]> git.proxmox.com Git - mirror_qemu.git/blame_incremental - cpus.c
icount: remove obsolete warp call
[mirror_qemu.git] / cpus.c
... / ...
CommitLineData
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25/* Needed early for CONFIG_BSD etc. */
26#include "qemu/osdep.h"
27
28#include "monitor/monitor.h"
29#include "qapi/qmp/qerror.h"
30#include "qemu/error-report.h"
31#include "sysemu/sysemu.h"
32#include "exec/gdbstub.h"
33#include "sysemu/dma.h"
34#include "sysemu/kvm.h"
35#include "qmp-commands.h"
36
37#include "qemu/thread.h"
38#include "sysemu/cpus.h"
39#include "sysemu/qtest.h"
40#include "qemu/main-loop.h"
41#include "qemu/bitmap.h"
42#include "qemu/seqlock.h"
43#include "qapi-event.h"
44#include "hw/nmi.h"
45#include "sysemu/replay.h"
46
47#ifndef _WIN32
48#include "qemu/compatfd.h"
49#endif
50
51#ifdef CONFIG_LINUX
52
53#include <sys/prctl.h>
54
55#ifndef PR_MCE_KILL
56#define PR_MCE_KILL 33
57#endif
58
59#ifndef PR_MCE_KILL_SET
60#define PR_MCE_KILL_SET 1
61#endif
62
63#ifndef PR_MCE_KILL_EARLY
64#define PR_MCE_KILL_EARLY 1
65#endif
66
67#endif /* CONFIG_LINUX */
68
69static CPUState *next_cpu;
70int64_t max_delay;
71int64_t max_advance;
72
73/* vcpu throttling controls */
74static QEMUTimer *throttle_timer;
75static unsigned int throttle_percentage;
76
77#define CPU_THROTTLE_PCT_MIN 1
78#define CPU_THROTTLE_PCT_MAX 99
79#define CPU_THROTTLE_TIMESLICE_NS 10000000
80
81bool cpu_is_stopped(CPUState *cpu)
82{
83 return cpu->stopped || !runstate_is_running();
84}
85
86static bool cpu_thread_is_idle(CPUState *cpu)
87{
88 if (cpu->stop || cpu->queued_work_first) {
89 return false;
90 }
91 if (cpu_is_stopped(cpu)) {
92 return true;
93 }
94 if (!cpu->halted || cpu_has_work(cpu) ||
95 kvm_halt_in_kernel()) {
96 return false;
97 }
98 return true;
99}
100
101static bool all_cpu_threads_idle(void)
102{
103 CPUState *cpu;
104
105 CPU_FOREACH(cpu) {
106 if (!cpu_thread_is_idle(cpu)) {
107 return false;
108 }
109 }
110 return true;
111}
112
113/***********************************************************/
114/* guest cycle counter */
115
116/* Protected by TimersState seqlock */
117
118static bool icount_sleep = true;
119static int64_t vm_clock_warp_start = -1;
120/* Conversion factor from emulated instructions to virtual clock ticks. */
121static int icount_time_shift;
122/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
123#define MAX_ICOUNT_SHIFT 10
124
125static QEMUTimer *icount_rt_timer;
126static QEMUTimer *icount_vm_timer;
127static QEMUTimer *icount_warp_timer;
128
129typedef struct TimersState {
130 /* Protected by BQL. */
131 int64_t cpu_ticks_prev;
132 int64_t cpu_ticks_offset;
133
134 /* cpu_clock_offset can be read out of BQL, so protect it with
135 * this lock.
136 */
137 QemuSeqLock vm_clock_seqlock;
138 int64_t cpu_clock_offset;
139 int32_t cpu_ticks_enabled;
140 int64_t dummy;
141
142 /* Compensate for varying guest execution speed. */
143 int64_t qemu_icount_bias;
144 /* Only written by TCG thread */
145 int64_t qemu_icount;
146} TimersState;
147
148static TimersState timers_state;
149
150int64_t cpu_get_icount_raw(void)
151{
152 int64_t icount;
153 CPUState *cpu = current_cpu;
154
155 icount = timers_state.qemu_icount;
156 if (cpu) {
157 if (!cpu->can_do_io) {
158 fprintf(stderr, "Bad icount read\n");
159 exit(1);
160 }
161 icount -= (cpu->icount_decr.u16.low + cpu->icount_extra);
162 }
163 return icount;
164}
165
166/* Return the virtual CPU time, based on the instruction counter. */
167static int64_t cpu_get_icount_locked(void)
168{
169 int64_t icount = cpu_get_icount_raw();
170 return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount);
171}
172
173int64_t cpu_get_icount(void)
174{
175 int64_t icount;
176 unsigned start;
177
178 do {
179 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
180 icount = cpu_get_icount_locked();
181 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
182
183 return icount;
184}
185
186int64_t cpu_icount_to_ns(int64_t icount)
187{
188 return icount << icount_time_shift;
189}
190
191/* return the host CPU cycle counter and handle stop/restart */
192/* Caller must hold the BQL */
193int64_t cpu_get_ticks(void)
194{
195 int64_t ticks;
196
197 if (use_icount) {
198 return cpu_get_icount();
199 }
200
201 ticks = timers_state.cpu_ticks_offset;
202 if (timers_state.cpu_ticks_enabled) {
203 ticks += cpu_get_host_ticks();
204 }
205
206 if (timers_state.cpu_ticks_prev > ticks) {
207 /* Note: non increasing ticks may happen if the host uses
208 software suspend */
209 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
210 ticks = timers_state.cpu_ticks_prev;
211 }
212
213 timers_state.cpu_ticks_prev = ticks;
214 return ticks;
215}
216
217static int64_t cpu_get_clock_locked(void)
218{
219 int64_t ticks;
220
221 ticks = timers_state.cpu_clock_offset;
222 if (timers_state.cpu_ticks_enabled) {
223 ticks += get_clock();
224 }
225
226 return ticks;
227}
228
229/* return the host CPU monotonic timer and handle stop/restart */
230int64_t cpu_get_clock(void)
231{
232 int64_t ti;
233 unsigned start;
234
235 do {
236 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
237 ti = cpu_get_clock_locked();
238 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
239
240 return ti;
241}
242
243/* enable cpu_get_ticks()
244 * Caller must hold BQL which server as mutex for vm_clock_seqlock.
245 */
246void cpu_enable_ticks(void)
247{
248 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
249 seqlock_write_lock(&timers_state.vm_clock_seqlock);
250 if (!timers_state.cpu_ticks_enabled) {
251 timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
252 timers_state.cpu_clock_offset -= get_clock();
253 timers_state.cpu_ticks_enabled = 1;
254 }
255 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
256}
257
258/* disable cpu_get_ticks() : the clock is stopped. You must not call
259 * cpu_get_ticks() after that.
260 * Caller must hold BQL which server as mutex for vm_clock_seqlock.
261 */
262void cpu_disable_ticks(void)
263{
264 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
265 seqlock_write_lock(&timers_state.vm_clock_seqlock);
266 if (timers_state.cpu_ticks_enabled) {
267 timers_state.cpu_ticks_offset += cpu_get_host_ticks();
268 timers_state.cpu_clock_offset = cpu_get_clock_locked();
269 timers_state.cpu_ticks_enabled = 0;
270 }
271 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
272}
273
274/* Correlation between real and virtual time is always going to be
275 fairly approximate, so ignore small variation.
276 When the guest is idle real and virtual time will be aligned in
277 the IO wait loop. */
278#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
279
280static void icount_adjust(void)
281{
282 int64_t cur_time;
283 int64_t cur_icount;
284 int64_t delta;
285
286 /* Protected by TimersState mutex. */
287 static int64_t last_delta;
288
289 /* If the VM is not running, then do nothing. */
290 if (!runstate_is_running()) {
291 return;
292 }
293
294 seqlock_write_lock(&timers_state.vm_clock_seqlock);
295 cur_time = cpu_get_clock_locked();
296 cur_icount = cpu_get_icount_locked();
297
298 delta = cur_icount - cur_time;
299 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
300 if (delta > 0
301 && last_delta + ICOUNT_WOBBLE < delta * 2
302 && icount_time_shift > 0) {
303 /* The guest is getting too far ahead. Slow time down. */
304 icount_time_shift--;
305 }
306 if (delta < 0
307 && last_delta - ICOUNT_WOBBLE > delta * 2
308 && icount_time_shift < MAX_ICOUNT_SHIFT) {
309 /* The guest is getting too far behind. Speed time up. */
310 icount_time_shift++;
311 }
312 last_delta = delta;
313 timers_state.qemu_icount_bias = cur_icount
314 - (timers_state.qemu_icount << icount_time_shift);
315 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
316}
317
318static void icount_adjust_rt(void *opaque)
319{
320 timer_mod(icount_rt_timer,
321 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
322 icount_adjust();
323}
324
325static void icount_adjust_vm(void *opaque)
326{
327 timer_mod(icount_vm_timer,
328 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
329 get_ticks_per_sec() / 10);
330 icount_adjust();
331}
332
333static int64_t qemu_icount_round(int64_t count)
334{
335 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
336}
337
338static void icount_warp_rt(void)
339{
340 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
341 * changes from -1 to another value, so the race here is okay.
342 */
343 if (atomic_read(&vm_clock_warp_start) == -1) {
344 return;
345 }
346
347 seqlock_write_lock(&timers_state.vm_clock_seqlock);
348 if (runstate_is_running()) {
349 int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT,
350 cpu_get_clock_locked());
351 int64_t warp_delta;
352
353 warp_delta = clock - vm_clock_warp_start;
354 if (use_icount == 2) {
355 /*
356 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
357 * far ahead of real time.
358 */
359 int64_t cur_icount = cpu_get_icount_locked();
360 int64_t delta = clock - cur_icount;
361 warp_delta = MIN(warp_delta, delta);
362 }
363 timers_state.qemu_icount_bias += warp_delta;
364 }
365 vm_clock_warp_start = -1;
366 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
367
368 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
369 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
370 }
371}
372
373static void icount_dummy_timer(void *opaque)
374{
375 (void)opaque;
376}
377
378void qtest_clock_warp(int64_t dest)
379{
380 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
381 AioContext *aio_context;
382 assert(qtest_enabled());
383 aio_context = qemu_get_aio_context();
384 while (clock < dest) {
385 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
386 int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
387
388 seqlock_write_lock(&timers_state.vm_clock_seqlock);
389 timers_state.qemu_icount_bias += warp;
390 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
391
392 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
393 timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
394 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
395 }
396 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
397}
398
399void qemu_clock_warp(QEMUClockType type)
400{
401 int64_t clock;
402 int64_t deadline;
403
404 /*
405 * There are too many global variables to make the "warp" behavior
406 * applicable to other clocks. But a clock argument removes the
407 * need for if statements all over the place.
408 */
409 if (type != QEMU_CLOCK_VIRTUAL || !use_icount) {
410 return;
411 }
412
413 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
414 * do not fire, so computing the deadline does not make sense.
415 */
416 if (!runstate_is_running()) {
417 return;
418 }
419
420 /* warp clock deterministically in record/replay mode */
421 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP)) {
422 return;
423 }
424
425 if (icount_sleep) {
426 /*
427 * If the CPUs have been sleeping, advance QEMU_CLOCK_VIRTUAL timer now.
428 * This ensures that the deadline for the timer is computed correctly
429 * below.
430 * This also makes sure that the insn counter is synchronized before
431 * the CPU starts running, in case the CPU is woken by an event other
432 * than the earliest QEMU_CLOCK_VIRTUAL timer.
433 */
434 icount_warp_rt();
435 timer_del(icount_warp_timer);
436 }
437 if (!all_cpu_threads_idle()) {
438 return;
439 }
440
441 if (qtest_enabled()) {
442 /* When testing, qtest commands advance icount. */
443 return;
444 }
445
446 /* We want to use the earliest deadline from ALL vm_clocks */
447 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
448 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
449 if (deadline < 0) {
450 static bool notified;
451 if (!icount_sleep && !notified) {
452 error_report("WARNING: icount sleep disabled and no active timers");
453 notified = true;
454 }
455 return;
456 }
457
458 if (deadline > 0) {
459 /*
460 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
461 * sleep. Otherwise, the CPU might be waiting for a future timer
462 * interrupt to wake it up, but the interrupt never comes because
463 * the vCPU isn't running any insns and thus doesn't advance the
464 * QEMU_CLOCK_VIRTUAL.
465 */
466 if (!icount_sleep) {
467 /*
468 * We never let VCPUs sleep in no sleep icount mode.
469 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
470 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
471 * It is useful when we want a deterministic execution time,
472 * isolated from host latencies.
473 */
474 seqlock_write_lock(&timers_state.vm_clock_seqlock);
475 timers_state.qemu_icount_bias += deadline;
476 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
477 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
478 } else {
479 /*
480 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
481 * "real" time, (related to the time left until the next event) has
482 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
483 * This avoids that the warps are visible externally; for example,
484 * you will not be sending network packets continuously instead of
485 * every 100ms.
486 */
487 seqlock_write_lock(&timers_state.vm_clock_seqlock);
488 if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) {
489 vm_clock_warp_start = clock;
490 }
491 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
492 timer_mod_anticipate(icount_warp_timer, clock + deadline);
493 }
494 } else if (deadline == 0) {
495 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
496 }
497}
498
499static bool icount_state_needed(void *opaque)
500{
501 return use_icount;
502}
503
504/*
505 * This is a subsection for icount migration.
506 */
507static const VMStateDescription icount_vmstate_timers = {
508 .name = "timer/icount",
509 .version_id = 1,
510 .minimum_version_id = 1,
511 .needed = icount_state_needed,
512 .fields = (VMStateField[]) {
513 VMSTATE_INT64(qemu_icount_bias, TimersState),
514 VMSTATE_INT64(qemu_icount, TimersState),
515 VMSTATE_END_OF_LIST()
516 }
517};
518
519static const VMStateDescription vmstate_timers = {
520 .name = "timer",
521 .version_id = 2,
522 .minimum_version_id = 1,
523 .fields = (VMStateField[]) {
524 VMSTATE_INT64(cpu_ticks_offset, TimersState),
525 VMSTATE_INT64(dummy, TimersState),
526 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
527 VMSTATE_END_OF_LIST()
528 },
529 .subsections = (const VMStateDescription*[]) {
530 &icount_vmstate_timers,
531 NULL
532 }
533};
534
535static void cpu_throttle_thread(void *opaque)
536{
537 CPUState *cpu = opaque;
538 double pct;
539 double throttle_ratio;
540 long sleeptime_ns;
541
542 if (!cpu_throttle_get_percentage()) {
543 return;
544 }
545
546 pct = (double)cpu_throttle_get_percentage()/100;
547 throttle_ratio = pct / (1 - pct);
548 sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
549
550 qemu_mutex_unlock_iothread();
551 atomic_set(&cpu->throttle_thread_scheduled, 0);
552 g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
553 qemu_mutex_lock_iothread();
554}
555
556static void cpu_throttle_timer_tick(void *opaque)
557{
558 CPUState *cpu;
559 double pct;
560
561 /* Stop the timer if needed */
562 if (!cpu_throttle_get_percentage()) {
563 return;
564 }
565 CPU_FOREACH(cpu) {
566 if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
567 async_run_on_cpu(cpu, cpu_throttle_thread, cpu);
568 }
569 }
570
571 pct = (double)cpu_throttle_get_percentage()/100;
572 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
573 CPU_THROTTLE_TIMESLICE_NS / (1-pct));
574}
575
576void cpu_throttle_set(int new_throttle_pct)
577{
578 /* Ensure throttle percentage is within valid range */
579 new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
580 new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
581
582 atomic_set(&throttle_percentage, new_throttle_pct);
583
584 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
585 CPU_THROTTLE_TIMESLICE_NS);
586}
587
588void cpu_throttle_stop(void)
589{
590 atomic_set(&throttle_percentage, 0);
591}
592
593bool cpu_throttle_active(void)
594{
595 return (cpu_throttle_get_percentage() != 0);
596}
597
598int cpu_throttle_get_percentage(void)
599{
600 return atomic_read(&throttle_percentage);
601}
602
603void cpu_ticks_init(void)
604{
605 seqlock_init(&timers_state.vm_clock_seqlock, NULL);
606 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
607 throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
608 cpu_throttle_timer_tick, NULL);
609}
610
611void configure_icount(QemuOpts *opts, Error **errp)
612{
613 const char *option;
614 char *rem_str = NULL;
615
616 option = qemu_opt_get(opts, "shift");
617 if (!option) {
618 if (qemu_opt_get(opts, "align") != NULL) {
619 error_setg(errp, "Please specify shift option when using align");
620 }
621 return;
622 }
623
624 icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
625 if (icount_sleep) {
626 icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
627 icount_dummy_timer, NULL);
628 }
629
630 icount_align_option = qemu_opt_get_bool(opts, "align", false);
631
632 if (icount_align_option && !icount_sleep) {
633 error_setg(errp, "align=on and sleep=off are incompatible");
634 }
635 if (strcmp(option, "auto") != 0) {
636 errno = 0;
637 icount_time_shift = strtol(option, &rem_str, 0);
638 if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
639 error_setg(errp, "icount: Invalid shift value");
640 }
641 use_icount = 1;
642 return;
643 } else if (icount_align_option) {
644 error_setg(errp, "shift=auto and align=on are incompatible");
645 } else if (!icount_sleep) {
646 error_setg(errp, "shift=auto and sleep=off are incompatible");
647 }
648
649 use_icount = 2;
650
651 /* 125MIPS seems a reasonable initial guess at the guest speed.
652 It will be corrected fairly quickly anyway. */
653 icount_time_shift = 3;
654
655 /* Have both realtime and virtual time triggers for speed adjustment.
656 The realtime trigger catches emulated time passing too slowly,
657 the virtual time trigger catches emulated time passing too fast.
658 Realtime triggers occur even when idle, so use them less frequently
659 than VM triggers. */
660 icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
661 icount_adjust_rt, NULL);
662 timer_mod(icount_rt_timer,
663 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
664 icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
665 icount_adjust_vm, NULL);
666 timer_mod(icount_vm_timer,
667 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
668 get_ticks_per_sec() / 10);
669}
670
671/***********************************************************/
672void hw_error(const char *fmt, ...)
673{
674 va_list ap;
675 CPUState *cpu;
676
677 va_start(ap, fmt);
678 fprintf(stderr, "qemu: hardware error: ");
679 vfprintf(stderr, fmt, ap);
680 fprintf(stderr, "\n");
681 CPU_FOREACH(cpu) {
682 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
683 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
684 }
685 va_end(ap);
686 abort();
687}
688
689void cpu_synchronize_all_states(void)
690{
691 CPUState *cpu;
692
693 CPU_FOREACH(cpu) {
694 cpu_synchronize_state(cpu);
695 }
696}
697
698void cpu_synchronize_all_post_reset(void)
699{
700 CPUState *cpu;
701
702 CPU_FOREACH(cpu) {
703 cpu_synchronize_post_reset(cpu);
704 }
705}
706
707void cpu_synchronize_all_post_init(void)
708{
709 CPUState *cpu;
710
711 CPU_FOREACH(cpu) {
712 cpu_synchronize_post_init(cpu);
713 }
714}
715
716static int do_vm_stop(RunState state)
717{
718 int ret = 0;
719
720 if (runstate_is_running()) {
721 cpu_disable_ticks();
722 pause_all_vcpus();
723 runstate_set(state);
724 vm_state_notify(0, state);
725 qapi_event_send_stop(&error_abort);
726 }
727
728 bdrv_drain_all();
729 ret = bdrv_flush_all();
730
731 return ret;
732}
733
734static bool cpu_can_run(CPUState *cpu)
735{
736 if (cpu->stop) {
737 return false;
738 }
739 if (cpu_is_stopped(cpu)) {
740 return false;
741 }
742 return true;
743}
744
745static void cpu_handle_guest_debug(CPUState *cpu)
746{
747 gdb_set_stop_cpu(cpu);
748 qemu_system_debug_request();
749 cpu->stopped = true;
750}
751
752#ifdef CONFIG_LINUX
753static void sigbus_reraise(void)
754{
755 sigset_t set;
756 struct sigaction action;
757
758 memset(&action, 0, sizeof(action));
759 action.sa_handler = SIG_DFL;
760 if (!sigaction(SIGBUS, &action, NULL)) {
761 raise(SIGBUS);
762 sigemptyset(&set);
763 sigaddset(&set, SIGBUS);
764 sigprocmask(SIG_UNBLOCK, &set, NULL);
765 }
766 perror("Failed to re-raise SIGBUS!\n");
767 abort();
768}
769
770static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
771 void *ctx)
772{
773 if (kvm_on_sigbus(siginfo->ssi_code,
774 (void *)(intptr_t)siginfo->ssi_addr)) {
775 sigbus_reraise();
776 }
777}
778
779static void qemu_init_sigbus(void)
780{
781 struct sigaction action;
782
783 memset(&action, 0, sizeof(action));
784 action.sa_flags = SA_SIGINFO;
785 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
786 sigaction(SIGBUS, &action, NULL);
787
788 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
789}
790
791static void qemu_kvm_eat_signals(CPUState *cpu)
792{
793 struct timespec ts = { 0, 0 };
794 siginfo_t siginfo;
795 sigset_t waitset;
796 sigset_t chkset;
797 int r;
798
799 sigemptyset(&waitset);
800 sigaddset(&waitset, SIG_IPI);
801 sigaddset(&waitset, SIGBUS);
802
803 do {
804 r = sigtimedwait(&waitset, &siginfo, &ts);
805 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
806 perror("sigtimedwait");
807 exit(1);
808 }
809
810 switch (r) {
811 case SIGBUS:
812 if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) {
813 sigbus_reraise();
814 }
815 break;
816 default:
817 break;
818 }
819
820 r = sigpending(&chkset);
821 if (r == -1) {
822 perror("sigpending");
823 exit(1);
824 }
825 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
826}
827
828#else /* !CONFIG_LINUX */
829
830static void qemu_init_sigbus(void)
831{
832}
833
834static void qemu_kvm_eat_signals(CPUState *cpu)
835{
836}
837#endif /* !CONFIG_LINUX */
838
839#ifndef _WIN32
840static void dummy_signal(int sig)
841{
842}
843
844static void qemu_kvm_init_cpu_signals(CPUState *cpu)
845{
846 int r;
847 sigset_t set;
848 struct sigaction sigact;
849
850 memset(&sigact, 0, sizeof(sigact));
851 sigact.sa_handler = dummy_signal;
852 sigaction(SIG_IPI, &sigact, NULL);
853
854 pthread_sigmask(SIG_BLOCK, NULL, &set);
855 sigdelset(&set, SIG_IPI);
856 sigdelset(&set, SIGBUS);
857 r = kvm_set_signal_mask(cpu, &set);
858 if (r) {
859 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
860 exit(1);
861 }
862}
863
864#else /* _WIN32 */
865static void qemu_kvm_init_cpu_signals(CPUState *cpu)
866{
867 abort();
868}
869#endif /* _WIN32 */
870
871static QemuMutex qemu_global_mutex;
872static QemuCond qemu_io_proceeded_cond;
873static unsigned iothread_requesting_mutex;
874
875static QemuThread io_thread;
876
877/* cpu creation */
878static QemuCond qemu_cpu_cond;
879/* system init */
880static QemuCond qemu_pause_cond;
881static QemuCond qemu_work_cond;
882
883void qemu_init_cpu_loop(void)
884{
885 qemu_init_sigbus();
886 qemu_cond_init(&qemu_cpu_cond);
887 qemu_cond_init(&qemu_pause_cond);
888 qemu_cond_init(&qemu_work_cond);
889 qemu_cond_init(&qemu_io_proceeded_cond);
890 qemu_mutex_init(&qemu_global_mutex);
891
892 qemu_thread_get_self(&io_thread);
893}
894
895void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
896{
897 struct qemu_work_item wi;
898
899 if (qemu_cpu_is_self(cpu)) {
900 func(data);
901 return;
902 }
903
904 wi.func = func;
905 wi.data = data;
906 wi.free = false;
907
908 qemu_mutex_lock(&cpu->work_mutex);
909 if (cpu->queued_work_first == NULL) {
910 cpu->queued_work_first = &wi;
911 } else {
912 cpu->queued_work_last->next = &wi;
913 }
914 cpu->queued_work_last = &wi;
915 wi.next = NULL;
916 wi.done = false;
917 qemu_mutex_unlock(&cpu->work_mutex);
918
919 qemu_cpu_kick(cpu);
920 while (!atomic_mb_read(&wi.done)) {
921 CPUState *self_cpu = current_cpu;
922
923 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
924 current_cpu = self_cpu;
925 }
926}
927
928void async_run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
929{
930 struct qemu_work_item *wi;
931
932 if (qemu_cpu_is_self(cpu)) {
933 func(data);
934 return;
935 }
936
937 wi = g_malloc0(sizeof(struct qemu_work_item));
938 wi->func = func;
939 wi->data = data;
940 wi->free = true;
941
942 qemu_mutex_lock(&cpu->work_mutex);
943 if (cpu->queued_work_first == NULL) {
944 cpu->queued_work_first = wi;
945 } else {
946 cpu->queued_work_last->next = wi;
947 }
948 cpu->queued_work_last = wi;
949 wi->next = NULL;
950 wi->done = false;
951 qemu_mutex_unlock(&cpu->work_mutex);
952
953 qemu_cpu_kick(cpu);
954}
955
956static void flush_queued_work(CPUState *cpu)
957{
958 struct qemu_work_item *wi;
959
960 if (cpu->queued_work_first == NULL) {
961 return;
962 }
963
964 qemu_mutex_lock(&cpu->work_mutex);
965 while (cpu->queued_work_first != NULL) {
966 wi = cpu->queued_work_first;
967 cpu->queued_work_first = wi->next;
968 if (!cpu->queued_work_first) {
969 cpu->queued_work_last = NULL;
970 }
971 qemu_mutex_unlock(&cpu->work_mutex);
972 wi->func(wi->data);
973 qemu_mutex_lock(&cpu->work_mutex);
974 if (wi->free) {
975 g_free(wi);
976 } else {
977 atomic_mb_set(&wi->done, true);
978 }
979 }
980 qemu_mutex_unlock(&cpu->work_mutex);
981 qemu_cond_broadcast(&qemu_work_cond);
982}
983
984static void qemu_wait_io_event_common(CPUState *cpu)
985{
986 if (cpu->stop) {
987 cpu->stop = false;
988 cpu->stopped = true;
989 qemu_cond_broadcast(&qemu_pause_cond);
990 }
991 flush_queued_work(cpu);
992 cpu->thread_kicked = false;
993}
994
995static void qemu_tcg_wait_io_event(CPUState *cpu)
996{
997 while (all_cpu_threads_idle()) {
998 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
999 }
1000
1001 while (iothread_requesting_mutex) {
1002 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
1003 }
1004
1005 CPU_FOREACH(cpu) {
1006 qemu_wait_io_event_common(cpu);
1007 }
1008}
1009
1010static void qemu_kvm_wait_io_event(CPUState *cpu)
1011{
1012 while (cpu_thread_is_idle(cpu)) {
1013 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1014 }
1015
1016 qemu_kvm_eat_signals(cpu);
1017 qemu_wait_io_event_common(cpu);
1018}
1019
1020static void *qemu_kvm_cpu_thread_fn(void *arg)
1021{
1022 CPUState *cpu = arg;
1023 int r;
1024
1025 rcu_register_thread();
1026
1027 qemu_mutex_lock_iothread();
1028 qemu_thread_get_self(cpu->thread);
1029 cpu->thread_id = qemu_get_thread_id();
1030 cpu->can_do_io = 1;
1031 current_cpu = cpu;
1032
1033 r = kvm_init_vcpu(cpu);
1034 if (r < 0) {
1035 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
1036 exit(1);
1037 }
1038
1039 qemu_kvm_init_cpu_signals(cpu);
1040
1041 /* signal CPU creation */
1042 cpu->created = true;
1043 qemu_cond_signal(&qemu_cpu_cond);
1044
1045 while (1) {
1046 if (cpu_can_run(cpu)) {
1047 r = kvm_cpu_exec(cpu);
1048 if (r == EXCP_DEBUG) {
1049 cpu_handle_guest_debug(cpu);
1050 }
1051 }
1052 qemu_kvm_wait_io_event(cpu);
1053 }
1054
1055 return NULL;
1056}
1057
1058static void *qemu_dummy_cpu_thread_fn(void *arg)
1059{
1060#ifdef _WIN32
1061 fprintf(stderr, "qtest is not supported under Windows\n");
1062 exit(1);
1063#else
1064 CPUState *cpu = arg;
1065 sigset_t waitset;
1066 int r;
1067
1068 rcu_register_thread();
1069
1070 qemu_mutex_lock_iothread();
1071 qemu_thread_get_self(cpu->thread);
1072 cpu->thread_id = qemu_get_thread_id();
1073 cpu->can_do_io = 1;
1074
1075 sigemptyset(&waitset);
1076 sigaddset(&waitset, SIG_IPI);
1077
1078 /* signal CPU creation */
1079 cpu->created = true;
1080 qemu_cond_signal(&qemu_cpu_cond);
1081
1082 current_cpu = cpu;
1083 while (1) {
1084 current_cpu = NULL;
1085 qemu_mutex_unlock_iothread();
1086 do {
1087 int sig;
1088 r = sigwait(&waitset, &sig);
1089 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1090 if (r == -1) {
1091 perror("sigwait");
1092 exit(1);
1093 }
1094 qemu_mutex_lock_iothread();
1095 current_cpu = cpu;
1096 qemu_wait_io_event_common(cpu);
1097 }
1098
1099 return NULL;
1100#endif
1101}
1102
1103static void tcg_exec_all(void);
1104
1105static void *qemu_tcg_cpu_thread_fn(void *arg)
1106{
1107 CPUState *cpu = arg;
1108
1109 rcu_register_thread();
1110
1111 qemu_mutex_lock_iothread();
1112 qemu_thread_get_self(cpu->thread);
1113
1114 CPU_FOREACH(cpu) {
1115 cpu->thread_id = qemu_get_thread_id();
1116 cpu->created = true;
1117 cpu->can_do_io = 1;
1118 }
1119 qemu_cond_signal(&qemu_cpu_cond);
1120
1121 /* wait for initial kick-off after machine start */
1122 while (first_cpu->stopped) {
1123 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1124
1125 /* process any pending work */
1126 CPU_FOREACH(cpu) {
1127 qemu_wait_io_event_common(cpu);
1128 }
1129 }
1130
1131 /* process any pending work */
1132 atomic_mb_set(&exit_request, 1);
1133
1134 while (1) {
1135 tcg_exec_all();
1136
1137 if (use_icount) {
1138 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1139
1140 if (deadline == 0) {
1141 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1142 }
1143 }
1144 qemu_tcg_wait_io_event(QTAILQ_FIRST(&cpus));
1145 }
1146
1147 return NULL;
1148}
1149
1150static void qemu_cpu_kick_thread(CPUState *cpu)
1151{
1152#ifndef _WIN32
1153 int err;
1154
1155 if (cpu->thread_kicked) {
1156 return;
1157 }
1158 cpu->thread_kicked = true;
1159 err = pthread_kill(cpu->thread->thread, SIG_IPI);
1160 if (err) {
1161 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1162 exit(1);
1163 }
1164#else /* _WIN32 */
1165 abort();
1166#endif
1167}
1168
1169static void qemu_cpu_kick_no_halt(void)
1170{
1171 CPUState *cpu;
1172 /* Ensure whatever caused the exit has reached the CPU threads before
1173 * writing exit_request.
1174 */
1175 atomic_mb_set(&exit_request, 1);
1176 cpu = atomic_mb_read(&tcg_current_cpu);
1177 if (cpu) {
1178 cpu_exit(cpu);
1179 }
1180}
1181
1182void qemu_cpu_kick(CPUState *cpu)
1183{
1184 qemu_cond_broadcast(cpu->halt_cond);
1185 if (tcg_enabled()) {
1186 qemu_cpu_kick_no_halt();
1187 } else {
1188 qemu_cpu_kick_thread(cpu);
1189 }
1190}
1191
1192void qemu_cpu_kick_self(void)
1193{
1194 assert(current_cpu);
1195 qemu_cpu_kick_thread(current_cpu);
1196}
1197
1198bool qemu_cpu_is_self(CPUState *cpu)
1199{
1200 return qemu_thread_is_self(cpu->thread);
1201}
1202
1203bool qemu_in_vcpu_thread(void)
1204{
1205 return current_cpu && qemu_cpu_is_self(current_cpu);
1206}
1207
1208static __thread bool iothread_locked = false;
1209
1210bool qemu_mutex_iothread_locked(void)
1211{
1212 return iothread_locked;
1213}
1214
1215void qemu_mutex_lock_iothread(void)
1216{
1217 atomic_inc(&iothread_requesting_mutex);
1218 /* In the simple case there is no need to bump the VCPU thread out of
1219 * TCG code execution.
1220 */
1221 if (!tcg_enabled() || qemu_in_vcpu_thread() ||
1222 !first_cpu || !first_cpu->created) {
1223 qemu_mutex_lock(&qemu_global_mutex);
1224 atomic_dec(&iothread_requesting_mutex);
1225 } else {
1226 if (qemu_mutex_trylock(&qemu_global_mutex)) {
1227 qemu_cpu_kick_no_halt();
1228 qemu_mutex_lock(&qemu_global_mutex);
1229 }
1230 atomic_dec(&iothread_requesting_mutex);
1231 qemu_cond_broadcast(&qemu_io_proceeded_cond);
1232 }
1233 iothread_locked = true;
1234}
1235
1236void qemu_mutex_unlock_iothread(void)
1237{
1238 iothread_locked = false;
1239 qemu_mutex_unlock(&qemu_global_mutex);
1240}
1241
1242static int all_vcpus_paused(void)
1243{
1244 CPUState *cpu;
1245
1246 CPU_FOREACH(cpu) {
1247 if (!cpu->stopped) {
1248 return 0;
1249 }
1250 }
1251
1252 return 1;
1253}
1254
1255void pause_all_vcpus(void)
1256{
1257 CPUState *cpu;
1258
1259 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1260 CPU_FOREACH(cpu) {
1261 cpu->stop = true;
1262 qemu_cpu_kick(cpu);
1263 }
1264
1265 if (qemu_in_vcpu_thread()) {
1266 cpu_stop_current();
1267 if (!kvm_enabled()) {
1268 CPU_FOREACH(cpu) {
1269 cpu->stop = false;
1270 cpu->stopped = true;
1271 }
1272 return;
1273 }
1274 }
1275
1276 while (!all_vcpus_paused()) {
1277 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1278 CPU_FOREACH(cpu) {
1279 qemu_cpu_kick(cpu);
1280 }
1281 }
1282}
1283
1284void cpu_resume(CPUState *cpu)
1285{
1286 cpu->stop = false;
1287 cpu->stopped = false;
1288 qemu_cpu_kick(cpu);
1289}
1290
1291void resume_all_vcpus(void)
1292{
1293 CPUState *cpu;
1294
1295 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1296 CPU_FOREACH(cpu) {
1297 cpu_resume(cpu);
1298 }
1299}
1300
1301/* For temporary buffers for forming a name */
1302#define VCPU_THREAD_NAME_SIZE 16
1303
1304static void qemu_tcg_init_vcpu(CPUState *cpu)
1305{
1306 char thread_name[VCPU_THREAD_NAME_SIZE];
1307 static QemuCond *tcg_halt_cond;
1308 static QemuThread *tcg_cpu_thread;
1309
1310 /* share a single thread for all cpus with TCG */
1311 if (!tcg_cpu_thread) {
1312 cpu->thread = g_malloc0(sizeof(QemuThread));
1313 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1314 qemu_cond_init(cpu->halt_cond);
1315 tcg_halt_cond = cpu->halt_cond;
1316 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1317 cpu->cpu_index);
1318 qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1319 cpu, QEMU_THREAD_JOINABLE);
1320#ifdef _WIN32
1321 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1322#endif
1323 while (!cpu->created) {
1324 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1325 }
1326 tcg_cpu_thread = cpu->thread;
1327 } else {
1328 cpu->thread = tcg_cpu_thread;
1329 cpu->halt_cond = tcg_halt_cond;
1330 }
1331}
1332
1333static void qemu_kvm_start_vcpu(CPUState *cpu)
1334{
1335 char thread_name[VCPU_THREAD_NAME_SIZE];
1336
1337 cpu->thread = g_malloc0(sizeof(QemuThread));
1338 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1339 qemu_cond_init(cpu->halt_cond);
1340 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
1341 cpu->cpu_index);
1342 qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
1343 cpu, QEMU_THREAD_JOINABLE);
1344 while (!cpu->created) {
1345 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1346 }
1347}
1348
1349static void qemu_dummy_start_vcpu(CPUState *cpu)
1350{
1351 char thread_name[VCPU_THREAD_NAME_SIZE];
1352
1353 cpu->thread = g_malloc0(sizeof(QemuThread));
1354 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1355 qemu_cond_init(cpu->halt_cond);
1356 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
1357 cpu->cpu_index);
1358 qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
1359 QEMU_THREAD_JOINABLE);
1360 while (!cpu->created) {
1361 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1362 }
1363}
1364
1365void qemu_init_vcpu(CPUState *cpu)
1366{
1367 cpu->nr_cores = smp_cores;
1368 cpu->nr_threads = smp_threads;
1369 cpu->stopped = true;
1370
1371 if (!cpu->as) {
1372 /* If the target cpu hasn't set up any address spaces itself,
1373 * give it the default one.
1374 */
1375 AddressSpace *as = address_space_init_shareable(cpu->memory,
1376 "cpu-memory");
1377 cpu->num_ases = 1;
1378 cpu_address_space_init(cpu, as, 0);
1379 }
1380
1381 if (kvm_enabled()) {
1382 qemu_kvm_start_vcpu(cpu);
1383 } else if (tcg_enabled()) {
1384 qemu_tcg_init_vcpu(cpu);
1385 } else {
1386 qemu_dummy_start_vcpu(cpu);
1387 }
1388}
1389
1390void cpu_stop_current(void)
1391{
1392 if (current_cpu) {
1393 current_cpu->stop = false;
1394 current_cpu->stopped = true;
1395 cpu_exit(current_cpu);
1396 qemu_cond_broadcast(&qemu_pause_cond);
1397 }
1398}
1399
1400int vm_stop(RunState state)
1401{
1402 if (qemu_in_vcpu_thread()) {
1403 qemu_system_vmstop_request_prepare();
1404 qemu_system_vmstop_request(state);
1405 /*
1406 * FIXME: should not return to device code in case
1407 * vm_stop() has been requested.
1408 */
1409 cpu_stop_current();
1410 return 0;
1411 }
1412
1413 return do_vm_stop(state);
1414}
1415
1416/* does a state transition even if the VM is already stopped,
1417 current state is forgotten forever */
1418int vm_stop_force_state(RunState state)
1419{
1420 if (runstate_is_running()) {
1421 return vm_stop(state);
1422 } else {
1423 runstate_set(state);
1424
1425 bdrv_drain_all();
1426 /* Make sure to return an error if the flush in a previous vm_stop()
1427 * failed. */
1428 return bdrv_flush_all();
1429 }
1430}
1431
1432static int64_t tcg_get_icount_limit(void)
1433{
1434 int64_t deadline;
1435
1436 if (replay_mode != REPLAY_MODE_PLAY) {
1437 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1438
1439 /* Maintain prior (possibly buggy) behaviour where if no deadline
1440 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1441 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1442 * nanoseconds.
1443 */
1444 if ((deadline < 0) || (deadline > INT32_MAX)) {
1445 deadline = INT32_MAX;
1446 }
1447
1448 return qemu_icount_round(deadline);
1449 } else {
1450 return replay_get_instructions();
1451 }
1452}
1453
1454static int tcg_cpu_exec(CPUState *cpu)
1455{
1456 int ret;
1457#ifdef CONFIG_PROFILER
1458 int64_t ti;
1459#endif
1460
1461#ifdef CONFIG_PROFILER
1462 ti = profile_getclock();
1463#endif
1464 if (use_icount) {
1465 int64_t count;
1466 int decr;
1467 timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1468 + cpu->icount_extra);
1469 cpu->icount_decr.u16.low = 0;
1470 cpu->icount_extra = 0;
1471 count = tcg_get_icount_limit();
1472 timers_state.qemu_icount += count;
1473 decr = (count > 0xffff) ? 0xffff : count;
1474 count -= decr;
1475 cpu->icount_decr.u16.low = decr;
1476 cpu->icount_extra = count;
1477 }
1478 ret = cpu_exec(cpu);
1479#ifdef CONFIG_PROFILER
1480 tcg_time += profile_getclock() - ti;
1481#endif
1482 if (use_icount) {
1483 /* Fold pending instructions back into the
1484 instruction counter, and clear the interrupt flag. */
1485 timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1486 + cpu->icount_extra);
1487 cpu->icount_decr.u32 = 0;
1488 cpu->icount_extra = 0;
1489 replay_account_executed_instructions();
1490 }
1491 return ret;
1492}
1493
1494static void tcg_exec_all(void)
1495{
1496 int r;
1497
1498 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1499 qemu_clock_warp(QEMU_CLOCK_VIRTUAL);
1500
1501 if (next_cpu == NULL) {
1502 next_cpu = first_cpu;
1503 }
1504 for (; next_cpu != NULL && !exit_request; next_cpu = CPU_NEXT(next_cpu)) {
1505 CPUState *cpu = next_cpu;
1506
1507 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1508 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1509
1510 if (cpu_can_run(cpu)) {
1511 r = tcg_cpu_exec(cpu);
1512 if (r == EXCP_DEBUG) {
1513 cpu_handle_guest_debug(cpu);
1514 break;
1515 }
1516 } else if (cpu->stop || cpu->stopped) {
1517 break;
1518 }
1519 }
1520
1521 /* Pairs with smp_wmb in qemu_cpu_kick. */
1522 atomic_mb_set(&exit_request, 0);
1523}
1524
1525void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1526{
1527 /* XXX: implement xxx_cpu_list for targets that still miss it */
1528#if defined(cpu_list)
1529 cpu_list(f, cpu_fprintf);
1530#endif
1531}
1532
1533CpuInfoList *qmp_query_cpus(Error **errp)
1534{
1535 CpuInfoList *head = NULL, *cur_item = NULL;
1536 CPUState *cpu;
1537
1538 CPU_FOREACH(cpu) {
1539 CpuInfoList *info;
1540#if defined(TARGET_I386)
1541 X86CPU *x86_cpu = X86_CPU(cpu);
1542 CPUX86State *env = &x86_cpu->env;
1543#elif defined(TARGET_PPC)
1544 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
1545 CPUPPCState *env = &ppc_cpu->env;
1546#elif defined(TARGET_SPARC)
1547 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
1548 CPUSPARCState *env = &sparc_cpu->env;
1549#elif defined(TARGET_MIPS)
1550 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
1551 CPUMIPSState *env = &mips_cpu->env;
1552#elif defined(TARGET_TRICORE)
1553 TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
1554 CPUTriCoreState *env = &tricore_cpu->env;
1555#endif
1556
1557 cpu_synchronize_state(cpu);
1558
1559 info = g_malloc0(sizeof(*info));
1560 info->value = g_malloc0(sizeof(*info->value));
1561 info->value->CPU = cpu->cpu_index;
1562 info->value->current = (cpu == first_cpu);
1563 info->value->halted = cpu->halted;
1564 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
1565 info->value->thread_id = cpu->thread_id;
1566#if defined(TARGET_I386)
1567 info->value->arch = CPU_INFO_ARCH_X86;
1568 info->value->u.x86.pc = env->eip + env->segs[R_CS].base;
1569#elif defined(TARGET_PPC)
1570 info->value->arch = CPU_INFO_ARCH_PPC;
1571 info->value->u.ppc.nip = env->nip;
1572#elif defined(TARGET_SPARC)
1573 info->value->arch = CPU_INFO_ARCH_SPARC;
1574 info->value->u.q_sparc.pc = env->pc;
1575 info->value->u.q_sparc.npc = env->npc;
1576#elif defined(TARGET_MIPS)
1577 info->value->arch = CPU_INFO_ARCH_MIPS;
1578 info->value->u.q_mips.PC = env->active_tc.PC;
1579#elif defined(TARGET_TRICORE)
1580 info->value->arch = CPU_INFO_ARCH_TRICORE;
1581 info->value->u.tricore.PC = env->PC;
1582#else
1583 info->value->arch = CPU_INFO_ARCH_OTHER;
1584#endif
1585
1586 /* XXX: waiting for the qapi to support GSList */
1587 if (!cur_item) {
1588 head = cur_item = info;
1589 } else {
1590 cur_item->next = info;
1591 cur_item = info;
1592 }
1593 }
1594
1595 return head;
1596}
1597
1598void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1599 bool has_cpu, int64_t cpu_index, Error **errp)
1600{
1601 FILE *f;
1602 uint32_t l;
1603 CPUState *cpu;
1604 uint8_t buf[1024];
1605 int64_t orig_addr = addr, orig_size = size;
1606
1607 if (!has_cpu) {
1608 cpu_index = 0;
1609 }
1610
1611 cpu = qemu_get_cpu(cpu_index);
1612 if (cpu == NULL) {
1613 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1614 "a CPU number");
1615 return;
1616 }
1617
1618 f = fopen(filename, "wb");
1619 if (!f) {
1620 error_setg_file_open(errp, errno, filename);
1621 return;
1622 }
1623
1624 while (size != 0) {
1625 l = sizeof(buf);
1626 if (l > size)
1627 l = size;
1628 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
1629 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
1630 " specified", orig_addr, orig_size);
1631 goto exit;
1632 }
1633 if (fwrite(buf, 1, l, f) != l) {
1634 error_setg(errp, QERR_IO_ERROR);
1635 goto exit;
1636 }
1637 addr += l;
1638 size -= l;
1639 }
1640
1641exit:
1642 fclose(f);
1643}
1644
1645void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1646 Error **errp)
1647{
1648 FILE *f;
1649 uint32_t l;
1650 uint8_t buf[1024];
1651
1652 f = fopen(filename, "wb");
1653 if (!f) {
1654 error_setg_file_open(errp, errno, filename);
1655 return;
1656 }
1657
1658 while (size != 0) {
1659 l = sizeof(buf);
1660 if (l > size)
1661 l = size;
1662 cpu_physical_memory_read(addr, buf, l);
1663 if (fwrite(buf, 1, l, f) != l) {
1664 error_setg(errp, QERR_IO_ERROR);
1665 goto exit;
1666 }
1667 addr += l;
1668 size -= l;
1669 }
1670
1671exit:
1672 fclose(f);
1673}
1674
1675void qmp_inject_nmi(Error **errp)
1676{
1677#if defined(TARGET_I386)
1678 CPUState *cs;
1679
1680 CPU_FOREACH(cs) {
1681 X86CPU *cpu = X86_CPU(cs);
1682
1683 if (!cpu->apic_state) {
1684 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
1685 } else {
1686 apic_deliver_nmi(cpu->apic_state);
1687 }
1688 }
1689#else
1690 nmi_monitor_handle(monitor_get_cpu_index(), errp);
1691#endif
1692}
1693
1694void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
1695{
1696 if (!use_icount) {
1697 return;
1698 }
1699
1700 cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n",
1701 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
1702 if (icount_align_option) {
1703 cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS);
1704 cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS);
1705 } else {
1706 cpu_fprintf(f, "Max guest delay NA\n");
1707 cpu_fprintf(f, "Max guest advance NA\n");
1708 }
1709}