]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - drivers/edac/edac_mc.c
edac: remove proc_name from mci structure
[mirror_ubuntu-hirsute-kernel.git] / drivers / edac / edac_mc.c
... / ...
CommitLineData
1/*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/proc_fs.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/sysctl.h>
22#include <linux/highmem.h>
23#include <linux/timer.h>
24#include <linux/slab.h>
25#include <linux/jiffies.h>
26#include <linux/spinlock.h>
27#include <linux/list.h>
28#include <linux/ctype.h>
29#include <linux/edac.h>
30#include <linux/bitops.h>
31#include <asm/uaccess.h>
32#include <asm/page.h>
33#include <asm/edac.h>
34#include "edac_core.h"
35#include "edac_module.h"
36
37#define CREATE_TRACE_POINTS
38#define TRACE_INCLUDE_PATH ../../include/ras
39#include <ras/ras_event.h>
40
41/* lock to memory controller's control array */
42static DEFINE_MUTEX(mem_ctls_mutex);
43static LIST_HEAD(mc_devices);
44
45unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
46 unsigned len)
47{
48 struct mem_ctl_info *mci = dimm->mci;
49 int i, n, count = 0;
50 char *p = buf;
51
52 for (i = 0; i < mci->n_layers; i++) {
53 n = snprintf(p, len, "%s %d ",
54 edac_layer_name[mci->layers[i].type],
55 dimm->location[i]);
56 p += n;
57 len -= n;
58 count += n;
59 if (!len)
60 break;
61 }
62
63 return count;
64}
65
66#ifdef CONFIG_EDAC_DEBUG
67
68static void edac_mc_dump_channel(struct rank_info *chan)
69{
70 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
71 edac_dbg(4, " channel = %p\n", chan);
72 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
73 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
74}
75
76static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
77{
78 char location[80];
79
80 edac_dimm_info_location(dimm, location, sizeof(location));
81
82 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
83 dimm->mci->mem_is_per_rank ? "rank" : "dimm",
84 number, location, dimm->csrow, dimm->cschannel);
85 edac_dbg(4, " dimm = %p\n", dimm);
86 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
87 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
88 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
89 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
90}
91
92static void edac_mc_dump_csrow(struct csrow_info *csrow)
93{
94 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
95 edac_dbg(4, " csrow = %p\n", csrow);
96 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
97 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
98 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
99 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
100 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
101 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
102}
103
104static void edac_mc_dump_mci(struct mem_ctl_info *mci)
105{
106 edac_dbg(3, "\tmci = %p\n", mci);
107 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
108 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
109 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
110 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
111 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
112 mci->nr_csrows, mci->csrows);
113 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
114 mci->tot_dimms, mci->dimms);
115 edac_dbg(3, "\tdev = %p\n", mci->pdev);
116 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
117 mci->mod_name, mci->ctl_name);
118 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
119}
120
121#endif /* CONFIG_EDAC_DEBUG */
122
123/*
124 * keep those in sync with the enum mem_type
125 */
126const char *edac_mem_types[] = {
127 "Empty csrow",
128 "Reserved csrow type",
129 "Unknown csrow type",
130 "Fast page mode RAM",
131 "Extended data out RAM",
132 "Burst Extended data out RAM",
133 "Single data rate SDRAM",
134 "Registered single data rate SDRAM",
135 "Double data rate SDRAM",
136 "Registered Double data rate SDRAM",
137 "Rambus DRAM",
138 "Unbuffered DDR2 RAM",
139 "Fully buffered DDR2",
140 "Registered DDR2 RAM",
141 "Rambus XDR",
142 "Unbuffered DDR3 RAM",
143 "Registered DDR3 RAM",
144};
145EXPORT_SYMBOL_GPL(edac_mem_types);
146
147/**
148 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
149 * @p: pointer to a pointer with the memory offset to be used. At
150 * return, this will be incremented to point to the next offset
151 * @size: Size of the data structure to be reserved
152 * @n_elems: Number of elements that should be reserved
153 *
154 * If 'size' is a constant, the compiler will optimize this whole function
155 * down to either a no-op or the addition of a constant to the value of '*p'.
156 *
157 * The 'p' pointer is absolutely needed to keep the proper advancing
158 * further in memory to the proper offsets when allocating the struct along
159 * with its embedded structs, as edac_device_alloc_ctl_info() does it
160 * above, for example.
161 *
162 * At return, the pointer 'p' will be incremented to be used on a next call
163 * to this function.
164 */
165void *edac_align_ptr(void **p, unsigned size, int n_elems)
166{
167 unsigned align, r;
168 void *ptr = *p;
169
170 *p += size * n_elems;
171
172 /*
173 * 'p' can possibly be an unaligned item X such that sizeof(X) is
174 * 'size'. Adjust 'p' so that its alignment is at least as
175 * stringent as what the compiler would provide for X and return
176 * the aligned result.
177 * Here we assume that the alignment of a "long long" is the most
178 * stringent alignment that the compiler will ever provide by default.
179 * As far as I know, this is a reasonable assumption.
180 */
181 if (size > sizeof(long))
182 align = sizeof(long long);
183 else if (size > sizeof(int))
184 align = sizeof(long);
185 else if (size > sizeof(short))
186 align = sizeof(int);
187 else if (size > sizeof(char))
188 align = sizeof(short);
189 else
190 return (char *)ptr;
191
192 r = (unsigned long)p % align;
193
194 if (r == 0)
195 return (char *)ptr;
196
197 *p += align - r;
198
199 return (void *)(((unsigned long)ptr) + align - r);
200}
201
202static void _edac_mc_free(struct mem_ctl_info *mci)
203{
204 int i, chn, row;
205 struct csrow_info *csr;
206 const unsigned int tot_dimms = mci->tot_dimms;
207 const unsigned int tot_channels = mci->num_cschannel;
208 const unsigned int tot_csrows = mci->nr_csrows;
209
210 if (mci->dimms) {
211 for (i = 0; i < tot_dimms; i++)
212 kfree(mci->dimms[i]);
213 kfree(mci->dimms);
214 }
215 if (mci->csrows) {
216 for (row = 0; row < tot_csrows; row++) {
217 csr = mci->csrows[row];
218 if (csr) {
219 if (csr->channels) {
220 for (chn = 0; chn < tot_channels; chn++)
221 kfree(csr->channels[chn]);
222 kfree(csr->channels);
223 }
224 kfree(csr);
225 }
226 }
227 kfree(mci->csrows);
228 }
229 kfree(mci);
230}
231
232/**
233 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
234 * @mc_num: Memory controller number
235 * @n_layers: Number of MC hierarchy layers
236 * layers: Describes each layer as seen by the Memory Controller
237 * @size_pvt: size of private storage needed
238 *
239 *
240 * Everything is kmalloc'ed as one big chunk - more efficient.
241 * Only can be used if all structures have the same lifetime - otherwise
242 * you have to allocate and initialize your own structures.
243 *
244 * Use edac_mc_free() to free mc structures allocated by this function.
245 *
246 * NOTE: drivers handle multi-rank memories in different ways: in some
247 * drivers, one multi-rank memory stick is mapped as one entry, while, in
248 * others, a single multi-rank memory stick would be mapped into several
249 * entries. Currently, this function will allocate multiple struct dimm_info
250 * on such scenarios, as grouping the multiple ranks require drivers change.
251 *
252 * Returns:
253 * On failure: NULL
254 * On success: struct mem_ctl_info pointer
255 */
256struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
257 unsigned n_layers,
258 struct edac_mc_layer *layers,
259 unsigned sz_pvt)
260{
261 struct mem_ctl_info *mci;
262 struct edac_mc_layer *layer;
263 struct csrow_info *csr;
264 struct rank_info *chan;
265 struct dimm_info *dimm;
266 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
267 unsigned pos[EDAC_MAX_LAYERS];
268 unsigned size, tot_dimms = 1, count = 1;
269 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
270 void *pvt, *p, *ptr = NULL;
271 int i, j, row, chn, n, len, off;
272 bool per_rank = false;
273
274 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
275 /*
276 * Calculate the total amount of dimms and csrows/cschannels while
277 * in the old API emulation mode
278 */
279 for (i = 0; i < n_layers; i++) {
280 tot_dimms *= layers[i].size;
281 if (layers[i].is_virt_csrow)
282 tot_csrows *= layers[i].size;
283 else
284 tot_channels *= layers[i].size;
285
286 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
287 per_rank = true;
288 }
289
290 /* Figure out the offsets of the various items from the start of an mc
291 * structure. We want the alignment of each item to be at least as
292 * stringent as what the compiler would provide if we could simply
293 * hardcode everything into a single struct.
294 */
295 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
296 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
297 for (i = 0; i < n_layers; i++) {
298 count *= layers[i].size;
299 edac_dbg(4, "errcount layer %d size %d\n", i, count);
300 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
301 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
302 tot_errcount += 2 * count;
303 }
304
305 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
306 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
307 size = ((unsigned long)pvt) + sz_pvt;
308
309 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
310 size,
311 tot_dimms,
312 per_rank ? "ranks" : "dimms",
313 tot_csrows * tot_channels);
314
315 mci = kzalloc(size, GFP_KERNEL);
316 if (mci == NULL)
317 return NULL;
318
319 /* Adjust pointers so they point within the memory we just allocated
320 * rather than an imaginary chunk of memory located at address 0.
321 */
322 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
323 for (i = 0; i < n_layers; i++) {
324 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
325 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
326 }
327 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
328
329 /* setup index and various internal pointers */
330 mci->mc_idx = mc_num;
331 mci->tot_dimms = tot_dimms;
332 mci->pvt_info = pvt;
333 mci->n_layers = n_layers;
334 mci->layers = layer;
335 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
336 mci->nr_csrows = tot_csrows;
337 mci->num_cschannel = tot_channels;
338 mci->mem_is_per_rank = per_rank;
339
340 /*
341 * Alocate and fill the csrow/channels structs
342 */
343 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
344 if (!mci->csrows)
345 goto error;
346 for (row = 0; row < tot_csrows; row++) {
347 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
348 if (!csr)
349 goto error;
350 mci->csrows[row] = csr;
351 csr->csrow_idx = row;
352 csr->mci = mci;
353 csr->nr_channels = tot_channels;
354 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
355 GFP_KERNEL);
356 if (!csr->channels)
357 goto error;
358
359 for (chn = 0; chn < tot_channels; chn++) {
360 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
361 if (!chan)
362 goto error;
363 csr->channels[chn] = chan;
364 chan->chan_idx = chn;
365 chan->csrow = csr;
366 }
367 }
368
369 /*
370 * Allocate and fill the dimm structs
371 */
372 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
373 if (!mci->dimms)
374 goto error;
375
376 memset(&pos, 0, sizeof(pos));
377 row = 0;
378 chn = 0;
379 for (i = 0; i < tot_dimms; i++) {
380 chan = mci->csrows[row]->channels[chn];
381 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
382 if (off < 0 || off >= tot_dimms) {
383 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
384 goto error;
385 }
386
387 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
388 if (!dimm)
389 goto error;
390 mci->dimms[off] = dimm;
391 dimm->mci = mci;
392
393 /*
394 * Copy DIMM location and initialize it.
395 */
396 len = sizeof(dimm->label);
397 p = dimm->label;
398 n = snprintf(p, len, "mc#%u", mc_num);
399 p += n;
400 len -= n;
401 for (j = 0; j < n_layers; j++) {
402 n = snprintf(p, len, "%s#%u",
403 edac_layer_name[layers[j].type],
404 pos[j]);
405 p += n;
406 len -= n;
407 dimm->location[j] = pos[j];
408
409 if (len <= 0)
410 break;
411 }
412
413 /* Link it to the csrows old API data */
414 chan->dimm = dimm;
415 dimm->csrow = row;
416 dimm->cschannel = chn;
417
418 /* Increment csrow location */
419 if (layers[0].is_virt_csrow) {
420 chn++;
421 if (chn == tot_channels) {
422 chn = 0;
423 row++;
424 }
425 } else {
426 row++;
427 if (row == tot_csrows) {
428 row = 0;
429 chn++;
430 }
431 }
432
433 /* Increment dimm location */
434 for (j = n_layers - 1; j >= 0; j--) {
435 pos[j]++;
436 if (pos[j] < layers[j].size)
437 break;
438 pos[j] = 0;
439 }
440 }
441
442 mci->op_state = OP_ALLOC;
443
444 return mci;
445
446error:
447 _edac_mc_free(mci);
448
449 return NULL;
450}
451EXPORT_SYMBOL_GPL(edac_mc_alloc);
452
453/**
454 * edac_mc_free
455 * 'Free' a previously allocated 'mci' structure
456 * @mci: pointer to a struct mem_ctl_info structure
457 */
458void edac_mc_free(struct mem_ctl_info *mci)
459{
460 edac_dbg(1, "\n");
461
462 /* If we're not yet registered with sysfs free only what was allocated
463 * in edac_mc_alloc().
464 */
465 if (!device_is_registered(&mci->dev)) {
466 _edac_mc_free(mci);
467 return;
468 }
469
470 /* the mci instance is freed here, when the sysfs object is dropped */
471 edac_unregister_sysfs(mci);
472}
473EXPORT_SYMBOL_GPL(edac_mc_free);
474
475
476/**
477 * find_mci_by_dev
478 *
479 * scan list of controllers looking for the one that manages
480 * the 'dev' device
481 * @dev: pointer to a struct device related with the MCI
482 */
483struct mem_ctl_info *find_mci_by_dev(struct device *dev)
484{
485 struct mem_ctl_info *mci;
486 struct list_head *item;
487
488 edac_dbg(3, "\n");
489
490 list_for_each(item, &mc_devices) {
491 mci = list_entry(item, struct mem_ctl_info, link);
492
493 if (mci->pdev == dev)
494 return mci;
495 }
496
497 return NULL;
498}
499EXPORT_SYMBOL_GPL(find_mci_by_dev);
500
501/*
502 * handler for EDAC to check if NMI type handler has asserted interrupt
503 */
504static int edac_mc_assert_error_check_and_clear(void)
505{
506 int old_state;
507
508 if (edac_op_state == EDAC_OPSTATE_POLL)
509 return 1;
510
511 old_state = edac_err_assert;
512 edac_err_assert = 0;
513
514 return old_state;
515}
516
517/*
518 * edac_mc_workq_function
519 * performs the operation scheduled by a workq request
520 */
521static void edac_mc_workq_function(struct work_struct *work_req)
522{
523 struct delayed_work *d_work = to_delayed_work(work_req);
524 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
525
526 mutex_lock(&mem_ctls_mutex);
527
528 /* if this control struct has movd to offline state, we are done */
529 if (mci->op_state == OP_OFFLINE) {
530 mutex_unlock(&mem_ctls_mutex);
531 return;
532 }
533
534 /* Only poll controllers that are running polled and have a check */
535 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
536 mci->edac_check(mci);
537
538 mutex_unlock(&mem_ctls_mutex);
539
540 /* Reschedule */
541 queue_delayed_work(edac_workqueue, &mci->work,
542 msecs_to_jiffies(edac_mc_get_poll_msec()));
543}
544
545/*
546 * edac_mc_workq_setup
547 * initialize a workq item for this mci
548 * passing in the new delay period in msec
549 *
550 * locking model:
551 *
552 * called with the mem_ctls_mutex held
553 */
554static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
555{
556 edac_dbg(0, "\n");
557
558 /* if this instance is not in the POLL state, then simply return */
559 if (mci->op_state != OP_RUNNING_POLL)
560 return;
561
562 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
563 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
564}
565
566/*
567 * edac_mc_workq_teardown
568 * stop the workq processing on this mci
569 *
570 * locking model:
571 *
572 * called WITHOUT lock held
573 */
574static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
575{
576 int status;
577
578 if (mci->op_state != OP_RUNNING_POLL)
579 return;
580
581 status = cancel_delayed_work(&mci->work);
582 if (status == 0) {
583 edac_dbg(0, "not canceled, flush the queue\n");
584
585 /* workq instance might be running, wait for it */
586 flush_workqueue(edac_workqueue);
587 }
588}
589
590/*
591 * edac_mc_reset_delay_period(unsigned long value)
592 *
593 * user space has updated our poll period value, need to
594 * reset our workq delays
595 */
596void edac_mc_reset_delay_period(int value)
597{
598 struct mem_ctl_info *mci;
599 struct list_head *item;
600
601 mutex_lock(&mem_ctls_mutex);
602
603 list_for_each(item, &mc_devices) {
604 mci = list_entry(item, struct mem_ctl_info, link);
605
606 edac_mc_workq_setup(mci, (unsigned long) value);
607 }
608
609 mutex_unlock(&mem_ctls_mutex);
610}
611
612
613
614/* Return 0 on success, 1 on failure.
615 * Before calling this function, caller must
616 * assign a unique value to mci->mc_idx.
617 *
618 * locking model:
619 *
620 * called with the mem_ctls_mutex lock held
621 */
622static int add_mc_to_global_list(struct mem_ctl_info *mci)
623{
624 struct list_head *item, *insert_before;
625 struct mem_ctl_info *p;
626
627 insert_before = &mc_devices;
628
629 p = find_mci_by_dev(mci->pdev);
630 if (unlikely(p != NULL))
631 goto fail0;
632
633 list_for_each(item, &mc_devices) {
634 p = list_entry(item, struct mem_ctl_info, link);
635
636 if (p->mc_idx >= mci->mc_idx) {
637 if (unlikely(p->mc_idx == mci->mc_idx))
638 goto fail1;
639
640 insert_before = item;
641 break;
642 }
643 }
644
645 list_add_tail_rcu(&mci->link, insert_before);
646 atomic_inc(&edac_handlers);
647 return 0;
648
649fail0:
650 edac_printk(KERN_WARNING, EDAC_MC,
651 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
652 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
653 return 1;
654
655fail1:
656 edac_printk(KERN_WARNING, EDAC_MC,
657 "bug in low-level driver: attempt to assign\n"
658 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
659 return 1;
660}
661
662static void del_mc_from_global_list(struct mem_ctl_info *mci)
663{
664 atomic_dec(&edac_handlers);
665 list_del_rcu(&mci->link);
666
667 /* these are for safe removal of devices from global list while
668 * NMI handlers may be traversing list
669 */
670 synchronize_rcu();
671 INIT_LIST_HEAD(&mci->link);
672}
673
674/**
675 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
676 *
677 * If found, return a pointer to the structure.
678 * Else return NULL.
679 *
680 * Caller must hold mem_ctls_mutex.
681 */
682struct mem_ctl_info *edac_mc_find(int idx)
683{
684 struct list_head *item;
685 struct mem_ctl_info *mci;
686
687 list_for_each(item, &mc_devices) {
688 mci = list_entry(item, struct mem_ctl_info, link);
689
690 if (mci->mc_idx >= idx) {
691 if (mci->mc_idx == idx)
692 return mci;
693
694 break;
695 }
696 }
697
698 return NULL;
699}
700EXPORT_SYMBOL(edac_mc_find);
701
702/**
703 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
704 * create sysfs entries associated with mci structure
705 * @mci: pointer to the mci structure to be added to the list
706 *
707 * Return:
708 * 0 Success
709 * !0 Failure
710 */
711
712/* FIXME - should a warning be printed if no error detection? correction? */
713int edac_mc_add_mc(struct mem_ctl_info *mci)
714{
715 edac_dbg(0, "\n");
716
717#ifdef CONFIG_EDAC_DEBUG
718 if (edac_debug_level >= 3)
719 edac_mc_dump_mci(mci);
720
721 if (edac_debug_level >= 4) {
722 int i;
723
724 for (i = 0; i < mci->nr_csrows; i++) {
725 struct csrow_info *csrow = mci->csrows[i];
726 u32 nr_pages = 0;
727 int j;
728
729 for (j = 0; j < csrow->nr_channels; j++)
730 nr_pages += csrow->channels[j]->dimm->nr_pages;
731 if (!nr_pages)
732 continue;
733 edac_mc_dump_csrow(csrow);
734 for (j = 0; j < csrow->nr_channels; j++)
735 if (csrow->channels[j]->dimm->nr_pages)
736 edac_mc_dump_channel(csrow->channels[j]);
737 }
738 for (i = 0; i < mci->tot_dimms; i++)
739 if (mci->dimms[i]->nr_pages)
740 edac_mc_dump_dimm(mci->dimms[i], i);
741 }
742#endif
743 mutex_lock(&mem_ctls_mutex);
744
745 if (add_mc_to_global_list(mci))
746 goto fail0;
747
748 /* set load time so that error rate can be tracked */
749 mci->start_time = jiffies;
750
751 if (edac_create_sysfs_mci_device(mci)) {
752 edac_mc_printk(mci, KERN_WARNING,
753 "failed to create sysfs device\n");
754 goto fail1;
755 }
756
757 /* If there IS a check routine, then we are running POLLED */
758 if (mci->edac_check != NULL) {
759 /* This instance is NOW RUNNING */
760 mci->op_state = OP_RUNNING_POLL;
761
762 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
763 } else {
764 mci->op_state = OP_RUNNING_INTERRUPT;
765 }
766
767 /* Report action taken */
768 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
769 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
770
771 mutex_unlock(&mem_ctls_mutex);
772 return 0;
773
774fail1:
775 del_mc_from_global_list(mci);
776
777fail0:
778 mutex_unlock(&mem_ctls_mutex);
779 return 1;
780}
781EXPORT_SYMBOL_GPL(edac_mc_add_mc);
782
783/**
784 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
785 * remove mci structure from global list
786 * @pdev: Pointer to 'struct device' representing mci structure to remove.
787 *
788 * Return pointer to removed mci structure, or NULL if device not found.
789 */
790struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
791{
792 struct mem_ctl_info *mci;
793
794 edac_dbg(0, "\n");
795
796 mutex_lock(&mem_ctls_mutex);
797
798 /* find the requested mci struct in the global list */
799 mci = find_mci_by_dev(dev);
800 if (mci == NULL) {
801 mutex_unlock(&mem_ctls_mutex);
802 return NULL;
803 }
804
805 del_mc_from_global_list(mci);
806 mutex_unlock(&mem_ctls_mutex);
807
808 /* flush workq processes */
809 edac_mc_workq_teardown(mci);
810
811 /* marking MCI offline */
812 mci->op_state = OP_OFFLINE;
813
814 /* remove from sysfs */
815 edac_remove_sysfs_mci_device(mci);
816
817 edac_printk(KERN_INFO, EDAC_MC,
818 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
819 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
820
821 return mci;
822}
823EXPORT_SYMBOL_GPL(edac_mc_del_mc);
824
825static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
826 u32 size)
827{
828 struct page *pg;
829 void *virt_addr;
830 unsigned long flags = 0;
831
832 edac_dbg(3, "\n");
833
834 /* ECC error page was not in our memory. Ignore it. */
835 if (!pfn_valid(page))
836 return;
837
838 /* Find the actual page structure then map it and fix */
839 pg = pfn_to_page(page);
840
841 if (PageHighMem(pg))
842 local_irq_save(flags);
843
844 virt_addr = kmap_atomic(pg);
845
846 /* Perform architecture specific atomic scrub operation */
847 atomic_scrub(virt_addr + offset, size);
848
849 /* Unmap and complete */
850 kunmap_atomic(virt_addr);
851
852 if (PageHighMem(pg))
853 local_irq_restore(flags);
854}
855
856/* FIXME - should return -1 */
857int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
858{
859 struct csrow_info **csrows = mci->csrows;
860 int row, i, j, n;
861
862 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
863 row = -1;
864
865 for (i = 0; i < mci->nr_csrows; i++) {
866 struct csrow_info *csrow = csrows[i];
867 n = 0;
868 for (j = 0; j < csrow->nr_channels; j++) {
869 struct dimm_info *dimm = csrow->channels[j]->dimm;
870 n += dimm->nr_pages;
871 }
872 if (n == 0)
873 continue;
874
875 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
876 mci->mc_idx,
877 csrow->first_page, page, csrow->last_page,
878 csrow->page_mask);
879
880 if ((page >= csrow->first_page) &&
881 (page <= csrow->last_page) &&
882 ((page & csrow->page_mask) ==
883 (csrow->first_page & csrow->page_mask))) {
884 row = i;
885 break;
886 }
887 }
888
889 if (row == -1)
890 edac_mc_printk(mci, KERN_ERR,
891 "could not look up page error address %lx\n",
892 (unsigned long)page);
893
894 return row;
895}
896EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
897
898const char *edac_layer_name[] = {
899 [EDAC_MC_LAYER_BRANCH] = "branch",
900 [EDAC_MC_LAYER_CHANNEL] = "channel",
901 [EDAC_MC_LAYER_SLOT] = "slot",
902 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
903 [EDAC_MC_LAYER_ALL_MEM] = "memory",
904};
905EXPORT_SYMBOL_GPL(edac_layer_name);
906
907static void edac_inc_ce_error(struct mem_ctl_info *mci,
908 bool enable_per_layer_report,
909 const int pos[EDAC_MAX_LAYERS],
910 const u16 count)
911{
912 int i, index = 0;
913
914 mci->ce_mc += count;
915
916 if (!enable_per_layer_report) {
917 mci->ce_noinfo_count += count;
918 return;
919 }
920
921 for (i = 0; i < mci->n_layers; i++) {
922 if (pos[i] < 0)
923 break;
924 index += pos[i];
925 mci->ce_per_layer[i][index] += count;
926
927 if (i < mci->n_layers - 1)
928 index *= mci->layers[i + 1].size;
929 }
930}
931
932static void edac_inc_ue_error(struct mem_ctl_info *mci,
933 bool enable_per_layer_report,
934 const int pos[EDAC_MAX_LAYERS],
935 const u16 count)
936{
937 int i, index = 0;
938
939 mci->ue_mc += count;
940
941 if (!enable_per_layer_report) {
942 mci->ce_noinfo_count += count;
943 return;
944 }
945
946 for (i = 0; i < mci->n_layers; i++) {
947 if (pos[i] < 0)
948 break;
949 index += pos[i];
950 mci->ue_per_layer[i][index] += count;
951
952 if (i < mci->n_layers - 1)
953 index *= mci->layers[i + 1].size;
954 }
955}
956
957static void edac_ce_error(struct mem_ctl_info *mci,
958 const u16 error_count,
959 const int pos[EDAC_MAX_LAYERS],
960 const char *msg,
961 const char *location,
962 const char *label,
963 const char *detail,
964 const char *other_detail,
965 const bool enable_per_layer_report,
966 const unsigned long page_frame_number,
967 const unsigned long offset_in_page,
968 long grain)
969{
970 unsigned long remapped_page;
971 char *msg_aux = "";
972
973 if (*msg)
974 msg_aux = " ";
975
976 if (edac_mc_get_log_ce()) {
977 if (other_detail && *other_detail)
978 edac_mc_printk(mci, KERN_WARNING,
979 "%d CE %s%son %s (%s %s - %s)\n",
980 error_count, msg, msg_aux, label,
981 location, detail, other_detail);
982 else
983 edac_mc_printk(mci, KERN_WARNING,
984 "%d CE %s%son %s (%s %s)\n",
985 error_count, msg, msg_aux, label,
986 location, detail);
987 }
988 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
989
990 if (mci->scrub_mode & SCRUB_SW_SRC) {
991 /*
992 * Some memory controllers (called MCs below) can remap
993 * memory so that it is still available at a different
994 * address when PCI devices map into memory.
995 * MC's that can't do this, lose the memory where PCI
996 * devices are mapped. This mapping is MC-dependent
997 * and so we call back into the MC driver for it to
998 * map the MC page to a physical (CPU) page which can
999 * then be mapped to a virtual page - which can then
1000 * be scrubbed.
1001 */
1002 remapped_page = mci->ctl_page_to_phys ?
1003 mci->ctl_page_to_phys(mci, page_frame_number) :
1004 page_frame_number;
1005
1006 edac_mc_scrub_block(remapped_page,
1007 offset_in_page, grain);
1008 }
1009}
1010
1011static void edac_ue_error(struct mem_ctl_info *mci,
1012 const u16 error_count,
1013 const int pos[EDAC_MAX_LAYERS],
1014 const char *msg,
1015 const char *location,
1016 const char *label,
1017 const char *detail,
1018 const char *other_detail,
1019 const bool enable_per_layer_report)
1020{
1021 char *msg_aux = "";
1022
1023 if (*msg)
1024 msg_aux = " ";
1025
1026 if (edac_mc_get_log_ue()) {
1027 if (other_detail && *other_detail)
1028 edac_mc_printk(mci, KERN_WARNING,
1029 "%d UE %s%son %s (%s %s - %s)\n",
1030 error_count, msg, msg_aux, label,
1031 location, detail, other_detail);
1032 else
1033 edac_mc_printk(mci, KERN_WARNING,
1034 "%d UE %s%son %s (%s %s)\n",
1035 error_count, msg, msg_aux, label,
1036 location, detail);
1037 }
1038
1039 if (edac_mc_get_panic_on_ue()) {
1040 if (other_detail && *other_detail)
1041 panic("UE %s%son %s (%s%s - %s)\n",
1042 msg, msg_aux, label, location, detail, other_detail);
1043 else
1044 panic("UE %s%son %s (%s%s)\n",
1045 msg, msg_aux, label, location, detail);
1046 }
1047
1048 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1049}
1050
1051#define OTHER_LABEL " or "
1052
1053/**
1054 * edac_mc_handle_error - reports a memory event to userspace
1055 *
1056 * @type: severity of the error (CE/UE/Fatal)
1057 * @mci: a struct mem_ctl_info pointer
1058 * @error_count: Number of errors of the same type
1059 * @page_frame_number: mem page where the error occurred
1060 * @offset_in_page: offset of the error inside the page
1061 * @syndrome: ECC syndrome
1062 * @top_layer: Memory layer[0] position
1063 * @mid_layer: Memory layer[1] position
1064 * @low_layer: Memory layer[2] position
1065 * @msg: Message meaningful to the end users that
1066 * explains the event
1067 * @other_detail: Technical details about the event that
1068 * may help hardware manufacturers and
1069 * EDAC developers to analyse the event
1070 */
1071void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1072 struct mem_ctl_info *mci,
1073 const u16 error_count,
1074 const unsigned long page_frame_number,
1075 const unsigned long offset_in_page,
1076 const unsigned long syndrome,
1077 const int top_layer,
1078 const int mid_layer,
1079 const int low_layer,
1080 const char *msg,
1081 const char *other_detail)
1082{
1083 /* FIXME: too much for stack: move it to some pre-alocated area */
1084 char detail[80], location[80];
1085 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * mci->tot_dimms];
1086 char *p;
1087 int row = -1, chan = -1;
1088 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1089 int i;
1090 long grain;
1091 bool enable_per_layer_report = false;
1092 u8 grain_bits;
1093
1094 edac_dbg(3, "MC%d\n", mci->mc_idx);
1095
1096 /*
1097 * Check if the event report is consistent and if the memory
1098 * location is known. If it is known, enable_per_layer_report will be
1099 * true, the DIMM(s) label info will be filled and the per-layer
1100 * error counters will be incremented.
1101 */
1102 for (i = 0; i < mci->n_layers; i++) {
1103 if (pos[i] >= (int)mci->layers[i].size) {
1104
1105 edac_mc_printk(mci, KERN_ERR,
1106 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1107 edac_layer_name[mci->layers[i].type],
1108 pos[i], mci->layers[i].size);
1109 /*
1110 * Instead of just returning it, let's use what's
1111 * known about the error. The increment routines and
1112 * the DIMM filter logic will do the right thing by
1113 * pointing the likely damaged DIMMs.
1114 */
1115 pos[i] = -1;
1116 }
1117 if (pos[i] >= 0)
1118 enable_per_layer_report = true;
1119 }
1120
1121 /*
1122 * Get the dimm label/grain that applies to the match criteria.
1123 * As the error algorithm may not be able to point to just one memory
1124 * stick, the logic here will get all possible labels that could
1125 * pottentially be affected by the error.
1126 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1127 * to have only the MC channel and the MC dimm (also called "branch")
1128 * but the channel is not known, as the memory is arranged in pairs,
1129 * where each memory belongs to a separate channel within the same
1130 * branch.
1131 */
1132 grain = 0;
1133 p = label;
1134 *p = '\0';
1135
1136 for (i = 0; i < mci->tot_dimms; i++) {
1137 struct dimm_info *dimm = mci->dimms[i];
1138
1139 if (top_layer >= 0 && top_layer != dimm->location[0])
1140 continue;
1141 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1142 continue;
1143 if (low_layer >= 0 && low_layer != dimm->location[2])
1144 continue;
1145
1146 /* get the max grain, over the error match range */
1147 if (dimm->grain > grain)
1148 grain = dimm->grain;
1149
1150 /*
1151 * If the error is memory-controller wide, there's no need to
1152 * seek for the affected DIMMs because the whole
1153 * channel/memory controller/... may be affected.
1154 * Also, don't show errors for empty DIMM slots.
1155 */
1156 if (enable_per_layer_report && dimm->nr_pages) {
1157 if (p != label) {
1158 strcpy(p, OTHER_LABEL);
1159 p += strlen(OTHER_LABEL);
1160 }
1161 strcpy(p, dimm->label);
1162 p += strlen(p);
1163 *p = '\0';
1164
1165 /*
1166 * get csrow/channel of the DIMM, in order to allow
1167 * incrementing the compat API counters
1168 */
1169 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1170 mci->mem_is_per_rank ? "rank" : "dimm",
1171 dimm->csrow, dimm->cschannel);
1172 if (row == -1)
1173 row = dimm->csrow;
1174 else if (row >= 0 && row != dimm->csrow)
1175 row = -2;
1176
1177 if (chan == -1)
1178 chan = dimm->cschannel;
1179 else if (chan >= 0 && chan != dimm->cschannel)
1180 chan = -2;
1181 }
1182 }
1183
1184 if (!enable_per_layer_report) {
1185 strcpy(label, "any memory");
1186 } else {
1187 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1188 if (p == label)
1189 strcpy(label, "unknown memory");
1190 if (type == HW_EVENT_ERR_CORRECTED) {
1191 if (row >= 0) {
1192 mci->csrows[row]->ce_count += error_count;
1193 if (chan >= 0)
1194 mci->csrows[row]->channels[chan]->ce_count += error_count;
1195 }
1196 } else
1197 if (row >= 0)
1198 mci->csrows[row]->ue_count += error_count;
1199 }
1200
1201 /* Fill the RAM location data */
1202 p = location;
1203
1204 for (i = 0; i < mci->n_layers; i++) {
1205 if (pos[i] < 0)
1206 continue;
1207
1208 p += sprintf(p, "%s:%d ",
1209 edac_layer_name[mci->layers[i].type],
1210 pos[i]);
1211 }
1212 if (p > location)
1213 *(p - 1) = '\0';
1214
1215 /* Report the error via the trace interface */
1216 grain_bits = fls_long(grain) + 1;
1217 trace_mc_event(type, msg, label, error_count,
1218 mci->mc_idx, top_layer, mid_layer, low_layer,
1219 PAGES_TO_MiB(page_frame_number) | offset_in_page,
1220 grain_bits, syndrome, other_detail);
1221
1222 /* Memory type dependent details about the error */
1223 if (type == HW_EVENT_ERR_CORRECTED) {
1224 snprintf(detail, sizeof(detail),
1225 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1226 page_frame_number, offset_in_page,
1227 grain, syndrome);
1228 edac_ce_error(mci, error_count, pos, msg, location, label,
1229 detail, other_detail, enable_per_layer_report,
1230 page_frame_number, offset_in_page, grain);
1231 } else {
1232 snprintf(detail, sizeof(detail),
1233 "page:0x%lx offset:0x%lx grain:%ld",
1234 page_frame_number, offset_in_page, grain);
1235
1236 edac_ue_error(mci, error_count, pos, msg, location, label,
1237 detail, other_detail, enable_per_layer_report);
1238 }
1239}
1240EXPORT_SYMBOL_GPL(edac_mc_handle_error);