]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - drivers/cpufreq/cpufreq.c
[CPUFREQ] Only check for transition latency on problematic governors (kconfig fix)
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / cpufreq.c
... / ...
CommitLineData
1/*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 *
7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8 * Added handling for CPU hotplug
9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10 * Fix handling for CPU hotplug -- affected CPUs
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/init.h>
21#include <linux/notifier.h>
22#include <linux/cpufreq.h>
23#include <linux/delay.h>
24#include <linux/interrupt.h>
25#include <linux/spinlock.h>
26#include <linux/device.h>
27#include <linux/slab.h>
28#include <linux/cpu.h>
29#include <linux/completion.h>
30#include <linux/mutex.h>
31
32#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
33 "cpufreq-core", msg)
34
35/**
36 * The "cpufreq driver" - the arch- or hardware-dependent low
37 * level driver of CPUFreq support, and its spinlock. This lock
38 * also protects the cpufreq_cpu_data array.
39 */
40static struct cpufreq_driver *cpufreq_driver;
41static struct cpufreq_policy *cpufreq_cpu_data[NR_CPUS];
42#ifdef CONFIG_HOTPLUG_CPU
43/* This one keeps track of the previously set governor of a removed CPU */
44static struct cpufreq_governor *cpufreq_cpu_governor[NR_CPUS];
45#endif
46static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48/*
49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50 * all cpufreq/hotplug/workqueue/etc related lock issues.
51 *
52 * The rules for this semaphore:
53 * - Any routine that wants to read from the policy structure will
54 * do a down_read on this semaphore.
55 * - Any routine that will write to the policy structure and/or may take away
56 * the policy altogether (eg. CPU hotplug), will hold this lock in write
57 * mode before doing so.
58 *
59 * Additional rules:
60 * - All holders of the lock should check to make sure that the CPU they
61 * are concerned with are online after they get the lock.
62 * - Governor routines that can be called in cpufreq hotplug path should not
63 * take this sem as top level hotplug notifier handler takes this.
64 */
65static DEFINE_PER_CPU(int, policy_cpu);
66static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
67
68#define lock_policy_rwsem(mode, cpu) \
69int lock_policy_rwsem_##mode \
70(int cpu) \
71{ \
72 int policy_cpu = per_cpu(policy_cpu, cpu); \
73 BUG_ON(policy_cpu == -1); \
74 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
75 if (unlikely(!cpu_online(cpu))) { \
76 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
77 return -1; \
78 } \
79 \
80 return 0; \
81}
82
83lock_policy_rwsem(read, cpu);
84EXPORT_SYMBOL_GPL(lock_policy_rwsem_read);
85
86lock_policy_rwsem(write, cpu);
87EXPORT_SYMBOL_GPL(lock_policy_rwsem_write);
88
89void unlock_policy_rwsem_read(int cpu)
90{
91 int policy_cpu = per_cpu(policy_cpu, cpu);
92 BUG_ON(policy_cpu == -1);
93 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
94}
95EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read);
96
97void unlock_policy_rwsem_write(int cpu)
98{
99 int policy_cpu = per_cpu(policy_cpu, cpu);
100 BUG_ON(policy_cpu == -1);
101 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
102}
103EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write);
104
105
106/* internal prototypes */
107static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
108static unsigned int __cpufreq_get(unsigned int cpu);
109static void handle_update(struct work_struct *work);
110
111/**
112 * Two notifier lists: the "policy" list is involved in the
113 * validation process for a new CPU frequency policy; the
114 * "transition" list for kernel code that needs to handle
115 * changes to devices when the CPU clock speed changes.
116 * The mutex locks both lists.
117 */
118static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
119static struct srcu_notifier_head cpufreq_transition_notifier_list;
120
121static int __init init_cpufreq_transition_notifier_list(void)
122{
123 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
124 return 0;
125}
126pure_initcall(init_cpufreq_transition_notifier_list);
127
128static LIST_HEAD(cpufreq_governor_list);
129static DEFINE_MUTEX (cpufreq_governor_mutex);
130
131struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
132{
133 struct cpufreq_policy *data;
134 unsigned long flags;
135
136 if (cpu >= NR_CPUS)
137 goto err_out;
138
139 /* get the cpufreq driver */
140 spin_lock_irqsave(&cpufreq_driver_lock, flags);
141
142 if (!cpufreq_driver)
143 goto err_out_unlock;
144
145 if (!try_module_get(cpufreq_driver->owner))
146 goto err_out_unlock;
147
148
149 /* get the CPU */
150 data = cpufreq_cpu_data[cpu];
151
152 if (!data)
153 goto err_out_put_module;
154
155 if (!kobject_get(&data->kobj))
156 goto err_out_put_module;
157
158 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
159 return data;
160
161err_out_put_module:
162 module_put(cpufreq_driver->owner);
163err_out_unlock:
164 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
165err_out:
166 return NULL;
167}
168EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
169
170
171void cpufreq_cpu_put(struct cpufreq_policy *data)
172{
173 kobject_put(&data->kobj);
174 module_put(cpufreq_driver->owner);
175}
176EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
177
178
179/*********************************************************************
180 * UNIFIED DEBUG HELPERS *
181 *********************************************************************/
182#ifdef CONFIG_CPU_FREQ_DEBUG
183
184/* what part(s) of the CPUfreq subsystem are debugged? */
185static unsigned int debug;
186
187/* is the debug output ratelimit'ed using printk_ratelimit? User can
188 * set or modify this value.
189 */
190static unsigned int debug_ratelimit = 1;
191
192/* is the printk_ratelimit'ing enabled? It's enabled after a successful
193 * loading of a cpufreq driver, temporarily disabled when a new policy
194 * is set, and disabled upon cpufreq driver removal
195 */
196static unsigned int disable_ratelimit = 1;
197static DEFINE_SPINLOCK(disable_ratelimit_lock);
198
199static void cpufreq_debug_enable_ratelimit(void)
200{
201 unsigned long flags;
202
203 spin_lock_irqsave(&disable_ratelimit_lock, flags);
204 if (disable_ratelimit)
205 disable_ratelimit--;
206 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
207}
208
209static void cpufreq_debug_disable_ratelimit(void)
210{
211 unsigned long flags;
212
213 spin_lock_irqsave(&disable_ratelimit_lock, flags);
214 disable_ratelimit++;
215 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
216}
217
218void cpufreq_debug_printk(unsigned int type, const char *prefix,
219 const char *fmt, ...)
220{
221 char s[256];
222 va_list args;
223 unsigned int len;
224 unsigned long flags;
225
226 WARN_ON(!prefix);
227 if (type & debug) {
228 spin_lock_irqsave(&disable_ratelimit_lock, flags);
229 if (!disable_ratelimit && debug_ratelimit
230 && !printk_ratelimit()) {
231 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
232 return;
233 }
234 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
235
236 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
237
238 va_start(args, fmt);
239 len += vsnprintf(&s[len], (256 - len), fmt, args);
240 va_end(args);
241
242 printk(s);
243
244 WARN_ON(len < 5);
245 }
246}
247EXPORT_SYMBOL(cpufreq_debug_printk);
248
249
250module_param(debug, uint, 0644);
251MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core,"
252 " 2 to debug drivers, and 4 to debug governors.");
253
254module_param(debug_ratelimit, uint, 0644);
255MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:"
256 " set to 0 to disable ratelimiting.");
257
258#else /* !CONFIG_CPU_FREQ_DEBUG */
259
260static inline void cpufreq_debug_enable_ratelimit(void) { return; }
261static inline void cpufreq_debug_disable_ratelimit(void) { return; }
262
263#endif /* CONFIG_CPU_FREQ_DEBUG */
264
265
266/*********************************************************************
267 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
268 *********************************************************************/
269
270/**
271 * adjust_jiffies - adjust the system "loops_per_jiffy"
272 *
273 * This function alters the system "loops_per_jiffy" for the clock
274 * speed change. Note that loops_per_jiffy cannot be updated on SMP
275 * systems as each CPU might be scaled differently. So, use the arch
276 * per-CPU loops_per_jiffy value wherever possible.
277 */
278#ifndef CONFIG_SMP
279static unsigned long l_p_j_ref;
280static unsigned int l_p_j_ref_freq;
281
282static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
283{
284 if (ci->flags & CPUFREQ_CONST_LOOPS)
285 return;
286
287 if (!l_p_j_ref_freq) {
288 l_p_j_ref = loops_per_jiffy;
289 l_p_j_ref_freq = ci->old;
290 dprintk("saving %lu as reference value for loops_per_jiffy;"
291 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
292 }
293 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) ||
294 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
295 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
296 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
297 ci->new);
298 dprintk("scaling loops_per_jiffy to %lu"
299 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
300 }
301}
302#else
303static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
304{
305 return;
306}
307#endif
308
309
310/**
311 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
312 * on frequency transition.
313 *
314 * This function calls the transition notifiers and the "adjust_jiffies"
315 * function. It is called twice on all CPU frequency changes that have
316 * external effects.
317 */
318void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
319{
320 struct cpufreq_policy *policy;
321
322 BUG_ON(irqs_disabled());
323
324 freqs->flags = cpufreq_driver->flags;
325 dprintk("notification %u of frequency transition to %u kHz\n",
326 state, freqs->new);
327
328 policy = cpufreq_cpu_data[freqs->cpu];
329 switch (state) {
330
331 case CPUFREQ_PRECHANGE:
332 /* detect if the driver reported a value as "old frequency"
333 * which is not equal to what the cpufreq core thinks is
334 * "old frequency".
335 */
336 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
337 if ((policy) && (policy->cpu == freqs->cpu) &&
338 (policy->cur) && (policy->cur != freqs->old)) {
339 dprintk("Warning: CPU frequency is"
340 " %u, cpufreq assumed %u kHz.\n",
341 freqs->old, policy->cur);
342 freqs->old = policy->cur;
343 }
344 }
345 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
346 CPUFREQ_PRECHANGE, freqs);
347 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
348 break;
349
350 case CPUFREQ_POSTCHANGE:
351 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
352 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
353 CPUFREQ_POSTCHANGE, freqs);
354 if (likely(policy) && likely(policy->cpu == freqs->cpu))
355 policy->cur = freqs->new;
356 break;
357 }
358}
359EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
360
361
362
363/*********************************************************************
364 * SYSFS INTERFACE *
365 *********************************************************************/
366
367static struct cpufreq_governor *__find_governor(const char *str_governor)
368{
369 struct cpufreq_governor *t;
370
371 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
372 if (!strnicmp(str_governor,t->name,CPUFREQ_NAME_LEN))
373 return t;
374
375 return NULL;
376}
377
378/**
379 * cpufreq_parse_governor - parse a governor string
380 */
381static int cpufreq_parse_governor (char *str_governor, unsigned int *policy,
382 struct cpufreq_governor **governor)
383{
384 int err = -EINVAL;
385
386 if (!cpufreq_driver)
387 goto out;
388
389 if (cpufreq_driver->setpolicy) {
390 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
391 *policy = CPUFREQ_POLICY_PERFORMANCE;
392 err = 0;
393 } else if (!strnicmp(str_governor, "powersave",
394 CPUFREQ_NAME_LEN)) {
395 *policy = CPUFREQ_POLICY_POWERSAVE;
396 err = 0;
397 }
398 } else if (cpufreq_driver->target) {
399 struct cpufreq_governor *t;
400
401 mutex_lock(&cpufreq_governor_mutex);
402
403 t = __find_governor(str_governor);
404
405 if (t == NULL) {
406 char *name = kasprintf(GFP_KERNEL, "cpufreq_%s",
407 str_governor);
408
409 if (name) {
410 int ret;
411
412 mutex_unlock(&cpufreq_governor_mutex);
413 ret = request_module(name);
414 mutex_lock(&cpufreq_governor_mutex);
415
416 if (ret == 0)
417 t = __find_governor(str_governor);
418 }
419
420 kfree(name);
421 }
422
423 if (t != NULL) {
424 *governor = t;
425 err = 0;
426 }
427
428 mutex_unlock(&cpufreq_governor_mutex);
429 }
430 out:
431 return err;
432}
433
434
435/* drivers/base/cpu.c */
436extern struct sysdev_class cpu_sysdev_class;
437
438
439/**
440 * cpufreq_per_cpu_attr_read() / show_##file_name() -
441 * print out cpufreq information
442 *
443 * Write out information from cpufreq_driver->policy[cpu]; object must be
444 * "unsigned int".
445 */
446
447#define show_one(file_name, object) \
448static ssize_t show_##file_name \
449(struct cpufreq_policy * policy, char *buf) \
450{ \
451 return sprintf (buf, "%u\n", policy->object); \
452}
453
454show_one(cpuinfo_min_freq, cpuinfo.min_freq);
455show_one(cpuinfo_max_freq, cpuinfo.max_freq);
456show_one(scaling_min_freq, min);
457show_one(scaling_max_freq, max);
458show_one(scaling_cur_freq, cur);
459
460static int __cpufreq_set_policy(struct cpufreq_policy *data,
461 struct cpufreq_policy *policy);
462
463/**
464 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
465 */
466#define store_one(file_name, object) \
467static ssize_t store_##file_name \
468(struct cpufreq_policy * policy, const char *buf, size_t count) \
469{ \
470 unsigned int ret = -EINVAL; \
471 struct cpufreq_policy new_policy; \
472 \
473 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
474 if (ret) \
475 return -EINVAL; \
476 \
477 ret = sscanf (buf, "%u", &new_policy.object); \
478 if (ret != 1) \
479 return -EINVAL; \
480 \
481 ret = __cpufreq_set_policy(policy, &new_policy); \
482 policy->user_policy.object = policy->object; \
483 \
484 return ret ? ret : count; \
485}
486
487store_one(scaling_min_freq,min);
488store_one(scaling_max_freq,max);
489
490/**
491 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
492 */
493static ssize_t show_cpuinfo_cur_freq (struct cpufreq_policy * policy,
494 char *buf)
495{
496 unsigned int cur_freq = __cpufreq_get(policy->cpu);
497 if (!cur_freq)
498 return sprintf(buf, "<unknown>");
499 return sprintf(buf, "%u\n", cur_freq);
500}
501
502
503/**
504 * show_scaling_governor - show the current policy for the specified CPU
505 */
506static ssize_t show_scaling_governor (struct cpufreq_policy * policy,
507 char *buf)
508{
509 if(policy->policy == CPUFREQ_POLICY_POWERSAVE)
510 return sprintf(buf, "powersave\n");
511 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
512 return sprintf(buf, "performance\n");
513 else if (policy->governor)
514 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", policy->governor->name);
515 return -EINVAL;
516}
517
518
519/**
520 * store_scaling_governor - store policy for the specified CPU
521 */
522static ssize_t store_scaling_governor (struct cpufreq_policy * policy,
523 const char *buf, size_t count)
524{
525 unsigned int ret = -EINVAL;
526 char str_governor[16];
527 struct cpufreq_policy new_policy;
528
529 ret = cpufreq_get_policy(&new_policy, policy->cpu);
530 if (ret)
531 return ret;
532
533 ret = sscanf (buf, "%15s", str_governor);
534 if (ret != 1)
535 return -EINVAL;
536
537 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
538 &new_policy.governor))
539 return -EINVAL;
540
541 /* Do not use cpufreq_set_policy here or the user_policy.max
542 will be wrongly overridden */
543 ret = __cpufreq_set_policy(policy, &new_policy);
544
545 policy->user_policy.policy = policy->policy;
546 policy->user_policy.governor = policy->governor;
547
548 if (ret)
549 return ret;
550 else
551 return count;
552}
553
554/**
555 * show_scaling_driver - show the cpufreq driver currently loaded
556 */
557static ssize_t show_scaling_driver (struct cpufreq_policy * policy, char *buf)
558{
559 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
560}
561
562/**
563 * show_scaling_available_governors - show the available CPUfreq governors
564 */
565static ssize_t show_scaling_available_governors (struct cpufreq_policy *policy,
566 char *buf)
567{
568 ssize_t i = 0;
569 struct cpufreq_governor *t;
570
571 if (!cpufreq_driver->target) {
572 i += sprintf(buf, "performance powersave");
573 goto out;
574 }
575
576 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
577 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) - (CPUFREQ_NAME_LEN + 2)))
578 goto out;
579 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
580 }
581out:
582 i += sprintf(&buf[i], "\n");
583 return i;
584}
585/**
586 * show_affected_cpus - show the CPUs affected by each transition
587 */
588static ssize_t show_affected_cpus (struct cpufreq_policy * policy, char *buf)
589{
590 ssize_t i = 0;
591 unsigned int cpu;
592
593 for_each_cpu_mask(cpu, policy->cpus) {
594 if (i)
595 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
596 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
597 if (i >= (PAGE_SIZE - 5))
598 break;
599 }
600 i += sprintf(&buf[i], "\n");
601 return i;
602}
603
604
605#define define_one_ro(_name) \
606static struct freq_attr _name = \
607__ATTR(_name, 0444, show_##_name, NULL)
608
609#define define_one_ro0400(_name) \
610static struct freq_attr _name = \
611__ATTR(_name, 0400, show_##_name, NULL)
612
613#define define_one_rw(_name) \
614static struct freq_attr _name = \
615__ATTR(_name, 0644, show_##_name, store_##_name)
616
617define_one_ro0400(cpuinfo_cur_freq);
618define_one_ro(cpuinfo_min_freq);
619define_one_ro(cpuinfo_max_freq);
620define_one_ro(scaling_available_governors);
621define_one_ro(scaling_driver);
622define_one_ro(scaling_cur_freq);
623define_one_ro(affected_cpus);
624define_one_rw(scaling_min_freq);
625define_one_rw(scaling_max_freq);
626define_one_rw(scaling_governor);
627
628static struct attribute * default_attrs[] = {
629 &cpuinfo_min_freq.attr,
630 &cpuinfo_max_freq.attr,
631 &scaling_min_freq.attr,
632 &scaling_max_freq.attr,
633 &affected_cpus.attr,
634 &scaling_governor.attr,
635 &scaling_driver.attr,
636 &scaling_available_governors.attr,
637 NULL
638};
639
640#define to_policy(k) container_of(k,struct cpufreq_policy,kobj)
641#define to_attr(a) container_of(a,struct freq_attr,attr)
642
643static ssize_t show(struct kobject * kobj, struct attribute * attr ,char * buf)
644{
645 struct cpufreq_policy * policy = to_policy(kobj);
646 struct freq_attr * fattr = to_attr(attr);
647 ssize_t ret;
648 policy = cpufreq_cpu_get(policy->cpu);
649 if (!policy)
650 return -EINVAL;
651
652 if (lock_policy_rwsem_read(policy->cpu) < 0)
653 return -EINVAL;
654
655 if (fattr->show)
656 ret = fattr->show(policy, buf);
657 else
658 ret = -EIO;
659
660 unlock_policy_rwsem_read(policy->cpu);
661
662 cpufreq_cpu_put(policy);
663 return ret;
664}
665
666static ssize_t store(struct kobject * kobj, struct attribute * attr,
667 const char * buf, size_t count)
668{
669 struct cpufreq_policy * policy = to_policy(kobj);
670 struct freq_attr * fattr = to_attr(attr);
671 ssize_t ret;
672 policy = cpufreq_cpu_get(policy->cpu);
673 if (!policy)
674 return -EINVAL;
675
676 if (lock_policy_rwsem_write(policy->cpu) < 0)
677 return -EINVAL;
678
679 if (fattr->store)
680 ret = fattr->store(policy, buf, count);
681 else
682 ret = -EIO;
683
684 unlock_policy_rwsem_write(policy->cpu);
685
686 cpufreq_cpu_put(policy);
687 return ret;
688}
689
690static void cpufreq_sysfs_release(struct kobject * kobj)
691{
692 struct cpufreq_policy * policy = to_policy(kobj);
693 dprintk("last reference is dropped\n");
694 complete(&policy->kobj_unregister);
695}
696
697static struct sysfs_ops sysfs_ops = {
698 .show = show,
699 .store = store,
700};
701
702static struct kobj_type ktype_cpufreq = {
703 .sysfs_ops = &sysfs_ops,
704 .default_attrs = default_attrs,
705 .release = cpufreq_sysfs_release,
706};
707
708
709/**
710 * cpufreq_add_dev - add a CPU device
711 *
712 * Adds the cpufreq interface for a CPU device.
713 */
714static int cpufreq_add_dev (struct sys_device * sys_dev)
715{
716 unsigned int cpu = sys_dev->id;
717 int ret = 0;
718 struct cpufreq_policy new_policy;
719 struct cpufreq_policy *policy;
720 struct freq_attr **drv_attr;
721 struct sys_device *cpu_sys_dev;
722 unsigned long flags;
723 unsigned int j;
724#ifdef CONFIG_SMP
725 struct cpufreq_policy *managed_policy;
726#endif
727
728 if (cpu_is_offline(cpu))
729 return 0;
730
731 cpufreq_debug_disable_ratelimit();
732 dprintk("adding CPU %u\n", cpu);
733
734#ifdef CONFIG_SMP
735 /* check whether a different CPU already registered this
736 * CPU because it is in the same boat. */
737 policy = cpufreq_cpu_get(cpu);
738 if (unlikely(policy)) {
739 cpufreq_cpu_put(policy);
740 cpufreq_debug_enable_ratelimit();
741 return 0;
742 }
743#endif
744
745 if (!try_module_get(cpufreq_driver->owner)) {
746 ret = -EINVAL;
747 goto module_out;
748 }
749
750 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
751 if (!policy) {
752 ret = -ENOMEM;
753 goto nomem_out;
754 }
755
756 policy->cpu = cpu;
757 policy->cpus = cpumask_of_cpu(cpu);
758
759 /* Initially set CPU itself as the policy_cpu */
760 per_cpu(policy_cpu, cpu) = cpu;
761 lock_policy_rwsem_write(cpu);
762
763 init_completion(&policy->kobj_unregister);
764 INIT_WORK(&policy->update, handle_update);
765
766 /* Set governor before ->init, so that driver could check it */
767 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
768 /* call driver. From then on the cpufreq must be able
769 * to accept all calls to ->verify and ->setpolicy for this CPU
770 */
771 ret = cpufreq_driver->init(policy);
772 if (ret) {
773 dprintk("initialization failed\n");
774 unlock_policy_rwsem_write(cpu);
775 goto err_out;
776 }
777 policy->user_policy.min = policy->cpuinfo.min_freq;
778 policy->user_policy.max = policy->cpuinfo.max_freq;
779
780#ifdef CONFIG_SMP
781
782#ifdef CONFIG_HOTPLUG_CPU
783 if (cpufreq_cpu_governor[cpu]){
784 policy->governor = cpufreq_cpu_governor[cpu];
785 dprintk("Restoring governor %s for cpu %d\n",
786 policy->governor->name, cpu);
787 }
788#endif
789
790 for_each_cpu_mask(j, policy->cpus) {
791 if (cpu == j)
792 continue;
793
794 /* check for existing affected CPUs. They may not be aware
795 * of it due to CPU Hotplug.
796 */
797 managed_policy = cpufreq_cpu_get(j);
798 if (unlikely(managed_policy)) {
799
800 /* Set proper policy_cpu */
801 unlock_policy_rwsem_write(cpu);
802 per_cpu(policy_cpu, cpu) = managed_policy->cpu;
803
804 if (lock_policy_rwsem_write(cpu) < 0)
805 goto err_out_driver_exit;
806
807 spin_lock_irqsave(&cpufreq_driver_lock, flags);
808 managed_policy->cpus = policy->cpus;
809 cpufreq_cpu_data[cpu] = managed_policy;
810 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
811
812 dprintk("CPU already managed, adding link\n");
813 ret = sysfs_create_link(&sys_dev->kobj,
814 &managed_policy->kobj,
815 "cpufreq");
816 if (ret) {
817 unlock_policy_rwsem_write(cpu);
818 goto err_out_driver_exit;
819 }
820
821 cpufreq_debug_enable_ratelimit();
822 ret = 0;
823 unlock_policy_rwsem_write(cpu);
824 goto err_out_driver_exit; /* call driver->exit() */
825 }
826 }
827#endif
828 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
829
830 /* prepare interface data */
831 policy->kobj.parent = &sys_dev->kobj;
832 policy->kobj.ktype = &ktype_cpufreq;
833 strlcpy(policy->kobj.name, "cpufreq", KOBJ_NAME_LEN);
834
835 ret = kobject_register(&policy->kobj);
836 if (ret) {
837 unlock_policy_rwsem_write(cpu);
838 goto err_out_driver_exit;
839 }
840 /* set up files for this cpu device */
841 drv_attr = cpufreq_driver->attr;
842 while ((drv_attr) && (*drv_attr)) {
843 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
844 if (ret)
845 goto err_out_driver_exit;
846 drv_attr++;
847 }
848 if (cpufreq_driver->get){
849 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
850 if (ret)
851 goto err_out_driver_exit;
852 }
853 if (cpufreq_driver->target){
854 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
855 if (ret)
856 goto err_out_driver_exit;
857 }
858
859 spin_lock_irqsave(&cpufreq_driver_lock, flags);
860 for_each_cpu_mask(j, policy->cpus) {
861 cpufreq_cpu_data[j] = policy;
862 per_cpu(policy_cpu, j) = policy->cpu;
863 }
864 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
865
866 /* symlink affected CPUs */
867 for_each_cpu_mask(j, policy->cpus) {
868 if (j == cpu)
869 continue;
870 if (!cpu_online(j))
871 continue;
872
873 dprintk("CPU %u already managed, adding link\n", j);
874 cpufreq_cpu_get(cpu);
875 cpu_sys_dev = get_cpu_sysdev(j);
876 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
877 "cpufreq");
878 if (ret) {
879 unlock_policy_rwsem_write(cpu);
880 goto err_out_unregister;
881 }
882 }
883
884 policy->governor = NULL; /* to assure that the starting sequence is
885 * run in cpufreq_set_policy */
886
887 /* set default policy */
888 ret = __cpufreq_set_policy(policy, &new_policy);
889 policy->user_policy.policy = policy->policy;
890 policy->user_policy.governor = policy->governor;
891
892 unlock_policy_rwsem_write(cpu);
893
894 if (ret) {
895 dprintk("setting policy failed\n");
896 goto err_out_unregister;
897 }
898
899 module_put(cpufreq_driver->owner);
900 dprintk("initialization complete\n");
901 cpufreq_debug_enable_ratelimit();
902
903 return 0;
904
905
906err_out_unregister:
907 spin_lock_irqsave(&cpufreq_driver_lock, flags);
908 for_each_cpu_mask(j, policy->cpus)
909 cpufreq_cpu_data[j] = NULL;
910 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
911
912 kobject_unregister(&policy->kobj);
913 wait_for_completion(&policy->kobj_unregister);
914
915err_out_driver_exit:
916 if (cpufreq_driver->exit)
917 cpufreq_driver->exit(policy);
918
919err_out:
920 kfree(policy);
921
922nomem_out:
923 module_put(cpufreq_driver->owner);
924module_out:
925 cpufreq_debug_enable_ratelimit();
926 return ret;
927}
928
929
930/**
931 * __cpufreq_remove_dev - remove a CPU device
932 *
933 * Removes the cpufreq interface for a CPU device.
934 * Caller should already have policy_rwsem in write mode for this CPU.
935 * This routine frees the rwsem before returning.
936 */
937static int __cpufreq_remove_dev (struct sys_device * sys_dev)
938{
939 unsigned int cpu = sys_dev->id;
940 unsigned long flags;
941 struct cpufreq_policy *data;
942#ifdef CONFIG_SMP
943 struct sys_device *cpu_sys_dev;
944 unsigned int j;
945#endif
946
947 cpufreq_debug_disable_ratelimit();
948 dprintk("unregistering CPU %u\n", cpu);
949
950 spin_lock_irqsave(&cpufreq_driver_lock, flags);
951 data = cpufreq_cpu_data[cpu];
952
953 if (!data) {
954 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
955 cpufreq_debug_enable_ratelimit();
956 unlock_policy_rwsem_write(cpu);
957 return -EINVAL;
958 }
959 cpufreq_cpu_data[cpu] = NULL;
960
961
962#ifdef CONFIG_SMP
963 /* if this isn't the CPU which is the parent of the kobj, we
964 * only need to unlink, put and exit
965 */
966 if (unlikely(cpu != data->cpu)) {
967 dprintk("removing link\n");
968 cpu_clear(cpu, data->cpus);
969 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
970 sysfs_remove_link(&sys_dev->kobj, "cpufreq");
971 cpufreq_cpu_put(data);
972 cpufreq_debug_enable_ratelimit();
973 unlock_policy_rwsem_write(cpu);
974 return 0;
975 }
976#endif
977
978
979 if (!kobject_get(&data->kobj)) {
980 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
981 cpufreq_debug_enable_ratelimit();
982 unlock_policy_rwsem_write(cpu);
983 return -EFAULT;
984 }
985
986#ifdef CONFIG_SMP
987
988#ifdef CONFIG_HOTPLUG_CPU
989 cpufreq_cpu_governor[cpu] = data->governor;
990#endif
991
992 /* if we have other CPUs still registered, we need to unlink them,
993 * or else wait_for_completion below will lock up. Clean the
994 * cpufreq_cpu_data[] while holding the lock, and remove the sysfs
995 * links afterwards.
996 */
997 if (unlikely(cpus_weight(data->cpus) > 1)) {
998 for_each_cpu_mask(j, data->cpus) {
999 if (j == cpu)
1000 continue;
1001 cpufreq_cpu_data[j] = NULL;
1002 }
1003 }
1004
1005 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1006
1007 if (unlikely(cpus_weight(data->cpus) > 1)) {
1008 for_each_cpu_mask(j, data->cpus) {
1009 if (j == cpu)
1010 continue;
1011 dprintk("removing link for cpu %u\n", j);
1012#ifdef CONFIG_HOTPLUG_CPU
1013 cpufreq_cpu_governor[j] = data->governor;
1014#endif
1015 cpu_sys_dev = get_cpu_sysdev(j);
1016 sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
1017 cpufreq_cpu_put(data);
1018 }
1019 }
1020#else
1021 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1022#endif
1023
1024 if (cpufreq_driver->target)
1025 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1026
1027 unlock_policy_rwsem_write(cpu);
1028
1029 kobject_unregister(&data->kobj);
1030
1031 kobject_put(&data->kobj);
1032
1033 /* we need to make sure that the underlying kobj is actually
1034 * not referenced anymore by anybody before we proceed with
1035 * unloading.
1036 */
1037 dprintk("waiting for dropping of refcount\n");
1038 wait_for_completion(&data->kobj_unregister);
1039 dprintk("wait complete\n");
1040
1041 if (cpufreq_driver->exit)
1042 cpufreq_driver->exit(data);
1043
1044 kfree(data);
1045
1046 cpufreq_debug_enable_ratelimit();
1047 return 0;
1048}
1049
1050
1051static int cpufreq_remove_dev (struct sys_device * sys_dev)
1052{
1053 unsigned int cpu = sys_dev->id;
1054 int retval;
1055
1056 if (cpu_is_offline(cpu))
1057 return 0;
1058
1059 if (unlikely(lock_policy_rwsem_write(cpu)))
1060 BUG();
1061
1062 retval = __cpufreq_remove_dev(sys_dev);
1063 return retval;
1064}
1065
1066
1067static void handle_update(struct work_struct *work)
1068{
1069 struct cpufreq_policy *policy =
1070 container_of(work, struct cpufreq_policy, update);
1071 unsigned int cpu = policy->cpu;
1072 dprintk("handle_update for cpu %u called\n", cpu);
1073 cpufreq_update_policy(cpu);
1074}
1075
1076/**
1077 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1078 * @cpu: cpu number
1079 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1080 * @new_freq: CPU frequency the CPU actually runs at
1081 *
1082 * We adjust to current frequency first, and need to clean up later. So either call
1083 * to cpufreq_update_policy() or schedule handle_update()).
1084 */
1085static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1086 unsigned int new_freq)
1087{
1088 struct cpufreq_freqs freqs;
1089
1090 dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
1091 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1092
1093 freqs.cpu = cpu;
1094 freqs.old = old_freq;
1095 freqs.new = new_freq;
1096 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1097 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1098}
1099
1100
1101/**
1102 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1103 * @cpu: CPU number
1104 *
1105 * This is the last known freq, without actually getting it from the driver.
1106 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1107 */
1108unsigned int cpufreq_quick_get(unsigned int cpu)
1109{
1110 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1111 unsigned int ret_freq = 0;
1112
1113 if (policy) {
1114 if (unlikely(lock_policy_rwsem_read(cpu)))
1115 return ret_freq;
1116
1117 ret_freq = policy->cur;
1118
1119 unlock_policy_rwsem_read(cpu);
1120 cpufreq_cpu_put(policy);
1121 }
1122
1123 return (ret_freq);
1124}
1125EXPORT_SYMBOL(cpufreq_quick_get);
1126
1127
1128static unsigned int __cpufreq_get(unsigned int cpu)
1129{
1130 struct cpufreq_policy *policy = cpufreq_cpu_data[cpu];
1131 unsigned int ret_freq = 0;
1132
1133 if (!cpufreq_driver->get)
1134 return (ret_freq);
1135
1136 ret_freq = cpufreq_driver->get(cpu);
1137
1138 if (ret_freq && policy->cur &&
1139 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1140 /* verify no discrepancy between actual and
1141 saved value exists */
1142 if (unlikely(ret_freq != policy->cur)) {
1143 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1144 schedule_work(&policy->update);
1145 }
1146 }
1147
1148 return (ret_freq);
1149}
1150
1151/**
1152 * cpufreq_get - get the current CPU frequency (in kHz)
1153 * @cpu: CPU number
1154 *
1155 * Get the CPU current (static) CPU frequency
1156 */
1157unsigned int cpufreq_get(unsigned int cpu)
1158{
1159 unsigned int ret_freq = 0;
1160 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1161
1162 if (!policy)
1163 goto out;
1164
1165 if (unlikely(lock_policy_rwsem_read(cpu)))
1166 goto out_policy;
1167
1168 ret_freq = __cpufreq_get(cpu);
1169
1170 unlock_policy_rwsem_read(cpu);
1171
1172out_policy:
1173 cpufreq_cpu_put(policy);
1174out:
1175 return (ret_freq);
1176}
1177EXPORT_SYMBOL(cpufreq_get);
1178
1179
1180/**
1181 * cpufreq_suspend - let the low level driver prepare for suspend
1182 */
1183
1184static int cpufreq_suspend(struct sys_device * sysdev, pm_message_t pmsg)
1185{
1186 int cpu = sysdev->id;
1187 int ret = 0;
1188 unsigned int cur_freq = 0;
1189 struct cpufreq_policy *cpu_policy;
1190
1191 dprintk("suspending cpu %u\n", cpu);
1192
1193 if (!cpu_online(cpu))
1194 return 0;
1195
1196 /* we may be lax here as interrupts are off. Nonetheless
1197 * we need to grab the correct cpu policy, as to check
1198 * whether we really run on this CPU.
1199 */
1200
1201 cpu_policy = cpufreq_cpu_get(cpu);
1202 if (!cpu_policy)
1203 return -EINVAL;
1204
1205 /* only handle each CPU group once */
1206 if (unlikely(cpu_policy->cpu != cpu)) {
1207 cpufreq_cpu_put(cpu_policy);
1208 return 0;
1209 }
1210
1211 if (cpufreq_driver->suspend) {
1212 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
1213 if (ret) {
1214 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1215 "step on CPU %u\n", cpu_policy->cpu);
1216 cpufreq_cpu_put(cpu_policy);
1217 return ret;
1218 }
1219 }
1220
1221
1222 if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)
1223 goto out;
1224
1225 if (cpufreq_driver->get)
1226 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1227
1228 if (!cur_freq || !cpu_policy->cur) {
1229 printk(KERN_ERR "cpufreq: suspend failed to assert current "
1230 "frequency is what timing core thinks it is.\n");
1231 goto out;
1232 }
1233
1234 if (unlikely(cur_freq != cpu_policy->cur)) {
1235 struct cpufreq_freqs freqs;
1236
1237 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1238 dprintk("Warning: CPU frequency is %u, "
1239 "cpufreq assumed %u kHz.\n",
1240 cur_freq, cpu_policy->cur);
1241
1242 freqs.cpu = cpu;
1243 freqs.old = cpu_policy->cur;
1244 freqs.new = cur_freq;
1245
1246 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
1247 CPUFREQ_SUSPENDCHANGE, &freqs);
1248 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs);
1249
1250 cpu_policy->cur = cur_freq;
1251 }
1252
1253out:
1254 cpufreq_cpu_put(cpu_policy);
1255 return 0;
1256}
1257
1258/**
1259 * cpufreq_resume - restore proper CPU frequency handling after resume
1260 *
1261 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1262 * 2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync
1263 * 3.) schedule call cpufreq_update_policy() ASAP as interrupts are
1264 * restored.
1265 */
1266static int cpufreq_resume(struct sys_device * sysdev)
1267{
1268 int cpu = sysdev->id;
1269 int ret = 0;
1270 struct cpufreq_policy *cpu_policy;
1271
1272 dprintk("resuming cpu %u\n", cpu);
1273
1274 if (!cpu_online(cpu))
1275 return 0;
1276
1277 /* we may be lax here as interrupts are off. Nonetheless
1278 * we need to grab the correct cpu policy, as to check
1279 * whether we really run on this CPU.
1280 */
1281
1282 cpu_policy = cpufreq_cpu_get(cpu);
1283 if (!cpu_policy)
1284 return -EINVAL;
1285
1286 /* only handle each CPU group once */
1287 if (unlikely(cpu_policy->cpu != cpu)) {
1288 cpufreq_cpu_put(cpu_policy);
1289 return 0;
1290 }
1291
1292 if (cpufreq_driver->resume) {
1293 ret = cpufreq_driver->resume(cpu_policy);
1294 if (ret) {
1295 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1296 "step on CPU %u\n", cpu_policy->cpu);
1297 cpufreq_cpu_put(cpu_policy);
1298 return ret;
1299 }
1300 }
1301
1302 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1303 unsigned int cur_freq = 0;
1304
1305 if (cpufreq_driver->get)
1306 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1307
1308 if (!cur_freq || !cpu_policy->cur) {
1309 printk(KERN_ERR "cpufreq: resume failed to assert "
1310 "current frequency is what timing core "
1311 "thinks it is.\n");
1312 goto out;
1313 }
1314
1315 if (unlikely(cur_freq != cpu_policy->cur)) {
1316 struct cpufreq_freqs freqs;
1317
1318 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1319 dprintk("Warning: CPU frequency"
1320 "is %u, cpufreq assumed %u kHz.\n",
1321 cur_freq, cpu_policy->cur);
1322
1323 freqs.cpu = cpu;
1324 freqs.old = cpu_policy->cur;
1325 freqs.new = cur_freq;
1326
1327 srcu_notifier_call_chain(
1328 &cpufreq_transition_notifier_list,
1329 CPUFREQ_RESUMECHANGE, &freqs);
1330 adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs);
1331
1332 cpu_policy->cur = cur_freq;
1333 }
1334 }
1335
1336out:
1337 schedule_work(&cpu_policy->update);
1338 cpufreq_cpu_put(cpu_policy);
1339 return ret;
1340}
1341
1342static struct sysdev_driver cpufreq_sysdev_driver = {
1343 .add = cpufreq_add_dev,
1344 .remove = cpufreq_remove_dev,
1345 .suspend = cpufreq_suspend,
1346 .resume = cpufreq_resume,
1347};
1348
1349
1350/*********************************************************************
1351 * NOTIFIER LISTS INTERFACE *
1352 *********************************************************************/
1353
1354/**
1355 * cpufreq_register_notifier - register a driver with cpufreq
1356 * @nb: notifier function to register
1357 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1358 *
1359 * Add a driver to one of two lists: either a list of drivers that
1360 * are notified about clock rate changes (once before and once after
1361 * the transition), or a list of drivers that are notified about
1362 * changes in cpufreq policy.
1363 *
1364 * This function may sleep, and has the same return conditions as
1365 * blocking_notifier_chain_register.
1366 */
1367int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1368{
1369 int ret;
1370
1371 switch (list) {
1372 case CPUFREQ_TRANSITION_NOTIFIER:
1373 ret = srcu_notifier_chain_register(
1374 &cpufreq_transition_notifier_list, nb);
1375 break;
1376 case CPUFREQ_POLICY_NOTIFIER:
1377 ret = blocking_notifier_chain_register(
1378 &cpufreq_policy_notifier_list, nb);
1379 break;
1380 default:
1381 ret = -EINVAL;
1382 }
1383
1384 return ret;
1385}
1386EXPORT_SYMBOL(cpufreq_register_notifier);
1387
1388
1389/**
1390 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1391 * @nb: notifier block to be unregistered
1392 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1393 *
1394 * Remove a driver from the CPU frequency notifier list.
1395 *
1396 * This function may sleep, and has the same return conditions as
1397 * blocking_notifier_chain_unregister.
1398 */
1399int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1400{
1401 int ret;
1402
1403 switch (list) {
1404 case CPUFREQ_TRANSITION_NOTIFIER:
1405 ret = srcu_notifier_chain_unregister(
1406 &cpufreq_transition_notifier_list, nb);
1407 break;
1408 case CPUFREQ_POLICY_NOTIFIER:
1409 ret = blocking_notifier_chain_unregister(
1410 &cpufreq_policy_notifier_list, nb);
1411 break;
1412 default:
1413 ret = -EINVAL;
1414 }
1415
1416 return ret;
1417}
1418EXPORT_SYMBOL(cpufreq_unregister_notifier);
1419
1420
1421/*********************************************************************
1422 * GOVERNORS *
1423 *********************************************************************/
1424
1425
1426int __cpufreq_driver_target(struct cpufreq_policy *policy,
1427 unsigned int target_freq,
1428 unsigned int relation)
1429{
1430 int retval = -EINVAL;
1431
1432 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1433 target_freq, relation);
1434 if (cpu_online(policy->cpu) && cpufreq_driver->target)
1435 retval = cpufreq_driver->target(policy, target_freq, relation);
1436
1437 return retval;
1438}
1439EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1440
1441int cpufreq_driver_target(struct cpufreq_policy *policy,
1442 unsigned int target_freq,
1443 unsigned int relation)
1444{
1445 int ret;
1446
1447 policy = cpufreq_cpu_get(policy->cpu);
1448 if (!policy)
1449 return -EINVAL;
1450
1451 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1452 return -EINVAL;
1453
1454 ret = __cpufreq_driver_target(policy, target_freq, relation);
1455
1456 unlock_policy_rwsem_write(policy->cpu);
1457
1458 cpufreq_cpu_put(policy);
1459 return ret;
1460}
1461EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1462
1463int __cpufreq_driver_getavg(struct cpufreq_policy *policy)
1464{
1465 int ret = 0;
1466
1467 policy = cpufreq_cpu_get(policy->cpu);
1468 if (!policy)
1469 return -EINVAL;
1470
1471 if (cpu_online(policy->cpu) && cpufreq_driver->getavg)
1472 ret = cpufreq_driver->getavg(policy->cpu);
1473
1474 cpufreq_cpu_put(policy);
1475 return ret;
1476}
1477EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1478
1479/*
1480 * when "event" is CPUFREQ_GOV_LIMITS
1481 */
1482
1483static int __cpufreq_governor(struct cpufreq_policy *policy,
1484 unsigned int event)
1485{
1486 int ret;
1487
1488 /* Only must be defined when default governor is known to have latency
1489 restrictions, like e.g. conservative or ondemand.
1490 That this is the case is already ensured in Kconfig
1491 */
1492#ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1493 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1494#else
1495 struct cpufreq_governor *gov = NULL;
1496#endif
1497
1498 if (policy->governor->max_transition_latency &&
1499 policy->cpuinfo.transition_latency >
1500 policy->governor->max_transition_latency) {
1501 if (!gov)
1502 return -EINVAL;
1503 else {
1504 printk(KERN_WARNING "%s governor failed, too long"
1505 " transition latency of HW, fallback"
1506 " to %s governor\n",
1507 policy->governor->name,
1508 gov->name);
1509 policy->governor = gov;
1510 }
1511 }
1512
1513 if (!try_module_get(policy->governor->owner))
1514 return -EINVAL;
1515
1516 dprintk("__cpufreq_governor for CPU %u, event %u\n",
1517 policy->cpu, event);
1518 ret = policy->governor->governor(policy, event);
1519
1520 /* we keep one module reference alive for
1521 each CPU governed by this CPU */
1522 if ((event != CPUFREQ_GOV_START) || ret)
1523 module_put(policy->governor->owner);
1524 if ((event == CPUFREQ_GOV_STOP) && !ret)
1525 module_put(policy->governor->owner);
1526
1527 return ret;
1528}
1529
1530
1531int cpufreq_register_governor(struct cpufreq_governor *governor)
1532{
1533 int err;
1534
1535 if (!governor)
1536 return -EINVAL;
1537
1538 mutex_lock(&cpufreq_governor_mutex);
1539
1540 err = -EBUSY;
1541 if (__find_governor(governor->name) == NULL) {
1542 err = 0;
1543 list_add(&governor->governor_list, &cpufreq_governor_list);
1544 }
1545
1546 mutex_unlock(&cpufreq_governor_mutex);
1547 return err;
1548}
1549EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1550
1551
1552void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1553{
1554 if (!governor)
1555 return;
1556
1557 mutex_lock(&cpufreq_governor_mutex);
1558 list_del(&governor->governor_list);
1559 mutex_unlock(&cpufreq_governor_mutex);
1560 return;
1561}
1562EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1563
1564
1565
1566/*********************************************************************
1567 * POLICY INTERFACE *
1568 *********************************************************************/
1569
1570/**
1571 * cpufreq_get_policy - get the current cpufreq_policy
1572 * @policy: struct cpufreq_policy into which the current cpufreq_policy is written
1573 *
1574 * Reads the current cpufreq policy.
1575 */
1576int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1577{
1578 struct cpufreq_policy *cpu_policy;
1579 if (!policy)
1580 return -EINVAL;
1581
1582 cpu_policy = cpufreq_cpu_get(cpu);
1583 if (!cpu_policy)
1584 return -EINVAL;
1585
1586 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1587
1588 cpufreq_cpu_put(cpu_policy);
1589 return 0;
1590}
1591EXPORT_SYMBOL(cpufreq_get_policy);
1592
1593
1594/*
1595 * data : current policy.
1596 * policy : policy to be set.
1597 */
1598static int __cpufreq_set_policy(struct cpufreq_policy *data,
1599 struct cpufreq_policy *policy)
1600{
1601 int ret = 0;
1602
1603 cpufreq_debug_disable_ratelimit();
1604 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1605 policy->min, policy->max);
1606
1607 memcpy(&policy->cpuinfo, &data->cpuinfo,
1608 sizeof(struct cpufreq_cpuinfo));
1609
1610 if (policy->min > data->min && policy->min > policy->max) {
1611 ret = -EINVAL;
1612 goto error_out;
1613 }
1614
1615 /* verify the cpu speed can be set within this limit */
1616 ret = cpufreq_driver->verify(policy);
1617 if (ret)
1618 goto error_out;
1619
1620 /* adjust if necessary - all reasons */
1621 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1622 CPUFREQ_ADJUST, policy);
1623
1624 /* adjust if necessary - hardware incompatibility*/
1625 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1626 CPUFREQ_INCOMPATIBLE, policy);
1627
1628 /* verify the cpu speed can be set within this limit,
1629 which might be different to the first one */
1630 ret = cpufreq_driver->verify(policy);
1631 if (ret)
1632 goto error_out;
1633
1634 /* notification of the new policy */
1635 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1636 CPUFREQ_NOTIFY, policy);
1637
1638 data->min = policy->min;
1639 data->max = policy->max;
1640
1641 dprintk("new min and max freqs are %u - %u kHz\n",
1642 data->min, data->max);
1643
1644 if (cpufreq_driver->setpolicy) {
1645 data->policy = policy->policy;
1646 dprintk("setting range\n");
1647 ret = cpufreq_driver->setpolicy(policy);
1648 } else {
1649 if (policy->governor != data->governor) {
1650 /* save old, working values */
1651 struct cpufreq_governor *old_gov = data->governor;
1652
1653 dprintk("governor switch\n");
1654
1655 /* end old governor */
1656 if (data->governor)
1657 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1658
1659 /* start new governor */
1660 data->governor = policy->governor;
1661 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1662 /* new governor failed, so re-start old one */
1663 dprintk("starting governor %s failed\n",
1664 data->governor->name);
1665 if (old_gov) {
1666 data->governor = old_gov;
1667 __cpufreq_governor(data,
1668 CPUFREQ_GOV_START);
1669 }
1670 ret = -EINVAL;
1671 goto error_out;
1672 }
1673 /* might be a policy change, too, so fall through */
1674 }
1675 dprintk("governor: change or update limits\n");
1676 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1677 }
1678
1679error_out:
1680 cpufreq_debug_enable_ratelimit();
1681 return ret;
1682}
1683
1684/**
1685 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1686 * @cpu: CPU which shall be re-evaluated
1687 *
1688 * Usefull for policy notifiers which have different necessities
1689 * at different times.
1690 */
1691int cpufreq_update_policy(unsigned int cpu)
1692{
1693 struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1694 struct cpufreq_policy policy;
1695 int ret = 0;
1696
1697 if (!data)
1698 return -ENODEV;
1699
1700 if (unlikely(lock_policy_rwsem_write(cpu)))
1701 return -EINVAL;
1702
1703 dprintk("updating policy for CPU %u\n", cpu);
1704 memcpy(&policy, data, sizeof(struct cpufreq_policy));
1705 policy.min = data->user_policy.min;
1706 policy.max = data->user_policy.max;
1707 policy.policy = data->user_policy.policy;
1708 policy.governor = data->user_policy.governor;
1709
1710 /* BIOS might change freq behind our back
1711 -> ask driver for current freq and notify governors about a change */
1712 if (cpufreq_driver->get) {
1713 policy.cur = cpufreq_driver->get(cpu);
1714 if (!data->cur) {
1715 dprintk("Driver did not initialize current freq");
1716 data->cur = policy.cur;
1717 } else {
1718 if (data->cur != policy.cur)
1719 cpufreq_out_of_sync(cpu, data->cur,
1720 policy.cur);
1721 }
1722 }
1723
1724 ret = __cpufreq_set_policy(data, &policy);
1725
1726 unlock_policy_rwsem_write(cpu);
1727
1728 cpufreq_cpu_put(data);
1729 return ret;
1730}
1731EXPORT_SYMBOL(cpufreq_update_policy);
1732
1733static int cpufreq_cpu_callback(struct notifier_block *nfb,
1734 unsigned long action, void *hcpu)
1735{
1736 unsigned int cpu = (unsigned long)hcpu;
1737 struct sys_device *sys_dev;
1738
1739 sys_dev = get_cpu_sysdev(cpu);
1740 if (sys_dev) {
1741 switch (action) {
1742 case CPU_ONLINE:
1743 case CPU_ONLINE_FROZEN:
1744 cpufreq_add_dev(sys_dev);
1745 break;
1746 case CPU_DOWN_PREPARE:
1747 case CPU_DOWN_PREPARE_FROZEN:
1748 if (unlikely(lock_policy_rwsem_write(cpu)))
1749 BUG();
1750
1751 __cpufreq_remove_dev(sys_dev);
1752 break;
1753 case CPU_DOWN_FAILED:
1754 case CPU_DOWN_FAILED_FROZEN:
1755 cpufreq_add_dev(sys_dev);
1756 break;
1757 }
1758 }
1759 return NOTIFY_OK;
1760}
1761
1762static struct notifier_block __cpuinitdata cpufreq_cpu_notifier =
1763{
1764 .notifier_call = cpufreq_cpu_callback,
1765};
1766
1767/*********************************************************************
1768 * REGISTER / UNREGISTER CPUFREQ DRIVER *
1769 *********************************************************************/
1770
1771/**
1772 * cpufreq_register_driver - register a CPU Frequency driver
1773 * @driver_data: A struct cpufreq_driver containing the values#
1774 * submitted by the CPU Frequency driver.
1775 *
1776 * Registers a CPU Frequency driver to this core code. This code
1777 * returns zero on success, -EBUSY when another driver got here first
1778 * (and isn't unregistered in the meantime).
1779 *
1780 */
1781int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1782{
1783 unsigned long flags;
1784 int ret;
1785
1786 if (!driver_data || !driver_data->verify || !driver_data->init ||
1787 ((!driver_data->setpolicy) && (!driver_data->target)))
1788 return -EINVAL;
1789
1790 dprintk("trying to register driver %s\n", driver_data->name);
1791
1792 if (driver_data->setpolicy)
1793 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1794
1795 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1796 if (cpufreq_driver) {
1797 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1798 return -EBUSY;
1799 }
1800 cpufreq_driver = driver_data;
1801 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1802
1803 ret = sysdev_driver_register(&cpu_sysdev_class,&cpufreq_sysdev_driver);
1804
1805 if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1806 int i;
1807 ret = -ENODEV;
1808
1809 /* check for at least one working CPU */
1810 for (i=0; i<NR_CPUS; i++)
1811 if (cpufreq_cpu_data[i])
1812 ret = 0;
1813
1814 /* if all ->init() calls failed, unregister */
1815 if (ret) {
1816 dprintk("no CPU initialized for driver %s\n",
1817 driver_data->name);
1818 sysdev_driver_unregister(&cpu_sysdev_class,
1819 &cpufreq_sysdev_driver);
1820
1821 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1822 cpufreq_driver = NULL;
1823 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1824 }
1825 }
1826
1827 if (!ret) {
1828 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1829 dprintk("driver %s up and running\n", driver_data->name);
1830 cpufreq_debug_enable_ratelimit();
1831 }
1832
1833 return (ret);
1834}
1835EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1836
1837
1838/**
1839 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1840 *
1841 * Unregister the current CPUFreq driver. Only call this if you have
1842 * the right to do so, i.e. if you have succeeded in initialising before!
1843 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1844 * currently not initialised.
1845 */
1846int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1847{
1848 unsigned long flags;
1849
1850 cpufreq_debug_disable_ratelimit();
1851
1852 if (!cpufreq_driver || (driver != cpufreq_driver)) {
1853 cpufreq_debug_enable_ratelimit();
1854 return -EINVAL;
1855 }
1856
1857 dprintk("unregistering driver %s\n", driver->name);
1858
1859 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1860 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1861
1862 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1863 cpufreq_driver = NULL;
1864 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1865
1866 return 0;
1867}
1868EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1869
1870static int __init cpufreq_core_init(void)
1871{
1872 int cpu;
1873
1874 for_each_possible_cpu(cpu) {
1875 per_cpu(policy_cpu, cpu) = -1;
1876 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1877 }
1878 return 0;
1879}
1880
1881core_initcall(cpufreq_core_init);