]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - drivers/ata/libata-core.c
[libata] sata_mv: remove extra braces
[mirror_ubuntu-zesty-kernel.git] / drivers / ata / libata-core.c
... / ...
CommitLineData
1/*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
50#include <linux/jiffies.h>
51#include <linux/scatterlist.h>
52#include <scsi/scsi.h>
53#include <scsi/scsi_cmnd.h>
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
62#define DRV_VERSION "2.20" /* must be exactly four chars */
63
64
65/* debounce timing parameters in msecs { interval, duration, timeout } */
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
74
75static unsigned int ata_print_id = 1;
76static struct workqueue_struct *ata_wq;
77
78struct workqueue_struct *ata_aux_wq;
79
80int atapi_enabled = 1;
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
92static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93module_param(ata_probe_timeout, int, 0444);
94MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
95
96int libata_noacpi = 1;
97module_param_named(noacpi, libata_noacpi, int, 0444);
98MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
99
100MODULE_AUTHOR("Jeff Garzik");
101MODULE_DESCRIPTION("Library module for ATA devices");
102MODULE_LICENSE("GPL");
103MODULE_VERSION(DRV_VERSION);
104
105
106/**
107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108 * @tf: Taskfile to convert
109 * @fis: Buffer into which data will output
110 * @pmp: Port multiplier port
111 *
112 * Converts a standard ATA taskfile to a Serial ATA
113 * FIS structure (Register - Host to Device).
114 *
115 * LOCKING:
116 * Inherited from caller.
117 */
118
119void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
120{
121 fis[0] = 0x27; /* Register - Host to Device FIS */
122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 bit 7 indicates Command FIS */
124 fis[2] = tf->command;
125 fis[3] = tf->feature;
126
127 fis[4] = tf->lbal;
128 fis[5] = tf->lbam;
129 fis[6] = tf->lbah;
130 fis[7] = tf->device;
131
132 fis[8] = tf->hob_lbal;
133 fis[9] = tf->hob_lbam;
134 fis[10] = tf->hob_lbah;
135 fis[11] = tf->hob_feature;
136
137 fis[12] = tf->nsect;
138 fis[13] = tf->hob_nsect;
139 fis[14] = 0;
140 fis[15] = tf->ctl;
141
142 fis[16] = 0;
143 fis[17] = 0;
144 fis[18] = 0;
145 fis[19] = 0;
146}
147
148/**
149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150 * @fis: Buffer from which data will be input
151 * @tf: Taskfile to output
152 *
153 * Converts a serial ATA FIS structure to a standard ATA taskfile.
154 *
155 * LOCKING:
156 * Inherited from caller.
157 */
158
159void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
160{
161 tf->command = fis[2]; /* status */
162 tf->feature = fis[3]; /* error */
163
164 tf->lbal = fis[4];
165 tf->lbam = fis[5];
166 tf->lbah = fis[6];
167 tf->device = fis[7];
168
169 tf->hob_lbal = fis[8];
170 tf->hob_lbam = fis[9];
171 tf->hob_lbah = fis[10];
172
173 tf->nsect = fis[12];
174 tf->hob_nsect = fis[13];
175}
176
177static const u8 ata_rw_cmds[] = {
178 /* pio multi */
179 ATA_CMD_READ_MULTI,
180 ATA_CMD_WRITE_MULTI,
181 ATA_CMD_READ_MULTI_EXT,
182 ATA_CMD_WRITE_MULTI_EXT,
183 0,
184 0,
185 0,
186 ATA_CMD_WRITE_MULTI_FUA_EXT,
187 /* pio */
188 ATA_CMD_PIO_READ,
189 ATA_CMD_PIO_WRITE,
190 ATA_CMD_PIO_READ_EXT,
191 ATA_CMD_PIO_WRITE_EXT,
192 0,
193 0,
194 0,
195 0,
196 /* dma */
197 ATA_CMD_READ,
198 ATA_CMD_WRITE,
199 ATA_CMD_READ_EXT,
200 ATA_CMD_WRITE_EXT,
201 0,
202 0,
203 0,
204 ATA_CMD_WRITE_FUA_EXT
205};
206
207/**
208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
209 * @tf: command to examine and configure
210 * @dev: device tf belongs to
211 *
212 * Examine the device configuration and tf->flags to calculate
213 * the proper read/write commands and protocol to use.
214 *
215 * LOCKING:
216 * caller.
217 */
218static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
219{
220 u8 cmd;
221
222 int index, fua, lba48, write;
223
224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
227
228 if (dev->flags & ATA_DFLAG_PIO) {
229 tf->protocol = ATA_PROT_PIO;
230 index = dev->multi_count ? 0 : 8;
231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
232 /* Unable to use DMA due to host limitation */
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else {
236 tf->protocol = ATA_PROT_DMA;
237 index = 16;
238 }
239
240 cmd = ata_rw_cmds[index + fua + lba48 + write];
241 if (cmd) {
242 tf->command = cmd;
243 return 0;
244 }
245 return -1;
246}
247
248/**
249 * ata_tf_read_block - Read block address from ATA taskfile
250 * @tf: ATA taskfile of interest
251 * @dev: ATA device @tf belongs to
252 *
253 * LOCKING:
254 * None.
255 *
256 * Read block address from @tf. This function can handle all
257 * three address formats - LBA, LBA48 and CHS. tf->protocol and
258 * flags select the address format to use.
259 *
260 * RETURNS:
261 * Block address read from @tf.
262 */
263u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
264{
265 u64 block = 0;
266
267 if (tf->flags & ATA_TFLAG_LBA) {
268 if (tf->flags & ATA_TFLAG_LBA48) {
269 block |= (u64)tf->hob_lbah << 40;
270 block |= (u64)tf->hob_lbam << 32;
271 block |= tf->hob_lbal << 24;
272 } else
273 block |= (tf->device & 0xf) << 24;
274
275 block |= tf->lbah << 16;
276 block |= tf->lbam << 8;
277 block |= tf->lbal;
278 } else {
279 u32 cyl, head, sect;
280
281 cyl = tf->lbam | (tf->lbah << 8);
282 head = tf->device & 0xf;
283 sect = tf->lbal;
284
285 block = (cyl * dev->heads + head) * dev->sectors + sect;
286 }
287
288 return block;
289}
290
291/**
292 * ata_build_rw_tf - Build ATA taskfile for given read/write request
293 * @tf: Target ATA taskfile
294 * @dev: ATA device @tf belongs to
295 * @block: Block address
296 * @n_block: Number of blocks
297 * @tf_flags: RW/FUA etc...
298 * @tag: tag
299 *
300 * LOCKING:
301 * None.
302 *
303 * Build ATA taskfile @tf for read/write request described by
304 * @block, @n_block, @tf_flags and @tag on @dev.
305 *
306 * RETURNS:
307 *
308 * 0 on success, -ERANGE if the request is too large for @dev,
309 * -EINVAL if the request is invalid.
310 */
311int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 u64 block, u32 n_block, unsigned int tf_flags,
313 unsigned int tag)
314{
315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 tf->flags |= tf_flags;
317
318 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
319 /* yay, NCQ */
320 if (!lba_48_ok(block, n_block))
321 return -ERANGE;
322
323 tf->protocol = ATA_PROT_NCQ;
324 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
325
326 if (tf->flags & ATA_TFLAG_WRITE)
327 tf->command = ATA_CMD_FPDMA_WRITE;
328 else
329 tf->command = ATA_CMD_FPDMA_READ;
330
331 tf->nsect = tag << 3;
332 tf->hob_feature = (n_block >> 8) & 0xff;
333 tf->feature = n_block & 0xff;
334
335 tf->hob_lbah = (block >> 40) & 0xff;
336 tf->hob_lbam = (block >> 32) & 0xff;
337 tf->hob_lbal = (block >> 24) & 0xff;
338 tf->lbah = (block >> 16) & 0xff;
339 tf->lbam = (block >> 8) & 0xff;
340 tf->lbal = block & 0xff;
341
342 tf->device = 1 << 6;
343 if (tf->flags & ATA_TFLAG_FUA)
344 tf->device |= 1 << 7;
345 } else if (dev->flags & ATA_DFLAG_LBA) {
346 tf->flags |= ATA_TFLAG_LBA;
347
348 if (lba_28_ok(block, n_block)) {
349 /* use LBA28 */
350 tf->device |= (block >> 24) & 0xf;
351 } else if (lba_48_ok(block, n_block)) {
352 if (!(dev->flags & ATA_DFLAG_LBA48))
353 return -ERANGE;
354
355 /* use LBA48 */
356 tf->flags |= ATA_TFLAG_LBA48;
357
358 tf->hob_nsect = (n_block >> 8) & 0xff;
359
360 tf->hob_lbah = (block >> 40) & 0xff;
361 tf->hob_lbam = (block >> 32) & 0xff;
362 tf->hob_lbal = (block >> 24) & 0xff;
363 } else
364 /* request too large even for LBA48 */
365 return -ERANGE;
366
367 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
368 return -EINVAL;
369
370 tf->nsect = n_block & 0xff;
371
372 tf->lbah = (block >> 16) & 0xff;
373 tf->lbam = (block >> 8) & 0xff;
374 tf->lbal = block & 0xff;
375
376 tf->device |= ATA_LBA;
377 } else {
378 /* CHS */
379 u32 sect, head, cyl, track;
380
381 /* The request -may- be too large for CHS addressing. */
382 if (!lba_28_ok(block, n_block))
383 return -ERANGE;
384
385 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
386 return -EINVAL;
387
388 /* Convert LBA to CHS */
389 track = (u32)block / dev->sectors;
390 cyl = track / dev->heads;
391 head = track % dev->heads;
392 sect = (u32)block % dev->sectors + 1;
393
394 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
395 (u32)block, track, cyl, head, sect);
396
397 /* Check whether the converted CHS can fit.
398 Cylinder: 0-65535
399 Head: 0-15
400 Sector: 1-255*/
401 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
402 return -ERANGE;
403
404 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
405 tf->lbal = sect;
406 tf->lbam = cyl;
407 tf->lbah = cyl >> 8;
408 tf->device |= head;
409 }
410
411 return 0;
412}
413
414/**
415 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
416 * @pio_mask: pio_mask
417 * @mwdma_mask: mwdma_mask
418 * @udma_mask: udma_mask
419 *
420 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
421 * unsigned int xfer_mask.
422 *
423 * LOCKING:
424 * None.
425 *
426 * RETURNS:
427 * Packed xfer_mask.
428 */
429static unsigned int ata_pack_xfermask(unsigned int pio_mask,
430 unsigned int mwdma_mask,
431 unsigned int udma_mask)
432{
433 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
434 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
435 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
436}
437
438/**
439 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
440 * @xfer_mask: xfer_mask to unpack
441 * @pio_mask: resulting pio_mask
442 * @mwdma_mask: resulting mwdma_mask
443 * @udma_mask: resulting udma_mask
444 *
445 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
446 * Any NULL distination masks will be ignored.
447 */
448static void ata_unpack_xfermask(unsigned int xfer_mask,
449 unsigned int *pio_mask,
450 unsigned int *mwdma_mask,
451 unsigned int *udma_mask)
452{
453 if (pio_mask)
454 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
455 if (mwdma_mask)
456 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
457 if (udma_mask)
458 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
459}
460
461static const struct ata_xfer_ent {
462 int shift, bits;
463 u8 base;
464} ata_xfer_tbl[] = {
465 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
466 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
467 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
468 { -1, },
469};
470
471/**
472 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
473 * @xfer_mask: xfer_mask of interest
474 *
475 * Return matching XFER_* value for @xfer_mask. Only the highest
476 * bit of @xfer_mask is considered.
477 *
478 * LOCKING:
479 * None.
480 *
481 * RETURNS:
482 * Matching XFER_* value, 0 if no match found.
483 */
484static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
485{
486 int highbit = fls(xfer_mask) - 1;
487 const struct ata_xfer_ent *ent;
488
489 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
490 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
491 return ent->base + highbit - ent->shift;
492 return 0;
493}
494
495/**
496 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
497 * @xfer_mode: XFER_* of interest
498 *
499 * Return matching xfer_mask for @xfer_mode.
500 *
501 * LOCKING:
502 * None.
503 *
504 * RETURNS:
505 * Matching xfer_mask, 0 if no match found.
506 */
507static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
508{
509 const struct ata_xfer_ent *ent;
510
511 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
512 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
513 return 1 << (ent->shift + xfer_mode - ent->base);
514 return 0;
515}
516
517/**
518 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
519 * @xfer_mode: XFER_* of interest
520 *
521 * Return matching xfer_shift for @xfer_mode.
522 *
523 * LOCKING:
524 * None.
525 *
526 * RETURNS:
527 * Matching xfer_shift, -1 if no match found.
528 */
529static int ata_xfer_mode2shift(unsigned int xfer_mode)
530{
531 const struct ata_xfer_ent *ent;
532
533 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
534 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
535 return ent->shift;
536 return -1;
537}
538
539/**
540 * ata_mode_string - convert xfer_mask to string
541 * @xfer_mask: mask of bits supported; only highest bit counts.
542 *
543 * Determine string which represents the highest speed
544 * (highest bit in @modemask).
545 *
546 * LOCKING:
547 * None.
548 *
549 * RETURNS:
550 * Constant C string representing highest speed listed in
551 * @mode_mask, or the constant C string "<n/a>".
552 */
553static const char *ata_mode_string(unsigned int xfer_mask)
554{
555 static const char * const xfer_mode_str[] = {
556 "PIO0",
557 "PIO1",
558 "PIO2",
559 "PIO3",
560 "PIO4",
561 "PIO5",
562 "PIO6",
563 "MWDMA0",
564 "MWDMA1",
565 "MWDMA2",
566 "MWDMA3",
567 "MWDMA4",
568 "UDMA/16",
569 "UDMA/25",
570 "UDMA/33",
571 "UDMA/44",
572 "UDMA/66",
573 "UDMA/100",
574 "UDMA/133",
575 "UDMA7",
576 };
577 int highbit;
578
579 highbit = fls(xfer_mask) - 1;
580 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
581 return xfer_mode_str[highbit];
582 return "<n/a>";
583}
584
585static const char *sata_spd_string(unsigned int spd)
586{
587 static const char * const spd_str[] = {
588 "1.5 Gbps",
589 "3.0 Gbps",
590 };
591
592 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
593 return "<unknown>";
594 return spd_str[spd - 1];
595}
596
597void ata_dev_disable(struct ata_device *dev)
598{
599 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
600 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
601 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
602 ATA_DNXFER_QUIET);
603 dev->class++;
604 }
605}
606
607/**
608 * ata_devchk - PATA device presence detection
609 * @ap: ATA channel to examine
610 * @device: Device to examine (starting at zero)
611 *
612 * This technique was originally described in
613 * Hale Landis's ATADRVR (www.ata-atapi.com), and
614 * later found its way into the ATA/ATAPI spec.
615 *
616 * Write a pattern to the ATA shadow registers,
617 * and if a device is present, it will respond by
618 * correctly storing and echoing back the
619 * ATA shadow register contents.
620 *
621 * LOCKING:
622 * caller.
623 */
624
625static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
626{
627 struct ata_ioports *ioaddr = &ap->ioaddr;
628 u8 nsect, lbal;
629
630 ap->ops->dev_select(ap, device);
631
632 iowrite8(0x55, ioaddr->nsect_addr);
633 iowrite8(0xaa, ioaddr->lbal_addr);
634
635 iowrite8(0xaa, ioaddr->nsect_addr);
636 iowrite8(0x55, ioaddr->lbal_addr);
637
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
640
641 nsect = ioread8(ioaddr->nsect_addr);
642 lbal = ioread8(ioaddr->lbal_addr);
643
644 if ((nsect == 0x55) && (lbal == 0xaa))
645 return 1; /* we found a device */
646
647 return 0; /* nothing found */
648}
649
650/**
651 * ata_dev_classify - determine device type based on ATA-spec signature
652 * @tf: ATA taskfile register set for device to be identified
653 *
654 * Determine from taskfile register contents whether a device is
655 * ATA or ATAPI, as per "Signature and persistence" section
656 * of ATA/PI spec (volume 1, sect 5.14).
657 *
658 * LOCKING:
659 * None.
660 *
661 * RETURNS:
662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663 * the event of failure.
664 */
665
666unsigned int ata_dev_classify(const struct ata_taskfile *tf)
667{
668 /* Apple's open source Darwin code hints that some devices only
669 * put a proper signature into the LBA mid/high registers,
670 * So, we only check those. It's sufficient for uniqueness.
671 */
672
673 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 DPRINTK("found ATA device by sig\n");
676 return ATA_DEV_ATA;
677 }
678
679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 DPRINTK("found ATAPI device by sig\n");
682 return ATA_DEV_ATAPI;
683 }
684
685 DPRINTK("unknown device\n");
686 return ATA_DEV_UNKNOWN;
687}
688
689/**
690 * ata_dev_try_classify - Parse returned ATA device signature
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
693 * @r_err: Value of error register on completion
694 *
695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696 * an ATA/ATAPI-defined set of values is placed in the ATA
697 * shadow registers, indicating the results of device detection
698 * and diagnostics.
699 *
700 * Select the ATA device, and read the values from the ATA shadow
701 * registers. Then parse according to the Error register value,
702 * and the spec-defined values examined by ata_dev_classify().
703 *
704 * LOCKING:
705 * caller.
706 *
707 * RETURNS:
708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
709 */
710
711unsigned int
712ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
713{
714 struct ata_taskfile tf;
715 unsigned int class;
716 u8 err;
717
718 ap->ops->dev_select(ap, device);
719
720 memset(&tf, 0, sizeof(tf));
721
722 ap->ops->tf_read(ap, &tf);
723 err = tf.feature;
724 if (r_err)
725 *r_err = err;
726
727 /* see if device passed diags: if master then continue and warn later */
728 if (err == 0 && device == 0)
729 /* diagnostic fail : do nothing _YET_ */
730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
731 else if (err == 1)
732 /* do nothing */ ;
733 else if ((device == 0) && (err == 0x81))
734 /* do nothing */ ;
735 else
736 return ATA_DEV_NONE;
737
738 /* determine if device is ATA or ATAPI */
739 class = ata_dev_classify(&tf);
740
741 if (class == ATA_DEV_UNKNOWN)
742 return ATA_DEV_NONE;
743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
744 return ATA_DEV_NONE;
745 return class;
746}
747
748/**
749 * ata_id_string - Convert IDENTIFY DEVICE page into string
750 * @id: IDENTIFY DEVICE results we will examine
751 * @s: string into which data is output
752 * @ofs: offset into identify device page
753 * @len: length of string to return. must be an even number.
754 *
755 * The strings in the IDENTIFY DEVICE page are broken up into
756 * 16-bit chunks. Run through the string, and output each
757 * 8-bit chunk linearly, regardless of platform.
758 *
759 * LOCKING:
760 * caller.
761 */
762
763void ata_id_string(const u16 *id, unsigned char *s,
764 unsigned int ofs, unsigned int len)
765{
766 unsigned int c;
767
768 while (len > 0) {
769 c = id[ofs] >> 8;
770 *s = c;
771 s++;
772
773 c = id[ofs] & 0xff;
774 *s = c;
775 s++;
776
777 ofs++;
778 len -= 2;
779 }
780}
781
782/**
783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
784 * @id: IDENTIFY DEVICE results we will examine
785 * @s: string into which data is output
786 * @ofs: offset into identify device page
787 * @len: length of string to return. must be an odd number.
788 *
789 * This function is identical to ata_id_string except that it
790 * trims trailing spaces and terminates the resulting string with
791 * null. @len must be actual maximum length (even number) + 1.
792 *
793 * LOCKING:
794 * caller.
795 */
796void ata_id_c_string(const u16 *id, unsigned char *s,
797 unsigned int ofs, unsigned int len)
798{
799 unsigned char *p;
800
801 WARN_ON(!(len & 1));
802
803 ata_id_string(id, s, ofs, len - 1);
804
805 p = s + strnlen(s, len - 1);
806 while (p > s && p[-1] == ' ')
807 p--;
808 *p = '\0';
809}
810
811static u64 ata_id_n_sectors(const u16 *id)
812{
813 if (ata_id_has_lba(id)) {
814 if (ata_id_has_lba48(id))
815 return ata_id_u64(id, 100);
816 else
817 return ata_id_u32(id, 60);
818 } else {
819 if (ata_id_current_chs_valid(id))
820 return ata_id_u32(id, 57);
821 else
822 return id[1] * id[3] * id[6];
823 }
824}
825
826/**
827 * ata_id_to_dma_mode - Identify DMA mode from id block
828 * @dev: device to identify
829 * @unknown: mode to assume if we cannot tell
830 *
831 * Set up the timing values for the device based upon the identify
832 * reported values for the DMA mode. This function is used by drivers
833 * which rely upon firmware configured modes, but wish to report the
834 * mode correctly when possible.
835 *
836 * In addition we emit similarly formatted messages to the default
837 * ata_dev_set_mode handler, in order to provide consistency of
838 * presentation.
839 */
840
841void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
842{
843 unsigned int mask;
844 u8 mode;
845
846 /* Pack the DMA modes */
847 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
848 if (dev->id[53] & 0x04)
849 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
850
851 /* Select the mode in use */
852 mode = ata_xfer_mask2mode(mask);
853
854 if (mode != 0) {
855 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
856 ata_mode_string(mask));
857 } else {
858 /* SWDMA perhaps ? */
859 mode = unknown;
860 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
861 }
862
863 /* Configure the device reporting */
864 dev->xfer_mode = mode;
865 dev->xfer_shift = ata_xfer_mode2shift(mode);
866}
867
868/**
869 * ata_noop_dev_select - Select device 0/1 on ATA bus
870 * @ap: ATA channel to manipulate
871 * @device: ATA device (numbered from zero) to select
872 *
873 * This function performs no actual function.
874 *
875 * May be used as the dev_select() entry in ata_port_operations.
876 *
877 * LOCKING:
878 * caller.
879 */
880void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
881{
882}
883
884
885/**
886 * ata_std_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
889 *
890 * Use the method defined in the ATA specification to
891 * make either device 0, or device 1, active on the
892 * ATA channel. Works with both PIO and MMIO.
893 *
894 * May be used as the dev_select() entry in ata_port_operations.
895 *
896 * LOCKING:
897 * caller.
898 */
899
900void ata_std_dev_select (struct ata_port *ap, unsigned int device)
901{
902 u8 tmp;
903
904 if (device == 0)
905 tmp = ATA_DEVICE_OBS;
906 else
907 tmp = ATA_DEVICE_OBS | ATA_DEV1;
908
909 iowrite8(tmp, ap->ioaddr.device_addr);
910 ata_pause(ap); /* needed; also flushes, for mmio */
911}
912
913/**
914 * ata_dev_select - Select device 0/1 on ATA bus
915 * @ap: ATA channel to manipulate
916 * @device: ATA device (numbered from zero) to select
917 * @wait: non-zero to wait for Status register BSY bit to clear
918 * @can_sleep: non-zero if context allows sleeping
919 *
920 * Use the method defined in the ATA specification to
921 * make either device 0, or device 1, active on the
922 * ATA channel.
923 *
924 * This is a high-level version of ata_std_dev_select(),
925 * which additionally provides the services of inserting
926 * the proper pauses and status polling, where needed.
927 *
928 * LOCKING:
929 * caller.
930 */
931
932void ata_dev_select(struct ata_port *ap, unsigned int device,
933 unsigned int wait, unsigned int can_sleep)
934{
935 if (ata_msg_probe(ap))
936 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
937 "device %u, wait %u\n", device, wait);
938
939 if (wait)
940 ata_wait_idle(ap);
941
942 ap->ops->dev_select(ap, device);
943
944 if (wait) {
945 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
946 msleep(150);
947 ata_wait_idle(ap);
948 }
949}
950
951/**
952 * ata_dump_id - IDENTIFY DEVICE info debugging output
953 * @id: IDENTIFY DEVICE page to dump
954 *
955 * Dump selected 16-bit words from the given IDENTIFY DEVICE
956 * page.
957 *
958 * LOCKING:
959 * caller.
960 */
961
962static inline void ata_dump_id(const u16 *id)
963{
964 DPRINTK("49==0x%04x "
965 "53==0x%04x "
966 "63==0x%04x "
967 "64==0x%04x "
968 "75==0x%04x \n",
969 id[49],
970 id[53],
971 id[63],
972 id[64],
973 id[75]);
974 DPRINTK("80==0x%04x "
975 "81==0x%04x "
976 "82==0x%04x "
977 "83==0x%04x "
978 "84==0x%04x \n",
979 id[80],
980 id[81],
981 id[82],
982 id[83],
983 id[84]);
984 DPRINTK("88==0x%04x "
985 "93==0x%04x\n",
986 id[88],
987 id[93]);
988}
989
990/**
991 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
992 * @id: IDENTIFY data to compute xfer mask from
993 *
994 * Compute the xfermask for this device. This is not as trivial
995 * as it seems if we must consider early devices correctly.
996 *
997 * FIXME: pre IDE drive timing (do we care ?).
998 *
999 * LOCKING:
1000 * None.
1001 *
1002 * RETURNS:
1003 * Computed xfermask
1004 */
1005static unsigned int ata_id_xfermask(const u16 *id)
1006{
1007 unsigned int pio_mask, mwdma_mask, udma_mask;
1008
1009 /* Usual case. Word 53 indicates word 64 is valid */
1010 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1011 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1012 pio_mask <<= 3;
1013 pio_mask |= 0x7;
1014 } else {
1015 /* If word 64 isn't valid then Word 51 high byte holds
1016 * the PIO timing number for the maximum. Turn it into
1017 * a mask.
1018 */
1019 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1020 if (mode < 5) /* Valid PIO range */
1021 pio_mask = (2 << mode) - 1;
1022 else
1023 pio_mask = 1;
1024
1025 /* But wait.. there's more. Design your standards by
1026 * committee and you too can get a free iordy field to
1027 * process. However its the speeds not the modes that
1028 * are supported... Note drivers using the timing API
1029 * will get this right anyway
1030 */
1031 }
1032
1033 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1034
1035 if (ata_id_is_cfa(id)) {
1036 /*
1037 * Process compact flash extended modes
1038 */
1039 int pio = id[163] & 0x7;
1040 int dma = (id[163] >> 3) & 7;
1041
1042 if (pio)
1043 pio_mask |= (1 << 5);
1044 if (pio > 1)
1045 pio_mask |= (1 << 6);
1046 if (dma)
1047 mwdma_mask |= (1 << 3);
1048 if (dma > 1)
1049 mwdma_mask |= (1 << 4);
1050 }
1051
1052 udma_mask = 0;
1053 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1054 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1055
1056 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1057}
1058
1059/**
1060 * ata_port_queue_task - Queue port_task
1061 * @ap: The ata_port to queue port_task for
1062 * @fn: workqueue function to be scheduled
1063 * @data: data for @fn to use
1064 * @delay: delay time for workqueue function
1065 *
1066 * Schedule @fn(@data) for execution after @delay jiffies using
1067 * port_task. There is one port_task per port and it's the
1068 * user(low level driver)'s responsibility to make sure that only
1069 * one task is active at any given time.
1070 *
1071 * libata core layer takes care of synchronization between
1072 * port_task and EH. ata_port_queue_task() may be ignored for EH
1073 * synchronization.
1074 *
1075 * LOCKING:
1076 * Inherited from caller.
1077 */
1078void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1079 unsigned long delay)
1080{
1081 int rc;
1082
1083 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1084 return;
1085
1086 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1087 ap->port_task_data = data;
1088
1089 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1090
1091 /* rc == 0 means that another user is using port task */
1092 WARN_ON(rc == 0);
1093}
1094
1095/**
1096 * ata_port_flush_task - Flush port_task
1097 * @ap: The ata_port to flush port_task for
1098 *
1099 * After this function completes, port_task is guranteed not to
1100 * be running or scheduled.
1101 *
1102 * LOCKING:
1103 * Kernel thread context (may sleep)
1104 */
1105void ata_port_flush_task(struct ata_port *ap)
1106{
1107 unsigned long flags;
1108
1109 DPRINTK("ENTER\n");
1110
1111 spin_lock_irqsave(ap->lock, flags);
1112 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1113 spin_unlock_irqrestore(ap->lock, flags);
1114
1115 DPRINTK("flush #1\n");
1116 flush_workqueue(ata_wq);
1117
1118 /*
1119 * At this point, if a task is running, it's guaranteed to see
1120 * the FLUSH flag; thus, it will never queue pio tasks again.
1121 * Cancel and flush.
1122 */
1123 if (!cancel_delayed_work(&ap->port_task)) {
1124 if (ata_msg_ctl(ap))
1125 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1126 __FUNCTION__);
1127 flush_workqueue(ata_wq);
1128 }
1129
1130 spin_lock_irqsave(ap->lock, flags);
1131 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1132 spin_unlock_irqrestore(ap->lock, flags);
1133
1134 if (ata_msg_ctl(ap))
1135 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1136}
1137
1138static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1139{
1140 struct completion *waiting = qc->private_data;
1141
1142 complete(waiting);
1143}
1144
1145/**
1146 * ata_exec_internal_sg - execute libata internal command
1147 * @dev: Device to which the command is sent
1148 * @tf: Taskfile registers for the command and the result
1149 * @cdb: CDB for packet command
1150 * @dma_dir: Data tranfer direction of the command
1151 * @sg: sg list for the data buffer of the command
1152 * @n_elem: Number of sg entries
1153 *
1154 * Executes libata internal command with timeout. @tf contains
1155 * command on entry and result on return. Timeout and error
1156 * conditions are reported via return value. No recovery action
1157 * is taken after a command times out. It's caller's duty to
1158 * clean up after timeout.
1159 *
1160 * LOCKING:
1161 * None. Should be called with kernel context, might sleep.
1162 *
1163 * RETURNS:
1164 * Zero on success, AC_ERR_* mask on failure
1165 */
1166unsigned ata_exec_internal_sg(struct ata_device *dev,
1167 struct ata_taskfile *tf, const u8 *cdb,
1168 int dma_dir, struct scatterlist *sg,
1169 unsigned int n_elem)
1170{
1171 struct ata_port *ap = dev->ap;
1172 u8 command = tf->command;
1173 struct ata_queued_cmd *qc;
1174 unsigned int tag, preempted_tag;
1175 u32 preempted_sactive, preempted_qc_active;
1176 DECLARE_COMPLETION_ONSTACK(wait);
1177 unsigned long flags;
1178 unsigned int err_mask;
1179 int rc;
1180
1181 spin_lock_irqsave(ap->lock, flags);
1182
1183 /* no internal command while frozen */
1184 if (ap->pflags & ATA_PFLAG_FROZEN) {
1185 spin_unlock_irqrestore(ap->lock, flags);
1186 return AC_ERR_SYSTEM;
1187 }
1188
1189 /* initialize internal qc */
1190
1191 /* XXX: Tag 0 is used for drivers with legacy EH as some
1192 * drivers choke if any other tag is given. This breaks
1193 * ata_tag_internal() test for those drivers. Don't use new
1194 * EH stuff without converting to it.
1195 */
1196 if (ap->ops->error_handler)
1197 tag = ATA_TAG_INTERNAL;
1198 else
1199 tag = 0;
1200
1201 if (test_and_set_bit(tag, &ap->qc_allocated))
1202 BUG();
1203 qc = __ata_qc_from_tag(ap, tag);
1204
1205 qc->tag = tag;
1206 qc->scsicmd = NULL;
1207 qc->ap = ap;
1208 qc->dev = dev;
1209 ata_qc_reinit(qc);
1210
1211 preempted_tag = ap->active_tag;
1212 preempted_sactive = ap->sactive;
1213 preempted_qc_active = ap->qc_active;
1214 ap->active_tag = ATA_TAG_POISON;
1215 ap->sactive = 0;
1216 ap->qc_active = 0;
1217
1218 /* prepare & issue qc */
1219 qc->tf = *tf;
1220 if (cdb)
1221 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1222 qc->flags |= ATA_QCFLAG_RESULT_TF;
1223 qc->dma_dir = dma_dir;
1224 if (dma_dir != DMA_NONE) {
1225 unsigned int i, buflen = 0;
1226
1227 for (i = 0; i < n_elem; i++)
1228 buflen += sg[i].length;
1229
1230 ata_sg_init(qc, sg, n_elem);
1231 qc->nbytes = buflen;
1232 }
1233
1234 qc->private_data = &wait;
1235 qc->complete_fn = ata_qc_complete_internal;
1236
1237 ata_qc_issue(qc);
1238
1239 spin_unlock_irqrestore(ap->lock, flags);
1240
1241 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1242
1243 ata_port_flush_task(ap);
1244
1245 if (!rc) {
1246 spin_lock_irqsave(ap->lock, flags);
1247
1248 /* We're racing with irq here. If we lose, the
1249 * following test prevents us from completing the qc
1250 * twice. If we win, the port is frozen and will be
1251 * cleaned up by ->post_internal_cmd().
1252 */
1253 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1254 qc->err_mask |= AC_ERR_TIMEOUT;
1255
1256 if (ap->ops->error_handler)
1257 ata_port_freeze(ap);
1258 else
1259 ata_qc_complete(qc);
1260
1261 if (ata_msg_warn(ap))
1262 ata_dev_printk(dev, KERN_WARNING,
1263 "qc timeout (cmd 0x%x)\n", command);
1264 }
1265
1266 spin_unlock_irqrestore(ap->lock, flags);
1267 }
1268
1269 /* do post_internal_cmd */
1270 if (ap->ops->post_internal_cmd)
1271 ap->ops->post_internal_cmd(qc);
1272
1273 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
1274 if (ata_msg_warn(ap))
1275 ata_dev_printk(dev, KERN_WARNING,
1276 "zero err_mask for failed "
1277 "internal command, assuming AC_ERR_OTHER\n");
1278 qc->err_mask |= AC_ERR_OTHER;
1279 }
1280
1281 /* finish up */
1282 spin_lock_irqsave(ap->lock, flags);
1283
1284 *tf = qc->result_tf;
1285 err_mask = qc->err_mask;
1286
1287 ata_qc_free(qc);
1288 ap->active_tag = preempted_tag;
1289 ap->sactive = preempted_sactive;
1290 ap->qc_active = preempted_qc_active;
1291
1292 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1293 * Until those drivers are fixed, we detect the condition
1294 * here, fail the command with AC_ERR_SYSTEM and reenable the
1295 * port.
1296 *
1297 * Note that this doesn't change any behavior as internal
1298 * command failure results in disabling the device in the
1299 * higher layer for LLDDs without new reset/EH callbacks.
1300 *
1301 * Kill the following code as soon as those drivers are fixed.
1302 */
1303 if (ap->flags & ATA_FLAG_DISABLED) {
1304 err_mask |= AC_ERR_SYSTEM;
1305 ata_port_probe(ap);
1306 }
1307
1308 spin_unlock_irqrestore(ap->lock, flags);
1309
1310 return err_mask;
1311}
1312
1313/**
1314 * ata_exec_internal - execute libata internal command
1315 * @dev: Device to which the command is sent
1316 * @tf: Taskfile registers for the command and the result
1317 * @cdb: CDB for packet command
1318 * @dma_dir: Data tranfer direction of the command
1319 * @buf: Data buffer of the command
1320 * @buflen: Length of data buffer
1321 *
1322 * Wrapper around ata_exec_internal_sg() which takes simple
1323 * buffer instead of sg list.
1324 *
1325 * LOCKING:
1326 * None. Should be called with kernel context, might sleep.
1327 *
1328 * RETURNS:
1329 * Zero on success, AC_ERR_* mask on failure
1330 */
1331unsigned ata_exec_internal(struct ata_device *dev,
1332 struct ata_taskfile *tf, const u8 *cdb,
1333 int dma_dir, void *buf, unsigned int buflen)
1334{
1335 struct scatterlist *psg = NULL, sg;
1336 unsigned int n_elem = 0;
1337
1338 if (dma_dir != DMA_NONE) {
1339 WARN_ON(!buf);
1340 sg_init_one(&sg, buf, buflen);
1341 psg = &sg;
1342 n_elem++;
1343 }
1344
1345 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1346}
1347
1348/**
1349 * ata_do_simple_cmd - execute simple internal command
1350 * @dev: Device to which the command is sent
1351 * @cmd: Opcode to execute
1352 *
1353 * Execute a 'simple' command, that only consists of the opcode
1354 * 'cmd' itself, without filling any other registers
1355 *
1356 * LOCKING:
1357 * Kernel thread context (may sleep).
1358 *
1359 * RETURNS:
1360 * Zero on success, AC_ERR_* mask on failure
1361 */
1362unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1363{
1364 struct ata_taskfile tf;
1365
1366 ata_tf_init(dev, &tf);
1367
1368 tf.command = cmd;
1369 tf.flags |= ATA_TFLAG_DEVICE;
1370 tf.protocol = ATA_PROT_NODATA;
1371
1372 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1373}
1374
1375/**
1376 * ata_pio_need_iordy - check if iordy needed
1377 * @adev: ATA device
1378 *
1379 * Check if the current speed of the device requires IORDY. Used
1380 * by various controllers for chip configuration.
1381 */
1382
1383unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1384{
1385 int pio;
1386 int speed = adev->pio_mode - XFER_PIO_0;
1387
1388 if (speed < 2)
1389 return 0;
1390 if (speed > 2)
1391 return 1;
1392
1393 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1394
1395 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1396 pio = adev->id[ATA_ID_EIDE_PIO];
1397 /* Is the speed faster than the drive allows non IORDY ? */
1398 if (pio) {
1399 /* This is cycle times not frequency - watch the logic! */
1400 if (pio > 240) /* PIO2 is 240nS per cycle */
1401 return 1;
1402 return 0;
1403 }
1404 }
1405 return 0;
1406}
1407
1408/**
1409 * ata_dev_read_id - Read ID data from the specified device
1410 * @dev: target device
1411 * @p_class: pointer to class of the target device (may be changed)
1412 * @flags: ATA_READID_* flags
1413 * @id: buffer to read IDENTIFY data into
1414 *
1415 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1416 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1417 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1418 * for pre-ATA4 drives.
1419 *
1420 * LOCKING:
1421 * Kernel thread context (may sleep)
1422 *
1423 * RETURNS:
1424 * 0 on success, -errno otherwise.
1425 */
1426int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1427 unsigned int flags, u16 *id)
1428{
1429 struct ata_port *ap = dev->ap;
1430 unsigned int class = *p_class;
1431 struct ata_taskfile tf;
1432 unsigned int err_mask = 0;
1433 const char *reason;
1434 int rc;
1435
1436 if (ata_msg_ctl(ap))
1437 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1438
1439 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1440
1441 retry:
1442 ata_tf_init(dev, &tf);
1443
1444 switch (class) {
1445 case ATA_DEV_ATA:
1446 tf.command = ATA_CMD_ID_ATA;
1447 break;
1448 case ATA_DEV_ATAPI:
1449 tf.command = ATA_CMD_ID_ATAPI;
1450 break;
1451 default:
1452 rc = -ENODEV;
1453 reason = "unsupported class";
1454 goto err_out;
1455 }
1456
1457 tf.protocol = ATA_PROT_PIO;
1458
1459 /* Some devices choke if TF registers contain garbage. Make
1460 * sure those are properly initialized.
1461 */
1462 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1463
1464 /* Device presence detection is unreliable on some
1465 * controllers. Always poll IDENTIFY if available.
1466 */
1467 tf.flags |= ATA_TFLAG_POLLING;
1468
1469 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1470 id, sizeof(id[0]) * ATA_ID_WORDS);
1471 if (err_mask) {
1472 if (err_mask & AC_ERR_NODEV_HINT) {
1473 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1474 ap->print_id, dev->devno);
1475 return -ENOENT;
1476 }
1477
1478 rc = -EIO;
1479 reason = "I/O error";
1480 goto err_out;
1481 }
1482
1483 swap_buf_le16(id, ATA_ID_WORDS);
1484
1485 /* sanity check */
1486 rc = -EINVAL;
1487 reason = "device reports illegal type";
1488
1489 if (class == ATA_DEV_ATA) {
1490 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1491 goto err_out;
1492 } else {
1493 if (ata_id_is_ata(id))
1494 goto err_out;
1495 }
1496
1497 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1498 /*
1499 * The exact sequence expected by certain pre-ATA4 drives is:
1500 * SRST RESET
1501 * IDENTIFY
1502 * INITIALIZE DEVICE PARAMETERS
1503 * anything else..
1504 * Some drives were very specific about that exact sequence.
1505 */
1506 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1507 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1508 if (err_mask) {
1509 rc = -EIO;
1510 reason = "INIT_DEV_PARAMS failed";
1511 goto err_out;
1512 }
1513
1514 /* current CHS translation info (id[53-58]) might be
1515 * changed. reread the identify device info.
1516 */
1517 flags &= ~ATA_READID_POSTRESET;
1518 goto retry;
1519 }
1520 }
1521
1522 *p_class = class;
1523
1524 return 0;
1525
1526 err_out:
1527 if (ata_msg_warn(ap))
1528 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1529 "(%s, err_mask=0x%x)\n", reason, err_mask);
1530 return rc;
1531}
1532
1533static inline u8 ata_dev_knobble(struct ata_device *dev)
1534{
1535 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1536}
1537
1538static void ata_dev_config_ncq(struct ata_device *dev,
1539 char *desc, size_t desc_sz)
1540{
1541 struct ata_port *ap = dev->ap;
1542 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1543
1544 if (!ata_id_has_ncq(dev->id)) {
1545 desc[0] = '\0';
1546 return;
1547 }
1548 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1549 snprintf(desc, desc_sz, "NCQ (not used)");
1550 return;
1551 }
1552 if (ap->flags & ATA_FLAG_NCQ) {
1553 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1554 dev->flags |= ATA_DFLAG_NCQ;
1555 }
1556
1557 if (hdepth >= ddepth)
1558 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1559 else
1560 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1561}
1562
1563static void ata_set_port_max_cmd_len(struct ata_port *ap)
1564{
1565 int i;
1566
1567 if (ap->scsi_host) {
1568 unsigned int len = 0;
1569
1570 for (i = 0; i < ATA_MAX_DEVICES; i++)
1571 len = max(len, ap->device[i].cdb_len);
1572
1573 ap->scsi_host->max_cmd_len = len;
1574 }
1575}
1576
1577/**
1578 * ata_dev_configure - Configure the specified ATA/ATAPI device
1579 * @dev: Target device to configure
1580 *
1581 * Configure @dev according to @dev->id. Generic and low-level
1582 * driver specific fixups are also applied.
1583 *
1584 * LOCKING:
1585 * Kernel thread context (may sleep)
1586 *
1587 * RETURNS:
1588 * 0 on success, -errno otherwise
1589 */
1590int ata_dev_configure(struct ata_device *dev)
1591{
1592 struct ata_port *ap = dev->ap;
1593 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1594 const u16 *id = dev->id;
1595 unsigned int xfer_mask;
1596 char revbuf[7]; /* XYZ-99\0 */
1597 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1598 char modelbuf[ATA_ID_PROD_LEN+1];
1599 int rc;
1600
1601 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1602 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1603 __FUNCTION__);
1604 return 0;
1605 }
1606
1607 if (ata_msg_probe(ap))
1608 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1609
1610 /* set _SDD */
1611 rc = ata_acpi_push_id(ap, dev->devno);
1612 if (rc) {
1613 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1614 rc);
1615 }
1616
1617 /* retrieve and execute the ATA task file of _GTF */
1618 ata_acpi_exec_tfs(ap);
1619
1620 /* print device capabilities */
1621 if (ata_msg_probe(ap))
1622 ata_dev_printk(dev, KERN_DEBUG,
1623 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1624 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1625 __FUNCTION__,
1626 id[49], id[82], id[83], id[84],
1627 id[85], id[86], id[87], id[88]);
1628
1629 /* initialize to-be-configured parameters */
1630 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1631 dev->max_sectors = 0;
1632 dev->cdb_len = 0;
1633 dev->n_sectors = 0;
1634 dev->cylinders = 0;
1635 dev->heads = 0;
1636 dev->sectors = 0;
1637
1638 /*
1639 * common ATA, ATAPI feature tests
1640 */
1641
1642 /* find max transfer mode; for printk only */
1643 xfer_mask = ata_id_xfermask(id);
1644
1645 if (ata_msg_probe(ap))
1646 ata_dump_id(id);
1647
1648 /* ATA-specific feature tests */
1649 if (dev->class == ATA_DEV_ATA) {
1650 if (ata_id_is_cfa(id)) {
1651 if (id[162] & 1) /* CPRM may make this media unusable */
1652 ata_dev_printk(dev, KERN_WARNING,
1653 "supports DRM functions and may "
1654 "not be fully accessable.\n");
1655 snprintf(revbuf, 7, "CFA");
1656 }
1657 else
1658 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1659
1660 dev->n_sectors = ata_id_n_sectors(id);
1661
1662 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1663 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1664 sizeof(fwrevbuf));
1665
1666 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1667 sizeof(modelbuf));
1668
1669 if (dev->id[59] & 0x100)
1670 dev->multi_count = dev->id[59] & 0xff;
1671
1672 if (ata_id_has_lba(id)) {
1673 const char *lba_desc;
1674 char ncq_desc[20];
1675
1676 lba_desc = "LBA";
1677 dev->flags |= ATA_DFLAG_LBA;
1678 if (ata_id_has_lba48(id)) {
1679 dev->flags |= ATA_DFLAG_LBA48;
1680 lba_desc = "LBA48";
1681
1682 if (dev->n_sectors >= (1UL << 28) &&
1683 ata_id_has_flush_ext(id))
1684 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1685 }
1686
1687 /* config NCQ */
1688 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1689
1690 /* print device info to dmesg */
1691 if (ata_msg_drv(ap) && print_info) {
1692 ata_dev_printk(dev, KERN_INFO,
1693 "%s: %s, %s, max %s\n",
1694 revbuf, modelbuf, fwrevbuf,
1695 ata_mode_string(xfer_mask));
1696 ata_dev_printk(dev, KERN_INFO,
1697 "%Lu sectors, multi %u: %s %s\n",
1698 (unsigned long long)dev->n_sectors,
1699 dev->multi_count, lba_desc, ncq_desc);
1700 }
1701 } else {
1702 /* CHS */
1703
1704 /* Default translation */
1705 dev->cylinders = id[1];
1706 dev->heads = id[3];
1707 dev->sectors = id[6];
1708
1709 if (ata_id_current_chs_valid(id)) {
1710 /* Current CHS translation is valid. */
1711 dev->cylinders = id[54];
1712 dev->heads = id[55];
1713 dev->sectors = id[56];
1714 }
1715
1716 /* print device info to dmesg */
1717 if (ata_msg_drv(ap) && print_info) {
1718 ata_dev_printk(dev, KERN_INFO,
1719 "%s: %s, %s, max %s\n",
1720 revbuf, modelbuf, fwrevbuf,
1721 ata_mode_string(xfer_mask));
1722 ata_dev_printk(dev, KERN_INFO,
1723 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1724 (unsigned long long)dev->n_sectors,
1725 dev->multi_count, dev->cylinders,
1726 dev->heads, dev->sectors);
1727 }
1728 }
1729
1730 dev->cdb_len = 16;
1731 }
1732
1733 /* ATAPI-specific feature tests */
1734 else if (dev->class == ATA_DEV_ATAPI) {
1735 char *cdb_intr_string = "";
1736
1737 rc = atapi_cdb_len(id);
1738 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1739 if (ata_msg_warn(ap))
1740 ata_dev_printk(dev, KERN_WARNING,
1741 "unsupported CDB len\n");
1742 rc = -EINVAL;
1743 goto err_out_nosup;
1744 }
1745 dev->cdb_len = (unsigned int) rc;
1746
1747 if (ata_id_cdb_intr(dev->id)) {
1748 dev->flags |= ATA_DFLAG_CDB_INTR;
1749 cdb_intr_string = ", CDB intr";
1750 }
1751
1752 /* print device info to dmesg */
1753 if (ata_msg_drv(ap) && print_info)
1754 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1755 ata_mode_string(xfer_mask),
1756 cdb_intr_string);
1757 }
1758
1759 /* determine max_sectors */
1760 dev->max_sectors = ATA_MAX_SECTORS;
1761 if (dev->flags & ATA_DFLAG_LBA48)
1762 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1763
1764 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1765 /* Let the user know. We don't want to disallow opens for
1766 rescue purposes, or in case the vendor is just a blithering
1767 idiot */
1768 if (print_info) {
1769 ata_dev_printk(dev, KERN_WARNING,
1770"Drive reports diagnostics failure. This may indicate a drive\n");
1771 ata_dev_printk(dev, KERN_WARNING,
1772"fault or invalid emulation. Contact drive vendor for information.\n");
1773 }
1774 }
1775
1776 ata_set_port_max_cmd_len(ap);
1777
1778 /* limit bridge transfers to udma5, 200 sectors */
1779 if (ata_dev_knobble(dev)) {
1780 if (ata_msg_drv(ap) && print_info)
1781 ata_dev_printk(dev, KERN_INFO,
1782 "applying bridge limits\n");
1783 dev->udma_mask &= ATA_UDMA5;
1784 dev->max_sectors = ATA_MAX_SECTORS;
1785 }
1786
1787 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
1788 dev->max_sectors = min(ATA_MAX_SECTORS_128, dev->max_sectors);
1789
1790 /* limit ATAPI DMA to R/W commands only */
1791 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
1792 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
1793
1794 if (ap->ops->dev_config)
1795 ap->ops->dev_config(ap, dev);
1796
1797 if (ata_msg_probe(ap))
1798 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1799 __FUNCTION__, ata_chk_status(ap));
1800 return 0;
1801
1802err_out_nosup:
1803 if (ata_msg_probe(ap))
1804 ata_dev_printk(dev, KERN_DEBUG,
1805 "%s: EXIT, err\n", __FUNCTION__);
1806 return rc;
1807}
1808
1809/**
1810 * ata_bus_probe - Reset and probe ATA bus
1811 * @ap: Bus to probe
1812 *
1813 * Master ATA bus probing function. Initiates a hardware-dependent
1814 * bus reset, then attempts to identify any devices found on
1815 * the bus.
1816 *
1817 * LOCKING:
1818 * PCI/etc. bus probe sem.
1819 *
1820 * RETURNS:
1821 * Zero on success, negative errno otherwise.
1822 */
1823
1824int ata_bus_probe(struct ata_port *ap)
1825{
1826 unsigned int classes[ATA_MAX_DEVICES];
1827 int tries[ATA_MAX_DEVICES];
1828 int i, rc;
1829 struct ata_device *dev;
1830
1831 ata_port_probe(ap);
1832
1833 for (i = 0; i < ATA_MAX_DEVICES; i++)
1834 tries[i] = ATA_PROBE_MAX_TRIES;
1835
1836 retry:
1837 /* reset and determine device classes */
1838 ap->ops->phy_reset(ap);
1839
1840 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1841 dev = &ap->device[i];
1842
1843 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1844 dev->class != ATA_DEV_UNKNOWN)
1845 classes[dev->devno] = dev->class;
1846 else
1847 classes[dev->devno] = ATA_DEV_NONE;
1848
1849 dev->class = ATA_DEV_UNKNOWN;
1850 }
1851
1852 ata_port_probe(ap);
1853
1854 /* after the reset the device state is PIO 0 and the controller
1855 state is undefined. Record the mode */
1856
1857 for (i = 0; i < ATA_MAX_DEVICES; i++)
1858 ap->device[i].pio_mode = XFER_PIO_0;
1859
1860 /* read IDENTIFY page and configure devices. We have to do the identify
1861 specific sequence bass-ackwards so that PDIAG- is released by
1862 the slave device */
1863
1864 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
1865 dev = &ap->device[i];
1866
1867 if (tries[i])
1868 dev->class = classes[i];
1869
1870 if (!ata_dev_enabled(dev))
1871 continue;
1872
1873 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1874 dev->id);
1875 if (rc)
1876 goto fail;
1877 }
1878
1879 /* After the identify sequence we can now set up the devices. We do
1880 this in the normal order so that the user doesn't get confused */
1881
1882 for(i = 0; i < ATA_MAX_DEVICES; i++) {
1883 dev = &ap->device[i];
1884 if (!ata_dev_enabled(dev))
1885 continue;
1886
1887 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1888 rc = ata_dev_configure(dev);
1889 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1890 if (rc)
1891 goto fail;
1892 }
1893
1894 /* configure transfer mode */
1895 rc = ata_set_mode(ap, &dev);
1896 if (rc)
1897 goto fail;
1898
1899 for (i = 0; i < ATA_MAX_DEVICES; i++)
1900 if (ata_dev_enabled(&ap->device[i]))
1901 return 0;
1902
1903 /* no device present, disable port */
1904 ata_port_disable(ap);
1905 ap->ops->port_disable(ap);
1906 return -ENODEV;
1907
1908 fail:
1909 tries[dev->devno]--;
1910
1911 switch (rc) {
1912 case -EINVAL:
1913 /* eeek, something went very wrong, give up */
1914 tries[dev->devno] = 0;
1915 break;
1916
1917 case -ENODEV:
1918 /* give it just one more chance */
1919 tries[dev->devno] = min(tries[dev->devno], 1);
1920 case -EIO:
1921 if (tries[dev->devno] == 1) {
1922 /* This is the last chance, better to slow
1923 * down than lose it.
1924 */
1925 sata_down_spd_limit(ap);
1926 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
1927 }
1928 }
1929
1930 if (!tries[dev->devno])
1931 ata_dev_disable(dev);
1932
1933 goto retry;
1934}
1935
1936/**
1937 * ata_port_probe - Mark port as enabled
1938 * @ap: Port for which we indicate enablement
1939 *
1940 * Modify @ap data structure such that the system
1941 * thinks that the entire port is enabled.
1942 *
1943 * LOCKING: host lock, or some other form of
1944 * serialization.
1945 */
1946
1947void ata_port_probe(struct ata_port *ap)
1948{
1949 ap->flags &= ~ATA_FLAG_DISABLED;
1950}
1951
1952/**
1953 * sata_print_link_status - Print SATA link status
1954 * @ap: SATA port to printk link status about
1955 *
1956 * This function prints link speed and status of a SATA link.
1957 *
1958 * LOCKING:
1959 * None.
1960 */
1961static void sata_print_link_status(struct ata_port *ap)
1962{
1963 u32 sstatus, scontrol, tmp;
1964
1965 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1966 return;
1967 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1968
1969 if (ata_port_online(ap)) {
1970 tmp = (sstatus >> 4) & 0xf;
1971 ata_port_printk(ap, KERN_INFO,
1972 "SATA link up %s (SStatus %X SControl %X)\n",
1973 sata_spd_string(tmp), sstatus, scontrol);
1974 } else {
1975 ata_port_printk(ap, KERN_INFO,
1976 "SATA link down (SStatus %X SControl %X)\n",
1977 sstatus, scontrol);
1978 }
1979}
1980
1981/**
1982 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1983 * @ap: SATA port associated with target SATA PHY.
1984 *
1985 * This function issues commands to standard SATA Sxxx
1986 * PHY registers, to wake up the phy (and device), and
1987 * clear any reset condition.
1988 *
1989 * LOCKING:
1990 * PCI/etc. bus probe sem.
1991 *
1992 */
1993void __sata_phy_reset(struct ata_port *ap)
1994{
1995 u32 sstatus;
1996 unsigned long timeout = jiffies + (HZ * 5);
1997
1998 if (ap->flags & ATA_FLAG_SATA_RESET) {
1999 /* issue phy wake/reset */
2000 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2001 /* Couldn't find anything in SATA I/II specs, but
2002 * AHCI-1.1 10.4.2 says at least 1 ms. */
2003 mdelay(1);
2004 }
2005 /* phy wake/clear reset */
2006 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2007
2008 /* wait for phy to become ready, if necessary */
2009 do {
2010 msleep(200);
2011 sata_scr_read(ap, SCR_STATUS, &sstatus);
2012 if ((sstatus & 0xf) != 1)
2013 break;
2014 } while (time_before(jiffies, timeout));
2015
2016 /* print link status */
2017 sata_print_link_status(ap);
2018
2019 /* TODO: phy layer with polling, timeouts, etc. */
2020 if (!ata_port_offline(ap))
2021 ata_port_probe(ap);
2022 else
2023 ata_port_disable(ap);
2024
2025 if (ap->flags & ATA_FLAG_DISABLED)
2026 return;
2027
2028 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2029 ata_port_disable(ap);
2030 return;
2031 }
2032
2033 ap->cbl = ATA_CBL_SATA;
2034}
2035
2036/**
2037 * sata_phy_reset - Reset SATA bus.
2038 * @ap: SATA port associated with target SATA PHY.
2039 *
2040 * This function resets the SATA bus, and then probes
2041 * the bus for devices.
2042 *
2043 * LOCKING:
2044 * PCI/etc. bus probe sem.
2045 *
2046 */
2047void sata_phy_reset(struct ata_port *ap)
2048{
2049 __sata_phy_reset(ap);
2050 if (ap->flags & ATA_FLAG_DISABLED)
2051 return;
2052 ata_bus_reset(ap);
2053}
2054
2055/**
2056 * ata_dev_pair - return other device on cable
2057 * @adev: device
2058 *
2059 * Obtain the other device on the same cable, or if none is
2060 * present NULL is returned
2061 */
2062
2063struct ata_device *ata_dev_pair(struct ata_device *adev)
2064{
2065 struct ata_port *ap = adev->ap;
2066 struct ata_device *pair = &ap->device[1 - adev->devno];
2067 if (!ata_dev_enabled(pair))
2068 return NULL;
2069 return pair;
2070}
2071
2072/**
2073 * ata_port_disable - Disable port.
2074 * @ap: Port to be disabled.
2075 *
2076 * Modify @ap data structure such that the system
2077 * thinks that the entire port is disabled, and should
2078 * never attempt to probe or communicate with devices
2079 * on this port.
2080 *
2081 * LOCKING: host lock, or some other form of
2082 * serialization.
2083 */
2084
2085void ata_port_disable(struct ata_port *ap)
2086{
2087 ap->device[0].class = ATA_DEV_NONE;
2088 ap->device[1].class = ATA_DEV_NONE;
2089 ap->flags |= ATA_FLAG_DISABLED;
2090}
2091
2092/**
2093 * sata_down_spd_limit - adjust SATA spd limit downward
2094 * @ap: Port to adjust SATA spd limit for
2095 *
2096 * Adjust SATA spd limit of @ap downward. Note that this
2097 * function only adjusts the limit. The change must be applied
2098 * using sata_set_spd().
2099 *
2100 * LOCKING:
2101 * Inherited from caller.
2102 *
2103 * RETURNS:
2104 * 0 on success, negative errno on failure
2105 */
2106int sata_down_spd_limit(struct ata_port *ap)
2107{
2108 u32 sstatus, spd, mask;
2109 int rc, highbit;
2110
2111 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2112 if (rc)
2113 return rc;
2114
2115 mask = ap->sata_spd_limit;
2116 if (mask <= 1)
2117 return -EINVAL;
2118 highbit = fls(mask) - 1;
2119 mask &= ~(1 << highbit);
2120
2121 spd = (sstatus >> 4) & 0xf;
2122 if (spd <= 1)
2123 return -EINVAL;
2124 spd--;
2125 mask &= (1 << spd) - 1;
2126 if (!mask)
2127 return -EINVAL;
2128
2129 ap->sata_spd_limit = mask;
2130
2131 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2132 sata_spd_string(fls(mask)));
2133
2134 return 0;
2135}
2136
2137static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2138{
2139 u32 spd, limit;
2140
2141 if (ap->sata_spd_limit == UINT_MAX)
2142 limit = 0;
2143 else
2144 limit = fls(ap->sata_spd_limit);
2145
2146 spd = (*scontrol >> 4) & 0xf;
2147 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2148
2149 return spd != limit;
2150}
2151
2152/**
2153 * sata_set_spd_needed - is SATA spd configuration needed
2154 * @ap: Port in question
2155 *
2156 * Test whether the spd limit in SControl matches
2157 * @ap->sata_spd_limit. This function is used to determine
2158 * whether hardreset is necessary to apply SATA spd
2159 * configuration.
2160 *
2161 * LOCKING:
2162 * Inherited from caller.
2163 *
2164 * RETURNS:
2165 * 1 if SATA spd configuration is needed, 0 otherwise.
2166 */
2167int sata_set_spd_needed(struct ata_port *ap)
2168{
2169 u32 scontrol;
2170
2171 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2172 return 0;
2173
2174 return __sata_set_spd_needed(ap, &scontrol);
2175}
2176
2177/**
2178 * sata_set_spd - set SATA spd according to spd limit
2179 * @ap: Port to set SATA spd for
2180 *
2181 * Set SATA spd of @ap according to sata_spd_limit.
2182 *
2183 * LOCKING:
2184 * Inherited from caller.
2185 *
2186 * RETURNS:
2187 * 0 if spd doesn't need to be changed, 1 if spd has been
2188 * changed. Negative errno if SCR registers are inaccessible.
2189 */
2190int sata_set_spd(struct ata_port *ap)
2191{
2192 u32 scontrol;
2193 int rc;
2194
2195 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2196 return rc;
2197
2198 if (!__sata_set_spd_needed(ap, &scontrol))
2199 return 0;
2200
2201 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2202 return rc;
2203
2204 return 1;
2205}
2206
2207/*
2208 * This mode timing computation functionality is ported over from
2209 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2210 */
2211/*
2212 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2213 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2214 * for UDMA6, which is currently supported only by Maxtor drives.
2215 *
2216 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2217 */
2218
2219static const struct ata_timing ata_timing[] = {
2220
2221 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2222 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2223 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2224 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2225
2226 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2227 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2228 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2229 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2230 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2231
2232/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2233
2234 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2235 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2236 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2237
2238 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2239 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2240 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2241
2242 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2243 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2244 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2245 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2246
2247 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2248 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2249 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2250
2251/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2252
2253 { 0xFF }
2254};
2255
2256#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2257#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2258
2259static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2260{
2261 q->setup = EZ(t->setup * 1000, T);
2262 q->act8b = EZ(t->act8b * 1000, T);
2263 q->rec8b = EZ(t->rec8b * 1000, T);
2264 q->cyc8b = EZ(t->cyc8b * 1000, T);
2265 q->active = EZ(t->active * 1000, T);
2266 q->recover = EZ(t->recover * 1000, T);
2267 q->cycle = EZ(t->cycle * 1000, T);
2268 q->udma = EZ(t->udma * 1000, UT);
2269}
2270
2271void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2272 struct ata_timing *m, unsigned int what)
2273{
2274 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2275 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2276 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2277 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2278 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2279 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2280 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2281 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2282}
2283
2284static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2285{
2286 const struct ata_timing *t;
2287
2288 for (t = ata_timing; t->mode != speed; t++)
2289 if (t->mode == 0xFF)
2290 return NULL;
2291 return t;
2292}
2293
2294int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2295 struct ata_timing *t, int T, int UT)
2296{
2297 const struct ata_timing *s;
2298 struct ata_timing p;
2299
2300 /*
2301 * Find the mode.
2302 */
2303
2304 if (!(s = ata_timing_find_mode(speed)))
2305 return -EINVAL;
2306
2307 memcpy(t, s, sizeof(*s));
2308
2309 /*
2310 * If the drive is an EIDE drive, it can tell us it needs extended
2311 * PIO/MW_DMA cycle timing.
2312 */
2313
2314 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2315 memset(&p, 0, sizeof(p));
2316 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2317 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2318 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2319 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2320 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2321 }
2322 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2323 }
2324
2325 /*
2326 * Convert the timing to bus clock counts.
2327 */
2328
2329 ata_timing_quantize(t, t, T, UT);
2330
2331 /*
2332 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2333 * S.M.A.R.T * and some other commands. We have to ensure that the
2334 * DMA cycle timing is slower/equal than the fastest PIO timing.
2335 */
2336
2337 if (speed > XFER_PIO_6) {
2338 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2339 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2340 }
2341
2342 /*
2343 * Lengthen active & recovery time so that cycle time is correct.
2344 */
2345
2346 if (t->act8b + t->rec8b < t->cyc8b) {
2347 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2348 t->rec8b = t->cyc8b - t->act8b;
2349 }
2350
2351 if (t->active + t->recover < t->cycle) {
2352 t->active += (t->cycle - (t->active + t->recover)) / 2;
2353 t->recover = t->cycle - t->active;
2354 }
2355
2356 return 0;
2357}
2358
2359/**
2360 * ata_down_xfermask_limit - adjust dev xfer masks downward
2361 * @dev: Device to adjust xfer masks
2362 * @sel: ATA_DNXFER_* selector
2363 *
2364 * Adjust xfer masks of @dev downward. Note that this function
2365 * does not apply the change. Invoking ata_set_mode() afterwards
2366 * will apply the limit.
2367 *
2368 * LOCKING:
2369 * Inherited from caller.
2370 *
2371 * RETURNS:
2372 * 0 on success, negative errno on failure
2373 */
2374int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2375{
2376 char buf[32];
2377 unsigned int orig_mask, xfer_mask;
2378 unsigned int pio_mask, mwdma_mask, udma_mask;
2379 int quiet, highbit;
2380
2381 quiet = !!(sel & ATA_DNXFER_QUIET);
2382 sel &= ~ATA_DNXFER_QUIET;
2383
2384 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2385 dev->mwdma_mask,
2386 dev->udma_mask);
2387 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2388
2389 switch (sel) {
2390 case ATA_DNXFER_PIO:
2391 highbit = fls(pio_mask) - 1;
2392 pio_mask &= ~(1 << highbit);
2393 break;
2394
2395 case ATA_DNXFER_DMA:
2396 if (udma_mask) {
2397 highbit = fls(udma_mask) - 1;
2398 udma_mask &= ~(1 << highbit);
2399 if (!udma_mask)
2400 return -ENOENT;
2401 } else if (mwdma_mask) {
2402 highbit = fls(mwdma_mask) - 1;
2403 mwdma_mask &= ~(1 << highbit);
2404 if (!mwdma_mask)
2405 return -ENOENT;
2406 }
2407 break;
2408
2409 case ATA_DNXFER_40C:
2410 udma_mask &= ATA_UDMA_MASK_40C;
2411 break;
2412
2413 case ATA_DNXFER_FORCE_PIO0:
2414 pio_mask &= 1;
2415 case ATA_DNXFER_FORCE_PIO:
2416 mwdma_mask = 0;
2417 udma_mask = 0;
2418 break;
2419
2420 default:
2421 BUG();
2422 }
2423
2424 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2425
2426 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2427 return -ENOENT;
2428
2429 if (!quiet) {
2430 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2431 snprintf(buf, sizeof(buf), "%s:%s",
2432 ata_mode_string(xfer_mask),
2433 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2434 else
2435 snprintf(buf, sizeof(buf), "%s",
2436 ata_mode_string(xfer_mask));
2437
2438 ata_dev_printk(dev, KERN_WARNING,
2439 "limiting speed to %s\n", buf);
2440 }
2441
2442 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2443 &dev->udma_mask);
2444
2445 return 0;
2446}
2447
2448static int ata_dev_set_mode(struct ata_device *dev)
2449{
2450 struct ata_eh_context *ehc = &dev->ap->eh_context;
2451 unsigned int err_mask;
2452 int rc;
2453
2454 dev->flags &= ~ATA_DFLAG_PIO;
2455 if (dev->xfer_shift == ATA_SHIFT_PIO)
2456 dev->flags |= ATA_DFLAG_PIO;
2457
2458 err_mask = ata_dev_set_xfermode(dev);
2459 /* Old CFA may refuse this command, which is just fine */
2460 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2461 err_mask &= ~AC_ERR_DEV;
2462
2463 if (err_mask) {
2464 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2465 "(err_mask=0x%x)\n", err_mask);
2466 return -EIO;
2467 }
2468
2469 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2470 rc = ata_dev_revalidate(dev, 0);
2471 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2472 if (rc)
2473 return rc;
2474
2475 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2476 dev->xfer_shift, (int)dev->xfer_mode);
2477
2478 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2479 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2480 return 0;
2481}
2482
2483/**
2484 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2485 * @ap: port on which timings will be programmed
2486 * @r_failed_dev: out paramter for failed device
2487 *
2488 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2489 * ata_set_mode() fails, pointer to the failing device is
2490 * returned in @r_failed_dev.
2491 *
2492 * LOCKING:
2493 * PCI/etc. bus probe sem.
2494 *
2495 * RETURNS:
2496 * 0 on success, negative errno otherwise
2497 */
2498int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2499{
2500 struct ata_device *dev;
2501 int i, rc = 0, used_dma = 0, found = 0;
2502
2503 /* has private set_mode? */
2504 if (ap->ops->set_mode)
2505 return ap->ops->set_mode(ap, r_failed_dev);
2506
2507 /* step 1: calculate xfer_mask */
2508 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2509 unsigned int pio_mask, dma_mask;
2510
2511 dev = &ap->device[i];
2512
2513 if (!ata_dev_enabled(dev))
2514 continue;
2515
2516 ata_dev_xfermask(dev);
2517
2518 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2519 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2520 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2521 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2522
2523 found = 1;
2524 if (dev->dma_mode)
2525 used_dma = 1;
2526 }
2527 if (!found)
2528 goto out;
2529
2530 /* step 2: always set host PIO timings */
2531 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2532 dev = &ap->device[i];
2533 if (!ata_dev_enabled(dev))
2534 continue;
2535
2536 if (!dev->pio_mode) {
2537 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2538 rc = -EINVAL;
2539 goto out;
2540 }
2541
2542 dev->xfer_mode = dev->pio_mode;
2543 dev->xfer_shift = ATA_SHIFT_PIO;
2544 if (ap->ops->set_piomode)
2545 ap->ops->set_piomode(ap, dev);
2546 }
2547
2548 /* step 3: set host DMA timings */
2549 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2550 dev = &ap->device[i];
2551
2552 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2553 continue;
2554
2555 dev->xfer_mode = dev->dma_mode;
2556 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2557 if (ap->ops->set_dmamode)
2558 ap->ops->set_dmamode(ap, dev);
2559 }
2560
2561 /* step 4: update devices' xfer mode */
2562 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2563 dev = &ap->device[i];
2564
2565 /* don't update suspended devices' xfer mode */
2566 if (!ata_dev_ready(dev))
2567 continue;
2568
2569 rc = ata_dev_set_mode(dev);
2570 if (rc)
2571 goto out;
2572 }
2573
2574 /* Record simplex status. If we selected DMA then the other
2575 * host channels are not permitted to do so.
2576 */
2577 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2578 ap->host->simplex_claimed = ap;
2579
2580 /* step5: chip specific finalisation */
2581 if (ap->ops->post_set_mode)
2582 ap->ops->post_set_mode(ap);
2583 out:
2584 if (rc)
2585 *r_failed_dev = dev;
2586 return rc;
2587}
2588
2589/**
2590 * ata_tf_to_host - issue ATA taskfile to host controller
2591 * @ap: port to which command is being issued
2592 * @tf: ATA taskfile register set
2593 *
2594 * Issues ATA taskfile register set to ATA host controller,
2595 * with proper synchronization with interrupt handler and
2596 * other threads.
2597 *
2598 * LOCKING:
2599 * spin_lock_irqsave(host lock)
2600 */
2601
2602static inline void ata_tf_to_host(struct ata_port *ap,
2603 const struct ata_taskfile *tf)
2604{
2605 ap->ops->tf_load(ap, tf);
2606 ap->ops->exec_command(ap, tf);
2607}
2608
2609/**
2610 * ata_busy_sleep - sleep until BSY clears, or timeout
2611 * @ap: port containing status register to be polled
2612 * @tmout_pat: impatience timeout
2613 * @tmout: overall timeout
2614 *
2615 * Sleep until ATA Status register bit BSY clears,
2616 * or a timeout occurs.
2617 *
2618 * LOCKING:
2619 * Kernel thread context (may sleep).
2620 *
2621 * RETURNS:
2622 * 0 on success, -errno otherwise.
2623 */
2624int ata_busy_sleep(struct ata_port *ap,
2625 unsigned long tmout_pat, unsigned long tmout)
2626{
2627 unsigned long timer_start, timeout;
2628 u8 status;
2629
2630 status = ata_busy_wait(ap, ATA_BUSY, 300);
2631 timer_start = jiffies;
2632 timeout = timer_start + tmout_pat;
2633 while (status != 0xff && (status & ATA_BUSY) &&
2634 time_before(jiffies, timeout)) {
2635 msleep(50);
2636 status = ata_busy_wait(ap, ATA_BUSY, 3);
2637 }
2638
2639 if (status != 0xff && (status & ATA_BUSY))
2640 ata_port_printk(ap, KERN_WARNING,
2641 "port is slow to respond, please be patient "
2642 "(Status 0x%x)\n", status);
2643
2644 timeout = timer_start + tmout;
2645 while (status != 0xff && (status & ATA_BUSY) &&
2646 time_before(jiffies, timeout)) {
2647 msleep(50);
2648 status = ata_chk_status(ap);
2649 }
2650
2651 if (status == 0xff)
2652 return -ENODEV;
2653
2654 if (status & ATA_BUSY) {
2655 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2656 "(%lu secs, Status 0x%x)\n",
2657 tmout / HZ, status);
2658 return -EBUSY;
2659 }
2660
2661 return 0;
2662}
2663
2664static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2665{
2666 struct ata_ioports *ioaddr = &ap->ioaddr;
2667 unsigned int dev0 = devmask & (1 << 0);
2668 unsigned int dev1 = devmask & (1 << 1);
2669 unsigned long timeout;
2670
2671 /* if device 0 was found in ata_devchk, wait for its
2672 * BSY bit to clear
2673 */
2674 if (dev0)
2675 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2676
2677 /* if device 1 was found in ata_devchk, wait for
2678 * register access, then wait for BSY to clear
2679 */
2680 timeout = jiffies + ATA_TMOUT_BOOT;
2681 while (dev1) {
2682 u8 nsect, lbal;
2683
2684 ap->ops->dev_select(ap, 1);
2685 nsect = ioread8(ioaddr->nsect_addr);
2686 lbal = ioread8(ioaddr->lbal_addr);
2687 if ((nsect == 1) && (lbal == 1))
2688 break;
2689 if (time_after(jiffies, timeout)) {
2690 dev1 = 0;
2691 break;
2692 }
2693 msleep(50); /* give drive a breather */
2694 }
2695 if (dev1)
2696 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2697
2698 /* is all this really necessary? */
2699 ap->ops->dev_select(ap, 0);
2700 if (dev1)
2701 ap->ops->dev_select(ap, 1);
2702 if (dev0)
2703 ap->ops->dev_select(ap, 0);
2704}
2705
2706static unsigned int ata_bus_softreset(struct ata_port *ap,
2707 unsigned int devmask)
2708{
2709 struct ata_ioports *ioaddr = &ap->ioaddr;
2710
2711 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2712
2713 /* software reset. causes dev0 to be selected */
2714 iowrite8(ap->ctl, ioaddr->ctl_addr);
2715 udelay(20); /* FIXME: flush */
2716 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2717 udelay(20); /* FIXME: flush */
2718 iowrite8(ap->ctl, ioaddr->ctl_addr);
2719
2720 /* spec mandates ">= 2ms" before checking status.
2721 * We wait 150ms, because that was the magic delay used for
2722 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2723 * between when the ATA command register is written, and then
2724 * status is checked. Because waiting for "a while" before
2725 * checking status is fine, post SRST, we perform this magic
2726 * delay here as well.
2727 *
2728 * Old drivers/ide uses the 2mS rule and then waits for ready
2729 */
2730 msleep(150);
2731
2732 /* Before we perform post reset processing we want to see if
2733 * the bus shows 0xFF because the odd clown forgets the D7
2734 * pulldown resistor.
2735 */
2736 if (ata_check_status(ap) == 0xFF)
2737 return 0;
2738
2739 ata_bus_post_reset(ap, devmask);
2740
2741 return 0;
2742}
2743
2744/**
2745 * ata_bus_reset - reset host port and associated ATA channel
2746 * @ap: port to reset
2747 *
2748 * This is typically the first time we actually start issuing
2749 * commands to the ATA channel. We wait for BSY to clear, then
2750 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2751 * result. Determine what devices, if any, are on the channel
2752 * by looking at the device 0/1 error register. Look at the signature
2753 * stored in each device's taskfile registers, to determine if
2754 * the device is ATA or ATAPI.
2755 *
2756 * LOCKING:
2757 * PCI/etc. bus probe sem.
2758 * Obtains host lock.
2759 *
2760 * SIDE EFFECTS:
2761 * Sets ATA_FLAG_DISABLED if bus reset fails.
2762 */
2763
2764void ata_bus_reset(struct ata_port *ap)
2765{
2766 struct ata_ioports *ioaddr = &ap->ioaddr;
2767 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2768 u8 err;
2769 unsigned int dev0, dev1 = 0, devmask = 0;
2770
2771 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2772
2773 /* determine if device 0/1 are present */
2774 if (ap->flags & ATA_FLAG_SATA_RESET)
2775 dev0 = 1;
2776 else {
2777 dev0 = ata_devchk(ap, 0);
2778 if (slave_possible)
2779 dev1 = ata_devchk(ap, 1);
2780 }
2781
2782 if (dev0)
2783 devmask |= (1 << 0);
2784 if (dev1)
2785 devmask |= (1 << 1);
2786
2787 /* select device 0 again */
2788 ap->ops->dev_select(ap, 0);
2789
2790 /* issue bus reset */
2791 if (ap->flags & ATA_FLAG_SRST)
2792 if (ata_bus_softreset(ap, devmask))
2793 goto err_out;
2794
2795 /*
2796 * determine by signature whether we have ATA or ATAPI devices
2797 */
2798 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2799 if ((slave_possible) && (err != 0x81))
2800 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2801
2802 /* re-enable interrupts */
2803 ap->ops->irq_on(ap);
2804
2805 /* is double-select really necessary? */
2806 if (ap->device[1].class != ATA_DEV_NONE)
2807 ap->ops->dev_select(ap, 1);
2808 if (ap->device[0].class != ATA_DEV_NONE)
2809 ap->ops->dev_select(ap, 0);
2810
2811 /* if no devices were detected, disable this port */
2812 if ((ap->device[0].class == ATA_DEV_NONE) &&
2813 (ap->device[1].class == ATA_DEV_NONE))
2814 goto err_out;
2815
2816 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2817 /* set up device control for ATA_FLAG_SATA_RESET */
2818 iowrite8(ap->ctl, ioaddr->ctl_addr);
2819 }
2820
2821 DPRINTK("EXIT\n");
2822 return;
2823
2824err_out:
2825 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2826 ap->ops->port_disable(ap);
2827
2828 DPRINTK("EXIT\n");
2829}
2830
2831/**
2832 * sata_phy_debounce - debounce SATA phy status
2833 * @ap: ATA port to debounce SATA phy status for
2834 * @params: timing parameters { interval, duratinon, timeout } in msec
2835 *
2836 * Make sure SStatus of @ap reaches stable state, determined by
2837 * holding the same value where DET is not 1 for @duration polled
2838 * every @interval, before @timeout. Timeout constraints the
2839 * beginning of the stable state. Because, after hot unplugging,
2840 * DET gets stuck at 1 on some controllers, this functions waits
2841 * until timeout then returns 0 if DET is stable at 1.
2842 *
2843 * LOCKING:
2844 * Kernel thread context (may sleep)
2845 *
2846 * RETURNS:
2847 * 0 on success, -errno on failure.
2848 */
2849int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2850{
2851 unsigned long interval_msec = params[0];
2852 unsigned long duration = params[1] * HZ / 1000;
2853 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2854 unsigned long last_jiffies;
2855 u32 last, cur;
2856 int rc;
2857
2858 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2859 return rc;
2860 cur &= 0xf;
2861
2862 last = cur;
2863 last_jiffies = jiffies;
2864
2865 while (1) {
2866 msleep(interval_msec);
2867 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2868 return rc;
2869 cur &= 0xf;
2870
2871 /* DET stable? */
2872 if (cur == last) {
2873 if (cur == 1 && time_before(jiffies, timeout))
2874 continue;
2875 if (time_after(jiffies, last_jiffies + duration))
2876 return 0;
2877 continue;
2878 }
2879
2880 /* unstable, start over */
2881 last = cur;
2882 last_jiffies = jiffies;
2883
2884 /* check timeout */
2885 if (time_after(jiffies, timeout))
2886 return -EBUSY;
2887 }
2888}
2889
2890/**
2891 * sata_phy_resume - resume SATA phy
2892 * @ap: ATA port to resume SATA phy for
2893 * @params: timing parameters { interval, duratinon, timeout } in msec
2894 *
2895 * Resume SATA phy of @ap and debounce it.
2896 *
2897 * LOCKING:
2898 * Kernel thread context (may sleep)
2899 *
2900 * RETURNS:
2901 * 0 on success, -errno on failure.
2902 */
2903int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2904{
2905 u32 scontrol;
2906 int rc;
2907
2908 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2909 return rc;
2910
2911 scontrol = (scontrol & 0x0f0) | 0x300;
2912
2913 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2914 return rc;
2915
2916 /* Some PHYs react badly if SStatus is pounded immediately
2917 * after resuming. Delay 200ms before debouncing.
2918 */
2919 msleep(200);
2920
2921 return sata_phy_debounce(ap, params);
2922}
2923
2924static void ata_wait_spinup(struct ata_port *ap)
2925{
2926 struct ata_eh_context *ehc = &ap->eh_context;
2927 unsigned long end, secs;
2928 int rc;
2929
2930 /* first, debounce phy if SATA */
2931 if (ap->cbl == ATA_CBL_SATA) {
2932 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2933
2934 /* if debounced successfully and offline, no need to wait */
2935 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2936 return;
2937 }
2938
2939 /* okay, let's give the drive time to spin up */
2940 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2941 secs = ((end - jiffies) + HZ - 1) / HZ;
2942
2943 if (time_after(jiffies, end))
2944 return;
2945
2946 if (secs > 5)
2947 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2948 "(%lu secs)\n", secs);
2949
2950 schedule_timeout_uninterruptible(end - jiffies);
2951}
2952
2953/**
2954 * ata_std_prereset - prepare for reset
2955 * @ap: ATA port to be reset
2956 *
2957 * @ap is about to be reset. Initialize it.
2958 *
2959 * LOCKING:
2960 * Kernel thread context (may sleep)
2961 *
2962 * RETURNS:
2963 * 0 on success, -errno otherwise.
2964 */
2965int ata_std_prereset(struct ata_port *ap)
2966{
2967 struct ata_eh_context *ehc = &ap->eh_context;
2968 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2969 int rc;
2970
2971 /* handle link resume & hotplug spinup */
2972 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2973 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2974 ehc->i.action |= ATA_EH_HARDRESET;
2975
2976 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2977 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2978 ata_wait_spinup(ap);
2979
2980 /* if we're about to do hardreset, nothing more to do */
2981 if (ehc->i.action & ATA_EH_HARDRESET)
2982 return 0;
2983
2984 /* if SATA, resume phy */
2985 if (ap->cbl == ATA_CBL_SATA) {
2986 rc = sata_phy_resume(ap, timing);
2987 if (rc && rc != -EOPNOTSUPP) {
2988 /* phy resume failed */
2989 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2990 "link for reset (errno=%d)\n", rc);
2991 return rc;
2992 }
2993 }
2994
2995 /* Wait for !BSY if the controller can wait for the first D2H
2996 * Reg FIS and we don't know that no device is attached.
2997 */
2998 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2999 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
3000
3001 return 0;
3002}
3003
3004/**
3005 * ata_std_softreset - reset host port via ATA SRST
3006 * @ap: port to reset
3007 * @classes: resulting classes of attached devices
3008 *
3009 * Reset host port using ATA SRST.
3010 *
3011 * LOCKING:
3012 * Kernel thread context (may sleep)
3013 *
3014 * RETURNS:
3015 * 0 on success, -errno otherwise.
3016 */
3017int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
3018{
3019 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3020 unsigned int devmask = 0, err_mask;
3021 u8 err;
3022
3023 DPRINTK("ENTER\n");
3024
3025 if (ata_port_offline(ap)) {
3026 classes[0] = ATA_DEV_NONE;
3027 goto out;
3028 }
3029
3030 /* determine if device 0/1 are present */
3031 if (ata_devchk(ap, 0))
3032 devmask |= (1 << 0);
3033 if (slave_possible && ata_devchk(ap, 1))
3034 devmask |= (1 << 1);
3035
3036 /* select device 0 again */
3037 ap->ops->dev_select(ap, 0);
3038
3039 /* issue bus reset */
3040 DPRINTK("about to softreset, devmask=%x\n", devmask);
3041 err_mask = ata_bus_softreset(ap, devmask);
3042 if (err_mask) {
3043 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3044 err_mask);
3045 return -EIO;
3046 }
3047
3048 /* determine by signature whether we have ATA or ATAPI devices */
3049 classes[0] = ata_dev_try_classify(ap, 0, &err);
3050 if (slave_possible && err != 0x81)
3051 classes[1] = ata_dev_try_classify(ap, 1, &err);
3052
3053 out:
3054 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3055 return 0;
3056}
3057
3058/**
3059 * sata_port_hardreset - reset port via SATA phy reset
3060 * @ap: port to reset
3061 * @timing: timing parameters { interval, duratinon, timeout } in msec
3062 *
3063 * SATA phy-reset host port using DET bits of SControl register.
3064 *
3065 * LOCKING:
3066 * Kernel thread context (may sleep)
3067 *
3068 * RETURNS:
3069 * 0 on success, -errno otherwise.
3070 */
3071int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3072{
3073 u32 scontrol;
3074 int rc;
3075
3076 DPRINTK("ENTER\n");
3077
3078 if (sata_set_spd_needed(ap)) {
3079 /* SATA spec says nothing about how to reconfigure
3080 * spd. To be on the safe side, turn off phy during
3081 * reconfiguration. This works for at least ICH7 AHCI
3082 * and Sil3124.
3083 */
3084 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3085 goto out;
3086
3087 scontrol = (scontrol & 0x0f0) | 0x304;
3088
3089 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3090 goto out;
3091
3092 sata_set_spd(ap);
3093 }
3094
3095 /* issue phy wake/reset */
3096 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3097 goto out;
3098
3099 scontrol = (scontrol & 0x0f0) | 0x301;
3100
3101 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3102 goto out;
3103
3104 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3105 * 10.4.2 says at least 1 ms.
3106 */
3107 msleep(1);
3108
3109 /* bring phy back */
3110 rc = sata_phy_resume(ap, timing);
3111 out:
3112 DPRINTK("EXIT, rc=%d\n", rc);
3113 return rc;
3114}
3115
3116/**
3117 * sata_std_hardreset - reset host port via SATA phy reset
3118 * @ap: port to reset
3119 * @class: resulting class of attached device
3120 *
3121 * SATA phy-reset host port using DET bits of SControl register,
3122 * wait for !BSY and classify the attached device.
3123 *
3124 * LOCKING:
3125 * Kernel thread context (may sleep)
3126 *
3127 * RETURNS:
3128 * 0 on success, -errno otherwise.
3129 */
3130int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3131{
3132 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3133 int rc;
3134
3135 DPRINTK("ENTER\n");
3136
3137 /* do hardreset */
3138 rc = sata_port_hardreset(ap, timing);
3139 if (rc) {
3140 ata_port_printk(ap, KERN_ERR,
3141 "COMRESET failed (errno=%d)\n", rc);
3142 return rc;
3143 }
3144
3145 /* TODO: phy layer with polling, timeouts, etc. */
3146 if (ata_port_offline(ap)) {
3147 *class = ATA_DEV_NONE;
3148 DPRINTK("EXIT, link offline\n");
3149 return 0;
3150 }
3151
3152 /* wait a while before checking status, see SRST for more info */
3153 msleep(150);
3154
3155 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3156 ata_port_printk(ap, KERN_ERR,
3157 "COMRESET failed (device not ready)\n");
3158 return -EIO;
3159 }
3160
3161 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3162
3163 *class = ata_dev_try_classify(ap, 0, NULL);
3164
3165 DPRINTK("EXIT, class=%u\n", *class);
3166 return 0;
3167}
3168
3169/**
3170 * ata_std_postreset - standard postreset callback
3171 * @ap: the target ata_port
3172 * @classes: classes of attached devices
3173 *
3174 * This function is invoked after a successful reset. Note that
3175 * the device might have been reset more than once using
3176 * different reset methods before postreset is invoked.
3177 *
3178 * LOCKING:
3179 * Kernel thread context (may sleep)
3180 */
3181void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3182{
3183 u32 serror;
3184
3185 DPRINTK("ENTER\n");
3186
3187 /* print link status */
3188 sata_print_link_status(ap);
3189
3190 /* clear SError */
3191 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3192 sata_scr_write(ap, SCR_ERROR, serror);
3193
3194 /* re-enable interrupts */
3195 if (!ap->ops->error_handler)
3196 ap->ops->irq_on(ap);
3197
3198 /* is double-select really necessary? */
3199 if (classes[0] != ATA_DEV_NONE)
3200 ap->ops->dev_select(ap, 1);
3201 if (classes[1] != ATA_DEV_NONE)
3202 ap->ops->dev_select(ap, 0);
3203
3204 /* bail out if no device is present */
3205 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3206 DPRINTK("EXIT, no device\n");
3207 return;
3208 }
3209
3210 /* set up device control */
3211 if (ap->ioaddr.ctl_addr)
3212 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3213
3214 DPRINTK("EXIT\n");
3215}
3216
3217/**
3218 * ata_dev_same_device - Determine whether new ID matches configured device
3219 * @dev: device to compare against
3220 * @new_class: class of the new device
3221 * @new_id: IDENTIFY page of the new device
3222 *
3223 * Compare @new_class and @new_id against @dev and determine
3224 * whether @dev is the device indicated by @new_class and
3225 * @new_id.
3226 *
3227 * LOCKING:
3228 * None.
3229 *
3230 * RETURNS:
3231 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3232 */
3233static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3234 const u16 *new_id)
3235{
3236 const u16 *old_id = dev->id;
3237 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3238 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3239 u64 new_n_sectors;
3240
3241 if (dev->class != new_class) {
3242 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3243 dev->class, new_class);
3244 return 0;
3245 }
3246
3247 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3248 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3249 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3250 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3251 new_n_sectors = ata_id_n_sectors(new_id);
3252
3253 if (strcmp(model[0], model[1])) {
3254 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3255 "'%s' != '%s'\n", model[0], model[1]);
3256 return 0;
3257 }
3258
3259 if (strcmp(serial[0], serial[1])) {
3260 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3261 "'%s' != '%s'\n", serial[0], serial[1]);
3262 return 0;
3263 }
3264
3265 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3266 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3267 "%llu != %llu\n",
3268 (unsigned long long)dev->n_sectors,
3269 (unsigned long long)new_n_sectors);
3270 return 0;
3271 }
3272
3273 return 1;
3274}
3275
3276/**
3277 * ata_dev_revalidate - Revalidate ATA device
3278 * @dev: device to revalidate
3279 * @readid_flags: read ID flags
3280 *
3281 * Re-read IDENTIFY page and make sure @dev is still attached to
3282 * the port.
3283 *
3284 * LOCKING:
3285 * Kernel thread context (may sleep)
3286 *
3287 * RETURNS:
3288 * 0 on success, negative errno otherwise
3289 */
3290int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3291{
3292 unsigned int class = dev->class;
3293 u16 *id = (void *)dev->ap->sector_buf;
3294 int rc;
3295
3296 if (!ata_dev_enabled(dev)) {
3297 rc = -ENODEV;
3298 goto fail;
3299 }
3300
3301 /* read ID data */
3302 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3303 if (rc)
3304 goto fail;
3305
3306 /* is the device still there? */
3307 if (!ata_dev_same_device(dev, class, id)) {
3308 rc = -ENODEV;
3309 goto fail;
3310 }
3311
3312 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3313
3314 /* configure device according to the new ID */
3315 rc = ata_dev_configure(dev);
3316 if (rc == 0)
3317 return 0;
3318
3319 fail:
3320 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3321 return rc;
3322}
3323
3324struct ata_blacklist_entry {
3325 const char *model_num;
3326 const char *model_rev;
3327 unsigned long horkage;
3328};
3329
3330static const struct ata_blacklist_entry ata_device_blacklist [] = {
3331 /* Devices with DMA related problems under Linux */
3332 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3333 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3334 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3335 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3336 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3337 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3338 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3339 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3340 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3341 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3342 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3343 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3344 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3345 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3346 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3347 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3348 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3349 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3350 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3351 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3352 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3353 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3354 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3355 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3356 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3357 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3358 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3359 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3360 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3361
3362 /* Weird ATAPI devices */
3363 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3364 ATA_HORKAGE_DMA_RW_ONLY },
3365
3366 /* Devices we expect to fail diagnostics */
3367
3368 /* Devices where NCQ should be avoided */
3369 /* NCQ is slow */
3370 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3371 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3372 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3373 /* NCQ is broken */
3374 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3375 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3376 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3377 /* Blacklist entries taken from Silicon Image 3124/3132
3378 Windows driver .inf file - also several Linux problem reports */
3379 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3380 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3381 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3382
3383 /* Devices with NCQ limits */
3384
3385 /* End Marker */
3386 { }
3387};
3388
3389unsigned long ata_device_blacklisted(const struct ata_device *dev)
3390{
3391 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3392 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3393 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3394
3395 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3396 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3397
3398 while (ad->model_num) {
3399 if (!strcmp(ad->model_num, model_num)) {
3400 if (ad->model_rev == NULL)
3401 return ad->horkage;
3402 if (!strcmp(ad->model_rev, model_rev))
3403 return ad->horkage;
3404 }
3405 ad++;
3406 }
3407 return 0;
3408}
3409
3410static int ata_dma_blacklisted(const struct ata_device *dev)
3411{
3412 /* We don't support polling DMA.
3413 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3414 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3415 */
3416 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3417 (dev->flags & ATA_DFLAG_CDB_INTR))
3418 return 1;
3419 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3420}
3421
3422/**
3423 * ata_dev_xfermask - Compute supported xfermask of the given device
3424 * @dev: Device to compute xfermask for
3425 *
3426 * Compute supported xfermask of @dev and store it in
3427 * dev->*_mask. This function is responsible for applying all
3428 * known limits including host controller limits, device
3429 * blacklist, etc...
3430 *
3431 * LOCKING:
3432 * None.
3433 */
3434static void ata_dev_xfermask(struct ata_device *dev)
3435{
3436 struct ata_port *ap = dev->ap;
3437 struct ata_host *host = ap->host;
3438 unsigned long xfer_mask;
3439
3440 /* controller modes available */
3441 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3442 ap->mwdma_mask, ap->udma_mask);
3443
3444 /* Apply cable rule here. Don't apply it early because when
3445 * we handle hot plug the cable type can itself change.
3446 */
3447 if (ap->cbl == ATA_CBL_PATA40)
3448 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3449 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3450 * host side are checked drive side as well. Cases where we know a
3451 * 40wire cable is used safely for 80 are not checked here.
3452 */
3453 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3454 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3455
3456
3457 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3458 dev->mwdma_mask, dev->udma_mask);
3459 xfer_mask &= ata_id_xfermask(dev->id);
3460
3461 /*
3462 * CFA Advanced TrueIDE timings are not allowed on a shared
3463 * cable
3464 */
3465 if (ata_dev_pair(dev)) {
3466 /* No PIO5 or PIO6 */
3467 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3468 /* No MWDMA3 or MWDMA 4 */
3469 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3470 }
3471
3472 if (ata_dma_blacklisted(dev)) {
3473 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3474 ata_dev_printk(dev, KERN_WARNING,
3475 "device is on DMA blacklist, disabling DMA\n");
3476 }
3477
3478 if ((host->flags & ATA_HOST_SIMPLEX) &&
3479 host->simplex_claimed && host->simplex_claimed != ap) {
3480 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3481 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3482 "other device, disabling DMA\n");
3483 }
3484
3485 if (ap->ops->mode_filter)
3486 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3487
3488 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3489 &dev->mwdma_mask, &dev->udma_mask);
3490}
3491
3492/**
3493 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3494 * @dev: Device to which command will be sent
3495 *
3496 * Issue SET FEATURES - XFER MODE command to device @dev
3497 * on port @ap.
3498 *
3499 * LOCKING:
3500 * PCI/etc. bus probe sem.
3501 *
3502 * RETURNS:
3503 * 0 on success, AC_ERR_* mask otherwise.
3504 */
3505
3506static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3507{
3508 struct ata_taskfile tf;
3509 unsigned int err_mask;
3510
3511 /* set up set-features taskfile */
3512 DPRINTK("set features - xfer mode\n");
3513
3514 ata_tf_init(dev, &tf);
3515 tf.command = ATA_CMD_SET_FEATURES;
3516 tf.feature = SETFEATURES_XFER;
3517 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3518 tf.protocol = ATA_PROT_NODATA;
3519 tf.nsect = dev->xfer_mode;
3520
3521 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3522
3523 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3524 return err_mask;
3525}
3526
3527/**
3528 * ata_dev_init_params - Issue INIT DEV PARAMS command
3529 * @dev: Device to which command will be sent
3530 * @heads: Number of heads (taskfile parameter)
3531 * @sectors: Number of sectors (taskfile parameter)
3532 *
3533 * LOCKING:
3534 * Kernel thread context (may sleep)
3535 *
3536 * RETURNS:
3537 * 0 on success, AC_ERR_* mask otherwise.
3538 */
3539static unsigned int ata_dev_init_params(struct ata_device *dev,
3540 u16 heads, u16 sectors)
3541{
3542 struct ata_taskfile tf;
3543 unsigned int err_mask;
3544
3545 /* Number of sectors per track 1-255. Number of heads 1-16 */
3546 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3547 return AC_ERR_INVALID;
3548
3549 /* set up init dev params taskfile */
3550 DPRINTK("init dev params \n");
3551
3552 ata_tf_init(dev, &tf);
3553 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3554 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3555 tf.protocol = ATA_PROT_NODATA;
3556 tf.nsect = sectors;
3557 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3558
3559 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3560
3561 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3562 return err_mask;
3563}
3564
3565/**
3566 * ata_sg_clean - Unmap DMA memory associated with command
3567 * @qc: Command containing DMA memory to be released
3568 *
3569 * Unmap all mapped DMA memory associated with this command.
3570 *
3571 * LOCKING:
3572 * spin_lock_irqsave(host lock)
3573 */
3574void ata_sg_clean(struct ata_queued_cmd *qc)
3575{
3576 struct ata_port *ap = qc->ap;
3577 struct scatterlist *sg = qc->__sg;
3578 int dir = qc->dma_dir;
3579 void *pad_buf = NULL;
3580
3581 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3582 WARN_ON(sg == NULL);
3583
3584 if (qc->flags & ATA_QCFLAG_SINGLE)
3585 WARN_ON(qc->n_elem > 1);
3586
3587 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3588
3589 /* if we padded the buffer out to 32-bit bound, and data
3590 * xfer direction is from-device, we must copy from the
3591 * pad buffer back into the supplied buffer
3592 */
3593 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3594 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3595
3596 if (qc->flags & ATA_QCFLAG_SG) {
3597 if (qc->n_elem)
3598 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3599 /* restore last sg */
3600 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3601 if (pad_buf) {
3602 struct scatterlist *psg = &qc->pad_sgent;
3603 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3604 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3605 kunmap_atomic(addr, KM_IRQ0);
3606 }
3607 } else {
3608 if (qc->n_elem)
3609 dma_unmap_single(ap->dev,
3610 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3611 dir);
3612 /* restore sg */
3613 sg->length += qc->pad_len;
3614 if (pad_buf)
3615 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3616 pad_buf, qc->pad_len);
3617 }
3618
3619 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3620 qc->__sg = NULL;
3621}
3622
3623/**
3624 * ata_fill_sg - Fill PCI IDE PRD table
3625 * @qc: Metadata associated with taskfile to be transferred
3626 *
3627 * Fill PCI IDE PRD (scatter-gather) table with segments
3628 * associated with the current disk command.
3629 *
3630 * LOCKING:
3631 * spin_lock_irqsave(host lock)
3632 *
3633 */
3634static void ata_fill_sg(struct ata_queued_cmd *qc)
3635{
3636 struct ata_port *ap = qc->ap;
3637 struct scatterlist *sg;
3638 unsigned int idx;
3639
3640 WARN_ON(qc->__sg == NULL);
3641 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3642
3643 idx = 0;
3644 ata_for_each_sg(sg, qc) {
3645 u32 addr, offset;
3646 u32 sg_len, len;
3647
3648 /* determine if physical DMA addr spans 64K boundary.
3649 * Note h/w doesn't support 64-bit, so we unconditionally
3650 * truncate dma_addr_t to u32.
3651 */
3652 addr = (u32) sg_dma_address(sg);
3653 sg_len = sg_dma_len(sg);
3654
3655 while (sg_len) {
3656 offset = addr & 0xffff;
3657 len = sg_len;
3658 if ((offset + sg_len) > 0x10000)
3659 len = 0x10000 - offset;
3660
3661 ap->prd[idx].addr = cpu_to_le32(addr);
3662 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3663 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3664
3665 idx++;
3666 sg_len -= len;
3667 addr += len;
3668 }
3669 }
3670
3671 if (idx)
3672 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3673}
3674/**
3675 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3676 * @qc: Metadata associated with taskfile to check
3677 *
3678 * Allow low-level driver to filter ATA PACKET commands, returning
3679 * a status indicating whether or not it is OK to use DMA for the
3680 * supplied PACKET command.
3681 *
3682 * LOCKING:
3683 * spin_lock_irqsave(host lock)
3684 *
3685 * RETURNS: 0 when ATAPI DMA can be used
3686 * nonzero otherwise
3687 */
3688int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3689{
3690 struct ata_port *ap = qc->ap;
3691 int rc = 0; /* Assume ATAPI DMA is OK by default */
3692
3693 /* some drives can only do ATAPI DMA on read/write */
3694 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
3695 struct scsi_cmnd *cmd = qc->scsicmd;
3696 u8 *scsicmd = cmd->cmnd;
3697
3698 switch (scsicmd[0]) {
3699 case READ_10:
3700 case WRITE_10:
3701 case READ_12:
3702 case WRITE_12:
3703 case READ_6:
3704 case WRITE_6:
3705 /* atapi dma maybe ok */
3706 break;
3707 default:
3708 /* turn off atapi dma */
3709 return 1;
3710 }
3711 }
3712
3713 if (ap->ops->check_atapi_dma)
3714 rc = ap->ops->check_atapi_dma(qc);
3715
3716 return rc;
3717}
3718/**
3719 * ata_qc_prep - Prepare taskfile for submission
3720 * @qc: Metadata associated with taskfile to be prepared
3721 *
3722 * Prepare ATA taskfile for submission.
3723 *
3724 * LOCKING:
3725 * spin_lock_irqsave(host lock)
3726 */
3727void ata_qc_prep(struct ata_queued_cmd *qc)
3728{
3729 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3730 return;
3731
3732 ata_fill_sg(qc);
3733}
3734
3735void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3736
3737/**
3738 * ata_sg_init_one - Associate command with memory buffer
3739 * @qc: Command to be associated
3740 * @buf: Memory buffer
3741 * @buflen: Length of memory buffer, in bytes.
3742 *
3743 * Initialize the data-related elements of queued_cmd @qc
3744 * to point to a single memory buffer, @buf of byte length @buflen.
3745 *
3746 * LOCKING:
3747 * spin_lock_irqsave(host lock)
3748 */
3749
3750void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3751{
3752 qc->flags |= ATA_QCFLAG_SINGLE;
3753
3754 qc->__sg = &qc->sgent;
3755 qc->n_elem = 1;
3756 qc->orig_n_elem = 1;
3757 qc->buf_virt = buf;
3758 qc->nbytes = buflen;
3759
3760 sg_init_one(&qc->sgent, buf, buflen);
3761}
3762
3763/**
3764 * ata_sg_init - Associate command with scatter-gather table.
3765 * @qc: Command to be associated
3766 * @sg: Scatter-gather table.
3767 * @n_elem: Number of elements in s/g table.
3768 *
3769 * Initialize the data-related elements of queued_cmd @qc
3770 * to point to a scatter-gather table @sg, containing @n_elem
3771 * elements.
3772 *
3773 * LOCKING:
3774 * spin_lock_irqsave(host lock)
3775 */
3776
3777void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3778 unsigned int n_elem)
3779{
3780 qc->flags |= ATA_QCFLAG_SG;
3781 qc->__sg = sg;
3782 qc->n_elem = n_elem;
3783 qc->orig_n_elem = n_elem;
3784}
3785
3786/**
3787 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3788 * @qc: Command with memory buffer to be mapped.
3789 *
3790 * DMA-map the memory buffer associated with queued_cmd @qc.
3791 *
3792 * LOCKING:
3793 * spin_lock_irqsave(host lock)
3794 *
3795 * RETURNS:
3796 * Zero on success, negative on error.
3797 */
3798
3799static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3800{
3801 struct ata_port *ap = qc->ap;
3802 int dir = qc->dma_dir;
3803 struct scatterlist *sg = qc->__sg;
3804 dma_addr_t dma_address;
3805 int trim_sg = 0;
3806
3807 /* we must lengthen transfers to end on a 32-bit boundary */
3808 qc->pad_len = sg->length & 3;
3809 if (qc->pad_len) {
3810 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3811 struct scatterlist *psg = &qc->pad_sgent;
3812
3813 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3814
3815 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3816
3817 if (qc->tf.flags & ATA_TFLAG_WRITE)
3818 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3819 qc->pad_len);
3820
3821 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3822 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3823 /* trim sg */
3824 sg->length -= qc->pad_len;
3825 if (sg->length == 0)
3826 trim_sg = 1;
3827
3828 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3829 sg->length, qc->pad_len);
3830 }
3831
3832 if (trim_sg) {
3833 qc->n_elem--;
3834 goto skip_map;
3835 }
3836
3837 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3838 sg->length, dir);
3839 if (dma_mapping_error(dma_address)) {
3840 /* restore sg */
3841 sg->length += qc->pad_len;
3842 return -1;
3843 }
3844
3845 sg_dma_address(sg) = dma_address;
3846 sg_dma_len(sg) = sg->length;
3847
3848skip_map:
3849 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3850 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3851
3852 return 0;
3853}
3854
3855/**
3856 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3857 * @qc: Command with scatter-gather table to be mapped.
3858 *
3859 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3860 *
3861 * LOCKING:
3862 * spin_lock_irqsave(host lock)
3863 *
3864 * RETURNS:
3865 * Zero on success, negative on error.
3866 *
3867 */
3868
3869static int ata_sg_setup(struct ata_queued_cmd *qc)
3870{
3871 struct ata_port *ap = qc->ap;
3872 struct scatterlist *sg = qc->__sg;
3873 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3874 int n_elem, pre_n_elem, dir, trim_sg = 0;
3875
3876 VPRINTK("ENTER, ata%u\n", ap->print_id);
3877 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3878
3879 /* we must lengthen transfers to end on a 32-bit boundary */
3880 qc->pad_len = lsg->length & 3;
3881 if (qc->pad_len) {
3882 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3883 struct scatterlist *psg = &qc->pad_sgent;
3884 unsigned int offset;
3885
3886 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3887
3888 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3889
3890 /*
3891 * psg->page/offset are used to copy to-be-written
3892 * data in this function or read data in ata_sg_clean.
3893 */
3894 offset = lsg->offset + lsg->length - qc->pad_len;
3895 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3896 psg->offset = offset_in_page(offset);
3897
3898 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3899 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3900 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3901 kunmap_atomic(addr, KM_IRQ0);
3902 }
3903
3904 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3905 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3906 /* trim last sg */
3907 lsg->length -= qc->pad_len;
3908 if (lsg->length == 0)
3909 trim_sg = 1;
3910
3911 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3912 qc->n_elem - 1, lsg->length, qc->pad_len);
3913 }
3914
3915 pre_n_elem = qc->n_elem;
3916 if (trim_sg && pre_n_elem)
3917 pre_n_elem--;
3918
3919 if (!pre_n_elem) {
3920 n_elem = 0;
3921 goto skip_map;
3922 }
3923
3924 dir = qc->dma_dir;
3925 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3926 if (n_elem < 1) {
3927 /* restore last sg */
3928 lsg->length += qc->pad_len;
3929 return -1;
3930 }
3931
3932 DPRINTK("%d sg elements mapped\n", n_elem);
3933
3934skip_map:
3935 qc->n_elem = n_elem;
3936
3937 return 0;
3938}
3939
3940/**
3941 * swap_buf_le16 - swap halves of 16-bit words in place
3942 * @buf: Buffer to swap
3943 * @buf_words: Number of 16-bit words in buffer.
3944 *
3945 * Swap halves of 16-bit words if needed to convert from
3946 * little-endian byte order to native cpu byte order, or
3947 * vice-versa.
3948 *
3949 * LOCKING:
3950 * Inherited from caller.
3951 */
3952void swap_buf_le16(u16 *buf, unsigned int buf_words)
3953{
3954#ifdef __BIG_ENDIAN
3955 unsigned int i;
3956
3957 for (i = 0; i < buf_words; i++)
3958 buf[i] = le16_to_cpu(buf[i]);
3959#endif /* __BIG_ENDIAN */
3960}
3961
3962/**
3963 * ata_data_xfer - Transfer data by PIO
3964 * @adev: device to target
3965 * @buf: data buffer
3966 * @buflen: buffer length
3967 * @write_data: read/write
3968 *
3969 * Transfer data from/to the device data register by PIO.
3970 *
3971 * LOCKING:
3972 * Inherited from caller.
3973 */
3974void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
3975 unsigned int buflen, int write_data)
3976{
3977 struct ata_port *ap = adev->ap;
3978 unsigned int words = buflen >> 1;
3979
3980 /* Transfer multiple of 2 bytes */
3981 if (write_data)
3982 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
3983 else
3984 ioread16_rep(ap->ioaddr.data_addr, buf, words);
3985
3986 /* Transfer trailing 1 byte, if any. */
3987 if (unlikely(buflen & 0x01)) {
3988 u16 align_buf[1] = { 0 };
3989 unsigned char *trailing_buf = buf + buflen - 1;
3990
3991 if (write_data) {
3992 memcpy(align_buf, trailing_buf, 1);
3993 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3994 } else {
3995 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
3996 memcpy(trailing_buf, align_buf, 1);
3997 }
3998 }
3999}
4000
4001/**
4002 * ata_data_xfer_noirq - Transfer data by PIO
4003 * @adev: device to target
4004 * @buf: data buffer
4005 * @buflen: buffer length
4006 * @write_data: read/write
4007 *
4008 * Transfer data from/to the device data register by PIO. Do the
4009 * transfer with interrupts disabled.
4010 *
4011 * LOCKING:
4012 * Inherited from caller.
4013 */
4014void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4015 unsigned int buflen, int write_data)
4016{
4017 unsigned long flags;
4018 local_irq_save(flags);
4019 ata_data_xfer(adev, buf, buflen, write_data);
4020 local_irq_restore(flags);
4021}
4022
4023
4024/**
4025 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
4026 * @qc: Command on going
4027 *
4028 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
4029 *
4030 * LOCKING:
4031 * Inherited from caller.
4032 */
4033
4034static void ata_pio_sector(struct ata_queued_cmd *qc)
4035{
4036 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4037 struct scatterlist *sg = qc->__sg;
4038 struct ata_port *ap = qc->ap;
4039 struct page *page;
4040 unsigned int offset;
4041 unsigned char *buf;
4042
4043 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
4044 ap->hsm_task_state = HSM_ST_LAST;
4045
4046 page = sg[qc->cursg].page;
4047 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4048
4049 /* get the current page and offset */
4050 page = nth_page(page, (offset >> PAGE_SHIFT));
4051 offset %= PAGE_SIZE;
4052
4053 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4054
4055 if (PageHighMem(page)) {
4056 unsigned long flags;
4057
4058 /* FIXME: use a bounce buffer */
4059 local_irq_save(flags);
4060 buf = kmap_atomic(page, KM_IRQ0);
4061
4062 /* do the actual data transfer */
4063 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4064
4065 kunmap_atomic(buf, KM_IRQ0);
4066 local_irq_restore(flags);
4067 } else {
4068 buf = page_address(page);
4069 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4070 }
4071
4072 qc->curbytes += ATA_SECT_SIZE;
4073 qc->cursg_ofs += ATA_SECT_SIZE;
4074
4075 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4076 qc->cursg++;
4077 qc->cursg_ofs = 0;
4078 }
4079}
4080
4081/**
4082 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4083 * @qc: Command on going
4084 *
4085 * Transfer one or many ATA_SECT_SIZE of data from/to the
4086 * ATA device for the DRQ request.
4087 *
4088 * LOCKING:
4089 * Inherited from caller.
4090 */
4091
4092static void ata_pio_sectors(struct ata_queued_cmd *qc)
4093{
4094 if (is_multi_taskfile(&qc->tf)) {
4095 /* READ/WRITE MULTIPLE */
4096 unsigned int nsect;
4097
4098 WARN_ON(qc->dev->multi_count == 0);
4099
4100 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
4101 qc->dev->multi_count);
4102 while (nsect--)
4103 ata_pio_sector(qc);
4104 } else
4105 ata_pio_sector(qc);
4106}
4107
4108/**
4109 * atapi_send_cdb - Write CDB bytes to hardware
4110 * @ap: Port to which ATAPI device is attached.
4111 * @qc: Taskfile currently active
4112 *
4113 * When device has indicated its readiness to accept
4114 * a CDB, this function is called. Send the CDB.
4115 *
4116 * LOCKING:
4117 * caller.
4118 */
4119
4120static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4121{
4122 /* send SCSI cdb */
4123 DPRINTK("send cdb\n");
4124 WARN_ON(qc->dev->cdb_len < 12);
4125
4126 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4127 ata_altstatus(ap); /* flush */
4128
4129 switch (qc->tf.protocol) {
4130 case ATA_PROT_ATAPI:
4131 ap->hsm_task_state = HSM_ST;
4132 break;
4133 case ATA_PROT_ATAPI_NODATA:
4134 ap->hsm_task_state = HSM_ST_LAST;
4135 break;
4136 case ATA_PROT_ATAPI_DMA:
4137 ap->hsm_task_state = HSM_ST_LAST;
4138 /* initiate bmdma */
4139 ap->ops->bmdma_start(qc);
4140 break;
4141 }
4142}
4143
4144/**
4145 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4146 * @qc: Command on going
4147 * @bytes: number of bytes
4148 *
4149 * Transfer Transfer data from/to the ATAPI device.
4150 *
4151 * LOCKING:
4152 * Inherited from caller.
4153 *
4154 */
4155
4156static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4157{
4158 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4159 struct scatterlist *sg = qc->__sg;
4160 struct ata_port *ap = qc->ap;
4161 struct page *page;
4162 unsigned char *buf;
4163 unsigned int offset, count;
4164
4165 if (qc->curbytes + bytes >= qc->nbytes)
4166 ap->hsm_task_state = HSM_ST_LAST;
4167
4168next_sg:
4169 if (unlikely(qc->cursg >= qc->n_elem)) {
4170 /*
4171 * The end of qc->sg is reached and the device expects
4172 * more data to transfer. In order not to overrun qc->sg
4173 * and fulfill length specified in the byte count register,
4174 * - for read case, discard trailing data from the device
4175 * - for write case, padding zero data to the device
4176 */
4177 u16 pad_buf[1] = { 0 };
4178 unsigned int words = bytes >> 1;
4179 unsigned int i;
4180
4181 if (words) /* warning if bytes > 1 */
4182 ata_dev_printk(qc->dev, KERN_WARNING,
4183 "%u bytes trailing data\n", bytes);
4184
4185 for (i = 0; i < words; i++)
4186 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4187
4188 ap->hsm_task_state = HSM_ST_LAST;
4189 return;
4190 }
4191
4192 sg = &qc->__sg[qc->cursg];
4193
4194 page = sg->page;
4195 offset = sg->offset + qc->cursg_ofs;
4196
4197 /* get the current page and offset */
4198 page = nth_page(page, (offset >> PAGE_SHIFT));
4199 offset %= PAGE_SIZE;
4200
4201 /* don't overrun current sg */
4202 count = min(sg->length - qc->cursg_ofs, bytes);
4203
4204 /* don't cross page boundaries */
4205 count = min(count, (unsigned int)PAGE_SIZE - offset);
4206
4207 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4208
4209 if (PageHighMem(page)) {
4210 unsigned long flags;
4211
4212 /* FIXME: use bounce buffer */
4213 local_irq_save(flags);
4214 buf = kmap_atomic(page, KM_IRQ0);
4215
4216 /* do the actual data transfer */
4217 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4218
4219 kunmap_atomic(buf, KM_IRQ0);
4220 local_irq_restore(flags);
4221 } else {
4222 buf = page_address(page);
4223 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4224 }
4225
4226 bytes -= count;
4227 qc->curbytes += count;
4228 qc->cursg_ofs += count;
4229
4230 if (qc->cursg_ofs == sg->length) {
4231 qc->cursg++;
4232 qc->cursg_ofs = 0;
4233 }
4234
4235 if (bytes)
4236 goto next_sg;
4237}
4238
4239/**
4240 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4241 * @qc: Command on going
4242 *
4243 * Transfer Transfer data from/to the ATAPI device.
4244 *
4245 * LOCKING:
4246 * Inherited from caller.
4247 */
4248
4249static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4250{
4251 struct ata_port *ap = qc->ap;
4252 struct ata_device *dev = qc->dev;
4253 unsigned int ireason, bc_lo, bc_hi, bytes;
4254 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4255
4256 /* Abuse qc->result_tf for temp storage of intermediate TF
4257 * here to save some kernel stack usage.
4258 * For normal completion, qc->result_tf is not relevant. For
4259 * error, qc->result_tf is later overwritten by ata_qc_complete().
4260 * So, the correctness of qc->result_tf is not affected.
4261 */
4262 ap->ops->tf_read(ap, &qc->result_tf);
4263 ireason = qc->result_tf.nsect;
4264 bc_lo = qc->result_tf.lbam;
4265 bc_hi = qc->result_tf.lbah;
4266 bytes = (bc_hi << 8) | bc_lo;
4267
4268 /* shall be cleared to zero, indicating xfer of data */
4269 if (ireason & (1 << 0))
4270 goto err_out;
4271
4272 /* make sure transfer direction matches expected */
4273 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4274 if (do_write != i_write)
4275 goto err_out;
4276
4277 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4278
4279 __atapi_pio_bytes(qc, bytes);
4280
4281 return;
4282
4283err_out:
4284 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4285 qc->err_mask |= AC_ERR_HSM;
4286 ap->hsm_task_state = HSM_ST_ERR;
4287}
4288
4289/**
4290 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4291 * @ap: the target ata_port
4292 * @qc: qc on going
4293 *
4294 * RETURNS:
4295 * 1 if ok in workqueue, 0 otherwise.
4296 */
4297
4298static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4299{
4300 if (qc->tf.flags & ATA_TFLAG_POLLING)
4301 return 1;
4302
4303 if (ap->hsm_task_state == HSM_ST_FIRST) {
4304 if (qc->tf.protocol == ATA_PROT_PIO &&
4305 (qc->tf.flags & ATA_TFLAG_WRITE))
4306 return 1;
4307
4308 if (is_atapi_taskfile(&qc->tf) &&
4309 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4310 return 1;
4311 }
4312
4313 return 0;
4314}
4315
4316/**
4317 * ata_hsm_qc_complete - finish a qc running on standard HSM
4318 * @qc: Command to complete
4319 * @in_wq: 1 if called from workqueue, 0 otherwise
4320 *
4321 * Finish @qc which is running on standard HSM.
4322 *
4323 * LOCKING:
4324 * If @in_wq is zero, spin_lock_irqsave(host lock).
4325 * Otherwise, none on entry and grabs host lock.
4326 */
4327static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4328{
4329 struct ata_port *ap = qc->ap;
4330 unsigned long flags;
4331
4332 if (ap->ops->error_handler) {
4333 if (in_wq) {
4334 spin_lock_irqsave(ap->lock, flags);
4335
4336 /* EH might have kicked in while host lock is
4337 * released.
4338 */
4339 qc = ata_qc_from_tag(ap, qc->tag);
4340 if (qc) {
4341 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4342 ap->ops->irq_on(ap);
4343 ata_qc_complete(qc);
4344 } else
4345 ata_port_freeze(ap);
4346 }
4347
4348 spin_unlock_irqrestore(ap->lock, flags);
4349 } else {
4350 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4351 ata_qc_complete(qc);
4352 else
4353 ata_port_freeze(ap);
4354 }
4355 } else {
4356 if (in_wq) {
4357 spin_lock_irqsave(ap->lock, flags);
4358 ap->ops->irq_on(ap);
4359 ata_qc_complete(qc);
4360 spin_unlock_irqrestore(ap->lock, flags);
4361 } else
4362 ata_qc_complete(qc);
4363 }
4364
4365 ata_altstatus(ap); /* flush */
4366}
4367
4368/**
4369 * ata_hsm_move - move the HSM to the next state.
4370 * @ap: the target ata_port
4371 * @qc: qc on going
4372 * @status: current device status
4373 * @in_wq: 1 if called from workqueue, 0 otherwise
4374 *
4375 * RETURNS:
4376 * 1 when poll next status needed, 0 otherwise.
4377 */
4378int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4379 u8 status, int in_wq)
4380{
4381 unsigned long flags = 0;
4382 int poll_next;
4383
4384 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4385
4386 /* Make sure ata_qc_issue_prot() does not throw things
4387 * like DMA polling into the workqueue. Notice that
4388 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4389 */
4390 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4391
4392fsm_start:
4393 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4394 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4395
4396 switch (ap->hsm_task_state) {
4397 case HSM_ST_FIRST:
4398 /* Send first data block or PACKET CDB */
4399
4400 /* If polling, we will stay in the work queue after
4401 * sending the data. Otherwise, interrupt handler
4402 * takes over after sending the data.
4403 */
4404 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4405
4406 /* check device status */
4407 if (unlikely((status & ATA_DRQ) == 0)) {
4408 /* handle BSY=0, DRQ=0 as error */
4409 if (likely(status & (ATA_ERR | ATA_DF)))
4410 /* device stops HSM for abort/error */
4411 qc->err_mask |= AC_ERR_DEV;
4412 else
4413 /* HSM violation. Let EH handle this */
4414 qc->err_mask |= AC_ERR_HSM;
4415
4416 ap->hsm_task_state = HSM_ST_ERR;
4417 goto fsm_start;
4418 }
4419
4420 /* Device should not ask for data transfer (DRQ=1)
4421 * when it finds something wrong.
4422 * We ignore DRQ here and stop the HSM by
4423 * changing hsm_task_state to HSM_ST_ERR and
4424 * let the EH abort the command or reset the device.
4425 */
4426 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4427 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4428 "error, dev_stat 0x%X\n", status);
4429 qc->err_mask |= AC_ERR_HSM;
4430 ap->hsm_task_state = HSM_ST_ERR;
4431 goto fsm_start;
4432 }
4433
4434 /* Send the CDB (atapi) or the first data block (ata pio out).
4435 * During the state transition, interrupt handler shouldn't
4436 * be invoked before the data transfer is complete and
4437 * hsm_task_state is changed. Hence, the following locking.
4438 */
4439 if (in_wq)
4440 spin_lock_irqsave(ap->lock, flags);
4441
4442 if (qc->tf.protocol == ATA_PROT_PIO) {
4443 /* PIO data out protocol.
4444 * send first data block.
4445 */
4446
4447 /* ata_pio_sectors() might change the state
4448 * to HSM_ST_LAST. so, the state is changed here
4449 * before ata_pio_sectors().
4450 */
4451 ap->hsm_task_state = HSM_ST;
4452 ata_pio_sectors(qc);
4453 ata_altstatus(ap); /* flush */
4454 } else
4455 /* send CDB */
4456 atapi_send_cdb(ap, qc);
4457
4458 if (in_wq)
4459 spin_unlock_irqrestore(ap->lock, flags);
4460
4461 /* if polling, ata_pio_task() handles the rest.
4462 * otherwise, interrupt handler takes over from here.
4463 */
4464 break;
4465
4466 case HSM_ST:
4467 /* complete command or read/write the data register */
4468 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4469 /* ATAPI PIO protocol */
4470 if ((status & ATA_DRQ) == 0) {
4471 /* No more data to transfer or device error.
4472 * Device error will be tagged in HSM_ST_LAST.
4473 */
4474 ap->hsm_task_state = HSM_ST_LAST;
4475 goto fsm_start;
4476 }
4477
4478 /* Device should not ask for data transfer (DRQ=1)
4479 * when it finds something wrong.
4480 * We ignore DRQ here and stop the HSM by
4481 * changing hsm_task_state to HSM_ST_ERR and
4482 * let the EH abort the command or reset the device.
4483 */
4484 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4485 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4486 "device error, dev_stat 0x%X\n",
4487 status);
4488 qc->err_mask |= AC_ERR_HSM;
4489 ap->hsm_task_state = HSM_ST_ERR;
4490 goto fsm_start;
4491 }
4492
4493 atapi_pio_bytes(qc);
4494
4495 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4496 /* bad ireason reported by device */
4497 goto fsm_start;
4498
4499 } else {
4500 /* ATA PIO protocol */
4501 if (unlikely((status & ATA_DRQ) == 0)) {
4502 /* handle BSY=0, DRQ=0 as error */
4503 if (likely(status & (ATA_ERR | ATA_DF)))
4504 /* device stops HSM for abort/error */
4505 qc->err_mask |= AC_ERR_DEV;
4506 else
4507 /* HSM violation. Let EH handle this.
4508 * Phantom devices also trigger this
4509 * condition. Mark hint.
4510 */
4511 qc->err_mask |= AC_ERR_HSM |
4512 AC_ERR_NODEV_HINT;
4513
4514 ap->hsm_task_state = HSM_ST_ERR;
4515 goto fsm_start;
4516 }
4517
4518 /* For PIO reads, some devices may ask for
4519 * data transfer (DRQ=1) alone with ERR=1.
4520 * We respect DRQ here and transfer one
4521 * block of junk data before changing the
4522 * hsm_task_state to HSM_ST_ERR.
4523 *
4524 * For PIO writes, ERR=1 DRQ=1 doesn't make
4525 * sense since the data block has been
4526 * transferred to the device.
4527 */
4528 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4529 /* data might be corrputed */
4530 qc->err_mask |= AC_ERR_DEV;
4531
4532 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4533 ata_pio_sectors(qc);
4534 ata_altstatus(ap);
4535 status = ata_wait_idle(ap);
4536 }
4537
4538 if (status & (ATA_BUSY | ATA_DRQ))
4539 qc->err_mask |= AC_ERR_HSM;
4540
4541 /* ata_pio_sectors() might change the
4542 * state to HSM_ST_LAST. so, the state
4543 * is changed after ata_pio_sectors().
4544 */
4545 ap->hsm_task_state = HSM_ST_ERR;
4546 goto fsm_start;
4547 }
4548
4549 ata_pio_sectors(qc);
4550
4551 if (ap->hsm_task_state == HSM_ST_LAST &&
4552 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4553 /* all data read */
4554 ata_altstatus(ap);
4555 status = ata_wait_idle(ap);
4556 goto fsm_start;
4557 }
4558 }
4559
4560 ata_altstatus(ap); /* flush */
4561 poll_next = 1;
4562 break;
4563
4564 case HSM_ST_LAST:
4565 if (unlikely(!ata_ok(status))) {
4566 qc->err_mask |= __ac_err_mask(status);
4567 ap->hsm_task_state = HSM_ST_ERR;
4568 goto fsm_start;
4569 }
4570
4571 /* no more data to transfer */
4572 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4573 ap->print_id, qc->dev->devno, status);
4574
4575 WARN_ON(qc->err_mask);
4576
4577 ap->hsm_task_state = HSM_ST_IDLE;
4578
4579 /* complete taskfile transaction */
4580 ata_hsm_qc_complete(qc, in_wq);
4581
4582 poll_next = 0;
4583 break;
4584
4585 case HSM_ST_ERR:
4586 /* make sure qc->err_mask is available to
4587 * know what's wrong and recover
4588 */
4589 WARN_ON(qc->err_mask == 0);
4590
4591 ap->hsm_task_state = HSM_ST_IDLE;
4592
4593 /* complete taskfile transaction */
4594 ata_hsm_qc_complete(qc, in_wq);
4595
4596 poll_next = 0;
4597 break;
4598 default:
4599 poll_next = 0;
4600 BUG();
4601 }
4602
4603 return poll_next;
4604}
4605
4606static void ata_pio_task(struct work_struct *work)
4607{
4608 struct ata_port *ap =
4609 container_of(work, struct ata_port, port_task.work);
4610 struct ata_queued_cmd *qc = ap->port_task_data;
4611 u8 status;
4612 int poll_next;
4613
4614fsm_start:
4615 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4616
4617 /*
4618 * This is purely heuristic. This is a fast path.
4619 * Sometimes when we enter, BSY will be cleared in
4620 * a chk-status or two. If not, the drive is probably seeking
4621 * or something. Snooze for a couple msecs, then
4622 * chk-status again. If still busy, queue delayed work.
4623 */
4624 status = ata_busy_wait(ap, ATA_BUSY, 5);
4625 if (status & ATA_BUSY) {
4626 msleep(2);
4627 status = ata_busy_wait(ap, ATA_BUSY, 10);
4628 if (status & ATA_BUSY) {
4629 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4630 return;
4631 }
4632 }
4633
4634 /* move the HSM */
4635 poll_next = ata_hsm_move(ap, qc, status, 1);
4636
4637 /* another command or interrupt handler
4638 * may be running at this point.
4639 */
4640 if (poll_next)
4641 goto fsm_start;
4642}
4643
4644/**
4645 * ata_qc_new - Request an available ATA command, for queueing
4646 * @ap: Port associated with device @dev
4647 * @dev: Device from whom we request an available command structure
4648 *
4649 * LOCKING:
4650 * None.
4651 */
4652
4653static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4654{
4655 struct ata_queued_cmd *qc = NULL;
4656 unsigned int i;
4657
4658 /* no command while frozen */
4659 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4660 return NULL;
4661
4662 /* the last tag is reserved for internal command. */
4663 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4664 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4665 qc = __ata_qc_from_tag(ap, i);
4666 break;
4667 }
4668
4669 if (qc)
4670 qc->tag = i;
4671
4672 return qc;
4673}
4674
4675/**
4676 * ata_qc_new_init - Request an available ATA command, and initialize it
4677 * @dev: Device from whom we request an available command structure
4678 *
4679 * LOCKING:
4680 * None.
4681 */
4682
4683struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4684{
4685 struct ata_port *ap = dev->ap;
4686 struct ata_queued_cmd *qc;
4687
4688 qc = ata_qc_new(ap);
4689 if (qc) {
4690 qc->scsicmd = NULL;
4691 qc->ap = ap;
4692 qc->dev = dev;
4693
4694 ata_qc_reinit(qc);
4695 }
4696
4697 return qc;
4698}
4699
4700/**
4701 * ata_qc_free - free unused ata_queued_cmd
4702 * @qc: Command to complete
4703 *
4704 * Designed to free unused ata_queued_cmd object
4705 * in case something prevents using it.
4706 *
4707 * LOCKING:
4708 * spin_lock_irqsave(host lock)
4709 */
4710void ata_qc_free(struct ata_queued_cmd *qc)
4711{
4712 struct ata_port *ap = qc->ap;
4713 unsigned int tag;
4714
4715 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4716
4717 qc->flags = 0;
4718 tag = qc->tag;
4719 if (likely(ata_tag_valid(tag))) {
4720 qc->tag = ATA_TAG_POISON;
4721 clear_bit(tag, &ap->qc_allocated);
4722 }
4723}
4724
4725void __ata_qc_complete(struct ata_queued_cmd *qc)
4726{
4727 struct ata_port *ap = qc->ap;
4728
4729 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4730 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4731
4732 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4733 ata_sg_clean(qc);
4734
4735 /* command should be marked inactive atomically with qc completion */
4736 if (qc->tf.protocol == ATA_PROT_NCQ)
4737 ap->sactive &= ~(1 << qc->tag);
4738 else
4739 ap->active_tag = ATA_TAG_POISON;
4740
4741 /* atapi: mark qc as inactive to prevent the interrupt handler
4742 * from completing the command twice later, before the error handler
4743 * is called. (when rc != 0 and atapi request sense is needed)
4744 */
4745 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4746 ap->qc_active &= ~(1 << qc->tag);
4747
4748 /* call completion callback */
4749 qc->complete_fn(qc);
4750}
4751
4752static void fill_result_tf(struct ata_queued_cmd *qc)
4753{
4754 struct ata_port *ap = qc->ap;
4755
4756 qc->result_tf.flags = qc->tf.flags;
4757 ap->ops->tf_read(ap, &qc->result_tf);
4758}
4759
4760/**
4761 * ata_qc_complete - Complete an active ATA command
4762 * @qc: Command to complete
4763 * @err_mask: ATA Status register contents
4764 *
4765 * Indicate to the mid and upper layers that an ATA
4766 * command has completed, with either an ok or not-ok status.
4767 *
4768 * LOCKING:
4769 * spin_lock_irqsave(host lock)
4770 */
4771void ata_qc_complete(struct ata_queued_cmd *qc)
4772{
4773 struct ata_port *ap = qc->ap;
4774
4775 /* XXX: New EH and old EH use different mechanisms to
4776 * synchronize EH with regular execution path.
4777 *
4778 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4779 * Normal execution path is responsible for not accessing a
4780 * failed qc. libata core enforces the rule by returning NULL
4781 * from ata_qc_from_tag() for failed qcs.
4782 *
4783 * Old EH depends on ata_qc_complete() nullifying completion
4784 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4785 * not synchronize with interrupt handler. Only PIO task is
4786 * taken care of.
4787 */
4788 if (ap->ops->error_handler) {
4789 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4790
4791 if (unlikely(qc->err_mask))
4792 qc->flags |= ATA_QCFLAG_FAILED;
4793
4794 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4795 if (!ata_tag_internal(qc->tag)) {
4796 /* always fill result TF for failed qc */
4797 fill_result_tf(qc);
4798 ata_qc_schedule_eh(qc);
4799 return;
4800 }
4801 }
4802
4803 /* read result TF if requested */
4804 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4805 fill_result_tf(qc);
4806
4807 __ata_qc_complete(qc);
4808 } else {
4809 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4810 return;
4811
4812 /* read result TF if failed or requested */
4813 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4814 fill_result_tf(qc);
4815
4816 __ata_qc_complete(qc);
4817 }
4818}
4819
4820/**
4821 * ata_qc_complete_multiple - Complete multiple qcs successfully
4822 * @ap: port in question
4823 * @qc_active: new qc_active mask
4824 * @finish_qc: LLDD callback invoked before completing a qc
4825 *
4826 * Complete in-flight commands. This functions is meant to be
4827 * called from low-level driver's interrupt routine to complete
4828 * requests normally. ap->qc_active and @qc_active is compared
4829 * and commands are completed accordingly.
4830 *
4831 * LOCKING:
4832 * spin_lock_irqsave(host lock)
4833 *
4834 * RETURNS:
4835 * Number of completed commands on success, -errno otherwise.
4836 */
4837int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4838 void (*finish_qc)(struct ata_queued_cmd *))
4839{
4840 int nr_done = 0;
4841 u32 done_mask;
4842 int i;
4843
4844 done_mask = ap->qc_active ^ qc_active;
4845
4846 if (unlikely(done_mask & qc_active)) {
4847 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4848 "(%08x->%08x)\n", ap->qc_active, qc_active);
4849 return -EINVAL;
4850 }
4851
4852 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4853 struct ata_queued_cmd *qc;
4854
4855 if (!(done_mask & (1 << i)))
4856 continue;
4857
4858 if ((qc = ata_qc_from_tag(ap, i))) {
4859 if (finish_qc)
4860 finish_qc(qc);
4861 ata_qc_complete(qc);
4862 nr_done++;
4863 }
4864 }
4865
4866 return nr_done;
4867}
4868
4869static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4870{
4871 struct ata_port *ap = qc->ap;
4872
4873 switch (qc->tf.protocol) {
4874 case ATA_PROT_NCQ:
4875 case ATA_PROT_DMA:
4876 case ATA_PROT_ATAPI_DMA:
4877 return 1;
4878
4879 case ATA_PROT_ATAPI:
4880 case ATA_PROT_PIO:
4881 if (ap->flags & ATA_FLAG_PIO_DMA)
4882 return 1;
4883
4884 /* fall through */
4885
4886 default:
4887 return 0;
4888 }
4889
4890 /* never reached */
4891}
4892
4893/**
4894 * ata_qc_issue - issue taskfile to device
4895 * @qc: command to issue to device
4896 *
4897 * Prepare an ATA command to submission to device.
4898 * This includes mapping the data into a DMA-able
4899 * area, filling in the S/G table, and finally
4900 * writing the taskfile to hardware, starting the command.
4901 *
4902 * LOCKING:
4903 * spin_lock_irqsave(host lock)
4904 */
4905void ata_qc_issue(struct ata_queued_cmd *qc)
4906{
4907 struct ata_port *ap = qc->ap;
4908
4909 /* Make sure only one non-NCQ command is outstanding. The
4910 * check is skipped for old EH because it reuses active qc to
4911 * request ATAPI sense.
4912 */
4913 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4914
4915 if (qc->tf.protocol == ATA_PROT_NCQ) {
4916 WARN_ON(ap->sactive & (1 << qc->tag));
4917 ap->sactive |= 1 << qc->tag;
4918 } else {
4919 WARN_ON(ap->sactive);
4920 ap->active_tag = qc->tag;
4921 }
4922
4923 qc->flags |= ATA_QCFLAG_ACTIVE;
4924 ap->qc_active |= 1 << qc->tag;
4925
4926 if (ata_should_dma_map(qc)) {
4927 if (qc->flags & ATA_QCFLAG_SG) {
4928 if (ata_sg_setup(qc))
4929 goto sg_err;
4930 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4931 if (ata_sg_setup_one(qc))
4932 goto sg_err;
4933 }
4934 } else {
4935 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4936 }
4937
4938 ap->ops->qc_prep(qc);
4939
4940 qc->err_mask |= ap->ops->qc_issue(qc);
4941 if (unlikely(qc->err_mask))
4942 goto err;
4943 return;
4944
4945sg_err:
4946 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4947 qc->err_mask |= AC_ERR_SYSTEM;
4948err:
4949 ata_qc_complete(qc);
4950}
4951
4952/**
4953 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4954 * @qc: command to issue to device
4955 *
4956 * Using various libata functions and hooks, this function
4957 * starts an ATA command. ATA commands are grouped into
4958 * classes called "protocols", and issuing each type of protocol
4959 * is slightly different.
4960 *
4961 * May be used as the qc_issue() entry in ata_port_operations.
4962 *
4963 * LOCKING:
4964 * spin_lock_irqsave(host lock)
4965 *
4966 * RETURNS:
4967 * Zero on success, AC_ERR_* mask on failure
4968 */
4969
4970unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4971{
4972 struct ata_port *ap = qc->ap;
4973
4974 /* Use polling pio if the LLD doesn't handle
4975 * interrupt driven pio and atapi CDB interrupt.
4976 */
4977 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4978 switch (qc->tf.protocol) {
4979 case ATA_PROT_PIO:
4980 case ATA_PROT_NODATA:
4981 case ATA_PROT_ATAPI:
4982 case ATA_PROT_ATAPI_NODATA:
4983 qc->tf.flags |= ATA_TFLAG_POLLING;
4984 break;
4985 case ATA_PROT_ATAPI_DMA:
4986 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4987 /* see ata_dma_blacklisted() */
4988 BUG();
4989 break;
4990 default:
4991 break;
4992 }
4993 }
4994
4995 /* Some controllers show flaky interrupt behavior after
4996 * setting xfer mode. Use polling instead.
4997 */
4998 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4999 qc->tf.feature == SETFEATURES_XFER) &&
5000 (ap->flags & ATA_FLAG_SETXFER_POLLING))
5001 qc->tf.flags |= ATA_TFLAG_POLLING;
5002
5003 /* select the device */
5004 ata_dev_select(ap, qc->dev->devno, 1, 0);
5005
5006 /* start the command */
5007 switch (qc->tf.protocol) {
5008 case ATA_PROT_NODATA:
5009 if (qc->tf.flags & ATA_TFLAG_POLLING)
5010 ata_qc_set_polling(qc);
5011
5012 ata_tf_to_host(ap, &qc->tf);
5013 ap->hsm_task_state = HSM_ST_LAST;
5014
5015 if (qc->tf.flags & ATA_TFLAG_POLLING)
5016 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5017
5018 break;
5019
5020 case ATA_PROT_DMA:
5021 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5022
5023 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5024 ap->ops->bmdma_setup(qc); /* set up bmdma */
5025 ap->ops->bmdma_start(qc); /* initiate bmdma */
5026 ap->hsm_task_state = HSM_ST_LAST;
5027 break;
5028
5029 case ATA_PROT_PIO:
5030 if (qc->tf.flags & ATA_TFLAG_POLLING)
5031 ata_qc_set_polling(qc);
5032
5033 ata_tf_to_host(ap, &qc->tf);
5034
5035 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5036 /* PIO data out protocol */
5037 ap->hsm_task_state = HSM_ST_FIRST;
5038 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5039
5040 /* always send first data block using
5041 * the ata_pio_task() codepath.
5042 */
5043 } else {
5044 /* PIO data in protocol */
5045 ap->hsm_task_state = HSM_ST;
5046
5047 if (qc->tf.flags & ATA_TFLAG_POLLING)
5048 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5049
5050 /* if polling, ata_pio_task() handles the rest.
5051 * otherwise, interrupt handler takes over from here.
5052 */
5053 }
5054
5055 break;
5056
5057 case ATA_PROT_ATAPI:
5058 case ATA_PROT_ATAPI_NODATA:
5059 if (qc->tf.flags & ATA_TFLAG_POLLING)
5060 ata_qc_set_polling(qc);
5061
5062 ata_tf_to_host(ap, &qc->tf);
5063
5064 ap->hsm_task_state = HSM_ST_FIRST;
5065
5066 /* send cdb by polling if no cdb interrupt */
5067 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5068 (qc->tf.flags & ATA_TFLAG_POLLING))
5069 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5070 break;
5071
5072 case ATA_PROT_ATAPI_DMA:
5073 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5074
5075 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5076 ap->ops->bmdma_setup(qc); /* set up bmdma */
5077 ap->hsm_task_state = HSM_ST_FIRST;
5078
5079 /* send cdb by polling if no cdb interrupt */
5080 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5081 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5082 break;
5083
5084 default:
5085 WARN_ON(1);
5086 return AC_ERR_SYSTEM;
5087 }
5088
5089 return 0;
5090}
5091
5092/**
5093 * ata_host_intr - Handle host interrupt for given (port, task)
5094 * @ap: Port on which interrupt arrived (possibly...)
5095 * @qc: Taskfile currently active in engine
5096 *
5097 * Handle host interrupt for given queued command. Currently,
5098 * only DMA interrupts are handled. All other commands are
5099 * handled via polling with interrupts disabled (nIEN bit).
5100 *
5101 * LOCKING:
5102 * spin_lock_irqsave(host lock)
5103 *
5104 * RETURNS:
5105 * One if interrupt was handled, zero if not (shared irq).
5106 */
5107
5108inline unsigned int ata_host_intr (struct ata_port *ap,
5109 struct ata_queued_cmd *qc)
5110{
5111 struct ata_eh_info *ehi = &ap->eh_info;
5112 u8 status, host_stat = 0;
5113
5114 VPRINTK("ata%u: protocol %d task_state %d\n",
5115 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5116
5117 /* Check whether we are expecting interrupt in this state */
5118 switch (ap->hsm_task_state) {
5119 case HSM_ST_FIRST:
5120 /* Some pre-ATAPI-4 devices assert INTRQ
5121 * at this state when ready to receive CDB.
5122 */
5123
5124 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5125 * The flag was turned on only for atapi devices.
5126 * No need to check is_atapi_taskfile(&qc->tf) again.
5127 */
5128 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5129 goto idle_irq;
5130 break;
5131 case HSM_ST_LAST:
5132 if (qc->tf.protocol == ATA_PROT_DMA ||
5133 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5134 /* check status of DMA engine */
5135 host_stat = ap->ops->bmdma_status(ap);
5136 VPRINTK("ata%u: host_stat 0x%X\n",
5137 ap->print_id, host_stat);
5138
5139 /* if it's not our irq... */
5140 if (!(host_stat & ATA_DMA_INTR))
5141 goto idle_irq;
5142
5143 /* before we do anything else, clear DMA-Start bit */
5144 ap->ops->bmdma_stop(qc);
5145
5146 if (unlikely(host_stat & ATA_DMA_ERR)) {
5147 /* error when transfering data to/from memory */
5148 qc->err_mask |= AC_ERR_HOST_BUS;
5149 ap->hsm_task_state = HSM_ST_ERR;
5150 }
5151 }
5152 break;
5153 case HSM_ST:
5154 break;
5155 default:
5156 goto idle_irq;
5157 }
5158
5159 /* check altstatus */
5160 status = ata_altstatus(ap);
5161 if (status & ATA_BUSY)
5162 goto idle_irq;
5163
5164 /* check main status, clearing INTRQ */
5165 status = ata_chk_status(ap);
5166 if (unlikely(status & ATA_BUSY))
5167 goto idle_irq;
5168
5169 /* ack bmdma irq events */
5170 ap->ops->irq_clear(ap);
5171
5172 ata_hsm_move(ap, qc, status, 0);
5173
5174 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5175 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5176 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5177
5178 return 1; /* irq handled */
5179
5180idle_irq:
5181 ap->stats.idle_irq++;
5182
5183#ifdef ATA_IRQ_TRAP
5184 if ((ap->stats.idle_irq % 1000) == 0) {
5185 ap->ops->irq_ack(ap, 0); /* debug trap */
5186 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5187 return 1;
5188 }
5189#endif
5190 return 0; /* irq not handled */
5191}
5192
5193/**
5194 * ata_interrupt - Default ATA host interrupt handler
5195 * @irq: irq line (unused)
5196 * @dev_instance: pointer to our ata_host information structure
5197 *
5198 * Default interrupt handler for PCI IDE devices. Calls
5199 * ata_host_intr() for each port that is not disabled.
5200 *
5201 * LOCKING:
5202 * Obtains host lock during operation.
5203 *
5204 * RETURNS:
5205 * IRQ_NONE or IRQ_HANDLED.
5206 */
5207
5208irqreturn_t ata_interrupt (int irq, void *dev_instance)
5209{
5210 struct ata_host *host = dev_instance;
5211 unsigned int i;
5212 unsigned int handled = 0;
5213 unsigned long flags;
5214
5215 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5216 spin_lock_irqsave(&host->lock, flags);
5217
5218 for (i = 0; i < host->n_ports; i++) {
5219 struct ata_port *ap;
5220
5221 ap = host->ports[i];
5222 if (ap &&
5223 !(ap->flags & ATA_FLAG_DISABLED)) {
5224 struct ata_queued_cmd *qc;
5225
5226 qc = ata_qc_from_tag(ap, ap->active_tag);
5227 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5228 (qc->flags & ATA_QCFLAG_ACTIVE))
5229 handled |= ata_host_intr(ap, qc);
5230 }
5231 }
5232
5233 spin_unlock_irqrestore(&host->lock, flags);
5234
5235 return IRQ_RETVAL(handled);
5236}
5237
5238/**
5239 * sata_scr_valid - test whether SCRs are accessible
5240 * @ap: ATA port to test SCR accessibility for
5241 *
5242 * Test whether SCRs are accessible for @ap.
5243 *
5244 * LOCKING:
5245 * None.
5246 *
5247 * RETURNS:
5248 * 1 if SCRs are accessible, 0 otherwise.
5249 */
5250int sata_scr_valid(struct ata_port *ap)
5251{
5252 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5253}
5254
5255/**
5256 * sata_scr_read - read SCR register of the specified port
5257 * @ap: ATA port to read SCR for
5258 * @reg: SCR to read
5259 * @val: Place to store read value
5260 *
5261 * Read SCR register @reg of @ap into *@val. This function is
5262 * guaranteed to succeed if the cable type of the port is SATA
5263 * and the port implements ->scr_read.
5264 *
5265 * LOCKING:
5266 * None.
5267 *
5268 * RETURNS:
5269 * 0 on success, negative errno on failure.
5270 */
5271int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5272{
5273 if (sata_scr_valid(ap)) {
5274 *val = ap->ops->scr_read(ap, reg);
5275 return 0;
5276 }
5277 return -EOPNOTSUPP;
5278}
5279
5280/**
5281 * sata_scr_write - write SCR register of the specified port
5282 * @ap: ATA port to write SCR for
5283 * @reg: SCR to write
5284 * @val: value to write
5285 *
5286 * Write @val to SCR register @reg of @ap. This function is
5287 * guaranteed to succeed if the cable type of the port is SATA
5288 * and the port implements ->scr_read.
5289 *
5290 * LOCKING:
5291 * None.
5292 *
5293 * RETURNS:
5294 * 0 on success, negative errno on failure.
5295 */
5296int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5297{
5298 if (sata_scr_valid(ap)) {
5299 ap->ops->scr_write(ap, reg, val);
5300 return 0;
5301 }
5302 return -EOPNOTSUPP;
5303}
5304
5305/**
5306 * sata_scr_write_flush - write SCR register of the specified port and flush
5307 * @ap: ATA port to write SCR for
5308 * @reg: SCR to write
5309 * @val: value to write
5310 *
5311 * This function is identical to sata_scr_write() except that this
5312 * function performs flush after writing to the register.
5313 *
5314 * LOCKING:
5315 * None.
5316 *
5317 * RETURNS:
5318 * 0 on success, negative errno on failure.
5319 */
5320int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5321{
5322 if (sata_scr_valid(ap)) {
5323 ap->ops->scr_write(ap, reg, val);
5324 ap->ops->scr_read(ap, reg);
5325 return 0;
5326 }
5327 return -EOPNOTSUPP;
5328}
5329
5330/**
5331 * ata_port_online - test whether the given port is online
5332 * @ap: ATA port to test
5333 *
5334 * Test whether @ap is online. Note that this function returns 0
5335 * if online status of @ap cannot be obtained, so
5336 * ata_port_online(ap) != !ata_port_offline(ap).
5337 *
5338 * LOCKING:
5339 * None.
5340 *
5341 * RETURNS:
5342 * 1 if the port online status is available and online.
5343 */
5344int ata_port_online(struct ata_port *ap)
5345{
5346 u32 sstatus;
5347
5348 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5349 return 1;
5350 return 0;
5351}
5352
5353/**
5354 * ata_port_offline - test whether the given port is offline
5355 * @ap: ATA port to test
5356 *
5357 * Test whether @ap is offline. Note that this function returns
5358 * 0 if offline status of @ap cannot be obtained, so
5359 * ata_port_online(ap) != !ata_port_offline(ap).
5360 *
5361 * LOCKING:
5362 * None.
5363 *
5364 * RETURNS:
5365 * 1 if the port offline status is available and offline.
5366 */
5367int ata_port_offline(struct ata_port *ap)
5368{
5369 u32 sstatus;
5370
5371 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5372 return 1;
5373 return 0;
5374}
5375
5376int ata_flush_cache(struct ata_device *dev)
5377{
5378 unsigned int err_mask;
5379 u8 cmd;
5380
5381 if (!ata_try_flush_cache(dev))
5382 return 0;
5383
5384 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5385 cmd = ATA_CMD_FLUSH_EXT;
5386 else
5387 cmd = ATA_CMD_FLUSH;
5388
5389 err_mask = ata_do_simple_cmd(dev, cmd);
5390 if (err_mask) {
5391 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5392 return -EIO;
5393 }
5394
5395 return 0;
5396}
5397
5398#ifdef CONFIG_PM
5399static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5400 unsigned int action, unsigned int ehi_flags,
5401 int wait)
5402{
5403 unsigned long flags;
5404 int i, rc;
5405
5406 for (i = 0; i < host->n_ports; i++) {
5407 struct ata_port *ap = host->ports[i];
5408
5409 /* Previous resume operation might still be in
5410 * progress. Wait for PM_PENDING to clear.
5411 */
5412 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5413 ata_port_wait_eh(ap);
5414 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5415 }
5416
5417 /* request PM ops to EH */
5418 spin_lock_irqsave(ap->lock, flags);
5419
5420 ap->pm_mesg = mesg;
5421 if (wait) {
5422 rc = 0;
5423 ap->pm_result = &rc;
5424 }
5425
5426 ap->pflags |= ATA_PFLAG_PM_PENDING;
5427 ap->eh_info.action |= action;
5428 ap->eh_info.flags |= ehi_flags;
5429
5430 ata_port_schedule_eh(ap);
5431
5432 spin_unlock_irqrestore(ap->lock, flags);
5433
5434 /* wait and check result */
5435 if (wait) {
5436 ata_port_wait_eh(ap);
5437 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5438 if (rc)
5439 return rc;
5440 }
5441 }
5442
5443 return 0;
5444}
5445
5446/**
5447 * ata_host_suspend - suspend host
5448 * @host: host to suspend
5449 * @mesg: PM message
5450 *
5451 * Suspend @host. Actual operation is performed by EH. This
5452 * function requests EH to perform PM operations and waits for EH
5453 * to finish.
5454 *
5455 * LOCKING:
5456 * Kernel thread context (may sleep).
5457 *
5458 * RETURNS:
5459 * 0 on success, -errno on failure.
5460 */
5461int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5462{
5463 int i, j, rc;
5464
5465 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5466 if (rc)
5467 goto fail;
5468
5469 /* EH is quiescent now. Fail if we have any ready device.
5470 * This happens if hotplug occurs between completion of device
5471 * suspension and here.
5472 */
5473 for (i = 0; i < host->n_ports; i++) {
5474 struct ata_port *ap = host->ports[i];
5475
5476 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5477 struct ata_device *dev = &ap->device[j];
5478
5479 if (ata_dev_ready(dev)) {
5480 ata_port_printk(ap, KERN_WARNING,
5481 "suspend failed, device %d "
5482 "still active\n", dev->devno);
5483 rc = -EBUSY;
5484 goto fail;
5485 }
5486 }
5487 }
5488
5489 host->dev->power.power_state = mesg;
5490 return 0;
5491
5492 fail:
5493 ata_host_resume(host);
5494 return rc;
5495}
5496
5497/**
5498 * ata_host_resume - resume host
5499 * @host: host to resume
5500 *
5501 * Resume @host. Actual operation is performed by EH. This
5502 * function requests EH to perform PM operations and returns.
5503 * Note that all resume operations are performed parallely.
5504 *
5505 * LOCKING:
5506 * Kernel thread context (may sleep).
5507 */
5508void ata_host_resume(struct ata_host *host)
5509{
5510 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5511 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5512 host->dev->power.power_state = PMSG_ON;
5513}
5514#endif
5515
5516/**
5517 * ata_port_start - Set port up for dma.
5518 * @ap: Port to initialize
5519 *
5520 * Called just after data structures for each port are
5521 * initialized. Allocates space for PRD table.
5522 *
5523 * May be used as the port_start() entry in ata_port_operations.
5524 *
5525 * LOCKING:
5526 * Inherited from caller.
5527 */
5528int ata_port_start(struct ata_port *ap)
5529{
5530 struct device *dev = ap->dev;
5531 int rc;
5532
5533 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5534 GFP_KERNEL);
5535 if (!ap->prd)
5536 return -ENOMEM;
5537
5538 rc = ata_pad_alloc(ap, dev);
5539 if (rc)
5540 return rc;
5541
5542 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5543 (unsigned long long)ap->prd_dma);
5544 return 0;
5545}
5546
5547/**
5548 * ata_dev_init - Initialize an ata_device structure
5549 * @dev: Device structure to initialize
5550 *
5551 * Initialize @dev in preparation for probing.
5552 *
5553 * LOCKING:
5554 * Inherited from caller.
5555 */
5556void ata_dev_init(struct ata_device *dev)
5557{
5558 struct ata_port *ap = dev->ap;
5559 unsigned long flags;
5560
5561 /* SATA spd limit is bound to the first device */
5562 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5563
5564 /* High bits of dev->flags are used to record warm plug
5565 * requests which occur asynchronously. Synchronize using
5566 * host lock.
5567 */
5568 spin_lock_irqsave(ap->lock, flags);
5569 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5570 spin_unlock_irqrestore(ap->lock, flags);
5571
5572 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5573 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5574 dev->pio_mask = UINT_MAX;
5575 dev->mwdma_mask = UINT_MAX;
5576 dev->udma_mask = UINT_MAX;
5577}
5578
5579/**
5580 * ata_port_init - Initialize an ata_port structure
5581 * @ap: Structure to initialize
5582 * @host: Collection of hosts to which @ap belongs
5583 * @ent: Probe information provided by low-level driver
5584 * @port_no: Port number associated with this ata_port
5585 *
5586 * Initialize a new ata_port structure.
5587 *
5588 * LOCKING:
5589 * Inherited from caller.
5590 */
5591void ata_port_init(struct ata_port *ap, struct ata_host *host,
5592 const struct ata_probe_ent *ent, unsigned int port_no)
5593{
5594 unsigned int i;
5595
5596 ap->lock = &host->lock;
5597 ap->flags = ATA_FLAG_DISABLED;
5598 ap->print_id = ata_print_id++;
5599 ap->ctl = ATA_DEVCTL_OBS;
5600 ap->host = host;
5601 ap->dev = ent->dev;
5602 ap->port_no = port_no;
5603 if (port_no == 1 && ent->pinfo2) {
5604 ap->pio_mask = ent->pinfo2->pio_mask;
5605 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5606 ap->udma_mask = ent->pinfo2->udma_mask;
5607 ap->flags |= ent->pinfo2->flags;
5608 ap->ops = ent->pinfo2->port_ops;
5609 } else {
5610 ap->pio_mask = ent->pio_mask;
5611 ap->mwdma_mask = ent->mwdma_mask;
5612 ap->udma_mask = ent->udma_mask;
5613 ap->flags |= ent->port_flags;
5614 ap->ops = ent->port_ops;
5615 }
5616 ap->hw_sata_spd_limit = UINT_MAX;
5617 ap->active_tag = ATA_TAG_POISON;
5618 ap->last_ctl = 0xFF;
5619
5620#if defined(ATA_VERBOSE_DEBUG)
5621 /* turn on all debugging levels */
5622 ap->msg_enable = 0x00FF;
5623#elif defined(ATA_DEBUG)
5624 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5625#else
5626 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5627#endif
5628
5629 INIT_DELAYED_WORK(&ap->port_task, NULL);
5630 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5631 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5632 INIT_LIST_HEAD(&ap->eh_done_q);
5633 init_waitqueue_head(&ap->eh_wait_q);
5634
5635 /* set cable type */
5636 ap->cbl = ATA_CBL_NONE;
5637 if (ap->flags & ATA_FLAG_SATA)
5638 ap->cbl = ATA_CBL_SATA;
5639
5640 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5641 struct ata_device *dev = &ap->device[i];
5642 dev->ap = ap;
5643 dev->devno = i;
5644 ata_dev_init(dev);
5645 }
5646
5647#ifdef ATA_IRQ_TRAP
5648 ap->stats.unhandled_irq = 1;
5649 ap->stats.idle_irq = 1;
5650#endif
5651
5652 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5653}
5654
5655/**
5656 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5657 * @ap: ATA port to initialize SCSI host for
5658 * @shost: SCSI host associated with @ap
5659 *
5660 * Initialize SCSI host @shost associated with ATA port @ap.
5661 *
5662 * LOCKING:
5663 * Inherited from caller.
5664 */
5665static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5666{
5667 ap->scsi_host = shost;
5668
5669 shost->unique_id = ap->print_id;
5670 shost->max_id = 16;
5671 shost->max_lun = 1;
5672 shost->max_channel = 1;
5673 shost->max_cmd_len = 12;
5674}
5675
5676/**
5677 * ata_port_add - Attach low-level ATA driver to system
5678 * @ent: Information provided by low-level driver
5679 * @host: Collections of ports to which we add
5680 * @port_no: Port number associated with this host
5681 *
5682 * Attach low-level ATA driver to system.
5683 *
5684 * LOCKING:
5685 * PCI/etc. bus probe sem.
5686 *
5687 * RETURNS:
5688 * New ata_port on success, for NULL on error.
5689 */
5690static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5691 struct ata_host *host,
5692 unsigned int port_no)
5693{
5694 struct Scsi_Host *shost;
5695 struct ata_port *ap;
5696
5697 DPRINTK("ENTER\n");
5698
5699 if (!ent->port_ops->error_handler &&
5700 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5701 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5702 port_no);
5703 return NULL;
5704 }
5705
5706 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5707 if (!shost)
5708 return NULL;
5709
5710 shost->transportt = &ata_scsi_transport_template;
5711
5712 ap = ata_shost_to_port(shost);
5713
5714 ata_port_init(ap, host, ent, port_no);
5715 ata_port_init_shost(ap, shost);
5716
5717 return ap;
5718}
5719
5720static void ata_host_release(struct device *gendev, void *res)
5721{
5722 struct ata_host *host = dev_get_drvdata(gendev);
5723 int i;
5724
5725 for (i = 0; i < host->n_ports; i++) {
5726 struct ata_port *ap = host->ports[i];
5727
5728 if (ap && ap->ops->port_stop)
5729 ap->ops->port_stop(ap);
5730 }
5731
5732 if (host->ops->host_stop)
5733 host->ops->host_stop(host);
5734
5735 for (i = 0; i < host->n_ports; i++) {
5736 struct ata_port *ap = host->ports[i];
5737
5738 if (ap)
5739 scsi_host_put(ap->scsi_host);
5740
5741 host->ports[i] = NULL;
5742 }
5743
5744 dev_set_drvdata(gendev, NULL);
5745}
5746
5747/**
5748 * ata_sas_host_init - Initialize a host struct
5749 * @host: host to initialize
5750 * @dev: device host is attached to
5751 * @flags: host flags
5752 * @ops: port_ops
5753 *
5754 * LOCKING:
5755 * PCI/etc. bus probe sem.
5756 *
5757 */
5758
5759void ata_host_init(struct ata_host *host, struct device *dev,
5760 unsigned long flags, const struct ata_port_operations *ops)
5761{
5762 spin_lock_init(&host->lock);
5763 host->dev = dev;
5764 host->flags = flags;
5765 host->ops = ops;
5766}
5767
5768/**
5769 * ata_device_add - Register hardware device with ATA and SCSI layers
5770 * @ent: Probe information describing hardware device to be registered
5771 *
5772 * This function processes the information provided in the probe
5773 * information struct @ent, allocates the necessary ATA and SCSI
5774 * host information structures, initializes them, and registers
5775 * everything with requisite kernel subsystems.
5776 *
5777 * This function requests irqs, probes the ATA bus, and probes
5778 * the SCSI bus.
5779 *
5780 * LOCKING:
5781 * PCI/etc. bus probe sem.
5782 *
5783 * RETURNS:
5784 * Number of ports registered. Zero on error (no ports registered).
5785 */
5786int ata_device_add(const struct ata_probe_ent *ent)
5787{
5788 unsigned int i;
5789 struct device *dev = ent->dev;
5790 struct ata_host *host;
5791 int rc;
5792
5793 DPRINTK("ENTER\n");
5794
5795 if (ent->irq == 0) {
5796 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5797 return 0;
5798 }
5799
5800 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5801 return 0;
5802
5803 /* alloc a container for our list of ATA ports (buses) */
5804 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5805 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5806 if (!host)
5807 goto err_out;
5808 devres_add(dev, host);
5809 dev_set_drvdata(dev, host);
5810
5811 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5812 host->n_ports = ent->n_ports;
5813 host->irq = ent->irq;
5814 host->irq2 = ent->irq2;
5815 host->iomap = ent->iomap;
5816 host->private_data = ent->private_data;
5817
5818 /* register each port bound to this device */
5819 for (i = 0; i < host->n_ports; i++) {
5820 struct ata_port *ap;
5821 unsigned long xfer_mode_mask;
5822 int irq_line = ent->irq;
5823
5824 ap = ata_port_add(ent, host, i);
5825 host->ports[i] = ap;
5826 if (!ap)
5827 goto err_out;
5828
5829 /* dummy? */
5830 if (ent->dummy_port_mask & (1 << i)) {
5831 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5832 ap->ops = &ata_dummy_port_ops;
5833 continue;
5834 }
5835
5836 /* start port */
5837 rc = ap->ops->port_start(ap);
5838 if (rc) {
5839 host->ports[i] = NULL;
5840 scsi_host_put(ap->scsi_host);
5841 goto err_out;
5842 }
5843
5844 /* Report the secondary IRQ for second channel legacy */
5845 if (i == 1 && ent->irq2)
5846 irq_line = ent->irq2;
5847
5848 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5849 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5850 (ap->pio_mask << ATA_SHIFT_PIO);
5851
5852 /* print per-port info to dmesg */
5853 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5854 "ctl 0x%p bmdma 0x%p irq %d\n",
5855 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5856 ata_mode_string(xfer_mode_mask),
5857 ap->ioaddr.cmd_addr,
5858 ap->ioaddr.ctl_addr,
5859 ap->ioaddr.bmdma_addr,
5860 irq_line);
5861
5862 /* freeze port before requesting IRQ */
5863 ata_eh_freeze_port(ap);
5864 }
5865
5866 /* obtain irq, that may be shared between channels */
5867 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5868 ent->irq_flags, DRV_NAME, host);
5869 if (rc) {
5870 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5871 ent->irq, rc);
5872 goto err_out;
5873 }
5874
5875 /* do we have a second IRQ for the other channel, eg legacy mode */
5876 if (ent->irq2) {
5877 /* We will get weird core code crashes later if this is true
5878 so trap it now */
5879 BUG_ON(ent->irq == ent->irq2);
5880
5881 rc = devm_request_irq(dev, ent->irq2,
5882 ent->port_ops->irq_handler, ent->irq_flags,
5883 DRV_NAME, host);
5884 if (rc) {
5885 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5886 ent->irq2, rc);
5887 goto err_out;
5888 }
5889 }
5890
5891 /* resource acquisition complete */
5892 devres_remove_group(dev, ata_device_add);
5893
5894 /* perform each probe synchronously */
5895 DPRINTK("probe begin\n");
5896 for (i = 0; i < host->n_ports; i++) {
5897 struct ata_port *ap = host->ports[i];
5898 u32 scontrol;
5899 int rc;
5900
5901 /* init sata_spd_limit to the current value */
5902 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5903 int spd = (scontrol >> 4) & 0xf;
5904 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5905 }
5906 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5907
5908 rc = scsi_add_host(ap->scsi_host, dev);
5909 if (rc) {
5910 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5911 /* FIXME: do something useful here */
5912 /* FIXME: handle unconditional calls to
5913 * scsi_scan_host and ata_host_remove, below,
5914 * at the very least
5915 */
5916 }
5917
5918 if (ap->ops->error_handler) {
5919 struct ata_eh_info *ehi = &ap->eh_info;
5920 unsigned long flags;
5921
5922 ata_port_probe(ap);
5923
5924 /* kick EH for boot probing */
5925 spin_lock_irqsave(ap->lock, flags);
5926
5927 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5928 ehi->action |= ATA_EH_SOFTRESET;
5929 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5930
5931 ap->pflags |= ATA_PFLAG_LOADING;
5932 ata_port_schedule_eh(ap);
5933
5934 spin_unlock_irqrestore(ap->lock, flags);
5935
5936 /* wait for EH to finish */
5937 ata_port_wait_eh(ap);
5938 } else {
5939 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5940 rc = ata_bus_probe(ap);
5941 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5942
5943 if (rc) {
5944 /* FIXME: do something useful here?
5945 * Current libata behavior will
5946 * tear down everything when
5947 * the module is removed
5948 * or the h/w is unplugged.
5949 */
5950 }
5951 }
5952 }
5953
5954 /* probes are done, now scan each port's disk(s) */
5955 DPRINTK("host probe begin\n");
5956 for (i = 0; i < host->n_ports; i++) {
5957 struct ata_port *ap = host->ports[i];
5958
5959 ata_scsi_scan_host(ap);
5960 }
5961
5962 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5963 return ent->n_ports; /* success */
5964
5965 err_out:
5966 devres_release_group(dev, ata_device_add);
5967 VPRINTK("EXIT, returning %d\n", rc);
5968 return 0;
5969}
5970
5971/**
5972 * ata_port_detach - Detach ATA port in prepration of device removal
5973 * @ap: ATA port to be detached
5974 *
5975 * Detach all ATA devices and the associated SCSI devices of @ap;
5976 * then, remove the associated SCSI host. @ap is guaranteed to
5977 * be quiescent on return from this function.
5978 *
5979 * LOCKING:
5980 * Kernel thread context (may sleep).
5981 */
5982void ata_port_detach(struct ata_port *ap)
5983{
5984 unsigned long flags;
5985 int i;
5986
5987 if (!ap->ops->error_handler)
5988 goto skip_eh;
5989
5990 /* tell EH we're leaving & flush EH */
5991 spin_lock_irqsave(ap->lock, flags);
5992 ap->pflags |= ATA_PFLAG_UNLOADING;
5993 spin_unlock_irqrestore(ap->lock, flags);
5994
5995 ata_port_wait_eh(ap);
5996
5997 /* EH is now guaranteed to see UNLOADING, so no new device
5998 * will be attached. Disable all existing devices.
5999 */
6000 spin_lock_irqsave(ap->lock, flags);
6001
6002 for (i = 0; i < ATA_MAX_DEVICES; i++)
6003 ata_dev_disable(&ap->device[i]);
6004
6005 spin_unlock_irqrestore(ap->lock, flags);
6006
6007 /* Final freeze & EH. All in-flight commands are aborted. EH
6008 * will be skipped and retrials will be terminated with bad
6009 * target.
6010 */
6011 spin_lock_irqsave(ap->lock, flags);
6012 ata_port_freeze(ap); /* won't be thawed */
6013 spin_unlock_irqrestore(ap->lock, flags);
6014
6015 ata_port_wait_eh(ap);
6016
6017 /* Flush hotplug task. The sequence is similar to
6018 * ata_port_flush_task().
6019 */
6020 flush_workqueue(ata_aux_wq);
6021 cancel_delayed_work(&ap->hotplug_task);
6022 flush_workqueue(ata_aux_wq);
6023
6024 skip_eh:
6025 /* remove the associated SCSI host */
6026 scsi_remove_host(ap->scsi_host);
6027}
6028
6029/**
6030 * ata_host_detach - Detach all ports of an ATA host
6031 * @host: Host to detach
6032 *
6033 * Detach all ports of @host.
6034 *
6035 * LOCKING:
6036 * Kernel thread context (may sleep).
6037 */
6038void ata_host_detach(struct ata_host *host)
6039{
6040 int i;
6041
6042 for (i = 0; i < host->n_ports; i++)
6043 ata_port_detach(host->ports[i]);
6044}
6045
6046struct ata_probe_ent *
6047ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6048{
6049 struct ata_probe_ent *probe_ent;
6050
6051 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
6052 if (!probe_ent) {
6053 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6054 kobject_name(&(dev->kobj)));
6055 return NULL;
6056 }
6057
6058 INIT_LIST_HEAD(&probe_ent->node);
6059 probe_ent->dev = dev;
6060
6061 probe_ent->sht = port->sht;
6062 probe_ent->port_flags = port->flags;
6063 probe_ent->pio_mask = port->pio_mask;
6064 probe_ent->mwdma_mask = port->mwdma_mask;
6065 probe_ent->udma_mask = port->udma_mask;
6066 probe_ent->port_ops = port->port_ops;
6067 probe_ent->private_data = port->private_data;
6068
6069 return probe_ent;
6070}
6071
6072/**
6073 * ata_std_ports - initialize ioaddr with standard port offsets.
6074 * @ioaddr: IO address structure to be initialized
6075 *
6076 * Utility function which initializes data_addr, error_addr,
6077 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6078 * device_addr, status_addr, and command_addr to standard offsets
6079 * relative to cmd_addr.
6080 *
6081 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6082 */
6083
6084void ata_std_ports(struct ata_ioports *ioaddr)
6085{
6086 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6087 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6088 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6089 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6090 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6091 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6092 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6093 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6094 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6095 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6096}
6097
6098
6099#ifdef CONFIG_PCI
6100
6101/**
6102 * ata_pci_remove_one - PCI layer callback for device removal
6103 * @pdev: PCI device that was removed
6104 *
6105 * PCI layer indicates to libata via this hook that hot-unplug or
6106 * module unload event has occurred. Detach all ports. Resource
6107 * release is handled via devres.
6108 *
6109 * LOCKING:
6110 * Inherited from PCI layer (may sleep).
6111 */
6112void ata_pci_remove_one(struct pci_dev *pdev)
6113{
6114 struct device *dev = pci_dev_to_dev(pdev);
6115 struct ata_host *host = dev_get_drvdata(dev);
6116
6117 ata_host_detach(host);
6118}
6119
6120/* move to PCI subsystem */
6121int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6122{
6123 unsigned long tmp = 0;
6124
6125 switch (bits->width) {
6126 case 1: {
6127 u8 tmp8 = 0;
6128 pci_read_config_byte(pdev, bits->reg, &tmp8);
6129 tmp = tmp8;
6130 break;
6131 }
6132 case 2: {
6133 u16 tmp16 = 0;
6134 pci_read_config_word(pdev, bits->reg, &tmp16);
6135 tmp = tmp16;
6136 break;
6137 }
6138 case 4: {
6139 u32 tmp32 = 0;
6140 pci_read_config_dword(pdev, bits->reg, &tmp32);
6141 tmp = tmp32;
6142 break;
6143 }
6144
6145 default:
6146 return -EINVAL;
6147 }
6148
6149 tmp &= bits->mask;
6150
6151 return (tmp == bits->val) ? 1 : 0;
6152}
6153
6154#ifdef CONFIG_PM
6155void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6156{
6157 pci_save_state(pdev);
6158 pci_disable_device(pdev);
6159
6160 if (mesg.event == PM_EVENT_SUSPEND)
6161 pci_set_power_state(pdev, PCI_D3hot);
6162}
6163
6164int ata_pci_device_do_resume(struct pci_dev *pdev)
6165{
6166 int rc;
6167
6168 pci_set_power_state(pdev, PCI_D0);
6169 pci_restore_state(pdev);
6170
6171 rc = pcim_enable_device(pdev);
6172 if (rc) {
6173 dev_printk(KERN_ERR, &pdev->dev,
6174 "failed to enable device after resume (%d)\n", rc);
6175 return rc;
6176 }
6177
6178 pci_set_master(pdev);
6179 return 0;
6180}
6181
6182int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6183{
6184 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6185 int rc = 0;
6186
6187 rc = ata_host_suspend(host, mesg);
6188 if (rc)
6189 return rc;
6190
6191 ata_pci_device_do_suspend(pdev, mesg);
6192
6193 return 0;
6194}
6195
6196int ata_pci_device_resume(struct pci_dev *pdev)
6197{
6198 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6199 int rc;
6200
6201 rc = ata_pci_device_do_resume(pdev);
6202 if (rc == 0)
6203 ata_host_resume(host);
6204 return rc;
6205}
6206#endif /* CONFIG_PM */
6207
6208#endif /* CONFIG_PCI */
6209
6210
6211static int __init ata_init(void)
6212{
6213 ata_probe_timeout *= HZ;
6214 ata_wq = create_workqueue("ata");
6215 if (!ata_wq)
6216 return -ENOMEM;
6217
6218 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6219 if (!ata_aux_wq) {
6220 destroy_workqueue(ata_wq);
6221 return -ENOMEM;
6222 }
6223
6224 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6225 return 0;
6226}
6227
6228static void __exit ata_exit(void)
6229{
6230 destroy_workqueue(ata_wq);
6231 destroy_workqueue(ata_aux_wq);
6232}
6233
6234subsys_initcall(ata_init);
6235module_exit(ata_exit);
6236
6237static unsigned long ratelimit_time;
6238static DEFINE_SPINLOCK(ata_ratelimit_lock);
6239
6240int ata_ratelimit(void)
6241{
6242 int rc;
6243 unsigned long flags;
6244
6245 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6246
6247 if (time_after(jiffies, ratelimit_time)) {
6248 rc = 1;
6249 ratelimit_time = jiffies + (HZ/5);
6250 } else
6251 rc = 0;
6252
6253 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6254
6255 return rc;
6256}
6257
6258/**
6259 * ata_wait_register - wait until register value changes
6260 * @reg: IO-mapped register
6261 * @mask: Mask to apply to read register value
6262 * @val: Wait condition
6263 * @interval_msec: polling interval in milliseconds
6264 * @timeout_msec: timeout in milliseconds
6265 *
6266 * Waiting for some bits of register to change is a common
6267 * operation for ATA controllers. This function reads 32bit LE
6268 * IO-mapped register @reg and tests for the following condition.
6269 *
6270 * (*@reg & mask) != val
6271 *
6272 * If the condition is met, it returns; otherwise, the process is
6273 * repeated after @interval_msec until timeout.
6274 *
6275 * LOCKING:
6276 * Kernel thread context (may sleep)
6277 *
6278 * RETURNS:
6279 * The final register value.
6280 */
6281u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6282 unsigned long interval_msec,
6283 unsigned long timeout_msec)
6284{
6285 unsigned long timeout;
6286 u32 tmp;
6287
6288 tmp = ioread32(reg);
6289
6290 /* Calculate timeout _after_ the first read to make sure
6291 * preceding writes reach the controller before starting to
6292 * eat away the timeout.
6293 */
6294 timeout = jiffies + (timeout_msec * HZ) / 1000;
6295
6296 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6297 msleep(interval_msec);
6298 tmp = ioread32(reg);
6299 }
6300
6301 return tmp;
6302}
6303
6304/*
6305 * Dummy port_ops
6306 */
6307static void ata_dummy_noret(struct ata_port *ap) { }
6308static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6309static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6310
6311static u8 ata_dummy_check_status(struct ata_port *ap)
6312{
6313 return ATA_DRDY;
6314}
6315
6316static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6317{
6318 return AC_ERR_SYSTEM;
6319}
6320
6321const struct ata_port_operations ata_dummy_port_ops = {
6322 .port_disable = ata_port_disable,
6323 .check_status = ata_dummy_check_status,
6324 .check_altstatus = ata_dummy_check_status,
6325 .dev_select = ata_noop_dev_select,
6326 .qc_prep = ata_noop_qc_prep,
6327 .qc_issue = ata_dummy_qc_issue,
6328 .freeze = ata_dummy_noret,
6329 .thaw = ata_dummy_noret,
6330 .error_handler = ata_dummy_noret,
6331 .post_internal_cmd = ata_dummy_qc_noret,
6332 .irq_clear = ata_dummy_noret,
6333 .port_start = ata_dummy_ret0,
6334 .port_stop = ata_dummy_noret,
6335};
6336
6337/*
6338 * libata is essentially a library of internal helper functions for
6339 * low-level ATA host controller drivers. As such, the API/ABI is
6340 * likely to change as new drivers are added and updated.
6341 * Do not depend on ABI/API stability.
6342 */
6343
6344EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6345EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6346EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6347EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6348EXPORT_SYMBOL_GPL(ata_std_bios_param);
6349EXPORT_SYMBOL_GPL(ata_std_ports);
6350EXPORT_SYMBOL_GPL(ata_host_init);
6351EXPORT_SYMBOL_GPL(ata_device_add);
6352EXPORT_SYMBOL_GPL(ata_host_detach);
6353EXPORT_SYMBOL_GPL(ata_sg_init);
6354EXPORT_SYMBOL_GPL(ata_sg_init_one);
6355EXPORT_SYMBOL_GPL(ata_hsm_move);
6356EXPORT_SYMBOL_GPL(ata_qc_complete);
6357EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6358EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6359EXPORT_SYMBOL_GPL(ata_tf_load);
6360EXPORT_SYMBOL_GPL(ata_tf_read);
6361EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6362EXPORT_SYMBOL_GPL(ata_std_dev_select);
6363EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6364EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6365EXPORT_SYMBOL_GPL(ata_check_status);
6366EXPORT_SYMBOL_GPL(ata_altstatus);
6367EXPORT_SYMBOL_GPL(ata_exec_command);
6368EXPORT_SYMBOL_GPL(ata_port_start);
6369EXPORT_SYMBOL_GPL(ata_interrupt);
6370EXPORT_SYMBOL_GPL(ata_data_xfer);
6371EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6372EXPORT_SYMBOL_GPL(ata_qc_prep);
6373EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6374EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6375EXPORT_SYMBOL_GPL(ata_bmdma_start);
6376EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6377EXPORT_SYMBOL_GPL(ata_bmdma_status);
6378EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6379EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6380EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6381EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6382EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6383EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6384EXPORT_SYMBOL_GPL(ata_port_probe);
6385EXPORT_SYMBOL_GPL(ata_dev_disable);
6386EXPORT_SYMBOL_GPL(sata_set_spd);
6387EXPORT_SYMBOL_GPL(sata_phy_debounce);
6388EXPORT_SYMBOL_GPL(sata_phy_resume);
6389EXPORT_SYMBOL_GPL(sata_phy_reset);
6390EXPORT_SYMBOL_GPL(__sata_phy_reset);
6391EXPORT_SYMBOL_GPL(ata_bus_reset);
6392EXPORT_SYMBOL_GPL(ata_std_prereset);
6393EXPORT_SYMBOL_GPL(ata_std_softreset);
6394EXPORT_SYMBOL_GPL(sata_port_hardreset);
6395EXPORT_SYMBOL_GPL(sata_std_hardreset);
6396EXPORT_SYMBOL_GPL(ata_std_postreset);
6397EXPORT_SYMBOL_GPL(ata_dev_classify);
6398EXPORT_SYMBOL_GPL(ata_dev_pair);
6399EXPORT_SYMBOL_GPL(ata_port_disable);
6400EXPORT_SYMBOL_GPL(ata_ratelimit);
6401EXPORT_SYMBOL_GPL(ata_wait_register);
6402EXPORT_SYMBOL_GPL(ata_busy_sleep);
6403EXPORT_SYMBOL_GPL(ata_port_queue_task);
6404EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6405EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6406EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6407EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6408EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6409EXPORT_SYMBOL_GPL(ata_host_intr);
6410EXPORT_SYMBOL_GPL(sata_scr_valid);
6411EXPORT_SYMBOL_GPL(sata_scr_read);
6412EXPORT_SYMBOL_GPL(sata_scr_write);
6413EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6414EXPORT_SYMBOL_GPL(ata_port_online);
6415EXPORT_SYMBOL_GPL(ata_port_offline);
6416#ifdef CONFIG_PM
6417EXPORT_SYMBOL_GPL(ata_host_suspend);
6418EXPORT_SYMBOL_GPL(ata_host_resume);
6419#endif /* CONFIG_PM */
6420EXPORT_SYMBOL_GPL(ata_id_string);
6421EXPORT_SYMBOL_GPL(ata_id_c_string);
6422EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6423EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6424EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6425
6426EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6427EXPORT_SYMBOL_GPL(ata_timing_compute);
6428EXPORT_SYMBOL_GPL(ata_timing_merge);
6429
6430#ifdef CONFIG_PCI
6431EXPORT_SYMBOL_GPL(pci_test_config_bits);
6432EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6433EXPORT_SYMBOL_GPL(ata_pci_init_one);
6434EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6435#ifdef CONFIG_PM
6436EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6437EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6438EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6439EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6440#endif /* CONFIG_PM */
6441EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6442EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6443#endif /* CONFIG_PCI */
6444
6445#ifdef CONFIG_PM
6446EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6447EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6448#endif /* CONFIG_PM */
6449
6450EXPORT_SYMBOL_GPL(ata_eng_timeout);
6451EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6452EXPORT_SYMBOL_GPL(ata_port_abort);
6453EXPORT_SYMBOL_GPL(ata_port_freeze);
6454EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6455EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6456EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6457EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6458EXPORT_SYMBOL_GPL(ata_do_eh);
6459EXPORT_SYMBOL_GPL(ata_irq_on);
6460EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6461EXPORT_SYMBOL_GPL(ata_irq_ack);
6462EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6463EXPORT_SYMBOL_GPL(ata_dev_try_classify);