]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - block/cfq-iosched.c
CFQ: add think time check for service tree
[mirror_ubuntu-bionic-kernel.git] / block / cfq-iosched.c
... / ...
CommitLineData
1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "cfq.h"
18
19/*
20 * tunables
21 */
22/* max queue in one round of service */
23static const int cfq_quantum = 8;
24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
29static const int cfq_slice_sync = HZ / 10;
30static int cfq_slice_async = HZ / 25;
31static const int cfq_slice_async_rq = 2;
32static int cfq_slice_idle = HZ / 125;
33static int cfq_group_idle = HZ / 125;
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
36
37/*
38 * offset from end of service tree
39 */
40#define CFQ_IDLE_DELAY (HZ / 5)
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT (2)
46
47#define CFQ_SLICE_SCALE (5)
48#define CFQ_HW_QUEUE_MIN (5)
49#define CFQ_SERVICE_SHIFT 12
50
51#define CFQQ_SEEK_THR (sector_t)(8 * 100)
52#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
55
56#define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
60
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
63
64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65static struct completion *ioc_gone;
66static DEFINE_SPINLOCK(ioc_gone_lock);
67
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
71#define CFQ_PRIO_LISTS IOPRIO_BE_NR
72#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75#define sample_valid(samples) ((samples) > 80)
76#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
77
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
90 struct cfq_ttime ttime;
91};
92#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
93 .ttime = {.last_end_request = jiffies,},}
94
95/*
96 * Per process-grouping structure
97 */
98struct cfq_queue {
99 /* reference count */
100 int ref;
101 /* various state flags, see below */
102 unsigned int flags;
103 /* parent cfq_data */
104 struct cfq_data *cfqd;
105 /* service_tree member */
106 struct rb_node rb_node;
107 /* service_tree key */
108 unsigned long rb_key;
109 /* prio tree member */
110 struct rb_node p_node;
111 /* prio tree root we belong to, if any */
112 struct rb_root *p_root;
113 /* sorted list of pending requests */
114 struct rb_root sort_list;
115 /* if fifo isn't expired, next request to serve */
116 struct request *next_rq;
117 /* requests queued in sort_list */
118 int queued[2];
119 /* currently allocated requests */
120 int allocated[2];
121 /* fifo list of requests in sort_list */
122 struct list_head fifo;
123
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start;
126 unsigned int allocated_slice;
127 unsigned int slice_dispatch;
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start;
130 unsigned long slice_end;
131 long slice_resid;
132
133 /* number of requests that are on the dispatch list or inside driver */
134 int dispatched;
135
136 /* io prio of this group */
137 unsigned short ioprio, org_ioprio;
138 unsigned short ioprio_class;
139
140 pid_t pid;
141
142 u32 seek_history;
143 sector_t last_request_pos;
144
145 struct cfq_rb_root *service_tree;
146 struct cfq_queue *new_cfqq;
147 struct cfq_group *cfqg;
148 /* Number of sectors dispatched from queue in single dispatch round */
149 unsigned long nr_sectors;
150};
151
152/*
153 * First index in the service_trees.
154 * IDLE is handled separately, so it has negative index
155 */
156enum wl_prio_t {
157 BE_WORKLOAD = 0,
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
160 CFQ_PRIO_NR,
161};
162
163/*
164 * Second index in the service_trees.
165 */
166enum wl_type_t {
167 ASYNC_WORKLOAD = 0,
168 SYNC_NOIDLE_WORKLOAD = 1,
169 SYNC_WORKLOAD = 2
170};
171
172/* This is per cgroup per device grouping structure */
173struct cfq_group {
174 /* group service_tree member */
175 struct rb_node rb_node;
176
177 /* group service_tree key */
178 u64 vdisktime;
179 unsigned int weight;
180 unsigned int new_weight;
181 bool needs_update;
182
183 /* number of cfqq currently on this group */
184 int nr_cfqq;
185
186 /*
187 * Per group busy queues average. Useful for workload slice calc. We
188 * create the array for each prio class but at run time it is used
189 * only for RT and BE class and slot for IDLE class remains unused.
190 * This is primarily done to avoid confusion and a gcc warning.
191 */
192 unsigned int busy_queues_avg[CFQ_PRIO_NR];
193 /*
194 * rr lists of queues with requests. We maintain service trees for
195 * RT and BE classes. These trees are subdivided in subclasses
196 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
197 * class there is no subclassification and all the cfq queues go on
198 * a single tree service_tree_idle.
199 * Counts are embedded in the cfq_rb_root
200 */
201 struct cfq_rb_root service_trees[2][3];
202 struct cfq_rb_root service_tree_idle;
203
204 unsigned long saved_workload_slice;
205 enum wl_type_t saved_workload;
206 enum wl_prio_t saved_serving_prio;
207 struct blkio_group blkg;
208#ifdef CONFIG_CFQ_GROUP_IOSCHED
209 struct hlist_node cfqd_node;
210 int ref;
211#endif
212 /* number of requests that are on the dispatch list or inside driver */
213 int dispatched;
214};
215
216/*
217 * Per block device queue structure
218 */
219struct cfq_data {
220 struct request_queue *queue;
221 /* Root service tree for cfq_groups */
222 struct cfq_rb_root grp_service_tree;
223 struct cfq_group root_group;
224
225 /*
226 * The priority currently being served
227 */
228 enum wl_prio_t serving_prio;
229 enum wl_type_t serving_type;
230 unsigned long workload_expires;
231 struct cfq_group *serving_group;
232
233 /*
234 * Each priority tree is sorted by next_request position. These
235 * trees are used when determining if two or more queues are
236 * interleaving requests (see cfq_close_cooperator).
237 */
238 struct rb_root prio_trees[CFQ_PRIO_LISTS];
239
240 unsigned int busy_queues;
241 unsigned int busy_sync_queues;
242
243 int rq_in_driver;
244 int rq_in_flight[2];
245
246 /*
247 * queue-depth detection
248 */
249 int rq_queued;
250 int hw_tag;
251 /*
252 * hw_tag can be
253 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
254 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
255 * 0 => no NCQ
256 */
257 int hw_tag_est_depth;
258 unsigned int hw_tag_samples;
259
260 /*
261 * idle window management
262 */
263 struct timer_list idle_slice_timer;
264 struct work_struct unplug_work;
265
266 struct cfq_queue *active_queue;
267 struct cfq_io_context *active_cic;
268
269 /*
270 * async queue for each priority case
271 */
272 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
273 struct cfq_queue *async_idle_cfqq;
274
275 sector_t last_position;
276
277 /*
278 * tunables, see top of file
279 */
280 unsigned int cfq_quantum;
281 unsigned int cfq_fifo_expire[2];
282 unsigned int cfq_back_penalty;
283 unsigned int cfq_back_max;
284 unsigned int cfq_slice[2];
285 unsigned int cfq_slice_async_rq;
286 unsigned int cfq_slice_idle;
287 unsigned int cfq_group_idle;
288 unsigned int cfq_latency;
289
290 unsigned int cic_index;
291 struct list_head cic_list;
292
293 /*
294 * Fallback dummy cfqq for extreme OOM conditions
295 */
296 struct cfq_queue oom_cfqq;
297
298 unsigned long last_delayed_sync;
299
300 /* List of cfq groups being managed on this device*/
301 struct hlist_head cfqg_list;
302
303 /* Number of groups which are on blkcg->blkg_list */
304 unsigned int nr_blkcg_linked_grps;
305};
306
307static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
308
309static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
310 enum wl_prio_t prio,
311 enum wl_type_t type)
312{
313 if (!cfqg)
314 return NULL;
315
316 if (prio == IDLE_WORKLOAD)
317 return &cfqg->service_tree_idle;
318
319 return &cfqg->service_trees[prio][type];
320}
321
322enum cfqq_state_flags {
323 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
324 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
325 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
326 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
327 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
328 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
329 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
330 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
331 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
332 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
333 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
334 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
335 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
336};
337
338#define CFQ_CFQQ_FNS(name) \
339static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
340{ \
341 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
342} \
343static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
344{ \
345 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
346} \
347static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
348{ \
349 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
350}
351
352CFQ_CFQQ_FNS(on_rr);
353CFQ_CFQQ_FNS(wait_request);
354CFQ_CFQQ_FNS(must_dispatch);
355CFQ_CFQQ_FNS(must_alloc_slice);
356CFQ_CFQQ_FNS(fifo_expire);
357CFQ_CFQQ_FNS(idle_window);
358CFQ_CFQQ_FNS(prio_changed);
359CFQ_CFQQ_FNS(slice_new);
360CFQ_CFQQ_FNS(sync);
361CFQ_CFQQ_FNS(coop);
362CFQ_CFQQ_FNS(split_coop);
363CFQ_CFQQ_FNS(deep);
364CFQ_CFQQ_FNS(wait_busy);
365#undef CFQ_CFQQ_FNS
366
367#ifdef CONFIG_CFQ_GROUP_IOSCHED
368#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
369 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
370 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
371 blkg_path(&(cfqq)->cfqg->blkg), ##args)
372
373#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
374 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
375 blkg_path(&(cfqg)->blkg), ##args) \
376
377#else
378#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
379 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
380#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
381#endif
382#define cfq_log(cfqd, fmt, args...) \
383 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
384
385/* Traverses through cfq group service trees */
386#define for_each_cfqg_st(cfqg, i, j, st) \
387 for (i = 0; i <= IDLE_WORKLOAD; i++) \
388 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
389 : &cfqg->service_tree_idle; \
390 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
391 (i == IDLE_WORKLOAD && j == 0); \
392 j++, st = i < IDLE_WORKLOAD ? \
393 &cfqg->service_trees[i][j]: NULL) \
394
395static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
396 struct cfq_ttime *ttime, bool group_idle)
397{
398 unsigned long slice;
399 if (!sample_valid(ttime->ttime_samples))
400 return false;
401 if (group_idle)
402 slice = cfqd->cfq_group_idle;
403 else
404 slice = cfqd->cfq_slice_idle;
405 return ttime->ttime_mean > slice;
406}
407
408static inline bool iops_mode(struct cfq_data *cfqd)
409{
410 /*
411 * If we are not idling on queues and it is a NCQ drive, parallel
412 * execution of requests is on and measuring time is not possible
413 * in most of the cases until and unless we drive shallower queue
414 * depths and that becomes a performance bottleneck. In such cases
415 * switch to start providing fairness in terms of number of IOs.
416 */
417 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
418 return true;
419 else
420 return false;
421}
422
423static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
424{
425 if (cfq_class_idle(cfqq))
426 return IDLE_WORKLOAD;
427 if (cfq_class_rt(cfqq))
428 return RT_WORKLOAD;
429 return BE_WORKLOAD;
430}
431
432
433static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
434{
435 if (!cfq_cfqq_sync(cfqq))
436 return ASYNC_WORKLOAD;
437 if (!cfq_cfqq_idle_window(cfqq))
438 return SYNC_NOIDLE_WORKLOAD;
439 return SYNC_WORKLOAD;
440}
441
442static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
443 struct cfq_data *cfqd,
444 struct cfq_group *cfqg)
445{
446 if (wl == IDLE_WORKLOAD)
447 return cfqg->service_tree_idle.count;
448
449 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
450 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
451 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
452}
453
454static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
455 struct cfq_group *cfqg)
456{
457 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
458 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
459}
460
461static void cfq_dispatch_insert(struct request_queue *, struct request *);
462static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
463 struct io_context *, gfp_t);
464static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
465 struct io_context *);
466
467static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
468 bool is_sync)
469{
470 return cic->cfqq[is_sync];
471}
472
473static inline void cic_set_cfqq(struct cfq_io_context *cic,
474 struct cfq_queue *cfqq, bool is_sync)
475{
476 cic->cfqq[is_sync] = cfqq;
477}
478
479#define CIC_DEAD_KEY 1ul
480#define CIC_DEAD_INDEX_SHIFT 1
481
482static inline void *cfqd_dead_key(struct cfq_data *cfqd)
483{
484 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
485}
486
487static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
488{
489 struct cfq_data *cfqd = cic->key;
490
491 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
492 return NULL;
493
494 return cfqd;
495}
496
497/*
498 * We regard a request as SYNC, if it's either a read or has the SYNC bit
499 * set (in which case it could also be direct WRITE).
500 */
501static inline bool cfq_bio_sync(struct bio *bio)
502{
503 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
504}
505
506/*
507 * scheduler run of queue, if there are requests pending and no one in the
508 * driver that will restart queueing
509 */
510static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
511{
512 if (cfqd->busy_queues) {
513 cfq_log(cfqd, "schedule dispatch");
514 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
515 }
516}
517
518/*
519 * Scale schedule slice based on io priority. Use the sync time slice only
520 * if a queue is marked sync and has sync io queued. A sync queue with async
521 * io only, should not get full sync slice length.
522 */
523static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
524 unsigned short prio)
525{
526 const int base_slice = cfqd->cfq_slice[sync];
527
528 WARN_ON(prio >= IOPRIO_BE_NR);
529
530 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
531}
532
533static inline int
534cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
535{
536 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
537}
538
539static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
540{
541 u64 d = delta << CFQ_SERVICE_SHIFT;
542
543 d = d * BLKIO_WEIGHT_DEFAULT;
544 do_div(d, cfqg->weight);
545 return d;
546}
547
548static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
549{
550 s64 delta = (s64)(vdisktime - min_vdisktime);
551 if (delta > 0)
552 min_vdisktime = vdisktime;
553
554 return min_vdisktime;
555}
556
557static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
558{
559 s64 delta = (s64)(vdisktime - min_vdisktime);
560 if (delta < 0)
561 min_vdisktime = vdisktime;
562
563 return min_vdisktime;
564}
565
566static void update_min_vdisktime(struct cfq_rb_root *st)
567{
568 struct cfq_group *cfqg;
569
570 if (st->left) {
571 cfqg = rb_entry_cfqg(st->left);
572 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
573 cfqg->vdisktime);
574 }
575}
576
577/*
578 * get averaged number of queues of RT/BE priority.
579 * average is updated, with a formula that gives more weight to higher numbers,
580 * to quickly follows sudden increases and decrease slowly
581 */
582
583static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
584 struct cfq_group *cfqg, bool rt)
585{
586 unsigned min_q, max_q;
587 unsigned mult = cfq_hist_divisor - 1;
588 unsigned round = cfq_hist_divisor / 2;
589 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
590
591 min_q = min(cfqg->busy_queues_avg[rt], busy);
592 max_q = max(cfqg->busy_queues_avg[rt], busy);
593 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
594 cfq_hist_divisor;
595 return cfqg->busy_queues_avg[rt];
596}
597
598static inline unsigned
599cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
600{
601 struct cfq_rb_root *st = &cfqd->grp_service_tree;
602
603 return cfq_target_latency * cfqg->weight / st->total_weight;
604}
605
606static inline unsigned
607cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
608{
609 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
610 if (cfqd->cfq_latency) {
611 /*
612 * interested queues (we consider only the ones with the same
613 * priority class in the cfq group)
614 */
615 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
616 cfq_class_rt(cfqq));
617 unsigned sync_slice = cfqd->cfq_slice[1];
618 unsigned expect_latency = sync_slice * iq;
619 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
620
621 if (expect_latency > group_slice) {
622 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
623 /* scale low_slice according to IO priority
624 * and sync vs async */
625 unsigned low_slice =
626 min(slice, base_low_slice * slice / sync_slice);
627 /* the adapted slice value is scaled to fit all iqs
628 * into the target latency */
629 slice = max(slice * group_slice / expect_latency,
630 low_slice);
631 }
632 }
633 return slice;
634}
635
636static inline void
637cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
638{
639 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
640
641 cfqq->slice_start = jiffies;
642 cfqq->slice_end = jiffies + slice;
643 cfqq->allocated_slice = slice;
644 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
645}
646
647/*
648 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
649 * isn't valid until the first request from the dispatch is activated
650 * and the slice time set.
651 */
652static inline bool cfq_slice_used(struct cfq_queue *cfqq)
653{
654 if (cfq_cfqq_slice_new(cfqq))
655 return false;
656 if (time_before(jiffies, cfqq->slice_end))
657 return false;
658
659 return true;
660}
661
662/*
663 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
664 * We choose the request that is closest to the head right now. Distance
665 * behind the head is penalized and only allowed to a certain extent.
666 */
667static struct request *
668cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
669{
670 sector_t s1, s2, d1 = 0, d2 = 0;
671 unsigned long back_max;
672#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
673#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
674 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
675
676 if (rq1 == NULL || rq1 == rq2)
677 return rq2;
678 if (rq2 == NULL)
679 return rq1;
680
681 if (rq_is_sync(rq1) != rq_is_sync(rq2))
682 return rq_is_sync(rq1) ? rq1 : rq2;
683
684 s1 = blk_rq_pos(rq1);
685 s2 = blk_rq_pos(rq2);
686
687 /*
688 * by definition, 1KiB is 2 sectors
689 */
690 back_max = cfqd->cfq_back_max * 2;
691
692 /*
693 * Strict one way elevator _except_ in the case where we allow
694 * short backward seeks which are biased as twice the cost of a
695 * similar forward seek.
696 */
697 if (s1 >= last)
698 d1 = s1 - last;
699 else if (s1 + back_max >= last)
700 d1 = (last - s1) * cfqd->cfq_back_penalty;
701 else
702 wrap |= CFQ_RQ1_WRAP;
703
704 if (s2 >= last)
705 d2 = s2 - last;
706 else if (s2 + back_max >= last)
707 d2 = (last - s2) * cfqd->cfq_back_penalty;
708 else
709 wrap |= CFQ_RQ2_WRAP;
710
711 /* Found required data */
712
713 /*
714 * By doing switch() on the bit mask "wrap" we avoid having to
715 * check two variables for all permutations: --> faster!
716 */
717 switch (wrap) {
718 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
719 if (d1 < d2)
720 return rq1;
721 else if (d2 < d1)
722 return rq2;
723 else {
724 if (s1 >= s2)
725 return rq1;
726 else
727 return rq2;
728 }
729
730 case CFQ_RQ2_WRAP:
731 return rq1;
732 case CFQ_RQ1_WRAP:
733 return rq2;
734 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
735 default:
736 /*
737 * Since both rqs are wrapped,
738 * start with the one that's further behind head
739 * (--> only *one* back seek required),
740 * since back seek takes more time than forward.
741 */
742 if (s1 <= s2)
743 return rq1;
744 else
745 return rq2;
746 }
747}
748
749/*
750 * The below is leftmost cache rbtree addon
751 */
752static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
753{
754 /* Service tree is empty */
755 if (!root->count)
756 return NULL;
757
758 if (!root->left)
759 root->left = rb_first(&root->rb);
760
761 if (root->left)
762 return rb_entry(root->left, struct cfq_queue, rb_node);
763
764 return NULL;
765}
766
767static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
768{
769 if (!root->left)
770 root->left = rb_first(&root->rb);
771
772 if (root->left)
773 return rb_entry_cfqg(root->left);
774
775 return NULL;
776}
777
778static void rb_erase_init(struct rb_node *n, struct rb_root *root)
779{
780 rb_erase(n, root);
781 RB_CLEAR_NODE(n);
782}
783
784static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
785{
786 if (root->left == n)
787 root->left = NULL;
788 rb_erase_init(n, &root->rb);
789 --root->count;
790}
791
792/*
793 * would be nice to take fifo expire time into account as well
794 */
795static struct request *
796cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
797 struct request *last)
798{
799 struct rb_node *rbnext = rb_next(&last->rb_node);
800 struct rb_node *rbprev = rb_prev(&last->rb_node);
801 struct request *next = NULL, *prev = NULL;
802
803 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
804
805 if (rbprev)
806 prev = rb_entry_rq(rbprev);
807
808 if (rbnext)
809 next = rb_entry_rq(rbnext);
810 else {
811 rbnext = rb_first(&cfqq->sort_list);
812 if (rbnext && rbnext != &last->rb_node)
813 next = rb_entry_rq(rbnext);
814 }
815
816 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
817}
818
819static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
820 struct cfq_queue *cfqq)
821{
822 /*
823 * just an approximation, should be ok.
824 */
825 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
826 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
827}
828
829static inline s64
830cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
831{
832 return cfqg->vdisktime - st->min_vdisktime;
833}
834
835static void
836__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
837{
838 struct rb_node **node = &st->rb.rb_node;
839 struct rb_node *parent = NULL;
840 struct cfq_group *__cfqg;
841 s64 key = cfqg_key(st, cfqg);
842 int left = 1;
843
844 while (*node != NULL) {
845 parent = *node;
846 __cfqg = rb_entry_cfqg(parent);
847
848 if (key < cfqg_key(st, __cfqg))
849 node = &parent->rb_left;
850 else {
851 node = &parent->rb_right;
852 left = 0;
853 }
854 }
855
856 if (left)
857 st->left = &cfqg->rb_node;
858
859 rb_link_node(&cfqg->rb_node, parent, node);
860 rb_insert_color(&cfqg->rb_node, &st->rb);
861}
862
863static void
864cfq_update_group_weight(struct cfq_group *cfqg)
865{
866 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
867 if (cfqg->needs_update) {
868 cfqg->weight = cfqg->new_weight;
869 cfqg->needs_update = false;
870 }
871}
872
873static void
874cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
875{
876 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
877
878 cfq_update_group_weight(cfqg);
879 __cfq_group_service_tree_add(st, cfqg);
880 st->total_weight += cfqg->weight;
881}
882
883static void
884cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
885{
886 struct cfq_rb_root *st = &cfqd->grp_service_tree;
887 struct cfq_group *__cfqg;
888 struct rb_node *n;
889
890 cfqg->nr_cfqq++;
891 if (!RB_EMPTY_NODE(&cfqg->rb_node))
892 return;
893
894 /*
895 * Currently put the group at the end. Later implement something
896 * so that groups get lesser vtime based on their weights, so that
897 * if group does not loose all if it was not continuously backlogged.
898 */
899 n = rb_last(&st->rb);
900 if (n) {
901 __cfqg = rb_entry_cfqg(n);
902 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
903 } else
904 cfqg->vdisktime = st->min_vdisktime;
905 cfq_group_service_tree_add(st, cfqg);
906}
907
908static void
909cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
910{
911 st->total_weight -= cfqg->weight;
912 if (!RB_EMPTY_NODE(&cfqg->rb_node))
913 cfq_rb_erase(&cfqg->rb_node, st);
914}
915
916static void
917cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
918{
919 struct cfq_rb_root *st = &cfqd->grp_service_tree;
920
921 BUG_ON(cfqg->nr_cfqq < 1);
922 cfqg->nr_cfqq--;
923
924 /* If there are other cfq queues under this group, don't delete it */
925 if (cfqg->nr_cfqq)
926 return;
927
928 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
929 cfq_group_service_tree_del(st, cfqg);
930 cfqg->saved_workload_slice = 0;
931 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
932}
933
934static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
935 unsigned int *unaccounted_time)
936{
937 unsigned int slice_used;
938
939 /*
940 * Queue got expired before even a single request completed or
941 * got expired immediately after first request completion.
942 */
943 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
944 /*
945 * Also charge the seek time incurred to the group, otherwise
946 * if there are mutiple queues in the group, each can dispatch
947 * a single request on seeky media and cause lots of seek time
948 * and group will never know it.
949 */
950 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
951 1);
952 } else {
953 slice_used = jiffies - cfqq->slice_start;
954 if (slice_used > cfqq->allocated_slice) {
955 *unaccounted_time = slice_used - cfqq->allocated_slice;
956 slice_used = cfqq->allocated_slice;
957 }
958 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
959 *unaccounted_time += cfqq->slice_start -
960 cfqq->dispatch_start;
961 }
962
963 return slice_used;
964}
965
966static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
967 struct cfq_queue *cfqq)
968{
969 struct cfq_rb_root *st = &cfqd->grp_service_tree;
970 unsigned int used_sl, charge, unaccounted_sl = 0;
971 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
972 - cfqg->service_tree_idle.count;
973
974 BUG_ON(nr_sync < 0);
975 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
976
977 if (iops_mode(cfqd))
978 charge = cfqq->slice_dispatch;
979 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
980 charge = cfqq->allocated_slice;
981
982 /* Can't update vdisktime while group is on service tree */
983 cfq_group_service_tree_del(st, cfqg);
984 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
985 /* If a new weight was requested, update now, off tree */
986 cfq_group_service_tree_add(st, cfqg);
987
988 /* This group is being expired. Save the context */
989 if (time_after(cfqd->workload_expires, jiffies)) {
990 cfqg->saved_workload_slice = cfqd->workload_expires
991 - jiffies;
992 cfqg->saved_workload = cfqd->serving_type;
993 cfqg->saved_serving_prio = cfqd->serving_prio;
994 } else
995 cfqg->saved_workload_slice = 0;
996
997 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
998 st->min_vdisktime);
999 cfq_log_cfqq(cfqq->cfqd, cfqq,
1000 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1001 used_sl, cfqq->slice_dispatch, charge,
1002 iops_mode(cfqd), cfqq->nr_sectors);
1003 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1004 unaccounted_sl);
1005 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1006}
1007
1008#ifdef CONFIG_CFQ_GROUP_IOSCHED
1009static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1010{
1011 if (blkg)
1012 return container_of(blkg, struct cfq_group, blkg);
1013 return NULL;
1014}
1015
1016static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1017 unsigned int weight)
1018{
1019 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1020 cfqg->new_weight = weight;
1021 cfqg->needs_update = true;
1022}
1023
1024static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1025 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1026{
1027 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1028 unsigned int major, minor;
1029
1030 /*
1031 * Add group onto cgroup list. It might happen that bdi->dev is
1032 * not initialized yet. Initialize this new group without major
1033 * and minor info and this info will be filled in once a new thread
1034 * comes for IO.
1035 */
1036 if (bdi->dev) {
1037 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1038 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1039 (void *)cfqd, MKDEV(major, minor));
1040 } else
1041 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1042 (void *)cfqd, 0);
1043
1044 cfqd->nr_blkcg_linked_grps++;
1045 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1046
1047 /* Add group on cfqd list */
1048 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1049}
1050
1051/*
1052 * Should be called from sleepable context. No request queue lock as per
1053 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1054 * from sleepable context.
1055 */
1056static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1057{
1058 struct cfq_group *cfqg = NULL;
1059 int i, j, ret;
1060 struct cfq_rb_root *st;
1061
1062 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1063 if (!cfqg)
1064 return NULL;
1065
1066 for_each_cfqg_st(cfqg, i, j, st)
1067 *st = CFQ_RB_ROOT;
1068 RB_CLEAR_NODE(&cfqg->rb_node);
1069
1070 /*
1071 * Take the initial reference that will be released on destroy
1072 * This can be thought of a joint reference by cgroup and
1073 * elevator which will be dropped by either elevator exit
1074 * or cgroup deletion path depending on who is exiting first.
1075 */
1076 cfqg->ref = 1;
1077
1078 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1079 if (ret) {
1080 kfree(cfqg);
1081 return NULL;
1082 }
1083
1084 return cfqg;
1085}
1086
1087static struct cfq_group *
1088cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1089{
1090 struct cfq_group *cfqg = NULL;
1091 void *key = cfqd;
1092 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1093 unsigned int major, minor;
1094
1095 /*
1096 * This is the common case when there are no blkio cgroups.
1097 * Avoid lookup in this case
1098 */
1099 if (blkcg == &blkio_root_cgroup)
1100 cfqg = &cfqd->root_group;
1101 else
1102 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1103
1104 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1105 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1106 cfqg->blkg.dev = MKDEV(major, minor);
1107 }
1108
1109 return cfqg;
1110}
1111
1112/*
1113 * Search for the cfq group current task belongs to. request_queue lock must
1114 * be held.
1115 */
1116static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1117{
1118 struct blkio_cgroup *blkcg;
1119 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1120 struct request_queue *q = cfqd->queue;
1121
1122 rcu_read_lock();
1123 blkcg = task_blkio_cgroup(current);
1124 cfqg = cfq_find_cfqg(cfqd, blkcg);
1125 if (cfqg) {
1126 rcu_read_unlock();
1127 return cfqg;
1128 }
1129
1130 /*
1131 * Need to allocate a group. Allocation of group also needs allocation
1132 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1133 * we need to drop rcu lock and queue_lock before we call alloc.
1134 *
1135 * Not taking any queue reference here and assuming that queue is
1136 * around by the time we return. CFQ queue allocation code does
1137 * the same. It might be racy though.
1138 */
1139
1140 rcu_read_unlock();
1141 spin_unlock_irq(q->queue_lock);
1142
1143 cfqg = cfq_alloc_cfqg(cfqd);
1144
1145 spin_lock_irq(q->queue_lock);
1146
1147 rcu_read_lock();
1148 blkcg = task_blkio_cgroup(current);
1149
1150 /*
1151 * If some other thread already allocated the group while we were
1152 * not holding queue lock, free up the group
1153 */
1154 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1155
1156 if (__cfqg) {
1157 kfree(cfqg);
1158 rcu_read_unlock();
1159 return __cfqg;
1160 }
1161
1162 if (!cfqg)
1163 cfqg = &cfqd->root_group;
1164
1165 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1166 rcu_read_unlock();
1167 return cfqg;
1168}
1169
1170static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1171{
1172 cfqg->ref++;
1173 return cfqg;
1174}
1175
1176static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1177{
1178 /* Currently, all async queues are mapped to root group */
1179 if (!cfq_cfqq_sync(cfqq))
1180 cfqg = &cfqq->cfqd->root_group;
1181
1182 cfqq->cfqg = cfqg;
1183 /* cfqq reference on cfqg */
1184 cfqq->cfqg->ref++;
1185}
1186
1187static void cfq_put_cfqg(struct cfq_group *cfqg)
1188{
1189 struct cfq_rb_root *st;
1190 int i, j;
1191
1192 BUG_ON(cfqg->ref <= 0);
1193 cfqg->ref--;
1194 if (cfqg->ref)
1195 return;
1196 for_each_cfqg_st(cfqg, i, j, st)
1197 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1198 free_percpu(cfqg->blkg.stats_cpu);
1199 kfree(cfqg);
1200}
1201
1202static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1203{
1204 /* Something wrong if we are trying to remove same group twice */
1205 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1206
1207 hlist_del_init(&cfqg->cfqd_node);
1208
1209 /*
1210 * Put the reference taken at the time of creation so that when all
1211 * queues are gone, group can be destroyed.
1212 */
1213 cfq_put_cfqg(cfqg);
1214}
1215
1216static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1217{
1218 struct hlist_node *pos, *n;
1219 struct cfq_group *cfqg;
1220
1221 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1222 /*
1223 * If cgroup removal path got to blk_group first and removed
1224 * it from cgroup list, then it will take care of destroying
1225 * cfqg also.
1226 */
1227 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1228 cfq_destroy_cfqg(cfqd, cfqg);
1229 }
1230}
1231
1232/*
1233 * Blk cgroup controller notification saying that blkio_group object is being
1234 * delinked as associated cgroup object is going away. That also means that
1235 * no new IO will come in this group. So get rid of this group as soon as
1236 * any pending IO in the group is finished.
1237 *
1238 * This function is called under rcu_read_lock(). key is the rcu protected
1239 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1240 * read lock.
1241 *
1242 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1243 * it should not be NULL as even if elevator was exiting, cgroup deltion
1244 * path got to it first.
1245 */
1246static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1247{
1248 unsigned long flags;
1249 struct cfq_data *cfqd = key;
1250
1251 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1252 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1253 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1254}
1255
1256#else /* GROUP_IOSCHED */
1257static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1258{
1259 return &cfqd->root_group;
1260}
1261
1262static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1263{
1264 return cfqg;
1265}
1266
1267static inline void
1268cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1269 cfqq->cfqg = cfqg;
1270}
1271
1272static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1273static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1274
1275#endif /* GROUP_IOSCHED */
1276
1277/*
1278 * The cfqd->service_trees holds all pending cfq_queue's that have
1279 * requests waiting to be processed. It is sorted in the order that
1280 * we will service the queues.
1281 */
1282static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1283 bool add_front)
1284{
1285 struct rb_node **p, *parent;
1286 struct cfq_queue *__cfqq;
1287 unsigned long rb_key;
1288 struct cfq_rb_root *service_tree;
1289 int left;
1290 int new_cfqq = 1;
1291
1292 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1293 cfqq_type(cfqq));
1294 if (cfq_class_idle(cfqq)) {
1295 rb_key = CFQ_IDLE_DELAY;
1296 parent = rb_last(&service_tree->rb);
1297 if (parent && parent != &cfqq->rb_node) {
1298 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1299 rb_key += __cfqq->rb_key;
1300 } else
1301 rb_key += jiffies;
1302 } else if (!add_front) {
1303 /*
1304 * Get our rb key offset. Subtract any residual slice
1305 * value carried from last service. A negative resid
1306 * count indicates slice overrun, and this should position
1307 * the next service time further away in the tree.
1308 */
1309 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1310 rb_key -= cfqq->slice_resid;
1311 cfqq->slice_resid = 0;
1312 } else {
1313 rb_key = -HZ;
1314 __cfqq = cfq_rb_first(service_tree);
1315 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1316 }
1317
1318 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1319 new_cfqq = 0;
1320 /*
1321 * same position, nothing more to do
1322 */
1323 if (rb_key == cfqq->rb_key &&
1324 cfqq->service_tree == service_tree)
1325 return;
1326
1327 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1328 cfqq->service_tree = NULL;
1329 }
1330
1331 left = 1;
1332 parent = NULL;
1333 cfqq->service_tree = service_tree;
1334 p = &service_tree->rb.rb_node;
1335 while (*p) {
1336 struct rb_node **n;
1337
1338 parent = *p;
1339 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1340
1341 /*
1342 * sort by key, that represents service time.
1343 */
1344 if (time_before(rb_key, __cfqq->rb_key))
1345 n = &(*p)->rb_left;
1346 else {
1347 n = &(*p)->rb_right;
1348 left = 0;
1349 }
1350
1351 p = n;
1352 }
1353
1354 if (left)
1355 service_tree->left = &cfqq->rb_node;
1356
1357 cfqq->rb_key = rb_key;
1358 rb_link_node(&cfqq->rb_node, parent, p);
1359 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1360 service_tree->count++;
1361 if (add_front || !new_cfqq)
1362 return;
1363 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1364}
1365
1366static struct cfq_queue *
1367cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1368 sector_t sector, struct rb_node **ret_parent,
1369 struct rb_node ***rb_link)
1370{
1371 struct rb_node **p, *parent;
1372 struct cfq_queue *cfqq = NULL;
1373
1374 parent = NULL;
1375 p = &root->rb_node;
1376 while (*p) {
1377 struct rb_node **n;
1378
1379 parent = *p;
1380 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1381
1382 /*
1383 * Sort strictly based on sector. Smallest to the left,
1384 * largest to the right.
1385 */
1386 if (sector > blk_rq_pos(cfqq->next_rq))
1387 n = &(*p)->rb_right;
1388 else if (sector < blk_rq_pos(cfqq->next_rq))
1389 n = &(*p)->rb_left;
1390 else
1391 break;
1392 p = n;
1393 cfqq = NULL;
1394 }
1395
1396 *ret_parent = parent;
1397 if (rb_link)
1398 *rb_link = p;
1399 return cfqq;
1400}
1401
1402static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1403{
1404 struct rb_node **p, *parent;
1405 struct cfq_queue *__cfqq;
1406
1407 if (cfqq->p_root) {
1408 rb_erase(&cfqq->p_node, cfqq->p_root);
1409 cfqq->p_root = NULL;
1410 }
1411
1412 if (cfq_class_idle(cfqq))
1413 return;
1414 if (!cfqq->next_rq)
1415 return;
1416
1417 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1418 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1419 blk_rq_pos(cfqq->next_rq), &parent, &p);
1420 if (!__cfqq) {
1421 rb_link_node(&cfqq->p_node, parent, p);
1422 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1423 } else
1424 cfqq->p_root = NULL;
1425}
1426
1427/*
1428 * Update cfqq's position in the service tree.
1429 */
1430static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1431{
1432 /*
1433 * Resorting requires the cfqq to be on the RR list already.
1434 */
1435 if (cfq_cfqq_on_rr(cfqq)) {
1436 cfq_service_tree_add(cfqd, cfqq, 0);
1437 cfq_prio_tree_add(cfqd, cfqq);
1438 }
1439}
1440
1441/*
1442 * add to busy list of queues for service, trying to be fair in ordering
1443 * the pending list according to last request service
1444 */
1445static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1446{
1447 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1448 BUG_ON(cfq_cfqq_on_rr(cfqq));
1449 cfq_mark_cfqq_on_rr(cfqq);
1450 cfqd->busy_queues++;
1451 if (cfq_cfqq_sync(cfqq))
1452 cfqd->busy_sync_queues++;
1453
1454 cfq_resort_rr_list(cfqd, cfqq);
1455}
1456
1457/*
1458 * Called when the cfqq no longer has requests pending, remove it from
1459 * the service tree.
1460 */
1461static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1462{
1463 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1464 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1465 cfq_clear_cfqq_on_rr(cfqq);
1466
1467 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1468 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1469 cfqq->service_tree = NULL;
1470 }
1471 if (cfqq->p_root) {
1472 rb_erase(&cfqq->p_node, cfqq->p_root);
1473 cfqq->p_root = NULL;
1474 }
1475
1476 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1477 BUG_ON(!cfqd->busy_queues);
1478 cfqd->busy_queues--;
1479 if (cfq_cfqq_sync(cfqq))
1480 cfqd->busy_sync_queues--;
1481}
1482
1483/*
1484 * rb tree support functions
1485 */
1486static void cfq_del_rq_rb(struct request *rq)
1487{
1488 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1489 const int sync = rq_is_sync(rq);
1490
1491 BUG_ON(!cfqq->queued[sync]);
1492 cfqq->queued[sync]--;
1493
1494 elv_rb_del(&cfqq->sort_list, rq);
1495
1496 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1497 /*
1498 * Queue will be deleted from service tree when we actually
1499 * expire it later. Right now just remove it from prio tree
1500 * as it is empty.
1501 */
1502 if (cfqq->p_root) {
1503 rb_erase(&cfqq->p_node, cfqq->p_root);
1504 cfqq->p_root = NULL;
1505 }
1506 }
1507}
1508
1509static void cfq_add_rq_rb(struct request *rq)
1510{
1511 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1512 struct cfq_data *cfqd = cfqq->cfqd;
1513 struct request *prev;
1514
1515 cfqq->queued[rq_is_sync(rq)]++;
1516
1517 elv_rb_add(&cfqq->sort_list, rq);
1518
1519 if (!cfq_cfqq_on_rr(cfqq))
1520 cfq_add_cfqq_rr(cfqd, cfqq);
1521
1522 /*
1523 * check if this request is a better next-serve candidate
1524 */
1525 prev = cfqq->next_rq;
1526 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1527
1528 /*
1529 * adjust priority tree position, if ->next_rq changes
1530 */
1531 if (prev != cfqq->next_rq)
1532 cfq_prio_tree_add(cfqd, cfqq);
1533
1534 BUG_ON(!cfqq->next_rq);
1535}
1536
1537static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1538{
1539 elv_rb_del(&cfqq->sort_list, rq);
1540 cfqq->queued[rq_is_sync(rq)]--;
1541 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1542 rq_data_dir(rq), rq_is_sync(rq));
1543 cfq_add_rq_rb(rq);
1544 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1545 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1546 rq_is_sync(rq));
1547}
1548
1549static struct request *
1550cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1551{
1552 struct task_struct *tsk = current;
1553 struct cfq_io_context *cic;
1554 struct cfq_queue *cfqq;
1555
1556 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1557 if (!cic)
1558 return NULL;
1559
1560 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1561 if (cfqq) {
1562 sector_t sector = bio->bi_sector + bio_sectors(bio);
1563
1564 return elv_rb_find(&cfqq->sort_list, sector);
1565 }
1566
1567 return NULL;
1568}
1569
1570static void cfq_activate_request(struct request_queue *q, struct request *rq)
1571{
1572 struct cfq_data *cfqd = q->elevator->elevator_data;
1573
1574 cfqd->rq_in_driver++;
1575 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1576 cfqd->rq_in_driver);
1577
1578 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1579}
1580
1581static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1582{
1583 struct cfq_data *cfqd = q->elevator->elevator_data;
1584
1585 WARN_ON(!cfqd->rq_in_driver);
1586 cfqd->rq_in_driver--;
1587 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1588 cfqd->rq_in_driver);
1589}
1590
1591static void cfq_remove_request(struct request *rq)
1592{
1593 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1594
1595 if (cfqq->next_rq == rq)
1596 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1597
1598 list_del_init(&rq->queuelist);
1599 cfq_del_rq_rb(rq);
1600
1601 cfqq->cfqd->rq_queued--;
1602 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1603 rq_data_dir(rq), rq_is_sync(rq));
1604}
1605
1606static int cfq_merge(struct request_queue *q, struct request **req,
1607 struct bio *bio)
1608{
1609 struct cfq_data *cfqd = q->elevator->elevator_data;
1610 struct request *__rq;
1611
1612 __rq = cfq_find_rq_fmerge(cfqd, bio);
1613 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1614 *req = __rq;
1615 return ELEVATOR_FRONT_MERGE;
1616 }
1617
1618 return ELEVATOR_NO_MERGE;
1619}
1620
1621static void cfq_merged_request(struct request_queue *q, struct request *req,
1622 int type)
1623{
1624 if (type == ELEVATOR_FRONT_MERGE) {
1625 struct cfq_queue *cfqq = RQ_CFQQ(req);
1626
1627 cfq_reposition_rq_rb(cfqq, req);
1628 }
1629}
1630
1631static void cfq_bio_merged(struct request_queue *q, struct request *req,
1632 struct bio *bio)
1633{
1634 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1635 bio_data_dir(bio), cfq_bio_sync(bio));
1636}
1637
1638static void
1639cfq_merged_requests(struct request_queue *q, struct request *rq,
1640 struct request *next)
1641{
1642 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1643 /*
1644 * reposition in fifo if next is older than rq
1645 */
1646 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1647 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1648 list_move(&rq->queuelist, &next->queuelist);
1649 rq_set_fifo_time(rq, rq_fifo_time(next));
1650 }
1651
1652 if (cfqq->next_rq == next)
1653 cfqq->next_rq = rq;
1654 cfq_remove_request(next);
1655 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1656 rq_data_dir(next), rq_is_sync(next));
1657}
1658
1659static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1660 struct bio *bio)
1661{
1662 struct cfq_data *cfqd = q->elevator->elevator_data;
1663 struct cfq_io_context *cic;
1664 struct cfq_queue *cfqq;
1665
1666 /*
1667 * Disallow merge of a sync bio into an async request.
1668 */
1669 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1670 return false;
1671
1672 /*
1673 * Lookup the cfqq that this bio will be queued with. Allow
1674 * merge only if rq is queued there.
1675 */
1676 cic = cfq_cic_lookup(cfqd, current->io_context);
1677 if (!cic)
1678 return false;
1679
1680 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1681 return cfqq == RQ_CFQQ(rq);
1682}
1683
1684static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1685{
1686 del_timer(&cfqd->idle_slice_timer);
1687 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1688}
1689
1690static void __cfq_set_active_queue(struct cfq_data *cfqd,
1691 struct cfq_queue *cfqq)
1692{
1693 if (cfqq) {
1694 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1695 cfqd->serving_prio, cfqd->serving_type);
1696 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1697 cfqq->slice_start = 0;
1698 cfqq->dispatch_start = jiffies;
1699 cfqq->allocated_slice = 0;
1700 cfqq->slice_end = 0;
1701 cfqq->slice_dispatch = 0;
1702 cfqq->nr_sectors = 0;
1703
1704 cfq_clear_cfqq_wait_request(cfqq);
1705 cfq_clear_cfqq_must_dispatch(cfqq);
1706 cfq_clear_cfqq_must_alloc_slice(cfqq);
1707 cfq_clear_cfqq_fifo_expire(cfqq);
1708 cfq_mark_cfqq_slice_new(cfqq);
1709
1710 cfq_del_timer(cfqd, cfqq);
1711 }
1712
1713 cfqd->active_queue = cfqq;
1714}
1715
1716/*
1717 * current cfqq expired its slice (or was too idle), select new one
1718 */
1719static void
1720__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1721 bool timed_out)
1722{
1723 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1724
1725 if (cfq_cfqq_wait_request(cfqq))
1726 cfq_del_timer(cfqd, cfqq);
1727
1728 cfq_clear_cfqq_wait_request(cfqq);
1729 cfq_clear_cfqq_wait_busy(cfqq);
1730
1731 /*
1732 * If this cfqq is shared between multiple processes, check to
1733 * make sure that those processes are still issuing I/Os within
1734 * the mean seek distance. If not, it may be time to break the
1735 * queues apart again.
1736 */
1737 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1738 cfq_mark_cfqq_split_coop(cfqq);
1739
1740 /*
1741 * store what was left of this slice, if the queue idled/timed out
1742 */
1743 if (timed_out) {
1744 if (cfq_cfqq_slice_new(cfqq))
1745 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1746 else
1747 cfqq->slice_resid = cfqq->slice_end - jiffies;
1748 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1749 }
1750
1751 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1752
1753 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1754 cfq_del_cfqq_rr(cfqd, cfqq);
1755
1756 cfq_resort_rr_list(cfqd, cfqq);
1757
1758 if (cfqq == cfqd->active_queue)
1759 cfqd->active_queue = NULL;
1760
1761 if (cfqd->active_cic) {
1762 put_io_context(cfqd->active_cic->ioc);
1763 cfqd->active_cic = NULL;
1764 }
1765}
1766
1767static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1768{
1769 struct cfq_queue *cfqq = cfqd->active_queue;
1770
1771 if (cfqq)
1772 __cfq_slice_expired(cfqd, cfqq, timed_out);
1773}
1774
1775/*
1776 * Get next queue for service. Unless we have a queue preemption,
1777 * we'll simply select the first cfqq in the service tree.
1778 */
1779static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1780{
1781 struct cfq_rb_root *service_tree =
1782 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1783 cfqd->serving_type);
1784
1785 if (!cfqd->rq_queued)
1786 return NULL;
1787
1788 /* There is nothing to dispatch */
1789 if (!service_tree)
1790 return NULL;
1791 if (RB_EMPTY_ROOT(&service_tree->rb))
1792 return NULL;
1793 return cfq_rb_first(service_tree);
1794}
1795
1796static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1797{
1798 struct cfq_group *cfqg;
1799 struct cfq_queue *cfqq;
1800 int i, j;
1801 struct cfq_rb_root *st;
1802
1803 if (!cfqd->rq_queued)
1804 return NULL;
1805
1806 cfqg = cfq_get_next_cfqg(cfqd);
1807 if (!cfqg)
1808 return NULL;
1809
1810 for_each_cfqg_st(cfqg, i, j, st)
1811 if ((cfqq = cfq_rb_first(st)) != NULL)
1812 return cfqq;
1813 return NULL;
1814}
1815
1816/*
1817 * Get and set a new active queue for service.
1818 */
1819static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1820 struct cfq_queue *cfqq)
1821{
1822 if (!cfqq)
1823 cfqq = cfq_get_next_queue(cfqd);
1824
1825 __cfq_set_active_queue(cfqd, cfqq);
1826 return cfqq;
1827}
1828
1829static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1830 struct request *rq)
1831{
1832 if (blk_rq_pos(rq) >= cfqd->last_position)
1833 return blk_rq_pos(rq) - cfqd->last_position;
1834 else
1835 return cfqd->last_position - blk_rq_pos(rq);
1836}
1837
1838static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1839 struct request *rq)
1840{
1841 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1842}
1843
1844static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1845 struct cfq_queue *cur_cfqq)
1846{
1847 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1848 struct rb_node *parent, *node;
1849 struct cfq_queue *__cfqq;
1850 sector_t sector = cfqd->last_position;
1851
1852 if (RB_EMPTY_ROOT(root))
1853 return NULL;
1854
1855 /*
1856 * First, if we find a request starting at the end of the last
1857 * request, choose it.
1858 */
1859 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1860 if (__cfqq)
1861 return __cfqq;
1862
1863 /*
1864 * If the exact sector wasn't found, the parent of the NULL leaf
1865 * will contain the closest sector.
1866 */
1867 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1868 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1869 return __cfqq;
1870
1871 if (blk_rq_pos(__cfqq->next_rq) < sector)
1872 node = rb_next(&__cfqq->p_node);
1873 else
1874 node = rb_prev(&__cfqq->p_node);
1875 if (!node)
1876 return NULL;
1877
1878 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1879 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1880 return __cfqq;
1881
1882 return NULL;
1883}
1884
1885/*
1886 * cfqd - obvious
1887 * cur_cfqq - passed in so that we don't decide that the current queue is
1888 * closely cooperating with itself.
1889 *
1890 * So, basically we're assuming that that cur_cfqq has dispatched at least
1891 * one request, and that cfqd->last_position reflects a position on the disk
1892 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1893 * assumption.
1894 */
1895static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1896 struct cfq_queue *cur_cfqq)
1897{
1898 struct cfq_queue *cfqq;
1899
1900 if (cfq_class_idle(cur_cfqq))
1901 return NULL;
1902 if (!cfq_cfqq_sync(cur_cfqq))
1903 return NULL;
1904 if (CFQQ_SEEKY(cur_cfqq))
1905 return NULL;
1906
1907 /*
1908 * Don't search priority tree if it's the only queue in the group.
1909 */
1910 if (cur_cfqq->cfqg->nr_cfqq == 1)
1911 return NULL;
1912
1913 /*
1914 * We should notice if some of the queues are cooperating, eg
1915 * working closely on the same area of the disk. In that case,
1916 * we can group them together and don't waste time idling.
1917 */
1918 cfqq = cfqq_close(cfqd, cur_cfqq);
1919 if (!cfqq)
1920 return NULL;
1921
1922 /* If new queue belongs to different cfq_group, don't choose it */
1923 if (cur_cfqq->cfqg != cfqq->cfqg)
1924 return NULL;
1925
1926 /*
1927 * It only makes sense to merge sync queues.
1928 */
1929 if (!cfq_cfqq_sync(cfqq))
1930 return NULL;
1931 if (CFQQ_SEEKY(cfqq))
1932 return NULL;
1933
1934 /*
1935 * Do not merge queues of different priority classes
1936 */
1937 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1938 return NULL;
1939
1940 return cfqq;
1941}
1942
1943/*
1944 * Determine whether we should enforce idle window for this queue.
1945 */
1946
1947static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1948{
1949 enum wl_prio_t prio = cfqq_prio(cfqq);
1950 struct cfq_rb_root *service_tree = cfqq->service_tree;
1951
1952 BUG_ON(!service_tree);
1953 BUG_ON(!service_tree->count);
1954
1955 if (!cfqd->cfq_slice_idle)
1956 return false;
1957
1958 /* We never do for idle class queues. */
1959 if (prio == IDLE_WORKLOAD)
1960 return false;
1961
1962 /* We do for queues that were marked with idle window flag. */
1963 if (cfq_cfqq_idle_window(cfqq) &&
1964 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1965 return true;
1966
1967 /*
1968 * Otherwise, we do only if they are the last ones
1969 * in their service tree.
1970 */
1971 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1972 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1973 return true;
1974 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1975 service_tree->count);
1976 return false;
1977}
1978
1979static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1980{
1981 struct cfq_queue *cfqq = cfqd->active_queue;
1982 struct cfq_io_context *cic;
1983 unsigned long sl, group_idle = 0;
1984
1985 /*
1986 * SSD device without seek penalty, disable idling. But only do so
1987 * for devices that support queuing, otherwise we still have a problem
1988 * with sync vs async workloads.
1989 */
1990 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1991 return;
1992
1993 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1994 WARN_ON(cfq_cfqq_slice_new(cfqq));
1995
1996 /*
1997 * idle is disabled, either manually or by past process history
1998 */
1999 if (!cfq_should_idle(cfqd, cfqq)) {
2000 /* no queue idling. Check for group idling */
2001 if (cfqd->cfq_group_idle)
2002 group_idle = cfqd->cfq_group_idle;
2003 else
2004 return;
2005 }
2006
2007 /*
2008 * still active requests from this queue, don't idle
2009 */
2010 if (cfqq->dispatched)
2011 return;
2012
2013 /*
2014 * task has exited, don't wait
2015 */
2016 cic = cfqd->active_cic;
2017 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2018 return;
2019
2020 /*
2021 * If our average think time is larger than the remaining time
2022 * slice, then don't idle. This avoids overrunning the allotted
2023 * time slice.
2024 */
2025 if (sample_valid(cic->ttime.ttime_samples) &&
2026 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2027 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2028 cic->ttime.ttime_mean);
2029 return;
2030 }
2031
2032 /* There are other queues in the group, don't do group idle */
2033 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2034 return;
2035
2036 cfq_mark_cfqq_wait_request(cfqq);
2037
2038 if (group_idle)
2039 sl = cfqd->cfq_group_idle;
2040 else
2041 sl = cfqd->cfq_slice_idle;
2042
2043 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2044 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2045 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2046 group_idle ? 1 : 0);
2047}
2048
2049/*
2050 * Move request from internal lists to the request queue dispatch list.
2051 */
2052static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2053{
2054 struct cfq_data *cfqd = q->elevator->elevator_data;
2055 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2056
2057 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2058
2059 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2060 cfq_remove_request(rq);
2061 cfqq->dispatched++;
2062 (RQ_CFQG(rq))->dispatched++;
2063 elv_dispatch_sort(q, rq);
2064
2065 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2066 cfqq->nr_sectors += blk_rq_sectors(rq);
2067 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2068 rq_data_dir(rq), rq_is_sync(rq));
2069}
2070
2071/*
2072 * return expired entry, or NULL to just start from scratch in rbtree
2073 */
2074static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2075{
2076 struct request *rq = NULL;
2077
2078 if (cfq_cfqq_fifo_expire(cfqq))
2079 return NULL;
2080
2081 cfq_mark_cfqq_fifo_expire(cfqq);
2082
2083 if (list_empty(&cfqq->fifo))
2084 return NULL;
2085
2086 rq = rq_entry_fifo(cfqq->fifo.next);
2087 if (time_before(jiffies, rq_fifo_time(rq)))
2088 rq = NULL;
2089
2090 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2091 return rq;
2092}
2093
2094static inline int
2095cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2096{
2097 const int base_rq = cfqd->cfq_slice_async_rq;
2098
2099 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2100
2101 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2102}
2103
2104/*
2105 * Must be called with the queue_lock held.
2106 */
2107static int cfqq_process_refs(struct cfq_queue *cfqq)
2108{
2109 int process_refs, io_refs;
2110
2111 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2112 process_refs = cfqq->ref - io_refs;
2113 BUG_ON(process_refs < 0);
2114 return process_refs;
2115}
2116
2117static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2118{
2119 int process_refs, new_process_refs;
2120 struct cfq_queue *__cfqq;
2121
2122 /*
2123 * If there are no process references on the new_cfqq, then it is
2124 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2125 * chain may have dropped their last reference (not just their
2126 * last process reference).
2127 */
2128 if (!cfqq_process_refs(new_cfqq))
2129 return;
2130
2131 /* Avoid a circular list and skip interim queue merges */
2132 while ((__cfqq = new_cfqq->new_cfqq)) {
2133 if (__cfqq == cfqq)
2134 return;
2135 new_cfqq = __cfqq;
2136 }
2137
2138 process_refs = cfqq_process_refs(cfqq);
2139 new_process_refs = cfqq_process_refs(new_cfqq);
2140 /*
2141 * If the process for the cfqq has gone away, there is no
2142 * sense in merging the queues.
2143 */
2144 if (process_refs == 0 || new_process_refs == 0)
2145 return;
2146
2147 /*
2148 * Merge in the direction of the lesser amount of work.
2149 */
2150 if (new_process_refs >= process_refs) {
2151 cfqq->new_cfqq = new_cfqq;
2152 new_cfqq->ref += process_refs;
2153 } else {
2154 new_cfqq->new_cfqq = cfqq;
2155 cfqq->ref += new_process_refs;
2156 }
2157}
2158
2159static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2160 struct cfq_group *cfqg, enum wl_prio_t prio)
2161{
2162 struct cfq_queue *queue;
2163 int i;
2164 bool key_valid = false;
2165 unsigned long lowest_key = 0;
2166 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2167
2168 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2169 /* select the one with lowest rb_key */
2170 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2171 if (queue &&
2172 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2173 lowest_key = queue->rb_key;
2174 cur_best = i;
2175 key_valid = true;
2176 }
2177 }
2178
2179 return cur_best;
2180}
2181
2182static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2183{
2184 unsigned slice;
2185 unsigned count;
2186 struct cfq_rb_root *st;
2187 unsigned group_slice;
2188 enum wl_prio_t original_prio = cfqd->serving_prio;
2189
2190 /* Choose next priority. RT > BE > IDLE */
2191 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2192 cfqd->serving_prio = RT_WORKLOAD;
2193 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2194 cfqd->serving_prio = BE_WORKLOAD;
2195 else {
2196 cfqd->serving_prio = IDLE_WORKLOAD;
2197 cfqd->workload_expires = jiffies + 1;
2198 return;
2199 }
2200
2201 if (original_prio != cfqd->serving_prio)
2202 goto new_workload;
2203
2204 /*
2205 * For RT and BE, we have to choose also the type
2206 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2207 * expiration time
2208 */
2209 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2210 count = st->count;
2211
2212 /*
2213 * check workload expiration, and that we still have other queues ready
2214 */
2215 if (count && !time_after(jiffies, cfqd->workload_expires))
2216 return;
2217
2218new_workload:
2219 /* otherwise select new workload type */
2220 cfqd->serving_type =
2221 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2222 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2223 count = st->count;
2224
2225 /*
2226 * the workload slice is computed as a fraction of target latency
2227 * proportional to the number of queues in that workload, over
2228 * all the queues in the same priority class
2229 */
2230 group_slice = cfq_group_slice(cfqd, cfqg);
2231
2232 slice = group_slice * count /
2233 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2234 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2235
2236 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2237 unsigned int tmp;
2238
2239 /*
2240 * Async queues are currently system wide. Just taking
2241 * proportion of queues with-in same group will lead to higher
2242 * async ratio system wide as generally root group is going
2243 * to have higher weight. A more accurate thing would be to
2244 * calculate system wide asnc/sync ratio.
2245 */
2246 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2247 tmp = tmp/cfqd->busy_queues;
2248 slice = min_t(unsigned, slice, tmp);
2249
2250 /* async workload slice is scaled down according to
2251 * the sync/async slice ratio. */
2252 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2253 } else
2254 /* sync workload slice is at least 2 * cfq_slice_idle */
2255 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2256
2257 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2258 cfq_log(cfqd, "workload slice:%d", slice);
2259 cfqd->workload_expires = jiffies + slice;
2260}
2261
2262static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2263{
2264 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2265 struct cfq_group *cfqg;
2266
2267 if (RB_EMPTY_ROOT(&st->rb))
2268 return NULL;
2269 cfqg = cfq_rb_first_group(st);
2270 update_min_vdisktime(st);
2271 return cfqg;
2272}
2273
2274static void cfq_choose_cfqg(struct cfq_data *cfqd)
2275{
2276 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2277
2278 cfqd->serving_group = cfqg;
2279
2280 /* Restore the workload type data */
2281 if (cfqg->saved_workload_slice) {
2282 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2283 cfqd->serving_type = cfqg->saved_workload;
2284 cfqd->serving_prio = cfqg->saved_serving_prio;
2285 } else
2286 cfqd->workload_expires = jiffies - 1;
2287
2288 choose_service_tree(cfqd, cfqg);
2289}
2290
2291/*
2292 * Select a queue for service. If we have a current active queue,
2293 * check whether to continue servicing it, or retrieve and set a new one.
2294 */
2295static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2296{
2297 struct cfq_queue *cfqq, *new_cfqq = NULL;
2298
2299 cfqq = cfqd->active_queue;
2300 if (!cfqq)
2301 goto new_queue;
2302
2303 if (!cfqd->rq_queued)
2304 return NULL;
2305
2306 /*
2307 * We were waiting for group to get backlogged. Expire the queue
2308 */
2309 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2310 goto expire;
2311
2312 /*
2313 * The active queue has run out of time, expire it and select new.
2314 */
2315 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2316 /*
2317 * If slice had not expired at the completion of last request
2318 * we might not have turned on wait_busy flag. Don't expire
2319 * the queue yet. Allow the group to get backlogged.
2320 *
2321 * The very fact that we have used the slice, that means we
2322 * have been idling all along on this queue and it should be
2323 * ok to wait for this request to complete.
2324 */
2325 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2326 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2327 cfqq = NULL;
2328 goto keep_queue;
2329 } else
2330 goto check_group_idle;
2331 }
2332
2333 /*
2334 * The active queue has requests and isn't expired, allow it to
2335 * dispatch.
2336 */
2337 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2338 goto keep_queue;
2339
2340 /*
2341 * If another queue has a request waiting within our mean seek
2342 * distance, let it run. The expire code will check for close
2343 * cooperators and put the close queue at the front of the service
2344 * tree. If possible, merge the expiring queue with the new cfqq.
2345 */
2346 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2347 if (new_cfqq) {
2348 if (!cfqq->new_cfqq)
2349 cfq_setup_merge(cfqq, new_cfqq);
2350 goto expire;
2351 }
2352
2353 /*
2354 * No requests pending. If the active queue still has requests in
2355 * flight or is idling for a new request, allow either of these
2356 * conditions to happen (or time out) before selecting a new queue.
2357 */
2358 if (timer_pending(&cfqd->idle_slice_timer)) {
2359 cfqq = NULL;
2360 goto keep_queue;
2361 }
2362
2363 /*
2364 * This is a deep seek queue, but the device is much faster than
2365 * the queue can deliver, don't idle
2366 **/
2367 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2368 (cfq_cfqq_slice_new(cfqq) ||
2369 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2370 cfq_clear_cfqq_deep(cfqq);
2371 cfq_clear_cfqq_idle_window(cfqq);
2372 }
2373
2374 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2375 cfqq = NULL;
2376 goto keep_queue;
2377 }
2378
2379 /*
2380 * If group idle is enabled and there are requests dispatched from
2381 * this group, wait for requests to complete.
2382 */
2383check_group_idle:
2384 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2385 && cfqq->cfqg->dispatched) {
2386 cfqq = NULL;
2387 goto keep_queue;
2388 }
2389
2390expire:
2391 cfq_slice_expired(cfqd, 0);
2392new_queue:
2393 /*
2394 * Current queue expired. Check if we have to switch to a new
2395 * service tree
2396 */
2397 if (!new_cfqq)
2398 cfq_choose_cfqg(cfqd);
2399
2400 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2401keep_queue:
2402 return cfqq;
2403}
2404
2405static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2406{
2407 int dispatched = 0;
2408
2409 while (cfqq->next_rq) {
2410 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2411 dispatched++;
2412 }
2413
2414 BUG_ON(!list_empty(&cfqq->fifo));
2415
2416 /* By default cfqq is not expired if it is empty. Do it explicitly */
2417 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2418 return dispatched;
2419}
2420
2421/*
2422 * Drain our current requests. Used for barriers and when switching
2423 * io schedulers on-the-fly.
2424 */
2425static int cfq_forced_dispatch(struct cfq_data *cfqd)
2426{
2427 struct cfq_queue *cfqq;
2428 int dispatched = 0;
2429
2430 /* Expire the timeslice of the current active queue first */
2431 cfq_slice_expired(cfqd, 0);
2432 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2433 __cfq_set_active_queue(cfqd, cfqq);
2434 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2435 }
2436
2437 BUG_ON(cfqd->busy_queues);
2438
2439 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2440 return dispatched;
2441}
2442
2443static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2444 struct cfq_queue *cfqq)
2445{
2446 /* the queue hasn't finished any request, can't estimate */
2447 if (cfq_cfqq_slice_new(cfqq))
2448 return true;
2449 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2450 cfqq->slice_end))
2451 return true;
2452
2453 return false;
2454}
2455
2456static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2457{
2458 unsigned int max_dispatch;
2459
2460 /*
2461 * Drain async requests before we start sync IO
2462 */
2463 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2464 return false;
2465
2466 /*
2467 * If this is an async queue and we have sync IO in flight, let it wait
2468 */
2469 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2470 return false;
2471
2472 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2473 if (cfq_class_idle(cfqq))
2474 max_dispatch = 1;
2475
2476 /*
2477 * Does this cfqq already have too much IO in flight?
2478 */
2479 if (cfqq->dispatched >= max_dispatch) {
2480 bool promote_sync = false;
2481 /*
2482 * idle queue must always only have a single IO in flight
2483 */
2484 if (cfq_class_idle(cfqq))
2485 return false;
2486
2487 /*
2488 * If there is only one sync queue
2489 * we can ignore async queue here and give the sync
2490 * queue no dispatch limit. The reason is a sync queue can
2491 * preempt async queue, limiting the sync queue doesn't make
2492 * sense. This is useful for aiostress test.
2493 */
2494 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2495 promote_sync = true;
2496
2497 /*
2498 * We have other queues, don't allow more IO from this one
2499 */
2500 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2501 !promote_sync)
2502 return false;
2503
2504 /*
2505 * Sole queue user, no limit
2506 */
2507 if (cfqd->busy_queues == 1 || promote_sync)
2508 max_dispatch = -1;
2509 else
2510 /*
2511 * Normally we start throttling cfqq when cfq_quantum/2
2512 * requests have been dispatched. But we can drive
2513 * deeper queue depths at the beginning of slice
2514 * subjected to upper limit of cfq_quantum.
2515 * */
2516 max_dispatch = cfqd->cfq_quantum;
2517 }
2518
2519 /*
2520 * Async queues must wait a bit before being allowed dispatch.
2521 * We also ramp up the dispatch depth gradually for async IO,
2522 * based on the last sync IO we serviced
2523 */
2524 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2525 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2526 unsigned int depth;
2527
2528 depth = last_sync / cfqd->cfq_slice[1];
2529 if (!depth && !cfqq->dispatched)
2530 depth = 1;
2531 if (depth < max_dispatch)
2532 max_dispatch = depth;
2533 }
2534
2535 /*
2536 * If we're below the current max, allow a dispatch
2537 */
2538 return cfqq->dispatched < max_dispatch;
2539}
2540
2541/*
2542 * Dispatch a request from cfqq, moving them to the request queue
2543 * dispatch list.
2544 */
2545static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2546{
2547 struct request *rq;
2548
2549 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2550
2551 if (!cfq_may_dispatch(cfqd, cfqq))
2552 return false;
2553
2554 /*
2555 * follow expired path, else get first next available
2556 */
2557 rq = cfq_check_fifo(cfqq);
2558 if (!rq)
2559 rq = cfqq->next_rq;
2560
2561 /*
2562 * insert request into driver dispatch list
2563 */
2564 cfq_dispatch_insert(cfqd->queue, rq);
2565
2566 if (!cfqd->active_cic) {
2567 struct cfq_io_context *cic = RQ_CIC(rq);
2568
2569 atomic_long_inc(&cic->ioc->refcount);
2570 cfqd->active_cic = cic;
2571 }
2572
2573 return true;
2574}
2575
2576/*
2577 * Find the cfqq that we need to service and move a request from that to the
2578 * dispatch list
2579 */
2580static int cfq_dispatch_requests(struct request_queue *q, int force)
2581{
2582 struct cfq_data *cfqd = q->elevator->elevator_data;
2583 struct cfq_queue *cfqq;
2584
2585 if (!cfqd->busy_queues)
2586 return 0;
2587
2588 if (unlikely(force))
2589 return cfq_forced_dispatch(cfqd);
2590
2591 cfqq = cfq_select_queue(cfqd);
2592 if (!cfqq)
2593 return 0;
2594
2595 /*
2596 * Dispatch a request from this cfqq, if it is allowed
2597 */
2598 if (!cfq_dispatch_request(cfqd, cfqq))
2599 return 0;
2600
2601 cfqq->slice_dispatch++;
2602 cfq_clear_cfqq_must_dispatch(cfqq);
2603
2604 /*
2605 * expire an async queue immediately if it has used up its slice. idle
2606 * queue always expire after 1 dispatch round.
2607 */
2608 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2609 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2610 cfq_class_idle(cfqq))) {
2611 cfqq->slice_end = jiffies + 1;
2612 cfq_slice_expired(cfqd, 0);
2613 }
2614
2615 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2616 return 1;
2617}
2618
2619/*
2620 * task holds one reference to the queue, dropped when task exits. each rq
2621 * in-flight on this queue also holds a reference, dropped when rq is freed.
2622 *
2623 * Each cfq queue took a reference on the parent group. Drop it now.
2624 * queue lock must be held here.
2625 */
2626static void cfq_put_queue(struct cfq_queue *cfqq)
2627{
2628 struct cfq_data *cfqd = cfqq->cfqd;
2629 struct cfq_group *cfqg;
2630
2631 BUG_ON(cfqq->ref <= 0);
2632
2633 cfqq->ref--;
2634 if (cfqq->ref)
2635 return;
2636
2637 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2638 BUG_ON(rb_first(&cfqq->sort_list));
2639 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2640 cfqg = cfqq->cfqg;
2641
2642 if (unlikely(cfqd->active_queue == cfqq)) {
2643 __cfq_slice_expired(cfqd, cfqq, 0);
2644 cfq_schedule_dispatch(cfqd);
2645 }
2646
2647 BUG_ON(cfq_cfqq_on_rr(cfqq));
2648 kmem_cache_free(cfq_pool, cfqq);
2649 cfq_put_cfqg(cfqg);
2650}
2651
2652/*
2653 * Call func for each cic attached to this ioc.
2654 */
2655static void
2656call_for_each_cic(struct io_context *ioc,
2657 void (*func)(struct io_context *, struct cfq_io_context *))
2658{
2659 struct cfq_io_context *cic;
2660 struct hlist_node *n;
2661
2662 rcu_read_lock();
2663
2664 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2665 func(ioc, cic);
2666
2667 rcu_read_unlock();
2668}
2669
2670static void cfq_cic_free_rcu(struct rcu_head *head)
2671{
2672 struct cfq_io_context *cic;
2673
2674 cic = container_of(head, struct cfq_io_context, rcu_head);
2675
2676 kmem_cache_free(cfq_ioc_pool, cic);
2677 elv_ioc_count_dec(cfq_ioc_count);
2678
2679 if (ioc_gone) {
2680 /*
2681 * CFQ scheduler is exiting, grab exit lock and check
2682 * the pending io context count. If it hits zero,
2683 * complete ioc_gone and set it back to NULL
2684 */
2685 spin_lock(&ioc_gone_lock);
2686 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2687 complete(ioc_gone);
2688 ioc_gone = NULL;
2689 }
2690 spin_unlock(&ioc_gone_lock);
2691 }
2692}
2693
2694static void cfq_cic_free(struct cfq_io_context *cic)
2695{
2696 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2697}
2698
2699static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2700{
2701 unsigned long flags;
2702 unsigned long dead_key = (unsigned long) cic->key;
2703
2704 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2705
2706 spin_lock_irqsave(&ioc->lock, flags);
2707 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2708 hlist_del_rcu(&cic->cic_list);
2709 spin_unlock_irqrestore(&ioc->lock, flags);
2710
2711 cfq_cic_free(cic);
2712}
2713
2714/*
2715 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2716 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2717 * and ->trim() which is called with the task lock held
2718 */
2719static void cfq_free_io_context(struct io_context *ioc)
2720{
2721 /*
2722 * ioc->refcount is zero here, or we are called from elv_unregister(),
2723 * so no more cic's are allowed to be linked into this ioc. So it
2724 * should be ok to iterate over the known list, we will see all cic's
2725 * since no new ones are added.
2726 */
2727 call_for_each_cic(ioc, cic_free_func);
2728}
2729
2730static void cfq_put_cooperator(struct cfq_queue *cfqq)
2731{
2732 struct cfq_queue *__cfqq, *next;
2733
2734 /*
2735 * If this queue was scheduled to merge with another queue, be
2736 * sure to drop the reference taken on that queue (and others in
2737 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2738 */
2739 __cfqq = cfqq->new_cfqq;
2740 while (__cfqq) {
2741 if (__cfqq == cfqq) {
2742 WARN(1, "cfqq->new_cfqq loop detected\n");
2743 break;
2744 }
2745 next = __cfqq->new_cfqq;
2746 cfq_put_queue(__cfqq);
2747 __cfqq = next;
2748 }
2749}
2750
2751static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2752{
2753 if (unlikely(cfqq == cfqd->active_queue)) {
2754 __cfq_slice_expired(cfqd, cfqq, 0);
2755 cfq_schedule_dispatch(cfqd);
2756 }
2757
2758 cfq_put_cooperator(cfqq);
2759
2760 cfq_put_queue(cfqq);
2761}
2762
2763static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2764 struct cfq_io_context *cic)
2765{
2766 struct io_context *ioc = cic->ioc;
2767
2768 list_del_init(&cic->queue_list);
2769
2770 /*
2771 * Make sure dead mark is seen for dead queues
2772 */
2773 smp_wmb();
2774 cic->key = cfqd_dead_key(cfqd);
2775
2776 rcu_read_lock();
2777 if (rcu_dereference(ioc->ioc_data) == cic) {
2778 rcu_read_unlock();
2779 spin_lock(&ioc->lock);
2780 rcu_assign_pointer(ioc->ioc_data, NULL);
2781 spin_unlock(&ioc->lock);
2782 } else
2783 rcu_read_unlock();
2784
2785 if (cic->cfqq[BLK_RW_ASYNC]) {
2786 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2787 cic->cfqq[BLK_RW_ASYNC] = NULL;
2788 }
2789
2790 if (cic->cfqq[BLK_RW_SYNC]) {
2791 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2792 cic->cfqq[BLK_RW_SYNC] = NULL;
2793 }
2794}
2795
2796static void cfq_exit_single_io_context(struct io_context *ioc,
2797 struct cfq_io_context *cic)
2798{
2799 struct cfq_data *cfqd = cic_to_cfqd(cic);
2800
2801 if (cfqd) {
2802 struct request_queue *q = cfqd->queue;
2803 unsigned long flags;
2804
2805 spin_lock_irqsave(q->queue_lock, flags);
2806
2807 /*
2808 * Ensure we get a fresh copy of the ->key to prevent
2809 * race between exiting task and queue
2810 */
2811 smp_read_barrier_depends();
2812 if (cic->key == cfqd)
2813 __cfq_exit_single_io_context(cfqd, cic);
2814
2815 spin_unlock_irqrestore(q->queue_lock, flags);
2816 }
2817}
2818
2819/*
2820 * The process that ioc belongs to has exited, we need to clean up
2821 * and put the internal structures we have that belongs to that process.
2822 */
2823static void cfq_exit_io_context(struct io_context *ioc)
2824{
2825 call_for_each_cic(ioc, cfq_exit_single_io_context);
2826}
2827
2828static struct cfq_io_context *
2829cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2830{
2831 struct cfq_io_context *cic;
2832
2833 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2834 cfqd->queue->node);
2835 if (cic) {
2836 cic->ttime.last_end_request = jiffies;
2837 INIT_LIST_HEAD(&cic->queue_list);
2838 INIT_HLIST_NODE(&cic->cic_list);
2839 cic->dtor = cfq_free_io_context;
2840 cic->exit = cfq_exit_io_context;
2841 elv_ioc_count_inc(cfq_ioc_count);
2842 }
2843
2844 return cic;
2845}
2846
2847static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2848{
2849 struct task_struct *tsk = current;
2850 int ioprio_class;
2851
2852 if (!cfq_cfqq_prio_changed(cfqq))
2853 return;
2854
2855 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2856 switch (ioprio_class) {
2857 default:
2858 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2859 case IOPRIO_CLASS_NONE:
2860 /*
2861 * no prio set, inherit CPU scheduling settings
2862 */
2863 cfqq->ioprio = task_nice_ioprio(tsk);
2864 cfqq->ioprio_class = task_nice_ioclass(tsk);
2865 break;
2866 case IOPRIO_CLASS_RT:
2867 cfqq->ioprio = task_ioprio(ioc);
2868 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2869 break;
2870 case IOPRIO_CLASS_BE:
2871 cfqq->ioprio = task_ioprio(ioc);
2872 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2873 break;
2874 case IOPRIO_CLASS_IDLE:
2875 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2876 cfqq->ioprio = 7;
2877 cfq_clear_cfqq_idle_window(cfqq);
2878 break;
2879 }
2880
2881 /*
2882 * keep track of original prio settings in case we have to temporarily
2883 * elevate the priority of this queue
2884 */
2885 cfqq->org_ioprio = cfqq->ioprio;
2886 cfq_clear_cfqq_prio_changed(cfqq);
2887}
2888
2889static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2890{
2891 struct cfq_data *cfqd = cic_to_cfqd(cic);
2892 struct cfq_queue *cfqq;
2893 unsigned long flags;
2894
2895 if (unlikely(!cfqd))
2896 return;
2897
2898 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2899
2900 cfqq = cic->cfqq[BLK_RW_ASYNC];
2901 if (cfqq) {
2902 struct cfq_queue *new_cfqq;
2903 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2904 GFP_ATOMIC);
2905 if (new_cfqq) {
2906 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2907 cfq_put_queue(cfqq);
2908 }
2909 }
2910
2911 cfqq = cic->cfqq[BLK_RW_SYNC];
2912 if (cfqq)
2913 cfq_mark_cfqq_prio_changed(cfqq);
2914
2915 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2916}
2917
2918static void cfq_ioc_set_ioprio(struct io_context *ioc)
2919{
2920 call_for_each_cic(ioc, changed_ioprio);
2921 ioc->ioprio_changed = 0;
2922}
2923
2924static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2925 pid_t pid, bool is_sync)
2926{
2927 RB_CLEAR_NODE(&cfqq->rb_node);
2928 RB_CLEAR_NODE(&cfqq->p_node);
2929 INIT_LIST_HEAD(&cfqq->fifo);
2930
2931 cfqq->ref = 0;
2932 cfqq->cfqd = cfqd;
2933
2934 cfq_mark_cfqq_prio_changed(cfqq);
2935
2936 if (is_sync) {
2937 if (!cfq_class_idle(cfqq))
2938 cfq_mark_cfqq_idle_window(cfqq);
2939 cfq_mark_cfqq_sync(cfqq);
2940 }
2941 cfqq->pid = pid;
2942}
2943
2944#ifdef CONFIG_CFQ_GROUP_IOSCHED
2945static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2946{
2947 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2948 struct cfq_data *cfqd = cic_to_cfqd(cic);
2949 unsigned long flags;
2950 struct request_queue *q;
2951
2952 if (unlikely(!cfqd))
2953 return;
2954
2955 q = cfqd->queue;
2956
2957 spin_lock_irqsave(q->queue_lock, flags);
2958
2959 if (sync_cfqq) {
2960 /*
2961 * Drop reference to sync queue. A new sync queue will be
2962 * assigned in new group upon arrival of a fresh request.
2963 */
2964 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2965 cic_set_cfqq(cic, NULL, 1);
2966 cfq_put_queue(sync_cfqq);
2967 }
2968
2969 spin_unlock_irqrestore(q->queue_lock, flags);
2970}
2971
2972static void cfq_ioc_set_cgroup(struct io_context *ioc)
2973{
2974 call_for_each_cic(ioc, changed_cgroup);
2975 ioc->cgroup_changed = 0;
2976}
2977#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2978
2979static struct cfq_queue *
2980cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2981 struct io_context *ioc, gfp_t gfp_mask)
2982{
2983 struct cfq_queue *cfqq, *new_cfqq = NULL;
2984 struct cfq_io_context *cic;
2985 struct cfq_group *cfqg;
2986
2987retry:
2988 cfqg = cfq_get_cfqg(cfqd);
2989 cic = cfq_cic_lookup(cfqd, ioc);
2990 /* cic always exists here */
2991 cfqq = cic_to_cfqq(cic, is_sync);
2992
2993 /*
2994 * Always try a new alloc if we fell back to the OOM cfqq
2995 * originally, since it should just be a temporary situation.
2996 */
2997 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2998 cfqq = NULL;
2999 if (new_cfqq) {
3000 cfqq = new_cfqq;
3001 new_cfqq = NULL;
3002 } else if (gfp_mask & __GFP_WAIT) {
3003 spin_unlock_irq(cfqd->queue->queue_lock);
3004 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3005 gfp_mask | __GFP_ZERO,
3006 cfqd->queue->node);
3007 spin_lock_irq(cfqd->queue->queue_lock);
3008 if (new_cfqq)
3009 goto retry;
3010 } else {
3011 cfqq = kmem_cache_alloc_node(cfq_pool,
3012 gfp_mask | __GFP_ZERO,
3013 cfqd->queue->node);
3014 }
3015
3016 if (cfqq) {
3017 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3018 cfq_init_prio_data(cfqq, ioc);
3019 cfq_link_cfqq_cfqg(cfqq, cfqg);
3020 cfq_log_cfqq(cfqd, cfqq, "alloced");
3021 } else
3022 cfqq = &cfqd->oom_cfqq;
3023 }
3024
3025 if (new_cfqq)
3026 kmem_cache_free(cfq_pool, new_cfqq);
3027
3028 return cfqq;
3029}
3030
3031static struct cfq_queue **
3032cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3033{
3034 switch (ioprio_class) {
3035 case IOPRIO_CLASS_RT:
3036 return &cfqd->async_cfqq[0][ioprio];
3037 case IOPRIO_CLASS_BE:
3038 return &cfqd->async_cfqq[1][ioprio];
3039 case IOPRIO_CLASS_IDLE:
3040 return &cfqd->async_idle_cfqq;
3041 default:
3042 BUG();
3043 }
3044}
3045
3046static struct cfq_queue *
3047cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3048 gfp_t gfp_mask)
3049{
3050 const int ioprio = task_ioprio(ioc);
3051 const int ioprio_class = task_ioprio_class(ioc);
3052 struct cfq_queue **async_cfqq = NULL;
3053 struct cfq_queue *cfqq = NULL;
3054
3055 if (!is_sync) {
3056 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3057 cfqq = *async_cfqq;
3058 }
3059
3060 if (!cfqq)
3061 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3062
3063 /*
3064 * pin the queue now that it's allocated, scheduler exit will prune it
3065 */
3066 if (!is_sync && !(*async_cfqq)) {
3067 cfqq->ref++;
3068 *async_cfqq = cfqq;
3069 }
3070
3071 cfqq->ref++;
3072 return cfqq;
3073}
3074
3075/*
3076 * We drop cfq io contexts lazily, so we may find a dead one.
3077 */
3078static void
3079cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3080 struct cfq_io_context *cic)
3081{
3082 unsigned long flags;
3083
3084 WARN_ON(!list_empty(&cic->queue_list));
3085 BUG_ON(cic->key != cfqd_dead_key(cfqd));
3086
3087 spin_lock_irqsave(&ioc->lock, flags);
3088
3089 BUG_ON(rcu_dereference_check(ioc->ioc_data,
3090 lockdep_is_held(&ioc->lock)) == cic);
3091
3092 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3093 hlist_del_rcu(&cic->cic_list);
3094 spin_unlock_irqrestore(&ioc->lock, flags);
3095
3096 cfq_cic_free(cic);
3097}
3098
3099static struct cfq_io_context *
3100cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3101{
3102 struct cfq_io_context *cic;
3103 unsigned long flags;
3104
3105 if (unlikely(!ioc))
3106 return NULL;
3107
3108 rcu_read_lock();
3109
3110 /*
3111 * we maintain a last-hit cache, to avoid browsing over the tree
3112 */
3113 cic = rcu_dereference(ioc->ioc_data);
3114 if (cic && cic->key == cfqd) {
3115 rcu_read_unlock();
3116 return cic;
3117 }
3118
3119 do {
3120 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3121 rcu_read_unlock();
3122 if (!cic)
3123 break;
3124 if (unlikely(cic->key != cfqd)) {
3125 cfq_drop_dead_cic(cfqd, ioc, cic);
3126 rcu_read_lock();
3127 continue;
3128 }
3129
3130 spin_lock_irqsave(&ioc->lock, flags);
3131 rcu_assign_pointer(ioc->ioc_data, cic);
3132 spin_unlock_irqrestore(&ioc->lock, flags);
3133 break;
3134 } while (1);
3135
3136 return cic;
3137}
3138
3139/*
3140 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3141 * the process specific cfq io context when entered from the block layer.
3142 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3143 */
3144static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3145 struct cfq_io_context *cic, gfp_t gfp_mask)
3146{
3147 unsigned long flags;
3148 int ret;
3149
3150 ret = radix_tree_preload(gfp_mask);
3151 if (!ret) {
3152 cic->ioc = ioc;
3153 cic->key = cfqd;
3154
3155 spin_lock_irqsave(&ioc->lock, flags);
3156 ret = radix_tree_insert(&ioc->radix_root,
3157 cfqd->cic_index, cic);
3158 if (!ret)
3159 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3160 spin_unlock_irqrestore(&ioc->lock, flags);
3161
3162 radix_tree_preload_end();
3163
3164 if (!ret) {
3165 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3166 list_add(&cic->queue_list, &cfqd->cic_list);
3167 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3168 }
3169 }
3170
3171 if (ret)
3172 printk(KERN_ERR "cfq: cic link failed!\n");
3173
3174 return ret;
3175}
3176
3177/*
3178 * Setup general io context and cfq io context. There can be several cfq
3179 * io contexts per general io context, if this process is doing io to more
3180 * than one device managed by cfq.
3181 */
3182static struct cfq_io_context *
3183cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3184{
3185 struct io_context *ioc = NULL;
3186 struct cfq_io_context *cic;
3187
3188 might_sleep_if(gfp_mask & __GFP_WAIT);
3189
3190 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3191 if (!ioc)
3192 return NULL;
3193
3194 cic = cfq_cic_lookup(cfqd, ioc);
3195 if (cic)
3196 goto out;
3197
3198 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3199 if (cic == NULL)
3200 goto err;
3201
3202 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3203 goto err_free;
3204
3205out:
3206 smp_read_barrier_depends();
3207 if (unlikely(ioc->ioprio_changed))
3208 cfq_ioc_set_ioprio(ioc);
3209
3210#ifdef CONFIG_CFQ_GROUP_IOSCHED
3211 if (unlikely(ioc->cgroup_changed))
3212 cfq_ioc_set_cgroup(ioc);
3213#endif
3214 return cic;
3215err_free:
3216 cfq_cic_free(cic);
3217err:
3218 put_io_context(ioc);
3219 return NULL;
3220}
3221
3222static void
3223__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3224{
3225 unsigned long elapsed = jiffies - ttime->last_end_request;
3226 elapsed = min(elapsed, 2UL * slice_idle);
3227
3228 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3229 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3230 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3231}
3232
3233static void
3234cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3235 struct cfq_io_context *cic)
3236{
3237 if (cfq_cfqq_sync(cfqq)) {
3238 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3239 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3240 cfqd->cfq_slice_idle);
3241 }
3242}
3243
3244static void
3245cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3246 struct request *rq)
3247{
3248 sector_t sdist = 0;
3249 sector_t n_sec = blk_rq_sectors(rq);
3250 if (cfqq->last_request_pos) {
3251 if (cfqq->last_request_pos < blk_rq_pos(rq))
3252 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3253 else
3254 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3255 }
3256
3257 cfqq->seek_history <<= 1;
3258 if (blk_queue_nonrot(cfqd->queue))
3259 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3260 else
3261 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3262}
3263
3264/*
3265 * Disable idle window if the process thinks too long or seeks so much that
3266 * it doesn't matter
3267 */
3268static void
3269cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3270 struct cfq_io_context *cic)
3271{
3272 int old_idle, enable_idle;
3273
3274 /*
3275 * Don't idle for async or idle io prio class
3276 */
3277 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3278 return;
3279
3280 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3281
3282 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3283 cfq_mark_cfqq_deep(cfqq);
3284
3285 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3286 enable_idle = 0;
3287 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3288 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3289 enable_idle = 0;
3290 else if (sample_valid(cic->ttime.ttime_samples)) {
3291 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3292 enable_idle = 0;
3293 else
3294 enable_idle = 1;
3295 }
3296
3297 if (old_idle != enable_idle) {
3298 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3299 if (enable_idle)
3300 cfq_mark_cfqq_idle_window(cfqq);
3301 else
3302 cfq_clear_cfqq_idle_window(cfqq);
3303 }
3304}
3305
3306/*
3307 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3308 * no or if we aren't sure, a 1 will cause a preempt.
3309 */
3310static bool
3311cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3312 struct request *rq)
3313{
3314 struct cfq_queue *cfqq;
3315
3316 cfqq = cfqd->active_queue;
3317 if (!cfqq)
3318 return false;
3319
3320 if (cfq_class_idle(new_cfqq))
3321 return false;
3322
3323 if (cfq_class_idle(cfqq))
3324 return true;
3325
3326 /*
3327 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3328 */
3329 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3330 return false;
3331
3332 /*
3333 * if the new request is sync, but the currently running queue is
3334 * not, let the sync request have priority.
3335 */
3336 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3337 return true;
3338
3339 if (new_cfqq->cfqg != cfqq->cfqg)
3340 return false;
3341
3342 if (cfq_slice_used(cfqq))
3343 return true;
3344
3345 /* Allow preemption only if we are idling on sync-noidle tree */
3346 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3347 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3348 new_cfqq->service_tree->count == 2 &&
3349 RB_EMPTY_ROOT(&cfqq->sort_list))
3350 return true;
3351
3352 /*
3353 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3354 */
3355 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3356 return true;
3357
3358 /* An idle queue should not be idle now for some reason */
3359 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3360 return true;
3361
3362 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3363 return false;
3364
3365 /*
3366 * if this request is as-good as one we would expect from the
3367 * current cfqq, let it preempt
3368 */
3369 if (cfq_rq_close(cfqd, cfqq, rq))
3370 return true;
3371
3372 return false;
3373}
3374
3375/*
3376 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3377 * let it have half of its nominal slice.
3378 */
3379static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3380{
3381 struct cfq_queue *old_cfqq = cfqd->active_queue;
3382
3383 cfq_log_cfqq(cfqd, cfqq, "preempt");
3384 cfq_slice_expired(cfqd, 1);
3385
3386 /*
3387 * workload type is changed, don't save slice, otherwise preempt
3388 * doesn't happen
3389 */
3390 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3391 cfqq->cfqg->saved_workload_slice = 0;
3392
3393 /*
3394 * Put the new queue at the front of the of the current list,
3395 * so we know that it will be selected next.
3396 */
3397 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3398
3399 cfq_service_tree_add(cfqd, cfqq, 1);
3400
3401 cfqq->slice_end = 0;
3402 cfq_mark_cfqq_slice_new(cfqq);
3403}
3404
3405/*
3406 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3407 * something we should do about it
3408 */
3409static void
3410cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3411 struct request *rq)
3412{
3413 struct cfq_io_context *cic = RQ_CIC(rq);
3414
3415 cfqd->rq_queued++;
3416
3417 cfq_update_io_thinktime(cfqd, cfqq, cic);
3418 cfq_update_io_seektime(cfqd, cfqq, rq);
3419 cfq_update_idle_window(cfqd, cfqq, cic);
3420
3421 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3422
3423 if (cfqq == cfqd->active_queue) {
3424 /*
3425 * Remember that we saw a request from this process, but
3426 * don't start queuing just yet. Otherwise we risk seeing lots
3427 * of tiny requests, because we disrupt the normal plugging
3428 * and merging. If the request is already larger than a single
3429 * page, let it rip immediately. For that case we assume that
3430 * merging is already done. Ditto for a busy system that
3431 * has other work pending, don't risk delaying until the
3432 * idle timer unplug to continue working.
3433 */
3434 if (cfq_cfqq_wait_request(cfqq)) {
3435 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3436 cfqd->busy_queues > 1) {
3437 cfq_del_timer(cfqd, cfqq);
3438 cfq_clear_cfqq_wait_request(cfqq);
3439 __blk_run_queue(cfqd->queue);
3440 } else {
3441 cfq_blkiocg_update_idle_time_stats(
3442 &cfqq->cfqg->blkg);
3443 cfq_mark_cfqq_must_dispatch(cfqq);
3444 }
3445 }
3446 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3447 /*
3448 * not the active queue - expire current slice if it is
3449 * idle and has expired it's mean thinktime or this new queue
3450 * has some old slice time left and is of higher priority or
3451 * this new queue is RT and the current one is BE
3452 */
3453 cfq_preempt_queue(cfqd, cfqq);
3454 __blk_run_queue(cfqd->queue);
3455 }
3456}
3457
3458static void cfq_insert_request(struct request_queue *q, struct request *rq)
3459{
3460 struct cfq_data *cfqd = q->elevator->elevator_data;
3461 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3462
3463 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3464 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3465
3466 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3467 list_add_tail(&rq->queuelist, &cfqq->fifo);
3468 cfq_add_rq_rb(rq);
3469 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3470 &cfqd->serving_group->blkg, rq_data_dir(rq),
3471 rq_is_sync(rq));
3472 cfq_rq_enqueued(cfqd, cfqq, rq);
3473}
3474
3475/*
3476 * Update hw_tag based on peak queue depth over 50 samples under
3477 * sufficient load.
3478 */
3479static void cfq_update_hw_tag(struct cfq_data *cfqd)
3480{
3481 struct cfq_queue *cfqq = cfqd->active_queue;
3482
3483 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3484 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3485
3486 if (cfqd->hw_tag == 1)
3487 return;
3488
3489 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3490 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3491 return;
3492
3493 /*
3494 * If active queue hasn't enough requests and can idle, cfq might not
3495 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3496 * case
3497 */
3498 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3499 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3500 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3501 return;
3502
3503 if (cfqd->hw_tag_samples++ < 50)
3504 return;
3505
3506 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3507 cfqd->hw_tag = 1;
3508 else
3509 cfqd->hw_tag = 0;
3510}
3511
3512static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3513{
3514 struct cfq_io_context *cic = cfqd->active_cic;
3515
3516 /* If the queue already has requests, don't wait */
3517 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3518 return false;
3519
3520 /* If there are other queues in the group, don't wait */
3521 if (cfqq->cfqg->nr_cfqq > 1)
3522 return false;
3523
3524 if (cfq_slice_used(cfqq))
3525 return true;
3526
3527 /* if slice left is less than think time, wait busy */
3528 if (cic && sample_valid(cic->ttime.ttime_samples)
3529 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3530 return true;
3531
3532 /*
3533 * If think times is less than a jiffy than ttime_mean=0 and above
3534 * will not be true. It might happen that slice has not expired yet
3535 * but will expire soon (4-5 ns) during select_queue(). To cover the
3536 * case where think time is less than a jiffy, mark the queue wait
3537 * busy if only 1 jiffy is left in the slice.
3538 */
3539 if (cfqq->slice_end - jiffies == 1)
3540 return true;
3541
3542 return false;
3543}
3544
3545static void cfq_completed_request(struct request_queue *q, struct request *rq)
3546{
3547 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3548 struct cfq_data *cfqd = cfqq->cfqd;
3549 const int sync = rq_is_sync(rq);
3550 unsigned long now;
3551
3552 now = jiffies;
3553 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3554 !!(rq->cmd_flags & REQ_NOIDLE));
3555
3556 cfq_update_hw_tag(cfqd);
3557
3558 WARN_ON(!cfqd->rq_in_driver);
3559 WARN_ON(!cfqq->dispatched);
3560 cfqd->rq_in_driver--;
3561 cfqq->dispatched--;
3562 (RQ_CFQG(rq))->dispatched--;
3563 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3564 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3565 rq_data_dir(rq), rq_is_sync(rq));
3566
3567 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3568
3569 if (sync) {
3570 struct cfq_rb_root *service_tree;
3571
3572 RQ_CIC(rq)->ttime.last_end_request = now;
3573
3574 if (cfq_cfqq_on_rr(cfqq))
3575 service_tree = cfqq->service_tree;
3576 else
3577 service_tree = service_tree_for(cfqq->cfqg,
3578 cfqq_prio(cfqq), cfqq_type(cfqq));
3579 service_tree->ttime.last_end_request = now;
3580 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3581 cfqd->last_delayed_sync = now;
3582 }
3583
3584 /*
3585 * If this is the active queue, check if it needs to be expired,
3586 * or if we want to idle in case it has no pending requests.
3587 */
3588 if (cfqd->active_queue == cfqq) {
3589 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3590
3591 if (cfq_cfqq_slice_new(cfqq)) {
3592 cfq_set_prio_slice(cfqd, cfqq);
3593 cfq_clear_cfqq_slice_new(cfqq);
3594 }
3595
3596 /*
3597 * Should we wait for next request to come in before we expire
3598 * the queue.
3599 */
3600 if (cfq_should_wait_busy(cfqd, cfqq)) {
3601 unsigned long extend_sl = cfqd->cfq_slice_idle;
3602 if (!cfqd->cfq_slice_idle)
3603 extend_sl = cfqd->cfq_group_idle;
3604 cfqq->slice_end = jiffies + extend_sl;
3605 cfq_mark_cfqq_wait_busy(cfqq);
3606 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3607 }
3608
3609 /*
3610 * Idling is not enabled on:
3611 * - expired queues
3612 * - idle-priority queues
3613 * - async queues
3614 * - queues with still some requests queued
3615 * - when there is a close cooperator
3616 */
3617 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3618 cfq_slice_expired(cfqd, 1);
3619 else if (sync && cfqq_empty &&
3620 !cfq_close_cooperator(cfqd, cfqq)) {
3621 cfq_arm_slice_timer(cfqd);
3622 }
3623 }
3624
3625 if (!cfqd->rq_in_driver)
3626 cfq_schedule_dispatch(cfqd);
3627}
3628
3629static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3630{
3631 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3632 cfq_mark_cfqq_must_alloc_slice(cfqq);
3633 return ELV_MQUEUE_MUST;
3634 }
3635
3636 return ELV_MQUEUE_MAY;
3637}
3638
3639static int cfq_may_queue(struct request_queue *q, int rw)
3640{
3641 struct cfq_data *cfqd = q->elevator->elevator_data;
3642 struct task_struct *tsk = current;
3643 struct cfq_io_context *cic;
3644 struct cfq_queue *cfqq;
3645
3646 /*
3647 * don't force setup of a queue from here, as a call to may_queue
3648 * does not necessarily imply that a request actually will be queued.
3649 * so just lookup a possibly existing queue, or return 'may queue'
3650 * if that fails
3651 */
3652 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3653 if (!cic)
3654 return ELV_MQUEUE_MAY;
3655
3656 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3657 if (cfqq) {
3658 cfq_init_prio_data(cfqq, cic->ioc);
3659
3660 return __cfq_may_queue(cfqq);
3661 }
3662
3663 return ELV_MQUEUE_MAY;
3664}
3665
3666/*
3667 * queue lock held here
3668 */
3669static void cfq_put_request(struct request *rq)
3670{
3671 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3672
3673 if (cfqq) {
3674 const int rw = rq_data_dir(rq);
3675
3676 BUG_ON(!cfqq->allocated[rw]);
3677 cfqq->allocated[rw]--;
3678
3679 put_io_context(RQ_CIC(rq)->ioc);
3680
3681 rq->elevator_private[0] = NULL;
3682 rq->elevator_private[1] = NULL;
3683
3684 /* Put down rq reference on cfqg */
3685 cfq_put_cfqg(RQ_CFQG(rq));
3686 rq->elevator_private[2] = NULL;
3687
3688 cfq_put_queue(cfqq);
3689 }
3690}
3691
3692static struct cfq_queue *
3693cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3694 struct cfq_queue *cfqq)
3695{
3696 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3697 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3698 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3699 cfq_put_queue(cfqq);
3700 return cic_to_cfqq(cic, 1);
3701}
3702
3703/*
3704 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3705 * was the last process referring to said cfqq.
3706 */
3707static struct cfq_queue *
3708split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3709{
3710 if (cfqq_process_refs(cfqq) == 1) {
3711 cfqq->pid = current->pid;
3712 cfq_clear_cfqq_coop(cfqq);
3713 cfq_clear_cfqq_split_coop(cfqq);
3714 return cfqq;
3715 }
3716
3717 cic_set_cfqq(cic, NULL, 1);
3718
3719 cfq_put_cooperator(cfqq);
3720
3721 cfq_put_queue(cfqq);
3722 return NULL;
3723}
3724/*
3725 * Allocate cfq data structures associated with this request.
3726 */
3727static int
3728cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3729{
3730 struct cfq_data *cfqd = q->elevator->elevator_data;
3731 struct cfq_io_context *cic;
3732 const int rw = rq_data_dir(rq);
3733 const bool is_sync = rq_is_sync(rq);
3734 struct cfq_queue *cfqq;
3735 unsigned long flags;
3736
3737 might_sleep_if(gfp_mask & __GFP_WAIT);
3738
3739 cic = cfq_get_io_context(cfqd, gfp_mask);
3740
3741 spin_lock_irqsave(q->queue_lock, flags);
3742
3743 if (!cic)
3744 goto queue_fail;
3745
3746new_queue:
3747 cfqq = cic_to_cfqq(cic, is_sync);
3748 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3749 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3750 cic_set_cfqq(cic, cfqq, is_sync);
3751 } else {
3752 /*
3753 * If the queue was seeky for too long, break it apart.
3754 */
3755 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3756 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3757 cfqq = split_cfqq(cic, cfqq);
3758 if (!cfqq)
3759 goto new_queue;
3760 }
3761
3762 /*
3763 * Check to see if this queue is scheduled to merge with
3764 * another, closely cooperating queue. The merging of
3765 * queues happens here as it must be done in process context.
3766 * The reference on new_cfqq was taken in merge_cfqqs.
3767 */
3768 if (cfqq->new_cfqq)
3769 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3770 }
3771
3772 cfqq->allocated[rw]++;
3773
3774 cfqq->ref++;
3775 rq->elevator_private[0] = cic;
3776 rq->elevator_private[1] = cfqq;
3777 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3778 spin_unlock_irqrestore(q->queue_lock, flags);
3779 return 0;
3780
3781queue_fail:
3782 cfq_schedule_dispatch(cfqd);
3783 spin_unlock_irqrestore(q->queue_lock, flags);
3784 cfq_log(cfqd, "set_request fail");
3785 return 1;
3786}
3787
3788static void cfq_kick_queue(struct work_struct *work)
3789{
3790 struct cfq_data *cfqd =
3791 container_of(work, struct cfq_data, unplug_work);
3792 struct request_queue *q = cfqd->queue;
3793
3794 spin_lock_irq(q->queue_lock);
3795 __blk_run_queue(cfqd->queue);
3796 spin_unlock_irq(q->queue_lock);
3797}
3798
3799/*
3800 * Timer running if the active_queue is currently idling inside its time slice
3801 */
3802static void cfq_idle_slice_timer(unsigned long data)
3803{
3804 struct cfq_data *cfqd = (struct cfq_data *) data;
3805 struct cfq_queue *cfqq;
3806 unsigned long flags;
3807 int timed_out = 1;
3808
3809 cfq_log(cfqd, "idle timer fired");
3810
3811 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3812
3813 cfqq = cfqd->active_queue;
3814 if (cfqq) {
3815 timed_out = 0;
3816
3817 /*
3818 * We saw a request before the queue expired, let it through
3819 */
3820 if (cfq_cfqq_must_dispatch(cfqq))
3821 goto out_kick;
3822
3823 /*
3824 * expired
3825 */
3826 if (cfq_slice_used(cfqq))
3827 goto expire;
3828
3829 /*
3830 * only expire and reinvoke request handler, if there are
3831 * other queues with pending requests
3832 */
3833 if (!cfqd->busy_queues)
3834 goto out_cont;
3835
3836 /*
3837 * not expired and it has a request pending, let it dispatch
3838 */
3839 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3840 goto out_kick;
3841
3842 /*
3843 * Queue depth flag is reset only when the idle didn't succeed
3844 */
3845 cfq_clear_cfqq_deep(cfqq);
3846 }
3847expire:
3848 cfq_slice_expired(cfqd, timed_out);
3849out_kick:
3850 cfq_schedule_dispatch(cfqd);
3851out_cont:
3852 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3853}
3854
3855static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3856{
3857 del_timer_sync(&cfqd->idle_slice_timer);
3858 cancel_work_sync(&cfqd->unplug_work);
3859}
3860
3861static void cfq_put_async_queues(struct cfq_data *cfqd)
3862{
3863 int i;
3864
3865 for (i = 0; i < IOPRIO_BE_NR; i++) {
3866 if (cfqd->async_cfqq[0][i])
3867 cfq_put_queue(cfqd->async_cfqq[0][i]);
3868 if (cfqd->async_cfqq[1][i])
3869 cfq_put_queue(cfqd->async_cfqq[1][i]);
3870 }
3871
3872 if (cfqd->async_idle_cfqq)
3873 cfq_put_queue(cfqd->async_idle_cfqq);
3874}
3875
3876static void cfq_exit_queue(struct elevator_queue *e)
3877{
3878 struct cfq_data *cfqd = e->elevator_data;
3879 struct request_queue *q = cfqd->queue;
3880 bool wait = false;
3881
3882 cfq_shutdown_timer_wq(cfqd);
3883
3884 spin_lock_irq(q->queue_lock);
3885
3886 if (cfqd->active_queue)
3887 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3888
3889 while (!list_empty(&cfqd->cic_list)) {
3890 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3891 struct cfq_io_context,
3892 queue_list);
3893
3894 __cfq_exit_single_io_context(cfqd, cic);
3895 }
3896
3897 cfq_put_async_queues(cfqd);
3898 cfq_release_cfq_groups(cfqd);
3899
3900 /*
3901 * If there are groups which we could not unlink from blkcg list,
3902 * wait for a rcu period for them to be freed.
3903 */
3904 if (cfqd->nr_blkcg_linked_grps)
3905 wait = true;
3906
3907 spin_unlock_irq(q->queue_lock);
3908
3909 cfq_shutdown_timer_wq(cfqd);
3910
3911 spin_lock(&cic_index_lock);
3912 ida_remove(&cic_index_ida, cfqd->cic_index);
3913 spin_unlock(&cic_index_lock);
3914
3915 /*
3916 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3917 * Do this wait only if there are other unlinked groups out
3918 * there. This can happen if cgroup deletion path claimed the
3919 * responsibility of cleaning up a group before queue cleanup code
3920 * get to the group.
3921 *
3922 * Do not call synchronize_rcu() unconditionally as there are drivers
3923 * which create/delete request queue hundreds of times during scan/boot
3924 * and synchronize_rcu() can take significant time and slow down boot.
3925 */
3926 if (wait)
3927 synchronize_rcu();
3928
3929#ifdef CONFIG_CFQ_GROUP_IOSCHED
3930 /* Free up per cpu stats for root group */
3931 free_percpu(cfqd->root_group.blkg.stats_cpu);
3932#endif
3933 kfree(cfqd);
3934}
3935
3936static int cfq_alloc_cic_index(void)
3937{
3938 int index, error;
3939
3940 do {
3941 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3942 return -ENOMEM;
3943
3944 spin_lock(&cic_index_lock);
3945 error = ida_get_new(&cic_index_ida, &index);
3946 spin_unlock(&cic_index_lock);
3947 if (error && error != -EAGAIN)
3948 return error;
3949 } while (error);
3950
3951 return index;
3952}
3953
3954static void *cfq_init_queue(struct request_queue *q)
3955{
3956 struct cfq_data *cfqd;
3957 int i, j;
3958 struct cfq_group *cfqg;
3959 struct cfq_rb_root *st;
3960
3961 i = cfq_alloc_cic_index();
3962 if (i < 0)
3963 return NULL;
3964
3965 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3966 if (!cfqd) {
3967 spin_lock(&cic_index_lock);
3968 ida_remove(&cic_index_ida, i);
3969 spin_unlock(&cic_index_lock);
3970 return NULL;
3971 }
3972
3973 /*
3974 * Don't need take queue_lock in the routine, since we are
3975 * initializing the ioscheduler, and nobody is using cfqd
3976 */
3977 cfqd->cic_index = i;
3978
3979 /* Init root service tree */
3980 cfqd->grp_service_tree = CFQ_RB_ROOT;
3981
3982 /* Init root group */
3983 cfqg = &cfqd->root_group;
3984 for_each_cfqg_st(cfqg, i, j, st)
3985 *st = CFQ_RB_ROOT;
3986 RB_CLEAR_NODE(&cfqg->rb_node);
3987
3988 /* Give preference to root group over other groups */
3989 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3990
3991#ifdef CONFIG_CFQ_GROUP_IOSCHED
3992 /*
3993 * Set root group reference to 2. One reference will be dropped when
3994 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3995 * Other reference will remain there as we don't want to delete this
3996 * group as it is statically allocated and gets destroyed when
3997 * throtl_data goes away.
3998 */
3999 cfqg->ref = 2;
4000
4001 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4002 kfree(cfqg);
4003 kfree(cfqd);
4004 return NULL;
4005 }
4006
4007 rcu_read_lock();
4008
4009 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4010 (void *)cfqd, 0);
4011 rcu_read_unlock();
4012 cfqd->nr_blkcg_linked_grps++;
4013
4014 /* Add group on cfqd->cfqg_list */
4015 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
4016#endif
4017 /*
4018 * Not strictly needed (since RB_ROOT just clears the node and we
4019 * zeroed cfqd on alloc), but better be safe in case someone decides
4020 * to add magic to the rb code
4021 */
4022 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4023 cfqd->prio_trees[i] = RB_ROOT;
4024
4025 /*
4026 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4027 * Grab a permanent reference to it, so that the normal code flow
4028 * will not attempt to free it.
4029 */
4030 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4031 cfqd->oom_cfqq.ref++;
4032 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4033
4034 INIT_LIST_HEAD(&cfqd->cic_list);
4035
4036 cfqd->queue = q;
4037
4038 init_timer(&cfqd->idle_slice_timer);
4039 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4040 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4041
4042 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4043
4044 cfqd->cfq_quantum = cfq_quantum;
4045 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4046 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4047 cfqd->cfq_back_max = cfq_back_max;
4048 cfqd->cfq_back_penalty = cfq_back_penalty;
4049 cfqd->cfq_slice[0] = cfq_slice_async;
4050 cfqd->cfq_slice[1] = cfq_slice_sync;
4051 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4052 cfqd->cfq_slice_idle = cfq_slice_idle;
4053 cfqd->cfq_group_idle = cfq_group_idle;
4054 cfqd->cfq_latency = 1;
4055 cfqd->hw_tag = -1;
4056 /*
4057 * we optimistically start assuming sync ops weren't delayed in last
4058 * second, in order to have larger depth for async operations.
4059 */
4060 cfqd->last_delayed_sync = jiffies - HZ;
4061 return cfqd;
4062}
4063
4064static void cfq_slab_kill(void)
4065{
4066 /*
4067 * Caller already ensured that pending RCU callbacks are completed,
4068 * so we should have no busy allocations at this point.
4069 */
4070 if (cfq_pool)
4071 kmem_cache_destroy(cfq_pool);
4072 if (cfq_ioc_pool)
4073 kmem_cache_destroy(cfq_ioc_pool);
4074}
4075
4076static int __init cfq_slab_setup(void)
4077{
4078 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4079 if (!cfq_pool)
4080 goto fail;
4081
4082 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4083 if (!cfq_ioc_pool)
4084 goto fail;
4085
4086 return 0;
4087fail:
4088 cfq_slab_kill();
4089 return -ENOMEM;
4090}
4091
4092/*
4093 * sysfs parts below -->
4094 */
4095static ssize_t
4096cfq_var_show(unsigned int var, char *page)
4097{
4098 return sprintf(page, "%d\n", var);
4099}
4100
4101static ssize_t
4102cfq_var_store(unsigned int *var, const char *page, size_t count)
4103{
4104 char *p = (char *) page;
4105
4106 *var = simple_strtoul(p, &p, 10);
4107 return count;
4108}
4109
4110#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4111static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4112{ \
4113 struct cfq_data *cfqd = e->elevator_data; \
4114 unsigned int __data = __VAR; \
4115 if (__CONV) \
4116 __data = jiffies_to_msecs(__data); \
4117 return cfq_var_show(__data, (page)); \
4118}
4119SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4120SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4121SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4122SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4123SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4124SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4125SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4126SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4127SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4128SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4129SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4130#undef SHOW_FUNCTION
4131
4132#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4133static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4134{ \
4135 struct cfq_data *cfqd = e->elevator_data; \
4136 unsigned int __data; \
4137 int ret = cfq_var_store(&__data, (page), count); \
4138 if (__data < (MIN)) \
4139 __data = (MIN); \
4140 else if (__data > (MAX)) \
4141 __data = (MAX); \
4142 if (__CONV) \
4143 *(__PTR) = msecs_to_jiffies(__data); \
4144 else \
4145 *(__PTR) = __data; \
4146 return ret; \
4147}
4148STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4149STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4150 UINT_MAX, 1);
4151STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4152 UINT_MAX, 1);
4153STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4154STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4155 UINT_MAX, 0);
4156STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4157STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4158STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4159STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4160STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4161 UINT_MAX, 0);
4162STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4163#undef STORE_FUNCTION
4164
4165#define CFQ_ATTR(name) \
4166 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4167
4168static struct elv_fs_entry cfq_attrs[] = {
4169 CFQ_ATTR(quantum),
4170 CFQ_ATTR(fifo_expire_sync),
4171 CFQ_ATTR(fifo_expire_async),
4172 CFQ_ATTR(back_seek_max),
4173 CFQ_ATTR(back_seek_penalty),
4174 CFQ_ATTR(slice_sync),
4175 CFQ_ATTR(slice_async),
4176 CFQ_ATTR(slice_async_rq),
4177 CFQ_ATTR(slice_idle),
4178 CFQ_ATTR(group_idle),
4179 CFQ_ATTR(low_latency),
4180 __ATTR_NULL
4181};
4182
4183static struct elevator_type iosched_cfq = {
4184 .ops = {
4185 .elevator_merge_fn = cfq_merge,
4186 .elevator_merged_fn = cfq_merged_request,
4187 .elevator_merge_req_fn = cfq_merged_requests,
4188 .elevator_allow_merge_fn = cfq_allow_merge,
4189 .elevator_bio_merged_fn = cfq_bio_merged,
4190 .elevator_dispatch_fn = cfq_dispatch_requests,
4191 .elevator_add_req_fn = cfq_insert_request,
4192 .elevator_activate_req_fn = cfq_activate_request,
4193 .elevator_deactivate_req_fn = cfq_deactivate_request,
4194 .elevator_completed_req_fn = cfq_completed_request,
4195 .elevator_former_req_fn = elv_rb_former_request,
4196 .elevator_latter_req_fn = elv_rb_latter_request,
4197 .elevator_set_req_fn = cfq_set_request,
4198 .elevator_put_req_fn = cfq_put_request,
4199 .elevator_may_queue_fn = cfq_may_queue,
4200 .elevator_init_fn = cfq_init_queue,
4201 .elevator_exit_fn = cfq_exit_queue,
4202 .trim = cfq_free_io_context,
4203 },
4204 .elevator_attrs = cfq_attrs,
4205 .elevator_name = "cfq",
4206 .elevator_owner = THIS_MODULE,
4207};
4208
4209#ifdef CONFIG_CFQ_GROUP_IOSCHED
4210static struct blkio_policy_type blkio_policy_cfq = {
4211 .ops = {
4212 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4213 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4214 },
4215 .plid = BLKIO_POLICY_PROP,
4216};
4217#else
4218static struct blkio_policy_type blkio_policy_cfq;
4219#endif
4220
4221static int __init cfq_init(void)
4222{
4223 /*
4224 * could be 0 on HZ < 1000 setups
4225 */
4226 if (!cfq_slice_async)
4227 cfq_slice_async = 1;
4228 if (!cfq_slice_idle)
4229 cfq_slice_idle = 1;
4230
4231#ifdef CONFIG_CFQ_GROUP_IOSCHED
4232 if (!cfq_group_idle)
4233 cfq_group_idle = 1;
4234#else
4235 cfq_group_idle = 0;
4236#endif
4237 if (cfq_slab_setup())
4238 return -ENOMEM;
4239
4240 elv_register(&iosched_cfq);
4241 blkio_policy_register(&blkio_policy_cfq);
4242
4243 return 0;
4244}
4245
4246static void __exit cfq_exit(void)
4247{
4248 DECLARE_COMPLETION_ONSTACK(all_gone);
4249 blkio_policy_unregister(&blkio_policy_cfq);
4250 elv_unregister(&iosched_cfq);
4251 ioc_gone = &all_gone;
4252 /* ioc_gone's update must be visible before reading ioc_count */
4253 smp_wmb();
4254
4255 /*
4256 * this also protects us from entering cfq_slab_kill() with
4257 * pending RCU callbacks
4258 */
4259 if (elv_ioc_count_read(cfq_ioc_count))
4260 wait_for_completion(&all_gone);
4261 ida_destroy(&cic_index_ida);
4262 cfq_slab_kill();
4263}
4264
4265module_init(cfq_init);
4266module_exit(cfq_exit);
4267
4268MODULE_AUTHOR("Jens Axboe");
4269MODULE_LICENSE("GPL");
4270MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");