]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - cpu-all.h
Fix compiler warnings in common files
[mirror_qemu.git] / cpu-all.h
... / ...
CommitLineData
1/*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20#ifndef CPU_ALL_H
21#define CPU_ALL_H
22
23#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
24#define WORDS_ALIGNED
25#endif
26
27/* some important defines:
28 *
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
31 *
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
34 *
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36 *
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 */
39
40#include "bswap.h"
41#include "softfloat.h"
42
43#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
44#define BSWAP_NEEDED
45#endif
46
47#ifdef BSWAP_NEEDED
48
49static inline uint16_t tswap16(uint16_t s)
50{
51 return bswap16(s);
52}
53
54static inline uint32_t tswap32(uint32_t s)
55{
56 return bswap32(s);
57}
58
59static inline uint64_t tswap64(uint64_t s)
60{
61 return bswap64(s);
62}
63
64static inline void tswap16s(uint16_t *s)
65{
66 *s = bswap16(*s);
67}
68
69static inline void tswap32s(uint32_t *s)
70{
71 *s = bswap32(*s);
72}
73
74static inline void tswap64s(uint64_t *s)
75{
76 *s = bswap64(*s);
77}
78
79#else
80
81static inline uint16_t tswap16(uint16_t s)
82{
83 return s;
84}
85
86static inline uint32_t tswap32(uint32_t s)
87{
88 return s;
89}
90
91static inline uint64_t tswap64(uint64_t s)
92{
93 return s;
94}
95
96static inline void tswap16s(uint16_t *s)
97{
98}
99
100static inline void tswap32s(uint32_t *s)
101{
102}
103
104static inline void tswap64s(uint64_t *s)
105{
106}
107
108#endif
109
110#if TARGET_LONG_SIZE == 4
111#define tswapl(s) tswap32(s)
112#define tswapls(s) tswap32s((uint32_t *)(s))
113#define bswaptls(s) bswap32s(s)
114#else
115#define tswapl(s) tswap64(s)
116#define tswapls(s) tswap64s((uint64_t *)(s))
117#define bswaptls(s) bswap64s(s)
118#endif
119
120typedef union {
121 float32 f;
122 uint32_t l;
123} CPU_FloatU;
124
125/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
126 endian ! */
127typedef union {
128 float64 d;
129#if defined(WORDS_BIGENDIAN) \
130 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
131 struct {
132 uint32_t upper;
133 uint32_t lower;
134 } l;
135#else
136 struct {
137 uint32_t lower;
138 uint32_t upper;
139 } l;
140#endif
141 uint64_t ll;
142} CPU_DoubleU;
143
144#ifdef TARGET_SPARC
145typedef union {
146 float128 q;
147#if defined(WORDS_BIGENDIAN) \
148 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
149 struct {
150 uint32_t upmost;
151 uint32_t upper;
152 uint32_t lower;
153 uint32_t lowest;
154 } l;
155 struct {
156 uint64_t upper;
157 uint64_t lower;
158 } ll;
159#else
160 struct {
161 uint32_t lowest;
162 uint32_t lower;
163 uint32_t upper;
164 uint32_t upmost;
165 } l;
166 struct {
167 uint64_t lower;
168 uint64_t upper;
169 } ll;
170#endif
171} CPU_QuadU;
172#endif
173
174/* CPU memory access without any memory or io remapping */
175
176/*
177 * the generic syntax for the memory accesses is:
178 *
179 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
180 *
181 * store: st{type}{size}{endian}_{access_type}(ptr, val)
182 *
183 * type is:
184 * (empty): integer access
185 * f : float access
186 *
187 * sign is:
188 * (empty): for floats or 32 bit size
189 * u : unsigned
190 * s : signed
191 *
192 * size is:
193 * b: 8 bits
194 * w: 16 bits
195 * l: 32 bits
196 * q: 64 bits
197 *
198 * endian is:
199 * (empty): target cpu endianness or 8 bit access
200 * r : reversed target cpu endianness (not implemented yet)
201 * be : big endian (not implemented yet)
202 * le : little endian (not implemented yet)
203 *
204 * access_type is:
205 * raw : host memory access
206 * user : user mode access using soft MMU
207 * kernel : kernel mode access using soft MMU
208 */
209static inline int ldub_p(void *ptr)
210{
211 return *(uint8_t *)ptr;
212}
213
214static inline int ldsb_p(void *ptr)
215{
216 return *(int8_t *)ptr;
217}
218
219static inline void stb_p(void *ptr, int v)
220{
221 *(uint8_t *)ptr = v;
222}
223
224/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
225 kernel handles unaligned load/stores may give better results, but
226 it is a system wide setting : bad */
227#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
228
229/* conservative code for little endian unaligned accesses */
230static inline int lduw_le_p(void *ptr)
231{
232#ifdef __powerpc__
233 int val;
234 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
235 return val;
236#else
237 uint8_t *p = ptr;
238 return p[0] | (p[1] << 8);
239#endif
240}
241
242static inline int ldsw_le_p(void *ptr)
243{
244#ifdef __powerpc__
245 int val;
246 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
247 return (int16_t)val;
248#else
249 uint8_t *p = ptr;
250 return (int16_t)(p[0] | (p[1] << 8));
251#endif
252}
253
254static inline int ldl_le_p(void *ptr)
255{
256#ifdef __powerpc__
257 int val;
258 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
259 return val;
260#else
261 uint8_t *p = ptr;
262 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
263#endif
264}
265
266static inline uint64_t ldq_le_p(void *ptr)
267{
268 uint8_t *p = ptr;
269 uint32_t v1, v2;
270 v1 = ldl_le_p(p);
271 v2 = ldl_le_p(p + 4);
272 return v1 | ((uint64_t)v2 << 32);
273}
274
275static inline void stw_le_p(void *ptr, int v)
276{
277#ifdef __powerpc__
278 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
279#else
280 uint8_t *p = ptr;
281 p[0] = v;
282 p[1] = v >> 8;
283#endif
284}
285
286static inline void stl_le_p(void *ptr, int v)
287{
288#ifdef __powerpc__
289 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
290#else
291 uint8_t *p = ptr;
292 p[0] = v;
293 p[1] = v >> 8;
294 p[2] = v >> 16;
295 p[3] = v >> 24;
296#endif
297}
298
299static inline void stq_le_p(void *ptr, uint64_t v)
300{
301 uint8_t *p = ptr;
302 stl_le_p(p, (uint32_t)v);
303 stl_le_p(p + 4, v >> 32);
304}
305
306/* float access */
307
308static inline float32 ldfl_le_p(void *ptr)
309{
310 union {
311 float32 f;
312 uint32_t i;
313 } u;
314 u.i = ldl_le_p(ptr);
315 return u.f;
316}
317
318static inline void stfl_le_p(void *ptr, float32 v)
319{
320 union {
321 float32 f;
322 uint32_t i;
323 } u;
324 u.f = v;
325 stl_le_p(ptr, u.i);
326}
327
328static inline float64 ldfq_le_p(void *ptr)
329{
330 CPU_DoubleU u;
331 u.l.lower = ldl_le_p(ptr);
332 u.l.upper = ldl_le_p(ptr + 4);
333 return u.d;
334}
335
336static inline void stfq_le_p(void *ptr, float64 v)
337{
338 CPU_DoubleU u;
339 u.d = v;
340 stl_le_p(ptr, u.l.lower);
341 stl_le_p(ptr + 4, u.l.upper);
342}
343
344#else
345
346static inline int lduw_le_p(void *ptr)
347{
348 return *(uint16_t *)ptr;
349}
350
351static inline int ldsw_le_p(void *ptr)
352{
353 return *(int16_t *)ptr;
354}
355
356static inline int ldl_le_p(void *ptr)
357{
358 return *(uint32_t *)ptr;
359}
360
361static inline uint64_t ldq_le_p(void *ptr)
362{
363 return *(uint64_t *)ptr;
364}
365
366static inline void stw_le_p(void *ptr, int v)
367{
368 *(uint16_t *)ptr = v;
369}
370
371static inline void stl_le_p(void *ptr, int v)
372{
373 *(uint32_t *)ptr = v;
374}
375
376static inline void stq_le_p(void *ptr, uint64_t v)
377{
378 *(uint64_t *)ptr = v;
379}
380
381/* float access */
382
383static inline float32 ldfl_le_p(void *ptr)
384{
385 return *(float32 *)ptr;
386}
387
388static inline float64 ldfq_le_p(void *ptr)
389{
390 return *(float64 *)ptr;
391}
392
393static inline void stfl_le_p(void *ptr, float32 v)
394{
395 *(float32 *)ptr = v;
396}
397
398static inline void stfq_le_p(void *ptr, float64 v)
399{
400 *(float64 *)ptr = v;
401}
402#endif
403
404#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
405
406static inline int lduw_be_p(void *ptr)
407{
408#if defined(__i386__)
409 int val;
410 asm volatile ("movzwl %1, %0\n"
411 "xchgb %b0, %h0\n"
412 : "=q" (val)
413 : "m" (*(uint16_t *)ptr));
414 return val;
415#else
416 uint8_t *b = (uint8_t *) ptr;
417 return ((b[0] << 8) | b[1]);
418#endif
419}
420
421static inline int ldsw_be_p(void *ptr)
422{
423#if defined(__i386__)
424 int val;
425 asm volatile ("movzwl %1, %0\n"
426 "xchgb %b0, %h0\n"
427 : "=q" (val)
428 : "m" (*(uint16_t *)ptr));
429 return (int16_t)val;
430#else
431 uint8_t *b = (uint8_t *) ptr;
432 return (int16_t)((b[0] << 8) | b[1]);
433#endif
434}
435
436static inline int ldl_be_p(void *ptr)
437{
438#if defined(__i386__) || defined(__x86_64__)
439 int val;
440 asm volatile ("movl %1, %0\n"
441 "bswap %0\n"
442 : "=r" (val)
443 : "m" (*(uint32_t *)ptr));
444 return val;
445#else
446 uint8_t *b = (uint8_t *) ptr;
447 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
448#endif
449}
450
451static inline uint64_t ldq_be_p(void *ptr)
452{
453 uint32_t a,b;
454 a = ldl_be_p(ptr);
455 b = ldl_be_p((uint8_t *)ptr + 4);
456 return (((uint64_t)a<<32)|b);
457}
458
459static inline void stw_be_p(void *ptr, int v)
460{
461#if defined(__i386__)
462 asm volatile ("xchgb %b0, %h0\n"
463 "movw %w0, %1\n"
464 : "=q" (v)
465 : "m" (*(uint16_t *)ptr), "0" (v));
466#else
467 uint8_t *d = (uint8_t *) ptr;
468 d[0] = v >> 8;
469 d[1] = v;
470#endif
471}
472
473static inline void stl_be_p(void *ptr, int v)
474{
475#if defined(__i386__) || defined(__x86_64__)
476 asm volatile ("bswap %0\n"
477 "movl %0, %1\n"
478 : "=r" (v)
479 : "m" (*(uint32_t *)ptr), "0" (v));
480#else
481 uint8_t *d = (uint8_t *) ptr;
482 d[0] = v >> 24;
483 d[1] = v >> 16;
484 d[2] = v >> 8;
485 d[3] = v;
486#endif
487}
488
489static inline void stq_be_p(void *ptr, uint64_t v)
490{
491 stl_be_p(ptr, v >> 32);
492 stl_be_p((uint8_t *)ptr + 4, v);
493}
494
495/* float access */
496
497static inline float32 ldfl_be_p(void *ptr)
498{
499 union {
500 float32 f;
501 uint32_t i;
502 } u;
503 u.i = ldl_be_p(ptr);
504 return u.f;
505}
506
507static inline void stfl_be_p(void *ptr, float32 v)
508{
509 union {
510 float32 f;
511 uint32_t i;
512 } u;
513 u.f = v;
514 stl_be_p(ptr, u.i);
515}
516
517static inline float64 ldfq_be_p(void *ptr)
518{
519 CPU_DoubleU u;
520 u.l.upper = ldl_be_p(ptr);
521 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
522 return u.d;
523}
524
525static inline void stfq_be_p(void *ptr, float64 v)
526{
527 CPU_DoubleU u;
528 u.d = v;
529 stl_be_p(ptr, u.l.upper);
530 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
531}
532
533#else
534
535static inline int lduw_be_p(void *ptr)
536{
537 return *(uint16_t *)ptr;
538}
539
540static inline int ldsw_be_p(void *ptr)
541{
542 return *(int16_t *)ptr;
543}
544
545static inline int ldl_be_p(void *ptr)
546{
547 return *(uint32_t *)ptr;
548}
549
550static inline uint64_t ldq_be_p(void *ptr)
551{
552 return *(uint64_t *)ptr;
553}
554
555static inline void stw_be_p(void *ptr, int v)
556{
557 *(uint16_t *)ptr = v;
558}
559
560static inline void stl_be_p(void *ptr, int v)
561{
562 *(uint32_t *)ptr = v;
563}
564
565static inline void stq_be_p(void *ptr, uint64_t v)
566{
567 *(uint64_t *)ptr = v;
568}
569
570/* float access */
571
572static inline float32 ldfl_be_p(void *ptr)
573{
574 return *(float32 *)ptr;
575}
576
577static inline float64 ldfq_be_p(void *ptr)
578{
579 return *(float64 *)ptr;
580}
581
582static inline void stfl_be_p(void *ptr, float32 v)
583{
584 *(float32 *)ptr = v;
585}
586
587static inline void stfq_be_p(void *ptr, float64 v)
588{
589 *(float64 *)ptr = v;
590}
591
592#endif
593
594/* target CPU memory access functions */
595#if defined(TARGET_WORDS_BIGENDIAN)
596#define lduw_p(p) lduw_be_p(p)
597#define ldsw_p(p) ldsw_be_p(p)
598#define ldl_p(p) ldl_be_p(p)
599#define ldq_p(p) ldq_be_p(p)
600#define ldfl_p(p) ldfl_be_p(p)
601#define ldfq_p(p) ldfq_be_p(p)
602#define stw_p(p, v) stw_be_p(p, v)
603#define stl_p(p, v) stl_be_p(p, v)
604#define stq_p(p, v) stq_be_p(p, v)
605#define stfl_p(p, v) stfl_be_p(p, v)
606#define stfq_p(p, v) stfq_be_p(p, v)
607#else
608#define lduw_p(p) lduw_le_p(p)
609#define ldsw_p(p) ldsw_le_p(p)
610#define ldl_p(p) ldl_le_p(p)
611#define ldq_p(p) ldq_le_p(p)
612#define ldfl_p(p) ldfl_le_p(p)
613#define ldfq_p(p) ldfq_le_p(p)
614#define stw_p(p, v) stw_le_p(p, v)
615#define stl_p(p, v) stl_le_p(p, v)
616#define stq_p(p, v) stq_le_p(p, v)
617#define stfl_p(p, v) stfl_le_p(p, v)
618#define stfq_p(p, v) stfq_le_p(p, v)
619#endif
620
621/* MMU memory access macros */
622
623#if defined(CONFIG_USER_ONLY)
624/* On some host systems the guest address space is reserved on the host.
625 * This allows the guest address space to be offset to a convenient location.
626 */
627//#define GUEST_BASE 0x20000000
628#define GUEST_BASE 0
629
630/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
631#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
632#define h2g(x) ((target_ulong)(x - GUEST_BASE))
633
634#define saddr(x) g2h(x)
635#define laddr(x) g2h(x)
636
637#else /* !CONFIG_USER_ONLY */
638/* NOTE: we use double casts if pointers and target_ulong have
639 different sizes */
640#define saddr(x) (uint8_t *)(long)(x)
641#define laddr(x) (uint8_t *)(long)(x)
642#endif
643
644#define ldub_raw(p) ldub_p(laddr((p)))
645#define ldsb_raw(p) ldsb_p(laddr((p)))
646#define lduw_raw(p) lduw_p(laddr((p)))
647#define ldsw_raw(p) ldsw_p(laddr((p)))
648#define ldl_raw(p) ldl_p(laddr((p)))
649#define ldq_raw(p) ldq_p(laddr((p)))
650#define ldfl_raw(p) ldfl_p(laddr((p)))
651#define ldfq_raw(p) ldfq_p(laddr((p)))
652#define stb_raw(p, v) stb_p(saddr((p)), v)
653#define stw_raw(p, v) stw_p(saddr((p)), v)
654#define stl_raw(p, v) stl_p(saddr((p)), v)
655#define stq_raw(p, v) stq_p(saddr((p)), v)
656#define stfl_raw(p, v) stfl_p(saddr((p)), v)
657#define stfq_raw(p, v) stfq_p(saddr((p)), v)
658
659
660#if defined(CONFIG_USER_ONLY)
661
662/* if user mode, no other memory access functions */
663#define ldub(p) ldub_raw(p)
664#define ldsb(p) ldsb_raw(p)
665#define lduw(p) lduw_raw(p)
666#define ldsw(p) ldsw_raw(p)
667#define ldl(p) ldl_raw(p)
668#define ldq(p) ldq_raw(p)
669#define ldfl(p) ldfl_raw(p)
670#define ldfq(p) ldfq_raw(p)
671#define stb(p, v) stb_raw(p, v)
672#define stw(p, v) stw_raw(p, v)
673#define stl(p, v) stl_raw(p, v)
674#define stq(p, v) stq_raw(p, v)
675#define stfl(p, v) stfl_raw(p, v)
676#define stfq(p, v) stfq_raw(p, v)
677
678#define ldub_code(p) ldub_raw(p)
679#define ldsb_code(p) ldsb_raw(p)
680#define lduw_code(p) lduw_raw(p)
681#define ldsw_code(p) ldsw_raw(p)
682#define ldl_code(p) ldl_raw(p)
683#define ldq_code(p) ldq_raw(p)
684
685#define ldub_kernel(p) ldub_raw(p)
686#define ldsb_kernel(p) ldsb_raw(p)
687#define lduw_kernel(p) lduw_raw(p)
688#define ldsw_kernel(p) ldsw_raw(p)
689#define ldl_kernel(p) ldl_raw(p)
690#define ldq_kernel(p) ldq_raw(p)
691#define ldfl_kernel(p) ldfl_raw(p)
692#define ldfq_kernel(p) ldfq_raw(p)
693#define stb_kernel(p, v) stb_raw(p, v)
694#define stw_kernel(p, v) stw_raw(p, v)
695#define stl_kernel(p, v) stl_raw(p, v)
696#define stq_kernel(p, v) stq_raw(p, v)
697#define stfl_kernel(p, v) stfl_raw(p, v)
698#define stfq_kernel(p, vt) stfq_raw(p, v)
699
700#endif /* defined(CONFIG_USER_ONLY) */
701
702/* page related stuff */
703
704#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
705#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
706#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
707
708/* ??? These should be the larger of unsigned long and target_ulong. */
709extern unsigned long qemu_real_host_page_size;
710extern unsigned long qemu_host_page_bits;
711extern unsigned long qemu_host_page_size;
712extern unsigned long qemu_host_page_mask;
713
714#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
715
716/* same as PROT_xxx */
717#define PAGE_READ 0x0001
718#define PAGE_WRITE 0x0002
719#define PAGE_EXEC 0x0004
720#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
721#define PAGE_VALID 0x0008
722/* original state of the write flag (used when tracking self-modifying
723 code */
724#define PAGE_WRITE_ORG 0x0010
725#define PAGE_RESERVED 0x0020
726
727void page_dump(FILE *f);
728int page_get_flags(target_ulong address);
729void page_set_flags(target_ulong start, target_ulong end, int flags);
730int page_check_range(target_ulong start, target_ulong len, int flags);
731
732CPUState *cpu_copy(CPUState *env);
733
734void cpu_dump_state(CPUState *env, FILE *f,
735 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
736 int flags);
737void cpu_dump_statistics (CPUState *env, FILE *f,
738 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
739 int flags);
740
741void cpu_abort(CPUState *env, const char *fmt, ...)
742 __attribute__ ((__format__ (__printf__, 2, 3)))
743 __attribute__ ((__noreturn__));
744extern CPUState *first_cpu;
745extern CPUState *cpu_single_env;
746extern int code_copy_enabled;
747
748#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
749#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
750#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
751#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
752#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
753#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
754#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
755#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
756#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
757#define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
758
759void cpu_interrupt(CPUState *s, int mask);
760void cpu_reset_interrupt(CPUState *env, int mask);
761
762int cpu_watchpoint_insert(CPUState *env, target_ulong addr);
763int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
764int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
765int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
766
767#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
768#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
769#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
770
771void cpu_single_step(CPUState *env, int enabled);
772void cpu_reset(CPUState *s);
773
774/* Return the physical page corresponding to a virtual one. Use it
775 only for debugging because no protection checks are done. Return -1
776 if no page found. */
777target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
778
779#define CPU_LOG_TB_OUT_ASM (1 << 0)
780#define CPU_LOG_TB_IN_ASM (1 << 1)
781#define CPU_LOG_TB_OP (1 << 2)
782#define CPU_LOG_TB_OP_OPT (1 << 3)
783#define CPU_LOG_INT (1 << 4)
784#define CPU_LOG_EXEC (1 << 5)
785#define CPU_LOG_PCALL (1 << 6)
786#define CPU_LOG_IOPORT (1 << 7)
787#define CPU_LOG_TB_CPU (1 << 8)
788
789/* define log items */
790typedef struct CPULogItem {
791 int mask;
792 const char *name;
793 const char *help;
794} CPULogItem;
795
796extern CPULogItem cpu_log_items[];
797
798void cpu_set_log(int log_flags);
799void cpu_set_log_filename(const char *filename);
800int cpu_str_to_log_mask(const char *str);
801
802/* IO ports API */
803
804/* NOTE: as these functions may be even used when there is an isa
805 brige on non x86 targets, we always defined them */
806#ifndef NO_CPU_IO_DEFS
807void cpu_outb(CPUState *env, int addr, int val);
808void cpu_outw(CPUState *env, int addr, int val);
809void cpu_outl(CPUState *env, int addr, int val);
810int cpu_inb(CPUState *env, int addr);
811int cpu_inw(CPUState *env, int addr);
812int cpu_inl(CPUState *env, int addr);
813#endif
814
815/* address in the RAM (different from a physical address) */
816#ifdef USE_KQEMU
817typedef uint32_t ram_addr_t;
818#else
819typedef unsigned long ram_addr_t;
820#endif
821
822/* memory API */
823
824extern ram_addr_t phys_ram_size;
825extern int phys_ram_fd;
826extern uint8_t *phys_ram_base;
827extern uint8_t *phys_ram_dirty;
828extern ram_addr_t ram_size;
829
830/* physical memory access */
831#define TLB_INVALID_MASK (1 << 3)
832#define IO_MEM_SHIFT 4
833#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
834
835#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
836#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
837#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
838#define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
839/* acts like a ROM when read and like a device when written. As an
840 exception, the write memory callback gets the ram offset instead of
841 the physical address */
842#define IO_MEM_ROMD (1)
843#define IO_MEM_SUBPAGE (2)
844#define IO_MEM_SUBWIDTH (4)
845
846typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
847typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
848
849void cpu_register_physical_memory(target_phys_addr_t start_addr,
850 ram_addr_t size,
851 ram_addr_t phys_offset);
852ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
853ram_addr_t qemu_ram_alloc(ram_addr_t);
854void qemu_ram_free(ram_addr_t addr);
855int cpu_register_io_memory(int io_index,
856 CPUReadMemoryFunc **mem_read,
857 CPUWriteMemoryFunc **mem_write,
858 void *opaque);
859CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
860CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
861
862void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
863 int len, int is_write);
864static inline void cpu_physical_memory_read(target_phys_addr_t addr,
865 uint8_t *buf, int len)
866{
867 cpu_physical_memory_rw(addr, buf, len, 0);
868}
869static inline void cpu_physical_memory_write(target_phys_addr_t addr,
870 const uint8_t *buf, int len)
871{
872 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
873}
874uint32_t ldub_phys(target_phys_addr_t addr);
875uint32_t lduw_phys(target_phys_addr_t addr);
876uint32_t ldl_phys(target_phys_addr_t addr);
877uint64_t ldq_phys(target_phys_addr_t addr);
878void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
879void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
880void stb_phys(target_phys_addr_t addr, uint32_t val);
881void stw_phys(target_phys_addr_t addr, uint32_t val);
882void stl_phys(target_phys_addr_t addr, uint32_t val);
883void stq_phys(target_phys_addr_t addr, uint64_t val);
884
885void cpu_physical_memory_write_rom(target_phys_addr_t addr,
886 const uint8_t *buf, int len);
887int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
888 uint8_t *buf, int len, int is_write);
889
890#define VGA_DIRTY_FLAG 0x01
891#define CODE_DIRTY_FLAG 0x02
892
893/* read dirty bit (return 0 or 1) */
894static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
895{
896 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
897}
898
899static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
900 int dirty_flags)
901{
902 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
903}
904
905static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
906{
907 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
908}
909
910void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
911 int dirty_flags);
912void cpu_tlb_update_dirty(CPUState *env);
913
914void dump_exec_info(FILE *f,
915 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
916
917/*******************************************/
918/* host CPU ticks (if available) */
919
920#if defined(__powerpc__)
921
922static inline uint32_t get_tbl(void)
923{
924 uint32_t tbl;
925 asm volatile("mftb %0" : "=r" (tbl));
926 return tbl;
927}
928
929static inline uint32_t get_tbu(void)
930{
931 uint32_t tbl;
932 asm volatile("mftbu %0" : "=r" (tbl));
933 return tbl;
934}
935
936static inline int64_t cpu_get_real_ticks(void)
937{
938 uint32_t l, h, h1;
939 /* NOTE: we test if wrapping has occurred */
940 do {
941 h = get_tbu();
942 l = get_tbl();
943 h1 = get_tbu();
944 } while (h != h1);
945 return ((int64_t)h << 32) | l;
946}
947
948#elif defined(__i386__)
949
950static inline int64_t cpu_get_real_ticks(void)
951{
952 int64_t val;
953 asm volatile ("rdtsc" : "=A" (val));
954 return val;
955}
956
957#elif defined(__x86_64__)
958
959static inline int64_t cpu_get_real_ticks(void)
960{
961 uint32_t low,high;
962 int64_t val;
963 asm volatile("rdtsc" : "=a" (low), "=d" (high));
964 val = high;
965 val <<= 32;
966 val |= low;
967 return val;
968}
969
970#elif defined(__hppa__)
971
972static inline int64_t cpu_get_real_ticks(void)
973{
974 int val;
975 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
976 return val;
977}
978
979#elif defined(__ia64)
980
981static inline int64_t cpu_get_real_ticks(void)
982{
983 int64_t val;
984 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
985 return val;
986}
987
988#elif defined(__s390__)
989
990static inline int64_t cpu_get_real_ticks(void)
991{
992 int64_t val;
993 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
994 return val;
995}
996
997#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
998
999static inline int64_t cpu_get_real_ticks (void)
1000{
1001#if defined(_LP64)
1002 uint64_t rval;
1003 asm volatile("rd %%tick,%0" : "=r"(rval));
1004 return rval;
1005#else
1006 union {
1007 uint64_t i64;
1008 struct {
1009 uint32_t high;
1010 uint32_t low;
1011 } i32;
1012 } rval;
1013 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1014 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1015 return rval.i64;
1016#endif
1017}
1018
1019#elif defined(__mips__)
1020
1021static inline int64_t cpu_get_real_ticks(void)
1022{
1023#if __mips_isa_rev >= 2
1024 uint32_t count;
1025 static uint32_t cyc_per_count = 0;
1026
1027 if (!cyc_per_count)
1028 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1029
1030 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1031 return (int64_t)(count * cyc_per_count);
1032#else
1033 /* FIXME */
1034 static int64_t ticks = 0;
1035 return ticks++;
1036#endif
1037}
1038
1039#else
1040/* The host CPU doesn't have an easily accessible cycle counter.
1041 Just return a monotonically increasing value. This will be
1042 totally wrong, but hopefully better than nothing. */
1043static inline int64_t cpu_get_real_ticks (void)
1044{
1045 static int64_t ticks = 0;
1046 return ticks++;
1047}
1048#endif
1049
1050/* profiling */
1051#ifdef CONFIG_PROFILER
1052static inline int64_t profile_getclock(void)
1053{
1054 return cpu_get_real_ticks();
1055}
1056
1057extern int64_t kqemu_time, kqemu_time_start;
1058extern int64_t qemu_time, qemu_time_start;
1059extern int64_t tlb_flush_time;
1060extern int64_t kqemu_exec_count;
1061extern int64_t dev_time;
1062extern int64_t kqemu_ret_int_count;
1063extern int64_t kqemu_ret_excp_count;
1064extern int64_t kqemu_ret_intr_count;
1065
1066extern int64_t dyngen_tb_count1;
1067extern int64_t dyngen_tb_count;
1068extern int64_t dyngen_op_count;
1069extern int64_t dyngen_old_op_count;
1070extern int64_t dyngen_tcg_del_op_count;
1071extern int dyngen_op_count_max;
1072extern int64_t dyngen_code_in_len;
1073extern int64_t dyngen_code_out_len;
1074extern int64_t dyngen_interm_time;
1075extern int64_t dyngen_code_time;
1076extern int64_t dyngen_restore_count;
1077extern int64_t dyngen_restore_time;
1078#endif
1079
1080#endif /* CPU_ALL_H */