]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - drivers/gpu/drm/i915/i915_drv.h
drm/i915/execlists: Move bdw GPGPU w/a to emit_bb
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
... / ...
CommitLineData
1/* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3/*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30#ifndef _I915_DRV_H_
31#define _I915_DRV_H_
32
33#include <uapi/drm/i915_drm.h>
34#include <uapi/drm/drm_fourcc.h>
35
36#include <linux/io-mapping.h>
37#include <linux/i2c.h>
38#include <linux/i2c-algo-bit.h>
39#include <linux/backlight.h>
40#include <linux/hash.h>
41#include <linux/intel-iommu.h>
42#include <linux/kref.h>
43#include <linux/pm_qos.h>
44#include <linux/reservation.h>
45#include <linux/shmem_fs.h>
46
47#include <drm/drmP.h>
48#include <drm/intel-gtt.h>
49#include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50#include <drm/drm_gem.h>
51#include <drm/drm_auth.h>
52#include <drm/drm_cache.h>
53
54#include "i915_params.h"
55#include "i915_reg.h"
56#include "i915_utils.h"
57
58#include "intel_uncore.h"
59#include "intel_bios.h"
60#include "intel_dpll_mgr.h"
61#include "intel_uc.h"
62#include "intel_lrc.h"
63#include "intel_ringbuffer.h"
64
65#include "i915_gem.h"
66#include "i915_gem_context.h"
67#include "i915_gem_fence_reg.h"
68#include "i915_gem_object.h"
69#include "i915_gem_gtt.h"
70#include "i915_gem_render_state.h"
71#include "i915_gem_request.h"
72#include "i915_gem_timeline.h"
73
74#include "i915_vma.h"
75
76#include "intel_gvt.h"
77
78/* General customization:
79 */
80
81#define DRIVER_NAME "i915"
82#define DRIVER_DESC "Intel Graphics"
83#define DRIVER_DATE "20170929"
84#define DRIVER_TIMESTAMP 1506682238
85
86/* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88 * which may not necessarily be a user visible problem. This will either
89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90 * enable distros and users to tailor their preferred amount of i915 abrt
91 * spam.
92 */
93#define I915_STATE_WARN(condition, format...) ({ \
94 int __ret_warn_on = !!(condition); \
95 if (unlikely(__ret_warn_on)) \
96 if (!WARN(i915_modparams.verbose_state_checks, format)) \
97 DRM_ERROR(format); \
98 unlikely(__ret_warn_on); \
99})
100
101#define I915_STATE_WARN_ON(x) \
102 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104bool __i915_inject_load_failure(const char *func, int line);
105#define i915_inject_load_failure() \
106 __i915_inject_load_failure(__func__, __LINE__)
107
108typedef struct {
109 uint32_t val;
110} uint_fixed_16_16_t;
111
112#define FP_16_16_MAX ({ \
113 uint_fixed_16_16_t fp; \
114 fp.val = UINT_MAX; \
115 fp; \
116})
117
118static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119{
120 if (val.val == 0)
121 return true;
122 return false;
123}
124
125static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126{
127 uint_fixed_16_16_t fp;
128
129 WARN_ON(val > U16_MAX);
130
131 fp.val = val << 16;
132 return fp;
133}
134
135static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136{
137 return DIV_ROUND_UP(fp.val, 1 << 16);
138}
139
140static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141{
142 return fp.val >> 16;
143}
144
145static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146 uint_fixed_16_16_t min2)
147{
148 uint_fixed_16_16_t min;
149
150 min.val = min(min1.val, min2.val);
151 return min;
152}
153
154static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155 uint_fixed_16_16_t max2)
156{
157 uint_fixed_16_16_t max;
158
159 max.val = max(max1.val, max2.val);
160 return max;
161}
162
163static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164{
165 uint_fixed_16_16_t fp;
166 WARN_ON(val > U32_MAX);
167 fp.val = (uint32_t) val;
168 return fp;
169}
170
171static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172 uint_fixed_16_16_t d)
173{
174 return DIV_ROUND_UP(val.val, d.val);
175}
176
177static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178 uint_fixed_16_16_t mul)
179{
180 uint64_t intermediate_val;
181
182 intermediate_val = (uint64_t) val * mul.val;
183 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184 WARN_ON(intermediate_val > U32_MAX);
185 return (uint32_t) intermediate_val;
186}
187
188static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189 uint_fixed_16_16_t mul)
190{
191 uint64_t intermediate_val;
192
193 intermediate_val = (uint64_t) val.val * mul.val;
194 intermediate_val = intermediate_val >> 16;
195 return clamp_u64_to_fixed16(intermediate_val);
196}
197
198static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199{
200 uint64_t interm_val;
201
202 interm_val = (uint64_t)val << 16;
203 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204 return clamp_u64_to_fixed16(interm_val);
205}
206
207static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208 uint_fixed_16_16_t d)
209{
210 uint64_t interm_val;
211
212 interm_val = (uint64_t)val << 16;
213 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214 WARN_ON(interm_val > U32_MAX);
215 return (uint32_t) interm_val;
216}
217
218static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219 uint_fixed_16_16_t mul)
220{
221 uint64_t intermediate_val;
222
223 intermediate_val = (uint64_t) val * mul.val;
224 return clamp_u64_to_fixed16(intermediate_val);
225}
226
227static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228 uint_fixed_16_16_t add2)
229{
230 uint64_t interm_sum;
231
232 interm_sum = (uint64_t) add1.val + add2.val;
233 return clamp_u64_to_fixed16(interm_sum);
234}
235
236static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237 uint32_t add2)
238{
239 uint64_t interm_sum;
240 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241
242 interm_sum = (uint64_t) add1.val + interm_add2.val;
243 return clamp_u64_to_fixed16(interm_sum);
244}
245
246static inline const char *yesno(bool v)
247{
248 return v ? "yes" : "no";
249}
250
251static inline const char *onoff(bool v)
252{
253 return v ? "on" : "off";
254}
255
256static inline const char *enableddisabled(bool v)
257{
258 return v ? "enabled" : "disabled";
259}
260
261enum pipe {
262 INVALID_PIPE = -1,
263 PIPE_A = 0,
264 PIPE_B,
265 PIPE_C,
266 _PIPE_EDP,
267 I915_MAX_PIPES = _PIPE_EDP
268};
269#define pipe_name(p) ((p) + 'A')
270
271enum transcoder {
272 TRANSCODER_A = 0,
273 TRANSCODER_B,
274 TRANSCODER_C,
275 TRANSCODER_EDP,
276 TRANSCODER_DSI_A,
277 TRANSCODER_DSI_C,
278 I915_MAX_TRANSCODERS
279};
280
281static inline const char *transcoder_name(enum transcoder transcoder)
282{
283 switch (transcoder) {
284 case TRANSCODER_A:
285 return "A";
286 case TRANSCODER_B:
287 return "B";
288 case TRANSCODER_C:
289 return "C";
290 case TRANSCODER_EDP:
291 return "EDP";
292 case TRANSCODER_DSI_A:
293 return "DSI A";
294 case TRANSCODER_DSI_C:
295 return "DSI C";
296 default:
297 return "<invalid>";
298 }
299}
300
301static inline bool transcoder_is_dsi(enum transcoder transcoder)
302{
303 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304}
305
306/*
307 * Global legacy plane identifier. Valid only for primary/sprite
308 * planes on pre-g4x, and only for primary planes on g4x+.
309 */
310enum plane {
311 PLANE_A,
312 PLANE_B,
313 PLANE_C,
314};
315#define plane_name(p) ((p) + 'A')
316
317#define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318
319/*
320 * Per-pipe plane identifier.
321 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322 * number of planes per CRTC. Not all platforms really have this many planes,
323 * which means some arrays of size I915_MAX_PLANES may have unused entries
324 * between the topmost sprite plane and the cursor plane.
325 *
326 * This is expected to be passed to various register macros
327 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328 */
329enum plane_id {
330 PLANE_PRIMARY,
331 PLANE_SPRITE0,
332 PLANE_SPRITE1,
333 PLANE_SPRITE2,
334 PLANE_CURSOR,
335 I915_MAX_PLANES,
336};
337
338#define for_each_plane_id_on_crtc(__crtc, __p) \
339 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341
342enum port {
343 PORT_NONE = -1,
344 PORT_A = 0,
345 PORT_B,
346 PORT_C,
347 PORT_D,
348 PORT_E,
349 I915_MAX_PORTS
350};
351#define port_name(p) ((p) + 'A')
352
353#define I915_NUM_PHYS_VLV 2
354
355enum dpio_channel {
356 DPIO_CH0,
357 DPIO_CH1
358};
359
360enum dpio_phy {
361 DPIO_PHY0,
362 DPIO_PHY1,
363 DPIO_PHY2,
364};
365
366enum intel_display_power_domain {
367 POWER_DOMAIN_PIPE_A,
368 POWER_DOMAIN_PIPE_B,
369 POWER_DOMAIN_PIPE_C,
370 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373 POWER_DOMAIN_TRANSCODER_A,
374 POWER_DOMAIN_TRANSCODER_B,
375 POWER_DOMAIN_TRANSCODER_C,
376 POWER_DOMAIN_TRANSCODER_EDP,
377 POWER_DOMAIN_TRANSCODER_DSI_A,
378 POWER_DOMAIN_TRANSCODER_DSI_C,
379 POWER_DOMAIN_PORT_DDI_A_LANES,
380 POWER_DOMAIN_PORT_DDI_B_LANES,
381 POWER_DOMAIN_PORT_DDI_C_LANES,
382 POWER_DOMAIN_PORT_DDI_D_LANES,
383 POWER_DOMAIN_PORT_DDI_E_LANES,
384 POWER_DOMAIN_PORT_DDI_A_IO,
385 POWER_DOMAIN_PORT_DDI_B_IO,
386 POWER_DOMAIN_PORT_DDI_C_IO,
387 POWER_DOMAIN_PORT_DDI_D_IO,
388 POWER_DOMAIN_PORT_DDI_E_IO,
389 POWER_DOMAIN_PORT_DSI,
390 POWER_DOMAIN_PORT_CRT,
391 POWER_DOMAIN_PORT_OTHER,
392 POWER_DOMAIN_VGA,
393 POWER_DOMAIN_AUDIO,
394 POWER_DOMAIN_PLLS,
395 POWER_DOMAIN_AUX_A,
396 POWER_DOMAIN_AUX_B,
397 POWER_DOMAIN_AUX_C,
398 POWER_DOMAIN_AUX_D,
399 POWER_DOMAIN_GMBUS,
400 POWER_DOMAIN_MODESET,
401 POWER_DOMAIN_INIT,
402
403 POWER_DOMAIN_NUM,
404};
405
406#define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407#define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409#define POWER_DOMAIN_TRANSCODER(tran) \
410 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411 (tran) + POWER_DOMAIN_TRANSCODER_A)
412
413enum hpd_pin {
414 HPD_NONE = 0,
415 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
416 HPD_CRT,
417 HPD_SDVO_B,
418 HPD_SDVO_C,
419 HPD_PORT_A,
420 HPD_PORT_B,
421 HPD_PORT_C,
422 HPD_PORT_D,
423 HPD_PORT_E,
424 HPD_NUM_PINS
425};
426
427#define for_each_hpd_pin(__pin) \
428 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429
430#define HPD_STORM_DEFAULT_THRESHOLD 5
431
432struct i915_hotplug {
433 struct work_struct hotplug_work;
434
435 struct {
436 unsigned long last_jiffies;
437 int count;
438 enum {
439 HPD_ENABLED = 0,
440 HPD_DISABLED = 1,
441 HPD_MARK_DISABLED = 2
442 } state;
443 } stats[HPD_NUM_PINS];
444 u32 event_bits;
445 struct delayed_work reenable_work;
446
447 struct intel_digital_port *irq_port[I915_MAX_PORTS];
448 u32 long_port_mask;
449 u32 short_port_mask;
450 struct work_struct dig_port_work;
451
452 struct work_struct poll_init_work;
453 bool poll_enabled;
454
455 unsigned int hpd_storm_threshold;
456
457 /*
458 * if we get a HPD irq from DP and a HPD irq from non-DP
459 * the non-DP HPD could block the workqueue on a mode config
460 * mutex getting, that userspace may have taken. However
461 * userspace is waiting on the DP workqueue to run which is
462 * blocked behind the non-DP one.
463 */
464 struct workqueue_struct *dp_wq;
465};
466
467#define I915_GEM_GPU_DOMAINS \
468 (I915_GEM_DOMAIN_RENDER | \
469 I915_GEM_DOMAIN_SAMPLER | \
470 I915_GEM_DOMAIN_COMMAND | \
471 I915_GEM_DOMAIN_INSTRUCTION | \
472 I915_GEM_DOMAIN_VERTEX)
473
474#define for_each_pipe(__dev_priv, __p) \
475 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476#define for_each_pipe_masked(__dev_priv, __p, __mask) \
477 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478 for_each_if ((__mask) & (1 << (__p)))
479#define for_each_universal_plane(__dev_priv, __pipe, __p) \
480 for ((__p) = 0; \
481 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
482 (__p)++)
483#define for_each_sprite(__dev_priv, __p, __s) \
484 for ((__s) = 0; \
485 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
486 (__s)++)
487
488#define for_each_port_masked(__port, __ports_mask) \
489 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
490 for_each_if ((__ports_mask) & (1 << (__port)))
491
492#define for_each_crtc(dev, crtc) \
493 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494
495#define for_each_intel_plane(dev, intel_plane) \
496 list_for_each_entry(intel_plane, \
497 &(dev)->mode_config.plane_list, \
498 base.head)
499
500#define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
501 list_for_each_entry(intel_plane, \
502 &(dev)->mode_config.plane_list, \
503 base.head) \
504 for_each_if ((plane_mask) & \
505 (1 << drm_plane_index(&intel_plane->base)))
506
507#define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
508 list_for_each_entry(intel_plane, \
509 &(dev)->mode_config.plane_list, \
510 base.head) \
511 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512
513#define for_each_intel_crtc(dev, intel_crtc) \
514 list_for_each_entry(intel_crtc, \
515 &(dev)->mode_config.crtc_list, \
516 base.head)
517
518#define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
519 list_for_each_entry(intel_crtc, \
520 &(dev)->mode_config.crtc_list, \
521 base.head) \
522 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523
524#define for_each_intel_encoder(dev, intel_encoder) \
525 list_for_each_entry(intel_encoder, \
526 &(dev)->mode_config.encoder_list, \
527 base.head)
528
529#define for_each_intel_connector_iter(intel_connector, iter) \
530 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531
532#define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534 for_each_if ((intel_encoder)->base.crtc == (__crtc))
535
536#define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538 for_each_if ((intel_connector)->base.encoder == (__encoder))
539
540#define for_each_power_domain(domain, mask) \
541 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
542 for_each_if (BIT_ULL(domain) & (mask))
543
544#define for_each_power_well(__dev_priv, __power_well) \
545 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \
546 (__power_well) - (__dev_priv)->power_domains.power_wells < \
547 (__dev_priv)->power_domains.power_well_count; \
548 (__power_well)++)
549
550#define for_each_power_well_rev(__dev_priv, __power_well) \
551 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \
552 (__dev_priv)->power_domains.power_well_count - 1; \
553 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \
554 (__power_well)--)
555
556#define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \
557 for_each_power_well(__dev_priv, __power_well) \
558 for_each_if ((__power_well)->domains & (__domain_mask))
559
560#define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561 for_each_power_well_rev(__dev_priv, __power_well) \
562 for_each_if ((__power_well)->domains & (__domain_mask))
563
564#define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565 for ((__i) = 0; \
566 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569 (__i)++) \
570 for_each_if (plane_state)
571
572#define for_each_new_intel_crtc_in_state(__state, crtc, new_crtc_state, __i) \
573 for ((__i) = 0; \
574 (__i) < (__state)->base.dev->mode_config.num_crtc && \
575 ((crtc) = to_intel_crtc((__state)->base.crtcs[__i].ptr), \
576 (new_crtc_state) = to_intel_crtc_state((__state)->base.crtcs[__i].new_state), 1); \
577 (__i)++) \
578 for_each_if (crtc)
579
580
581#define for_each_oldnew_intel_plane_in_state(__state, plane, old_plane_state, new_plane_state, __i) \
582 for ((__i) = 0; \
583 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
584 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
585 (old_plane_state) = to_intel_plane_state((__state)->base.planes[__i].old_state), \
586 (new_plane_state) = to_intel_plane_state((__state)->base.planes[__i].new_state), 1); \
587 (__i)++) \
588 for_each_if (plane)
589
590struct drm_i915_private;
591struct i915_mm_struct;
592struct i915_mmu_object;
593
594struct drm_i915_file_private {
595 struct drm_i915_private *dev_priv;
596 struct drm_file *file;
597
598 struct {
599 spinlock_t lock;
600 struct list_head request_list;
601/* 20ms is a fairly arbitrary limit (greater than the average frame time)
602 * chosen to prevent the CPU getting more than a frame ahead of the GPU
603 * (when using lax throttling for the frontbuffer). We also use it to
604 * offer free GPU waitboosts for severely congested workloads.
605 */
606#define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
607 } mm;
608 struct idr context_idr;
609
610 struct intel_rps_client {
611 atomic_t boosts;
612 } rps;
613
614 unsigned int bsd_engine;
615
616/* Client can have a maximum of 3 contexts banned before
617 * it is denied of creating new contexts. As one context
618 * ban needs 4 consecutive hangs, and more if there is
619 * progress in between, this is a last resort stop gap measure
620 * to limit the badly behaving clients access to gpu.
621 */
622#define I915_MAX_CLIENT_CONTEXT_BANS 3
623 atomic_t context_bans;
624};
625
626/* Used by dp and fdi links */
627struct intel_link_m_n {
628 uint32_t tu;
629 uint32_t gmch_m;
630 uint32_t gmch_n;
631 uint32_t link_m;
632 uint32_t link_n;
633};
634
635void intel_link_compute_m_n(int bpp, int nlanes,
636 int pixel_clock, int link_clock,
637 struct intel_link_m_n *m_n,
638 bool reduce_m_n);
639
640/* Interface history:
641 *
642 * 1.1: Original.
643 * 1.2: Add Power Management
644 * 1.3: Add vblank support
645 * 1.4: Fix cmdbuffer path, add heap destroy
646 * 1.5: Add vblank pipe configuration
647 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
648 * - Support vertical blank on secondary display pipe
649 */
650#define DRIVER_MAJOR 1
651#define DRIVER_MINOR 6
652#define DRIVER_PATCHLEVEL 0
653
654struct opregion_header;
655struct opregion_acpi;
656struct opregion_swsci;
657struct opregion_asle;
658
659struct intel_opregion {
660 struct opregion_header *header;
661 struct opregion_acpi *acpi;
662 struct opregion_swsci *swsci;
663 u32 swsci_gbda_sub_functions;
664 u32 swsci_sbcb_sub_functions;
665 struct opregion_asle *asle;
666 void *rvda;
667 void *vbt_firmware;
668 const void *vbt;
669 u32 vbt_size;
670 u32 *lid_state;
671 struct work_struct asle_work;
672};
673#define OPREGION_SIZE (8*1024)
674
675struct intel_overlay;
676struct intel_overlay_error_state;
677
678struct sdvo_device_mapping {
679 u8 initialized;
680 u8 dvo_port;
681 u8 slave_addr;
682 u8 dvo_wiring;
683 u8 i2c_pin;
684 u8 ddc_pin;
685};
686
687struct intel_connector;
688struct intel_encoder;
689struct intel_atomic_state;
690struct intel_crtc_state;
691struct intel_initial_plane_config;
692struct intel_crtc;
693struct intel_limit;
694struct dpll;
695struct intel_cdclk_state;
696
697struct drm_i915_display_funcs {
698 void (*get_cdclk)(struct drm_i915_private *dev_priv,
699 struct intel_cdclk_state *cdclk_state);
700 void (*set_cdclk)(struct drm_i915_private *dev_priv,
701 const struct intel_cdclk_state *cdclk_state);
702 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
703 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
704 int (*compute_intermediate_wm)(struct drm_device *dev,
705 struct intel_crtc *intel_crtc,
706 struct intel_crtc_state *newstate);
707 void (*initial_watermarks)(struct intel_atomic_state *state,
708 struct intel_crtc_state *cstate);
709 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
710 struct intel_crtc_state *cstate);
711 void (*optimize_watermarks)(struct intel_atomic_state *state,
712 struct intel_crtc_state *cstate);
713 int (*compute_global_watermarks)(struct drm_atomic_state *state);
714 void (*update_wm)(struct intel_crtc *crtc);
715 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
716 /* Returns the active state of the crtc, and if the crtc is active,
717 * fills out the pipe-config with the hw state. */
718 bool (*get_pipe_config)(struct intel_crtc *,
719 struct intel_crtc_state *);
720 void (*get_initial_plane_config)(struct intel_crtc *,
721 struct intel_initial_plane_config *);
722 int (*crtc_compute_clock)(struct intel_crtc *crtc,
723 struct intel_crtc_state *crtc_state);
724 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
725 struct drm_atomic_state *old_state);
726 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
727 struct drm_atomic_state *old_state);
728 void (*update_crtcs)(struct drm_atomic_state *state);
729 void (*audio_codec_enable)(struct drm_connector *connector,
730 struct intel_encoder *encoder,
731 const struct drm_display_mode *adjusted_mode);
732 void (*audio_codec_disable)(struct intel_encoder *encoder);
733 void (*fdi_link_train)(struct intel_crtc *crtc,
734 const struct intel_crtc_state *crtc_state);
735 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
736 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
737 /* clock updates for mode set */
738 /* cursor updates */
739 /* render clock increase/decrease */
740 /* display clock increase/decrease */
741 /* pll clock increase/decrease */
742
743 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
744 void (*load_luts)(struct drm_crtc_state *crtc_state);
745};
746
747#define CSR_VERSION(major, minor) ((major) << 16 | (minor))
748#define CSR_VERSION_MAJOR(version) ((version) >> 16)
749#define CSR_VERSION_MINOR(version) ((version) & 0xffff)
750
751struct intel_csr {
752 struct work_struct work;
753 const char *fw_path;
754 uint32_t *dmc_payload;
755 uint32_t dmc_fw_size;
756 uint32_t version;
757 uint32_t mmio_count;
758 i915_reg_t mmioaddr[8];
759 uint32_t mmiodata[8];
760 uint32_t dc_state;
761 uint32_t allowed_dc_mask;
762};
763
764#define DEV_INFO_FOR_EACH_FLAG(func) \
765 func(is_mobile); \
766 func(is_lp); \
767 func(is_alpha_support); \
768 /* Keep has_* in alphabetical order */ \
769 func(has_64bit_reloc); \
770 func(has_aliasing_ppgtt); \
771 func(has_csr); \
772 func(has_ddi); \
773 func(has_dp_mst); \
774 func(has_reset_engine); \
775 func(has_fbc); \
776 func(has_fpga_dbg); \
777 func(has_full_ppgtt); \
778 func(has_full_48bit_ppgtt); \
779 func(has_gmch_display); \
780 func(has_guc); \
781 func(has_guc_ct); \
782 func(has_hotplug); \
783 func(has_l3_dpf); \
784 func(has_llc); \
785 func(has_logical_ring_contexts); \
786 func(has_logical_ring_preemption); \
787 func(has_overlay); \
788 func(has_pipe_cxsr); \
789 func(has_pooled_eu); \
790 func(has_psr); \
791 func(has_rc6); \
792 func(has_rc6p); \
793 func(has_resource_streamer); \
794 func(has_runtime_pm); \
795 func(has_snoop); \
796 func(unfenced_needs_alignment); \
797 func(cursor_needs_physical); \
798 func(hws_needs_physical); \
799 func(overlay_needs_physical); \
800 func(supports_tv); \
801 func(has_ipc);
802
803struct sseu_dev_info {
804 u8 slice_mask;
805 u8 subslice_mask;
806 u8 eu_total;
807 u8 eu_per_subslice;
808 u8 min_eu_in_pool;
809 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
810 u8 subslice_7eu[3];
811 u8 has_slice_pg:1;
812 u8 has_subslice_pg:1;
813 u8 has_eu_pg:1;
814};
815
816static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
817{
818 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
819}
820
821/* Keep in gen based order, and chronological order within a gen */
822enum intel_platform {
823 INTEL_PLATFORM_UNINITIALIZED = 0,
824 INTEL_I830,
825 INTEL_I845G,
826 INTEL_I85X,
827 INTEL_I865G,
828 INTEL_I915G,
829 INTEL_I915GM,
830 INTEL_I945G,
831 INTEL_I945GM,
832 INTEL_G33,
833 INTEL_PINEVIEW,
834 INTEL_I965G,
835 INTEL_I965GM,
836 INTEL_G45,
837 INTEL_GM45,
838 INTEL_IRONLAKE,
839 INTEL_SANDYBRIDGE,
840 INTEL_IVYBRIDGE,
841 INTEL_VALLEYVIEW,
842 INTEL_HASWELL,
843 INTEL_BROADWELL,
844 INTEL_CHERRYVIEW,
845 INTEL_SKYLAKE,
846 INTEL_BROXTON,
847 INTEL_KABYLAKE,
848 INTEL_GEMINILAKE,
849 INTEL_COFFEELAKE,
850 INTEL_CANNONLAKE,
851 INTEL_MAX_PLATFORMS
852};
853
854struct intel_device_info {
855 u16 device_id;
856 u16 gen_mask;
857
858 u8 gen;
859 u8 gt; /* GT number, 0 if undefined */
860 u8 num_rings;
861 u8 ring_mask; /* Rings supported by the HW */
862
863 enum intel_platform platform;
864 u32 platform_mask;
865
866 u32 display_mmio_offset;
867
868 u8 num_pipes;
869 u8 num_sprites[I915_MAX_PIPES];
870 u8 num_scalers[I915_MAX_PIPES];
871
872#define DEFINE_FLAG(name) u8 name:1
873 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
874#undef DEFINE_FLAG
875 u16 ddb_size; /* in blocks */
876
877 /* Register offsets for the various display pipes and transcoders */
878 int pipe_offsets[I915_MAX_TRANSCODERS];
879 int trans_offsets[I915_MAX_TRANSCODERS];
880 int palette_offsets[I915_MAX_PIPES];
881 int cursor_offsets[I915_MAX_PIPES];
882
883 /* Slice/subslice/EU info */
884 struct sseu_dev_info sseu;
885
886 struct color_luts {
887 u16 degamma_lut_size;
888 u16 gamma_lut_size;
889 } color;
890};
891
892struct intel_display_error_state;
893
894struct i915_gpu_state {
895 struct kref ref;
896 struct timeval time;
897 struct timeval boottime;
898 struct timeval uptime;
899
900 struct drm_i915_private *i915;
901
902 char error_msg[128];
903 bool simulated;
904 bool awake;
905 bool wakelock;
906 bool suspended;
907 int iommu;
908 u32 reset_count;
909 u32 suspend_count;
910 struct intel_device_info device_info;
911 struct i915_params params;
912
913 /* Generic register state */
914 u32 eir;
915 u32 pgtbl_er;
916 u32 ier;
917 u32 gtier[4], ngtier;
918 u32 ccid;
919 u32 derrmr;
920 u32 forcewake;
921 u32 error; /* gen6+ */
922 u32 err_int; /* gen7 */
923 u32 fault_data0; /* gen8, gen9 */
924 u32 fault_data1; /* gen8, gen9 */
925 u32 done_reg;
926 u32 gac_eco;
927 u32 gam_ecochk;
928 u32 gab_ctl;
929 u32 gfx_mode;
930
931 u32 nfence;
932 u64 fence[I915_MAX_NUM_FENCES];
933 struct intel_overlay_error_state *overlay;
934 struct intel_display_error_state *display;
935 struct drm_i915_error_object *semaphore;
936 struct drm_i915_error_object *guc_log;
937
938 struct drm_i915_error_engine {
939 int engine_id;
940 /* Software tracked state */
941 bool waiting;
942 int num_waiters;
943 unsigned long hangcheck_timestamp;
944 bool hangcheck_stalled;
945 enum intel_engine_hangcheck_action hangcheck_action;
946 struct i915_address_space *vm;
947 int num_requests;
948 u32 reset_count;
949
950 /* position of active request inside the ring */
951 u32 rq_head, rq_post, rq_tail;
952
953 /* our own tracking of ring head and tail */
954 u32 cpu_ring_head;
955 u32 cpu_ring_tail;
956
957 u32 last_seqno;
958
959 /* Register state */
960 u32 start;
961 u32 tail;
962 u32 head;
963 u32 ctl;
964 u32 mode;
965 u32 hws;
966 u32 ipeir;
967 u32 ipehr;
968 u32 bbstate;
969 u32 instpm;
970 u32 instps;
971 u32 seqno;
972 u64 bbaddr;
973 u64 acthd;
974 u32 fault_reg;
975 u64 faddr;
976 u32 rc_psmi; /* sleep state */
977 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
978 struct intel_instdone instdone;
979
980 struct drm_i915_error_context {
981 char comm[TASK_COMM_LEN];
982 pid_t pid;
983 u32 handle;
984 u32 hw_id;
985 int ban_score;
986 int active;
987 int guilty;
988 } context;
989
990 struct drm_i915_error_object {
991 u64 gtt_offset;
992 u64 gtt_size;
993 int page_count;
994 int unused;
995 u32 *pages[0];
996 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
997
998 struct drm_i915_error_object **user_bo;
999 long user_bo_count;
1000
1001 struct drm_i915_error_object *wa_ctx;
1002
1003 struct drm_i915_error_request {
1004 long jiffies;
1005 pid_t pid;
1006 u32 context;
1007 int ban_score;
1008 u32 seqno;
1009 u32 head;
1010 u32 tail;
1011 } *requests, execlist[EXECLIST_MAX_PORTS];
1012 unsigned int num_ports;
1013
1014 struct drm_i915_error_waiter {
1015 char comm[TASK_COMM_LEN];
1016 pid_t pid;
1017 u32 seqno;
1018 } *waiters;
1019
1020 struct {
1021 u32 gfx_mode;
1022 union {
1023 u64 pdp[4];
1024 u32 pp_dir_base;
1025 };
1026 } vm_info;
1027 } engine[I915_NUM_ENGINES];
1028
1029 struct drm_i915_error_buffer {
1030 u32 size;
1031 u32 name;
1032 u32 rseqno[I915_NUM_ENGINES], wseqno;
1033 u64 gtt_offset;
1034 u32 read_domains;
1035 u32 write_domain;
1036 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1037 u32 tiling:2;
1038 u32 dirty:1;
1039 u32 purgeable:1;
1040 u32 userptr:1;
1041 s32 engine:4;
1042 u32 cache_level:3;
1043 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1044 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1045 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1046};
1047
1048enum i915_cache_level {
1049 I915_CACHE_NONE = 0,
1050 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1051 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1052 caches, eg sampler/render caches, and the
1053 large Last-Level-Cache. LLC is coherent with
1054 the CPU, but L3 is only visible to the GPU. */
1055 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1056};
1057
1058#define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1059
1060enum fb_op_origin {
1061 ORIGIN_GTT,
1062 ORIGIN_CPU,
1063 ORIGIN_CS,
1064 ORIGIN_FLIP,
1065 ORIGIN_DIRTYFB,
1066};
1067
1068struct intel_fbc {
1069 /* This is always the inner lock when overlapping with struct_mutex and
1070 * it's the outer lock when overlapping with stolen_lock. */
1071 struct mutex lock;
1072 unsigned threshold;
1073 unsigned int possible_framebuffer_bits;
1074 unsigned int busy_bits;
1075 unsigned int visible_pipes_mask;
1076 struct intel_crtc *crtc;
1077
1078 struct drm_mm_node compressed_fb;
1079 struct drm_mm_node *compressed_llb;
1080
1081 bool false_color;
1082
1083 bool enabled;
1084 bool active;
1085
1086 bool underrun_detected;
1087 struct work_struct underrun_work;
1088
1089 /*
1090 * Due to the atomic rules we can't access some structures without the
1091 * appropriate locking, so we cache information here in order to avoid
1092 * these problems.
1093 */
1094 struct intel_fbc_state_cache {
1095 struct i915_vma *vma;
1096
1097 struct {
1098 unsigned int mode_flags;
1099 uint32_t hsw_bdw_pixel_rate;
1100 } crtc;
1101
1102 struct {
1103 unsigned int rotation;
1104 int src_w;
1105 int src_h;
1106 bool visible;
1107 } plane;
1108
1109 struct {
1110 const struct drm_format_info *format;
1111 unsigned int stride;
1112 } fb;
1113 } state_cache;
1114
1115 /*
1116 * This structure contains everything that's relevant to program the
1117 * hardware registers. When we want to figure out if we need to disable
1118 * and re-enable FBC for a new configuration we just check if there's
1119 * something different in the struct. The genx_fbc_activate functions
1120 * are supposed to read from it in order to program the registers.
1121 */
1122 struct intel_fbc_reg_params {
1123 struct i915_vma *vma;
1124
1125 struct {
1126 enum pipe pipe;
1127 enum plane plane;
1128 unsigned int fence_y_offset;
1129 } crtc;
1130
1131 struct {
1132 const struct drm_format_info *format;
1133 unsigned int stride;
1134 } fb;
1135
1136 int cfb_size;
1137 unsigned int gen9_wa_cfb_stride;
1138 } params;
1139
1140 struct intel_fbc_work {
1141 bool scheduled;
1142 u32 scheduled_vblank;
1143 struct work_struct work;
1144 } work;
1145
1146 const char *no_fbc_reason;
1147};
1148
1149/*
1150 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1151 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1152 * parsing for same resolution.
1153 */
1154enum drrs_refresh_rate_type {
1155 DRRS_HIGH_RR,
1156 DRRS_LOW_RR,
1157 DRRS_MAX_RR, /* RR count */
1158};
1159
1160enum drrs_support_type {
1161 DRRS_NOT_SUPPORTED = 0,
1162 STATIC_DRRS_SUPPORT = 1,
1163 SEAMLESS_DRRS_SUPPORT = 2
1164};
1165
1166struct intel_dp;
1167struct i915_drrs {
1168 struct mutex mutex;
1169 struct delayed_work work;
1170 struct intel_dp *dp;
1171 unsigned busy_frontbuffer_bits;
1172 enum drrs_refresh_rate_type refresh_rate_type;
1173 enum drrs_support_type type;
1174};
1175
1176struct i915_psr {
1177 struct mutex lock;
1178 bool sink_support;
1179 bool source_ok;
1180 struct intel_dp *enabled;
1181 bool active;
1182 struct delayed_work work;
1183 unsigned busy_frontbuffer_bits;
1184 bool psr2_support;
1185 bool aux_frame_sync;
1186 bool link_standby;
1187 bool y_cord_support;
1188 bool colorimetry_support;
1189 bool alpm;
1190
1191 void (*enable_source)(struct intel_dp *,
1192 const struct intel_crtc_state *);
1193 void (*disable_source)(struct intel_dp *,
1194 const struct intel_crtc_state *);
1195 void (*enable_sink)(struct intel_dp *);
1196 void (*activate)(struct intel_dp *);
1197 void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *);
1198};
1199
1200enum intel_pch {
1201 PCH_NONE = 0, /* No PCH present */
1202 PCH_IBX, /* Ibexpeak PCH */
1203 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
1204 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
1205 PCH_SPT, /* Sunrisepoint PCH */
1206 PCH_KBP, /* Kaby Lake PCH */
1207 PCH_CNP, /* Cannon Lake PCH */
1208 PCH_NOP,
1209};
1210
1211enum intel_sbi_destination {
1212 SBI_ICLK,
1213 SBI_MPHY,
1214};
1215
1216#define QUIRK_LVDS_SSC_DISABLE (1<<1)
1217#define QUIRK_INVERT_BRIGHTNESS (1<<2)
1218#define QUIRK_BACKLIGHT_PRESENT (1<<3)
1219#define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1220#define QUIRK_INCREASE_T12_DELAY (1<<6)
1221
1222struct intel_fbdev;
1223struct intel_fbc_work;
1224
1225struct intel_gmbus {
1226 struct i2c_adapter adapter;
1227#define GMBUS_FORCE_BIT_RETRY (1U << 31)
1228 u32 force_bit;
1229 u32 reg0;
1230 i915_reg_t gpio_reg;
1231 struct i2c_algo_bit_data bit_algo;
1232 struct drm_i915_private *dev_priv;
1233};
1234
1235struct i915_suspend_saved_registers {
1236 u32 saveDSPARB;
1237 u32 saveFBC_CONTROL;
1238 u32 saveCACHE_MODE_0;
1239 u32 saveMI_ARB_STATE;
1240 u32 saveSWF0[16];
1241 u32 saveSWF1[16];
1242 u32 saveSWF3[3];
1243 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1244 u32 savePCH_PORT_HOTPLUG;
1245 u16 saveGCDGMBUS;
1246};
1247
1248struct vlv_s0ix_state {
1249 /* GAM */
1250 u32 wr_watermark;
1251 u32 gfx_prio_ctrl;
1252 u32 arb_mode;
1253 u32 gfx_pend_tlb0;
1254 u32 gfx_pend_tlb1;
1255 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1256 u32 media_max_req_count;
1257 u32 gfx_max_req_count;
1258 u32 render_hwsp;
1259 u32 ecochk;
1260 u32 bsd_hwsp;
1261 u32 blt_hwsp;
1262 u32 tlb_rd_addr;
1263
1264 /* MBC */
1265 u32 g3dctl;
1266 u32 gsckgctl;
1267 u32 mbctl;
1268
1269 /* GCP */
1270 u32 ucgctl1;
1271 u32 ucgctl3;
1272 u32 rcgctl1;
1273 u32 rcgctl2;
1274 u32 rstctl;
1275 u32 misccpctl;
1276
1277 /* GPM */
1278 u32 gfxpause;
1279 u32 rpdeuhwtc;
1280 u32 rpdeuc;
1281 u32 ecobus;
1282 u32 pwrdwnupctl;
1283 u32 rp_down_timeout;
1284 u32 rp_deucsw;
1285 u32 rcubmabdtmr;
1286 u32 rcedata;
1287 u32 spare2gh;
1288
1289 /* Display 1 CZ domain */
1290 u32 gt_imr;
1291 u32 gt_ier;
1292 u32 pm_imr;
1293 u32 pm_ier;
1294 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1295
1296 /* GT SA CZ domain */
1297 u32 tilectl;
1298 u32 gt_fifoctl;
1299 u32 gtlc_wake_ctrl;
1300 u32 gtlc_survive;
1301 u32 pmwgicz;
1302
1303 /* Display 2 CZ domain */
1304 u32 gu_ctl0;
1305 u32 gu_ctl1;
1306 u32 pcbr;
1307 u32 clock_gate_dis2;
1308};
1309
1310struct intel_rps_ei {
1311 ktime_t ktime;
1312 u32 render_c0;
1313 u32 media_c0;
1314};
1315
1316struct intel_gen6_power_mgmt {
1317 /*
1318 * work, interrupts_enabled and pm_iir are protected by
1319 * dev_priv->irq_lock
1320 */
1321 struct work_struct work;
1322 bool interrupts_enabled;
1323 u32 pm_iir;
1324
1325 /* PM interrupt bits that should never be masked */
1326 u32 pm_intrmsk_mbz;
1327
1328 /* Frequencies are stored in potentially platform dependent multiples.
1329 * In other words, *_freq needs to be multiplied by X to be interesting.
1330 * Soft limits are those which are used for the dynamic reclocking done
1331 * by the driver (raise frequencies under heavy loads, and lower for
1332 * lighter loads). Hard limits are those imposed by the hardware.
1333 *
1334 * A distinction is made for overclocking, which is never enabled by
1335 * default, and is considered to be above the hard limit if it's
1336 * possible at all.
1337 */
1338 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1339 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1340 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1341 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1342 u8 min_freq; /* AKA RPn. Minimum frequency */
1343 u8 boost_freq; /* Frequency to request when wait boosting */
1344 u8 idle_freq; /* Frequency to request when we are idle */
1345 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1346 u8 rp1_freq; /* "less than" RP0 power/freqency */
1347 u8 rp0_freq; /* Non-overclocked max frequency. */
1348 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1349
1350 u8 up_threshold; /* Current %busy required to uplock */
1351 u8 down_threshold; /* Current %busy required to downclock */
1352
1353 int last_adj;
1354 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1355
1356 bool enabled;
1357 struct delayed_work autoenable_work;
1358 atomic_t num_waiters;
1359 atomic_t boosts;
1360
1361 /* manual wa residency calculations */
1362 struct intel_rps_ei ei;
1363
1364 /*
1365 * Protects RPS/RC6 register access and PCU communication.
1366 * Must be taken after struct_mutex if nested. Note that
1367 * this lock may be held for long periods of time when
1368 * talking to hw - so only take it when talking to hw!
1369 */
1370 struct mutex hw_lock;
1371};
1372
1373/* defined intel_pm.c */
1374extern spinlock_t mchdev_lock;
1375
1376struct intel_ilk_power_mgmt {
1377 u8 cur_delay;
1378 u8 min_delay;
1379 u8 max_delay;
1380 u8 fmax;
1381 u8 fstart;
1382
1383 u64 last_count1;
1384 unsigned long last_time1;
1385 unsigned long chipset_power;
1386 u64 last_count2;
1387 u64 last_time2;
1388 unsigned long gfx_power;
1389 u8 corr;
1390
1391 int c_m;
1392 int r_t;
1393};
1394
1395struct drm_i915_private;
1396struct i915_power_well;
1397
1398struct i915_power_well_ops {
1399 /*
1400 * Synchronize the well's hw state to match the current sw state, for
1401 * example enable/disable it based on the current refcount. Called
1402 * during driver init and resume time, possibly after first calling
1403 * the enable/disable handlers.
1404 */
1405 void (*sync_hw)(struct drm_i915_private *dev_priv,
1406 struct i915_power_well *power_well);
1407 /*
1408 * Enable the well and resources that depend on it (for example
1409 * interrupts located on the well). Called after the 0->1 refcount
1410 * transition.
1411 */
1412 void (*enable)(struct drm_i915_private *dev_priv,
1413 struct i915_power_well *power_well);
1414 /*
1415 * Disable the well and resources that depend on it. Called after
1416 * the 1->0 refcount transition.
1417 */
1418 void (*disable)(struct drm_i915_private *dev_priv,
1419 struct i915_power_well *power_well);
1420 /* Returns the hw enabled state. */
1421 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1422 struct i915_power_well *power_well);
1423};
1424
1425/* Power well structure for haswell */
1426struct i915_power_well {
1427 const char *name;
1428 bool always_on;
1429 /* power well enable/disable usage count */
1430 int count;
1431 /* cached hw enabled state */
1432 bool hw_enabled;
1433 u64 domains;
1434 /* unique identifier for this power well */
1435 enum i915_power_well_id id;
1436 /*
1437 * Arbitraty data associated with this power well. Platform and power
1438 * well specific.
1439 */
1440 union {
1441 struct {
1442 enum dpio_phy phy;
1443 } bxt;
1444 struct {
1445 /* Mask of pipes whose IRQ logic is backed by the pw */
1446 u8 irq_pipe_mask;
1447 /* The pw is backing the VGA functionality */
1448 bool has_vga:1;
1449 bool has_fuses:1;
1450 } hsw;
1451 };
1452 const struct i915_power_well_ops *ops;
1453};
1454
1455struct i915_power_domains {
1456 /*
1457 * Power wells needed for initialization at driver init and suspend
1458 * time are on. They are kept on until after the first modeset.
1459 */
1460 bool init_power_on;
1461 bool initializing;
1462 int power_well_count;
1463
1464 struct mutex lock;
1465 int domain_use_count[POWER_DOMAIN_NUM];
1466 struct i915_power_well *power_wells;
1467};
1468
1469#define MAX_L3_SLICES 2
1470struct intel_l3_parity {
1471 u32 *remap_info[MAX_L3_SLICES];
1472 struct work_struct error_work;
1473 int which_slice;
1474};
1475
1476struct i915_gem_mm {
1477 /** Memory allocator for GTT stolen memory */
1478 struct drm_mm stolen;
1479 /** Protects the usage of the GTT stolen memory allocator. This is
1480 * always the inner lock when overlapping with struct_mutex. */
1481 struct mutex stolen_lock;
1482
1483 /** List of all objects in gtt_space. Used to restore gtt
1484 * mappings on resume */
1485 struct list_head bound_list;
1486 /**
1487 * List of objects which are not bound to the GTT (thus
1488 * are idle and not used by the GPU). These objects may or may
1489 * not actually have any pages attached.
1490 */
1491 struct list_head unbound_list;
1492
1493 /** List of all objects in gtt_space, currently mmaped by userspace.
1494 * All objects within this list must also be on bound_list.
1495 */
1496 struct list_head userfault_list;
1497
1498 /**
1499 * List of objects which are pending destruction.
1500 */
1501 struct llist_head free_list;
1502 struct work_struct free_work;
1503
1504 /**
1505 * Small stash of WC pages
1506 */
1507 struct pagevec wc_stash;
1508
1509 /** Usable portion of the GTT for GEM */
1510 dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1511
1512 /** PPGTT used for aliasing the PPGTT with the GTT */
1513 struct i915_hw_ppgtt *aliasing_ppgtt;
1514
1515 struct notifier_block oom_notifier;
1516 struct notifier_block vmap_notifier;
1517 struct shrinker shrinker;
1518
1519 /** LRU list of objects with fence regs on them. */
1520 struct list_head fence_list;
1521
1522 /**
1523 * Workqueue to fault in userptr pages, flushed by the execbuf
1524 * when required but otherwise left to userspace to try again
1525 * on EAGAIN.
1526 */
1527 struct workqueue_struct *userptr_wq;
1528
1529 u64 unordered_timeline;
1530
1531 /* the indicator for dispatch video commands on two BSD rings */
1532 atomic_t bsd_engine_dispatch_index;
1533
1534 /** Bit 6 swizzling required for X tiling */
1535 uint32_t bit_6_swizzle_x;
1536 /** Bit 6 swizzling required for Y tiling */
1537 uint32_t bit_6_swizzle_y;
1538
1539 /* accounting, useful for userland debugging */
1540 spinlock_t object_stat_lock;
1541 u64 object_memory;
1542 u32 object_count;
1543};
1544
1545struct drm_i915_error_state_buf {
1546 struct drm_i915_private *i915;
1547 unsigned bytes;
1548 unsigned size;
1549 int err;
1550 u8 *buf;
1551 loff_t start;
1552 loff_t pos;
1553};
1554
1555#define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1556#define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1557
1558#define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1559#define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1560
1561struct i915_gpu_error {
1562 /* For hangcheck timer */
1563#define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1564#define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1565
1566 struct delayed_work hangcheck_work;
1567
1568 /* For reset and error_state handling. */
1569 spinlock_t lock;
1570 /* Protected by the above dev->gpu_error.lock. */
1571 struct i915_gpu_state *first_error;
1572
1573 atomic_t pending_fb_pin;
1574
1575 unsigned long missed_irq_rings;
1576
1577 /**
1578 * State variable controlling the reset flow and count
1579 *
1580 * This is a counter which gets incremented when reset is triggered,
1581 *
1582 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1583 * meaning that any waiters holding onto the struct_mutex should
1584 * relinquish the lock immediately in order for the reset to start.
1585 *
1586 * If reset is not completed succesfully, the I915_WEDGE bit is
1587 * set meaning that hardware is terminally sour and there is no
1588 * recovery. All waiters on the reset_queue will be woken when
1589 * that happens.
1590 *
1591 * This counter is used by the wait_seqno code to notice that reset
1592 * event happened and it needs to restart the entire ioctl (since most
1593 * likely the seqno it waited for won't ever signal anytime soon).
1594 *
1595 * This is important for lock-free wait paths, where no contended lock
1596 * naturally enforces the correct ordering between the bail-out of the
1597 * waiter and the gpu reset work code.
1598 */
1599 unsigned long reset_count;
1600
1601 /**
1602 * flags: Control various stages of the GPU reset
1603 *
1604 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1605 * other users acquiring the struct_mutex. To do this we set the
1606 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1607 * and then check for that bit before acquiring the struct_mutex (in
1608 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1609 * secondary role in preventing two concurrent global reset attempts.
1610 *
1611 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1612 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1613 * but it may be held by some long running waiter (that we cannot
1614 * interrupt without causing trouble). Once we are ready to do the GPU
1615 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1616 * they already hold the struct_mutex and want to participate they can
1617 * inspect the bit and do the reset directly, otherwise the worker
1618 * waits for the struct_mutex.
1619 *
1620 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1621 * acquire the struct_mutex to reset an engine, we need an explicit
1622 * flag to prevent two concurrent reset attempts in the same engine.
1623 * As the number of engines continues to grow, allocate the flags from
1624 * the most significant bits.
1625 *
1626 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1627 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1628 * i915_gem_request_alloc(), this bit is checked and the sequence
1629 * aborted (with -EIO reported to userspace) if set.
1630 */
1631 unsigned long flags;
1632#define I915_RESET_BACKOFF 0
1633#define I915_RESET_HANDOFF 1
1634#define I915_RESET_MODESET 2
1635#define I915_WEDGED (BITS_PER_LONG - 1)
1636#define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES)
1637
1638 /** Number of times an engine has been reset */
1639 u32 reset_engine_count[I915_NUM_ENGINES];
1640
1641 /**
1642 * Waitqueue to signal when a hang is detected. Used to for waiters
1643 * to release the struct_mutex for the reset to procede.
1644 */
1645 wait_queue_head_t wait_queue;
1646
1647 /**
1648 * Waitqueue to signal when the reset has completed. Used by clients
1649 * that wait for dev_priv->mm.wedged to settle.
1650 */
1651 wait_queue_head_t reset_queue;
1652
1653 /* For missed irq/seqno simulation. */
1654 unsigned long test_irq_rings;
1655};
1656
1657enum modeset_restore {
1658 MODESET_ON_LID_OPEN,
1659 MODESET_DONE,
1660 MODESET_SUSPENDED,
1661};
1662
1663#define DP_AUX_A 0x40
1664#define DP_AUX_B 0x10
1665#define DP_AUX_C 0x20
1666#define DP_AUX_D 0x30
1667
1668#define DDC_PIN_B 0x05
1669#define DDC_PIN_C 0x04
1670#define DDC_PIN_D 0x06
1671
1672struct ddi_vbt_port_info {
1673 /*
1674 * This is an index in the HDMI/DVI DDI buffer translation table.
1675 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1676 * populate this field.
1677 */
1678#define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1679 uint8_t hdmi_level_shift;
1680
1681 uint8_t supports_dvi:1;
1682 uint8_t supports_hdmi:1;
1683 uint8_t supports_dp:1;
1684 uint8_t supports_edp:1;
1685
1686 uint8_t alternate_aux_channel;
1687 uint8_t alternate_ddc_pin;
1688
1689 uint8_t dp_boost_level;
1690 uint8_t hdmi_boost_level;
1691};
1692
1693enum psr_lines_to_wait {
1694 PSR_0_LINES_TO_WAIT = 0,
1695 PSR_1_LINE_TO_WAIT,
1696 PSR_4_LINES_TO_WAIT,
1697 PSR_8_LINES_TO_WAIT
1698};
1699
1700struct intel_vbt_data {
1701 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1702 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1703
1704 /* Feature bits */
1705 unsigned int int_tv_support:1;
1706 unsigned int lvds_dither:1;
1707 unsigned int lvds_vbt:1;
1708 unsigned int int_crt_support:1;
1709 unsigned int lvds_use_ssc:1;
1710 unsigned int display_clock_mode:1;
1711 unsigned int fdi_rx_polarity_inverted:1;
1712 unsigned int panel_type:4;
1713 int lvds_ssc_freq;
1714 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1715
1716 enum drrs_support_type drrs_type;
1717
1718 struct {
1719 int rate;
1720 int lanes;
1721 int preemphasis;
1722 int vswing;
1723 bool low_vswing;
1724 bool initialized;
1725 bool support;
1726 int bpp;
1727 struct edp_power_seq pps;
1728 } edp;
1729
1730 struct {
1731 bool full_link;
1732 bool require_aux_wakeup;
1733 int idle_frames;
1734 enum psr_lines_to_wait lines_to_wait;
1735 int tp1_wakeup_time;
1736 int tp2_tp3_wakeup_time;
1737 } psr;
1738
1739 struct {
1740 u16 pwm_freq_hz;
1741 bool present;
1742 bool active_low_pwm;
1743 u8 min_brightness; /* min_brightness/255 of max */
1744 u8 controller; /* brightness controller number */
1745 enum intel_backlight_type type;
1746 } backlight;
1747
1748 /* MIPI DSI */
1749 struct {
1750 u16 panel_id;
1751 struct mipi_config *config;
1752 struct mipi_pps_data *pps;
1753 u8 seq_version;
1754 u32 size;
1755 u8 *data;
1756 const u8 *sequence[MIPI_SEQ_MAX];
1757 } dsi;
1758
1759 int crt_ddc_pin;
1760
1761 int child_dev_num;
1762 struct child_device_config *child_dev;
1763
1764 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1765 struct sdvo_device_mapping sdvo_mappings[2];
1766};
1767
1768enum intel_ddb_partitioning {
1769 INTEL_DDB_PART_1_2,
1770 INTEL_DDB_PART_5_6, /* IVB+ */
1771};
1772
1773struct intel_wm_level {
1774 bool enable;
1775 uint32_t pri_val;
1776 uint32_t spr_val;
1777 uint32_t cur_val;
1778 uint32_t fbc_val;
1779};
1780
1781struct ilk_wm_values {
1782 uint32_t wm_pipe[3];
1783 uint32_t wm_lp[3];
1784 uint32_t wm_lp_spr[3];
1785 uint32_t wm_linetime[3];
1786 bool enable_fbc_wm;
1787 enum intel_ddb_partitioning partitioning;
1788};
1789
1790struct g4x_pipe_wm {
1791 uint16_t plane[I915_MAX_PLANES];
1792 uint16_t fbc;
1793};
1794
1795struct g4x_sr_wm {
1796 uint16_t plane;
1797 uint16_t cursor;
1798 uint16_t fbc;
1799};
1800
1801struct vlv_wm_ddl_values {
1802 uint8_t plane[I915_MAX_PLANES];
1803};
1804
1805struct vlv_wm_values {
1806 struct g4x_pipe_wm pipe[3];
1807 struct g4x_sr_wm sr;
1808 struct vlv_wm_ddl_values ddl[3];
1809 uint8_t level;
1810 bool cxsr;
1811};
1812
1813struct g4x_wm_values {
1814 struct g4x_pipe_wm pipe[2];
1815 struct g4x_sr_wm sr;
1816 struct g4x_sr_wm hpll;
1817 bool cxsr;
1818 bool hpll_en;
1819 bool fbc_en;
1820};
1821
1822struct skl_ddb_entry {
1823 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1824};
1825
1826static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1827{
1828 return entry->end - entry->start;
1829}
1830
1831static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1832 const struct skl_ddb_entry *e2)
1833{
1834 if (e1->start == e2->start && e1->end == e2->end)
1835 return true;
1836
1837 return false;
1838}
1839
1840struct skl_ddb_allocation {
1841 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1842 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1843};
1844
1845struct skl_wm_values {
1846 unsigned dirty_pipes;
1847 struct skl_ddb_allocation ddb;
1848};
1849
1850struct skl_wm_level {
1851 bool plane_en;
1852 uint16_t plane_res_b;
1853 uint8_t plane_res_l;
1854};
1855
1856/* Stores plane specific WM parameters */
1857struct skl_wm_params {
1858 bool x_tiled, y_tiled;
1859 bool rc_surface;
1860 uint32_t width;
1861 uint8_t cpp;
1862 uint32_t plane_pixel_rate;
1863 uint32_t y_min_scanlines;
1864 uint32_t plane_bytes_per_line;
1865 uint_fixed_16_16_t plane_blocks_per_line;
1866 uint_fixed_16_16_t y_tile_minimum;
1867 uint32_t linetime_us;
1868};
1869
1870/*
1871 * This struct helps tracking the state needed for runtime PM, which puts the
1872 * device in PCI D3 state. Notice that when this happens, nothing on the
1873 * graphics device works, even register access, so we don't get interrupts nor
1874 * anything else.
1875 *
1876 * Every piece of our code that needs to actually touch the hardware needs to
1877 * either call intel_runtime_pm_get or call intel_display_power_get with the
1878 * appropriate power domain.
1879 *
1880 * Our driver uses the autosuspend delay feature, which means we'll only really
1881 * suspend if we stay with zero refcount for a certain amount of time. The
1882 * default value is currently very conservative (see intel_runtime_pm_enable), but
1883 * it can be changed with the standard runtime PM files from sysfs.
1884 *
1885 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1886 * goes back to false exactly before we reenable the IRQs. We use this variable
1887 * to check if someone is trying to enable/disable IRQs while they're supposed
1888 * to be disabled. This shouldn't happen and we'll print some error messages in
1889 * case it happens.
1890 *
1891 * For more, read the Documentation/power/runtime_pm.txt.
1892 */
1893struct i915_runtime_pm {
1894 atomic_t wakeref_count;
1895 bool suspended;
1896 bool irqs_enabled;
1897};
1898
1899enum intel_pipe_crc_source {
1900 INTEL_PIPE_CRC_SOURCE_NONE,
1901 INTEL_PIPE_CRC_SOURCE_PLANE1,
1902 INTEL_PIPE_CRC_SOURCE_PLANE2,
1903 INTEL_PIPE_CRC_SOURCE_PF,
1904 INTEL_PIPE_CRC_SOURCE_PIPE,
1905 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1906 INTEL_PIPE_CRC_SOURCE_TV,
1907 INTEL_PIPE_CRC_SOURCE_DP_B,
1908 INTEL_PIPE_CRC_SOURCE_DP_C,
1909 INTEL_PIPE_CRC_SOURCE_DP_D,
1910 INTEL_PIPE_CRC_SOURCE_AUTO,
1911 INTEL_PIPE_CRC_SOURCE_MAX,
1912};
1913
1914struct intel_pipe_crc_entry {
1915 uint32_t frame;
1916 uint32_t crc[5];
1917};
1918
1919#define INTEL_PIPE_CRC_ENTRIES_NR 128
1920struct intel_pipe_crc {
1921 spinlock_t lock;
1922 bool opened; /* exclusive access to the result file */
1923 struct intel_pipe_crc_entry *entries;
1924 enum intel_pipe_crc_source source;
1925 int head, tail;
1926 wait_queue_head_t wq;
1927 int skipped;
1928};
1929
1930struct i915_frontbuffer_tracking {
1931 spinlock_t lock;
1932
1933 /*
1934 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1935 * scheduled flips.
1936 */
1937 unsigned busy_bits;
1938 unsigned flip_bits;
1939};
1940
1941struct i915_wa_reg {
1942 i915_reg_t addr;
1943 u32 value;
1944 /* bitmask representing WA bits */
1945 u32 mask;
1946};
1947
1948/*
1949 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1950 * allowing it for RCS as we don't foresee any requirement of having
1951 * a whitelist for other engines. When it is really required for
1952 * other engines then the limit need to be increased.
1953 */
1954#define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1955
1956struct i915_workarounds {
1957 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1958 u32 count;
1959 u32 hw_whitelist_count[I915_NUM_ENGINES];
1960};
1961
1962struct i915_virtual_gpu {
1963 bool active;
1964 u32 caps;
1965};
1966
1967/* used in computing the new watermarks state */
1968struct intel_wm_config {
1969 unsigned int num_pipes_active;
1970 bool sprites_enabled;
1971 bool sprites_scaled;
1972};
1973
1974struct i915_oa_format {
1975 u32 format;
1976 int size;
1977};
1978
1979struct i915_oa_reg {
1980 i915_reg_t addr;
1981 u32 value;
1982};
1983
1984struct i915_oa_config {
1985 char uuid[UUID_STRING_LEN + 1];
1986 int id;
1987
1988 const struct i915_oa_reg *mux_regs;
1989 u32 mux_regs_len;
1990 const struct i915_oa_reg *b_counter_regs;
1991 u32 b_counter_regs_len;
1992 const struct i915_oa_reg *flex_regs;
1993 u32 flex_regs_len;
1994
1995 struct attribute_group sysfs_metric;
1996 struct attribute *attrs[2];
1997 struct device_attribute sysfs_metric_id;
1998
1999 atomic_t ref_count;
2000};
2001
2002struct i915_perf_stream;
2003
2004/**
2005 * struct i915_perf_stream_ops - the OPs to support a specific stream type
2006 */
2007struct i915_perf_stream_ops {
2008 /**
2009 * @enable: Enables the collection of HW samples, either in response to
2010 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
2011 * without `I915_PERF_FLAG_DISABLED`.
2012 */
2013 void (*enable)(struct i915_perf_stream *stream);
2014
2015 /**
2016 * @disable: Disables the collection of HW samples, either in response
2017 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
2018 * the stream.
2019 */
2020 void (*disable)(struct i915_perf_stream *stream);
2021
2022 /**
2023 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
2024 * once there is something ready to read() for the stream
2025 */
2026 void (*poll_wait)(struct i915_perf_stream *stream,
2027 struct file *file,
2028 poll_table *wait);
2029
2030 /**
2031 * @wait_unlocked: For handling a blocking read, wait until there is
2032 * something to ready to read() for the stream. E.g. wait on the same
2033 * wait queue that would be passed to poll_wait().
2034 */
2035 int (*wait_unlocked)(struct i915_perf_stream *stream);
2036
2037 /**
2038 * @read: Copy buffered metrics as records to userspace
2039 * **buf**: the userspace, destination buffer
2040 * **count**: the number of bytes to copy, requested by userspace
2041 * **offset**: zero at the start of the read, updated as the read
2042 * proceeds, it represents how many bytes have been copied so far and
2043 * the buffer offset for copying the next record.
2044 *
2045 * Copy as many buffered i915 perf samples and records for this stream
2046 * to userspace as will fit in the given buffer.
2047 *
2048 * Only write complete records; returning -%ENOSPC if there isn't room
2049 * for a complete record.
2050 *
2051 * Return any error condition that results in a short read such as
2052 * -%ENOSPC or -%EFAULT, even though these may be squashed before
2053 * returning to userspace.
2054 */
2055 int (*read)(struct i915_perf_stream *stream,
2056 char __user *buf,
2057 size_t count,
2058 size_t *offset);
2059
2060 /**
2061 * @destroy: Cleanup any stream specific resources.
2062 *
2063 * The stream will always be disabled before this is called.
2064 */
2065 void (*destroy)(struct i915_perf_stream *stream);
2066};
2067
2068/**
2069 * struct i915_perf_stream - state for a single open stream FD
2070 */
2071struct i915_perf_stream {
2072 /**
2073 * @dev_priv: i915 drm device
2074 */
2075 struct drm_i915_private *dev_priv;
2076
2077 /**
2078 * @link: Links the stream into ``&drm_i915_private->streams``
2079 */
2080 struct list_head link;
2081
2082 /**
2083 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2084 * properties given when opening a stream, representing the contents
2085 * of a single sample as read() by userspace.
2086 */
2087 u32 sample_flags;
2088
2089 /**
2090 * @sample_size: Considering the configured contents of a sample
2091 * combined with the required header size, this is the total size
2092 * of a single sample record.
2093 */
2094 int sample_size;
2095
2096 /**
2097 * @ctx: %NULL if measuring system-wide across all contexts or a
2098 * specific context that is being monitored.
2099 */
2100 struct i915_gem_context *ctx;
2101
2102 /**
2103 * @enabled: Whether the stream is currently enabled, considering
2104 * whether the stream was opened in a disabled state and based
2105 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2106 */
2107 bool enabled;
2108
2109 /**
2110 * @ops: The callbacks providing the implementation of this specific
2111 * type of configured stream.
2112 */
2113 const struct i915_perf_stream_ops *ops;
2114
2115 /**
2116 * @oa_config: The OA configuration used by the stream.
2117 */
2118 struct i915_oa_config *oa_config;
2119};
2120
2121/**
2122 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2123 */
2124struct i915_oa_ops {
2125 /**
2126 * @is_valid_b_counter_reg: Validates register's address for
2127 * programming boolean counters for a particular platform.
2128 */
2129 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2130 u32 addr);
2131
2132 /**
2133 * @is_valid_mux_reg: Validates register's address for programming mux
2134 * for a particular platform.
2135 */
2136 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2137
2138 /**
2139 * @is_valid_flex_reg: Validates register's address for programming
2140 * flex EU filtering for a particular platform.
2141 */
2142 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2143
2144 /**
2145 * @init_oa_buffer: Resets the head and tail pointers of the
2146 * circular buffer for periodic OA reports.
2147 *
2148 * Called when first opening a stream for OA metrics, but also may be
2149 * called in response to an OA buffer overflow or other error
2150 * condition.
2151 *
2152 * Note it may be necessary to clear the full OA buffer here as part of
2153 * maintaining the invariable that new reports must be written to
2154 * zeroed memory for us to be able to reliable detect if an expected
2155 * report has not yet landed in memory. (At least on Haswell the OA
2156 * buffer tail pointer is not synchronized with reports being visible
2157 * to the CPU)
2158 */
2159 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2160
2161 /**
2162 * @enable_metric_set: Selects and applies any MUX configuration to set
2163 * up the Boolean and Custom (B/C) counters that are part of the
2164 * counter reports being sampled. May apply system constraints such as
2165 * disabling EU clock gating as required.
2166 */
2167 int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2168 const struct i915_oa_config *oa_config);
2169
2170 /**
2171 * @disable_metric_set: Remove system constraints associated with using
2172 * the OA unit.
2173 */
2174 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2175
2176 /**
2177 * @oa_enable: Enable periodic sampling
2178 */
2179 void (*oa_enable)(struct drm_i915_private *dev_priv);
2180
2181 /**
2182 * @oa_disable: Disable periodic sampling
2183 */
2184 void (*oa_disable)(struct drm_i915_private *dev_priv);
2185
2186 /**
2187 * @read: Copy data from the circular OA buffer into a given userspace
2188 * buffer.
2189 */
2190 int (*read)(struct i915_perf_stream *stream,
2191 char __user *buf,
2192 size_t count,
2193 size_t *offset);
2194
2195 /**
2196 * @oa_hw_tail_read: read the OA tail pointer register
2197 *
2198 * In particular this enables us to share all the fiddly code for
2199 * handling the OA unit tail pointer race that affects multiple
2200 * generations.
2201 */
2202 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2203};
2204
2205struct intel_cdclk_state {
2206 unsigned int cdclk, vco, ref;
2207};
2208
2209struct drm_i915_private {
2210 struct drm_device drm;
2211
2212 struct kmem_cache *objects;
2213 struct kmem_cache *vmas;
2214 struct kmem_cache *luts;
2215 struct kmem_cache *requests;
2216 struct kmem_cache *dependencies;
2217 struct kmem_cache *priorities;
2218
2219 const struct intel_device_info info;
2220
2221 void __iomem *regs;
2222
2223 struct intel_uncore uncore;
2224
2225 struct i915_virtual_gpu vgpu;
2226
2227 struct intel_gvt *gvt;
2228
2229 struct intel_huc huc;
2230 struct intel_guc guc;
2231
2232 struct intel_csr csr;
2233
2234 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2235
2236 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2237 * controller on different i2c buses. */
2238 struct mutex gmbus_mutex;
2239
2240 /**
2241 * Base address of the gmbus and gpio block.
2242 */
2243 uint32_t gpio_mmio_base;
2244
2245 /* MMIO base address for MIPI regs */
2246 uint32_t mipi_mmio_base;
2247
2248 uint32_t psr_mmio_base;
2249
2250 uint32_t pps_mmio_base;
2251
2252 wait_queue_head_t gmbus_wait_queue;
2253
2254 struct pci_dev *bridge_dev;
2255 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2256 /* Context used internally to idle the GPU and setup initial state */
2257 struct i915_gem_context *kernel_context;
2258 /* Context only to be used for injecting preemption commands */
2259 struct i915_gem_context *preempt_context;
2260 struct i915_vma *semaphore;
2261
2262 struct drm_dma_handle *status_page_dmah;
2263 struct resource mch_res;
2264
2265 /* protects the irq masks */
2266 spinlock_t irq_lock;
2267
2268 bool display_irqs_enabled;
2269
2270 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2271 struct pm_qos_request pm_qos;
2272
2273 /* Sideband mailbox protection */
2274 struct mutex sb_lock;
2275
2276 /** Cached value of IMR to avoid reads in updating the bitfield */
2277 union {
2278 u32 irq_mask;
2279 u32 de_irq_mask[I915_MAX_PIPES];
2280 };
2281 u32 gt_irq_mask;
2282 u32 pm_imr;
2283 u32 pm_ier;
2284 u32 pm_rps_events;
2285 u32 pm_guc_events;
2286 u32 pipestat_irq_mask[I915_MAX_PIPES];
2287
2288 struct i915_hotplug hotplug;
2289 struct intel_fbc fbc;
2290 struct i915_drrs drrs;
2291 struct intel_opregion opregion;
2292 struct intel_vbt_data vbt;
2293
2294 bool preserve_bios_swizzle;
2295
2296 /* overlay */
2297 struct intel_overlay *overlay;
2298
2299 /* backlight registers and fields in struct intel_panel */
2300 struct mutex backlight_lock;
2301
2302 /* LVDS info */
2303 bool no_aux_handshake;
2304
2305 /* protects panel power sequencer state */
2306 struct mutex pps_mutex;
2307
2308 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2309 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2310
2311 unsigned int fsb_freq, mem_freq, is_ddr3;
2312 unsigned int skl_preferred_vco_freq;
2313 unsigned int max_cdclk_freq;
2314
2315 unsigned int max_dotclk_freq;
2316 unsigned int rawclk_freq;
2317 unsigned int hpll_freq;
2318 unsigned int czclk_freq;
2319
2320 struct {
2321 /*
2322 * The current logical cdclk state.
2323 * See intel_atomic_state.cdclk.logical
2324 *
2325 * For reading holding any crtc lock is sufficient,
2326 * for writing must hold all of them.
2327 */
2328 struct intel_cdclk_state logical;
2329 /*
2330 * The current actual cdclk state.
2331 * See intel_atomic_state.cdclk.actual
2332 */
2333 struct intel_cdclk_state actual;
2334 /* The current hardware cdclk state */
2335 struct intel_cdclk_state hw;
2336 } cdclk;
2337
2338 /**
2339 * wq - Driver workqueue for GEM.
2340 *
2341 * NOTE: Work items scheduled here are not allowed to grab any modeset
2342 * locks, for otherwise the flushing done in the pageflip code will
2343 * result in deadlocks.
2344 */
2345 struct workqueue_struct *wq;
2346
2347 /* Display functions */
2348 struct drm_i915_display_funcs display;
2349
2350 /* PCH chipset type */
2351 enum intel_pch pch_type;
2352 unsigned short pch_id;
2353
2354 unsigned long quirks;
2355
2356 enum modeset_restore modeset_restore;
2357 struct mutex modeset_restore_lock;
2358 struct drm_atomic_state *modeset_restore_state;
2359 struct drm_modeset_acquire_ctx reset_ctx;
2360
2361 struct list_head vm_list; /* Global list of all address spaces */
2362 struct i915_ggtt ggtt; /* VM representing the global address space */
2363
2364 struct i915_gem_mm mm;
2365 DECLARE_HASHTABLE(mm_structs, 7);
2366 struct mutex mm_lock;
2367
2368 struct intel_ppat ppat;
2369
2370 /* Kernel Modesetting */
2371
2372 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2373 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2374
2375#ifdef CONFIG_DEBUG_FS
2376 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2377#endif
2378
2379 /* dpll and cdclk state is protected by connection_mutex */
2380 int num_shared_dpll;
2381 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2382 const struct intel_dpll_mgr *dpll_mgr;
2383
2384 /*
2385 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2386 * Must be global rather than per dpll, because on some platforms
2387 * plls share registers.
2388 */
2389 struct mutex dpll_lock;
2390
2391 unsigned int active_crtcs;
2392 /* minimum acceptable cdclk for each pipe */
2393 int min_cdclk[I915_MAX_PIPES];
2394
2395 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2396
2397 struct i915_workarounds workarounds;
2398
2399 struct i915_frontbuffer_tracking fb_tracking;
2400
2401 struct intel_atomic_helper {
2402 struct llist_head free_list;
2403 struct work_struct free_work;
2404 } atomic_helper;
2405
2406 u16 orig_clock;
2407
2408 bool mchbar_need_disable;
2409
2410 struct intel_l3_parity l3_parity;
2411
2412 /* Cannot be determined by PCIID. You must always read a register. */
2413 u32 edram_cap;
2414
2415 /* gen6+ rps state */
2416 struct intel_gen6_power_mgmt rps;
2417
2418 /* ilk-only ips/rps state. Everything in here is protected by the global
2419 * mchdev_lock in intel_pm.c */
2420 struct intel_ilk_power_mgmt ips;
2421
2422 struct i915_power_domains power_domains;
2423
2424 struct i915_psr psr;
2425
2426 struct i915_gpu_error gpu_error;
2427
2428 struct drm_i915_gem_object *vlv_pctx;
2429
2430 /* list of fbdev register on this device */
2431 struct intel_fbdev *fbdev;
2432 struct work_struct fbdev_suspend_work;
2433
2434 struct drm_property *broadcast_rgb_property;
2435 struct drm_property *force_audio_property;
2436
2437 /* hda/i915 audio component */
2438 struct i915_audio_component *audio_component;
2439 bool audio_component_registered;
2440 /**
2441 * av_mutex - mutex for audio/video sync
2442 *
2443 */
2444 struct mutex av_mutex;
2445
2446 struct {
2447 struct list_head list;
2448 struct llist_head free_list;
2449 struct work_struct free_work;
2450
2451 /* The hw wants to have a stable context identifier for the
2452 * lifetime of the context (for OA, PASID, faults, etc).
2453 * This is limited in execlists to 21 bits.
2454 */
2455 struct ida hw_ida;
2456#define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2457 } contexts;
2458
2459 u32 fdi_rx_config;
2460
2461 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2462 u32 chv_phy_control;
2463 /*
2464 * Shadows for CHV DPLL_MD regs to keep the state
2465 * checker somewhat working in the presence hardware
2466 * crappiness (can't read out DPLL_MD for pipes B & C).
2467 */
2468 u32 chv_dpll_md[I915_MAX_PIPES];
2469 u32 bxt_phy_grc;
2470
2471 u32 suspend_count;
2472 bool suspended_to_idle;
2473 struct i915_suspend_saved_registers regfile;
2474 struct vlv_s0ix_state vlv_s0ix_state;
2475
2476 enum {
2477 I915_SAGV_UNKNOWN = 0,
2478 I915_SAGV_DISABLED,
2479 I915_SAGV_ENABLED,
2480 I915_SAGV_NOT_CONTROLLED
2481 } sagv_status;
2482
2483 struct {
2484 /*
2485 * Raw watermark latency values:
2486 * in 0.1us units for WM0,
2487 * in 0.5us units for WM1+.
2488 */
2489 /* primary */
2490 uint16_t pri_latency[5];
2491 /* sprite */
2492 uint16_t spr_latency[5];
2493 /* cursor */
2494 uint16_t cur_latency[5];
2495 /*
2496 * Raw watermark memory latency values
2497 * for SKL for all 8 levels
2498 * in 1us units.
2499 */
2500 uint16_t skl_latency[8];
2501
2502 /* current hardware state */
2503 union {
2504 struct ilk_wm_values hw;
2505 struct skl_wm_values skl_hw;
2506 struct vlv_wm_values vlv;
2507 struct g4x_wm_values g4x;
2508 };
2509
2510 uint8_t max_level;
2511
2512 /*
2513 * Should be held around atomic WM register writing; also
2514 * protects * intel_crtc->wm.active and
2515 * cstate->wm.need_postvbl_update.
2516 */
2517 struct mutex wm_mutex;
2518
2519 /*
2520 * Set during HW readout of watermarks/DDB. Some platforms
2521 * need to know when we're still using BIOS-provided values
2522 * (which we don't fully trust).
2523 */
2524 bool distrust_bios_wm;
2525 } wm;
2526
2527 struct i915_runtime_pm pm;
2528
2529 struct {
2530 bool initialized;
2531
2532 struct kobject *metrics_kobj;
2533 struct ctl_table_header *sysctl_header;
2534
2535 /*
2536 * Lock associated with adding/modifying/removing OA configs
2537 * in dev_priv->perf.metrics_idr.
2538 */
2539 struct mutex metrics_lock;
2540
2541 /*
2542 * List of dynamic configurations, you need to hold
2543 * dev_priv->perf.metrics_lock to access it.
2544 */
2545 struct idr metrics_idr;
2546
2547 /*
2548 * Lock associated with anything below within this structure
2549 * except exclusive_stream.
2550 */
2551 struct mutex lock;
2552 struct list_head streams;
2553
2554 struct {
2555 /*
2556 * The stream currently using the OA unit. If accessed
2557 * outside a syscall associated to its file
2558 * descriptor, you need to hold
2559 * dev_priv->drm.struct_mutex.
2560 */
2561 struct i915_perf_stream *exclusive_stream;
2562
2563 u32 specific_ctx_id;
2564
2565 struct hrtimer poll_check_timer;
2566 wait_queue_head_t poll_wq;
2567 bool pollin;
2568
2569 /**
2570 * For rate limiting any notifications of spurious
2571 * invalid OA reports
2572 */
2573 struct ratelimit_state spurious_report_rs;
2574
2575 bool periodic;
2576 int period_exponent;
2577 int timestamp_frequency;
2578
2579 struct i915_oa_config test_config;
2580
2581 struct {
2582 struct i915_vma *vma;
2583 u8 *vaddr;
2584 u32 last_ctx_id;
2585 int format;
2586 int format_size;
2587
2588 /**
2589 * Locks reads and writes to all head/tail state
2590 *
2591 * Consider: the head and tail pointer state
2592 * needs to be read consistently from a hrtimer
2593 * callback (atomic context) and read() fop
2594 * (user context) with tail pointer updates
2595 * happening in atomic context and head updates
2596 * in user context and the (unlikely)
2597 * possibility of read() errors needing to
2598 * reset all head/tail state.
2599 *
2600 * Note: Contention or performance aren't
2601 * currently a significant concern here
2602 * considering the relatively low frequency of
2603 * hrtimer callbacks (5ms period) and that
2604 * reads typically only happen in response to a
2605 * hrtimer event and likely complete before the
2606 * next callback.
2607 *
2608 * Note: This lock is not held *while* reading
2609 * and copying data to userspace so the value
2610 * of head observed in htrimer callbacks won't
2611 * represent any partial consumption of data.
2612 */
2613 spinlock_t ptr_lock;
2614
2615 /**
2616 * One 'aging' tail pointer and one 'aged'
2617 * tail pointer ready to used for reading.
2618 *
2619 * Initial values of 0xffffffff are invalid
2620 * and imply that an update is required
2621 * (and should be ignored by an attempted
2622 * read)
2623 */
2624 struct {
2625 u32 offset;
2626 } tails[2];
2627
2628 /**
2629 * Index for the aged tail ready to read()
2630 * data up to.
2631 */
2632 unsigned int aged_tail_idx;
2633
2634 /**
2635 * A monotonic timestamp for when the current
2636 * aging tail pointer was read; used to
2637 * determine when it is old enough to trust.
2638 */
2639 u64 aging_timestamp;
2640
2641 /**
2642 * Although we can always read back the head
2643 * pointer register, we prefer to avoid
2644 * trusting the HW state, just to avoid any
2645 * risk that some hardware condition could
2646 * somehow bump the head pointer unpredictably
2647 * and cause us to forward the wrong OA buffer
2648 * data to userspace.
2649 */
2650 u32 head;
2651 } oa_buffer;
2652
2653 u32 gen7_latched_oastatus1;
2654 u32 ctx_oactxctrl_offset;
2655 u32 ctx_flexeu0_offset;
2656
2657 /**
2658 * The RPT_ID/reason field for Gen8+ includes a bit
2659 * to determine if the CTX ID in the report is valid
2660 * but the specific bit differs between Gen 8 and 9
2661 */
2662 u32 gen8_valid_ctx_bit;
2663
2664 struct i915_oa_ops ops;
2665 const struct i915_oa_format *oa_formats;
2666 } oa;
2667 } perf;
2668
2669 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2670 struct {
2671 void (*resume)(struct drm_i915_private *);
2672 void (*cleanup_engine)(struct intel_engine_cs *engine);
2673
2674 struct list_head timelines;
2675 struct i915_gem_timeline global_timeline;
2676 u32 active_requests;
2677
2678 /**
2679 * Is the GPU currently considered idle, or busy executing
2680 * userspace requests? Whilst idle, we allow runtime power
2681 * management to power down the hardware and display clocks.
2682 * In order to reduce the effect on performance, there
2683 * is a slight delay before we do so.
2684 */
2685 bool awake;
2686
2687 /**
2688 * We leave the user IRQ off as much as possible,
2689 * but this means that requests will finish and never
2690 * be retired once the system goes idle. Set a timer to
2691 * fire periodically while the ring is running. When it
2692 * fires, go retire requests.
2693 */
2694 struct delayed_work retire_work;
2695
2696 /**
2697 * When we detect an idle GPU, we want to turn on
2698 * powersaving features. So once we see that there
2699 * are no more requests outstanding and no more
2700 * arrive within a small period of time, we fire
2701 * off the idle_work.
2702 */
2703 struct delayed_work idle_work;
2704
2705 ktime_t last_init_time;
2706 } gt;
2707
2708 /* perform PHY state sanity checks? */
2709 bool chv_phy_assert[2];
2710
2711 bool ipc_enabled;
2712
2713 /* Used to save the pipe-to-encoder mapping for audio */
2714 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2715
2716 /* necessary resource sharing with HDMI LPE audio driver. */
2717 struct {
2718 struct platform_device *platdev;
2719 int irq;
2720 } lpe_audio;
2721
2722 /*
2723 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2724 * will be rejected. Instead look for a better place.
2725 */
2726};
2727
2728static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2729{
2730 return container_of(dev, struct drm_i915_private, drm);
2731}
2732
2733static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2734{
2735 return to_i915(dev_get_drvdata(kdev));
2736}
2737
2738static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2739{
2740 return container_of(guc, struct drm_i915_private, guc);
2741}
2742
2743static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2744{
2745 return container_of(huc, struct drm_i915_private, huc);
2746}
2747
2748/* Simple iterator over all initialised engines */
2749#define for_each_engine(engine__, dev_priv__, id__) \
2750 for ((id__) = 0; \
2751 (id__) < I915_NUM_ENGINES; \
2752 (id__)++) \
2753 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2754
2755/* Iterator over subset of engines selected by mask */
2756#define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2757 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2758 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2759
2760enum hdmi_force_audio {
2761 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2762 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2763 HDMI_AUDIO_AUTO, /* trust EDID */
2764 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2765};
2766
2767#define I915_GTT_OFFSET_NONE ((u32)-1)
2768
2769/*
2770 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2771 * considered to be the frontbuffer for the given plane interface-wise. This
2772 * doesn't mean that the hw necessarily already scans it out, but that any
2773 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2774 *
2775 * We have one bit per pipe and per scanout plane type.
2776 */
2777#define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2778#define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2779#define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2780 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2781#define INTEL_FRONTBUFFER_CURSOR(pipe) \
2782 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2783#define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2784 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2785#define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2786 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2787#define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2788 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2789
2790/*
2791 * Optimised SGL iterator for GEM objects
2792 */
2793static __always_inline struct sgt_iter {
2794 struct scatterlist *sgp;
2795 union {
2796 unsigned long pfn;
2797 dma_addr_t dma;
2798 };
2799 unsigned int curr;
2800 unsigned int max;
2801} __sgt_iter(struct scatterlist *sgl, bool dma) {
2802 struct sgt_iter s = { .sgp = sgl };
2803
2804 if (s.sgp) {
2805 s.max = s.curr = s.sgp->offset;
2806 s.max += s.sgp->length;
2807 if (dma)
2808 s.dma = sg_dma_address(s.sgp);
2809 else
2810 s.pfn = page_to_pfn(sg_page(s.sgp));
2811 }
2812
2813 return s;
2814}
2815
2816static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2817{
2818 ++sg;
2819 if (unlikely(sg_is_chain(sg)))
2820 sg = sg_chain_ptr(sg);
2821 return sg;
2822}
2823
2824/**
2825 * __sg_next - return the next scatterlist entry in a list
2826 * @sg: The current sg entry
2827 *
2828 * Description:
2829 * If the entry is the last, return NULL; otherwise, step to the next
2830 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2831 * otherwise just return the pointer to the current element.
2832 **/
2833static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2834{
2835#ifdef CONFIG_DEBUG_SG
2836 BUG_ON(sg->sg_magic != SG_MAGIC);
2837#endif
2838 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2839}
2840
2841/**
2842 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2843 * @__dmap: DMA address (output)
2844 * @__iter: 'struct sgt_iter' (iterator state, internal)
2845 * @__sgt: sg_table to iterate over (input)
2846 */
2847#define for_each_sgt_dma(__dmap, __iter, __sgt) \
2848 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2849 ((__dmap) = (__iter).dma + (__iter).curr); \
2850 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2851 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2852
2853/**
2854 * for_each_sgt_page - iterate over the pages of the given sg_table
2855 * @__pp: page pointer (output)
2856 * @__iter: 'struct sgt_iter' (iterator state, internal)
2857 * @__sgt: sg_table to iterate over (input)
2858 */
2859#define for_each_sgt_page(__pp, __iter, __sgt) \
2860 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2861 ((__pp) = (__iter).pfn == 0 ? NULL : \
2862 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2863 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2864 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2865
2866static inline unsigned int i915_sg_segment_size(void)
2867{
2868 unsigned int size = swiotlb_max_segment();
2869
2870 if (size == 0)
2871 return SCATTERLIST_MAX_SEGMENT;
2872
2873 size = rounddown(size, PAGE_SIZE);
2874 /* swiotlb_max_segment_size can return 1 byte when it means one page. */
2875 if (size < PAGE_SIZE)
2876 size = PAGE_SIZE;
2877
2878 return size;
2879}
2880
2881static inline const struct intel_device_info *
2882intel_info(const struct drm_i915_private *dev_priv)
2883{
2884 return &dev_priv->info;
2885}
2886
2887#define INTEL_INFO(dev_priv) intel_info((dev_priv))
2888
2889#define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2890#define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2891
2892#define REVID_FOREVER 0xff
2893#define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2894
2895#define GEN_FOREVER (0)
2896
2897#define INTEL_GEN_MASK(s, e) ( \
2898 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2899 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2900 GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2901 (s) != GEN_FOREVER ? (s) - 1 : 0) \
2902)
2903
2904/*
2905 * Returns true if Gen is in inclusive range [Start, End].
2906 *
2907 * Use GEN_FOREVER for unbound start and or end.
2908 */
2909#define IS_GEN(dev_priv, s, e) \
2910 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2911
2912/*
2913 * Return true if revision is in range [since,until] inclusive.
2914 *
2915 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2916 */
2917#define IS_REVID(p, since, until) \
2918 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2919
2920#define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2921
2922#define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830)
2923#define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G)
2924#define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X)
2925#define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G)
2926#define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G)
2927#define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM)
2928#define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G)
2929#define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM)
2930#define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G)
2931#define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM)
2932#define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45)
2933#define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45)
2934#define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2935#define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2936#define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2937#define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2938#define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33)
2939#define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2940#define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2941#define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \
2942 (dev_priv)->info.gt == 1)
2943#define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2944#define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2945#define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL)
2946#define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2947#define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2948#define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON)
2949#define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2950#define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2951#define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2952#define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2953#define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2954#define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2955 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2956#define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2957 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2958 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2959 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2960/* ULX machines are also considered ULT. */
2961#define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2962 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2963#define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2964 (dev_priv)->info.gt == 3)
2965#define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2966 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2967#define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2968 (dev_priv)->info.gt == 3)
2969/* ULX machines are also considered ULT. */
2970#define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2971 INTEL_DEVID(dev_priv) == 0x0A1E)
2972#define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2973 INTEL_DEVID(dev_priv) == 0x1913 || \
2974 INTEL_DEVID(dev_priv) == 0x1916 || \
2975 INTEL_DEVID(dev_priv) == 0x1921 || \
2976 INTEL_DEVID(dev_priv) == 0x1926)
2977#define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2978 INTEL_DEVID(dev_priv) == 0x1915 || \
2979 INTEL_DEVID(dev_priv) == 0x191E)
2980#define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2981 INTEL_DEVID(dev_priv) == 0x5913 || \
2982 INTEL_DEVID(dev_priv) == 0x5916 || \
2983 INTEL_DEVID(dev_priv) == 0x5921 || \
2984 INTEL_DEVID(dev_priv) == 0x5926)
2985#define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2986 INTEL_DEVID(dev_priv) == 0x5915 || \
2987 INTEL_DEVID(dev_priv) == 0x591E)
2988#define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2989 (dev_priv)->info.gt == 2)
2990#define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2991 (dev_priv)->info.gt == 3)
2992#define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2993 (dev_priv)->info.gt == 4)
2994#define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2995 (dev_priv)->info.gt == 2)
2996#define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2997 (dev_priv)->info.gt == 3)
2998#define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2999 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
3000#define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \
3001 (dev_priv)->info.gt == 2)
3002
3003#define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
3004
3005#define SKL_REVID_A0 0x0
3006#define SKL_REVID_B0 0x1
3007#define SKL_REVID_C0 0x2
3008#define SKL_REVID_D0 0x3
3009#define SKL_REVID_E0 0x4
3010#define SKL_REVID_F0 0x5
3011#define SKL_REVID_G0 0x6
3012#define SKL_REVID_H0 0x7
3013
3014#define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
3015
3016#define BXT_REVID_A0 0x0
3017#define BXT_REVID_A1 0x1
3018#define BXT_REVID_B0 0x3
3019#define BXT_REVID_B_LAST 0x8
3020#define BXT_REVID_C0 0x9
3021
3022#define IS_BXT_REVID(dev_priv, since, until) \
3023 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
3024
3025#define KBL_REVID_A0 0x0
3026#define KBL_REVID_B0 0x1
3027#define KBL_REVID_C0 0x2
3028#define KBL_REVID_D0 0x3
3029#define KBL_REVID_E0 0x4
3030
3031#define IS_KBL_REVID(dev_priv, since, until) \
3032 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3033
3034#define GLK_REVID_A0 0x0
3035#define GLK_REVID_A1 0x1
3036
3037#define IS_GLK_REVID(dev_priv, since, until) \
3038 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3039
3040#define CNL_REVID_A0 0x0
3041#define CNL_REVID_B0 0x1
3042
3043#define IS_CNL_REVID(p, since, until) \
3044 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
3045
3046/*
3047 * The genX designation typically refers to the render engine, so render
3048 * capability related checks should use IS_GEN, while display and other checks
3049 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
3050 * chips, etc.).
3051 */
3052#define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
3053#define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
3054#define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
3055#define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
3056#define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
3057#define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
3058#define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
3059#define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
3060#define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
3061
3062#define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
3063#define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
3064#define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
3065
3066#define ENGINE_MASK(id) BIT(id)
3067#define RENDER_RING ENGINE_MASK(RCS)
3068#define BSD_RING ENGINE_MASK(VCS)
3069#define BLT_RING ENGINE_MASK(BCS)
3070#define VEBOX_RING ENGINE_MASK(VECS)
3071#define BSD2_RING ENGINE_MASK(VCS2)
3072#define ALL_ENGINES (~0)
3073
3074#define HAS_ENGINE(dev_priv, id) \
3075 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
3076
3077#define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
3078#define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
3079#define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
3080#define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
3081
3082#define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
3083#define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
3084#define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3085#define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
3086 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3087
3088#define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
3089
3090#define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3091 ((dev_priv)->info.has_logical_ring_contexts)
3092#define USES_PPGTT(dev_priv) (i915_modparams.enable_ppgtt)
3093#define USES_FULL_PPGTT(dev_priv) (i915_modparams.enable_ppgtt >= 2)
3094#define USES_FULL_48BIT_PPGTT(dev_priv) (i915_modparams.enable_ppgtt == 3)
3095
3096#define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
3097#define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3098 ((dev_priv)->info.overlay_needs_physical)
3099
3100/* Early gen2 have a totally busted CS tlb and require pinned batches. */
3101#define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
3102
3103/* WaRsDisableCoarsePowerGating:skl,bxt */
3104#define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3105 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
3106
3107/*
3108 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3109 * even when in MSI mode. This results in spurious interrupt warnings if the
3110 * legacy irq no. is shared with another device. The kernel then disables that
3111 * interrupt source and so prevents the other device from working properly.
3112 *
3113 * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX
3114 * interrupts.
3115 */
3116#define HAS_AUX_IRQ(dev_priv) true
3117#define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
3118
3119/* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3120 * rows, which changed the alignment requirements and fence programming.
3121 */
3122#define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3123 !(IS_I915G(dev_priv) || \
3124 IS_I915GM(dev_priv)))
3125#define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
3126#define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
3127
3128#define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
3129#define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
3130#define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
3131#define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3132
3133#define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3134
3135#define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
3136
3137#define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
3138#define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3139#define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
3140#define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
3141#define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
3142
3143#define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
3144
3145#define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3146#define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3147
3148#define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc)
3149
3150/*
3151 * For now, anything with a GuC requires uCode loading, and then supports
3152 * command submission once loaded. But these are logically independent
3153 * properties, so we have separate macros to test them.
3154 */
3155#define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
3156#define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
3157#define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3158#define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3159#define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3160
3161#define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3162
3163#define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3164
3165#define INTEL_PCH_DEVICE_ID_MASK 0xff80
3166#define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
3167#define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
3168#define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
3169#define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
3170#define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
3171#define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
3172#define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
3173#define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
3174#define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
3175#define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
3176#define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
3177#define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
3178#define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
3179#define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
3180#define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
3181
3182#define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3183#define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3184#define HAS_PCH_CNP_LP(dev_priv) \
3185 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3186#define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3187#define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3188#define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3189#define HAS_PCH_LPT_LP(dev_priv) \
3190 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3191 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3192#define HAS_PCH_LPT_H(dev_priv) \
3193 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3194 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3195#define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3196#define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3197#define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3198#define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3199
3200#define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3201
3202#define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3203
3204/* DPF == dynamic parity feature */
3205#define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3206#define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3207 2 : HAS_L3_DPF(dev_priv))
3208
3209#define GT_FREQUENCY_MULTIPLIER 50
3210#define GEN9_FREQ_SCALER 3
3211
3212#include "i915_trace.h"
3213
3214static inline bool intel_vtd_active(void)
3215{
3216#ifdef CONFIG_INTEL_IOMMU
3217 if (intel_iommu_gfx_mapped)
3218 return true;
3219#endif
3220 return false;
3221}
3222
3223static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3224{
3225 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3226}
3227
3228static inline bool
3229intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3230{
3231 return IS_BROXTON(dev_priv) && intel_vtd_active();
3232}
3233
3234int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3235 int enable_ppgtt);
3236
3237bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3238
3239/* i915_drv.c */
3240void __printf(3, 4)
3241__i915_printk(struct drm_i915_private *dev_priv, const char *level,
3242 const char *fmt, ...);
3243
3244#define i915_report_error(dev_priv, fmt, ...) \
3245 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3246
3247#ifdef CONFIG_COMPAT
3248extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3249 unsigned long arg);
3250#else
3251#define i915_compat_ioctl NULL
3252#endif
3253extern const struct dev_pm_ops i915_pm_ops;
3254
3255extern int i915_driver_load(struct pci_dev *pdev,
3256 const struct pci_device_id *ent);
3257extern void i915_driver_unload(struct drm_device *dev);
3258extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3259extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3260
3261#define I915_RESET_QUIET BIT(0)
3262extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3263extern int i915_reset_engine(struct intel_engine_cs *engine,
3264 unsigned int flags);
3265
3266extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3267extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3268extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3269extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3270extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3271extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3272extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3273extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3274int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3275
3276int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3277int intel_engines_init(struct drm_i915_private *dev_priv);
3278
3279/* intel_hotplug.c */
3280void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3281 u32 pin_mask, u32 long_mask);
3282void intel_hpd_init(struct drm_i915_private *dev_priv);
3283void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3284void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3285enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3286enum hpd_pin intel_hpd_pin(enum port port);
3287bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3288void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3289
3290/* i915_irq.c */
3291static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3292{
3293 unsigned long delay;
3294
3295 if (unlikely(!i915_modparams.enable_hangcheck))
3296 return;
3297
3298 /* Don't continually defer the hangcheck so that it is always run at
3299 * least once after work has been scheduled on any ring. Otherwise,
3300 * we will ignore a hung ring if a second ring is kept busy.
3301 */
3302
3303 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3304 queue_delayed_work(system_long_wq,
3305 &dev_priv->gpu_error.hangcheck_work, delay);
3306}
3307
3308__printf(3, 4)
3309void i915_handle_error(struct drm_i915_private *dev_priv,
3310 u32 engine_mask,
3311 const char *fmt, ...);
3312
3313extern void intel_irq_init(struct drm_i915_private *dev_priv);
3314extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3315int intel_irq_install(struct drm_i915_private *dev_priv);
3316void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3317
3318static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3319{
3320 return dev_priv->gvt;
3321}
3322
3323static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3324{
3325 return dev_priv->vgpu.active;
3326}
3327
3328u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
3329 enum pipe pipe);
3330void
3331i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3332 u32 status_mask);
3333
3334void
3335i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3336 u32 status_mask);
3337
3338void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3339void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3340void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3341 uint32_t mask,
3342 uint32_t bits);
3343void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3344 uint32_t interrupt_mask,
3345 uint32_t enabled_irq_mask);
3346static inline void
3347ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3348{
3349 ilk_update_display_irq(dev_priv, bits, bits);
3350}
3351static inline void
3352ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3353{
3354 ilk_update_display_irq(dev_priv, bits, 0);
3355}
3356void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3357 enum pipe pipe,
3358 uint32_t interrupt_mask,
3359 uint32_t enabled_irq_mask);
3360static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3361 enum pipe pipe, uint32_t bits)
3362{
3363 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3364}
3365static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3366 enum pipe pipe, uint32_t bits)
3367{
3368 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3369}
3370void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3371 uint32_t interrupt_mask,
3372 uint32_t enabled_irq_mask);
3373static inline void
3374ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3375{
3376 ibx_display_interrupt_update(dev_priv, bits, bits);
3377}
3378static inline void
3379ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3380{
3381 ibx_display_interrupt_update(dev_priv, bits, 0);
3382}
3383
3384/* i915_gem.c */
3385int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3386 struct drm_file *file_priv);
3387int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3388 struct drm_file *file_priv);
3389int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3390 struct drm_file *file_priv);
3391int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3392 struct drm_file *file_priv);
3393int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3394 struct drm_file *file_priv);
3395int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3396 struct drm_file *file_priv);
3397int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3398 struct drm_file *file_priv);
3399int i915_gem_execbuffer(struct drm_device *dev, void *data,
3400 struct drm_file *file_priv);
3401int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3402 struct drm_file *file_priv);
3403int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3404 struct drm_file *file_priv);
3405int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3406 struct drm_file *file);
3407int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3408 struct drm_file *file);
3409int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3410 struct drm_file *file_priv);
3411int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3412 struct drm_file *file_priv);
3413int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3414 struct drm_file *file_priv);
3415int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3416 struct drm_file *file_priv);
3417int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3418void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3419int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3420 struct drm_file *file);
3421int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3422 struct drm_file *file_priv);
3423int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3424 struct drm_file *file_priv);
3425void i915_gem_sanitize(struct drm_i915_private *i915);
3426int i915_gem_load_init(struct drm_i915_private *dev_priv);
3427void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3428void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3429int i915_gem_freeze(struct drm_i915_private *dev_priv);
3430int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3431
3432void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3433void i915_gem_object_free(struct drm_i915_gem_object *obj);
3434void i915_gem_object_init(struct drm_i915_gem_object *obj,
3435 const struct drm_i915_gem_object_ops *ops);
3436struct drm_i915_gem_object *
3437i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3438struct drm_i915_gem_object *
3439i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3440 const void *data, size_t size);
3441void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3442void i915_gem_free_object(struct drm_gem_object *obj);
3443
3444static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3445{
3446 /* A single pass should suffice to release all the freed objects (along
3447 * most call paths) , but be a little more paranoid in that freeing
3448 * the objects does take a little amount of time, during which the rcu
3449 * callbacks could have added new objects into the freed list, and
3450 * armed the work again.
3451 */
3452 do {
3453 rcu_barrier();
3454 } while (flush_work(&i915->mm.free_work));
3455}
3456
3457static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3458{
3459 /*
3460 * Similar to objects above (see i915_gem_drain_freed-objects), in
3461 * general we have workers that are armed by RCU and then rearm
3462 * themselves in their callbacks. To be paranoid, we need to
3463 * drain the workqueue a second time after waiting for the RCU
3464 * grace period so that we catch work queued via RCU from the first
3465 * pass. As neither drain_workqueue() nor flush_workqueue() report
3466 * a result, we make an assumption that we only don't require more
3467 * than 2 passes to catch all recursive RCU delayed work.
3468 *
3469 */
3470 int pass = 2;
3471 do {
3472 rcu_barrier();
3473 drain_workqueue(i915->wq);
3474 } while (--pass);
3475}
3476
3477struct i915_vma * __must_check
3478i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3479 const struct i915_ggtt_view *view,
3480 u64 size,
3481 u64 alignment,
3482 u64 flags);
3483
3484int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3485void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3486
3487void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3488
3489static inline int __sg_page_count(const struct scatterlist *sg)
3490{
3491 return sg->length >> PAGE_SHIFT;
3492}
3493
3494struct scatterlist *
3495i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3496 unsigned int n, unsigned int *offset);
3497
3498struct page *
3499i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3500 unsigned int n);
3501
3502struct page *
3503i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3504 unsigned int n);
3505
3506dma_addr_t
3507i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3508 unsigned long n);
3509
3510void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3511 struct sg_table *pages);
3512int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3513
3514static inline int __must_check
3515i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3516{
3517 might_lock(&obj->mm.lock);
3518
3519 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3520 return 0;
3521
3522 return __i915_gem_object_get_pages(obj);
3523}
3524
3525static inline void
3526__i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3527{
3528 GEM_BUG_ON(!obj->mm.pages);
3529
3530 atomic_inc(&obj->mm.pages_pin_count);
3531}
3532
3533static inline bool
3534i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3535{
3536 return atomic_read(&obj->mm.pages_pin_count);
3537}
3538
3539static inline void
3540__i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3541{
3542 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3543 GEM_BUG_ON(!obj->mm.pages);
3544
3545 atomic_dec(&obj->mm.pages_pin_count);
3546}
3547
3548static inline void
3549i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3550{
3551 __i915_gem_object_unpin_pages(obj);
3552}
3553
3554enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3555 I915_MM_NORMAL = 0,
3556 I915_MM_SHRINKER
3557};
3558
3559void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3560 enum i915_mm_subclass subclass);
3561void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3562
3563enum i915_map_type {
3564 I915_MAP_WB = 0,
3565 I915_MAP_WC,
3566#define I915_MAP_OVERRIDE BIT(31)
3567 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3568 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3569};
3570
3571/**
3572 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3573 * @obj: the object to map into kernel address space
3574 * @type: the type of mapping, used to select pgprot_t
3575 *
3576 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3577 * pages and then returns a contiguous mapping of the backing storage into
3578 * the kernel address space. Based on the @type of mapping, the PTE will be
3579 * set to either WriteBack or WriteCombine (via pgprot_t).
3580 *
3581 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3582 * mapping is no longer required.
3583 *
3584 * Returns the pointer through which to access the mapped object, or an
3585 * ERR_PTR() on error.
3586 */
3587void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3588 enum i915_map_type type);
3589
3590/**
3591 * i915_gem_object_unpin_map - releases an earlier mapping
3592 * @obj: the object to unmap
3593 *
3594 * After pinning the object and mapping its pages, once you are finished
3595 * with your access, call i915_gem_object_unpin_map() to release the pin
3596 * upon the mapping. Once the pin count reaches zero, that mapping may be
3597 * removed.
3598 */
3599static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3600{
3601 i915_gem_object_unpin_pages(obj);
3602}
3603
3604int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3605 unsigned int *needs_clflush);
3606int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3607 unsigned int *needs_clflush);
3608#define CLFLUSH_BEFORE BIT(0)
3609#define CLFLUSH_AFTER BIT(1)
3610#define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3611
3612static inline void
3613i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3614{
3615 i915_gem_object_unpin_pages(obj);
3616}
3617
3618int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3619void i915_vma_move_to_active(struct i915_vma *vma,
3620 struct drm_i915_gem_request *req,
3621 unsigned int flags);
3622int i915_gem_dumb_create(struct drm_file *file_priv,
3623 struct drm_device *dev,
3624 struct drm_mode_create_dumb *args);
3625int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3626 uint32_t handle, uint64_t *offset);
3627int i915_gem_mmap_gtt_version(void);
3628
3629void i915_gem_track_fb(struct drm_i915_gem_object *old,
3630 struct drm_i915_gem_object *new,
3631 unsigned frontbuffer_bits);
3632
3633int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3634
3635struct drm_i915_gem_request *
3636i915_gem_find_active_request(struct intel_engine_cs *engine);
3637
3638void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3639
3640static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3641{
3642 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3643}
3644
3645static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3646{
3647 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3648}
3649
3650static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3651{
3652 return unlikely(test_bit(I915_WEDGED, &error->flags));
3653}
3654
3655static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3656{
3657 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3658}
3659
3660static inline u32 i915_reset_count(struct i915_gpu_error *error)
3661{
3662 return READ_ONCE(error->reset_count);
3663}
3664
3665static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3666 struct intel_engine_cs *engine)
3667{
3668 return READ_ONCE(error->reset_engine_count[engine->id]);
3669}
3670
3671struct drm_i915_gem_request *
3672i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3673int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3674void i915_gem_reset(struct drm_i915_private *dev_priv);
3675void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3676void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3677void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3678bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3679void i915_gem_reset_engine(struct intel_engine_cs *engine,
3680 struct drm_i915_gem_request *request);
3681
3682void i915_gem_init_mmio(struct drm_i915_private *i915);
3683int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3684int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3685void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3686void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3687int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3688 unsigned int flags);
3689int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3690void i915_gem_resume(struct drm_i915_private *dev_priv);
3691int i915_gem_fault(struct vm_fault *vmf);
3692int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3693 unsigned int flags,
3694 long timeout,
3695 struct intel_rps_client *rps);
3696int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3697 unsigned int flags,
3698 int priority);
3699#define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3700
3701int __must_check
3702i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3703int __must_check
3704i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3705int __must_check
3706i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3707struct i915_vma * __must_check
3708i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3709 u32 alignment,
3710 const struct i915_ggtt_view *view);
3711void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3712int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3713 int align);
3714int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3715void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3716
3717int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3718 enum i915_cache_level cache_level);
3719
3720struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3721 struct dma_buf *dma_buf);
3722
3723struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3724 struct drm_gem_object *gem_obj, int flags);
3725
3726static inline struct i915_hw_ppgtt *
3727i915_vm_to_ppgtt(struct i915_address_space *vm)
3728{
3729 return container_of(vm, struct i915_hw_ppgtt, base);
3730}
3731
3732/* i915_gem_fence_reg.c */
3733int __must_check i915_vma_get_fence(struct i915_vma *vma);
3734int __must_check i915_vma_put_fence(struct i915_vma *vma);
3735struct drm_i915_fence_reg *
3736i915_reserve_fence(struct drm_i915_private *dev_priv);
3737void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3738
3739void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3740void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3741
3742void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3743void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3744 struct sg_table *pages);
3745void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3746 struct sg_table *pages);
3747
3748static inline struct i915_gem_context *
3749__i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3750{
3751 return idr_find(&file_priv->context_idr, id);
3752}
3753
3754static inline struct i915_gem_context *
3755i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3756{
3757 struct i915_gem_context *ctx;
3758
3759 rcu_read_lock();
3760 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3761 if (ctx && !kref_get_unless_zero(&ctx->ref))
3762 ctx = NULL;
3763 rcu_read_unlock();
3764
3765 return ctx;
3766}
3767
3768static inline struct intel_timeline *
3769i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3770 struct intel_engine_cs *engine)
3771{
3772 struct i915_address_space *vm;
3773
3774 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3775 return &vm->timeline.engine[engine->id];
3776}
3777
3778int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3779 struct drm_file *file);
3780int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3781 struct drm_file *file);
3782int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3783 struct drm_file *file);
3784void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3785 struct i915_gem_context *ctx,
3786 uint32_t *reg_state);
3787
3788/* i915_gem_evict.c */
3789int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3790 u64 min_size, u64 alignment,
3791 unsigned cache_level,
3792 u64 start, u64 end,
3793 unsigned flags);
3794int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3795 struct drm_mm_node *node,
3796 unsigned int flags);
3797int i915_gem_evict_vm(struct i915_address_space *vm);
3798
3799/* belongs in i915_gem_gtt.h */
3800static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3801{
3802 wmb();
3803 if (INTEL_GEN(dev_priv) < 6)
3804 intel_gtt_chipset_flush();
3805}
3806
3807/* i915_gem_stolen.c */
3808int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3809 struct drm_mm_node *node, u64 size,
3810 unsigned alignment);
3811int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3812 struct drm_mm_node *node, u64 size,
3813 unsigned alignment, u64 start,
3814 u64 end);
3815void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3816 struct drm_mm_node *node);
3817int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3818void i915_gem_cleanup_stolen(struct drm_device *dev);
3819struct drm_i915_gem_object *
3820i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3821struct drm_i915_gem_object *
3822i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3823 u32 stolen_offset,
3824 u32 gtt_offset,
3825 u32 size);
3826
3827/* i915_gem_internal.c */
3828struct drm_i915_gem_object *
3829i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3830 phys_addr_t size);
3831
3832/* i915_gem_shrinker.c */
3833unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3834 unsigned long target,
3835 unsigned long *nr_scanned,
3836 unsigned flags);
3837#define I915_SHRINK_PURGEABLE 0x1
3838#define I915_SHRINK_UNBOUND 0x2
3839#define I915_SHRINK_BOUND 0x4
3840#define I915_SHRINK_ACTIVE 0x8
3841#define I915_SHRINK_VMAPS 0x10
3842unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3843void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3844void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3845
3846
3847/* i915_gem_tiling.c */
3848static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3849{
3850 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3851
3852 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3853 i915_gem_object_is_tiled(obj);
3854}
3855
3856u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3857 unsigned int tiling, unsigned int stride);
3858u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3859 unsigned int tiling, unsigned int stride);
3860
3861/* i915_debugfs.c */
3862#ifdef CONFIG_DEBUG_FS
3863int i915_debugfs_register(struct drm_i915_private *dev_priv);
3864int i915_debugfs_connector_add(struct drm_connector *connector);
3865void intel_display_crc_init(struct drm_i915_private *dev_priv);
3866#else
3867static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3868static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3869{ return 0; }
3870static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3871#endif
3872
3873/* i915_gpu_error.c */
3874#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3875
3876__printf(2, 3)
3877void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3878int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3879 const struct i915_gpu_state *gpu);
3880int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3881 struct drm_i915_private *i915,
3882 size_t count, loff_t pos);
3883static inline void i915_error_state_buf_release(
3884 struct drm_i915_error_state_buf *eb)
3885{
3886 kfree(eb->buf);
3887}
3888
3889struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3890void i915_capture_error_state(struct drm_i915_private *dev_priv,
3891 u32 engine_mask,
3892 const char *error_msg);
3893
3894static inline struct i915_gpu_state *
3895i915_gpu_state_get(struct i915_gpu_state *gpu)
3896{
3897 kref_get(&gpu->ref);
3898 return gpu;
3899}
3900
3901void __i915_gpu_state_free(struct kref *kref);
3902static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3903{
3904 if (gpu)
3905 kref_put(&gpu->ref, __i915_gpu_state_free);
3906}
3907
3908struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3909void i915_reset_error_state(struct drm_i915_private *i915);
3910
3911#else
3912
3913static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3914 u32 engine_mask,
3915 const char *error_msg)
3916{
3917}
3918
3919static inline struct i915_gpu_state *
3920i915_first_error_state(struct drm_i915_private *i915)
3921{
3922 return NULL;
3923}
3924
3925static inline void i915_reset_error_state(struct drm_i915_private *i915)
3926{
3927}
3928
3929#endif
3930
3931const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3932
3933/* i915_cmd_parser.c */
3934int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3935void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3936void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3937int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3938 struct drm_i915_gem_object *batch_obj,
3939 struct drm_i915_gem_object *shadow_batch_obj,
3940 u32 batch_start_offset,
3941 u32 batch_len,
3942 bool is_master);
3943
3944/* i915_perf.c */
3945extern void i915_perf_init(struct drm_i915_private *dev_priv);
3946extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3947extern void i915_perf_register(struct drm_i915_private *dev_priv);
3948extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3949
3950/* i915_suspend.c */
3951extern int i915_save_state(struct drm_i915_private *dev_priv);
3952extern int i915_restore_state(struct drm_i915_private *dev_priv);
3953
3954/* i915_sysfs.c */
3955void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3956void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3957
3958/* intel_lpe_audio.c */
3959int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3960void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3961void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3962void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3963 enum pipe pipe, enum port port,
3964 const void *eld, int ls_clock, bool dp_output);
3965
3966/* intel_i2c.c */
3967extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3968extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3969extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3970 unsigned int pin);
3971
3972extern struct i2c_adapter *
3973intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3974extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3975extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3976static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3977{
3978 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3979}
3980extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3981
3982/* intel_bios.c */
3983void intel_bios_init(struct drm_i915_private *dev_priv);
3984bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3985bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3986bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3987bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3988bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3989bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3990bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3991bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3992 enum port port);
3993bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3994 enum port port);
3995
3996
3997/* intel_opregion.c */
3998#ifdef CONFIG_ACPI
3999extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
4000extern void intel_opregion_register(struct drm_i915_private *dev_priv);
4001extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
4002extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
4003extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
4004 bool enable);
4005extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
4006 pci_power_t state);
4007extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
4008#else
4009static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
4010static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
4011static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
4012static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
4013{
4014}
4015static inline int
4016intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
4017{
4018 return 0;
4019}
4020static inline int
4021intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
4022{
4023 return 0;
4024}
4025static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
4026{
4027 return -ENODEV;
4028}
4029#endif
4030
4031/* intel_acpi.c */
4032#ifdef CONFIG_ACPI
4033extern void intel_register_dsm_handler(void);
4034extern void intel_unregister_dsm_handler(void);
4035#else
4036static inline void intel_register_dsm_handler(void) { return; }
4037static inline void intel_unregister_dsm_handler(void) { return; }
4038#endif /* CONFIG_ACPI */
4039
4040/* intel_device_info.c */
4041static inline struct intel_device_info *
4042mkwrite_device_info(struct drm_i915_private *dev_priv)
4043{
4044 return (struct intel_device_info *)&dev_priv->info;
4045}
4046
4047const char *intel_platform_name(enum intel_platform platform);
4048void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
4049void intel_device_info_dump(struct drm_i915_private *dev_priv);
4050
4051/* modesetting */
4052extern void intel_modeset_init_hw(struct drm_device *dev);
4053extern int intel_modeset_init(struct drm_device *dev);
4054extern void intel_modeset_gem_init(struct drm_device *dev);
4055extern void intel_modeset_cleanup(struct drm_device *dev);
4056extern int intel_connector_register(struct drm_connector *);
4057extern void intel_connector_unregister(struct drm_connector *);
4058extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
4059 bool state);
4060extern void intel_display_resume(struct drm_device *dev);
4061extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
4062extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
4063extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
4064extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
4065extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
4066extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
4067 bool enable);
4068
4069int i915_reg_read_ioctl(struct drm_device *dev, void *data,
4070 struct drm_file *file);
4071
4072/* overlay */
4073extern struct intel_overlay_error_state *
4074intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
4075extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
4076 struct intel_overlay_error_state *error);
4077
4078extern struct intel_display_error_state *
4079intel_display_capture_error_state(struct drm_i915_private *dev_priv);
4080extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
4081 struct intel_display_error_state *error);
4082
4083int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
4084int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
4085int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
4086 u32 reply_mask, u32 reply, int timeout_base_ms);
4087
4088/* intel_sideband.c */
4089u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4090int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4091u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4092u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4093void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4094u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4095void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4096u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4097void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4098u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4099void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4100u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4101void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4102u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4103 enum intel_sbi_destination destination);
4104void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4105 enum intel_sbi_destination destination);
4106u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4107void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4108
4109/* intel_dpio_phy.c */
4110void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4111 enum dpio_phy *phy, enum dpio_channel *ch);
4112void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4113 enum port port, u32 margin, u32 scale,
4114 u32 enable, u32 deemphasis);
4115void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4116void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4117bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4118 enum dpio_phy phy);
4119bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4120 enum dpio_phy phy);
4121uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4122 uint8_t lane_count);
4123void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4124 uint8_t lane_lat_optim_mask);
4125uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4126
4127void chv_set_phy_signal_level(struct intel_encoder *encoder,
4128 u32 deemph_reg_value, u32 margin_reg_value,
4129 bool uniq_trans_scale);
4130void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4131 bool reset);
4132void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4133void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4134void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4135void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4136
4137void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4138 u32 demph_reg_value, u32 preemph_reg_value,
4139 u32 uniqtranscale_reg_value, u32 tx3_demph);
4140void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4141void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4142void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4143
4144int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4145int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4146u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4147 const i915_reg_t reg);
4148
4149#define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4150#define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4151
4152#define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4153#define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4154#define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4155#define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4156
4157#define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4158#define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4159#define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4160#define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4161
4162/* Be very careful with read/write 64-bit values. On 32-bit machines, they
4163 * will be implemented using 2 32-bit writes in an arbitrary order with
4164 * an arbitrary delay between them. This can cause the hardware to
4165 * act upon the intermediate value, possibly leading to corruption and
4166 * machine death. For this reason we do not support I915_WRITE64, or
4167 * dev_priv->uncore.funcs.mmio_writeq.
4168 *
4169 * When reading a 64-bit value as two 32-bit values, the delay may cause
4170 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4171 * occasionally a 64-bit register does not actualy support a full readq
4172 * and must be read using two 32-bit reads.
4173 *
4174 * You have been warned.
4175 */
4176#define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4177
4178#define I915_READ64_2x32(lower_reg, upper_reg) ({ \
4179 u32 upper, lower, old_upper, loop = 0; \
4180 upper = I915_READ(upper_reg); \
4181 do { \
4182 old_upper = upper; \
4183 lower = I915_READ(lower_reg); \
4184 upper = I915_READ(upper_reg); \
4185 } while (upper != old_upper && loop++ < 2); \
4186 (u64)upper << 32 | lower; })
4187
4188#define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
4189#define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
4190
4191#define __raw_read(x, s) \
4192static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4193 i915_reg_t reg) \
4194{ \
4195 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4196}
4197
4198#define __raw_write(x, s) \
4199static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4200 i915_reg_t reg, uint##x##_t val) \
4201{ \
4202 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4203}
4204__raw_read(8, b)
4205__raw_read(16, w)
4206__raw_read(32, l)
4207__raw_read(64, q)
4208
4209__raw_write(8, b)
4210__raw_write(16, w)
4211__raw_write(32, l)
4212__raw_write(64, q)
4213
4214#undef __raw_read
4215#undef __raw_write
4216
4217/* These are untraced mmio-accessors that are only valid to be used inside
4218 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4219 * controlled.
4220 *
4221 * Think twice, and think again, before using these.
4222 *
4223 * As an example, these accessors can possibly be used between:
4224 *
4225 * spin_lock_irq(&dev_priv->uncore.lock);
4226 * intel_uncore_forcewake_get__locked();
4227 *
4228 * and
4229 *
4230 * intel_uncore_forcewake_put__locked();
4231 * spin_unlock_irq(&dev_priv->uncore.lock);
4232 *
4233 *
4234 * Note: some registers may not need forcewake held, so
4235 * intel_uncore_forcewake_{get,put} can be omitted, see
4236 * intel_uncore_forcewake_for_reg().
4237 *
4238 * Certain architectures will die if the same cacheline is concurrently accessed
4239 * by different clients (e.g. on Ivybridge). Access to registers should
4240 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4241 * a more localised lock guarding all access to that bank of registers.
4242 */
4243#define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4244#define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4245#define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4246#define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4247
4248/* "Broadcast RGB" property */
4249#define INTEL_BROADCAST_RGB_AUTO 0
4250#define INTEL_BROADCAST_RGB_FULL 1
4251#define INTEL_BROADCAST_RGB_LIMITED 2
4252
4253static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4254{
4255 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4256 return VLV_VGACNTRL;
4257 else if (INTEL_GEN(dev_priv) >= 5)
4258 return CPU_VGACNTRL;
4259 else
4260 return VGACNTRL;
4261}
4262
4263static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4264{
4265 unsigned long j = msecs_to_jiffies(m);
4266
4267 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4268}
4269
4270static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4271{
4272 /* nsecs_to_jiffies64() does not guard against overflow */
4273 if (NSEC_PER_SEC % HZ &&
4274 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4275 return MAX_JIFFY_OFFSET;
4276
4277 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4278}
4279
4280static inline unsigned long
4281timespec_to_jiffies_timeout(const struct timespec *value)
4282{
4283 unsigned long j = timespec_to_jiffies(value);
4284
4285 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4286}
4287
4288/*
4289 * If you need to wait X milliseconds between events A and B, but event B
4290 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4291 * when event A happened, then just before event B you call this function and
4292 * pass the timestamp as the first argument, and X as the second argument.
4293 */
4294static inline void
4295wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4296{
4297 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4298
4299 /*
4300 * Don't re-read the value of "jiffies" every time since it may change
4301 * behind our back and break the math.
4302 */
4303 tmp_jiffies = jiffies;
4304 target_jiffies = timestamp_jiffies +
4305 msecs_to_jiffies_timeout(to_wait_ms);
4306
4307 if (time_after(target_jiffies, tmp_jiffies)) {
4308 remaining_jiffies = target_jiffies - tmp_jiffies;
4309 while (remaining_jiffies)
4310 remaining_jiffies =
4311 schedule_timeout_uninterruptible(remaining_jiffies);
4312 }
4313}
4314
4315static inline bool
4316__i915_request_irq_complete(const struct drm_i915_gem_request *req)
4317{
4318 struct intel_engine_cs *engine = req->engine;
4319 u32 seqno;
4320
4321 /* Note that the engine may have wrapped around the seqno, and
4322 * so our request->global_seqno will be ahead of the hardware,
4323 * even though it completed the request before wrapping. We catch
4324 * this by kicking all the waiters before resetting the seqno
4325 * in hardware, and also signal the fence.
4326 */
4327 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4328 return true;
4329
4330 /* The request was dequeued before we were awoken. We check after
4331 * inspecting the hw to confirm that this was the same request
4332 * that generated the HWS update. The memory barriers within
4333 * the request execution are sufficient to ensure that a check
4334 * after reading the value from hw matches this request.
4335 */
4336 seqno = i915_gem_request_global_seqno(req);
4337 if (!seqno)
4338 return false;
4339
4340 /* Before we do the heavier coherent read of the seqno,
4341 * check the value (hopefully) in the CPU cacheline.
4342 */
4343 if (__i915_gem_request_completed(req, seqno))
4344 return true;
4345
4346 /* Ensure our read of the seqno is coherent so that we
4347 * do not "miss an interrupt" (i.e. if this is the last
4348 * request and the seqno write from the GPU is not visible
4349 * by the time the interrupt fires, we will see that the
4350 * request is incomplete and go back to sleep awaiting
4351 * another interrupt that will never come.)
4352 *
4353 * Strictly, we only need to do this once after an interrupt,
4354 * but it is easier and safer to do it every time the waiter
4355 * is woken.
4356 */
4357 if (engine->irq_seqno_barrier &&
4358 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4359 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4360
4361 /* The ordering of irq_posted versus applying the barrier
4362 * is crucial. The clearing of the current irq_posted must
4363 * be visible before we perform the barrier operation,
4364 * such that if a subsequent interrupt arrives, irq_posted
4365 * is reasserted and our task rewoken (which causes us to
4366 * do another __i915_request_irq_complete() immediately
4367 * and reapply the barrier). Conversely, if the clear
4368 * occurs after the barrier, then an interrupt that arrived
4369 * whilst we waited on the barrier would not trigger a
4370 * barrier on the next pass, and the read may not see the
4371 * seqno update.
4372 */
4373 engine->irq_seqno_barrier(engine);
4374
4375 /* If we consume the irq, but we are no longer the bottom-half,
4376 * the real bottom-half may not have serialised their own
4377 * seqno check with the irq-barrier (i.e. may have inspected
4378 * the seqno before we believe it coherent since they see
4379 * irq_posted == false but we are still running).
4380 */
4381 spin_lock_irq(&b->irq_lock);
4382 if (b->irq_wait && b->irq_wait->tsk != current)
4383 /* Note that if the bottom-half is changed as we
4384 * are sending the wake-up, the new bottom-half will
4385 * be woken by whomever made the change. We only have
4386 * to worry about when we steal the irq-posted for
4387 * ourself.
4388 */
4389 wake_up_process(b->irq_wait->tsk);
4390 spin_unlock_irq(&b->irq_lock);
4391
4392 if (__i915_gem_request_completed(req, seqno))
4393 return true;
4394 }
4395
4396 return false;
4397}
4398
4399void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4400bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4401
4402/* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4403 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4404 * perform the operation. To check beforehand, pass in the parameters to
4405 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4406 * you only need to pass in the minor offsets, page-aligned pointers are
4407 * always valid.
4408 *
4409 * For just checking for SSE4.1, in the foreknowledge that the future use
4410 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4411 */
4412#define i915_can_memcpy_from_wc(dst, src, len) \
4413 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4414
4415#define i915_has_memcpy_from_wc() \
4416 i915_memcpy_from_wc(NULL, NULL, 0)
4417
4418/* i915_mm.c */
4419int remap_io_mapping(struct vm_area_struct *vma,
4420 unsigned long addr, unsigned long pfn, unsigned long size,
4421 struct io_mapping *iomap);
4422
4423static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
4424{
4425 if (INTEL_GEN(i915) >= 10)
4426 return CNL_HWS_CSB_WRITE_INDEX;
4427 else
4428 return I915_HWS_CSB_WRITE_INDEX;
4429}
4430
4431#endif