]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame_incremental - drivers/char/tty_io.c
tty: kref the tty driver object
[mirror_ubuntu-eoan-kernel.git] / drivers / char / tty_io.c
... / ...
CommitLineData
1/*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69#include <linux/types.h>
70#include <linux/major.h>
71#include <linux/errno.h>
72#include <linux/signal.h>
73#include <linux/fcntl.h>
74#include <linux/sched.h>
75#include <linux/interrupt.h>
76#include <linux/tty.h>
77#include <linux/tty_driver.h>
78#include <linux/tty_flip.h>
79#include <linux/devpts_fs.h>
80#include <linux/file.h>
81#include <linux/fdtable.h>
82#include <linux/console.h>
83#include <linux/timer.h>
84#include <linux/ctype.h>
85#include <linux/kd.h>
86#include <linux/mm.h>
87#include <linux/string.h>
88#include <linux/slab.h>
89#include <linux/poll.h>
90#include <linux/proc_fs.h>
91#include <linux/init.h>
92#include <linux/module.h>
93#include <linux/smp_lock.h>
94#include <linux/device.h>
95#include <linux/wait.h>
96#include <linux/bitops.h>
97#include <linux/delay.h>
98#include <linux/seq_file.h>
99
100#include <linux/uaccess.h>
101#include <asm/system.h>
102
103#include <linux/kbd_kern.h>
104#include <linux/vt_kern.h>
105#include <linux/selection.h>
106
107#include <linux/kmod.h>
108#include <linux/nsproxy.h>
109
110#undef TTY_DEBUG_HANGUP
111
112#define TTY_PARANOIA_CHECK 1
113#define CHECK_TTY_COUNT 1
114
115struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124};
125
126EXPORT_SYMBOL(tty_std_termios);
127
128/* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134/* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136DEFINE_MUTEX(tty_mutex);
137EXPORT_SYMBOL(tty_mutex);
138
139static void initialize_tty_struct(struct tty_struct *tty);
140
141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143ssize_t redirected_tty_write(struct file *, const char __user *,
144 size_t, loff_t *);
145static unsigned int tty_poll(struct file *, poll_table *);
146static int tty_open(struct inode *, struct file *);
147static int tty_release(struct inode *, struct file *);
148long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
149#ifdef CONFIG_COMPAT
150static long tty_compat_ioctl(struct file *file, unsigned int cmd,
151 unsigned long arg);
152#else
153#define tty_compat_ioctl NULL
154#endif
155static int tty_fasync(int fd, struct file *filp, int on);
156static void release_tty(struct tty_struct *tty, int idx);
157static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160/**
161 * alloc_tty_struct - allocate a tty object
162 *
163 * Return a new empty tty structure. The data fields have not
164 * been initialized in any way but has been zeroed
165 *
166 * Locking: none
167 */
168
169static struct tty_struct *alloc_tty_struct(void)
170{
171 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172}
173
174/**
175 * free_tty_struct - free a disused tty
176 * @tty: tty struct to free
177 *
178 * Free the write buffers, tty queue and tty memory itself.
179 *
180 * Locking: none. Must be called after tty is definitely unused
181 */
182
183static inline void free_tty_struct(struct tty_struct *tty)
184{
185 kfree(tty->write_buf);
186 tty_buffer_free_all(tty);
187 kfree(tty);
188}
189
190#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
191
192/**
193 * tty_name - return tty naming
194 * @tty: tty structure
195 * @buf: buffer for output
196 *
197 * Convert a tty structure into a name. The name reflects the kernel
198 * naming policy and if udev is in use may not reflect user space
199 *
200 * Locking: none
201 */
202
203char *tty_name(struct tty_struct *tty, char *buf)
204{
205 if (!tty) /* Hmm. NULL pointer. That's fun. */
206 strcpy(buf, "NULL tty");
207 else
208 strcpy(buf, tty->name);
209 return buf;
210}
211
212EXPORT_SYMBOL(tty_name);
213
214int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
215 const char *routine)
216{
217#ifdef TTY_PARANOIA_CHECK
218 if (!tty) {
219 printk(KERN_WARNING
220 "null TTY for (%d:%d) in %s\n",
221 imajor(inode), iminor(inode), routine);
222 return 1;
223 }
224 if (tty->magic != TTY_MAGIC) {
225 printk(KERN_WARNING
226 "bad magic number for tty struct (%d:%d) in %s\n",
227 imajor(inode), iminor(inode), routine);
228 return 1;
229 }
230#endif
231 return 0;
232}
233
234static int check_tty_count(struct tty_struct *tty, const char *routine)
235{
236#ifdef CHECK_TTY_COUNT
237 struct list_head *p;
238 int count = 0;
239
240 file_list_lock();
241 list_for_each(p, &tty->tty_files) {
242 count++;
243 }
244 file_list_unlock();
245 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
246 tty->driver->subtype == PTY_TYPE_SLAVE &&
247 tty->link && tty->link->count)
248 count++;
249 if (tty->count != count) {
250 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
251 "!= #fd's(%d) in %s\n",
252 tty->name, tty->count, count, routine);
253 return count;
254 }
255#endif
256 return 0;
257}
258
259/**
260 * get_tty_driver - find device of a tty
261 * @dev_t: device identifier
262 * @index: returns the index of the tty
263 *
264 * This routine returns a tty driver structure, given a device number
265 * and also passes back the index number.
266 *
267 * Locking: caller must hold tty_mutex
268 */
269
270static struct tty_driver *get_tty_driver(dev_t device, int *index)
271{
272 struct tty_driver *p;
273
274 list_for_each_entry(p, &tty_drivers, tty_drivers) {
275 dev_t base = MKDEV(p->major, p->minor_start);
276 if (device < base || device >= base + p->num)
277 continue;
278 *index = device - base;
279 return tty_driver_kref_get(p);
280 }
281 return NULL;
282}
283
284#ifdef CONFIG_CONSOLE_POLL
285
286/**
287 * tty_find_polling_driver - find device of a polled tty
288 * @name: name string to match
289 * @line: pointer to resulting tty line nr
290 *
291 * This routine returns a tty driver structure, given a name
292 * and the condition that the tty driver is capable of polled
293 * operation.
294 */
295struct tty_driver *tty_find_polling_driver(char *name, int *line)
296{
297 struct tty_driver *p, *res = NULL;
298 int tty_line = 0;
299 int len;
300 char *str;
301
302 for (str = name; *str; str++)
303 if ((*str >= '0' && *str <= '9') || *str == ',')
304 break;
305 if (!*str)
306 return NULL;
307
308 len = str - name;
309 tty_line = simple_strtoul(str, &str, 10);
310
311 mutex_lock(&tty_mutex);
312 /* Search through the tty devices to look for a match */
313 list_for_each_entry(p, &tty_drivers, tty_drivers) {
314 if (strncmp(name, p->name, len) != 0)
315 continue;
316 if (*str == ',')
317 str++;
318 if (*str == '\0')
319 str = NULL;
320
321 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
322 p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
323 res = tty_driver_kref_get(p);
324 *line = tty_line;
325 break;
326 }
327 }
328 mutex_unlock(&tty_mutex);
329
330 return res;
331}
332EXPORT_SYMBOL_GPL(tty_find_polling_driver);
333#endif
334
335/**
336 * tty_check_change - check for POSIX terminal changes
337 * @tty: tty to check
338 *
339 * If we try to write to, or set the state of, a terminal and we're
340 * not in the foreground, send a SIGTTOU. If the signal is blocked or
341 * ignored, go ahead and perform the operation. (POSIX 7.2)
342 *
343 * Locking: ctrl_lock
344 */
345
346int tty_check_change(struct tty_struct *tty)
347{
348 unsigned long flags;
349 int ret = 0;
350
351 if (current->signal->tty != tty)
352 return 0;
353
354 spin_lock_irqsave(&tty->ctrl_lock, flags);
355
356 if (!tty->pgrp) {
357 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
358 goto out_unlock;
359 }
360 if (task_pgrp(current) == tty->pgrp)
361 goto out_unlock;
362 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
363 if (is_ignored(SIGTTOU))
364 goto out;
365 if (is_current_pgrp_orphaned()) {
366 ret = -EIO;
367 goto out;
368 }
369 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
370 set_thread_flag(TIF_SIGPENDING);
371 ret = -ERESTARTSYS;
372out:
373 return ret;
374out_unlock:
375 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
376 return ret;
377}
378
379EXPORT_SYMBOL(tty_check_change);
380
381static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
382 size_t count, loff_t *ppos)
383{
384 return 0;
385}
386
387static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
388 size_t count, loff_t *ppos)
389{
390 return -EIO;
391}
392
393/* No kernel lock held - none needed ;) */
394static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
395{
396 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
397}
398
399static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
400 unsigned long arg)
401{
402 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
403}
404
405static long hung_up_tty_compat_ioctl(struct file *file,
406 unsigned int cmd, unsigned long arg)
407{
408 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
409}
410
411static const struct file_operations tty_fops = {
412 .llseek = no_llseek,
413 .read = tty_read,
414 .write = tty_write,
415 .poll = tty_poll,
416 .unlocked_ioctl = tty_ioctl,
417 .compat_ioctl = tty_compat_ioctl,
418 .open = tty_open,
419 .release = tty_release,
420 .fasync = tty_fasync,
421};
422
423static const struct file_operations console_fops = {
424 .llseek = no_llseek,
425 .read = tty_read,
426 .write = redirected_tty_write,
427 .poll = tty_poll,
428 .unlocked_ioctl = tty_ioctl,
429 .compat_ioctl = tty_compat_ioctl,
430 .open = tty_open,
431 .release = tty_release,
432 .fasync = tty_fasync,
433};
434
435static const struct file_operations hung_up_tty_fops = {
436 .llseek = no_llseek,
437 .read = hung_up_tty_read,
438 .write = hung_up_tty_write,
439 .poll = hung_up_tty_poll,
440 .unlocked_ioctl = hung_up_tty_ioctl,
441 .compat_ioctl = hung_up_tty_compat_ioctl,
442 .release = tty_release,
443};
444
445static DEFINE_SPINLOCK(redirect_lock);
446static struct file *redirect;
447
448/**
449 * tty_wakeup - request more data
450 * @tty: terminal
451 *
452 * Internal and external helper for wakeups of tty. This function
453 * informs the line discipline if present that the driver is ready
454 * to receive more output data.
455 */
456
457void tty_wakeup(struct tty_struct *tty)
458{
459 struct tty_ldisc *ld;
460
461 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
462 ld = tty_ldisc_ref(tty);
463 if (ld) {
464 if (ld->ops->write_wakeup)
465 ld->ops->write_wakeup(tty);
466 tty_ldisc_deref(ld);
467 }
468 }
469 wake_up_interruptible(&tty->write_wait);
470}
471
472EXPORT_SYMBOL_GPL(tty_wakeup);
473
474/**
475 * tty_ldisc_flush - flush line discipline queue
476 * @tty: tty
477 *
478 * Flush the line discipline queue (if any) for this tty. If there
479 * is no line discipline active this is a no-op.
480 */
481
482void tty_ldisc_flush(struct tty_struct *tty)
483{
484 struct tty_ldisc *ld = tty_ldisc_ref(tty);
485 if (ld) {
486 if (ld->ops->flush_buffer)
487 ld->ops->flush_buffer(tty);
488 tty_ldisc_deref(ld);
489 }
490 tty_buffer_flush(tty);
491}
492
493EXPORT_SYMBOL_GPL(tty_ldisc_flush);
494
495/**
496 * tty_reset_termios - reset terminal state
497 * @tty: tty to reset
498 *
499 * Restore a terminal to the driver default state
500 */
501
502static void tty_reset_termios(struct tty_struct *tty)
503{
504 mutex_lock(&tty->termios_mutex);
505 *tty->termios = tty->driver->init_termios;
506 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
507 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
508 mutex_unlock(&tty->termios_mutex);
509}
510
511/**
512 * do_tty_hangup - actual handler for hangup events
513 * @work: tty device
514 *
515 * This can be called by the "eventd" kernel thread. That is process
516 * synchronous but doesn't hold any locks, so we need to make sure we
517 * have the appropriate locks for what we're doing.
518 *
519 * The hangup event clears any pending redirections onto the hung up
520 * device. It ensures future writes will error and it does the needed
521 * line discipline hangup and signal delivery. The tty object itself
522 * remains intact.
523 *
524 * Locking:
525 * BKL
526 * redirect lock for undoing redirection
527 * file list lock for manipulating list of ttys
528 * tty_ldisc_lock from called functions
529 * termios_mutex resetting termios data
530 * tasklist_lock to walk task list for hangup event
531 * ->siglock to protect ->signal/->sighand
532 */
533static void do_tty_hangup(struct work_struct *work)
534{
535 struct tty_struct *tty =
536 container_of(work, struct tty_struct, hangup_work);
537 struct file *cons_filp = NULL;
538 struct file *filp, *f = NULL;
539 struct task_struct *p;
540 struct tty_ldisc *ld;
541 int closecount = 0, n;
542 unsigned long flags;
543 int refs = 0;
544
545 if (!tty)
546 return;
547
548 /* inuse_filps is protected by the single kernel lock */
549 lock_kernel();
550
551 spin_lock(&redirect_lock);
552 if (redirect && redirect->private_data == tty) {
553 f = redirect;
554 redirect = NULL;
555 }
556 spin_unlock(&redirect_lock);
557
558 check_tty_count(tty, "do_tty_hangup");
559 file_list_lock();
560 /* This breaks for file handles being sent over AF_UNIX sockets ? */
561 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
562 if (filp->f_op->write == redirected_tty_write)
563 cons_filp = filp;
564 if (filp->f_op->write != tty_write)
565 continue;
566 closecount++;
567 tty_fasync(-1, filp, 0); /* can't block */
568 filp->f_op = &hung_up_tty_fops;
569 }
570 file_list_unlock();
571 /*
572 * FIXME! What are the locking issues here? This may me overdoing
573 * things... This question is especially important now that we've
574 * removed the irqlock.
575 */
576 ld = tty_ldisc_ref(tty);
577 if (ld != NULL) {
578 /* We may have no line discipline at this point */
579 if (ld->ops->flush_buffer)
580 ld->ops->flush_buffer(tty);
581 tty_driver_flush_buffer(tty);
582 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
583 ld->ops->write_wakeup)
584 ld->ops->write_wakeup(tty);
585 if (ld->ops->hangup)
586 ld->ops->hangup(tty);
587 }
588 /*
589 * FIXME: Once we trust the LDISC code better we can wait here for
590 * ldisc completion and fix the driver call race
591 */
592 wake_up_interruptible(&tty->write_wait);
593 wake_up_interruptible(&tty->read_wait);
594 /*
595 * Shutdown the current line discipline, and reset it to
596 * N_TTY.
597 */
598 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
599 tty_reset_termios(tty);
600 /* Defer ldisc switch */
601 /* tty_deferred_ldisc_switch(N_TTY);
602
603 This should get done automatically when the port closes and
604 tty_release is called */
605
606 read_lock(&tasklist_lock);
607 if (tty->session) {
608 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
609 spin_lock_irq(&p->sighand->siglock);
610 if (p->signal->tty == tty) {
611 p->signal->tty = NULL;
612 /* We defer the dereferences outside fo
613 the tasklist lock */
614 refs++;
615 }
616 if (!p->signal->leader) {
617 spin_unlock_irq(&p->sighand->siglock);
618 continue;
619 }
620 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
621 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
622 put_pid(p->signal->tty_old_pgrp); /* A noop */
623 spin_lock_irqsave(&tty->ctrl_lock, flags);
624 if (tty->pgrp)
625 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
626 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
627 spin_unlock_irq(&p->sighand->siglock);
628 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
629 }
630 read_unlock(&tasklist_lock);
631
632 spin_lock_irqsave(&tty->ctrl_lock, flags);
633 tty->flags = 0;
634 put_pid(tty->session);
635 put_pid(tty->pgrp);
636 tty->session = NULL;
637 tty->pgrp = NULL;
638 tty->ctrl_status = 0;
639 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
640
641 /* Account for the p->signal references we killed */
642 while (refs--)
643 tty_kref_put(tty);
644
645 /*
646 * If one of the devices matches a console pointer, we
647 * cannot just call hangup() because that will cause
648 * tty->count and state->count to go out of sync.
649 * So we just call close() the right number of times.
650 */
651 if (cons_filp) {
652 if (tty->ops->close)
653 for (n = 0; n < closecount; n++)
654 tty->ops->close(tty, cons_filp);
655 } else if (tty->ops->hangup)
656 (tty->ops->hangup)(tty);
657 /*
658 * We don't want to have driver/ldisc interactions beyond
659 * the ones we did here. The driver layer expects no
660 * calls after ->hangup() from the ldisc side. However we
661 * can't yet guarantee all that.
662 */
663 set_bit(TTY_HUPPED, &tty->flags);
664 if (ld) {
665 tty_ldisc_enable(tty);
666 tty_ldisc_deref(ld);
667 }
668 unlock_kernel();
669 if (f)
670 fput(f);
671}
672
673/**
674 * tty_hangup - trigger a hangup event
675 * @tty: tty to hangup
676 *
677 * A carrier loss (virtual or otherwise) has occurred on this like
678 * schedule a hangup sequence to run after this event.
679 */
680
681void tty_hangup(struct tty_struct *tty)
682{
683#ifdef TTY_DEBUG_HANGUP
684 char buf[64];
685 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
686#endif
687 schedule_work(&tty->hangup_work);
688}
689
690EXPORT_SYMBOL(tty_hangup);
691
692/**
693 * tty_vhangup - process vhangup
694 * @tty: tty to hangup
695 *
696 * The user has asked via system call for the terminal to be hung up.
697 * We do this synchronously so that when the syscall returns the process
698 * is complete. That guarantee is necessary for security reasons.
699 */
700
701void tty_vhangup(struct tty_struct *tty)
702{
703#ifdef TTY_DEBUG_HANGUP
704 char buf[64];
705
706 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
707#endif
708 do_tty_hangup(&tty->hangup_work);
709}
710
711EXPORT_SYMBOL(tty_vhangup);
712
713/**
714 * tty_vhangup_self - process vhangup for own ctty
715 *
716 * Perform a vhangup on the current controlling tty
717 */
718
719void tty_vhangup_self(void)
720{
721 struct tty_struct *tty;
722
723 tty = get_current_tty();
724 if (tty) {
725 tty_vhangup(tty);
726 tty_kref_put(tty);
727 }
728}
729
730/**
731 * tty_hung_up_p - was tty hung up
732 * @filp: file pointer of tty
733 *
734 * Return true if the tty has been subject to a vhangup or a carrier
735 * loss
736 */
737
738int tty_hung_up_p(struct file *filp)
739{
740 return (filp->f_op == &hung_up_tty_fops);
741}
742
743EXPORT_SYMBOL(tty_hung_up_p);
744
745static void session_clear_tty(struct pid *session)
746{
747 struct task_struct *p;
748 do_each_pid_task(session, PIDTYPE_SID, p) {
749 proc_clear_tty(p);
750 } while_each_pid_task(session, PIDTYPE_SID, p);
751}
752
753/**
754 * disassociate_ctty - disconnect controlling tty
755 * @on_exit: true if exiting so need to "hang up" the session
756 *
757 * This function is typically called only by the session leader, when
758 * it wants to disassociate itself from its controlling tty.
759 *
760 * It performs the following functions:
761 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
762 * (2) Clears the tty from being controlling the session
763 * (3) Clears the controlling tty for all processes in the
764 * session group.
765 *
766 * The argument on_exit is set to 1 if called when a process is
767 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
768 *
769 * Locking:
770 * BKL is taken for hysterical raisins
771 * tty_mutex is taken to protect tty
772 * ->siglock is taken to protect ->signal/->sighand
773 * tasklist_lock is taken to walk process list for sessions
774 * ->siglock is taken to protect ->signal/->sighand
775 */
776
777void disassociate_ctty(int on_exit)
778{
779 struct tty_struct *tty;
780 struct pid *tty_pgrp = NULL;
781
782
783 tty = get_current_tty();
784 if (tty) {
785 tty_pgrp = get_pid(tty->pgrp);
786 lock_kernel();
787 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
788 tty_vhangup(tty);
789 unlock_kernel();
790 tty_kref_put(tty);
791 } else if (on_exit) {
792 struct pid *old_pgrp;
793 spin_lock_irq(&current->sighand->siglock);
794 old_pgrp = current->signal->tty_old_pgrp;
795 current->signal->tty_old_pgrp = NULL;
796 spin_unlock_irq(&current->sighand->siglock);
797 if (old_pgrp) {
798 kill_pgrp(old_pgrp, SIGHUP, on_exit);
799 kill_pgrp(old_pgrp, SIGCONT, on_exit);
800 put_pid(old_pgrp);
801 }
802 return;
803 }
804 if (tty_pgrp) {
805 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
806 if (!on_exit)
807 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
808 put_pid(tty_pgrp);
809 }
810
811 spin_lock_irq(&current->sighand->siglock);
812 put_pid(current->signal->tty_old_pgrp);
813 current->signal->tty_old_pgrp = NULL;
814 spin_unlock_irq(&current->sighand->siglock);
815
816 tty = get_current_tty();
817 if (tty) {
818 unsigned long flags;
819 spin_lock_irqsave(&tty->ctrl_lock, flags);
820 put_pid(tty->session);
821 put_pid(tty->pgrp);
822 tty->session = NULL;
823 tty->pgrp = NULL;
824 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
825 tty_kref_put(tty);
826 } else {
827#ifdef TTY_DEBUG_HANGUP
828 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
829 " = NULL", tty);
830#endif
831 }
832
833 /* Now clear signal->tty under the lock */
834 read_lock(&tasklist_lock);
835 session_clear_tty(task_session(current));
836 read_unlock(&tasklist_lock);
837}
838
839/**
840 *
841 * no_tty - Ensure the current process does not have a controlling tty
842 */
843void no_tty(void)
844{
845 struct task_struct *tsk = current;
846 lock_kernel();
847 if (tsk->signal->leader)
848 disassociate_ctty(0);
849 unlock_kernel();
850 proc_clear_tty(tsk);
851}
852
853
854/**
855 * stop_tty - propagate flow control
856 * @tty: tty to stop
857 *
858 * Perform flow control to the driver. For PTY/TTY pairs we
859 * must also propagate the TIOCKPKT status. May be called
860 * on an already stopped device and will not re-call the driver
861 * method.
862 *
863 * This functionality is used by both the line disciplines for
864 * halting incoming flow and by the driver. It may therefore be
865 * called from any context, may be under the tty atomic_write_lock
866 * but not always.
867 *
868 * Locking:
869 * Uses the tty control lock internally
870 */
871
872void stop_tty(struct tty_struct *tty)
873{
874 unsigned long flags;
875 spin_lock_irqsave(&tty->ctrl_lock, flags);
876 if (tty->stopped) {
877 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
878 return;
879 }
880 tty->stopped = 1;
881 if (tty->link && tty->link->packet) {
882 tty->ctrl_status &= ~TIOCPKT_START;
883 tty->ctrl_status |= TIOCPKT_STOP;
884 wake_up_interruptible(&tty->link->read_wait);
885 }
886 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
887 if (tty->ops->stop)
888 (tty->ops->stop)(tty);
889}
890
891EXPORT_SYMBOL(stop_tty);
892
893/**
894 * start_tty - propagate flow control
895 * @tty: tty to start
896 *
897 * Start a tty that has been stopped if at all possible. Perform
898 * any necessary wakeups and propagate the TIOCPKT status. If this
899 * is the tty was previous stopped and is being started then the
900 * driver start method is invoked and the line discipline woken.
901 *
902 * Locking:
903 * ctrl_lock
904 */
905
906void start_tty(struct tty_struct *tty)
907{
908 unsigned long flags;
909 spin_lock_irqsave(&tty->ctrl_lock, flags);
910 if (!tty->stopped || tty->flow_stopped) {
911 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
912 return;
913 }
914 tty->stopped = 0;
915 if (tty->link && tty->link->packet) {
916 tty->ctrl_status &= ~TIOCPKT_STOP;
917 tty->ctrl_status |= TIOCPKT_START;
918 wake_up_interruptible(&tty->link->read_wait);
919 }
920 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
921 if (tty->ops->start)
922 (tty->ops->start)(tty);
923 /* If we have a running line discipline it may need kicking */
924 tty_wakeup(tty);
925}
926
927EXPORT_SYMBOL(start_tty);
928
929/**
930 * tty_read - read method for tty device files
931 * @file: pointer to tty file
932 * @buf: user buffer
933 * @count: size of user buffer
934 * @ppos: unused
935 *
936 * Perform the read system call function on this terminal device. Checks
937 * for hung up devices before calling the line discipline method.
938 *
939 * Locking:
940 * Locks the line discipline internally while needed. Multiple
941 * read calls may be outstanding in parallel.
942 */
943
944static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
945 loff_t *ppos)
946{
947 int i;
948 struct tty_struct *tty;
949 struct inode *inode;
950 struct tty_ldisc *ld;
951
952 tty = (struct tty_struct *)file->private_data;
953 inode = file->f_path.dentry->d_inode;
954 if (tty_paranoia_check(tty, inode, "tty_read"))
955 return -EIO;
956 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
957 return -EIO;
958
959 /* We want to wait for the line discipline to sort out in this
960 situation */
961 ld = tty_ldisc_ref_wait(tty);
962 if (ld->ops->read)
963 i = (ld->ops->read)(tty, file, buf, count);
964 else
965 i = -EIO;
966 tty_ldisc_deref(ld);
967 if (i > 0)
968 inode->i_atime = current_fs_time(inode->i_sb);
969 return i;
970}
971
972void tty_write_unlock(struct tty_struct *tty)
973{
974 mutex_unlock(&tty->atomic_write_lock);
975 wake_up_interruptible(&tty->write_wait);
976}
977
978int tty_write_lock(struct tty_struct *tty, int ndelay)
979{
980 if (!mutex_trylock(&tty->atomic_write_lock)) {
981 if (ndelay)
982 return -EAGAIN;
983 if (mutex_lock_interruptible(&tty->atomic_write_lock))
984 return -ERESTARTSYS;
985 }
986 return 0;
987}
988
989/*
990 * Split writes up in sane blocksizes to avoid
991 * denial-of-service type attacks
992 */
993static inline ssize_t do_tty_write(
994 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
995 struct tty_struct *tty,
996 struct file *file,
997 const char __user *buf,
998 size_t count)
999{
1000 ssize_t ret, written = 0;
1001 unsigned int chunk;
1002
1003 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1004 if (ret < 0)
1005 return ret;
1006
1007 /*
1008 * We chunk up writes into a temporary buffer. This
1009 * simplifies low-level drivers immensely, since they
1010 * don't have locking issues and user mode accesses.
1011 *
1012 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1013 * big chunk-size..
1014 *
1015 * The default chunk-size is 2kB, because the NTTY
1016 * layer has problems with bigger chunks. It will
1017 * claim to be able to handle more characters than
1018 * it actually does.
1019 *
1020 * FIXME: This can probably go away now except that 64K chunks
1021 * are too likely to fail unless switched to vmalloc...
1022 */
1023 chunk = 2048;
1024 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1025 chunk = 65536;
1026 if (count < chunk)
1027 chunk = count;
1028
1029 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1030 if (tty->write_cnt < chunk) {
1031 unsigned char *buf;
1032
1033 if (chunk < 1024)
1034 chunk = 1024;
1035
1036 buf = kmalloc(chunk, GFP_KERNEL);
1037 if (!buf) {
1038 ret = -ENOMEM;
1039 goto out;
1040 }
1041 kfree(tty->write_buf);
1042 tty->write_cnt = chunk;
1043 tty->write_buf = buf;
1044 }
1045
1046 /* Do the write .. */
1047 for (;;) {
1048 size_t size = count;
1049 if (size > chunk)
1050 size = chunk;
1051 ret = -EFAULT;
1052 if (copy_from_user(tty->write_buf, buf, size))
1053 break;
1054 ret = write(tty, file, tty->write_buf, size);
1055 if (ret <= 0)
1056 break;
1057 written += ret;
1058 buf += ret;
1059 count -= ret;
1060 if (!count)
1061 break;
1062 ret = -ERESTARTSYS;
1063 if (signal_pending(current))
1064 break;
1065 cond_resched();
1066 }
1067 if (written) {
1068 struct inode *inode = file->f_path.dentry->d_inode;
1069 inode->i_mtime = current_fs_time(inode->i_sb);
1070 ret = written;
1071 }
1072out:
1073 tty_write_unlock(tty);
1074 return ret;
1075}
1076
1077/**
1078 * tty_write_message - write a message to a certain tty, not just the console.
1079 * @tty: the destination tty_struct
1080 * @msg: the message to write
1081 *
1082 * This is used for messages that need to be redirected to a specific tty.
1083 * We don't put it into the syslog queue right now maybe in the future if
1084 * really needed.
1085 *
1086 * We must still hold the BKL and test the CLOSING flag for the moment.
1087 */
1088
1089void tty_write_message(struct tty_struct *tty, char *msg)
1090{
1091 lock_kernel();
1092 if (tty) {
1093 mutex_lock(&tty->atomic_write_lock);
1094 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1095 tty->ops->write(tty, msg, strlen(msg));
1096 tty_write_unlock(tty);
1097 }
1098 unlock_kernel();
1099 return;
1100}
1101
1102
1103/**
1104 * tty_write - write method for tty device file
1105 * @file: tty file pointer
1106 * @buf: user data to write
1107 * @count: bytes to write
1108 * @ppos: unused
1109 *
1110 * Write data to a tty device via the line discipline.
1111 *
1112 * Locking:
1113 * Locks the line discipline as required
1114 * Writes to the tty driver are serialized by the atomic_write_lock
1115 * and are then processed in chunks to the device. The line discipline
1116 * write method will not be involked in parallel for each device
1117 * The line discipline write method is called under the big
1118 * kernel lock for historical reasons. New code should not rely on this.
1119 */
1120
1121static ssize_t tty_write(struct file *file, const char __user *buf,
1122 size_t count, loff_t *ppos)
1123{
1124 struct tty_struct *tty;
1125 struct inode *inode = file->f_path.dentry->d_inode;
1126 ssize_t ret;
1127 struct tty_ldisc *ld;
1128
1129 tty = (struct tty_struct *)file->private_data;
1130 if (tty_paranoia_check(tty, inode, "tty_write"))
1131 return -EIO;
1132 if (!tty || !tty->ops->write ||
1133 (test_bit(TTY_IO_ERROR, &tty->flags)))
1134 return -EIO;
1135 /* Short term debug to catch buggy drivers */
1136 if (tty->ops->write_room == NULL)
1137 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1138 tty->driver->name);
1139 ld = tty_ldisc_ref_wait(tty);
1140 if (!ld->ops->write)
1141 ret = -EIO;
1142 else
1143 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1144 tty_ldisc_deref(ld);
1145 return ret;
1146}
1147
1148ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1149 size_t count, loff_t *ppos)
1150{
1151 struct file *p = NULL;
1152
1153 spin_lock(&redirect_lock);
1154 if (redirect) {
1155 get_file(redirect);
1156 p = redirect;
1157 }
1158 spin_unlock(&redirect_lock);
1159
1160 if (p) {
1161 ssize_t res;
1162 res = vfs_write(p, buf, count, &p->f_pos);
1163 fput(p);
1164 return res;
1165 }
1166 return tty_write(file, buf, count, ppos);
1167}
1168
1169static char ptychar[] = "pqrstuvwxyzabcde";
1170
1171/**
1172 * pty_line_name - generate name for a pty
1173 * @driver: the tty driver in use
1174 * @index: the minor number
1175 * @p: output buffer of at least 6 bytes
1176 *
1177 * Generate a name from a driver reference and write it to the output
1178 * buffer.
1179 *
1180 * Locking: None
1181 */
1182static void pty_line_name(struct tty_driver *driver, int index, char *p)
1183{
1184 int i = index + driver->name_base;
1185 /* ->name is initialized to "ttyp", but "tty" is expected */
1186 sprintf(p, "%s%c%x",
1187 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1188 ptychar[i >> 4 & 0xf], i & 0xf);
1189}
1190
1191/**
1192 * pty_line_name - generate name for a tty
1193 * @driver: the tty driver in use
1194 * @index: the minor number
1195 * @p: output buffer of at least 7 bytes
1196 *
1197 * Generate a name from a driver reference and write it to the output
1198 * buffer.
1199 *
1200 * Locking: None
1201 */
1202static void tty_line_name(struct tty_driver *driver, int index, char *p)
1203{
1204 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1205}
1206
1207/**
1208 * tty_driver_lookup_tty() - find an existing tty, if any
1209 * @driver: the driver for the tty
1210 * @idx: the minor number
1211 *
1212 * Return the tty, if found or ERR_PTR() otherwise.
1213 *
1214 * Locking: tty_mutex must be held. If tty is found, the mutex must
1215 * be held until the 'fast-open' is also done. Will change once we
1216 * have refcounting in the driver and per driver locking
1217 */
1218struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver, int idx)
1219{
1220 struct tty_struct *tty;
1221
1222 if (driver->ops->lookup)
1223 return driver->ops->lookup(driver, idx);
1224
1225 tty = driver->ttys[idx];
1226 return tty;
1227}
1228
1229/**
1230 * tty_reopen() - fast re-open of an open tty
1231 * @tty - the tty to open
1232 *
1233 * Return 0 on success, -errno on error.
1234 *
1235 * Locking: tty_mutex must be held from the time the tty was found
1236 * till this open completes.
1237 */
1238static int tty_reopen(struct tty_struct *tty)
1239{
1240 struct tty_driver *driver = tty->driver;
1241
1242 if (test_bit(TTY_CLOSING, &tty->flags))
1243 return -EIO;
1244
1245 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1246 driver->subtype == PTY_TYPE_MASTER) {
1247 /*
1248 * special case for PTY masters: only one open permitted,
1249 * and the slave side open count is incremented as well.
1250 */
1251 if (tty->count)
1252 return -EIO;
1253
1254 tty->link->count++;
1255 }
1256 tty->count++;
1257 tty->driver = driver; /* N.B. why do this every time?? */
1258
1259 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1260
1261 return 0;
1262}
1263
1264/**
1265 * tty_init_dev - initialise a tty device
1266 * @driver: tty driver we are opening a device on
1267 * @idx: device index
1268 * @ret_tty: returned tty structure
1269 * @first_ok: ok to open a new device (used by ptmx)
1270 *
1271 * Prepare a tty device. This may not be a "new" clean device but
1272 * could also be an active device. The pty drivers require special
1273 * handling because of this.
1274 *
1275 * Locking:
1276 * The function is called under the tty_mutex, which
1277 * protects us from the tty struct or driver itself going away.
1278 *
1279 * On exit the tty device has the line discipline attached and
1280 * a reference count of 1. If a pair was created for pty/tty use
1281 * and the other was a pty master then it too has a reference count of 1.
1282 *
1283 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1284 * failed open. The new code protects the open with a mutex, so it's
1285 * really quite straightforward. The mutex locking can probably be
1286 * relaxed for the (most common) case of reopening a tty.
1287 */
1288
1289int tty_init_dev(struct tty_driver *driver, int idx,
1290 struct tty_struct **ret_tty, int first_ok)
1291{
1292 struct tty_struct *tty, *o_tty;
1293 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1294 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1295 int retval = 0;
1296
1297 /* check whether we're reopening an existing tty */
1298 tty = tty_driver_lookup_tty(driver, idx);
1299 if (IS_ERR(tty)) {
1300 retval = PTR_ERR(tty);
1301 goto end_init;
1302 }
1303
1304 if (tty) {
1305 retval = tty_reopen(tty);
1306 if (retval)
1307 return retval;
1308 *ret_tty = tty;
1309 return 0;
1310 }
1311
1312 /* Check if pty master is being opened multiple times */
1313 if (driver->subtype == PTY_TYPE_MASTER &&
1314 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1315 retval = -EIO;
1316 goto end_init;
1317 }
1318 /*
1319 * First time open is complex, especially for PTY devices.
1320 * This code guarantees that either everything succeeds and the
1321 * TTY is ready for operation, or else the table slots are vacated
1322 * and the allocated memory released. (Except that the termios
1323 * and locked termios may be retained.)
1324 */
1325
1326 if (!try_module_get(driver->owner)) {
1327 retval = -ENODEV;
1328 goto end_init;
1329 }
1330
1331 o_tty = NULL;
1332 tp = o_tp = NULL;
1333 ltp = o_ltp = NULL;
1334
1335 tty = alloc_tty_struct();
1336 if (!tty)
1337 goto fail_no_mem;
1338 initialize_tty_struct(tty);
1339 tty->driver = driver;
1340 tty->ops = driver->ops;
1341 tty->index = idx;
1342 tty_line_name(driver, idx, tty->name);
1343
1344 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1345 tp_loc = &tty->termios;
1346 ltp_loc = &tty->termios_locked;
1347 } else {
1348 tp_loc = &driver->termios[idx];
1349 ltp_loc = &driver->termios_locked[idx];
1350 }
1351
1352 if (!*tp_loc) {
1353 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1354 if (!tp)
1355 goto free_mem_out;
1356 *tp = driver->init_termios;
1357 }
1358
1359 if (!*ltp_loc) {
1360 ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1361 if (!ltp)
1362 goto free_mem_out;
1363 }
1364
1365 if (driver->type == TTY_DRIVER_TYPE_PTY) {
1366 o_tty = alloc_tty_struct();
1367 if (!o_tty)
1368 goto free_mem_out;
1369 if (!try_module_get(driver->other->owner)) {
1370 /* This cannot in fact currently happen */
1371 free_tty_struct(o_tty);
1372 o_tty = NULL;
1373 goto free_mem_out;
1374 }
1375 initialize_tty_struct(o_tty);
1376 o_tty->driver = driver->other;
1377 o_tty->ops = driver->ops;
1378 o_tty->index = idx;
1379 tty_line_name(driver->other, idx, o_tty->name);
1380
1381 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1382 o_tp_loc = &o_tty->termios;
1383 o_ltp_loc = &o_tty->termios_locked;
1384 } else {
1385 o_tp_loc = &driver->other->termios[idx];
1386 o_ltp_loc = &driver->other->termios_locked[idx];
1387 }
1388
1389 if (!*o_tp_loc) {
1390 o_tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1391 if (!o_tp)
1392 goto free_mem_out;
1393 *o_tp = driver->other->init_termios;
1394 }
1395
1396 if (!*o_ltp_loc) {
1397 o_ltp = kzalloc(sizeof(struct ktermios), GFP_KERNEL);
1398 if (!o_ltp)
1399 goto free_mem_out;
1400 }
1401
1402 /*
1403 * Everything allocated ... set up the o_tty structure.
1404 */
1405 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM))
1406 driver->other->ttys[idx] = o_tty;
1407 if (!*o_tp_loc)
1408 *o_tp_loc = o_tp;
1409 if (!*o_ltp_loc)
1410 *o_ltp_loc = o_ltp;
1411 o_tty->termios = *o_tp_loc;
1412 o_tty->termios_locked = *o_ltp_loc;
1413 tty_driver_kref_get(driver->other);
1414 if (driver->subtype == PTY_TYPE_MASTER)
1415 o_tty->count++;
1416
1417 /* Establish the links in both directions */
1418 tty->link = o_tty;
1419 o_tty->link = tty;
1420 }
1421
1422 /*
1423 * All structures have been allocated, so now we install them.
1424 * Failures after this point use release_tty to clean up, so
1425 * there's no need to null out the local pointers.
1426 *
1427 * FIXME: We want a 'driver->install method ?
1428 */
1429 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM))
1430 driver->ttys[idx] = tty;
1431
1432 if (!*tp_loc)
1433 *tp_loc = tp;
1434 if (!*ltp_loc)
1435 *ltp_loc = ltp;
1436 tty->termios = *tp_loc;
1437 tty->termios_locked = *ltp_loc;
1438 /* Compatibility until drivers always set this */
1439 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1440 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1441 tty_driver_kref_get(driver);
1442 tty->count++;
1443
1444 /*
1445 * Structures all installed ... call the ldisc open routines.
1446 * If we fail here just call release_tty to clean up. No need
1447 * to decrement the use counts, as release_tty doesn't care.
1448 */
1449
1450 retval = tty_ldisc_setup(tty, o_tty);
1451
1452 if (retval)
1453 goto release_mem_out;
1454
1455 *ret_tty = tty;
1456 /* All paths come through here to release the mutex */
1457end_init:
1458 return retval;
1459
1460 /* Release locally allocated memory ... nothing placed in slots */
1461free_mem_out:
1462 kfree(o_tp);
1463 if (o_tty) {
1464 module_put(o_tty->driver->owner);
1465 free_tty_struct(o_tty);
1466 }
1467 kfree(ltp);
1468 kfree(tp);
1469 free_tty_struct(tty);
1470
1471fail_no_mem:
1472 module_put(driver->owner);
1473 retval = -ENOMEM;
1474 goto end_init;
1475
1476 /* call the tty release_tty routine to clean out this slot */
1477release_mem_out:
1478 if (printk_ratelimit())
1479 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1480 "clearing slot %d\n", idx);
1481 release_tty(tty, idx);
1482 goto end_init;
1483}
1484
1485void tty_free_termios(struct tty_struct *tty)
1486{
1487 struct ktermios *tp;
1488 int idx = tty->index;
1489 /* Kill this flag and push into drivers for locking etc */
1490 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1491 /* FIXME: Locking on ->termios array */
1492 tp = tty->termios;
1493 tty->driver->termios[idx] = NULL;
1494 kfree(tp);
1495
1496 tp = tty->termios_locked;
1497 tty->driver->termios_locked[idx] = NULL;
1498 kfree(tp);
1499 }
1500}
1501EXPORT_SYMBOL(tty_free_termios);
1502
1503void tty_shutdown(struct tty_struct *tty)
1504{
1505 tty->driver->ttys[tty->index] = NULL;
1506 tty_free_termios(tty);
1507}
1508EXPORT_SYMBOL(tty_shutdown);
1509
1510/**
1511 * release_one_tty - release tty structure memory
1512 * @kref: kref of tty we are obliterating
1513 *
1514 * Releases memory associated with a tty structure, and clears out the
1515 * driver table slots. This function is called when a device is no longer
1516 * in use. It also gets called when setup of a device fails.
1517 *
1518 * Locking:
1519 * tty_mutex - sometimes only
1520 * takes the file list lock internally when working on the list
1521 * of ttys that the driver keeps.
1522 */
1523static void release_one_tty(struct kref *kref)
1524{
1525 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1526 struct tty_driver *driver = tty->driver;
1527
1528 if (tty->ops->shutdown)
1529 tty->ops->shutdown(tty);
1530 else
1531 tty_shutdown(tty);
1532 tty->magic = 0;
1533 tty_driver_kref_put(driver);
1534 module_put(driver->owner);
1535
1536 file_list_lock();
1537 list_del_init(&tty->tty_files);
1538 file_list_unlock();
1539
1540 free_tty_struct(tty);
1541}
1542
1543/**
1544 * tty_kref_put - release a tty kref
1545 * @tty: tty device
1546 *
1547 * Release a reference to a tty device and if need be let the kref
1548 * layer destruct the object for us
1549 */
1550
1551void tty_kref_put(struct tty_struct *tty)
1552{
1553 if (tty)
1554 kref_put(&tty->kref, release_one_tty);
1555}
1556EXPORT_SYMBOL(tty_kref_put);
1557
1558/**
1559 * release_tty - release tty structure memory
1560 *
1561 * Release both @tty and a possible linked partner (think pty pair),
1562 * and decrement the refcount of the backing module.
1563 *
1564 * Locking:
1565 * tty_mutex - sometimes only
1566 * takes the file list lock internally when working on the list
1567 * of ttys that the driver keeps.
1568 * FIXME: should we require tty_mutex is held here ??
1569 *
1570 */
1571static void release_tty(struct tty_struct *tty, int idx)
1572{
1573 /* This should always be true but check for the moment */
1574 WARN_ON(tty->index != idx);
1575
1576 if (tty->link)
1577 tty_kref_put(tty->link);
1578 tty_kref_put(tty);
1579}
1580
1581/*
1582 * Even releasing the tty structures is a tricky business.. We have
1583 * to be very careful that the structures are all released at the
1584 * same time, as interrupts might otherwise get the wrong pointers.
1585 *
1586 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1587 * lead to double frees or releasing memory still in use.
1588 */
1589void tty_release_dev(struct file *filp)
1590{
1591 struct tty_struct *tty, *o_tty;
1592 int pty_master, tty_closing, o_tty_closing, do_sleep;
1593 int devpts;
1594 int idx;
1595 char buf[64];
1596
1597 tty = (struct tty_struct *)filp->private_data;
1598 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode,
1599 "tty_release_dev"))
1600 return;
1601
1602 check_tty_count(tty, "tty_release_dev");
1603
1604 tty_fasync(-1, filp, 0);
1605
1606 idx = tty->index;
1607 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1608 tty->driver->subtype == PTY_TYPE_MASTER);
1609 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1610 o_tty = tty->link;
1611
1612#ifdef TTY_PARANOIA_CHECK
1613 if (idx < 0 || idx >= tty->driver->num) {
1614 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1615 "free (%s)\n", tty->name);
1616 return;
1617 }
1618 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1619 if (tty != tty->driver->ttys[idx]) {
1620 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1621 "for (%s)\n", idx, tty->name);
1622 return;
1623 }
1624 if (tty->termios != tty->driver->termios[idx]) {
1625 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1626 "for (%s)\n",
1627 idx, tty->name);
1628 return;
1629 }
1630 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
1631 printk(KERN_DEBUG "tty_release_dev: driver.termios_locked[%d] not "
1632 "termios_locked for (%s)\n",
1633 idx, tty->name);
1634 return;
1635 }
1636 }
1637#endif
1638
1639#ifdef TTY_DEBUG_HANGUP
1640 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1641 tty_name(tty, buf), tty->count);
1642#endif
1643
1644#ifdef TTY_PARANOIA_CHECK
1645 if (tty->driver->other &&
1646 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1647 if (o_tty != tty->driver->other->ttys[idx]) {
1648 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1649 "not o_tty for (%s)\n",
1650 idx, tty->name);
1651 return;
1652 }
1653 if (o_tty->termios != tty->driver->other->termios[idx]) {
1654 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1655 "not o_termios for (%s)\n",
1656 idx, tty->name);
1657 return;
1658 }
1659 if (o_tty->termios_locked !=
1660 tty->driver->other->termios_locked[idx]) {
1661 printk(KERN_DEBUG "tty_release_dev: other->termios_locked["
1662 "%d] not o_termios_locked for (%s)\n",
1663 idx, tty->name);
1664 return;
1665 }
1666 if (o_tty->link != tty) {
1667 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1668 return;
1669 }
1670 }
1671#endif
1672 if (tty->ops->close)
1673 tty->ops->close(tty, filp);
1674
1675 /*
1676 * Sanity check: if tty->count is going to zero, there shouldn't be
1677 * any waiters on tty->read_wait or tty->write_wait. We test the
1678 * wait queues and kick everyone out _before_ actually starting to
1679 * close. This ensures that we won't block while releasing the tty
1680 * structure.
1681 *
1682 * The test for the o_tty closing is necessary, since the master and
1683 * slave sides may close in any order. If the slave side closes out
1684 * first, its count will be one, since the master side holds an open.
1685 * Thus this test wouldn't be triggered at the time the slave closes,
1686 * so we do it now.
1687 *
1688 * Note that it's possible for the tty to be opened again while we're
1689 * flushing out waiters. By recalculating the closing flags before
1690 * each iteration we avoid any problems.
1691 */
1692 while (1) {
1693 /* Guard against races with tty->count changes elsewhere and
1694 opens on /dev/tty */
1695
1696 mutex_lock(&tty_mutex);
1697 tty_closing = tty->count <= 1;
1698 o_tty_closing = o_tty &&
1699 (o_tty->count <= (pty_master ? 1 : 0));
1700 do_sleep = 0;
1701
1702 if (tty_closing) {
1703 if (waitqueue_active(&tty->read_wait)) {
1704 wake_up(&tty->read_wait);
1705 do_sleep++;
1706 }
1707 if (waitqueue_active(&tty->write_wait)) {
1708 wake_up(&tty->write_wait);
1709 do_sleep++;
1710 }
1711 }
1712 if (o_tty_closing) {
1713 if (waitqueue_active(&o_tty->read_wait)) {
1714 wake_up(&o_tty->read_wait);
1715 do_sleep++;
1716 }
1717 if (waitqueue_active(&o_tty->write_wait)) {
1718 wake_up(&o_tty->write_wait);
1719 do_sleep++;
1720 }
1721 }
1722 if (!do_sleep)
1723 break;
1724
1725 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1726 "active!\n", tty_name(tty, buf));
1727 mutex_unlock(&tty_mutex);
1728 schedule();
1729 }
1730
1731 /*
1732 * The closing flags are now consistent with the open counts on
1733 * both sides, and we've completed the last operation that could
1734 * block, so it's safe to proceed with closing.
1735 */
1736 if (pty_master) {
1737 if (--o_tty->count < 0) {
1738 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1739 "(%d) for %s\n",
1740 o_tty->count, tty_name(o_tty, buf));
1741 o_tty->count = 0;
1742 }
1743 }
1744 if (--tty->count < 0) {
1745 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1746 tty->count, tty_name(tty, buf));
1747 tty->count = 0;
1748 }
1749
1750 /*
1751 * We've decremented tty->count, so we need to remove this file
1752 * descriptor off the tty->tty_files list; this serves two
1753 * purposes:
1754 * - check_tty_count sees the correct number of file descriptors
1755 * associated with this tty.
1756 * - do_tty_hangup no longer sees this file descriptor as
1757 * something that needs to be handled for hangups.
1758 */
1759 file_kill(filp);
1760 filp->private_data = NULL;
1761
1762 /*
1763 * Perform some housekeeping before deciding whether to return.
1764 *
1765 * Set the TTY_CLOSING flag if this was the last open. In the
1766 * case of a pty we may have to wait around for the other side
1767 * to close, and TTY_CLOSING makes sure we can't be reopened.
1768 */
1769 if (tty_closing)
1770 set_bit(TTY_CLOSING, &tty->flags);
1771 if (o_tty_closing)
1772 set_bit(TTY_CLOSING, &o_tty->flags);
1773
1774 /*
1775 * If _either_ side is closing, make sure there aren't any
1776 * processes that still think tty or o_tty is their controlling
1777 * tty.
1778 */
1779 if (tty_closing || o_tty_closing) {
1780 read_lock(&tasklist_lock);
1781 session_clear_tty(tty->session);
1782 if (o_tty)
1783 session_clear_tty(o_tty->session);
1784 read_unlock(&tasklist_lock);
1785 }
1786
1787 mutex_unlock(&tty_mutex);
1788
1789 /* check whether both sides are closing ... */
1790 if (!tty_closing || (o_tty && !o_tty_closing))
1791 return;
1792
1793#ifdef TTY_DEBUG_HANGUP
1794 printk(KERN_DEBUG "freeing tty structure...");
1795#endif
1796 /*
1797 * Ask the line discipline code to release its structures
1798 */
1799 tty_ldisc_release(tty, o_tty);
1800 /*
1801 * The release_tty function takes care of the details of clearing
1802 * the slots and preserving the termios structure.
1803 */
1804 release_tty(tty, idx);
1805
1806 /* Make this pty number available for reallocation */
1807 if (devpts)
1808 devpts_kill_index(idx);
1809}
1810
1811/**
1812 * __tty_open - open a tty device
1813 * @inode: inode of device file
1814 * @filp: file pointer to tty
1815 *
1816 * tty_open and tty_release keep up the tty count that contains the
1817 * number of opens done on a tty. We cannot use the inode-count, as
1818 * different inodes might point to the same tty.
1819 *
1820 * Open-counting is needed for pty masters, as well as for keeping
1821 * track of serial lines: DTR is dropped when the last close happens.
1822 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1823 *
1824 * The termios state of a pty is reset on first open so that
1825 * settings don't persist across reuse.
1826 *
1827 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1828 * tty->count should protect the rest.
1829 * ->siglock protects ->signal/->sighand
1830 */
1831
1832static int __tty_open(struct inode *inode, struct file *filp)
1833{
1834 struct tty_struct *tty;
1835 int noctty, retval;
1836 struct tty_driver *driver;
1837 int index;
1838 dev_t device = inode->i_rdev;
1839 unsigned short saved_flags = filp->f_flags;
1840
1841 nonseekable_open(inode, filp);
1842
1843retry_open:
1844 noctty = filp->f_flags & O_NOCTTY;
1845 index = -1;
1846 retval = 0;
1847
1848 mutex_lock(&tty_mutex);
1849
1850 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1851 tty = get_current_tty();
1852 if (!tty) {
1853 mutex_unlock(&tty_mutex);
1854 return -ENXIO;
1855 }
1856 driver = tty_driver_kref_get(tty->driver);
1857 index = tty->index;
1858 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1859 /* noctty = 1; */
1860 /* FIXME: Should we take a driver reference ? */
1861 tty_kref_put(tty);
1862 goto got_driver;
1863 }
1864#ifdef CONFIG_VT
1865 if (device == MKDEV(TTY_MAJOR, 0)) {
1866 extern struct tty_driver *console_driver;
1867 driver = tty_driver_kref_get(console_driver);
1868 index = fg_console;
1869 noctty = 1;
1870 goto got_driver;
1871 }
1872#endif
1873 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1874 driver = tty_driver_kref_get(console_device(&index));
1875 if (driver) {
1876 /* Don't let /dev/console block */
1877 filp->f_flags |= O_NONBLOCK;
1878 noctty = 1;
1879 goto got_driver;
1880 }
1881 mutex_unlock(&tty_mutex);
1882 return -ENODEV;
1883 }
1884
1885 driver = get_tty_driver(device, &index);
1886 if (!driver) {
1887 mutex_unlock(&tty_mutex);
1888 return -ENODEV;
1889 }
1890got_driver:
1891 retval = tty_init_dev(driver, index, &tty, 0);
1892 mutex_unlock(&tty_mutex);
1893 tty_driver_kref_put(driver);
1894 if (retval)
1895 return retval;
1896
1897 filp->private_data = tty;
1898 file_move(filp, &tty->tty_files);
1899 check_tty_count(tty, "tty_open");
1900 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1901 tty->driver->subtype == PTY_TYPE_MASTER)
1902 noctty = 1;
1903#ifdef TTY_DEBUG_HANGUP
1904 printk(KERN_DEBUG "opening %s...", tty->name);
1905#endif
1906 if (!retval) {
1907 if (tty->ops->open)
1908 retval = tty->ops->open(tty, filp);
1909 else
1910 retval = -ENODEV;
1911 }
1912 filp->f_flags = saved_flags;
1913
1914 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1915 !capable(CAP_SYS_ADMIN))
1916 retval = -EBUSY;
1917
1918 if (retval) {
1919#ifdef TTY_DEBUG_HANGUP
1920 printk(KERN_DEBUG "error %d in opening %s...", retval,
1921 tty->name);
1922#endif
1923 tty_release_dev(filp);
1924 if (retval != -ERESTARTSYS)
1925 return retval;
1926 if (signal_pending(current))
1927 return retval;
1928 schedule();
1929 /*
1930 * Need to reset f_op in case a hangup happened.
1931 */
1932 if (filp->f_op == &hung_up_tty_fops)
1933 filp->f_op = &tty_fops;
1934 goto retry_open;
1935 }
1936
1937 mutex_lock(&tty_mutex);
1938 spin_lock_irq(&current->sighand->siglock);
1939 if (!noctty &&
1940 current->signal->leader &&
1941 !current->signal->tty &&
1942 tty->session == NULL)
1943 __proc_set_tty(current, tty);
1944 spin_unlock_irq(&current->sighand->siglock);
1945 mutex_unlock(&tty_mutex);
1946 return 0;
1947}
1948
1949/* BKL pushdown: scary code avoidance wrapper */
1950static int tty_open(struct inode *inode, struct file *filp)
1951{
1952 int ret;
1953
1954 lock_kernel();
1955 ret = __tty_open(inode, filp);
1956 unlock_kernel();
1957 return ret;
1958}
1959
1960
1961
1962
1963/**
1964 * tty_release - vfs callback for close
1965 * @inode: inode of tty
1966 * @filp: file pointer for handle to tty
1967 *
1968 * Called the last time each file handle is closed that references
1969 * this tty. There may however be several such references.
1970 *
1971 * Locking:
1972 * Takes bkl. See tty_release_dev
1973 */
1974
1975static int tty_release(struct inode *inode, struct file *filp)
1976{
1977 lock_kernel();
1978 tty_release_dev(filp);
1979 unlock_kernel();
1980 return 0;
1981}
1982
1983/**
1984 * tty_poll - check tty status
1985 * @filp: file being polled
1986 * @wait: poll wait structures to update
1987 *
1988 * Call the line discipline polling method to obtain the poll
1989 * status of the device.
1990 *
1991 * Locking: locks called line discipline but ldisc poll method
1992 * may be re-entered freely by other callers.
1993 */
1994
1995static unsigned int tty_poll(struct file *filp, poll_table *wait)
1996{
1997 struct tty_struct *tty;
1998 struct tty_ldisc *ld;
1999 int ret = 0;
2000
2001 tty = (struct tty_struct *)filp->private_data;
2002 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2003 return 0;
2004
2005 ld = tty_ldisc_ref_wait(tty);
2006 if (ld->ops->poll)
2007 ret = (ld->ops->poll)(tty, filp, wait);
2008 tty_ldisc_deref(ld);
2009 return ret;
2010}
2011
2012static int tty_fasync(int fd, struct file *filp, int on)
2013{
2014 struct tty_struct *tty;
2015 unsigned long flags;
2016 int retval = 0;
2017
2018 lock_kernel();
2019 tty = (struct tty_struct *)filp->private_data;
2020 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2021 goto out;
2022
2023 retval = fasync_helper(fd, filp, on, &tty->fasync);
2024 if (retval <= 0)
2025 goto out;
2026
2027 if (on) {
2028 enum pid_type type;
2029 struct pid *pid;
2030 if (!waitqueue_active(&tty->read_wait))
2031 tty->minimum_to_wake = 1;
2032 spin_lock_irqsave(&tty->ctrl_lock, flags);
2033 if (tty->pgrp) {
2034 pid = tty->pgrp;
2035 type = PIDTYPE_PGID;
2036 } else {
2037 pid = task_pid(current);
2038 type = PIDTYPE_PID;
2039 }
2040 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2041 retval = __f_setown(filp, pid, type, 0);
2042 if (retval)
2043 goto out;
2044 } else {
2045 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2046 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2047 }
2048 retval = 0;
2049out:
2050 unlock_kernel();
2051 return retval;
2052}
2053
2054/**
2055 * tiocsti - fake input character
2056 * @tty: tty to fake input into
2057 * @p: pointer to character
2058 *
2059 * Fake input to a tty device. Does the necessary locking and
2060 * input management.
2061 *
2062 * FIXME: does not honour flow control ??
2063 *
2064 * Locking:
2065 * Called functions take tty_ldisc_lock
2066 * current->signal->tty check is safe without locks
2067 *
2068 * FIXME: may race normal receive processing
2069 */
2070
2071static int tiocsti(struct tty_struct *tty, char __user *p)
2072{
2073 char ch, mbz = 0;
2074 struct tty_ldisc *ld;
2075
2076 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2077 return -EPERM;
2078 if (get_user(ch, p))
2079 return -EFAULT;
2080 ld = tty_ldisc_ref_wait(tty);
2081 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2082 tty_ldisc_deref(ld);
2083 return 0;
2084}
2085
2086/**
2087 * tiocgwinsz - implement window query ioctl
2088 * @tty; tty
2089 * @arg: user buffer for result
2090 *
2091 * Copies the kernel idea of the window size into the user buffer.
2092 *
2093 * Locking: tty->termios_mutex is taken to ensure the winsize data
2094 * is consistent.
2095 */
2096
2097static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2098{
2099 int err;
2100
2101 mutex_lock(&tty->termios_mutex);
2102 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2103 mutex_unlock(&tty->termios_mutex);
2104
2105 return err ? -EFAULT: 0;
2106}
2107
2108/**
2109 * tty_do_resize - resize event
2110 * @tty: tty being resized
2111 * @real_tty: real tty (not the same as tty if using a pty/tty pair)
2112 * @rows: rows (character)
2113 * @cols: cols (character)
2114 *
2115 * Update the termios variables and send the neccessary signals to
2116 * peform a terminal resize correctly
2117 */
2118
2119int tty_do_resize(struct tty_struct *tty, struct tty_struct *real_tty,
2120 struct winsize *ws)
2121{
2122 struct pid *pgrp, *rpgrp;
2123 unsigned long flags;
2124
2125 /* For a PTY we need to lock the tty side */
2126 mutex_lock(&real_tty->termios_mutex);
2127 if (!memcmp(ws, &real_tty->winsize, sizeof(*ws)))
2128 goto done;
2129 /* Get the PID values and reference them so we can
2130 avoid holding the tty ctrl lock while sending signals */
2131 spin_lock_irqsave(&tty->ctrl_lock, flags);
2132 pgrp = get_pid(tty->pgrp);
2133 rpgrp = get_pid(real_tty->pgrp);
2134 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2135
2136 if (pgrp)
2137 kill_pgrp(pgrp, SIGWINCH, 1);
2138 if (rpgrp != pgrp && rpgrp)
2139 kill_pgrp(rpgrp, SIGWINCH, 1);
2140
2141 put_pid(pgrp);
2142 put_pid(rpgrp);
2143
2144 tty->winsize = *ws;
2145 real_tty->winsize = *ws;
2146done:
2147 mutex_unlock(&real_tty->termios_mutex);
2148 return 0;
2149}
2150
2151/**
2152 * tiocswinsz - implement window size set ioctl
2153 * @tty; tty
2154 * @arg: user buffer for result
2155 *
2156 * Copies the user idea of the window size to the kernel. Traditionally
2157 * this is just advisory information but for the Linux console it
2158 * actually has driver level meaning and triggers a VC resize.
2159 *
2160 * Locking:
2161 * Driver dependant. The default do_resize method takes the
2162 * tty termios mutex and ctrl_lock. The console takes its own lock
2163 * then calls into the default method.
2164 */
2165
2166static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2167 struct winsize __user *arg)
2168{
2169 struct winsize tmp_ws;
2170 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2171 return -EFAULT;
2172
2173 if (tty->ops->resize)
2174 return tty->ops->resize(tty, real_tty, &tmp_ws);
2175 else
2176 return tty_do_resize(tty, real_tty, &tmp_ws);
2177}
2178
2179/**
2180 * tioccons - allow admin to move logical console
2181 * @file: the file to become console
2182 *
2183 * Allow the adminstrator to move the redirected console device
2184 *
2185 * Locking: uses redirect_lock to guard the redirect information
2186 */
2187
2188static int tioccons(struct file *file)
2189{
2190 if (!capable(CAP_SYS_ADMIN))
2191 return -EPERM;
2192 if (file->f_op->write == redirected_tty_write) {
2193 struct file *f;
2194 spin_lock(&redirect_lock);
2195 f = redirect;
2196 redirect = NULL;
2197 spin_unlock(&redirect_lock);
2198 if (f)
2199 fput(f);
2200 return 0;
2201 }
2202 spin_lock(&redirect_lock);
2203 if (redirect) {
2204 spin_unlock(&redirect_lock);
2205 return -EBUSY;
2206 }
2207 get_file(file);
2208 redirect = file;
2209 spin_unlock(&redirect_lock);
2210 return 0;
2211}
2212
2213/**
2214 * fionbio - non blocking ioctl
2215 * @file: file to set blocking value
2216 * @p: user parameter
2217 *
2218 * Historical tty interfaces had a blocking control ioctl before
2219 * the generic functionality existed. This piece of history is preserved
2220 * in the expected tty API of posix OS's.
2221 *
2222 * Locking: none, the open fle handle ensures it won't go away.
2223 */
2224
2225static int fionbio(struct file *file, int __user *p)
2226{
2227 int nonblock;
2228
2229 if (get_user(nonblock, p))
2230 return -EFAULT;
2231
2232 /* file->f_flags is still BKL protected in the fs layer - vomit */
2233 lock_kernel();
2234 if (nonblock)
2235 file->f_flags |= O_NONBLOCK;
2236 else
2237 file->f_flags &= ~O_NONBLOCK;
2238 unlock_kernel();
2239 return 0;
2240}
2241
2242/**
2243 * tiocsctty - set controlling tty
2244 * @tty: tty structure
2245 * @arg: user argument
2246 *
2247 * This ioctl is used to manage job control. It permits a session
2248 * leader to set this tty as the controlling tty for the session.
2249 *
2250 * Locking:
2251 * Takes tty_mutex() to protect tty instance
2252 * Takes tasklist_lock internally to walk sessions
2253 * Takes ->siglock() when updating signal->tty
2254 */
2255
2256static int tiocsctty(struct tty_struct *tty, int arg)
2257{
2258 int ret = 0;
2259 if (current->signal->leader && (task_session(current) == tty->session))
2260 return ret;
2261
2262 mutex_lock(&tty_mutex);
2263 /*
2264 * The process must be a session leader and
2265 * not have a controlling tty already.
2266 */
2267 if (!current->signal->leader || current->signal->tty) {
2268 ret = -EPERM;
2269 goto unlock;
2270 }
2271
2272 if (tty->session) {
2273 /*
2274 * This tty is already the controlling
2275 * tty for another session group!
2276 */
2277 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2278 /*
2279 * Steal it away
2280 */
2281 read_lock(&tasklist_lock);
2282 session_clear_tty(tty->session);
2283 read_unlock(&tasklist_lock);
2284 } else {
2285 ret = -EPERM;
2286 goto unlock;
2287 }
2288 }
2289 proc_set_tty(current, tty);
2290unlock:
2291 mutex_unlock(&tty_mutex);
2292 return ret;
2293}
2294
2295/**
2296 * tty_get_pgrp - return a ref counted pgrp pid
2297 * @tty: tty to read
2298 *
2299 * Returns a refcounted instance of the pid struct for the process
2300 * group controlling the tty.
2301 */
2302
2303struct pid *tty_get_pgrp(struct tty_struct *tty)
2304{
2305 unsigned long flags;
2306 struct pid *pgrp;
2307
2308 spin_lock_irqsave(&tty->ctrl_lock, flags);
2309 pgrp = get_pid(tty->pgrp);
2310 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2311
2312 return pgrp;
2313}
2314EXPORT_SYMBOL_GPL(tty_get_pgrp);
2315
2316/**
2317 * tiocgpgrp - get process group
2318 * @tty: tty passed by user
2319 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2320 * @p: returned pid
2321 *
2322 * Obtain the process group of the tty. If there is no process group
2323 * return an error.
2324 *
2325 * Locking: none. Reference to current->signal->tty is safe.
2326 */
2327
2328static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2329{
2330 struct pid *pid;
2331 int ret;
2332 /*
2333 * (tty == real_tty) is a cheap way of
2334 * testing if the tty is NOT a master pty.
2335 */
2336 if (tty == real_tty && current->signal->tty != real_tty)
2337 return -ENOTTY;
2338 pid = tty_get_pgrp(real_tty);
2339 ret = put_user(pid_vnr(pid), p);
2340 put_pid(pid);
2341 return ret;
2342}
2343
2344/**
2345 * tiocspgrp - attempt to set process group
2346 * @tty: tty passed by user
2347 * @real_tty: tty side device matching tty passed by user
2348 * @p: pid pointer
2349 *
2350 * Set the process group of the tty to the session passed. Only
2351 * permitted where the tty session is our session.
2352 *
2353 * Locking: RCU, ctrl lock
2354 */
2355
2356static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2357{
2358 struct pid *pgrp;
2359 pid_t pgrp_nr;
2360 int retval = tty_check_change(real_tty);
2361 unsigned long flags;
2362
2363 if (retval == -EIO)
2364 return -ENOTTY;
2365 if (retval)
2366 return retval;
2367 if (!current->signal->tty ||
2368 (current->signal->tty != real_tty) ||
2369 (real_tty->session != task_session(current)))
2370 return -ENOTTY;
2371 if (get_user(pgrp_nr, p))
2372 return -EFAULT;
2373 if (pgrp_nr < 0)
2374 return -EINVAL;
2375 rcu_read_lock();
2376 pgrp = find_vpid(pgrp_nr);
2377 retval = -ESRCH;
2378 if (!pgrp)
2379 goto out_unlock;
2380 retval = -EPERM;
2381 if (session_of_pgrp(pgrp) != task_session(current))
2382 goto out_unlock;
2383 retval = 0;
2384 spin_lock_irqsave(&tty->ctrl_lock, flags);
2385 put_pid(real_tty->pgrp);
2386 real_tty->pgrp = get_pid(pgrp);
2387 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2388out_unlock:
2389 rcu_read_unlock();
2390 return retval;
2391}
2392
2393/**
2394 * tiocgsid - get session id
2395 * @tty: tty passed by user
2396 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2397 * @p: pointer to returned session id
2398 *
2399 * Obtain the session id of the tty. If there is no session
2400 * return an error.
2401 *
2402 * Locking: none. Reference to current->signal->tty is safe.
2403 */
2404
2405static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2406{
2407 /*
2408 * (tty == real_tty) is a cheap way of
2409 * testing if the tty is NOT a master pty.
2410 */
2411 if (tty == real_tty && current->signal->tty != real_tty)
2412 return -ENOTTY;
2413 if (!real_tty->session)
2414 return -ENOTTY;
2415 return put_user(pid_vnr(real_tty->session), p);
2416}
2417
2418/**
2419 * tiocsetd - set line discipline
2420 * @tty: tty device
2421 * @p: pointer to user data
2422 *
2423 * Set the line discipline according to user request.
2424 *
2425 * Locking: see tty_set_ldisc, this function is just a helper
2426 */
2427
2428static int tiocsetd(struct tty_struct *tty, int __user *p)
2429{
2430 int ldisc;
2431 int ret;
2432
2433 if (get_user(ldisc, p))
2434 return -EFAULT;
2435
2436 lock_kernel();
2437 ret = tty_set_ldisc(tty, ldisc);
2438 unlock_kernel();
2439
2440 return ret;
2441}
2442
2443/**
2444 * send_break - performed time break
2445 * @tty: device to break on
2446 * @duration: timeout in mS
2447 *
2448 * Perform a timed break on hardware that lacks its own driver level
2449 * timed break functionality.
2450 *
2451 * Locking:
2452 * atomic_write_lock serializes
2453 *
2454 */
2455
2456static int send_break(struct tty_struct *tty, unsigned int duration)
2457{
2458 int retval;
2459
2460 if (tty->ops->break_ctl == NULL)
2461 return 0;
2462
2463 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2464 retval = tty->ops->break_ctl(tty, duration);
2465 else {
2466 /* Do the work ourselves */
2467 if (tty_write_lock(tty, 0) < 0)
2468 return -EINTR;
2469 retval = tty->ops->break_ctl(tty, -1);
2470 if (retval)
2471 goto out;
2472 if (!signal_pending(current))
2473 msleep_interruptible(duration);
2474 retval = tty->ops->break_ctl(tty, 0);
2475out:
2476 tty_write_unlock(tty);
2477 if (signal_pending(current))
2478 retval = -EINTR;
2479 }
2480 return retval;
2481}
2482
2483/**
2484 * tty_tiocmget - get modem status
2485 * @tty: tty device
2486 * @file: user file pointer
2487 * @p: pointer to result
2488 *
2489 * Obtain the modem status bits from the tty driver if the feature
2490 * is supported. Return -EINVAL if it is not available.
2491 *
2492 * Locking: none (up to the driver)
2493 */
2494
2495static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2496{
2497 int retval = -EINVAL;
2498
2499 if (tty->ops->tiocmget) {
2500 retval = tty->ops->tiocmget(tty, file);
2501
2502 if (retval >= 0)
2503 retval = put_user(retval, p);
2504 }
2505 return retval;
2506}
2507
2508/**
2509 * tty_tiocmset - set modem status
2510 * @tty: tty device
2511 * @file: user file pointer
2512 * @cmd: command - clear bits, set bits or set all
2513 * @p: pointer to desired bits
2514 *
2515 * Set the modem status bits from the tty driver if the feature
2516 * is supported. Return -EINVAL if it is not available.
2517 *
2518 * Locking: none (up to the driver)
2519 */
2520
2521static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2522 unsigned __user *p)
2523{
2524 int retval;
2525 unsigned int set, clear, val;
2526
2527 if (tty->ops->tiocmset == NULL)
2528 return -EINVAL;
2529
2530 retval = get_user(val, p);
2531 if (retval)
2532 return retval;
2533 set = clear = 0;
2534 switch (cmd) {
2535 case TIOCMBIS:
2536 set = val;
2537 break;
2538 case TIOCMBIC:
2539 clear = val;
2540 break;
2541 case TIOCMSET:
2542 set = val;
2543 clear = ~val;
2544 break;
2545 }
2546 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2547 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2548 return tty->ops->tiocmset(tty, file, set, clear);
2549}
2550
2551/*
2552 * Split this up, as gcc can choke on it otherwise..
2553 */
2554long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2555{
2556 struct tty_struct *tty, *real_tty;
2557 void __user *p = (void __user *)arg;
2558 int retval;
2559 struct tty_ldisc *ld;
2560 struct inode *inode = file->f_dentry->d_inode;
2561
2562 tty = (struct tty_struct *)file->private_data;
2563 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2564 return -EINVAL;
2565
2566 real_tty = tty;
2567 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2568 tty->driver->subtype == PTY_TYPE_MASTER)
2569 real_tty = tty->link;
2570
2571
2572 /*
2573 * Factor out some common prep work
2574 */
2575 switch (cmd) {
2576 case TIOCSETD:
2577 case TIOCSBRK:
2578 case TIOCCBRK:
2579 case TCSBRK:
2580 case TCSBRKP:
2581 retval = tty_check_change(tty);
2582 if (retval)
2583 return retval;
2584 if (cmd != TIOCCBRK) {
2585 tty_wait_until_sent(tty, 0);
2586 if (signal_pending(current))
2587 return -EINTR;
2588 }
2589 break;
2590 }
2591
2592 /*
2593 * Now do the stuff.
2594 */
2595 switch (cmd) {
2596 case TIOCSTI:
2597 return tiocsti(tty, p);
2598 case TIOCGWINSZ:
2599 return tiocgwinsz(real_tty, p);
2600 case TIOCSWINSZ:
2601 return tiocswinsz(tty, real_tty, p);
2602 case TIOCCONS:
2603 return real_tty != tty ? -EINVAL : tioccons(file);
2604 case FIONBIO:
2605 return fionbio(file, p);
2606 case TIOCEXCL:
2607 set_bit(TTY_EXCLUSIVE, &tty->flags);
2608 return 0;
2609 case TIOCNXCL:
2610 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2611 return 0;
2612 case TIOCNOTTY:
2613 if (current->signal->tty != tty)
2614 return -ENOTTY;
2615 no_tty();
2616 return 0;
2617 case TIOCSCTTY:
2618 return tiocsctty(tty, arg);
2619 case TIOCGPGRP:
2620 return tiocgpgrp(tty, real_tty, p);
2621 case TIOCSPGRP:
2622 return tiocspgrp(tty, real_tty, p);
2623 case TIOCGSID:
2624 return tiocgsid(tty, real_tty, p);
2625 case TIOCGETD:
2626 return put_user(tty->ldisc.ops->num, (int __user *)p);
2627 case TIOCSETD:
2628 return tiocsetd(tty, p);
2629 /*
2630 * Break handling
2631 */
2632 case TIOCSBRK: /* Turn break on, unconditionally */
2633 if (tty->ops->break_ctl)
2634 return tty->ops->break_ctl(tty, -1);
2635 return 0;
2636 case TIOCCBRK: /* Turn break off, unconditionally */
2637 if (tty->ops->break_ctl)
2638 return tty->ops->break_ctl(tty, 0);
2639 return 0;
2640 case TCSBRK: /* SVID version: non-zero arg --> no break */
2641 /* non-zero arg means wait for all output data
2642 * to be sent (performed above) but don't send break.
2643 * This is used by the tcdrain() termios function.
2644 */
2645 if (!arg)
2646 return send_break(tty, 250);
2647 return 0;
2648 case TCSBRKP: /* support for POSIX tcsendbreak() */
2649 return send_break(tty, arg ? arg*100 : 250);
2650
2651 case TIOCMGET:
2652 return tty_tiocmget(tty, file, p);
2653 case TIOCMSET:
2654 case TIOCMBIC:
2655 case TIOCMBIS:
2656 return tty_tiocmset(tty, file, cmd, p);
2657 case TCFLSH:
2658 switch (arg) {
2659 case TCIFLUSH:
2660 case TCIOFLUSH:
2661 /* flush tty buffer and allow ldisc to process ioctl */
2662 tty_buffer_flush(tty);
2663 break;
2664 }
2665 break;
2666 }
2667 if (tty->ops->ioctl) {
2668 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2669 if (retval != -ENOIOCTLCMD)
2670 return retval;
2671 }
2672 ld = tty_ldisc_ref_wait(tty);
2673 retval = -EINVAL;
2674 if (ld->ops->ioctl) {
2675 retval = ld->ops->ioctl(tty, file, cmd, arg);
2676 if (retval == -ENOIOCTLCMD)
2677 retval = -EINVAL;
2678 }
2679 tty_ldisc_deref(ld);
2680 return retval;
2681}
2682
2683#ifdef CONFIG_COMPAT
2684static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2685 unsigned long arg)
2686{
2687 struct inode *inode = file->f_dentry->d_inode;
2688 struct tty_struct *tty = file->private_data;
2689 struct tty_ldisc *ld;
2690 int retval = -ENOIOCTLCMD;
2691
2692 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2693 return -EINVAL;
2694
2695 if (tty->ops->compat_ioctl) {
2696 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2697 if (retval != -ENOIOCTLCMD)
2698 return retval;
2699 }
2700
2701 ld = tty_ldisc_ref_wait(tty);
2702 if (ld->ops->compat_ioctl)
2703 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2704 tty_ldisc_deref(ld);
2705
2706 return retval;
2707}
2708#endif
2709
2710/*
2711 * This implements the "Secure Attention Key" --- the idea is to
2712 * prevent trojan horses by killing all processes associated with this
2713 * tty when the user hits the "Secure Attention Key". Required for
2714 * super-paranoid applications --- see the Orange Book for more details.
2715 *
2716 * This code could be nicer; ideally it should send a HUP, wait a few
2717 * seconds, then send a INT, and then a KILL signal. But you then
2718 * have to coordinate with the init process, since all processes associated
2719 * with the current tty must be dead before the new getty is allowed
2720 * to spawn.
2721 *
2722 * Now, if it would be correct ;-/ The current code has a nasty hole -
2723 * it doesn't catch files in flight. We may send the descriptor to ourselves
2724 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2725 *
2726 * Nasty bug: do_SAK is being called in interrupt context. This can
2727 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2728 */
2729void __do_SAK(struct tty_struct *tty)
2730{
2731#ifdef TTY_SOFT_SAK
2732 tty_hangup(tty);
2733#else
2734 struct task_struct *g, *p;
2735 struct pid *session;
2736 int i;
2737 struct file *filp;
2738 struct fdtable *fdt;
2739
2740 if (!tty)
2741 return;
2742 session = tty->session;
2743
2744 tty_ldisc_flush(tty);
2745
2746 tty_driver_flush_buffer(tty);
2747
2748 read_lock(&tasklist_lock);
2749 /* Kill the entire session */
2750 do_each_pid_task(session, PIDTYPE_SID, p) {
2751 printk(KERN_NOTICE "SAK: killed process %d"
2752 " (%s): task_session_nr(p)==tty->session\n",
2753 task_pid_nr(p), p->comm);
2754 send_sig(SIGKILL, p, 1);
2755 } while_each_pid_task(session, PIDTYPE_SID, p);
2756 /* Now kill any processes that happen to have the
2757 * tty open.
2758 */
2759 do_each_thread(g, p) {
2760 if (p->signal->tty == tty) {
2761 printk(KERN_NOTICE "SAK: killed process %d"
2762 " (%s): task_session_nr(p)==tty->session\n",
2763 task_pid_nr(p), p->comm);
2764 send_sig(SIGKILL, p, 1);
2765 continue;
2766 }
2767 task_lock(p);
2768 if (p->files) {
2769 /*
2770 * We don't take a ref to the file, so we must
2771 * hold ->file_lock instead.
2772 */
2773 spin_lock(&p->files->file_lock);
2774 fdt = files_fdtable(p->files);
2775 for (i = 0; i < fdt->max_fds; i++) {
2776 filp = fcheck_files(p->files, i);
2777 if (!filp)
2778 continue;
2779 if (filp->f_op->read == tty_read &&
2780 filp->private_data == tty) {
2781 printk(KERN_NOTICE "SAK: killed process %d"
2782 " (%s): fd#%d opened to the tty\n",
2783 task_pid_nr(p), p->comm, i);
2784 force_sig(SIGKILL, p);
2785 break;
2786 }
2787 }
2788 spin_unlock(&p->files->file_lock);
2789 }
2790 task_unlock(p);
2791 } while_each_thread(g, p);
2792 read_unlock(&tasklist_lock);
2793#endif
2794}
2795
2796static void do_SAK_work(struct work_struct *work)
2797{
2798 struct tty_struct *tty =
2799 container_of(work, struct tty_struct, SAK_work);
2800 __do_SAK(tty);
2801}
2802
2803/*
2804 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2805 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2806 * the values which we write to it will be identical to the values which it
2807 * already has. --akpm
2808 */
2809void do_SAK(struct tty_struct *tty)
2810{
2811 if (!tty)
2812 return;
2813 schedule_work(&tty->SAK_work);
2814}
2815
2816EXPORT_SYMBOL(do_SAK);
2817
2818/**
2819 * initialize_tty_struct
2820 * @tty: tty to initialize
2821 *
2822 * This subroutine initializes a tty structure that has been newly
2823 * allocated.
2824 *
2825 * Locking: none - tty in question must not be exposed at this point
2826 */
2827
2828static void initialize_tty_struct(struct tty_struct *tty)
2829{
2830 memset(tty, 0, sizeof(struct tty_struct));
2831 kref_init(&tty->kref);
2832 tty->magic = TTY_MAGIC;
2833 tty_ldisc_init(tty);
2834 tty->session = NULL;
2835 tty->pgrp = NULL;
2836 tty->overrun_time = jiffies;
2837 tty->buf.head = tty->buf.tail = NULL;
2838 tty_buffer_init(tty);
2839 mutex_init(&tty->termios_mutex);
2840 init_waitqueue_head(&tty->write_wait);
2841 init_waitqueue_head(&tty->read_wait);
2842 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2843 mutex_init(&tty->atomic_read_lock);
2844 mutex_init(&tty->atomic_write_lock);
2845 spin_lock_init(&tty->read_lock);
2846 spin_lock_init(&tty->ctrl_lock);
2847 INIT_LIST_HEAD(&tty->tty_files);
2848 INIT_WORK(&tty->SAK_work, do_SAK_work);
2849}
2850
2851/**
2852 * tty_put_char - write one character to a tty
2853 * @tty: tty
2854 * @ch: character
2855 *
2856 * Write one byte to the tty using the provided put_char method
2857 * if present. Returns the number of characters successfully output.
2858 *
2859 * Note: the specific put_char operation in the driver layer may go
2860 * away soon. Don't call it directly, use this method
2861 */
2862
2863int tty_put_char(struct tty_struct *tty, unsigned char ch)
2864{
2865 if (tty->ops->put_char)
2866 return tty->ops->put_char(tty, ch);
2867 return tty->ops->write(tty, &ch, 1);
2868}
2869EXPORT_SYMBOL_GPL(tty_put_char);
2870
2871struct class *tty_class;
2872
2873/**
2874 * tty_register_device - register a tty device
2875 * @driver: the tty driver that describes the tty device
2876 * @index: the index in the tty driver for this tty device
2877 * @device: a struct device that is associated with this tty device.
2878 * This field is optional, if there is no known struct device
2879 * for this tty device it can be set to NULL safely.
2880 *
2881 * Returns a pointer to the struct device for this tty device
2882 * (or ERR_PTR(-EFOO) on error).
2883 *
2884 * This call is required to be made to register an individual tty device
2885 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2886 * that bit is not set, this function should not be called by a tty
2887 * driver.
2888 *
2889 * Locking: ??
2890 */
2891
2892struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2893 struct device *device)
2894{
2895 char name[64];
2896 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2897
2898 if (index >= driver->num) {
2899 printk(KERN_ERR "Attempt to register invalid tty line number "
2900 " (%d).\n", index);
2901 return ERR_PTR(-EINVAL);
2902 }
2903
2904 if (driver->type == TTY_DRIVER_TYPE_PTY)
2905 pty_line_name(driver, index, name);
2906 else
2907 tty_line_name(driver, index, name);
2908
2909 return device_create_drvdata(tty_class, device, dev, NULL, name);
2910}
2911EXPORT_SYMBOL(tty_register_device);
2912
2913/**
2914 * tty_unregister_device - unregister a tty device
2915 * @driver: the tty driver that describes the tty device
2916 * @index: the index in the tty driver for this tty device
2917 *
2918 * If a tty device is registered with a call to tty_register_device() then
2919 * this function must be called when the tty device is gone.
2920 *
2921 * Locking: ??
2922 */
2923
2924void tty_unregister_device(struct tty_driver *driver, unsigned index)
2925{
2926 device_destroy(tty_class,
2927 MKDEV(driver->major, driver->minor_start) + index);
2928}
2929EXPORT_SYMBOL(tty_unregister_device);
2930
2931struct tty_driver *alloc_tty_driver(int lines)
2932{
2933 struct tty_driver *driver;
2934
2935 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2936 if (driver) {
2937 kref_init(&driver->kref);
2938 driver->magic = TTY_DRIVER_MAGIC;
2939 driver->num = lines;
2940 /* later we'll move allocation of tables here */
2941 }
2942 return driver;
2943}
2944EXPORT_SYMBOL(alloc_tty_driver);
2945
2946static void destruct_tty_driver(struct kref *kref)
2947{
2948 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2949 int i;
2950 struct ktermios *tp;
2951 void *p;
2952
2953 if (driver->flags & TTY_DRIVER_INSTALLED) {
2954 /*
2955 * Free the termios and termios_locked structures because
2956 * we don't want to get memory leaks when modular tty
2957 * drivers are removed from the kernel.
2958 */
2959 for (i = 0; i < driver->num; i++) {
2960 tp = driver->termios[i];
2961 if (tp) {
2962 driver->termios[i] = NULL;
2963 kfree(tp);
2964 }
2965 tp = driver->termios_locked[i];
2966 if (tp) {
2967 driver->termios_locked[i] = NULL;
2968 kfree(tp);
2969 }
2970 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2971 tty_unregister_device(driver, i);
2972 }
2973 p = driver->ttys;
2974 proc_tty_unregister_driver(driver);
2975 driver->ttys = NULL;
2976 driver->termios = driver->termios_locked = NULL;
2977 kfree(p);
2978 cdev_del(&driver->cdev);
2979 }
2980 kfree(driver);
2981}
2982
2983void tty_driver_kref_put(struct tty_driver *driver)
2984{
2985 kref_put(&driver->kref, destruct_tty_driver);
2986}
2987EXPORT_SYMBOL(tty_driver_kref_put);
2988
2989void tty_set_operations(struct tty_driver *driver,
2990 const struct tty_operations *op)
2991{
2992 driver->ops = op;
2993};
2994EXPORT_SYMBOL(tty_set_operations);
2995
2996void put_tty_driver(struct tty_driver *d)
2997{
2998 tty_driver_kref_put(d);
2999}
3000EXPORT_SYMBOL(put_tty_driver);
3001
3002/*
3003 * Called by a tty driver to register itself.
3004 */
3005int tty_register_driver(struct tty_driver *driver)
3006{
3007 int error;
3008 int i;
3009 dev_t dev;
3010 void **p = NULL;
3011
3012 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3013 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3014 if (!p)
3015 return -ENOMEM;
3016 }
3017
3018 if (!driver->major) {
3019 error = alloc_chrdev_region(&dev, driver->minor_start,
3020 driver->num, driver->name);
3021 if (!error) {
3022 driver->major = MAJOR(dev);
3023 driver->minor_start = MINOR(dev);
3024 }
3025 } else {
3026 dev = MKDEV(driver->major, driver->minor_start);
3027 error = register_chrdev_region(dev, driver->num, driver->name);
3028 }
3029 if (error < 0) {
3030 kfree(p);
3031 return error;
3032 }
3033
3034 if (p) {
3035 driver->ttys = (struct tty_struct **)p;
3036 driver->termios = (struct ktermios **)(p + driver->num);
3037 driver->termios_locked = (struct ktermios **)
3038 (p + driver->num * 2);
3039 } else {
3040 driver->ttys = NULL;
3041 driver->termios = NULL;
3042 driver->termios_locked = NULL;
3043 }
3044
3045 cdev_init(&driver->cdev, &tty_fops);
3046 driver->cdev.owner = driver->owner;
3047 error = cdev_add(&driver->cdev, dev, driver->num);
3048 if (error) {
3049 unregister_chrdev_region(dev, driver->num);
3050 driver->ttys = NULL;
3051 driver->termios = driver->termios_locked = NULL;
3052 kfree(p);
3053 return error;
3054 }
3055
3056 mutex_lock(&tty_mutex);
3057 list_add(&driver->tty_drivers, &tty_drivers);
3058 mutex_unlock(&tty_mutex);
3059
3060 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3061 for (i = 0; i < driver->num; i++)
3062 tty_register_device(driver, i, NULL);
3063 }
3064 proc_tty_register_driver(driver);
3065 driver->flags |= TTY_DRIVER_INSTALLED;
3066 return 0;
3067}
3068
3069EXPORT_SYMBOL(tty_register_driver);
3070
3071/*
3072 * Called by a tty driver to unregister itself.
3073 */
3074int tty_unregister_driver(struct tty_driver *driver)
3075{
3076#if 0
3077 /* FIXME */
3078 if (driver->refcount)
3079 return -EBUSY;
3080#endif
3081 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3082 driver->num);
3083 mutex_lock(&tty_mutex);
3084 list_del(&driver->tty_drivers);
3085 mutex_unlock(&tty_mutex);
3086 return 0;
3087}
3088
3089EXPORT_SYMBOL(tty_unregister_driver);
3090
3091dev_t tty_devnum(struct tty_struct *tty)
3092{
3093 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3094}
3095EXPORT_SYMBOL(tty_devnum);
3096
3097void proc_clear_tty(struct task_struct *p)
3098{
3099 struct tty_struct *tty;
3100 spin_lock_irq(&p->sighand->siglock);
3101 tty = p->signal->tty;
3102 p->signal->tty = NULL;
3103 spin_unlock_irq(&p->sighand->siglock);
3104 tty_kref_put(tty);
3105}
3106
3107/* Called under the sighand lock */
3108
3109static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3110{
3111 if (tty) {
3112 unsigned long flags;
3113 /* We should not have a session or pgrp to put here but.... */
3114 spin_lock_irqsave(&tty->ctrl_lock, flags);
3115 put_pid(tty->session);
3116 put_pid(tty->pgrp);
3117 tty->pgrp = get_pid(task_pgrp(tsk));
3118 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3119 tty->session = get_pid(task_session(tsk));
3120 if (tsk->signal->tty) {
3121 printk(KERN_DEBUG "tty not NULL!!\n");
3122 tty_kref_put(tsk->signal->tty);
3123 }
3124 }
3125 put_pid(tsk->signal->tty_old_pgrp);
3126 tsk->signal->tty = tty_kref_get(tty);
3127 tsk->signal->tty_old_pgrp = NULL;
3128}
3129
3130static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3131{
3132 spin_lock_irq(&tsk->sighand->siglock);
3133 __proc_set_tty(tsk, tty);
3134 spin_unlock_irq(&tsk->sighand->siglock);
3135}
3136
3137struct tty_struct *get_current_tty(void)
3138{
3139 struct tty_struct *tty;
3140 unsigned long flags;
3141
3142 spin_lock_irqsave(&current->sighand->siglock, flags);
3143 tty = tty_kref_get(current->signal->tty);
3144 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3145 return tty;
3146}
3147EXPORT_SYMBOL_GPL(get_current_tty);
3148
3149void tty_default_fops(struct file_operations *fops)
3150{
3151 *fops = tty_fops;
3152}
3153
3154/*
3155 * Initialize the console device. This is called *early*, so
3156 * we can't necessarily depend on lots of kernel help here.
3157 * Just do some early initializations, and do the complex setup
3158 * later.
3159 */
3160void __init console_init(void)
3161{
3162 initcall_t *call;
3163
3164 /* Setup the default TTY line discipline. */
3165 tty_ldisc_begin();
3166
3167 /*
3168 * set up the console device so that later boot sequences can
3169 * inform about problems etc..
3170 */
3171 call = __con_initcall_start;
3172 while (call < __con_initcall_end) {
3173 (*call)();
3174 call++;
3175 }
3176}
3177
3178static int __init tty_class_init(void)
3179{
3180 tty_class = class_create(THIS_MODULE, "tty");
3181 if (IS_ERR(tty_class))
3182 return PTR_ERR(tty_class);
3183 return 0;
3184}
3185
3186postcore_initcall(tty_class_init);
3187
3188/* 3/2004 jmc: why do these devices exist? */
3189
3190static struct cdev tty_cdev, console_cdev;
3191
3192/*
3193 * Ok, now we can initialize the rest of the tty devices and can count
3194 * on memory allocations, interrupts etc..
3195 */
3196static int __init tty_init(void)
3197{
3198 cdev_init(&tty_cdev, &tty_fops);
3199 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3200 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3201 panic("Couldn't register /dev/tty driver\n");
3202 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3203 "tty");
3204
3205 cdev_init(&console_cdev, &console_fops);
3206 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3207 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3208 panic("Couldn't register /dev/console driver\n");
3209 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3210 "console");
3211
3212#ifdef CONFIG_VT
3213 vty_init(&console_fops);
3214#endif
3215 return 0;
3216}
3217module_init(tty_init);