]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - drivers/cpufreq/e_powersaver.c
cpufreq: Use sizeof(*ptr) convetion for computing sizes
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / e_powersaver.c
... / ...
CommitLineData
1/*
2 * Based on documentation provided by Dave Jones. Thanks!
3 *
4 * Licensed under the terms of the GNU GPL License version 2.
5 *
6 * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous*
7 */
8
9#include <linux/kernel.h>
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/cpufreq.h>
13#include <linux/ioport.h>
14#include <linux/slab.h>
15#include <linux/timex.h>
16#include <linux/io.h>
17#include <linux/delay.h>
18
19#include <asm/cpu_device_id.h>
20#include <asm/msr.h>
21#include <asm/tsc.h>
22
23#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
24#include <linux/acpi.h>
25#include <acpi/processor.h>
26#endif
27
28#define EPS_BRAND_C7M 0
29#define EPS_BRAND_C7 1
30#define EPS_BRAND_EDEN 2
31#define EPS_BRAND_C3 3
32#define EPS_BRAND_C7D 4
33
34struct eps_cpu_data {
35 u32 fsb;
36#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
37 u32 bios_limit;
38#endif
39 struct cpufreq_frequency_table freq_table[];
40};
41
42static struct eps_cpu_data *eps_cpu[NR_CPUS];
43
44/* Module parameters */
45static int freq_failsafe_off;
46static int voltage_failsafe_off;
47static int set_max_voltage;
48
49#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
50static int ignore_acpi_limit;
51
52static struct acpi_processor_performance *eps_acpi_cpu_perf;
53
54/* Minimum necessary to get acpi_processor_get_bios_limit() working */
55static int eps_acpi_init(void)
56{
57 eps_acpi_cpu_perf = kzalloc(sizeof(*eps_acpi_cpu_perf),
58 GFP_KERNEL);
59 if (!eps_acpi_cpu_perf)
60 return -ENOMEM;
61
62 if (!zalloc_cpumask_var(&eps_acpi_cpu_perf->shared_cpu_map,
63 GFP_KERNEL)) {
64 kfree(eps_acpi_cpu_perf);
65 eps_acpi_cpu_perf = NULL;
66 return -ENOMEM;
67 }
68
69 if (acpi_processor_register_performance(eps_acpi_cpu_perf, 0)) {
70 free_cpumask_var(eps_acpi_cpu_perf->shared_cpu_map);
71 kfree(eps_acpi_cpu_perf);
72 eps_acpi_cpu_perf = NULL;
73 return -EIO;
74 }
75 return 0;
76}
77
78static int eps_acpi_exit(struct cpufreq_policy *policy)
79{
80 if (eps_acpi_cpu_perf) {
81 acpi_processor_unregister_performance(eps_acpi_cpu_perf, 0);
82 free_cpumask_var(eps_acpi_cpu_perf->shared_cpu_map);
83 kfree(eps_acpi_cpu_perf);
84 eps_acpi_cpu_perf = NULL;
85 }
86 return 0;
87}
88#endif
89
90static unsigned int eps_get(unsigned int cpu)
91{
92 struct eps_cpu_data *centaur;
93 u32 lo, hi;
94
95 if (cpu)
96 return 0;
97 centaur = eps_cpu[cpu];
98 if (centaur == NULL)
99 return 0;
100
101 /* Return current frequency */
102 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
103 return centaur->fsb * ((lo >> 8) & 0xff);
104}
105
106static int eps_set_state(struct eps_cpu_data *centaur,
107 struct cpufreq_policy *policy,
108 u32 dest_state)
109{
110 struct cpufreq_freqs freqs;
111 u32 lo, hi;
112 int err = 0;
113 int i;
114
115 freqs.old = eps_get(policy->cpu);
116 freqs.new = centaur->fsb * ((dest_state >> 8) & 0xff);
117 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
118
119 /* Wait while CPU is busy */
120 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
121 i = 0;
122 while (lo & ((1 << 16) | (1 << 17))) {
123 udelay(16);
124 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
125 i++;
126 if (unlikely(i > 64)) {
127 err = -ENODEV;
128 goto postchange;
129 }
130 }
131 /* Set new multiplier and voltage */
132 wrmsr(MSR_IA32_PERF_CTL, dest_state & 0xffff, 0);
133 /* Wait until transition end */
134 i = 0;
135 do {
136 udelay(16);
137 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
138 i++;
139 if (unlikely(i > 64)) {
140 err = -ENODEV;
141 goto postchange;
142 }
143 } while (lo & ((1 << 16) | (1 << 17)));
144
145 /* Return current frequency */
146postchange:
147 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
148 freqs.new = centaur->fsb * ((lo >> 8) & 0xff);
149
150#ifdef DEBUG
151 {
152 u8 current_multiplier, current_voltage;
153
154 /* Print voltage and multiplier */
155 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
156 current_voltage = lo & 0xff;
157 printk(KERN_INFO "eps: Current voltage = %dmV\n",
158 current_voltage * 16 + 700);
159 current_multiplier = (lo >> 8) & 0xff;
160 printk(KERN_INFO "eps: Current multiplier = %d\n",
161 current_multiplier);
162 }
163#endif
164 if (err)
165 freqs.new = freqs.old;
166
167 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
168 return err;
169}
170
171static int eps_target(struct cpufreq_policy *policy,
172 unsigned int target_freq,
173 unsigned int relation)
174{
175 struct eps_cpu_data *centaur;
176 unsigned int newstate = 0;
177 unsigned int cpu = policy->cpu;
178 unsigned int dest_state;
179 int ret;
180
181 if (unlikely(eps_cpu[cpu] == NULL))
182 return -ENODEV;
183 centaur = eps_cpu[cpu];
184
185 if (unlikely(cpufreq_frequency_table_target(policy,
186 &eps_cpu[cpu]->freq_table[0],
187 target_freq,
188 relation,
189 &newstate))) {
190 return -EINVAL;
191 }
192
193 /* Make frequency transition */
194 dest_state = centaur->freq_table[newstate].driver_data & 0xffff;
195 ret = eps_set_state(centaur, policy, dest_state);
196 if (ret)
197 printk(KERN_ERR "eps: Timeout!\n");
198 return ret;
199}
200
201static int eps_verify(struct cpufreq_policy *policy)
202{
203 return cpufreq_frequency_table_verify(policy,
204 &eps_cpu[policy->cpu]->freq_table[0]);
205}
206
207static int eps_cpu_init(struct cpufreq_policy *policy)
208{
209 unsigned int i;
210 u32 lo, hi;
211 u64 val;
212 u8 current_multiplier, current_voltage;
213 u8 max_multiplier, max_voltage;
214 u8 min_multiplier, min_voltage;
215 u8 brand = 0;
216 u32 fsb;
217 struct eps_cpu_data *centaur;
218 struct cpuinfo_x86 *c = &cpu_data(0);
219 struct cpufreq_frequency_table *f_table;
220 int k, step, voltage;
221 int ret;
222 int states;
223#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
224 unsigned int limit;
225#endif
226
227 if (policy->cpu != 0)
228 return -ENODEV;
229
230 /* Check brand */
231 printk(KERN_INFO "eps: Detected VIA ");
232
233 switch (c->x86_model) {
234 case 10:
235 rdmsr(0x1153, lo, hi);
236 brand = (((lo >> 2) ^ lo) >> 18) & 3;
237 printk(KERN_CONT "Model A ");
238 break;
239 case 13:
240 rdmsr(0x1154, lo, hi);
241 brand = (((lo >> 4) ^ (lo >> 2))) & 0x000000ff;
242 printk(KERN_CONT "Model D ");
243 break;
244 }
245
246 switch (brand) {
247 case EPS_BRAND_C7M:
248 printk(KERN_CONT "C7-M\n");
249 break;
250 case EPS_BRAND_C7:
251 printk(KERN_CONT "C7\n");
252 break;
253 case EPS_BRAND_EDEN:
254 printk(KERN_CONT "Eden\n");
255 break;
256 case EPS_BRAND_C7D:
257 printk(KERN_CONT "C7-D\n");
258 break;
259 case EPS_BRAND_C3:
260 printk(KERN_CONT "C3\n");
261 return -ENODEV;
262 break;
263 }
264 /* Enable Enhanced PowerSaver */
265 rdmsrl(MSR_IA32_MISC_ENABLE, val);
266 if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
267 val |= MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP;
268 wrmsrl(MSR_IA32_MISC_ENABLE, val);
269 /* Can be locked at 0 */
270 rdmsrl(MSR_IA32_MISC_ENABLE, val);
271 if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
272 printk(KERN_INFO "eps: Can't enable Enhanced PowerSaver\n");
273 return -ENODEV;
274 }
275 }
276
277 /* Print voltage and multiplier */
278 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
279 current_voltage = lo & 0xff;
280 printk(KERN_INFO "eps: Current voltage = %dmV\n",
281 current_voltage * 16 + 700);
282 current_multiplier = (lo >> 8) & 0xff;
283 printk(KERN_INFO "eps: Current multiplier = %d\n", current_multiplier);
284
285 /* Print limits */
286 max_voltage = hi & 0xff;
287 printk(KERN_INFO "eps: Highest voltage = %dmV\n",
288 max_voltage * 16 + 700);
289 max_multiplier = (hi >> 8) & 0xff;
290 printk(KERN_INFO "eps: Highest multiplier = %d\n", max_multiplier);
291 min_voltage = (hi >> 16) & 0xff;
292 printk(KERN_INFO "eps: Lowest voltage = %dmV\n",
293 min_voltage * 16 + 700);
294 min_multiplier = (hi >> 24) & 0xff;
295 printk(KERN_INFO "eps: Lowest multiplier = %d\n", min_multiplier);
296
297 /* Sanity checks */
298 if (current_multiplier == 0 || max_multiplier == 0
299 || min_multiplier == 0)
300 return -EINVAL;
301 if (current_multiplier > max_multiplier
302 || max_multiplier <= min_multiplier)
303 return -EINVAL;
304 if (current_voltage > 0x1f || max_voltage > 0x1f)
305 return -EINVAL;
306 if (max_voltage < min_voltage
307 || current_voltage < min_voltage
308 || current_voltage > max_voltage)
309 return -EINVAL;
310
311 /* Check for systems using underclocked CPU */
312 if (!freq_failsafe_off && max_multiplier != current_multiplier) {
313 printk(KERN_INFO "eps: Your processor is running at different "
314 "frequency then its maximum. Aborting.\n");
315 printk(KERN_INFO "eps: You can use freq_failsafe_off option "
316 "to disable this check.\n");
317 return -EINVAL;
318 }
319 if (!voltage_failsafe_off && max_voltage != current_voltage) {
320 printk(KERN_INFO "eps: Your processor is running at different "
321 "voltage then its maximum. Aborting.\n");
322 printk(KERN_INFO "eps: You can use voltage_failsafe_off "
323 "option to disable this check.\n");
324 return -EINVAL;
325 }
326
327 /* Calc FSB speed */
328 fsb = cpu_khz / current_multiplier;
329
330#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
331 /* Check for ACPI processor speed limit */
332 if (!ignore_acpi_limit && !eps_acpi_init()) {
333 if (!acpi_processor_get_bios_limit(policy->cpu, &limit)) {
334 printk(KERN_INFO "eps: ACPI limit %u.%uGHz\n",
335 limit/1000000,
336 (limit%1000000)/10000);
337 eps_acpi_exit(policy);
338 /* Check if max_multiplier is in BIOS limits */
339 if (limit && max_multiplier * fsb > limit) {
340 printk(KERN_INFO "eps: Aborting.\n");
341 return -EINVAL;
342 }
343 }
344 }
345#endif
346
347 /* Allow user to set lower maximum voltage then that reported
348 * by processor */
349 if (brand == EPS_BRAND_C7M && set_max_voltage) {
350 u32 v;
351
352 /* Change mV to something hardware can use */
353 v = (set_max_voltage - 700) / 16;
354 /* Check if voltage is within limits */
355 if (v >= min_voltage && v <= max_voltage) {
356 printk(KERN_INFO "eps: Setting %dmV as maximum.\n",
357 v * 16 + 700);
358 max_voltage = v;
359 }
360 }
361
362 /* Calc number of p-states supported */
363 if (brand == EPS_BRAND_C7M)
364 states = max_multiplier - min_multiplier + 1;
365 else
366 states = 2;
367
368 /* Allocate private data and frequency table for current cpu */
369 centaur = kzalloc(sizeof(*centaur)
370 + (states + 1) * sizeof(struct cpufreq_frequency_table),
371 GFP_KERNEL);
372 if (!centaur)
373 return -ENOMEM;
374 eps_cpu[0] = centaur;
375
376 /* Copy basic values */
377 centaur->fsb = fsb;
378#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
379 centaur->bios_limit = limit;
380#endif
381
382 /* Fill frequency and MSR value table */
383 f_table = &centaur->freq_table[0];
384 if (brand != EPS_BRAND_C7M) {
385 f_table[0].frequency = fsb * min_multiplier;
386 f_table[0].driver_data = (min_multiplier << 8) | min_voltage;
387 f_table[1].frequency = fsb * max_multiplier;
388 f_table[1].driver_data = (max_multiplier << 8) | max_voltage;
389 f_table[2].frequency = CPUFREQ_TABLE_END;
390 } else {
391 k = 0;
392 step = ((max_voltage - min_voltage) * 256)
393 / (max_multiplier - min_multiplier);
394 for (i = min_multiplier; i <= max_multiplier; i++) {
395 voltage = (k * step) / 256 + min_voltage;
396 f_table[k].frequency = fsb * i;
397 f_table[k].driver_data = (i << 8) | voltage;
398 k++;
399 }
400 f_table[k].frequency = CPUFREQ_TABLE_END;
401 }
402
403 policy->cpuinfo.transition_latency = 140000; /* 844mV -> 700mV in ns */
404 policy->cur = fsb * current_multiplier;
405
406 ret = cpufreq_frequency_table_cpuinfo(policy, &centaur->freq_table[0]);
407 if (ret) {
408 kfree(centaur);
409 return ret;
410 }
411
412 cpufreq_frequency_table_get_attr(&centaur->freq_table[0], policy->cpu);
413 return 0;
414}
415
416static int eps_cpu_exit(struct cpufreq_policy *policy)
417{
418 unsigned int cpu = policy->cpu;
419
420 /* Bye */
421 cpufreq_frequency_table_put_attr(policy->cpu);
422 kfree(eps_cpu[cpu]);
423 eps_cpu[cpu] = NULL;
424 return 0;
425}
426
427static struct freq_attr *eps_attr[] = {
428 &cpufreq_freq_attr_scaling_available_freqs,
429 NULL,
430};
431
432static struct cpufreq_driver eps_driver = {
433 .verify = eps_verify,
434 .target = eps_target,
435 .init = eps_cpu_init,
436 .exit = eps_cpu_exit,
437 .get = eps_get,
438 .name = "e_powersaver",
439 .owner = THIS_MODULE,
440 .attr = eps_attr,
441};
442
443
444/* This driver will work only on Centaur C7 processors with
445 * Enhanced SpeedStep/PowerSaver registers */
446static const struct x86_cpu_id eps_cpu_id[] = {
447 { X86_VENDOR_CENTAUR, 6, X86_MODEL_ANY, X86_FEATURE_EST },
448 {}
449};
450MODULE_DEVICE_TABLE(x86cpu, eps_cpu_id);
451
452static int __init eps_init(void)
453{
454 if (!x86_match_cpu(eps_cpu_id) || boot_cpu_data.x86_model < 10)
455 return -ENODEV;
456 if (cpufreq_register_driver(&eps_driver))
457 return -EINVAL;
458 return 0;
459}
460
461static void __exit eps_exit(void)
462{
463 cpufreq_unregister_driver(&eps_driver);
464}
465
466/* Allow user to overclock his machine or to change frequency to higher after
467 * unloading module */
468module_param(freq_failsafe_off, int, 0644);
469MODULE_PARM_DESC(freq_failsafe_off, "Disable current vs max frequency check");
470module_param(voltage_failsafe_off, int, 0644);
471MODULE_PARM_DESC(voltage_failsafe_off, "Disable current vs max voltage check");
472#if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
473module_param(ignore_acpi_limit, int, 0644);
474MODULE_PARM_DESC(ignore_acpi_limit, "Don't check ACPI's processor speed limit");
475#endif
476module_param(set_max_voltage, int, 0644);
477MODULE_PARM_DESC(set_max_voltage, "Set maximum CPU voltage (mV) C7-M only");
478
479MODULE_AUTHOR("Rafal Bilski <rafalbilski@interia.pl>");
480MODULE_DESCRIPTION("Enhanced PowerSaver driver for VIA C7 CPU's.");
481MODULE_LICENSE("GPL");
482
483module_init(eps_init);
484module_exit(eps_exit);