfqg->new_weight = cfqgd->weight;
1876 } else {
1877 if (reset_dev)
1878 cfqg->dev_leaf_weight = 0;
1879 if (!cfqg->dev_leaf_weight)
1880 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1881 }
1882 }
1883
1884out:
1885 spin_unlock_irq(&blkcg->lock);
1886 return ret;
1887}
1888
1889static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1890 u64 val)
1891{
1892 return __cfq_set_weight(css, val, false, false, false);
1893}
1894
1895static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1896 struct cftype *cft, u64 val)
1897{
1898 return __cfq_set_weight(css, val, false, false, true);
1899}
1900
1901static int cfqg_print_stat(struct seq_file *sf, void *v)
1902{
1903 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1904 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1905 return 0;
1906}
1907
1908static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1909{
1910 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1911 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1912 return 0;
1913}
1914
1915static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1916 struct blkg_policy_data *pd, int off)
1917{
1918 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1919 &blkcg_policy_cfq, off);
1920 return __blkg_prfill_u64(sf, pd, sum);
1921}
1922
1923static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1924 struct blkg_policy_data *pd, int off)
1925{
1926 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1927 &blkcg_policy_cfq, off);
1928 return __blkg_prfill_rwstat(sf, pd, &sum);
1929}
1930
1931static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1932{
1933 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1934 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1935 seq_cft(sf)->private, false);
1936 return 0;
1937}
1938
1939static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1940{
1941 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1942 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1943 seq_cft(sf)->private, true);
1944 return 0;
1945}
1946
1947static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1948 int off)
1949{
1950 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1951
1952 return __blkg_prfill_u64(sf, pd, sum >> 9);
1953}
1954
1955static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1956{
1957 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1958 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1959 return 0;
1960}
1961
1962static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1963 struct blkg_policy_data *pd, int off)
1964{
1965 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1966 offsetof(struct blkcg_gq, stat_bytes));
1967 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1968 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1969
1970 return __blkg_prfill_u64(sf, pd, sum >> 9);
1971}
1972
1973static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1974{
1975 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1976 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1977 false);
1978 return 0;
1979}
1980
1981#ifdef CONFIG_DEBUG_BLK_CGROUP
1982static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1983 struct blkg_policy_data *pd, int off)
1984{
1985 struct cfq_group *cfqg = pd_to_cfqg(pd);
1986 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1987 u64 v = 0;
1988
1989 if (samples) {
1990 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1991 v = div64_u64(v, samples);
1992 }
1993 __blkg_prfill_u64(sf, pd, v);
1994 return 0;
1995}
1996
1997/* print avg_queue_size */
1998static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1999{
2000 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
2001 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
2002 0, false);
2003 return 0;
2004}
2005#endif /* CONFIG_DEBUG_BLK_CGROUP */
2006
2007static struct cftype cfq_blkcg_legacy_files[] = {
2008 /* on root, weight is mapped to leaf_weight */
2009 {
2010 .name = "weight_device",
2011 .flags = CFTYPE_ONLY_ON_ROOT,
2012 .seq_show = cfqg_print_leaf_weight_device,
2013 .write = cfqg_set_leaf_weight_device,
2014 },
2015 {
2016 .name = "weight",
2017 .flags = CFTYPE_ONLY_ON_ROOT,
2018 .seq_show = cfq_print_leaf_weight,
2019 .write_u64 = cfq_set_leaf_weight,
2020 },
2021
2022 /* no such mapping necessary for !roots */
2023 {
2024 .name = "weight_device",
2025 .flags = CFTYPE_NOT_ON_ROOT,
2026 .seq_show = cfqg_print_weight_device,
2027 .write = cfqg_set_weight_device,
2028 },
2029 {
2030 .name = "weight",
2031 .flags = CFTYPE_NOT_ON_ROOT,
2032 .seq_show = cfq_print_weight,
2033 .write_u64 = cfq_set_weight,
2034 },
2035
2036 {
2037 .name = "leaf_weight_device",
2038 .seq_show = cfqg_print_leaf_weight_device,
2039 .write = cfqg_set_leaf_weight_device,
2040 },
2041 {
2042 .name = "leaf_weight",
2043 .seq_show = cfq_print_leaf_weight,
2044 .write_u64 = cfq_set_leaf_weight,
2045 },
2046
2047 /* statistics, covers only the tasks in the cfqg */
2048 {
2049 .name = "time",
2050 .private = offsetof(struct cfq_group, stats.time),
2051 .seq_show = cfqg_print_stat,
2052 },
2053 {
2054 .name = "sectors",
2055 .seq_show = cfqg_print_stat_sectors,
2056 },
2057 {
2058 .name = "io_service_bytes",
2059 .private = (unsigned long)&blkcg_policy_cfq,
2060 .seq_show = blkg_print_stat_bytes,
2061 },
2062 {
2063 .name = "io_serviced",
2064 .private = (unsigned long)&blkcg_policy_cfq,
2065 .seq_show = blkg_print_stat_ios,
2066 },
2067 {
2068 .name = "io_service_time",
2069 .private = offsetof(struct cfq_group, stats.service_time),
2070 .seq_show = cfqg_print_rwstat,
2071 },
2072 {
2073 .name = "io_wait_time",
2074 .private = offsetof(struct cfq_group, stats.wait_time),
2075 .seq_show = cfqg_print_rwstat,
2076 },
2077 {
2078 .name = "io_merged",
2079 .private = offsetof(struct cfq_group, stats.merged),
2080 .seq_show = cfqg_print_rwstat,
2081 },
2082 {
2083 .name = "io_queued",
2084 .private = offsetof(struct cfq_group, stats.queued),
2085 .seq_show = cfqg_print_rwstat,
2086 },
2087
2088 /* the same statictics which cover the cfqg and its descendants */
2089 {
2090 .name = "time_recursive",
2091 .private = offsetof(struct cfq_group, stats.time),
2092 .seq_show = cfqg_print_stat_recursive,
2093 },
2094 {
2095 .name = "sectors_recursive",
2096 .seq_show = cfqg_print_stat_sectors_recursive,
2097 },
2098 {
2099 .name = "io_service_bytes_recursive",
2100 .private = (unsigned long)&blkcg_policy_cfq,
2101 .seq_show = blkg_print_stat_bytes_recursive,
2102 },
2103 {
2104 .name = "io_serviced_recursive",
2105 .private = (unsigned long)&blkcg_policy_cfq,
2106 .seq_show = blkg_print_stat_ios_recursive,
2107 },
2108 {
2109 .name = "io_service_time_recursive",
2110 .private = offsetof(struct cfq_group, stats.service_time),
2111 .seq_show = cfqg_print_rwstat_recursive,
2112 },
2113 {
2114 .name = "io_wait_time_recursive",
2115 .private = offsetof(struct cfq_group, stats.wait_time),
2116 .seq_show = cfqg_print_rwstat_recursive,
2117 },
2118 {
2119 .name = "io_merged_recursive",
2120 .private = offsetof(struct cfq_group, stats.merged),
2121 .seq_show = cfqg_print_rwstat_recursive,
2122 },
2123 {
2124 .name = "io_queued_recursive",
2125 .private = offsetof(struct cfq_group, stats.queued),
2126 .seq_show = cfqg_print_rwstat_recursive,
2127 },
2128#ifdef CONFIG_DEBUG_BLK_CGROUP
2129 {
2130 .name = "avg_queue_size",
2131 .seq_show = cfqg_print_avg_queue_size,
2132 },
2133 {
2134 .name = "group_wait_time",
2135 .private = offsetof(struct cfq_group, stats.group_wait_time),
2136 .seq_show = cfqg_print_stat,
2137 },
2138 {
2139 .name = "idle_time",
2140 .private = offsetof(struct cfq_group, stats.idle_time),
2141 .seq_show = cfqg_print_stat,
2142 },
2143 {
2144 .name = "empty_time",
2145 .private = offsetof(struct cfq_group, stats.empty_time),
2146 .seq_show = cfqg_print_stat,
2147 },
2148 {
2149 .name = "dequeue",
2150 .private = offsetof(struct cfq_group, stats.dequeue),
2151 .seq_show = cfqg_print_stat,
2152 },
2153 {
2154 .name = "unaccounted_time",
2155 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2156 .seq_show = cfqg_print_stat,
2157 },
2158#endif /* CONFIG_DEBUG_BLK_CGROUP */
2159 { } /* terminate */
2160};
2161
2162static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2163{
2164 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2165 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2166
2167 seq_printf(sf, "default %u\n", cgd->weight);
2168 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2169 &blkcg_policy_cfq, 0, false);
2170 return 0;
2171}
2172
2173static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2174 char *buf, size_t nbytes, loff_t off)
2175{
2176 char *endp;
2177 int ret;
2178 u64 v;
2179
2180 buf = strim(buf);
2181
2182 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2183 v = simple_strtoull(buf, &endp, 0);
2184 if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2185 ret = __cfq_set_weight(of_css(of), v, true, false, false);
2186 return ret ?: nbytes;
2187 }
2188
2189 /* "MAJ:MIN WEIGHT" */
2190 return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2191}
2192
2193static struct cftype cfq_blkcg_files[] = {
2194 {
2195 .name = "weight",
2196 .flags = CFTYPE_NOT_ON_ROOT,
2197 .seq_show = cfq_print_weight_on_dfl,
2198 .write = cfq_set_weight_on_dfl,
2199 },
2200 { } /* terminate */
2201};
2202
2203#else /* GROUP_IOSCHED */
2204static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2205 struct blkcg *blkcg)
2206{
2207 return cfqd->root_group;
2208}
2209
2210static inline void
2211cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2212 cfqq->cfqg = cfqg;
2213}
2214
2215#endif /* GROUP_IOSCHED */
2216
2217/*
2218 * The cfqd->service_trees holds all pending cfq_queue's that have
2219 * requests waiting to be processed. It is sorted in the order that
2220 * we will service the queues.
2221 */
2222static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2223 bool add_front)
2224{
2225 struct rb_node **p, *parent;
2226 struct cfq_queue *__cfqq;
2227 u64 rb_key;
2228 struct cfq_rb_root *st;
2229 int left;
2230 int new_cfqq = 1;
2231 u64 now = ktime_get_ns();
2232
2233 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2234 if (cfq_class_idle(cfqq)) {
2235 rb_key = CFQ_IDLE_DELAY;
2236 parent = rb_last(&st->rb);
2237 if (parent && parent != &cfqq->rb_node) {
2238 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2239 rb_key += __cfqq->rb_key;
2240 } else
2241 rb_key += now;
2242 } else if (!add_front) {
2243 /*
2244 * Get our rb key offset. Subtract any residual slice
2245 * value carried from last service. A negative resid
2246 * count indicates slice overrun, and this should position
2247 * the next service time further away in the tree.
2248 */
2249 rb_key = cfq_slice_offset(cfqd, cfqq) + now;
2250 rb_key -= cfqq->slice_resid;
2251 cfqq->slice_resid = 0;
2252 } else {
2253 rb_key = -NSEC_PER_SEC;
2254 __cfqq = cfq_rb_first(st);
2255 rb_key += __cfqq ? __cfqq->rb_key : now;
2256 }
2257
2258 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2259 new_cfqq = 0;
2260 /*
2261 * same position, nothing more to do
2262 */
2263 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2264 return;
2265
2266 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2267 cfqq->service_tree = NULL;
2268 }
2269
2270 left = 1;
2271 parent = NULL;
2272 cfqq->service_tree = st;
2273 p = &st->rb.rb_node;
2274 while (*p) {
2275 parent = *p;
2276 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2277
2278 /*
2279 * sort by key, that represents service time.
2280 */
2281 if (rb_key < __cfqq->rb_key)
2282 p = &parent->rb_left;
2283 else {
2284 p = &parent->rb_right;
2285 left = 0;
2286 }
2287 }
2288
2289 if (left)
2290 st->left = &cfqq->rb_node;
2291
2292 cfqq->rb_key = rb_key;
2293 rb_link_node(&cfqq->rb_node, parent, p);
2294 rb_insert_color(&cfqq->rb_node, &st->rb);
2295 st->count++;
2296 if (add_front || !new_cfqq)
2297 return;
2298 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2299}
2300
2301static struct cfq_queue *
2302cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2303 sector_t sector, struct rb_node **ret_parent,
2304 struct rb_node ***rb_link)
2305{
2306 struct rb_node **p, *parent;
2307 struct cfq_queue *cfqq = NULL;
2308
2309 parent = NULL;
2310 p = &root->rb_node;
2311 while (*p) {
2312 struct rb_node **n;
2313
2314 parent = *p;
2315 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2316
2317 /*
2318 * Sort strictly based on sector. Smallest to the left,
2319 * largest to the right.
2320 */
2321 if (sector > blk_rq_pos(cfqq->next_rq))
2322 n = &(*p)->rb_right;
2323 else if (sector < blk_rq_pos(cfqq->next_rq))
2324 n = &(*p)->rb_left;
2325 else
2326 break;
2327 p = n;
2328 cfqq = NULL;
2329 }
2330
2331 *ret_parent = parent;
2332 if (rb_link)
2333 *rb_link = p;
2334 return cfqq;
2335}
2336
2337static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2338{
2339 struct rb_node **p, *parent;
2340 struct cfq_queue *__cfqq;
2341
2342 if (cfqq->p_root) {
2343 rb_erase(&cfqq->p_node, cfqq->p_root);
2344 cfqq->p_root = NULL;
2345 }
2346
2347 if (cfq_class_idle(cfqq))
2348 return;
2349 if (!cfqq->next_rq)
2350 return;
2351
2352 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2353 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2354 blk_rq_pos(cfqq->next_rq), &parent, &p);
2355 if (!__cfqq) {
2356 rb_link_node(&cfqq->p_node, parent, p);
2357 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2358 } else
2359 cfqq->p_root = NULL;
2360}
2361
2362/*
2363 * Update cfqq's position in the service tree.
2364 */
2365static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2366{
2367 /*
2368 * Resorting requires the cfqq to be on the RR list already.
2369 */
2370 if (cfq_cfqq_on_rr(cfqq)) {
2371 cfq_service_tree_add(cfqd, cfqq, 0);
2372 cfq_prio_tree_add(cfqd, cfqq);
2373 }
2374}
2375
2376/*
2377 * add to busy list of queues for service, trying to be fair in ordering
2378 * the pending list according to last request service
2379 */
2380static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2381{
2382 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2383 BUG_ON(cfq_cfqq_on_rr(cfqq));
2384 cfq_mark_cfqq_on_rr(cfqq);
2385 cfqd->busy_queues++;
2386 if (cfq_cfqq_sync(cfqq))
2387 cfqd->busy_sync_queues++;
2388
2389 cfq_resort_rr_list(cfqd, cfqq);
2390}
2391
2392/*
2393 * Called when the cfqq no longer has requests pending, remove it from
2394 * the service tree.
2395 */
2396static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2397{
2398 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2399 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2400 cfq_clear_cfqq_on_rr(cfqq);
2401
2402 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2403 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2404 cfqq->service_tree = NULL;
2405 }
2406 if (cfqq->p_root) {
2407 rb_erase(&cfqq->p_node, cfqq->p_root);
2408 cfqq->p_root = NULL;
2409 }
2410
2411 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2412 BUG_ON(!cfqd->busy_queues);
2413 cfqd->busy_queues--;
2414 if (cfq_cfqq_sync(cfqq))
2415 cfqd->busy_sync_queues--;
2416}
2417
2418/*
2419 * rb tree support functions
2420 */
2421static void cfq_del_rq_rb(struct request *rq)
2422{
2423 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2424 const int sync = rq_is_sync(rq);
2425
2426 BUG_ON(!cfqq->queued[sync]);
2427 cfqq->queued[sync]--;
2428
2429 elv_rb_del(&cfqq->sort_list, rq);
2430
2431 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2432 /*
2433 * Queue will be deleted from service tree when we actually
2434 * expire it later. Right now just remove it from prio tree
2435 * as it is empty.
2436 */
2437 if (cfqq->p_root) {
2438 rb_erase(&cfqq->p_node, cfqq->p_root);
2439 cfqq->p_root = NULL;
2440 }
2441 }
2442}
2443
2444static void cfq_add_rq_rb(struct request *rq)
2445{
2446 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2447 struct cfq_data *cfqd = cfqq->cfqd;
2448 struct request *prev;
2449
2450 cfqq->queued[rq_is_sync(rq)]++;
2451
2452 elv_rb_add(&cfqq->sort_list, rq);
2453
2454 if (!cfq_cfqq_on_rr(cfqq))
2455 cfq_add_cfqq_rr(cfqd, cfqq);
2456
2457 /*
2458 * check if this request is a better next-serve candidate
2459 */
2460 prev = cfqq->next_rq;
2461 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2462
2463 /*
2464 * adjust priority tree position, if ->next_rq changes
2465 */
2466 if (prev != cfqq->next_rq)
2467 cfq_prio_tree_add(cfqd, cfqq);
2468
2469 BUG_ON(!cfqq->next_rq);
2470}
2471
2472static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2473{
2474 elv_rb_del(&cfqq->sort_list, rq);
2475 cfqq->queued[rq_is_sync(rq)]--;
2476 cfqg_stats_update_io_remove(RQ_CFQG(rq), req_op(rq), rq->cmd_flags);
2477 cfq_add_rq_rb(rq);
2478 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2479 req_op(rq), rq->cmd_flags);
2480}
2481
2482static struct request *
2483cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2484{
2485 struct task_struct *tsk = current;
2486 struct cfq_io_cq *cic;
2487 struct cfq_queue *cfqq;
2488
2489 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2490 if (!cic)
2491 return NULL;
2492
2493 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2494 if (cfqq)
2495 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2496
2497 return NULL;
2498}
2499
2500static void cfq_activate_request(struct request_queue *q, struct request *rq)
2501{
2502 struct cfq_data *cfqd = q->elevator->elevator_data;
2503
2504 cfqd->rq_in_driver++;
2505 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2506 cfqd->rq_in_driver);
2507
2508 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2509}
2510
2511static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2512{
2513 struct cfq_data *cfqd = q->elevator->elevator_data;
2514
2515 WARN_ON(!cfqd->rq_in_driver);
2516 cfqd->rq_in_driver--;
2517 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2518 cfqd->rq_in_driver);
2519}
2520
2521static void cfq_remove_request(struct request *rq)
2522{
2523 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2524
2525 if (cfqq->next_rq == rq)
2526 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2527
2528 list_del_init(&rq->queuelist);
2529 cfq_del_rq_rb(rq);
2530
2531 cfqq->cfqd->rq_queued--;
2532 cfqg_stats_update_io_remove(RQ_CFQG(rq), req_op(rq), rq->cmd_flags);
2533 if (rq->cmd_flags & REQ_PRIO) {
2534 WARN_ON(!cfqq->prio_pending);
2535 cfqq->prio_pending--;
2536 }
2537}
2538
2539static int cfq_merge(struct request_queue *q, struct request **req,
2540 struct bio *bio)
2541{
2542 struct cfq_data *cfqd = q->elevator->elevator_data;
2543 struct request *__rq;
2544
2545 __rq = cfq_find_rq_fmerge(cfqd, bio);
2546 if (__rq && elv_rq_merge_ok(__rq, bio)) {
2547 *req = __rq;
2548 return ELEVATOR_FRONT_MERGE;
2549 }
2550
2551 return ELEVATOR_NO_MERGE;
2552}
2553
2554static void cfq_merged_request(struct request_queue *q, struct request *req,
2555 int type)
2556{
2557 if (type == ELEVATOR_FRONT_MERGE) {
2558 struct cfq_queue *cfqq = RQ_CFQQ(req);
2559
2560 cfq_reposition_rq_rb(cfqq, req);
2561 }
2562}
2563
2564static void cfq_bio_merged(struct request_queue *q, struct request *req,
2565 struct bio *bio)
2566{
2567 cfqg_stats_update_io_merged(RQ_CFQG(req), bio_op(bio), bio->bi_rw);
2568}
2569
2570static void
2571cfq_merged_requests(struct request_queue *q, struct request *rq,
2572 struct request *next)
2573{
2574 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2575 struct cfq_data *cfqd = q->elevator->elevator_data;
2576
2577 /*
2578 * reposition in fifo if next is older than rq
2579 */
2580 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2581 next->fifo_time < rq->fifo_time &&
2582 cfqq == RQ_CFQQ(next)) {
2583 list_move(&rq->queuelist, &next->queuelist);
2584 rq->fifo_time = next->fifo_time;
2585 }
2586
2587 if (cfqq->next_rq == next)
2588 cfqq->next_rq = rq;
2589 cfq_remove_request(next);
2590 cfqg_stats_update_io_merged(RQ_CFQG(rq), req_op(next), next->cmd_flags);
2591
2592 cfqq = RQ_CFQQ(next);
2593 /*
2594 * all requests of this queue are merged to other queues, delete it
2595 * from the service tree. If it's the active_queue,
2596 * cfq_dispatch_requests() will choose to expire it or do idle
2597 */
2598 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2599 cfqq != cfqd->active_queue)
2600 cfq_del_cfqq_rr(cfqd, cfqq);
2601}
2602
2603static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2604 struct bio *bio)
2605{
2606 struct cfq_data *cfqd = q->elevator->elevator_data;
2607 struct cfq_io_cq *cic;
2608 struct cfq_queue *cfqq;
2609
2610 /*
2611 * Disallow merge of a sync bio into an async request.
2612 */
2613 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2614 return false;
2615
2616 /*
2617 * Lookup the cfqq that this bio will be queued with and allow
2618 * merge only if rq is queued there.
2619 */
2620 cic = cfq_cic_lookup(cfqd, current->io_context);
2621 if (!cic)
2622 return false;
2623
2624 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2625 return cfqq == RQ_CFQQ(rq);
2626}
2627
2628static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2629{
2630 del_timer(&cfqd->idle_slice_timer);
2631 cfqg_stats_update_idle_time(cfqq->cfqg);
2632}
2633
2634static void __cfq_set_active_queue(struct cfq_data *cfqd,
2635 struct cfq_queue *cfqq)
2636{
2637 if (cfqq) {
2638 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2639 cfqd->serving_wl_class, cfqd->serving_wl_type);
2640 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2641 cfqq->slice_start = 0;
2642 cfqq->dispatch_start = ktime_get_ns();
2643 cfqq->allocated_slice = 0;
2644 cfqq->slice_end = 0;
2645 cfqq->slice_dispatch = 0;
2646 cfqq->nr_sectors = 0;
2647
2648 cfq_clear_cfqq_wait_request(cfqq);
2649 cfq_clear_cfqq_must_dispatch(cfqq);
2650 cfq_clear_cfqq_must_alloc_slice(cfqq);
2651 cfq_clear_cfqq_fifo_expire(cfqq);
2652 cfq_mark_cfqq_slice_new(cfqq);
2653
2654 cfq_del_timer(cfqd, cfqq);
2655 }
2656
2657 cfqd->active_queue = cfqq;
2658}
2659
2660/*
2661 * current cfqq expired its slice (or was too idle), select new one
2662 */
2663static void
2664__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2665 bool timed_out)
2666{
2667 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2668
2669 if (cfq_cfqq_wait_request(cfqq))
2670 cfq_del_timer(cfqd, cfqq);
2671
2672 cfq_clear_cfqq_wait_request(cfqq);
2673 cfq_clear_cfqq_wait_busy(cfqq);
2674
2675 /*
2676 * If this cfqq is shared between multiple processes, check to
2677 * make sure that those processes are still issuing I/Os within
2678 * the mean seek distance. If not, it may be time to break the
2679 * queues apart again.
2680 */
2681 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2682 cfq_mark_cfqq_split_coop(cfqq);
2683
2684 /*
2685 * store what was left of this slice, if the queue idled/timed out
2686 */
2687 if (timed_out) {
2688 if (cfq_cfqq_slice_new(cfqq))
2689 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2690 else
2691 cfqq->slice_resid = cfqq->slice_end - ktime_get_ns();
2692 cfq_log_cfqq(cfqd, cfqq, "resid=%llu", cfqq->slice_resid);
2693 }
2694
2695 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2696
2697 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2698 cfq_del_cfqq_rr(cfqd, cfqq);
2699
2700 cfq_resort_rr_list(cfqd, cfqq);
2701
2702 if (cfqq == cfqd->active_queue)
2703 cfqd->active_queue = NULL;
2704
2705 if (cfqd->active_cic) {
2706 put_io_context(cfqd->active_cic->icq.ioc);
2707 cfqd->active_cic = NULL;
2708 }
2709}
2710
2711static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2712{
2713 struct cfq_queue *cfqq = cfqd->active_queue;
2714
2715 if (cfqq)
2716 __cfq_slice_expired(cfqd, cfqq, timed_out);
2717}
2718
2719/*
2720 * Get next queue for service. Unless we have a queue preemption,
2721 * we'll simply select the first cfqq in the service tree.
2722 */
2723static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2724{
2725 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2726 cfqd->serving_wl_class, cfqd->serving_wl_type);
2727
2728 if (!cfqd->rq_queued)
2729 return NULL;
2730
2731 /* There is nothing to dispatch */
2732 if (!st)
2733 return NULL;
2734 if (RB_EMPTY_ROOT(&st->rb))
2735 return NULL;
2736 return cfq_rb_first(st);
2737}
2738
2739static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2740{
2741 struct cfq_group *cfqg;
2742 struct cfq_queue *cfqq;
2743 int i, j;
2744 struct cfq_rb_root *st;
2745
2746 if (!cfqd->rq_queued)
2747 return NULL;
2748
2749 cfqg = cfq_get_next_cfqg(cfqd);
2750 if (!cfqg)
2751 return NULL;
2752
2753 for_each_cfqg_st(cfqg, i, j, st)
2754 if ((cfqq = cfq_rb_first(st)) != NULL)
2755 return cfqq;
2756 return NULL;
2757}
2758
2759/*
2760 * Get and set a new active queue for service.
2761 */
2762static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2763 struct cfq_queue *cfqq)
2764{
2765 if (!cfqq)
2766 cfqq = cfq_get_next_queue(cfqd);
2767
2768 __cfq_set_active_queue(cfqd, cfqq);
2769 return cfqq;
2770}
2771
2772static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2773 struct request *rq)
2774{
2775 if (blk_rq_pos(rq) >= cfqd->last_position)
2776 return blk_rq_pos(rq) - cfqd->last_position;
2777 else
2778 return cfqd->last_position - blk_rq_pos(rq);
2779}
2780
2781static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2782 struct request *rq)
2783{
2784 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2785}
2786
2787static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2788 struct cfq_queue *cur_cfqq)
2789{
2790 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2791 struct rb_node *parent, *node;
2792 struct cfq_queue *__cfqq;
2793 sector_t sector = cfqd->last_position;
2794
2795 if (RB_EMPTY_ROOT(root))
2796 return NULL;
2797
2798 /*
2799 * First, if we find a request starting at the end of the last
2800 * request, choose it.
2801 */
2802 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2803 if (__cfqq)
2804 return __cfqq;
2805
2806 /*
2807 * If the exact sector wasn't found, the parent of the NULL leaf
2808 * will contain the closest sector.
2809 */
2810 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2811 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2812 return __cfqq;
2813
2814 if (blk_rq_pos(__cfqq->next_rq) < sector)
2815 node = rb_next(&__cfqq->p_node);
2816 else
2817 node = rb_prev(&__cfqq->p_node);
2818 if (!node)
2819 return NULL;
2820
2821 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2822 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2823 return __cfqq;
2824
2825 return NULL;
2826}
2827
2828/*
2829 * cfqd - obvious
2830 * cur_cfqq - passed in so that we don't decide that the current queue is
2831 * closely cooperating with itself.
2832 *
2833 * So, basically we're assuming that that cur_cfqq has dispatched at least
2834 * one request, and that cfqd->last_position reflects a position on the disk
2835 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2836 * assumption.
2837 */
2838static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2839 struct cfq_queue *cur_cfqq)
2840{
2841 struct cfq_queue *cfqq;
2842
2843 if (cfq_class_idle(cur_cfqq))
2844 return NULL;
2845 if (!cfq_cfqq_sync(cur_cfqq))
2846 return NULL;
2847 if (CFQQ_SEEKY(cur_cfqq))
2848 return NULL;
2849
2850 /*
2851 * Don't search priority tree if it's the only queue in the group.
2852 */
2853 if (cur_cfqq->cfqg->nr_cfqq == 1)
2854 return NULL;
2855
2856 /*
2857 * We should notice if some of the queues are cooperating, eg
2858 * working closely on the same area of the disk. In that case,
2859 * we can group them together and don't waste time idling.
2860 */
2861 cfqq = cfqq_close(cfqd, cur_cfqq);
2862 if (!cfqq)
2863 return NULL;
2864
2865 /* If new queue belongs to different cfq_group, don't choose it */
2866 if (cur_cfqq->cfqg != cfqq->cfqg)
2867 return NULL;
2868
2869 /*
2870 * It only makes sense to merge sync queues.
2871 */
2872 if (!cfq_cfqq_sync(cfqq))
2873 return NULL;
2874 if (CFQQ_SEEKY(cfqq))
2875 return NULL;
2876
2877 /*
2878 * Do not merge queues of different priority classes
2879 */
2880 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2881 return NULL;
2882
2883 return cfqq;
2884}
2885
2886/*
2887 * Determine whether we should enforce idle window for this queue.
2888 */
2889
2890static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2891{
2892 enum wl_class_t wl_class = cfqq_class(cfqq);
2893 struct cfq_rb_root *st = cfqq->service_tree;
2894
2895 BUG_ON(!st);
2896 BUG_ON(!st->count);
2897
2898 if (!cfqd->cfq_slice_idle)
2899 return false;
2900
2901 /* We never do for idle class queues. */
2902 if (wl_class == IDLE_WORKLOAD)
2903 return false;
2904
2905 /* We do for queues that were marked with idle window flag. */
2906 if (cfq_cfqq_idle_window(cfqq) &&
2907 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2908 return true;
2909
2910 /*
2911 * Otherwise, we do only if they are the last ones
2912 * in their service tree.
2913 */
2914 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2915 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2916 return true;
2917 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2918 return false;
2919}
2920
2921static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2922{
2923 struct cfq_queue *cfqq = cfqd->active_queue;
2924 struct cfq_rb_root *st = cfqq->service_tree;
2925 struct cfq_io_cq *cic;
2926 u64 sl, group_idle = 0;
2927 u64 now = ktime_get_ns();
2928
2929 /*
2930 * SSD device without seek penalty, disable idling. But only do so
2931 * for devices that support queuing, otherwise we still have a problem
2932 * with sync vs async workloads.
2933 */
2934 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2935 return;
2936
2937 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2938 WARN_ON(cfq_cfqq_slice_new(cfqq));
2939
2940 /*
2941 * idle is disabled, either manually or by past process history
2942 */
2943 if (!cfq_should_idle(cfqd, cfqq)) {
2944 /* no queue idling. Check for group idling */
2945 if (cfqd->cfq_group_idle)
2946 group_idle = cfqd->cfq_group_idle;
2947 else
2948 return;
2949 }
2950
2951 /*
2952 * still active requests from this queue, don't idle
2953 */
2954 if (cfqq->dispatched)
2955 return;
2956
2957 /*
2958 * task has exited, don't wait
2959 */
2960 cic = cfqd->active_cic;
2961 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2962 return;
2963
2964 /*
2965 * If our average think time is larger than the remaining time
2966 * slice, then don't idle. This avoids overrunning the allotted
2967 * time slice.
2968 */
2969 if (sample_valid(cic->ttime.ttime_samples) &&
2970 (cfqq->slice_end - now < cic->ttime.ttime_mean)) {
2971 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu",
2972 cic->ttime.ttime_mean);
2973 return;
2974 }
2975
2976 /*
2977 * There are other queues in the group or this is the only group and
2978 * it has too big thinktime, don't do group idle.
2979 */
2980 if (group_idle &&
2981 (cfqq->cfqg->nr_cfqq > 1 ||
2982 cfq_io_thinktime_big(cfqd, &st->ttime, true)))
2983 return;
2984
2985 cfq_mark_cfqq_wait_request(cfqq);
2986
2987 if (group_idle)
2988 sl = cfqd->cfq_group_idle;
2989 else
2990 sl = cfqd->cfq_slice_idle;
2991
2992 mod_timer(&cfqd->idle_slice_timer, now + sl);
2993 cfqg_stats_set_start_idle_time(cfqq->cfqg);
2994 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl,
2995 group_idle ? 1 : 0);
2996}
2997
2998/*
2999 * Move request from internal lists to the request queue dispatch list.
3000 */
3001static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
3002{
3003 struct cfq_data *cfqd = q->elevator->elevator_data;
3004 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3005
3006 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
3007
3008 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
3009 cfq_remove_request(rq);
3010 cfqq->dispatched++;
3011 (RQ_CFQG(rq))->dispatched++;
3012 elv_dispatch_sort(q, rq);
3013
3014 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
3015 cfqq->nr_sectors += blk_rq_sectors(rq);
3016}
3017
3018/*
3019 * return expired entry, or NULL to just start from scratch in rbtree
3020 */
3021static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
3022{
3023 struct request *rq = NULL;
3024
3025 if (cfq_cfqq_fifo_expire(cfqq))
3026 return NULL;
3027
3028 cfq_mark_cfqq_fifo_expire(cfqq);
3029
3030 if (list_empty(&cfqq->fifo))
3031 return NULL;
3032
3033 rq = rq_entry_fifo(cfqq->fifo.next);
3034 if (ktime_get_ns() < rq->fifo_time)
3035 rq = NULL;
3036
3037 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3038 return rq;
3039}
3040
3041static inline int
3042cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3043{
3044 const int base_rq = cfqd->cfq_slice_async_rq;
3045
3046 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3047
3048 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3049}
3050
3051/*
3052 * Must be called with the queue_lock held.
3053 */
3054static int cfqq_process_refs(struct cfq_queue *cfqq)
3055{
3056 int process_refs, io_refs;
3057
3058 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3059 process_refs = cfqq->ref - io_refs;
3060 BUG_ON(process_refs < 0);
3061 return process_refs;
3062}
3063
3064static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3065{
3066 int process_refs, new_process_refs;
3067 struct cfq_queue *__cfqq;
3068
3069 /*
3070 * If there are no process references on the new_cfqq, then it is
3071 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3072 * chain may have dropped their last reference (not just their
3073 * last process reference).
3074 */
3075 if (!cfqq_process_refs(new_cfqq))
3076 return;
3077
3078 /* Avoid a circular list and skip interim queue merges */
3079 while ((__cfqq = new_cfqq->new_cfqq)) {
3080 if (__cfqq == cfqq)
3081 return;
3082 new_cfqq = __cfqq;
3083 }
3084
3085 process_refs = cfqq_process_refs(cfqq);
3086 new_process_refs = cfqq_process_refs(new_cfqq);
3087 /*
3088 * If the process for the cfqq has gone away, there is no
3089 * sense in merging the queues.
3090 */
3091 if (process_refs == 0 || new_process_refs == 0)
3092 return;
3093
3094 /*
3095 * Merge in the direction of the lesser amount of work.
3096 */
3097 if (new_process_refs >= process_refs) {
3098 cfqq->new_cfqq = new_cfqq;
3099 new_cfqq->ref += process_refs;
3100 } else {
3101 new_cfqq->new_cfqq = cfqq;
3102 cfqq->ref += new_process_refs;
3103 }
3104}
3105
3106static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3107 struct cfq_group *cfqg, enum wl_class_t wl_class)
3108{
3109 struct cfq_queue *queue;
3110 int i;
3111 bool key_valid = false;
3112 u64 lowest_key = 0;
3113 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3114
3115 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3116 /* select the one with lowest rb_key */
3117 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3118 if (queue &&
3119 (!key_valid || queue->rb_key < lowest_key)) {
3120 lowest_key = queue->rb_key;
3121 cur_best = i;
3122 key_valid = true;
3123 }
3124 }
3125
3126 return cur_best;
3127}
3128
3129static void
3130choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3131{
3132 u64 slice;
3133 unsigned count;
3134 struct cfq_rb_root *st;
3135 u64 group_slice;
3136 enum wl_class_t original_class = cfqd->serving_wl_class;
3137 u64 now = ktime_get_ns();
3138
3139 /* Choose next priority. RT > BE > IDLE */
3140 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3141 cfqd->serving_wl_class = RT_WORKLOAD;
3142 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3143 cfqd->serving_wl_class = BE_WORKLOAD;
3144 else {
3145 cfqd->serving_wl_class = IDLE_WORKLOAD;
3146 cfqd->workload_expires = now + jiffies_to_nsecs(1);
3147 return;
3148 }
3149
3150 if (original_class != cfqd->serving_wl_class)
3151 goto new_workload;
3152
3153 /*
3154 * For RT and BE, we have to choose also the type
3155 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3156 * expiration time
3157 */
3158 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3159 count = st->count;
3160
3161 /*
3162 * check workload expiration, and that we still have other queues ready
3163 */
3164 if (count && !(now > cfqd->workload_expires))
3165 return;
3166
3167new_workload:
3168 /* otherwise select new workload type */
3169 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3170 cfqd->serving_wl_class);
3171 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3172 count = st->count;
3173
3174 /*
3175 * the workload slice is computed as a fraction of target latency
3176 * proportional to the number of queues in that workload, over
3177 * all the queues in the same priority class
3178 */
3179 group_slice = cfq_group_slice(cfqd, cfqg);
3180
3181 slice = div_u64(group_slice * count,
3182 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3183 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3184 cfqg)));
3185
3186 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3187 u64 tmp;
3188
3189 /*
3190 * Async queues are currently system wide. Just taking
3191 * proportion of queues with-in same group will lead to higher
3192 * async ratio system wide as generally root group is going
3193 * to have higher weight. A more accurate thing would be to
3194 * calculate system wide asnc/sync ratio.
3195 */
3196 tmp = cfqd->cfq_target_latency *
3197 cfqg_busy_async_queues(cfqd, cfqg);
3198 tmp = div_u64(tmp, cfqd->busy_queues);
3199 slice = min_t(u64, slice, tmp);
3200
3201 /* async workload slice is scaled down according to
3202 * the sync/async slice ratio. */
3203 slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]);
3204 } else
3205 /* sync workload slice is at least 2 * cfq_slice_idle */
3206 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3207
3208 slice = max_t(u64, slice, CFQ_MIN_TT);
3209 cfq_log(cfqd, "workload slice:%llu", slice);
3210 cfqd->workload_expires = now + slice;
3211}
3212
3213static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3214{
3215 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3216 struct cfq_group *cfqg;
3217
3218 if (RB_EMPTY_ROOT(&st->rb))
3219 return NULL;
3220 cfqg = cfq_rb_first_group(st);
3221 update_min_vdisktime(st);
3222 return cfqg;
3223}
3224
3225static void cfq_choose_cfqg(struct cfq_data *cfqd)
3226{
3227 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3228 u64 now = ktime_get_ns();
3229
3230 cfqd->serving_group = cfqg;
3231
3232 /* Restore the workload type data */
3233 if (cfqg->saved_wl_slice) {
3234 cfqd->workload_expires = now + cfqg->saved_wl_slice;
3235 cfqd->serving_wl_type = cfqg->saved_wl_type;
3236 cfqd->serving_wl_class = cfqg->saved_wl_class;
3237 } else
3238 cfqd->workload_expires = now - 1;
3239
3240 choose_wl_class_and_type(cfqd, cfqg);
3241}
3242
3243/*
3244 * Select a queue for service. If we have a current active queue,
3245 * check whether to continue servicing it, or retrieve and set a new one.
3246 */
3247static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3248{
3249 struct cfq_queue *cfqq, *new_cfqq = NULL;
3250 u64 now = ktime_get_ns();
3251
3252 cfqq = cfqd->active_queue;
3253 if (!cfqq)
3254 goto new_queue;
3255
3256 if (!cfqd->rq_queued)
3257 return NULL;
3258
3259 /*
3260 * We were waiting for group to get backlogged. Expire the queue
3261 */
3262 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3263 goto expire;
3264
3265 /*
3266 * The active queue has run out of time, expire it and select new.
3267 */
3268 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3269 /*
3270 * If slice had not expired at the completion of last request
3271 * we might not have turned on wait_busy flag. Don't expire
3272 * the queue yet. Allow the group to get backlogged.
3273 *
3274 * The very fact that we have used the slice, that means we
3275 * have been idling all along on this queue and it should be
3276 * ok to wait for this request to complete.
3277 */
3278 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3279 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3280 cfqq = NULL;
3281 goto keep_queue;
3282 } else
3283 goto check_group_idle;
3284 }
3285
3286 /*
3287 * The active queue has requests and isn't expired, allow it to
3288 * dispatch.
3289 */
3290 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3291 goto keep_queue;
3292
3293 /*
3294 * If another queue has a request waiting within our mean seek
3295 * distance, let it run. The expire code will check for close
3296 * cooperators and put the close queue at the front of the service
3297 * tree. If possible, merge the expiring queue with the new cfqq.
3298 */
3299 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3300 if (new_cfqq) {
3301 if (!cfqq->new_cfqq)
3302 cfq_setup_merge(cfqq, new_cfqq);
3303 goto expire;
3304 }
3305
3306 /*
3307 * No requests pending. If the active queue still has requests in
3308 * flight or is idling for a new request, allow either of these
3309 * conditions to happen (or time out) before selecting a new queue.
3310 */
3311 if (timer_pending(&cfqd->idle_slice_timer)) {
3312 cfqq = NULL;
3313 goto keep_queue;
3314 }
3315
3316 /*
3317 * This is a deep seek queue, but the device is much faster than
3318 * the queue can deliver, don't idle
3319 **/
3320 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3321 (cfq_cfqq_slice_new(cfqq) ||
3322 (cfqq->slice_end - now > now - cfqq->slice_start))) {
3323 cfq_clear_cfqq_deep(cfqq);
3324 cfq_clear_cfqq_idle_window(cfqq);
3325 }
3326
3327 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3328 cfqq = NULL;
3329 goto keep_queue;
3330 }
3331
3332 /*
3333 * If group idle is enabled and there are requests dispatched from
3334 * this group, wait for requests to complete.
3335 */
3336check_group_idle:
3337 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3338 cfqq->cfqg->dispatched &&
3339 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3340 cfqq = NULL;
3341 goto keep_queue;
3342 }
3343
3344expire:
3345 cfq_slice_expired(cfqd, 0);
3346new_queue:
3347 /*
3348 * Current queue expired. Check if we have to switch to a new
3349 * service tree
3350 */
3351 if (!new_cfqq)
3352 cfq_choose_cfqg(cfqd);
3353
3354 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3355keep_queue:
3356 return cfqq;
3357}
3358
3359static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3360{
3361 int dispatched = 0;
3362
3363 while (cfqq->next_rq) {
3364 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3365 dispatched++;
3366 }
3367
3368 BUG_ON(!list_empty(&cfqq->fifo));
3369
3370 /* By default cfqq is not expired if it is empty. Do it explicitly */
3371 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3372 return dispatched;
3373}
3374
3375/*
3376 * Drain our current requests. Used for barriers and when switching
3377 * io schedulers on-the-fly.
3378 */
3379static int cfq_forced_dispatch(struct cfq_data *cfqd)
3380{
3381 struct cfq_queue *cfqq;
3382 int dispatched = 0;
3383
3384 /* Expire the timeslice of the current active queue first */
3385 cfq_slice_expired(cfqd, 0);
3386 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3387 __cfq_set_active_queue(cfqd, cfqq);
3388 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3389 }
3390
3391 BUG_ON(cfqd->busy_queues);
3392
3393 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3394 return dispatched;
3395}
3396
3397static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3398 struct cfq_queue *cfqq)
3399{
3400 u64 now = ktime_get_ns();
3401
3402 /* the queue hasn't finished any request, can't estimate */
3403 if (cfq_cfqq_slice_new(cfqq))
3404 return true;
3405 if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end)
3406 return true;
3407
3408 return false;
3409}
3410
3411static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3412{
3413 unsigned int max_dispatch;
3414
3415 /*
3416 * Drain async requests before we start sync IO
3417 */
3418 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3419 return false;
3420
3421 /*
3422 * If this is an async queue and we have sync IO in flight, let it wait
3423 */
3424 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3425 return false;
3426
3427 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3428 if (cfq_class_idle(cfqq))
3429 max_dispatch = 1;
3430
3431 /*
3432 * Does this cfqq already have too much IO in flight?
3433 */
3434 if (cfqq->dispatched >= max_dispatch) {
3435 bool promote_sync = false;
3436 /*
3437 * idle queue must always only have a single IO in flight
3438 */
3439 if (cfq_class_idle(cfqq))
3440 return false;
3441
3442 /*
3443 * If there is only one sync queue
3444 * we can ignore async queue here and give the sync
3445 * queue no dispatch limit. The reason is a sync queue can
3446 * preempt async queue, limiting the sync queue doesn't make
3447 * sense. This is useful for aiostress test.
3448 */
3449 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3450 promote_sync = true;
3451
3452 /*
3453 * We have other queues, don't allow more IO from this one
3454 */
3455 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3456 !promote_sync)
3457 return false;
3458
3459 /*
3460 * Sole queue user, no limit
3461 */
3462 if (cfqd->busy_queues == 1 || promote_sync)
3463 max_dispatch = -1;
3464 else
3465 /*
3466 * Normally we start throttling cfqq when cfq_quantum/2
3467 * requests have been dispatched. But we can drive
3468 * deeper queue depths at the beginning of slice
3469 * subjected to upper limit of cfq_quantum.
3470 * */
3471 max_dispatch = cfqd->cfq_quantum;
3472 }
3473
3474 /*
3475 * Async queues must wait a bit before being allowed dispatch.
3476 * We also ramp up the dispatch depth gradually for async IO,
3477 * based on the last sync IO we serviced
3478 */
3479 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3480 u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync;
3481 unsigned int depth;
3482
3483 depth = div64_u64(last_sync, cfqd->cfq_slice[1]);
3484 if (!depth && !cfqq->dispatched)
3485 depth = 1;
3486 if (depth < max_dispatch)
3487 max_dispatch = depth;
3488 }
3489
3490 /*
3491 * If we're below the current max, allow a dispatch
3492 */
3493 return cfqq->dispatched < max_dispatch;
3494}
3495
3496/*
3497 * Dispatch a request from cfqq, moving them to the request queue
3498 * dispatch list.
3499 */
3500static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3501{
3502 struct request *rq;
3503
3504 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3505
3506 if (!cfq_may_dispatch(cfqd, cfqq))
3507 return false;
3508
3509 /*
3510 * follow expired path, else get first next available
3511 */
3512 rq = cfq_check_fifo(cfqq);
3513 if (!rq)
3514 rq = cfqq->next_rq;
3515
3516 /*
3517 * insert request into driver dispatch list
3518 */
3519 cfq_dispatch_insert(cfqd->queue, rq);
3520
3521 if (!cfqd->active_cic) {
3522 struct cfq_io_cq *cic = RQ_CIC(rq);
3523
3524 atomic_long_inc(&cic->icq.ioc->refcount);
3525 cfqd->active_cic = cic;
3526 }
3527
3528 return true;
3529}
3530
3531/*
3532 * Find the cfqq that we need to service and move a request from that to the
3533 * dispatch list
3534 */
3535static int cfq_dispatch_requests(struct request_queue *q, int force)
3536{
3537 struct cfq_data *cfqd = q->elevator->elevator_data;
3538 struct cfq_queue *cfqq;
3539
3540 if (!cfqd->busy_queues)
3541 return 0;
3542
3543 if (unlikely(force))
3544 return cfq_forced_dispatch(cfqd);
3545
3546 cfqq = cfq_select_queue(cfqd);
3547 if (!cfqq)
3548 return 0;
3549
3550 /*
3551 * Dispatch a request from this cfqq, if it is allowed
3552 */
3553 if (!cfq_dispatch_request(cfqd, cfqq))
3554 return 0;
3555
3556 cfqq->slice_dispatch++;
3557 cfq_clear_cfqq_must_dispatch(cfqq);
3558
3559 /*
3560 * expire an async queue immediately if it has used up its slice. idle
3561 * queue always expire after 1 dispatch round.
3562 */
3563 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3564 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3565 cfq_class_idle(cfqq))) {
3566 cfqq->slice_end = ktime_get_ns() + 1;
3567 cfq_slice_expired(cfqd, 0);
3568 }
3569
3570 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3571 return 1;
3572}
3573
3574/*
3575 * task holds one reference to the queue, dropped when task exits. each rq
3576 * in-flight on this queue also holds a reference, dropped when rq is freed.
3577 *
3578 * Each cfq queue took a reference on the parent group. Drop it now.
3579 * queue lock must be held here.
3580 */
3581static void cfq_put_queue(struct cfq_queue *cfqq)
3582{
3583 struct cfq_data *cfqd = cfqq->cfqd;
3584 struct cfq_group *cfqg;
3585
3586 BUG_ON(cfqq->ref <= 0);
3587
3588 cfqq->ref--;
3589 if (cfqq->ref)
3590 return;
3591
3592 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3593 BUG_ON(rb_first(&cfqq->sort_list));
3594 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3595 cfqg = cfqq->cfqg;
3596
3597 if (unlikely(cfqd->active_queue == cfqq)) {
3598 __cfq_slice_expired(cfqd, cfqq, 0);
3599 cfq_schedule_dispatch(cfqd);
3600 }
3601
3602 BUG_ON(cfq_cfqq_on_rr(cfqq));
3603 kmem_cache_free(cfq_pool, cfqq);
3604 cfqg_put(cfqg);
3605}
3606
3607static void cfq_put_cooperator(struct cfq_queue *cfqq)
3608{
3609 struct cfq_queue *__cfqq, *next;
3610
3611 /*
3612 * If this queue was scheduled to merge with another queue, be
3613 * sure to drop the reference taken on that queue (and others in
3614 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3615 */
3616 __cfqq = cfqq->new_cfqq;
3617 while (__cfqq) {
3618 if (__cfqq == cfqq) {
3619 WARN(1, "cfqq->new_cfqq loop detected\n");
3620 break;
3621 }
3622 next = __cfqq->new_cfqq;
3623 cfq_put_queue(__cfqq);
3624 __cfqq = next;
3625 }
3626}
3627
3628static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3629{
3630 if (unlikely(cfqq == cfqd->active_queue)) {
3631 __cfq_slice_expired(cfqd, cfqq, 0);
3632 cfq_schedule_dispatch(cfqd);
3633 }
3634
3635 cfq_put_cooperator(cfqq);
3636
3637 cfq_put_queue(cfqq);
3638}
3639
3640static void cfq_init_icq(struct io_cq *icq)
3641{
3642 struct cfq_io_cq *cic = icq_to_cic(icq);
3643
3644 cic->ttime.last_end_request = ktime_get_ns();
3645}
3646
3647static void cfq_exit_icq(struct io_cq *icq)
3648{
3649 struct cfq_io_cq *cic = icq_to_cic(icq);
3650 struct cfq_data *cfqd = cic_to_cfqd(cic);
3651
3652 if (cic_to_cfqq(cic, false)) {
3653 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3654 cic_set_cfqq(cic, NULL, false);
3655 }
3656
3657 if (cic_to_cfqq(cic, true)) {
3658 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3659 cic_set_cfqq(cic, NULL, true);
3660 }
3661}
3662
3663static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3664{
3665 struct task_struct *tsk = current;
3666 int ioprio_class;
3667
3668 if (!cfq_cfqq_prio_changed(cfqq))
3669 return;
3670
3671 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3672 switch (ioprio_class) {
3673 default:
3674 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3675 case IOPRIO_CLASS_NONE:
3676 /*
3677 * no prio set, inherit CPU scheduling settings
3678 */
3679 cfqq->ioprio = task_nice_ioprio(tsk);
3680 cfqq->ioprio_class = task_nice_ioclass(tsk);
3681 break;
3682 case IOPRIO_CLASS_RT:
3683 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3684 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3685 break;
3686 case IOPRIO_CLASS_BE:
3687 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3688 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3689 break;
3690 case IOPRIO_CLASS_IDLE:
3691 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3692 cfqq->ioprio = 7;
3693 cfq_clear_cfqq_idle_window(cfqq);
3694 break;
3695 }
3696
3697 /*
3698 * keep track of original prio settings in case we have to temporarily
3699 * elevate the priority of this queue
3700 */
3701 cfqq->org_ioprio = cfqq->ioprio;
3702 cfq_clear_cfqq_prio_changed(cfqq);
3703}
3704
3705static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3706{
3707 int ioprio = cic->icq.ioc->ioprio;
3708 struct cfq_data *cfqd = cic_to_cfqd(cic);
3709 struct cfq_queue *cfqq;
3710
3711 /*
3712 * Check whether ioprio has changed. The condition may trigger
3713 * spuriously on a newly created cic but there's no harm.
3714 */
3715 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3716 return;
3717
3718 cfqq = cic_to_cfqq(cic, false);
3719 if (cfqq) {
3720 cfq_put_queue(cfqq);
3721 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3722 cic_set_cfqq(cic, cfqq, false);
3723 }
3724
3725 cfqq = cic_to_cfqq(cic, true);
3726 if (cfqq)
3727 cfq_mark_cfqq_prio_changed(cfqq);
3728
3729 cic->ioprio = ioprio;
3730}
3731
3732static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3733 pid_t pid, bool is_sync)
3734{
3735 RB_CLEAR_NODE(&cfqq->rb_node);
3736 RB_CLEAR_NODE(&cfqq->p_node);
3737 INIT_LIST_HEAD(&cfqq->fifo);
3738
3739 cfqq->ref = 0;
3740 cfqq->cfqd = cfqd;
3741
3742 cfq_mark_cfqq_prio_changed(cfqq);
3743
3744 if (is_sync) {
3745 if (!cfq_class_idle(cfqq))
3746 cfq_mark_cfqq_idle_window(cfqq);
3747 cfq_mark_cfqq_sync(cfqq);
3748 }
3749 cfqq->pid = pid;
3750}
3751
3752#ifdef CONFIG_CFQ_GROUP_IOSCHED
3753static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3754{
3755 struct cfq_data *cfqd = cic_to_cfqd(cic);
3756 struct cfq_queue *cfqq;
3757 uint64_t serial_nr;
3758
3759 rcu_read_lock();
3760 serial_nr = bio_blkcg(bio)->css.serial_nr;
3761 rcu_read_unlock();
3762
3763 /*
3764 * Check whether blkcg has changed. The condition may trigger
3765 * spuriously on a newly created cic but there's no harm.
3766 */
3767 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3768 return;
3769
3770 /*
3771 * Drop reference to queues. New queues will be assigned in new
3772 * group upon arrival of fresh requests.
3773 */
3774 cfqq = cic_to_cfqq(cic, false);
3775 if (cfqq) {
3776 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3777 cic_set_cfqq(cic, NULL, false);
3778 cfq_put_queue(cfqq);
3779 }
3780
3781 cfqq = cic_to_cfqq(cic, true);
3782 if (cfqq) {
3783 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3784 cic_set_cfqq(cic, NULL, true);
3785 cfq_put_queue(cfqq);
3786 }
3787
3788 cic->blkcg_serial_nr = serial_nr;
3789}
3790#else
3791static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3792#endif /* CONFIG_CFQ_GROUP_IOSCHED */
3793
3794static struct cfq_queue **
3795cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3796{
3797 switch (ioprio_class) {
3798 case IOPRIO_CLASS_RT:
3799 return &cfqg->async_cfqq[0][ioprio];
3800 case IOPRIO_CLASS_NONE:
3801 ioprio = IOPRIO_NORM;
3802 /* fall through */
3803 case IOPRIO_CLASS_BE:
3804 return &cfqg->async_cfqq[1][ioprio];
3805 case IOPRIO_CLASS_IDLE:
3806 return &cfqg->async_idle_cfqq;
3807 default:
3808 BUG();
3809 }
3810}
3811
3812static struct cfq_queue *
3813cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3814 struct bio *bio)
3815{
3816 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3817 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3818 struct cfq_queue **async_cfqq = NULL;
3819 struct cfq_queue *cfqq;
3820 struct cfq_group *cfqg;
3821
3822 rcu_read_lock();
3823 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3824 if (!cfqg) {
3825 cfqq = &cfqd->oom_cfqq;
3826 goto out;
3827 }
3828
3829 if (!is_sync) {
3830 if (!ioprio_valid(cic->ioprio)) {
3831 struct task_struct *tsk = current;
3832 ioprio = task_nice_ioprio(tsk);
3833 ioprio_class = task_nice_ioclass(tsk);
3834 }
3835 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3836 cfqq = *async_cfqq;
3837 if (cfqq)
3838 goto out;
3839 }
3840
3841 cfqq = kmem_cache_alloc_node(cfq_pool, GFP_NOWAIT | __GFP_ZERO,
3842 cfqd->queue->node);
3843 if (!cfqq) {
3844 cfqq = &cfqd->oom_cfqq;
3845 goto out;
3846 }
3847
3848 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3849 cfq_init_prio_data(cfqq, cic);
3850 cfq_link_cfqq_cfqg(cfqq, cfqg);
3851 cfq_log_cfqq(cfqd, cfqq, "alloced");
3852
3853 if (async_cfqq) {
3854 /* a new async queue is created, pin and remember */
3855 cfqq->ref++;
3856 *async_cfqq = cfqq;
3857 }
3858out:
3859 cfqq->ref++;
3860 rcu_read_unlock();
3861 return cfqq;
3862}
3863
3864static void
3865__cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle)
3866{
3867 u64 elapsed = ktime_get_ns() - ttime->last_end_request;
3868 elapsed = min(elapsed, 2UL * slice_idle);
3869
3870 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3871 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
3872 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3873 ttime->ttime_samples);
3874}
3875
3876static void
3877cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3878 struct cfq_io_cq *cic)
3879{
3880 if (cfq_cfqq_sync(cfqq)) {
3881 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3882 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3883 cfqd->cfq_slice_idle);
3884 }
3885#ifdef CONFIG_CFQ_GROUP_IOSCHED
3886 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3887#endif
3888}
3889
3890static void
3891cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3892 struct request *rq)
3893{
3894 sector_t sdist = 0;
3895 sector_t n_sec = blk_rq_sectors(rq);
3896 if (cfqq->last_request_pos) {
3897 if (cfqq->last_request_pos < blk_rq_pos(rq))
3898 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3899 else
3900 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3901 }
3902
3903 cfqq->seek_history <<= 1;
3904 if (blk_queue_nonrot(cfqd->queue))
3905 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3906 else
3907 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3908}
3909
3910/*
3911 * Disable idle window if the process thinks too long or seeks so much that
3912 * it doesn't matter
3913 */
3914static void
3915cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3916 struct cfq_io_cq *cic)
3917{
3918 int old_idle, enable_idle;
3919
3920 /*
3921 * Don't idle for async or idle io prio class
3922 */
3923 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3924 return;
3925
3926 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3927
3928 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3929 cfq_mark_cfqq_deep(cfqq);
3930
3931 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3932 enable_idle = 0;
3933 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3934 !cfqd->cfq_slice_idle ||
3935 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3936 enable_idle = 0;
3937 else if (sample_valid(cic->ttime.ttime_samples)) {
3938 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3939 enable_idle = 0;
3940 else
3941 enable_idle = 1;
3942 }
3943
3944 if (old_idle != enable_idle) {
3945 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3946 if (enable_idle)
3947 cfq_mark_cfqq_idle_window(cfqq);
3948 else
3949 cfq_clear_cfqq_idle_window(cfqq);
3950 }
3951}
3952
3953/*
3954 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3955 * no or if we aren't sure, a 1 will cause a preempt.
3956 */
3957static bool
3958cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3959 struct request *rq)
3960{
3961 struct cfq_queue *cfqq;
3962
3963 cfqq = cfqd->active_queue;
3964 if (!cfqq)
3965 return false;
3966
3967 if (cfq_class_idle(new_cfqq))
3968 return false;
3969
3970 if (cfq_class_idle(cfqq))
3971 return true;
3972
3973 /*
3974 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3975 */
3976 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3977 return false;
3978
3979 /*
3980 * if the new request is sync, but the currently running queue is
3981 * not, let the sync request have priority.
3982 */
3983 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3984 return true;
3985
3986 /*
3987 * Treat ancestors of current cgroup the same way as current cgroup.
3988 * For anybody else we disallow preemption to guarantee service
3989 * fairness among cgroups.
3990 */
3991 if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg))
3992 return false;
3993
3994 if (cfq_slice_used(cfqq))
3995 return true;
3996
3997 /*
3998 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3999 */
4000 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
4001 return true;
4002
4003 WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class);
4004 /* Allow preemption only if we are idling on sync-noidle tree */
4005 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
4006 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
4007 RB_EMPTY_ROOT(&cfqq->sort_list))
4008 return true;
4009
4010 /*
4011 * So both queues are sync. Let the new request get disk time if
4012 * it's a metadata request and the current queue is doing regular IO.
4013 */
4014 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
4015 return true;
4016
4017 /* An idle queue should not be idle now for some reason */
4018 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
4019 return true;
4020
4021 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
4022 return false;
4023
4024 /*
4025 * if this request is as-good as one we would expect from the
4026 * current cfqq, let it preempt
4027 */
4028 if (cfq_rq_close(cfqd, cfqq, rq))
4029 return true;
4030
4031 return false;
4032}
4033
4034/*
4035 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4036 * let it have half of its nominal slice.
4037 */
4038static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4039{
4040 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4041
4042 cfq_log_cfqq(cfqd, cfqq, "preempt");
4043 cfq_slice_expired(cfqd, 1);
4044
4045 /*
4046 * workload type is changed, don't save slice, otherwise preempt
4047 * doesn't happen
4048 */
4049 if (old_type != cfqq_type(cfqq))
4050 cfqq->cfqg->saved_wl_slice = 0;
4051
4052 /*
4053 * Put the new queue at the front of the of the current list,
4054 * so we know that it will be selected next.
4055 */
4056 BUG_ON(!cfq_cfqq_on_rr(cfqq));
4057
4058 cfq_service_tree_add(cfqd, cfqq, 1);
4059
4060 cfqq->slice_end = 0;
4061 cfq_mark_cfqq_slice_new(cfqq);
4062}
4063
4064/*
4065 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4066 * something we should do about it
4067 */
4068static void
4069cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4070 struct request *rq)
4071{
4072 struct cfq_io_cq *cic = RQ_CIC(rq);
4073
4074 cfqd->rq_queued++;
4075 if (rq->cmd_flags & REQ_PRIO)
4076 cfqq->prio_pending++;
4077
4078 cfq_update_io_thinktime(cfqd, cfqq, cic);
4079 cfq_update_io_seektime(cfqd, cfqq, rq);
4080 cfq_update_idle_window(cfqd, cfqq, cic);
4081
4082 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4083
4084 if (cfqq == cfqd->active_queue) {
4085 /*
4086 * Remember that we saw a request from this process, but
4087 * don't start queuing just yet. Otherwise we risk seeing lots
4088 * of tiny requests, because we disrupt the normal plugging
4089 * and merging. If the request is already larger than a single
4090 * page, let it rip immediately. For that case we assume that
4091 * merging is already done. Ditto for a busy system that
4092 * has other work pending, don't risk delaying until the
4093 * idle timer unplug to continue working.
4094 */
4095 if (cfq_cfqq_wait_request(cfqq)) {
4096 if (blk_rq_bytes(rq) > PAGE_SIZE ||
4097 cfqd->busy_queues > 1) {
4098 cfq_del_timer(cfqd, cfqq);
4099 cfq_clear_cfqq_wait_request(cfqq);
4100 __blk_run_queue(cfqd->queue);
4101 } else {
4102 cfqg_stats_update_idle_time(cfqq->cfqg);
4103 cfq_mark_cfqq_must_dispatch(cfqq);
4104 }
4105 }
4106 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4107 /*
4108 * not the active queue - expire current slice if it is
4109 * idle and has expired it's mean thinktime or this new queue
4110 * has some old slice time left and is of higher priority or
4111 * this new queue is RT and the current one is BE
4112 */
4113 cfq_preempt_queue(cfqd, cfqq);
4114 __blk_run_queue(cfqd->queue);
4115 }
4116}
4117
4118static void cfq_insert_request(struct request_queue *q, struct request *rq)
4119{
4120 struct cfq_data *cfqd = q->elevator->elevator_data;
4121 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4122
4123 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4124 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4125
4126 rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4127 list_add_tail(&rq->queuelist, &cfqq->fifo);
4128 cfq_add_rq_rb(rq);
4129 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group, req_op(rq),
4130 rq->cmd_flags);
4131 cfq_rq_enqueued(cfqd, cfqq, rq);
4132}
4133
4134/*
4135 * Update hw_tag based on peak queue depth over 50 samples under
4136 * sufficient load.
4137 */
4138static void cfq_update_hw_tag(struct cfq_data *cfqd)
4139{
4140 struct cfq_queue *cfqq = cfqd->active_queue;
4141
4142 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4143 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4144
4145 if (cfqd->hw_tag == 1)
4146 return;
4147
4148 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4149 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4150 return;
4151
4152 /*
4153 * If active queue hasn't enough requests and can idle, cfq might not
4154 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4155 * case
4156 */
4157 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4158 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4159 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4160 return;
4161
4162 if (cfqd->hw_tag_samples++ < 50)
4163 return;
4164
4165 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4166 cfqd->hw_tag = 1;
4167 else
4168 cfqd->hw_tag = 0;
4169}
4170
4171static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4172{
4173 struct cfq_io_cq *cic = cfqd->active_cic;
4174 u64 now = ktime_get_ns();
4175
4176 /* If the queue already has requests, don't wait */
4177 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4178 return false;
4179
4180 /* If there are other queues in the group, don't wait */
4181 if (cfqq->cfqg->nr_cfqq > 1)
4182 return false;
4183
4184 /* the only queue in the group, but think time is big */
4185 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4186 return false;
4187
4188 if (cfq_slice_used(cfqq))
4189 return true;
4190
4191 /* if slice left is less than think time, wait busy */
4192 if (cic && sample_valid(cic->ttime.ttime_samples)
4193 && (cfqq->slice_end - now < cic->ttime.ttime_mean))
4194 return true;
4195
4196 /*
4197 * If think times is less than a jiffy than ttime_mean=0 and above
4198 * will not be true. It might happen that slice has not expired yet
4199 * but will expire soon (4-5 ns) during select_queue(). To cover the
4200 * case where think time is less than a jiffy, mark the queue wait
4201 * busy if only 1 jiffy is left in the slice.
4202 */
4203 if (cfqq->slice_end - now <= jiffies_to_nsecs(1))
4204 return true;
4205
4206 return false;
4207}
4208
4209static void cfq_completed_request(struct request_queue *q, struct request *rq)
4210{
4211 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4212 struct cfq_data *cfqd = cfqq->cfqd;
4213 const int sync = rq_is_sync(rq);
4214 u64 now = ktime_get_ns();
4215
4216 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4217 !!(rq->cmd_flags & REQ_NOIDLE));
4218
4219 cfq_update_hw_tag(cfqd);
4220
4221 WARN_ON(!cfqd->rq_in_driver);
4222 WARN_ON(!cfqq->dispatched);
4223 cfqd->rq_in_driver--;
4224 cfqq->dispatched--;
4225 (RQ_CFQG(rq))->dispatched--;
4226 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4227 rq_io_start_time_ns(rq), req_op(rq),
4228 rq->cmd_flags);
4229
4230 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4231
4232 if (sync) {
4233 struct cfq_rb_root *st;
4234
4235 RQ_CIC(rq)->ttime.last_end_request = now;
4236
4237 if (cfq_cfqq_on_rr(cfqq))
4238 st = cfqq->service_tree;
4239 else
4240 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4241 cfqq_type(cfqq));
4242
4243 st->ttime.last_end_request = now;
4244 if (!(rq->start_time + cfqd->cfq_fifo_expire[1] > now))
4245 cfqd->last_delayed_sync = now;
4246 }
4247
4248#ifdef CONFIG_CFQ_GROUP_IOSCHED
4249 cfqq->cfqg->ttime.last_end_request = now;
4250#endif
4251
4252 /*
4253 * If this is the active queue, check if it needs to be expired,
4254 * or if we want to idle in case it has no pending requests.
4255 */
4256 if (cfqd->active_queue == cfqq) {
4257 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4258
4259 if (cfq_cfqq_slice_new(cfqq)) {
4260 cfq_set_prio_slice(cfqd, cfqq);
4261 cfq_clear_cfqq_slice_new(cfqq);
4262 }
4263
4264 /*
4265 * Should we wait for next request to come in before we expire
4266 * the queue.
4267 */
4268 if (cfq_should_wait_busy(cfqd, cfqq)) {
4269 u64 extend_sl = cfqd->cfq_slice_idle;
4270 if (!cfqd->cfq_slice_idle)
4271 extend_sl = cfqd->cfq_group_idle;
4272 cfqq->slice_end = now + extend_sl;
4273 cfq_mark_cfqq_wait_busy(cfqq);
4274 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4275 }
4276
4277 /*
4278 * Idling is not enabled on:
4279 * - expired queues
4280 * - idle-priority queues
4281 * - async queues
4282 * - queues with still some requests queued
4283 * - when there is a close cooperator
4284 */
4285 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4286 cfq_slice_expired(cfqd, 1);
4287 else if (sync && cfqq_empty &&
4288 !cfq_close_cooperator(cfqd, cfqq)) {
4289 cfq_arm_slice_timer(cfqd);
4290 }
4291 }
4292
4293 if (!cfqd->rq_in_driver)
4294 cfq_schedule_dispatch(cfqd);
4295}
4296
4297static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4298{
4299 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4300 cfq_mark_cfqq_must_alloc_slice(cfqq);
4301 return ELV_MQUEUE_MUST;
4302 }
4303
4304 return ELV_MQUEUE_MAY;
4305}
4306
4307static int cfq_may_queue(struct request_queue *q, int op, int op_flags)
4308{
4309 struct cfq_data *cfqd = q->elevator->elevator_data;
4310 struct task_struct *tsk = current;
4311 struct cfq_io_cq *cic;
4312 struct cfq_queue *cfqq;
4313
4314 /*
4315 * don't force setup of a queue from here, as a call to may_queue
4316 * does not necessarily imply that a request actually will be queued.
4317 * so just lookup a possibly existing queue, or return 'may queue'
4318 * if that fails
4319 */
4320 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4321 if (!cic)
4322 return ELV_MQUEUE_MAY;
4323
4324 cfqq = cic_to_cfqq(cic, rw_is_sync(op, op_flags));
4325 if (cfqq) {
4326 cfq_init_prio_data(cfqq, cic);
4327
4328 return __cfq_may_queue(cfqq);
4329 }
4330
4331 return ELV_MQUEUE_MAY;
4332}
4333
4334/*
4335 * queue lock held here
4336 */
4337static void cfq_put_request(struct request *rq)
4338{
4339 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4340
4341 if (cfqq) {
4342 const int rw = rq_data_dir(rq);
4343
4344 BUG_ON(!cfqq->allocated[rw]);
4345 cfqq->allocated[rw]--;
4346
4347 /* Put down rq reference on cfqg */
4348 cfqg_put(RQ_CFQG(rq));
4349 rq->elv.priv[0] = NULL;
4350 rq->elv.priv[1] = NULL;
4351
4352 cfq_put_queue(cfqq);
4353 }
4354}
4355
4356static struct cfq_queue *
4357cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4358 struct cfq_queue *cfqq)
4359{
4360 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4361 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4362 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4363 cfq_put_queue(cfqq);
4364 return cic_to_cfqq(cic, 1);
4365}
4366
4367/*
4368 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4369 * was the last process referring to said cfqq.
4370 */
4371static struct cfq_queue *
4372split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4373{
4374 if (cfqq_process_refs(cfqq) == 1) {
4375 cfqq->pid = current->pid;
4376 cfq_clear_cfqq_coop(cfqq);
4377 cfq_clear_cfqq_split_coop(cfqq);
4378 return cfqq;
4379 }
4380
4381 cic_set_cfqq(cic, NULL, 1);
4382
4383 cfq_put_cooperator(cfqq);
4384
4385 cfq_put_queue(cfqq);
4386 return NULL;
4387}
4388/*
4389 * Allocate cfq data structures associated with this request.
4390 */
4391static int
4392cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4393 gfp_t gfp_mask)
4394{
4395 struct cfq_data *cfqd = q->elevator->elevator_data;
4396 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4397 const int rw = rq_data_dir(rq);
4398 const bool is_sync = rq_is_sync(rq);
4399 struct cfq_queue *cfqq;
4400
4401 spin_lock_irq(q->queue_lock);
4402
4403 check_ioprio_changed(cic, bio);
4404 check_blkcg_changed(cic, bio);
4405new_queue:
4406 cfqq = cic_to_cfqq(cic, is_sync);
4407 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4408 if (cfqq)
4409 cfq_put_queue(cfqq);
4410 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4411 cic_set_cfqq(cic, cfqq, is_sync);
4412 } else {
4413 /*
4414 * If the queue was seeky for too long, break it apart.
4415 */
4416 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4417 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4418 cfqq = split_cfqq(cic, cfqq);
4419 if (!cfqq)
4420 goto new_queue;
4421 }
4422
4423 /*
4424 * Check to see if this queue is scheduled to merge with
4425 * another, closely cooperating queue. The merging of
4426 * queues happens here as it must be done in process context.
4427 * The reference on new_cfqq was taken in merge_cfqqs.
4428 */
4429 if (cfqq->new_cfqq)
4430 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4431 }
4432
4433 cfqq->allocated[rw]++;
4434
4435 cfqq->ref++;
4436 cfqg_get(cfqq->cfqg);
4437 rq->elv.priv[0] = cfqq;
4438 rq->elv.priv[1] = cfqq->cfqg;
4439 spin_unlock_irq(q->queue_lock);
4440 return 0;
4441}
4442
4443static void cfq_kick_queue(struct work_struct *work)
4444{
4445 struct cfq_data *cfqd =
4446 container_of(work, struct cfq_data, unplug_work);
4447 struct request_queue *q = cfqd->queue;
4448
4449 spin_lock_irq(q->queue_lock);
4450 __blk_run_queue(cfqd->queue);
4451 spin_unlock_irq(q->queue_lock);
4452}
4453
4454/*
4455 * Timer running if the active_queue is currently idling inside its time slice
4456 */
4457static void cfq_idle_slice_timer(unsigned long data)
4458{
4459 struct cfq_data *cfqd = (struct cfq_data *) data;
4460 struct cfq_queue *cfqq;
4461 unsigned long flags;
4462 int timed_out = 1;
4463
4464 cfq_log(cfqd, "idle timer fired");
4465
4466 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4467
4468 cfqq = cfqd->active_queue;
4469 if (cfqq) {
4470 timed_out = 0;
4471
4472 /*
4473 * We saw a request before the queue expired, let it through
4474 */
4475 if (cfq_cfqq_must_dispatch(cfqq))
4476 goto out_kick;
4477
4478 /*
4479 * expired
4480 */
4481 if (cfq_slice_used(cfqq))
4482 goto expire;
4483
4484 /*
4485 * only expire and reinvoke request handler, if there are
4486 * other queues with pending requests
4487 */
4488 if (!cfqd->busy_queues)
4489 goto out_cont;
4490
4491 /*
4492 * not expired and it has a request pending, let it dispatch
4493 */
4494 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4495 goto out_kick;
4496
4497 /*
4498 * Queue depth flag is reset only when the idle didn't succeed
4499 */
4500 cfq_clear_cfqq_deep(cfqq);
4501 }
4502expire:
4503 cfq_slice_expired(cfqd, timed_out);
4504out_kick:
4505 cfq_schedule_dispatch(cfqd);
4506out_cont:
4507 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4508}
4509
4510static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4511{
4512 del_timer_sync(&cfqd->idle_slice_timer);
4513 cancel_work_sync(&cfqd->unplug_work);
4514}
4515
4516static void cfq_exit_queue(struct elevator_queue *e)
4517{
4518 struct cfq_data *cfqd = e->elevator_data;
4519 struct request_queue *q = cfqd->queue;
4520
4521 cfq_shutdown_timer_wq(cfqd);
4522
4523 spin_lock_irq(q->queue_lock);
4524
4525 if (cfqd->active_queue)
4526 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4527
4528 spin_unlock_irq(q->queue_lock);
4529
4530 cfq_shutdown_timer_wq(cfqd);
4531
4532#ifdef CONFIG_CFQ_GROUP_IOSCHED
4533 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4534#else
4535 kfree(cfqd->root_group);
4536#endif
4537 kfree(cfqd);
4538}
4539
4540static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4541{
4542 struct cfq_data *cfqd;
4543 struct blkcg_gq *blkg __maybe_unused;
4544 int i, ret;
4545 struct elevator_queue *eq;
4546
4547 eq = elevator_alloc(q, e);
4548 if (!eq)
4549 return -ENOMEM;
4550
4551 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4552 if (!cfqd) {
4553 kobject_put(&eq->kobj);
4554 return -ENOMEM;
4555 }
4556 eq->elevator_data = cfqd;
4557
4558 cfqd->queue = q;
4559 spin_lock_irq(q->queue_lock);
4560 q->elevator = eq;
4561 spin_unlock_irq(q->queue_lock);
4562
4563 /* Init root service tree */
4564 cfqd->grp_service_tree = CFQ_RB_ROOT;
4565
4566 /* Init root group and prefer root group over other groups by default */
4567#ifdef CONFIG_CFQ_GROUP_IOSCHED
4568 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4569 if (ret)
4570 goto out_free;
4571
4572 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4573#else
4574 ret = -ENOMEM;
4575 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4576 GFP_KERNEL, cfqd->queue->node);
4577 if (!cfqd->root_group)
4578 goto out_free;
4579
4580 cfq_init_cfqg_base(cfqd->root_group);
4581 cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4582 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4583#endif
4584
4585 /*
4586 * Not strictly needed (since RB_ROOT just clears the node and we
4587 * zeroed cfqd on alloc), but better be safe in case someone decides
4588 * to add magic to the rb code
4589 */
4590 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4591 cfqd->prio_trees[i] = RB_ROOT;
4592
4593 /*
4594 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4595 * Grab a permanent reference to it, so that the normal code flow
4596 * will not attempt to free it. oom_cfqq is linked to root_group
4597 * but shouldn't hold a reference as it'll never be unlinked. Lose
4598 * the reference from linking right away.
4599 */
4600 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4601 cfqd->oom_cfqq.ref++;
4602
4603 spin_lock_irq(q->queue_lock);
4604 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4605 cfqg_put(cfqd->root_group);
4606 spin_unlock_irq(q->queue_lock);
4607
4608 init_timer(&cfqd->idle_slice_timer);
4609 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4610 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4611
4612 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4613
4614 cfqd->cfq_quantum = cfq_quantum;
4615 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4616 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4617 cfqd->cfq_back_max = cfq_back_max;
4618 cfqd->cfq_back_penalty = cfq_back_penalty;
4619 cfqd->cfq_slice[0] = cfq_slice_async;
4620 cfqd->cfq_slice[1] = cfq_slice_sync;
4621 cfqd->cfq_target_latency = cfq_target_latency;
4622 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4623 cfqd->cfq_slice_idle = cfq_slice_idle;
4624 cfqd->cfq_group_idle = cfq_group_idle;
4625 cfqd->cfq_latency = 1;
4626 cfqd->hw_tag = -1;
4627 /*
4628 * we optimistically start assuming sync ops weren't delayed in last
4629 * second, in order to have larger depth for async operations.
4630 */
4631 cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC;
4632 return 0;
4633
4634out_free:
4635 kfree(cfqd);
4636 kobject_put(&eq->kobj);
4637 return ret;
4638}
4639
4640static void cfq_registered_queue(struct request_queue *q)
4641{
4642 struct elevator_queue *e = q->elevator;
4643 struct cfq_data *cfqd = e->elevator_data;
4644
4645 /*
4646 * Default to IOPS mode with no idling for SSDs
4647 */
4648 if (blk_queue_nonrot(q))
4649 cfqd->cfq_slice_idle = 0;
4650}
4651
4652/*
4653 * sysfs parts below -->
4654 */
4655static ssize_t
4656cfq_var_show(unsigned int var, char *page)
4657{
4658 return sprintf(page, "%u\n", var);
4659}
4660
4661static ssize_t
4662cfq_var_store(unsigned int *var, const char *page, size_t count)
4663{
4664 char *p = (char *) page;
4665
4666 *var = simple_strtoul(p, &p, 10);
4667 return count;
4668}
4669
4670#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4671static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4672{ \
4673 struct cfq_data *cfqd = e->elevator_data; \
4674 u64 __data = __VAR; \
4675 if (__CONV) \
4676 __data = div_u64(__data, NSEC_PER_MSEC); \
4677 return cfq_var_show(__data, (page)); \
4678}
4679SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4680SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4681SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4682SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4683SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4684SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4685SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4686SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4687SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4688SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4689SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4690SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4691#undef SHOW_FUNCTION
4692
4693#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4694static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4695{ \
4696 struct cfq_data *cfqd = e->elevator_data; \
4697 unsigned int __data; \
4698 int ret = cfq_var_store(&__data, (page), count); \
4699 if (__data < (MIN)) \
4700 __data = (MIN); \
4701 else if (__data > (MAX)) \
4702 __data = (MAX); \
4703 if (__CONV) \
4704 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4705 else \
4706 *(__PTR) = __data; \
4707 return ret; \
4708}
4709STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4710STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4711 UINT_MAX, 1);
4712STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4713 UINT_MAX, 1);
4714STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4715STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4716 UINT_MAX, 0);
4717STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4718STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4719STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4720STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4721STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4722 UINT_MAX, 0);
4723STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4724STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4725#undef STORE_FUNCTION
4726
4727#define CFQ_ATTR(name) \
4728 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4729
4730static struct elv_fs_entry cfq_attrs[] = {
4731 CFQ_ATTR(quantum),
4732 CFQ_ATTR(fifo_expire_sync),
4733 CFQ_ATTR(fifo_expire_async),
4734 CFQ_ATTR(back_seek_max),
4735 CFQ_ATTR(back_seek_penalty),
4736 CFQ_ATTR(slice_sync),
4737 CFQ_ATTR(slice_async),
4738 CFQ_ATTR(slice_async_rq),
4739 CFQ_ATTR(slice_idle),
4740 CFQ_ATTR(group_idle),
4741 CFQ_ATTR(low_latency),
4742 CFQ_ATTR(target_latency),
4743 __ATTR_NULL
4744};
4745
4746static struct elevator_type iosched_cfq = {
4747 .ops = {
4748 .elevator_merge_fn = cfq_merge,
4749 .elevator_merged_fn = cfq_merged_request,
4750 .elevator_merge_req_fn = cfq_merged_requests,
4751 .elevator_allow_merge_fn = cfq_allow_merge,
4752 .elevator_bio_merged_fn = cfq_bio_merged,
4753 .elevator_dispatch_fn = cfq_dispatch_requests,
4754 .elevator_add_req_fn = cfq_insert_request,
4755 .elevator_activate_req_fn = cfq_activate_request,
4756 .elevator_deactivate_req_fn = cfq_deactivate_request,
4757 .elevator_completed_req_fn = cfq_completed_request,
4758 .elevator_former_req_fn = elv_rb_former_request,
4759 .elevator_latter_req_fn = elv_rb_latter_request,
4760 .elevator_init_icq_fn = cfq_init_icq,
4761 .elevator_exit_icq_fn = cfq_exit_icq,
4762 .elevator_set_req_fn = cfq_set_request,
4763 .elevator_put_req_fn = cfq_put_request,
4764 .elevator_may_queue_fn = cfq_may_queue,
4765 .elevator_init_fn = cfq_init_queue,
4766 .elevator_exit_fn = cfq_exit_queue,
4767 .elevator_registered_fn = cfq_registered_queue,
4768 },
4769 .icq_size = sizeof(struct cfq_io_cq),
4770 .icq_align = __alignof__(struct cfq_io_cq),
4771 .elevator_attrs = cfq_attrs,
4772 .elevator_name = "cfq",
4773 .elevator_owner = THIS_MODULE,
4774};
4775
4776#ifdef CONFIG_CFQ_GROUP_IOSCHED
4777static struct blkcg_policy blkcg_policy_cfq = {
4778 .dfl_cftypes = cfq_blkcg_files,
4779 .legacy_cftypes = cfq_blkcg_legacy_files,
4780
4781 .cpd_alloc_fn = cfq_cpd_alloc,
4782 .cpd_init_fn = cfq_cpd_init,
4783 .cpd_free_fn = cfq_cpd_free,
4784 .cpd_bind_fn = cfq_cpd_bind,
4785
4786 .pd_alloc_fn = cfq_pd_alloc,
4787 .pd_init_fn = cfq_pd_init,
4788 .pd_offline_fn = cfq_pd_offline,
4789 .pd_free_fn = cfq_pd_free,
4790 .pd_reset_stats_fn = cfq_pd_reset_stats,
4791};
4792#endif
4793
4794static int __init cfq_init(void)
4795{
4796 int ret;
4797
4798#ifdef CONFIG_CFQ_GROUP_IOSCHED
4799 ret = blkcg_policy_register(&blkcg_policy_cfq);
4800 if (ret)
4801 return ret;
4802#else
4803 cfq_group_idle = 0;
4804#endif
4805
4806 ret = -ENOMEM;
4807 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4808 if (!cfq_pool)
4809 goto err_pol_unreg;
4810
4811 ret = elv_register(&iosched_cfq);
4812 if (ret)
4813 goto err_free_pool;
4814
4815 return 0;
4816
4817err_free_pool:
4818 kmem_cache_destroy(cfq_pool);
4819err_pol_unreg:
4820#ifdef CONFIG_CFQ_GROUP_IOSCHED
4821 blkcg_policy_unregister(&blkcg_policy_cfq);
4822#endif
4823 return ret;
4824}
4825
4826static void __exit cfq_exit(void)
4827{
4828#ifdef CONFIG_CFQ_GROUP_IOSCHED
4829 blkcg_policy_unregister(&blkcg_policy_cfq);
4830#endif
4831 elv_unregister(&iosched_cfq);
4832 kmem_cache_destroy(cfq_pool);
4833}
4834
4835module_init(cfq_init);
4836module_exit(cfq_exit);
4837
4838MODULE_AUTHOR("Jens Axboe");
4839MODULE_LICENSE("GPL");
4840MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");