]> git.proxmox.com Git - rustc.git/blame_incremental - compiler/rustc_mir_transform/src/dataflow_const_prop.rs
bump version to 1.82.0+dfsg1-1~bpo12+pve2
[rustc.git] / compiler / rustc_mir_transform / src / dataflow_const_prop.rs
... / ...
CommitLineData
1//! A constant propagation optimization pass based on dataflow analysis.
2//!
3//! Currently, this pass only propagates scalar values.
4
5use rustc_const_eval::const_eval::{throw_machine_stop_str, DummyMachine};
6use rustc_const_eval::interpret::{ImmTy, Immediate, InterpCx, OpTy, PlaceTy, Projectable};
7use rustc_data_structures::fx::FxHashMap;
8use rustc_hir::def::DefKind;
9use rustc_middle::bug;
10use rustc_middle::mir::interpret::{InterpResult, Scalar};
11use rustc_middle::mir::visit::{MutVisitor, PlaceContext, Visitor};
12use rustc_middle::mir::*;
13use rustc_middle::ty::layout::{HasParamEnv, LayoutOf};
14use rustc_middle::ty::{self, Ty, TyCtxt};
15use rustc_mir_dataflow::lattice::FlatSet;
16use rustc_mir_dataflow::value_analysis::{
17 Map, PlaceIndex, State, TrackElem, ValueAnalysis, ValueAnalysisWrapper, ValueOrPlace,
18};
19use rustc_mir_dataflow::{Analysis, Results, ResultsVisitor};
20use rustc_span::DUMMY_SP;
21use rustc_target::abi::{Abi, FieldIdx, Size, VariantIdx, FIRST_VARIANT};
22use tracing::{debug, debug_span, instrument};
23
24// These constants are somewhat random guesses and have not been optimized.
25// If `tcx.sess.mir_opt_level() >= 4`, we ignore the limits (this can become very expensive).
26const BLOCK_LIMIT: usize = 100;
27const PLACE_LIMIT: usize = 100;
28
29pub struct DataflowConstProp;
30
31impl<'tcx> MirPass<'tcx> for DataflowConstProp {
32 fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
33 sess.mir_opt_level() >= 3
34 }
35
36 #[instrument(skip_all level = "debug")]
37 fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
38 debug!(def_id = ?body.source.def_id());
39 if tcx.sess.mir_opt_level() < 4 && body.basic_blocks.len() > BLOCK_LIMIT {
40 debug!("aborted dataflow const prop due too many basic blocks");
41 return;
42 }
43
44 // We want to have a somewhat linear runtime w.r.t. the number of statements/terminators.
45 // Let's call this number `n`. Dataflow analysis has `O(h*n)` transfer function
46 // applications, where `h` is the height of the lattice. Because the height of our lattice
47 // is linear w.r.t. the number of tracked places, this is `O(tracked_places * n)`. However,
48 // because every transfer function application could traverse the whole map, this becomes
49 // `O(num_nodes * tracked_places * n)` in terms of time complexity. Since the number of
50 // map nodes is strongly correlated to the number of tracked places, this becomes more or
51 // less `O(n)` if we place a constant limit on the number of tracked places.
52 let place_limit = if tcx.sess.mir_opt_level() < 4 { Some(PLACE_LIMIT) } else { None };
53
54 // Decide which places to track during the analysis.
55 let map = Map::new(tcx, body, place_limit);
56
57 // Perform the actual dataflow analysis.
58 let analysis = ConstAnalysis::new(tcx, body, map);
59 let mut results = debug_span!("analyze")
60 .in_scope(|| analysis.wrap().into_engine(tcx, body).iterate_to_fixpoint());
61
62 // Collect results and patch the body afterwards.
63 let mut visitor = Collector::new(tcx, &body.local_decls);
64 debug_span!("collect").in_scope(|| results.visit_reachable_with(body, &mut visitor));
65 let mut patch = visitor.patch;
66 debug_span!("patch").in_scope(|| patch.visit_body_preserves_cfg(body));
67 }
68}
69
70struct ConstAnalysis<'a, 'tcx> {
71 map: Map<'tcx>,
72 tcx: TyCtxt<'tcx>,
73 local_decls: &'a LocalDecls<'tcx>,
74 ecx: InterpCx<'tcx, DummyMachine>,
75 param_env: ty::ParamEnv<'tcx>,
76}
77
78impl<'tcx> ValueAnalysis<'tcx> for ConstAnalysis<'_, 'tcx> {
79 type Value = FlatSet<Scalar>;
80
81 const NAME: &'static str = "ConstAnalysis";
82
83 fn map(&self) -> &Map<'tcx> {
84 &self.map
85 }
86
87 fn handle_set_discriminant(
88 &self,
89 place: Place<'tcx>,
90 variant_index: VariantIdx,
91 state: &mut State<Self::Value>,
92 ) {
93 state.flood_discr(place.as_ref(), &self.map);
94 if self.map.find_discr(place.as_ref()).is_some() {
95 let enum_ty = place.ty(self.local_decls, self.tcx).ty;
96 if let Some(discr) = self.eval_discriminant(enum_ty, variant_index) {
97 state.assign_discr(
98 place.as_ref(),
99 ValueOrPlace::Value(FlatSet::Elem(discr)),
100 &self.map,
101 );
102 }
103 }
104 }
105
106 fn handle_assign(
107 &self,
108 target: Place<'tcx>,
109 rvalue: &Rvalue<'tcx>,
110 state: &mut State<Self::Value>,
111 ) {
112 match rvalue {
113 Rvalue::Use(operand) => {
114 state.flood(target.as_ref(), self.map());
115 if let Some(target) = self.map.find(target.as_ref()) {
116 self.assign_operand(state, target, operand);
117 }
118 }
119 Rvalue::CopyForDeref(rhs) => {
120 state.flood(target.as_ref(), self.map());
121 if let Some(target) = self.map.find(target.as_ref()) {
122 self.assign_operand(state, target, &Operand::Copy(*rhs));
123 }
124 }
125 Rvalue::Aggregate(kind, operands) => {
126 // If we assign `target = Enum::Variant#0(operand)`,
127 // we must make sure that all `target as Variant#i` are `Top`.
128 state.flood(target.as_ref(), self.map());
129
130 let Some(target_idx) = self.map().find(target.as_ref()) else { return };
131
132 let (variant_target, variant_index) = match **kind {
133 AggregateKind::Tuple | AggregateKind::Closure(..) => (Some(target_idx), None),
134 AggregateKind::Adt(def_id, variant_index, ..) => {
135 match self.tcx.def_kind(def_id) {
136 DefKind::Struct => (Some(target_idx), None),
137 DefKind::Enum => (
138 self.map.apply(target_idx, TrackElem::Variant(variant_index)),
139 Some(variant_index),
140 ),
141 _ => return,
142 }
143 }
144 _ => return,
145 };
146 if let Some(variant_target_idx) = variant_target {
147 for (field_index, operand) in operands.iter_enumerated() {
148 if let Some(field) =
149 self.map().apply(variant_target_idx, TrackElem::Field(field_index))
150 {
151 self.assign_operand(state, field, operand);
152 }
153 }
154 }
155 if let Some(variant_index) = variant_index
156 && let Some(discr_idx) = self.map().apply(target_idx, TrackElem::Discriminant)
157 {
158 // We are assigning the discriminant as part of an aggregate.
159 // This discriminant can only alias a variant field's value if the operand
160 // had an invalid value for that type.
161 // Using invalid values is UB, so we are allowed to perform the assignment
162 // without extra flooding.
163 let enum_ty = target.ty(self.local_decls, self.tcx).ty;
164 if let Some(discr_val) = self.eval_discriminant(enum_ty, variant_index) {
165 state.insert_value_idx(discr_idx, FlatSet::Elem(discr_val), &self.map);
166 }
167 }
168 }
169 Rvalue::BinaryOp(op, box (left, right)) if op.is_overflowing() => {
170 // Flood everything now, so we can use `insert_value_idx` directly later.
171 state.flood(target.as_ref(), self.map());
172
173 let Some(target) = self.map().find(target.as_ref()) else { return };
174
175 let value_target = self.map().apply(target, TrackElem::Field(0_u32.into()));
176 let overflow_target = self.map().apply(target, TrackElem::Field(1_u32.into()));
177
178 if value_target.is_some() || overflow_target.is_some() {
179 let (val, overflow) = self.binary_op(state, *op, left, right);
180
181 if let Some(value_target) = value_target {
182 // We have flooded `target` earlier.
183 state.insert_value_idx(value_target, val, self.map());
184 }
185 if let Some(overflow_target) = overflow_target {
186 // We have flooded `target` earlier.
187 state.insert_value_idx(overflow_target, overflow, self.map());
188 }
189 }
190 }
191 Rvalue::Cast(
192 CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize),
193 operand,
194 _,
195 ) => {
196 let pointer = self.handle_operand(operand, state);
197 state.assign(target.as_ref(), pointer, self.map());
198
199 if let Some(target_len) = self.map().find_len(target.as_ref())
200 && let operand_ty = operand.ty(self.local_decls, self.tcx)
201 && let Some(operand_ty) = operand_ty.builtin_deref(true)
202 && let ty::Array(_, len) = operand_ty.kind()
203 && let Some(len) = Const::Ty(self.tcx.types.usize, *len)
204 .try_eval_scalar_int(self.tcx, self.param_env)
205 {
206 state.insert_value_idx(target_len, FlatSet::Elem(len.into()), self.map());
207 }
208 }
209 _ => self.super_assign(target, rvalue, state),
210 }
211 }
212
213 fn handle_rvalue(
214 &self,
215 rvalue: &Rvalue<'tcx>,
216 state: &mut State<Self::Value>,
217 ) -> ValueOrPlace<Self::Value> {
218 let val = match rvalue {
219 Rvalue::Len(place) => {
220 let place_ty = place.ty(self.local_decls, self.tcx);
221 if let ty::Array(_, len) = place_ty.ty.kind() {
222 Const::Ty(self.tcx.types.usize, *len)
223 .try_eval_scalar(self.tcx, self.param_env)
224 .map_or(FlatSet::Top, FlatSet::Elem)
225 } else if let [ProjectionElem::Deref] = place.projection[..] {
226 state.get_len(place.local.into(), self.map())
227 } else {
228 FlatSet::Top
229 }
230 }
231 Rvalue::Cast(CastKind::IntToInt | CastKind::IntToFloat, operand, ty) => {
232 let Ok(layout) = self.tcx.layout_of(self.param_env.and(*ty)) else {
233 return ValueOrPlace::Value(FlatSet::Top);
234 };
235 match self.eval_operand(operand, state) {
236 FlatSet::Elem(op) => self
237 .ecx
238 .int_to_int_or_float(&op, layout)
239 .map_or(FlatSet::Top, |result| self.wrap_immediate(*result)),
240 FlatSet::Bottom => FlatSet::Bottom,
241 FlatSet::Top => FlatSet::Top,
242 }
243 }
244 Rvalue::Cast(CastKind::FloatToInt | CastKind::FloatToFloat, operand, ty) => {
245 let Ok(layout) = self.tcx.layout_of(self.param_env.and(*ty)) else {
246 return ValueOrPlace::Value(FlatSet::Top);
247 };
248 match self.eval_operand(operand, state) {
249 FlatSet::Elem(op) => self
250 .ecx
251 .float_to_float_or_int(&op, layout)
252 .map_or(FlatSet::Top, |result| self.wrap_immediate(*result)),
253 FlatSet::Bottom => FlatSet::Bottom,
254 FlatSet::Top => FlatSet::Top,
255 }
256 }
257 Rvalue::Cast(CastKind::Transmute, operand, _) => {
258 match self.eval_operand(operand, state) {
259 FlatSet::Elem(op) => self.wrap_immediate(*op),
260 FlatSet::Bottom => FlatSet::Bottom,
261 FlatSet::Top => FlatSet::Top,
262 }
263 }
264 Rvalue::BinaryOp(op, box (left, right)) if !op.is_overflowing() => {
265 // Overflows must be ignored here.
266 // The overflowing operators are handled in `handle_assign`.
267 let (val, _overflow) = self.binary_op(state, *op, left, right);
268 val
269 }
270 Rvalue::UnaryOp(op, operand) => match self.eval_operand(operand, state) {
271 FlatSet::Elem(value) => self
272 .ecx
273 .unary_op(*op, &value)
274 .map_or(FlatSet::Top, |val| self.wrap_immediate(*val)),
275 FlatSet::Bottom => FlatSet::Bottom,
276 FlatSet::Top => FlatSet::Top,
277 },
278 Rvalue::NullaryOp(null_op, ty) => {
279 let Ok(layout) = self.tcx.layout_of(self.param_env.and(*ty)) else {
280 return ValueOrPlace::Value(FlatSet::Top);
281 };
282 let val = match null_op {
283 NullOp::SizeOf if layout.is_sized() => layout.size.bytes(),
284 NullOp::AlignOf if layout.is_sized() => layout.align.abi.bytes(),
285 NullOp::OffsetOf(fields) => self
286 .ecx
287 .tcx
288 .offset_of_subfield(self.ecx.param_env(), layout, fields.iter())
289 .bytes(),
290 _ => return ValueOrPlace::Value(FlatSet::Top),
291 };
292 FlatSet::Elem(Scalar::from_target_usize(val, &self.tcx))
293 }
294 Rvalue::Discriminant(place) => state.get_discr(place.as_ref(), self.map()),
295 _ => return self.super_rvalue(rvalue, state),
296 };
297 ValueOrPlace::Value(val)
298 }
299
300 fn handle_constant(
301 &self,
302 constant: &ConstOperand<'tcx>,
303 _state: &mut State<Self::Value>,
304 ) -> Self::Value {
305 constant
306 .const_
307 .try_eval_scalar(self.tcx, self.param_env)
308 .map_or(FlatSet::Top, FlatSet::Elem)
309 }
310
311 fn handle_switch_int<'mir>(
312 &self,
313 discr: &'mir Operand<'tcx>,
314 targets: &'mir SwitchTargets,
315 state: &mut State<Self::Value>,
316 ) -> TerminatorEdges<'mir, 'tcx> {
317 let value = match self.handle_operand(discr, state) {
318 ValueOrPlace::Value(value) => value,
319 ValueOrPlace::Place(place) => state.get_idx(place, self.map()),
320 };
321 match value {
322 // We are branching on uninitialized data, this is UB, treat it as unreachable.
323 // This allows the set of visited edges to grow monotonically with the lattice.
324 FlatSet::Bottom => TerminatorEdges::None,
325 FlatSet::Elem(scalar) => {
326 let choice = scalar.assert_scalar_int().to_bits_unchecked();
327 TerminatorEdges::Single(targets.target_for_value(choice))
328 }
329 FlatSet::Top => TerminatorEdges::SwitchInt { discr, targets },
330 }
331 }
332}
333
334impl<'a, 'tcx> ConstAnalysis<'a, 'tcx> {
335 pub fn new(tcx: TyCtxt<'tcx>, body: &'a Body<'tcx>, map: Map<'tcx>) -> Self {
336 let param_env = tcx.param_env_reveal_all_normalized(body.source.def_id());
337 Self {
338 map,
339 tcx,
340 local_decls: &body.local_decls,
341 ecx: InterpCx::new(tcx, DUMMY_SP, param_env, DummyMachine),
342 param_env,
343 }
344 }
345
346 /// The caller must have flooded `place`.
347 fn assign_operand(
348 &self,
349 state: &mut State<FlatSet<Scalar>>,
350 place: PlaceIndex,
351 operand: &Operand<'tcx>,
352 ) {
353 match operand {
354 Operand::Copy(rhs) | Operand::Move(rhs) => {
355 if let Some(rhs) = self.map.find(rhs.as_ref()) {
356 state.insert_place_idx(place, rhs, &self.map);
357 } else if rhs.projection.first() == Some(&PlaceElem::Deref)
358 && let FlatSet::Elem(pointer) = state.get(rhs.local.into(), &self.map)
359 && let rhs_ty = self.local_decls[rhs.local].ty
360 && let Ok(rhs_layout) = self.tcx.layout_of(self.param_env.and(rhs_ty))
361 {
362 let op = ImmTy::from_scalar(pointer, rhs_layout).into();
363 self.assign_constant(state, place, op, rhs.projection);
364 }
365 }
366 Operand::Constant(box constant) => {
367 if let Ok(constant) =
368 self.ecx.eval_mir_constant(&constant.const_, constant.span, None)
369 {
370 self.assign_constant(state, place, constant, &[]);
371 }
372 }
373 }
374 }
375
376 /// The caller must have flooded `place`.
377 ///
378 /// Perform: `place = operand.projection`.
379 #[instrument(level = "trace", skip(self, state))]
380 fn assign_constant(
381 &self,
382 state: &mut State<FlatSet<Scalar>>,
383 place: PlaceIndex,
384 mut operand: OpTy<'tcx>,
385 projection: &[PlaceElem<'tcx>],
386 ) {
387 for &(mut proj_elem) in projection {
388 if let PlaceElem::Index(index) = proj_elem {
389 if let FlatSet::Elem(index) = state.get(index.into(), &self.map)
390 && let Ok(offset) = index.to_target_usize(&self.tcx)
391 && let Some(min_length) = offset.checked_add(1)
392 {
393 proj_elem = PlaceElem::ConstantIndex { offset, min_length, from_end: false };
394 } else {
395 return;
396 }
397 }
398 operand = if let Ok(operand) = self.ecx.project(&operand, proj_elem) {
399 operand
400 } else {
401 return;
402 }
403 }
404
405 self.map.for_each_projection_value(
406 place,
407 operand,
408 &mut |elem, op| match elem {
409 TrackElem::Field(idx) => self.ecx.project_field(op, idx.as_usize()).ok(),
410 TrackElem::Variant(idx) => self.ecx.project_downcast(op, idx).ok(),
411 TrackElem::Discriminant => {
412 let variant = self.ecx.read_discriminant(op).ok()?;
413 let discr_value =
414 self.ecx.discriminant_for_variant(op.layout.ty, variant).ok()?;
415 Some(discr_value.into())
416 }
417 TrackElem::DerefLen => {
418 let op: OpTy<'_> = self.ecx.deref_pointer(op).ok()?.into();
419 let len_usize = op.len(&self.ecx).ok()?;
420 let layout =
421 self.tcx.layout_of(self.param_env.and(self.tcx.types.usize)).unwrap();
422 Some(ImmTy::from_uint(len_usize, layout).into())
423 }
424 },
425 &mut |place, op| {
426 if let Ok(imm) = self.ecx.read_immediate_raw(op)
427 && let Some(imm) = imm.right()
428 {
429 let elem = self.wrap_immediate(*imm);
430 state.insert_value_idx(place, elem, &self.map);
431 }
432 },
433 );
434 }
435
436 fn binary_op(
437 &self,
438 state: &mut State<FlatSet<Scalar>>,
439 op: BinOp,
440 left: &Operand<'tcx>,
441 right: &Operand<'tcx>,
442 ) -> (FlatSet<Scalar>, FlatSet<Scalar>) {
443 let left = self.eval_operand(left, state);
444 let right = self.eval_operand(right, state);
445
446 match (left, right) {
447 (FlatSet::Bottom, _) | (_, FlatSet::Bottom) => (FlatSet::Bottom, FlatSet::Bottom),
448 // Both sides are known, do the actual computation.
449 (FlatSet::Elem(left), FlatSet::Elem(right)) => {
450 match self.ecx.binary_op(op, &left, &right) {
451 // Ideally this would return an Immediate, since it's sometimes
452 // a pair and sometimes not. But as a hack we always return a pair
453 // and just make the 2nd component `Bottom` when it does not exist.
454 Ok(val) => {
455 if matches!(val.layout.abi, Abi::ScalarPair(..)) {
456 let (val, overflow) = val.to_scalar_pair();
457 (FlatSet::Elem(val), FlatSet::Elem(overflow))
458 } else {
459 (FlatSet::Elem(val.to_scalar()), FlatSet::Bottom)
460 }
461 }
462 _ => (FlatSet::Top, FlatSet::Top),
463 }
464 }
465 // Exactly one side is known, attempt some algebraic simplifications.
466 (FlatSet::Elem(const_arg), _) | (_, FlatSet::Elem(const_arg)) => {
467 let layout = const_arg.layout;
468 if !matches!(layout.abi, rustc_target::abi::Abi::Scalar(..)) {
469 return (FlatSet::Top, FlatSet::Top);
470 }
471
472 let arg_scalar = const_arg.to_scalar();
473 let Ok(arg_value) = arg_scalar.to_bits(layout.size) else {
474 return (FlatSet::Top, FlatSet::Top);
475 };
476
477 match op {
478 BinOp::BitAnd if arg_value == 0 => (FlatSet::Elem(arg_scalar), FlatSet::Bottom),
479 BinOp::BitOr
480 if arg_value == layout.size.truncate(u128::MAX)
481 || (layout.ty.is_bool() && arg_value == 1) =>
482 {
483 (FlatSet::Elem(arg_scalar), FlatSet::Bottom)
484 }
485 BinOp::Mul if layout.ty.is_integral() && arg_value == 0 => {
486 (FlatSet::Elem(arg_scalar), FlatSet::Elem(Scalar::from_bool(false)))
487 }
488 _ => (FlatSet::Top, FlatSet::Top),
489 }
490 }
491 (FlatSet::Top, FlatSet::Top) => (FlatSet::Top, FlatSet::Top),
492 }
493 }
494
495 fn eval_operand(
496 &self,
497 op: &Operand<'tcx>,
498 state: &mut State<FlatSet<Scalar>>,
499 ) -> FlatSet<ImmTy<'tcx>> {
500 let value = match self.handle_operand(op, state) {
501 ValueOrPlace::Value(value) => value,
502 ValueOrPlace::Place(place) => state.get_idx(place, &self.map),
503 };
504 match value {
505 FlatSet::Top => FlatSet::Top,
506 FlatSet::Elem(scalar) => {
507 let ty = op.ty(self.local_decls, self.tcx);
508 self.tcx.layout_of(self.param_env.and(ty)).map_or(FlatSet::Top, |layout| {
509 FlatSet::Elem(ImmTy::from_scalar(scalar, layout))
510 })
511 }
512 FlatSet::Bottom => FlatSet::Bottom,
513 }
514 }
515
516 fn eval_discriminant(&self, enum_ty: Ty<'tcx>, variant_index: VariantIdx) -> Option<Scalar> {
517 if !enum_ty.is_enum() {
518 return None;
519 }
520 let enum_ty_layout = self.tcx.layout_of(self.param_env.and(enum_ty)).ok()?;
521 let discr_value =
522 self.ecx.discriminant_for_variant(enum_ty_layout.ty, variant_index).ok()?;
523 Some(discr_value.to_scalar())
524 }
525
526 fn wrap_immediate(&self, imm: Immediate) -> FlatSet<Scalar> {
527 match imm {
528 Immediate::Scalar(scalar) => FlatSet::Elem(scalar),
529 Immediate::Uninit => FlatSet::Bottom,
530 _ => FlatSet::Top,
531 }
532 }
533}
534
535pub(crate) struct Patch<'tcx> {
536 tcx: TyCtxt<'tcx>,
537
538 /// For a given MIR location, this stores the values of the operands used by that location. In
539 /// particular, this is before the effect, such that the operands of `_1 = _1 + _2` are
540 /// properly captured. (This may become UB soon, but it is currently emitted even by safe code.)
541 pub(crate) before_effect: FxHashMap<(Location, Place<'tcx>), Const<'tcx>>,
542
543 /// Stores the assigned values for assignments where the Rvalue is constant.
544 pub(crate) assignments: FxHashMap<Location, Const<'tcx>>,
545}
546
547impl<'tcx> Patch<'tcx> {
548 pub(crate) fn new(tcx: TyCtxt<'tcx>) -> Self {
549 Self { tcx, before_effect: FxHashMap::default(), assignments: FxHashMap::default() }
550 }
551
552 fn make_operand(&self, const_: Const<'tcx>) -> Operand<'tcx> {
553 Operand::Constant(Box::new(ConstOperand { span: DUMMY_SP, user_ty: None, const_ }))
554 }
555}
556
557struct Collector<'tcx, 'locals> {
558 patch: Patch<'tcx>,
559 local_decls: &'locals LocalDecls<'tcx>,
560}
561
562impl<'tcx, 'locals> Collector<'tcx, 'locals> {
563 pub(crate) fn new(tcx: TyCtxt<'tcx>, local_decls: &'locals LocalDecls<'tcx>) -> Self {
564 Self { patch: Patch::new(tcx), local_decls }
565 }
566
567 #[instrument(level = "trace", skip(self, ecx, map), ret)]
568 fn try_make_constant(
569 &self,
570 ecx: &mut InterpCx<'tcx, DummyMachine>,
571 place: Place<'tcx>,
572 state: &State<FlatSet<Scalar>>,
573 map: &Map<'tcx>,
574 ) -> Option<Const<'tcx>> {
575 let ty = place.ty(self.local_decls, self.patch.tcx).ty;
576 let layout = ecx.layout_of(ty).ok()?;
577
578 if layout.is_zst() {
579 return Some(Const::zero_sized(ty));
580 }
581
582 if layout.is_unsized() {
583 return None;
584 }
585
586 let place = map.find(place.as_ref())?;
587 if layout.abi.is_scalar()
588 && let Some(value) = propagatable_scalar(place, state, map)
589 {
590 return Some(Const::Val(ConstValue::Scalar(value), ty));
591 }
592
593 if matches!(layout.abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
594 let alloc_id = ecx
595 .intern_with_temp_alloc(layout, |ecx, dest| {
596 try_write_constant(ecx, dest, place, ty, state, map)
597 })
598 .ok()?;
599 return Some(Const::Val(ConstValue::Indirect { alloc_id, offset: Size::ZERO }, ty));
600 }
601
602 None
603 }
604}
605
606#[instrument(level = "trace", skip(map), ret)]
607fn propagatable_scalar(
608 place: PlaceIndex,
609 state: &State<FlatSet<Scalar>>,
610 map: &Map<'_>,
611) -> Option<Scalar> {
612 if let FlatSet::Elem(value) = state.get_idx(place, map)
613 && value.try_to_scalar_int().is_ok()
614 {
615 // Do not attempt to propagate pointers, as we may fail to preserve their identity.
616 Some(value)
617 } else {
618 None
619 }
620}
621
622#[instrument(level = "trace", skip(ecx, state, map), ret)]
623fn try_write_constant<'tcx>(
624 ecx: &mut InterpCx<'tcx, DummyMachine>,
625 dest: &PlaceTy<'tcx>,
626 place: PlaceIndex,
627 ty: Ty<'tcx>,
628 state: &State<FlatSet<Scalar>>,
629 map: &Map<'tcx>,
630) -> InterpResult<'tcx> {
631 let layout = ecx.layout_of(ty)?;
632
633 // Fast path for ZSTs.
634 if layout.is_zst() {
635 return Ok(());
636 }
637
638 // Fast path for scalars.
639 if layout.abi.is_scalar()
640 && let Some(value) = propagatable_scalar(place, state, map)
641 {
642 return ecx.write_immediate(Immediate::Scalar(value), dest);
643 }
644
645 match ty.kind() {
646 // ZSTs. Nothing to do.
647 ty::FnDef(..) => {}
648
649 // Those are scalars, must be handled above.
650 ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Char => throw_machine_stop_str!("primitive type with provenance"),
651
652 ty::Tuple(elem_tys) => {
653 for (i, elem) in elem_tys.iter().enumerate() {
654 let Some(field) = map.apply(place, TrackElem::Field(FieldIdx::from_usize(i))) else {
655 throw_machine_stop_str!("missing field in tuple")
656 };
657 let field_dest = ecx.project_field(dest, i)?;
658 try_write_constant(ecx, &field_dest, field, elem, state, map)?;
659 }
660 }
661
662 ty::Adt(def, args) => {
663 if def.is_union() {
664 throw_machine_stop_str!("cannot propagate unions")
665 }
666
667 let (variant_idx, variant_def, variant_place, variant_dest) = if def.is_enum() {
668 let Some(discr) = map.apply(place, TrackElem::Discriminant) else {
669 throw_machine_stop_str!("missing discriminant for enum")
670 };
671 let FlatSet::Elem(Scalar::Int(discr)) = state.get_idx(discr, map) else {
672 throw_machine_stop_str!("discriminant with provenance")
673 };
674 let discr_bits = discr.to_bits(discr.size());
675 let Some((variant, _)) = def.discriminants(*ecx.tcx).find(|(_, var)| discr_bits == var.val) else {
676 throw_machine_stop_str!("illegal discriminant for enum")
677 };
678 let Some(variant_place) = map.apply(place, TrackElem::Variant(variant)) else {
679 throw_machine_stop_str!("missing variant for enum")
680 };
681 let variant_dest = ecx.project_downcast(dest, variant)?;
682 (variant, def.variant(variant), variant_place, variant_dest)
683 } else {
684 (FIRST_VARIANT, def.non_enum_variant(), place, dest.clone())
685 };
686
687 for (i, field) in variant_def.fields.iter_enumerated() {
688 let ty = field.ty(*ecx.tcx, args);
689 let Some(field) = map.apply(variant_place, TrackElem::Field(i)) else {
690 throw_machine_stop_str!("missing field in ADT")
691 };
692 let field_dest = ecx.project_field(&variant_dest, i.as_usize())?;
693 try_write_constant(ecx, &field_dest, field, ty, state, map)?;
694 }
695 ecx.write_discriminant(variant_idx, dest)?;
696 }
697
698 // Unsupported for now.
699 ty::Array(_, _)
700 | ty::Pat(_, _)
701
702 // Do not attempt to support indirection in constants.
703 | ty::Ref(..) | ty::RawPtr(..) | ty::FnPtr(..) | ty::Str | ty::Slice(_)
704
705 | ty::Never
706 | ty::Foreign(..)
707 | ty::Alias(..)
708 | ty::Param(_)
709 | ty::Bound(..)
710 | ty::Placeholder(..)
711 | ty::Closure(..)
712 | ty::CoroutineClosure(..)
713 | ty::Coroutine(..)
714 | ty::Dynamic(..) => throw_machine_stop_str!("unsupported type"),
715
716 ty::Error(_) | ty::Infer(..) | ty::CoroutineWitness(..) => bug!(),
717 }
718
719 Ok(())
720}
721
722impl<'mir, 'tcx>
723 ResultsVisitor<'mir, 'tcx, Results<'tcx, ValueAnalysisWrapper<ConstAnalysis<'_, 'tcx>>>>
724 for Collector<'tcx, '_>
725{
726 type FlowState = State<FlatSet<Scalar>>;
727
728 #[instrument(level = "trace", skip(self, results, statement))]
729 fn visit_statement_before_primary_effect(
730 &mut self,
731 results: &mut Results<'tcx, ValueAnalysisWrapper<ConstAnalysis<'_, 'tcx>>>,
732 state: &Self::FlowState,
733 statement: &'mir Statement<'tcx>,
734 location: Location,
735 ) {
736 match &statement.kind {
737 StatementKind::Assign(box (_, rvalue)) => {
738 OperandCollector {
739 state,
740 visitor: self,
741 ecx: &mut results.analysis.0.ecx,
742 map: &results.analysis.0.map,
743 }
744 .visit_rvalue(rvalue, location);
745 }
746 _ => (),
747 }
748 }
749
750 #[instrument(level = "trace", skip(self, results, statement))]
751 fn visit_statement_after_primary_effect(
752 &mut self,
753 results: &mut Results<'tcx, ValueAnalysisWrapper<ConstAnalysis<'_, 'tcx>>>,
754 state: &Self::FlowState,
755 statement: &'mir Statement<'tcx>,
756 location: Location,
757 ) {
758 match statement.kind {
759 StatementKind::Assign(box (_, Rvalue::Use(Operand::Constant(_)))) => {
760 // Don't overwrite the assignment if it already uses a constant (to keep the span).
761 }
762 StatementKind::Assign(box (place, _)) => {
763 if let Some(value) = self.try_make_constant(
764 &mut results.analysis.0.ecx,
765 place,
766 state,
767 &results.analysis.0.map,
768 ) {
769 self.patch.assignments.insert(location, value);
770 }
771 }
772 _ => (),
773 }
774 }
775
776 fn visit_terminator_before_primary_effect(
777 &mut self,
778 results: &mut Results<'tcx, ValueAnalysisWrapper<ConstAnalysis<'_, 'tcx>>>,
779 state: &Self::FlowState,
780 terminator: &'mir Terminator<'tcx>,
781 location: Location,
782 ) {
783 OperandCollector {
784 state,
785 visitor: self,
786 ecx: &mut results.analysis.0.ecx,
787 map: &results.analysis.0.map,
788 }
789 .visit_terminator(terminator, location);
790 }
791}
792
793impl<'tcx> MutVisitor<'tcx> for Patch<'tcx> {
794 fn tcx(&self) -> TyCtxt<'tcx> {
795 self.tcx
796 }
797
798 fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
799 if let Some(value) = self.assignments.get(&location) {
800 match &mut statement.kind {
801 StatementKind::Assign(box (_, rvalue)) => {
802 *rvalue = Rvalue::Use(self.make_operand(*value));
803 }
804 _ => bug!("found assignment info for non-assign statement"),
805 }
806 } else {
807 self.super_statement(statement, location);
808 }
809 }
810
811 fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
812 match operand {
813 Operand::Copy(place) | Operand::Move(place) => {
814 if let Some(value) = self.before_effect.get(&(location, *place)) {
815 *operand = self.make_operand(*value);
816 } else if !place.projection.is_empty() {
817 self.super_operand(operand, location)
818 }
819 }
820 Operand::Constant(_) => {}
821 }
822 }
823
824 fn process_projection_elem(
825 &mut self,
826 elem: PlaceElem<'tcx>,
827 location: Location,
828 ) -> Option<PlaceElem<'tcx>> {
829 if let PlaceElem::Index(local) = elem {
830 let offset = self.before_effect.get(&(location, local.into()))?;
831 let offset = offset.try_to_scalar()?;
832 let offset = offset.to_target_usize(&self.tcx).ok()?;
833 let min_length = offset.checked_add(1)?;
834 Some(PlaceElem::ConstantIndex { offset, min_length, from_end: false })
835 } else {
836 None
837 }
838 }
839}
840
841struct OperandCollector<'tcx, 'map, 'locals, 'a> {
842 state: &'a State<FlatSet<Scalar>>,
843 visitor: &'a mut Collector<'tcx, 'locals>,
844 ecx: &'map mut InterpCx<'tcx, DummyMachine>,
845 map: &'map Map<'tcx>,
846}
847
848impl<'tcx> Visitor<'tcx> for OperandCollector<'tcx, '_, '_, '_> {
849 fn visit_projection_elem(
850 &mut self,
851 _: PlaceRef<'tcx>,
852 elem: PlaceElem<'tcx>,
853 _: PlaceContext,
854 location: Location,
855 ) {
856 if let PlaceElem::Index(local) = elem
857 && let Some(value) =
858 self.visitor.try_make_constant(self.ecx, local.into(), self.state, self.map)
859 {
860 self.visitor.patch.before_effect.insert((location, local.into()), value);
861 }
862 }
863
864 fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
865 if let Some(place) = operand.place() {
866 if let Some(value) =
867 self.visitor.try_make_constant(self.ecx, place, self.state, self.map)
868 {
869 self.visitor.patch.before_effect.insert((location, place), value);
870 } else if !place.projection.is_empty() {
871 // Try to propagate into `Index` projections.
872 self.super_operand(operand, location)
873 }
874 }
875 }
876}