]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'drm-intel-next-2013-09-21-merged' of git://people.freedesktop.org/~danvet...
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
... / ...
CommitLineData
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/drmP.h>
29#include <drm/drm_vma_manager.h>
30#include <drm/i915_drm.h>
31#include "i915_drv.h"
32#include "i915_trace.h"
33#include "intel_drv.h"
34#include <linux/shmem_fs.h>
35#include <linux/slab.h>
36#include <linux/swap.h>
37#include <linux/pci.h>
38#include <linux/dma-buf.h>
39
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
43static __must_check int
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46static __must_check int
47i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56
57static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
63static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
67static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68static long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73{
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75}
76
77static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78{
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83}
84
85static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86{
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
93 obj->fence_dirty = false;
94 obj->fence_reg = I915_FENCE_REG_NONE;
95}
96
97/* some bookkeeping */
98static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100{
101 spin_lock(&dev_priv->mm.object_stat_lock);
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
104 spin_unlock(&dev_priv->mm.object_stat_lock);
105}
106
107static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109{
110 spin_lock(&dev_priv->mm.object_stat_lock);
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
113 spin_unlock(&dev_priv->mm.object_stat_lock);
114}
115
116static int
117i915_gem_wait_for_error(struct i915_gpu_error *error)
118{
119 int ret;
120
121#define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
123 if (EXIT_COND)
124 return 0;
125
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
138 return ret;
139 }
140#undef EXIT_COND
141
142 return 0;
143}
144
145int i915_mutex_lock_interruptible(struct drm_device *dev)
146{
147 struct drm_i915_private *dev_priv = dev->dev_private;
148 int ret;
149
150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
158 WARN_ON(i915_verify_lists(dev));
159 return 0;
160}
161
162static inline bool
163i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164{
165 return i915_gem_obj_bound_any(obj) && !obj->active;
166}
167
168int
169i915_gem_init_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171{
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_init *args = data;
174
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
181
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
186 mutex_lock(&dev->struct_mutex);
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
189 dev_priv->gtt.mappable_end = args->gtt_end;
190 mutex_unlock(&dev->struct_mutex);
191
192 return 0;
193}
194
195int
196i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197 struct drm_file *file)
198{
199 struct drm_i915_private *dev_priv = dev->dev_private;
200 struct drm_i915_gem_get_aperture *args = data;
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
203
204 pinned = 0;
205 mutex_lock(&dev->struct_mutex);
206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207 if (obj->pin_count)
208 pinned += i915_gem_obj_ggtt_size(obj);
209 mutex_unlock(&dev->struct_mutex);
210
211 args->aper_size = dev_priv->gtt.base.total;
212 args->aper_available_size = args->aper_size - pinned;
213
214 return 0;
215}
216
217void *i915_gem_object_alloc(struct drm_device *dev)
218{
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221}
222
223void i915_gem_object_free(struct drm_i915_gem_object *obj)
224{
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227}
228
229static int
230i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
234{
235 struct drm_i915_gem_object *obj;
236 int ret;
237 u32 handle;
238
239 size = roundup(size, PAGE_SIZE);
240 if (size == 0)
241 return -EINVAL;
242
243 /* Allocate the new object */
244 obj = i915_gem_alloc_object(dev, size);
245 if (obj == NULL)
246 return -ENOMEM;
247
248 ret = drm_gem_handle_create(file, &obj->base, &handle);
249 /* drop reference from allocate - handle holds it now */
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
253
254 *handle_p = handle;
255 return 0;
256}
257
258int
259i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262{
263 /* have to work out size/pitch and return them */
264 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268}
269
270/**
271 * Creates a new mm object and returns a handle to it.
272 */
273int
274i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276{
277 struct drm_i915_gem_create *args = data;
278
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281}
282
283static inline int
284__copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287{
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307}
308
309static inline int
310__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
312 int length)
313{
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333}
334
335/* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
338static int
339shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342{
343 char *vaddr;
344 int ret;
345
346 if (unlikely(page_do_bit17_swizzling))
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
358 return ret ? -EFAULT : 0;
359}
360
361static void
362shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364{
365 if (unlikely(swizzled)) {
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381}
382
383/* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385static int
386shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389{
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
409 return ret ? - EFAULT : 0;
410}
411
412static int
413i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
417{
418 char __user *user_data;
419 ssize_t remain;
420 loff_t offset;
421 int shmem_page_offset, page_length, ret = 0;
422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423 int prefaulted = 0;
424 int needs_clflush = 0;
425 struct sg_page_iter sg_iter;
426
427 user_data = to_user_ptr(args->data_ptr);
428 remain = args->size;
429
430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
441 }
442
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
449 offset = args->offset;
450
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
453 struct page *page = sg_page_iter_page(&sg_iter);
454
455 if (remain <= 0)
456 break;
457
458 /* Operation in this page
459 *
460 * shmem_page_offset = offset within page in shmem file
461 * page_length = bytes to copy for this page
462 */
463 shmem_page_offset = offset_in_page(offset);
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
467
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
476
477 mutex_unlock(&dev->struct_mutex);
478
479 if (likely(!i915_prefault_disable) && !prefaulted) {
480 ret = fault_in_multipages_writeable(user_data, remain);
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
488
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
492
493 mutex_lock(&dev->struct_mutex);
494
495next_page:
496 mark_page_accessed(page);
497
498 if (ret)
499 goto out;
500
501 remain -= page_length;
502 user_data += page_length;
503 offset += page_length;
504 }
505
506out:
507 i915_gem_object_unpin_pages(obj);
508
509 return ret;
510}
511
512/**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517int
518i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519 struct drm_file *file)
520{
521 struct drm_i915_gem_pread *args = data;
522 struct drm_i915_gem_object *obj;
523 int ret = 0;
524
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
529 to_user_ptr(args->data_ptr),
530 args->size))
531 return -EFAULT;
532
533 ret = i915_mutex_lock_interruptible(dev);
534 if (ret)
535 return ret;
536
537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 if (&obj->base == NULL) {
539 ret = -ENOENT;
540 goto unlock;
541 }
542
543 /* Bounds check source. */
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560 ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562out:
563 drm_gem_object_unreference(&obj->base);
564unlock:
565 mutex_unlock(&dev->struct_mutex);
566 return ret;
567}
568
569/* This is the fast write path which cannot handle
570 * page faults in the source data
571 */
572
573static inline int
574fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
578{
579 void __iomem *vaddr_atomic;
580 void *vaddr;
581 unsigned long unwritten;
582
583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
587 user_data, length);
588 io_mapping_unmap_atomic(vaddr_atomic);
589 return unwritten;
590}
591
592/**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
596static int
597i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
599 struct drm_i915_gem_pwrite *args,
600 struct drm_file *file)
601{
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length, ret;
607
608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
619
620 user_data = to_user_ptr(args->data_ptr);
621 remain = args->size;
622
623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
631 */
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
638 /* If we get a fault while copying data, then (presumably) our
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
641 */
642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
647
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
651 }
652
653out_unpin:
654 i915_gem_object_unpin(obj);
655out:
656 return ret;
657}
658
659/* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
663static int
664shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
669{
670 char *vaddr;
671 int ret;
672
673 if (unlikely(page_do_bit17_swizzling))
674 return -EINVAL;
675
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
687
688 return ret ? -EFAULT : 0;
689}
690
691/* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
693static int
694shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
699{
700 char *vaddr;
701 int ret;
702
703 vaddr = kmap(page);
704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710 user_data,
711 page_length);
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
720 kunmap(page);
721
722 return ret ? -EFAULT : 0;
723}
724
725static int
726i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
730{
731 ssize_t remain;
732 loff_t offset;
733 char __user *user_data;
734 int shmem_page_offset, page_length, ret = 0;
735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736 int hit_slowpath = 0;
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
739 struct sg_page_iter sg_iter;
740
741 user_data = to_user_ptr(args->data_ptr);
742 remain = args->size;
743
744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
751 needs_clflush_after = cpu_write_needs_clflush(obj);
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
755 }
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
761
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
768 offset = args->offset;
769 obj->dirty = 1;
770
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
773 struct page *page = sg_page_iter_page(&sg_iter);
774 int partial_cacheline_write;
775
776 if (remain <= 0)
777 break;
778
779 /* Operation in this page
780 *
781 * shmem_page_offset = offset within page in shmem file
782 * page_length = bytes to copy for this page
783 */
784 shmem_page_offset = offset_in_page(offset);
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
789
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
806
807 hit_slowpath = 1;
808 mutex_unlock(&dev->struct_mutex);
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813
814 mutex_lock(&dev->struct_mutex);
815
816next_page:
817 set_page_dirty(page);
818 mark_page_accessed(page);
819
820 if (ret)
821 goto out;
822
823 remain -= page_length;
824 user_data += page_length;
825 offset += page_length;
826 }
827
828out:
829 i915_gem_object_unpin_pages(obj);
830
831 if (hit_slowpath) {
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
841 }
842 }
843
844 if (needs_clflush_after)
845 i915_gem_chipset_flush(dev);
846
847 return ret;
848}
849
850/**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855int
856i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857 struct drm_file *file)
858{
859 struct drm_i915_gem_pwrite *args = data;
860 struct drm_i915_gem_object *obj;
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
867 to_user_ptr(args->data_ptr),
868 args->size))
869 return -EFAULT;
870
871 if (likely(!i915_prefault_disable)) {
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
877
878 ret = i915_mutex_lock_interruptible(dev);
879 if (ret)
880 return ret;
881
882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883 if (&obj->base == NULL) {
884 ret = -ENOENT;
885 goto unlock;
886 }
887
888 /* Bounds check destination. */
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
891 ret = -EINVAL;
892 goto out;
893 }
894
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905 ret = -EFAULT;
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
912 if (obj->phys_obj) {
913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914 goto out;
915 }
916
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
924 }
925
926 if (ret == -EFAULT || ret == -ENOSPC)
927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929out:
930 drm_gem_object_unreference(&obj->base);
931unlock:
932 mutex_unlock(&dev->struct_mutex);
933 return ret;
934}
935
936int
937i915_gem_check_wedge(struct i915_gpu_error *error,
938 bool interruptible)
939{
940 if (i915_reset_in_progress(error)) {
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954}
955
956/*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960static int
961i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962{
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
968 if (seqno == ring->outstanding_lazy_seqno)
969 ret = i915_add_request(ring, NULL);
970
971 return ret;
972}
973
974/**
975 * __wait_seqno - wait until execution of seqno has finished
976 * @ring: the ring expected to report seqno
977 * @seqno: duh!
978 * @reset_counter: reset sequence associated with the given seqno
979 * @interruptible: do an interruptible wait (normally yes)
980 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
981 *
982 * Note: It is of utmost importance that the passed in seqno and reset_counter
983 * values have been read by the caller in an smp safe manner. Where read-side
984 * locks are involved, it is sufficient to read the reset_counter before
985 * unlocking the lock that protects the seqno. For lockless tricks, the
986 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
987 * inserted.
988 *
989 * Returns 0 if the seqno was found within the alloted time. Else returns the
990 * errno with remaining time filled in timeout argument.
991 */
992static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
993 unsigned reset_counter,
994 bool interruptible, struct timespec *timeout)
995{
996 drm_i915_private_t *dev_priv = ring->dev->dev_private;
997 struct timespec before, now, wait_time={1,0};
998 unsigned long timeout_jiffies;
999 long end;
1000 bool wait_forever = true;
1001 int ret;
1002
1003 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1004
1005 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1006 return 0;
1007
1008 trace_i915_gem_request_wait_begin(ring, seqno);
1009
1010 if (timeout != NULL) {
1011 wait_time = *timeout;
1012 wait_forever = false;
1013 }
1014
1015 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1016
1017 if (WARN_ON(!ring->irq_get(ring)))
1018 return -ENODEV;
1019
1020 /* Record current time in case interrupted by signal, or wedged * */
1021 getrawmonotonic(&before);
1022
1023#define EXIT_COND \
1024 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1025 i915_reset_in_progress(&dev_priv->gpu_error) || \
1026 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027 do {
1028 if (interruptible)
1029 end = wait_event_interruptible_timeout(ring->irq_queue,
1030 EXIT_COND,
1031 timeout_jiffies);
1032 else
1033 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1034 timeout_jiffies);
1035
1036 /* We need to check whether any gpu reset happened in between
1037 * the caller grabbing the seqno and now ... */
1038 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1039 end = -EAGAIN;
1040
1041 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1042 * gone. */
1043 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1044 if (ret)
1045 end = ret;
1046 } while (end == 0 && wait_forever);
1047
1048 getrawmonotonic(&now);
1049
1050 ring->irq_put(ring);
1051 trace_i915_gem_request_wait_end(ring, seqno);
1052#undef EXIT_COND
1053
1054 if (timeout) {
1055 struct timespec sleep_time = timespec_sub(now, before);
1056 *timeout = timespec_sub(*timeout, sleep_time);
1057 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1058 set_normalized_timespec(timeout, 0, 0);
1059 }
1060
1061 switch (end) {
1062 case -EIO:
1063 case -EAGAIN: /* Wedged */
1064 case -ERESTARTSYS: /* Signal */
1065 return (int)end;
1066 case 0: /* Timeout */
1067 return -ETIME;
1068 default: /* Completed */
1069 WARN_ON(end < 0); /* We're not aware of other errors */
1070 return 0;
1071 }
1072}
1073
1074/**
1075 * Waits for a sequence number to be signaled, and cleans up the
1076 * request and object lists appropriately for that event.
1077 */
1078int
1079i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1080{
1081 struct drm_device *dev = ring->dev;
1082 struct drm_i915_private *dev_priv = dev->dev_private;
1083 bool interruptible = dev_priv->mm.interruptible;
1084 int ret;
1085
1086 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1087 BUG_ON(seqno == 0);
1088
1089 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1090 if (ret)
1091 return ret;
1092
1093 ret = i915_gem_check_olr(ring, seqno);
1094 if (ret)
1095 return ret;
1096
1097 return __wait_seqno(ring, seqno,
1098 atomic_read(&dev_priv->gpu_error.reset_counter),
1099 interruptible, NULL);
1100}
1101
1102static int
1103i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1104 struct intel_ring_buffer *ring)
1105{
1106 i915_gem_retire_requests_ring(ring);
1107
1108 /* Manually manage the write flush as we may have not yet
1109 * retired the buffer.
1110 *
1111 * Note that the last_write_seqno is always the earlier of
1112 * the two (read/write) seqno, so if we haved successfully waited,
1113 * we know we have passed the last write.
1114 */
1115 obj->last_write_seqno = 0;
1116 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1117
1118 return 0;
1119}
1120
1121/**
1122 * Ensures that all rendering to the object has completed and the object is
1123 * safe to unbind from the GTT or access from the CPU.
1124 */
1125static __must_check int
1126i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1127 bool readonly)
1128{
1129 struct intel_ring_buffer *ring = obj->ring;
1130 u32 seqno;
1131 int ret;
1132
1133 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1134 if (seqno == 0)
1135 return 0;
1136
1137 ret = i915_wait_seqno(ring, seqno);
1138 if (ret)
1139 return ret;
1140
1141 return i915_gem_object_wait_rendering__tail(obj, ring);
1142}
1143
1144/* A nonblocking variant of the above wait. This is a highly dangerous routine
1145 * as the object state may change during this call.
1146 */
1147static __must_check int
1148i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1149 bool readonly)
1150{
1151 struct drm_device *dev = obj->base.dev;
1152 struct drm_i915_private *dev_priv = dev->dev_private;
1153 struct intel_ring_buffer *ring = obj->ring;
1154 unsigned reset_counter;
1155 u32 seqno;
1156 int ret;
1157
1158 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1159 BUG_ON(!dev_priv->mm.interruptible);
1160
1161 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1162 if (seqno == 0)
1163 return 0;
1164
1165 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1166 if (ret)
1167 return ret;
1168
1169 ret = i915_gem_check_olr(ring, seqno);
1170 if (ret)
1171 return ret;
1172
1173 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1174 mutex_unlock(&dev->struct_mutex);
1175 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1176 mutex_lock(&dev->struct_mutex);
1177 if (ret)
1178 return ret;
1179
1180 return i915_gem_object_wait_rendering__tail(obj, ring);
1181}
1182
1183/**
1184 * Called when user space prepares to use an object with the CPU, either
1185 * through the mmap ioctl's mapping or a GTT mapping.
1186 */
1187int
1188i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1189 struct drm_file *file)
1190{
1191 struct drm_i915_gem_set_domain *args = data;
1192 struct drm_i915_gem_object *obj;
1193 uint32_t read_domains = args->read_domains;
1194 uint32_t write_domain = args->write_domain;
1195 int ret;
1196
1197 /* Only handle setting domains to types used by the CPU. */
1198 if (write_domain & I915_GEM_GPU_DOMAINS)
1199 return -EINVAL;
1200
1201 if (read_domains & I915_GEM_GPU_DOMAINS)
1202 return -EINVAL;
1203
1204 /* Having something in the write domain implies it's in the read
1205 * domain, and only that read domain. Enforce that in the request.
1206 */
1207 if (write_domain != 0 && read_domains != write_domain)
1208 return -EINVAL;
1209
1210 ret = i915_mutex_lock_interruptible(dev);
1211 if (ret)
1212 return ret;
1213
1214 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1215 if (&obj->base == NULL) {
1216 ret = -ENOENT;
1217 goto unlock;
1218 }
1219
1220 /* Try to flush the object off the GPU without holding the lock.
1221 * We will repeat the flush holding the lock in the normal manner
1222 * to catch cases where we are gazumped.
1223 */
1224 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1225 if (ret)
1226 goto unref;
1227
1228 if (read_domains & I915_GEM_DOMAIN_GTT) {
1229 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1230
1231 /* Silently promote "you're not bound, there was nothing to do"
1232 * to success, since the client was just asking us to
1233 * make sure everything was done.
1234 */
1235 if (ret == -EINVAL)
1236 ret = 0;
1237 } else {
1238 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1239 }
1240
1241unref:
1242 drm_gem_object_unreference(&obj->base);
1243unlock:
1244 mutex_unlock(&dev->struct_mutex);
1245 return ret;
1246}
1247
1248/**
1249 * Called when user space has done writes to this buffer
1250 */
1251int
1252i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1253 struct drm_file *file)
1254{
1255 struct drm_i915_gem_sw_finish *args = data;
1256 struct drm_i915_gem_object *obj;
1257 int ret = 0;
1258
1259 ret = i915_mutex_lock_interruptible(dev);
1260 if (ret)
1261 return ret;
1262
1263 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1264 if (&obj->base == NULL) {
1265 ret = -ENOENT;
1266 goto unlock;
1267 }
1268
1269 /* Pinned buffers may be scanout, so flush the cache */
1270 if (obj->pin_display)
1271 i915_gem_object_flush_cpu_write_domain(obj, true);
1272
1273 drm_gem_object_unreference(&obj->base);
1274unlock:
1275 mutex_unlock(&dev->struct_mutex);
1276 return ret;
1277}
1278
1279/**
1280 * Maps the contents of an object, returning the address it is mapped
1281 * into.
1282 *
1283 * While the mapping holds a reference on the contents of the object, it doesn't
1284 * imply a ref on the object itself.
1285 */
1286int
1287i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1288 struct drm_file *file)
1289{
1290 struct drm_i915_gem_mmap *args = data;
1291 struct drm_gem_object *obj;
1292 unsigned long addr;
1293
1294 obj = drm_gem_object_lookup(dev, file, args->handle);
1295 if (obj == NULL)
1296 return -ENOENT;
1297
1298 /* prime objects have no backing filp to GEM mmap
1299 * pages from.
1300 */
1301 if (!obj->filp) {
1302 drm_gem_object_unreference_unlocked(obj);
1303 return -EINVAL;
1304 }
1305
1306 addr = vm_mmap(obj->filp, 0, args->size,
1307 PROT_READ | PROT_WRITE, MAP_SHARED,
1308 args->offset);
1309 drm_gem_object_unreference_unlocked(obj);
1310 if (IS_ERR((void *)addr))
1311 return addr;
1312
1313 args->addr_ptr = (uint64_t) addr;
1314
1315 return 0;
1316}
1317
1318/**
1319 * i915_gem_fault - fault a page into the GTT
1320 * vma: VMA in question
1321 * vmf: fault info
1322 *
1323 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1324 * from userspace. The fault handler takes care of binding the object to
1325 * the GTT (if needed), allocating and programming a fence register (again,
1326 * only if needed based on whether the old reg is still valid or the object
1327 * is tiled) and inserting a new PTE into the faulting process.
1328 *
1329 * Note that the faulting process may involve evicting existing objects
1330 * from the GTT and/or fence registers to make room. So performance may
1331 * suffer if the GTT working set is large or there are few fence registers
1332 * left.
1333 */
1334int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1335{
1336 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1337 struct drm_device *dev = obj->base.dev;
1338 drm_i915_private_t *dev_priv = dev->dev_private;
1339 pgoff_t page_offset;
1340 unsigned long pfn;
1341 int ret = 0;
1342 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1343
1344 /* We don't use vmf->pgoff since that has the fake offset */
1345 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1346 PAGE_SHIFT;
1347
1348 ret = i915_mutex_lock_interruptible(dev);
1349 if (ret)
1350 goto out;
1351
1352 trace_i915_gem_object_fault(obj, page_offset, true, write);
1353
1354 /* Access to snoopable pages through the GTT is incoherent. */
1355 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1356 ret = -EINVAL;
1357 goto unlock;
1358 }
1359
1360 /* Now bind it into the GTT if needed */
1361 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1362 if (ret)
1363 goto unlock;
1364
1365 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1366 if (ret)
1367 goto unpin;
1368
1369 ret = i915_gem_object_get_fence(obj);
1370 if (ret)
1371 goto unpin;
1372
1373 obj->fault_mappable = true;
1374
1375 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1376 pfn >>= PAGE_SHIFT;
1377 pfn += page_offset;
1378
1379 /* Finally, remap it using the new GTT offset */
1380 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1381unpin:
1382 i915_gem_object_unpin(obj);
1383unlock:
1384 mutex_unlock(&dev->struct_mutex);
1385out:
1386 switch (ret) {
1387 case -EIO:
1388 /* If this -EIO is due to a gpu hang, give the reset code a
1389 * chance to clean up the mess. Otherwise return the proper
1390 * SIGBUS. */
1391 if (i915_terminally_wedged(&dev_priv->gpu_error))
1392 return VM_FAULT_SIGBUS;
1393 case -EAGAIN:
1394 /*
1395 * EAGAIN means the gpu is hung and we'll wait for the error
1396 * handler to reset everything when re-faulting in
1397 * i915_mutex_lock_interruptible.
1398 */
1399 case 0:
1400 case -ERESTARTSYS:
1401 case -EINTR:
1402 case -EBUSY:
1403 /*
1404 * EBUSY is ok: this just means that another thread
1405 * already did the job.
1406 */
1407 return VM_FAULT_NOPAGE;
1408 case -ENOMEM:
1409 return VM_FAULT_OOM;
1410 case -ENOSPC:
1411 return VM_FAULT_SIGBUS;
1412 default:
1413 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1414 return VM_FAULT_SIGBUS;
1415 }
1416}
1417
1418/**
1419 * i915_gem_release_mmap - remove physical page mappings
1420 * @obj: obj in question
1421 *
1422 * Preserve the reservation of the mmapping with the DRM core code, but
1423 * relinquish ownership of the pages back to the system.
1424 *
1425 * It is vital that we remove the page mapping if we have mapped a tiled
1426 * object through the GTT and then lose the fence register due to
1427 * resource pressure. Similarly if the object has been moved out of the
1428 * aperture, than pages mapped into userspace must be revoked. Removing the
1429 * mapping will then trigger a page fault on the next user access, allowing
1430 * fixup by i915_gem_fault().
1431 */
1432void
1433i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1434{
1435 if (!obj->fault_mappable)
1436 return;
1437
1438 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1439 obj->fault_mappable = false;
1440}
1441
1442uint32_t
1443i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1444{
1445 uint32_t gtt_size;
1446
1447 if (INTEL_INFO(dev)->gen >= 4 ||
1448 tiling_mode == I915_TILING_NONE)
1449 return size;
1450
1451 /* Previous chips need a power-of-two fence region when tiling */
1452 if (INTEL_INFO(dev)->gen == 3)
1453 gtt_size = 1024*1024;
1454 else
1455 gtt_size = 512*1024;
1456
1457 while (gtt_size < size)
1458 gtt_size <<= 1;
1459
1460 return gtt_size;
1461}
1462
1463/**
1464 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1465 * @obj: object to check
1466 *
1467 * Return the required GTT alignment for an object, taking into account
1468 * potential fence register mapping.
1469 */
1470uint32_t
1471i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1472 int tiling_mode, bool fenced)
1473{
1474 /*
1475 * Minimum alignment is 4k (GTT page size), but might be greater
1476 * if a fence register is needed for the object.
1477 */
1478 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1479 tiling_mode == I915_TILING_NONE)
1480 return 4096;
1481
1482 /*
1483 * Previous chips need to be aligned to the size of the smallest
1484 * fence register that can contain the object.
1485 */
1486 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1487}
1488
1489static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1490{
1491 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1492 int ret;
1493
1494 if (drm_vma_node_has_offset(&obj->base.vma_node))
1495 return 0;
1496
1497 dev_priv->mm.shrinker_no_lock_stealing = true;
1498
1499 ret = drm_gem_create_mmap_offset(&obj->base);
1500 if (ret != -ENOSPC)
1501 goto out;
1502
1503 /* Badly fragmented mmap space? The only way we can recover
1504 * space is by destroying unwanted objects. We can't randomly release
1505 * mmap_offsets as userspace expects them to be persistent for the
1506 * lifetime of the objects. The closest we can is to release the
1507 * offsets on purgeable objects by truncating it and marking it purged,
1508 * which prevents userspace from ever using that object again.
1509 */
1510 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1511 ret = drm_gem_create_mmap_offset(&obj->base);
1512 if (ret != -ENOSPC)
1513 goto out;
1514
1515 i915_gem_shrink_all(dev_priv);
1516 ret = drm_gem_create_mmap_offset(&obj->base);
1517out:
1518 dev_priv->mm.shrinker_no_lock_stealing = false;
1519
1520 return ret;
1521}
1522
1523static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1524{
1525 drm_gem_free_mmap_offset(&obj->base);
1526}
1527
1528int
1529i915_gem_mmap_gtt(struct drm_file *file,
1530 struct drm_device *dev,
1531 uint32_t handle,
1532 uint64_t *offset)
1533{
1534 struct drm_i915_private *dev_priv = dev->dev_private;
1535 struct drm_i915_gem_object *obj;
1536 int ret;
1537
1538 ret = i915_mutex_lock_interruptible(dev);
1539 if (ret)
1540 return ret;
1541
1542 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1543 if (&obj->base == NULL) {
1544 ret = -ENOENT;
1545 goto unlock;
1546 }
1547
1548 if (obj->base.size > dev_priv->gtt.mappable_end) {
1549 ret = -E2BIG;
1550 goto out;
1551 }
1552
1553 if (obj->madv != I915_MADV_WILLNEED) {
1554 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1555 ret = -EINVAL;
1556 goto out;
1557 }
1558
1559 ret = i915_gem_object_create_mmap_offset(obj);
1560 if (ret)
1561 goto out;
1562
1563 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1564
1565out:
1566 drm_gem_object_unreference(&obj->base);
1567unlock:
1568 mutex_unlock(&dev->struct_mutex);
1569 return ret;
1570}
1571
1572/**
1573 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1574 * @dev: DRM device
1575 * @data: GTT mapping ioctl data
1576 * @file: GEM object info
1577 *
1578 * Simply returns the fake offset to userspace so it can mmap it.
1579 * The mmap call will end up in drm_gem_mmap(), which will set things
1580 * up so we can get faults in the handler above.
1581 *
1582 * The fault handler will take care of binding the object into the GTT
1583 * (since it may have been evicted to make room for something), allocating
1584 * a fence register, and mapping the appropriate aperture address into
1585 * userspace.
1586 */
1587int
1588i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1589 struct drm_file *file)
1590{
1591 struct drm_i915_gem_mmap_gtt *args = data;
1592
1593 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1594}
1595
1596/* Immediately discard the backing storage */
1597static void
1598i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1599{
1600 struct inode *inode;
1601
1602 i915_gem_object_free_mmap_offset(obj);
1603
1604 if (obj->base.filp == NULL)
1605 return;
1606
1607 /* Our goal here is to return as much of the memory as
1608 * is possible back to the system as we are called from OOM.
1609 * To do this we must instruct the shmfs to drop all of its
1610 * backing pages, *now*.
1611 */
1612 inode = file_inode(obj->base.filp);
1613 shmem_truncate_range(inode, 0, (loff_t)-1);
1614
1615 obj->madv = __I915_MADV_PURGED;
1616}
1617
1618static inline int
1619i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1620{
1621 return obj->madv == I915_MADV_DONTNEED;
1622}
1623
1624static void
1625i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1626{
1627 struct sg_page_iter sg_iter;
1628 int ret;
1629
1630 BUG_ON(obj->madv == __I915_MADV_PURGED);
1631
1632 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1633 if (ret) {
1634 /* In the event of a disaster, abandon all caches and
1635 * hope for the best.
1636 */
1637 WARN_ON(ret != -EIO);
1638 i915_gem_clflush_object(obj, true);
1639 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1640 }
1641
1642 if (i915_gem_object_needs_bit17_swizzle(obj))
1643 i915_gem_object_save_bit_17_swizzle(obj);
1644
1645 if (obj->madv == I915_MADV_DONTNEED)
1646 obj->dirty = 0;
1647
1648 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1649 struct page *page = sg_page_iter_page(&sg_iter);
1650
1651 if (obj->dirty)
1652 set_page_dirty(page);
1653
1654 if (obj->madv == I915_MADV_WILLNEED)
1655 mark_page_accessed(page);
1656
1657 page_cache_release(page);
1658 }
1659 obj->dirty = 0;
1660
1661 sg_free_table(obj->pages);
1662 kfree(obj->pages);
1663}
1664
1665int
1666i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1667{
1668 const struct drm_i915_gem_object_ops *ops = obj->ops;
1669
1670 if (obj->pages == NULL)
1671 return 0;
1672
1673 if (obj->pages_pin_count)
1674 return -EBUSY;
1675
1676 BUG_ON(i915_gem_obj_bound_any(obj));
1677
1678 /* ->put_pages might need to allocate memory for the bit17 swizzle
1679 * array, hence protect them from being reaped by removing them from gtt
1680 * lists early. */
1681 list_del(&obj->global_list);
1682
1683 ops->put_pages(obj);
1684 obj->pages = NULL;
1685
1686 if (i915_gem_object_is_purgeable(obj))
1687 i915_gem_object_truncate(obj);
1688
1689 return 0;
1690}
1691
1692static long
1693__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1694 bool purgeable_only)
1695{
1696 struct list_head still_bound_list;
1697 struct drm_i915_gem_object *obj, *next;
1698 long count = 0;
1699
1700 list_for_each_entry_safe(obj, next,
1701 &dev_priv->mm.unbound_list,
1702 global_list) {
1703 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1704 i915_gem_object_put_pages(obj) == 0) {
1705 count += obj->base.size >> PAGE_SHIFT;
1706 if (count >= target)
1707 return count;
1708 }
1709 }
1710
1711 /*
1712 * As we may completely rewrite the bound list whilst unbinding
1713 * (due to retiring requests) we have to strictly process only
1714 * one element of the list at the time, and recheck the list
1715 * on every iteration.
1716 */
1717 INIT_LIST_HEAD(&still_bound_list);
1718 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1719 struct i915_vma *vma, *v;
1720
1721 obj = list_first_entry(&dev_priv->mm.bound_list,
1722 typeof(*obj), global_list);
1723 list_move_tail(&obj->global_list, &still_bound_list);
1724
1725 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1726 continue;
1727
1728 /*
1729 * Hold a reference whilst we unbind this object, as we may
1730 * end up waiting for and retiring requests. This might
1731 * release the final reference (held by the active list)
1732 * and result in the object being freed from under us.
1733 * in this object being freed.
1734 *
1735 * Note 1: Shrinking the bound list is special since only active
1736 * (and hence bound objects) can contain such limbo objects, so
1737 * we don't need special tricks for shrinking the unbound list.
1738 * The only other place where we have to be careful with active
1739 * objects suddenly disappearing due to retiring requests is the
1740 * eviction code.
1741 *
1742 * Note 2: Even though the bound list doesn't hold a reference
1743 * to the object we can safely grab one here: The final object
1744 * unreferencing and the bound_list are both protected by the
1745 * dev->struct_mutex and so we won't ever be able to observe an
1746 * object on the bound_list with a reference count equals 0.
1747 */
1748 drm_gem_object_reference(&obj->base);
1749
1750 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1751 if (i915_vma_unbind(vma))
1752 break;
1753
1754 if (i915_gem_object_put_pages(obj) == 0)
1755 count += obj->base.size >> PAGE_SHIFT;
1756
1757 drm_gem_object_unreference(&obj->base);
1758 }
1759 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1760
1761 return count;
1762}
1763
1764static long
1765i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1766{
1767 return __i915_gem_shrink(dev_priv, target, true);
1768}
1769
1770static long
1771i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1772{
1773 struct drm_i915_gem_object *obj, *next;
1774 long freed = 0;
1775
1776 i915_gem_evict_everything(dev_priv->dev);
1777
1778 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1779 global_list) {
1780 if (obj->pages_pin_count == 0)
1781 freed += obj->base.size >> PAGE_SHIFT;
1782 i915_gem_object_put_pages(obj);
1783 }
1784 return freed;
1785}
1786
1787static int
1788i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1789{
1790 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1791 int page_count, i;
1792 struct address_space *mapping;
1793 struct sg_table *st;
1794 struct scatterlist *sg;
1795 struct sg_page_iter sg_iter;
1796 struct page *page;
1797 unsigned long last_pfn = 0; /* suppress gcc warning */
1798 gfp_t gfp;
1799
1800 /* Assert that the object is not currently in any GPU domain. As it
1801 * wasn't in the GTT, there shouldn't be any way it could have been in
1802 * a GPU cache
1803 */
1804 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1805 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1806
1807 st = kmalloc(sizeof(*st), GFP_KERNEL);
1808 if (st == NULL)
1809 return -ENOMEM;
1810
1811 page_count = obj->base.size / PAGE_SIZE;
1812 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1813 kfree(st);
1814 return -ENOMEM;
1815 }
1816
1817 /* Get the list of pages out of our struct file. They'll be pinned
1818 * at this point until we release them.
1819 *
1820 * Fail silently without starting the shrinker
1821 */
1822 mapping = file_inode(obj->base.filp)->i_mapping;
1823 gfp = mapping_gfp_mask(mapping);
1824 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1825 gfp &= ~(__GFP_IO | __GFP_WAIT);
1826 sg = st->sgl;
1827 st->nents = 0;
1828 for (i = 0; i < page_count; i++) {
1829 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1830 if (IS_ERR(page)) {
1831 i915_gem_purge(dev_priv, page_count);
1832 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1833 }
1834 if (IS_ERR(page)) {
1835 /* We've tried hard to allocate the memory by reaping
1836 * our own buffer, now let the real VM do its job and
1837 * go down in flames if truly OOM.
1838 */
1839 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1840 gfp |= __GFP_IO | __GFP_WAIT;
1841
1842 i915_gem_shrink_all(dev_priv);
1843 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1844 if (IS_ERR(page))
1845 goto err_pages;
1846
1847 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1848 gfp &= ~(__GFP_IO | __GFP_WAIT);
1849 }
1850#ifdef CONFIG_SWIOTLB
1851 if (swiotlb_nr_tbl()) {
1852 st->nents++;
1853 sg_set_page(sg, page, PAGE_SIZE, 0);
1854 sg = sg_next(sg);
1855 continue;
1856 }
1857#endif
1858 if (!i || page_to_pfn(page) != last_pfn + 1) {
1859 if (i)
1860 sg = sg_next(sg);
1861 st->nents++;
1862 sg_set_page(sg, page, PAGE_SIZE, 0);
1863 } else {
1864 sg->length += PAGE_SIZE;
1865 }
1866 last_pfn = page_to_pfn(page);
1867 }
1868#ifdef CONFIG_SWIOTLB
1869 if (!swiotlb_nr_tbl())
1870#endif
1871 sg_mark_end(sg);
1872 obj->pages = st;
1873
1874 if (i915_gem_object_needs_bit17_swizzle(obj))
1875 i915_gem_object_do_bit_17_swizzle(obj);
1876
1877 return 0;
1878
1879err_pages:
1880 sg_mark_end(sg);
1881 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1882 page_cache_release(sg_page_iter_page(&sg_iter));
1883 sg_free_table(st);
1884 kfree(st);
1885 return PTR_ERR(page);
1886}
1887
1888/* Ensure that the associated pages are gathered from the backing storage
1889 * and pinned into our object. i915_gem_object_get_pages() may be called
1890 * multiple times before they are released by a single call to
1891 * i915_gem_object_put_pages() - once the pages are no longer referenced
1892 * either as a result of memory pressure (reaping pages under the shrinker)
1893 * or as the object is itself released.
1894 */
1895int
1896i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1897{
1898 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1899 const struct drm_i915_gem_object_ops *ops = obj->ops;
1900 int ret;
1901
1902 if (obj->pages)
1903 return 0;
1904
1905 if (obj->madv != I915_MADV_WILLNEED) {
1906 DRM_ERROR("Attempting to obtain a purgeable object\n");
1907 return -EINVAL;
1908 }
1909
1910 BUG_ON(obj->pages_pin_count);
1911
1912 ret = ops->get_pages(obj);
1913 if (ret)
1914 return ret;
1915
1916 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1917 return 0;
1918}
1919
1920void
1921i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1922 struct intel_ring_buffer *ring)
1923{
1924 struct drm_device *dev = obj->base.dev;
1925 struct drm_i915_private *dev_priv = dev->dev_private;
1926 u32 seqno = intel_ring_get_seqno(ring);
1927
1928 BUG_ON(ring == NULL);
1929 if (obj->ring != ring && obj->last_write_seqno) {
1930 /* Keep the seqno relative to the current ring */
1931 obj->last_write_seqno = seqno;
1932 }
1933 obj->ring = ring;
1934
1935 /* Add a reference if we're newly entering the active list. */
1936 if (!obj->active) {
1937 drm_gem_object_reference(&obj->base);
1938 obj->active = 1;
1939 }
1940
1941 list_move_tail(&obj->ring_list, &ring->active_list);
1942
1943 obj->last_read_seqno = seqno;
1944
1945 if (obj->fenced_gpu_access) {
1946 obj->last_fenced_seqno = seqno;
1947
1948 /* Bump MRU to take account of the delayed flush */
1949 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1950 struct drm_i915_fence_reg *reg;
1951
1952 reg = &dev_priv->fence_regs[obj->fence_reg];
1953 list_move_tail(&reg->lru_list,
1954 &dev_priv->mm.fence_list);
1955 }
1956 }
1957}
1958
1959static void
1960i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1961{
1962 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1963 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1964 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1965
1966 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1967 BUG_ON(!obj->active);
1968
1969 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
1970
1971 list_del_init(&obj->ring_list);
1972 obj->ring = NULL;
1973
1974 obj->last_read_seqno = 0;
1975 obj->last_write_seqno = 0;
1976 obj->base.write_domain = 0;
1977
1978 obj->last_fenced_seqno = 0;
1979 obj->fenced_gpu_access = false;
1980
1981 obj->active = 0;
1982 drm_gem_object_unreference(&obj->base);
1983
1984 WARN_ON(i915_verify_lists(dev));
1985}
1986
1987static int
1988i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1989{
1990 struct drm_i915_private *dev_priv = dev->dev_private;
1991 struct intel_ring_buffer *ring;
1992 int ret, i, j;
1993
1994 /* Carefully retire all requests without writing to the rings */
1995 for_each_ring(ring, dev_priv, i) {
1996 ret = intel_ring_idle(ring);
1997 if (ret)
1998 return ret;
1999 }
2000 i915_gem_retire_requests(dev);
2001
2002 /* Finally reset hw state */
2003 for_each_ring(ring, dev_priv, i) {
2004 intel_ring_init_seqno(ring, seqno);
2005
2006 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2007 ring->sync_seqno[j] = 0;
2008 }
2009
2010 return 0;
2011}
2012
2013int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2014{
2015 struct drm_i915_private *dev_priv = dev->dev_private;
2016 int ret;
2017
2018 if (seqno == 0)
2019 return -EINVAL;
2020
2021 /* HWS page needs to be set less than what we
2022 * will inject to ring
2023 */
2024 ret = i915_gem_init_seqno(dev, seqno - 1);
2025 if (ret)
2026 return ret;
2027
2028 /* Carefully set the last_seqno value so that wrap
2029 * detection still works
2030 */
2031 dev_priv->next_seqno = seqno;
2032 dev_priv->last_seqno = seqno - 1;
2033 if (dev_priv->last_seqno == 0)
2034 dev_priv->last_seqno--;
2035
2036 return 0;
2037}
2038
2039int
2040i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2041{
2042 struct drm_i915_private *dev_priv = dev->dev_private;
2043
2044 /* reserve 0 for non-seqno */
2045 if (dev_priv->next_seqno == 0) {
2046 int ret = i915_gem_init_seqno(dev, 0);
2047 if (ret)
2048 return ret;
2049
2050 dev_priv->next_seqno = 1;
2051 }
2052
2053 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2054 return 0;
2055}
2056
2057int __i915_add_request(struct intel_ring_buffer *ring,
2058 struct drm_file *file,
2059 struct drm_i915_gem_object *obj,
2060 u32 *out_seqno)
2061{
2062 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2063 struct drm_i915_gem_request *request;
2064 u32 request_ring_position, request_start;
2065 int was_empty;
2066 int ret;
2067
2068 request_start = intel_ring_get_tail(ring);
2069 /*
2070 * Emit any outstanding flushes - execbuf can fail to emit the flush
2071 * after having emitted the batchbuffer command. Hence we need to fix
2072 * things up similar to emitting the lazy request. The difference here
2073 * is that the flush _must_ happen before the next request, no matter
2074 * what.
2075 */
2076 ret = intel_ring_flush_all_caches(ring);
2077 if (ret)
2078 return ret;
2079
2080 request = ring->preallocated_lazy_request;
2081 if (WARN_ON(request == NULL))
2082 return -ENOMEM;
2083
2084 /* Record the position of the start of the request so that
2085 * should we detect the updated seqno part-way through the
2086 * GPU processing the request, we never over-estimate the
2087 * position of the head.
2088 */
2089 request_ring_position = intel_ring_get_tail(ring);
2090
2091 ret = ring->add_request(ring);
2092 if (ret)
2093 return ret;
2094
2095 request->seqno = intel_ring_get_seqno(ring);
2096 request->ring = ring;
2097 request->head = request_start;
2098 request->tail = request_ring_position;
2099
2100 /* Whilst this request exists, batch_obj will be on the
2101 * active_list, and so will hold the active reference. Only when this
2102 * request is retired will the the batch_obj be moved onto the
2103 * inactive_list and lose its active reference. Hence we do not need
2104 * to explicitly hold another reference here.
2105 */
2106 request->batch_obj = obj;
2107
2108 /* Hold a reference to the current context so that we can inspect
2109 * it later in case a hangcheck error event fires.
2110 */
2111 request->ctx = ring->last_context;
2112 if (request->ctx)
2113 i915_gem_context_reference(request->ctx);
2114
2115 request->emitted_jiffies = jiffies;
2116 was_empty = list_empty(&ring->request_list);
2117 list_add_tail(&request->list, &ring->request_list);
2118 request->file_priv = NULL;
2119
2120 if (file) {
2121 struct drm_i915_file_private *file_priv = file->driver_priv;
2122
2123 spin_lock(&file_priv->mm.lock);
2124 request->file_priv = file_priv;
2125 list_add_tail(&request->client_list,
2126 &file_priv->mm.request_list);
2127 spin_unlock(&file_priv->mm.lock);
2128 }
2129
2130 trace_i915_gem_request_add(ring, request->seqno);
2131 ring->outstanding_lazy_seqno = 0;
2132 ring->preallocated_lazy_request = NULL;
2133
2134 if (!dev_priv->ums.mm_suspended) {
2135 i915_queue_hangcheck(ring->dev);
2136
2137 if (was_empty) {
2138 queue_delayed_work(dev_priv->wq,
2139 &dev_priv->mm.retire_work,
2140 round_jiffies_up_relative(HZ));
2141 intel_mark_busy(dev_priv->dev);
2142 }
2143 }
2144
2145 if (out_seqno)
2146 *out_seqno = request->seqno;
2147 return 0;
2148}
2149
2150static inline void
2151i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2152{
2153 struct drm_i915_file_private *file_priv = request->file_priv;
2154
2155 if (!file_priv)
2156 return;
2157
2158 spin_lock(&file_priv->mm.lock);
2159 if (request->file_priv) {
2160 list_del(&request->client_list);
2161 request->file_priv = NULL;
2162 }
2163 spin_unlock(&file_priv->mm.lock);
2164}
2165
2166static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2167 struct i915_address_space *vm)
2168{
2169 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2170 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2171 return true;
2172
2173 return false;
2174}
2175
2176static bool i915_head_inside_request(const u32 acthd_unmasked,
2177 const u32 request_start,
2178 const u32 request_end)
2179{
2180 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2181
2182 if (request_start < request_end) {
2183 if (acthd >= request_start && acthd < request_end)
2184 return true;
2185 } else if (request_start > request_end) {
2186 if (acthd >= request_start || acthd < request_end)
2187 return true;
2188 }
2189
2190 return false;
2191}
2192
2193static struct i915_address_space *
2194request_to_vm(struct drm_i915_gem_request *request)
2195{
2196 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2197 struct i915_address_space *vm;
2198
2199 vm = &dev_priv->gtt.base;
2200
2201 return vm;
2202}
2203
2204static bool i915_request_guilty(struct drm_i915_gem_request *request,
2205 const u32 acthd, bool *inside)
2206{
2207 /* There is a possibility that unmasked head address
2208 * pointing inside the ring, matches the batch_obj address range.
2209 * However this is extremely unlikely.
2210 */
2211 if (request->batch_obj) {
2212 if (i915_head_inside_object(acthd, request->batch_obj,
2213 request_to_vm(request))) {
2214 *inside = true;
2215 return true;
2216 }
2217 }
2218
2219 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2220 *inside = false;
2221 return true;
2222 }
2223
2224 return false;
2225}
2226
2227static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2228{
2229 const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2230
2231 if (hs->banned)
2232 return true;
2233
2234 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2235 DRM_ERROR("context hanging too fast, declaring banned!\n");
2236 return true;
2237 }
2238
2239 return false;
2240}
2241
2242static void i915_set_reset_status(struct intel_ring_buffer *ring,
2243 struct drm_i915_gem_request *request,
2244 u32 acthd)
2245{
2246 struct i915_ctx_hang_stats *hs = NULL;
2247 bool inside, guilty;
2248 unsigned long offset = 0;
2249
2250 /* Innocent until proven guilty */
2251 guilty = false;
2252
2253 if (request->batch_obj)
2254 offset = i915_gem_obj_offset(request->batch_obj,
2255 request_to_vm(request));
2256
2257 if (ring->hangcheck.action != HANGCHECK_WAIT &&
2258 i915_request_guilty(request, acthd, &inside)) {
2259 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2260 ring->name,
2261 inside ? "inside" : "flushing",
2262 offset,
2263 request->ctx ? request->ctx->id : 0,
2264 acthd);
2265
2266 guilty = true;
2267 }
2268
2269 /* If contexts are disabled or this is the default context, use
2270 * file_priv->reset_state
2271 */
2272 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2273 hs = &request->ctx->hang_stats;
2274 else if (request->file_priv)
2275 hs = &request->file_priv->hang_stats;
2276
2277 if (hs) {
2278 if (guilty) {
2279 hs->banned = i915_context_is_banned(hs);
2280 hs->batch_active++;
2281 hs->guilty_ts = get_seconds();
2282 } else {
2283 hs->batch_pending++;
2284 }
2285 }
2286}
2287
2288static void i915_gem_free_request(struct drm_i915_gem_request *request)
2289{
2290 list_del(&request->list);
2291 i915_gem_request_remove_from_client(request);
2292
2293 if (request->ctx)
2294 i915_gem_context_unreference(request->ctx);
2295
2296 kfree(request);
2297}
2298
2299static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2300 struct intel_ring_buffer *ring)
2301{
2302 u32 completed_seqno;
2303 u32 acthd;
2304
2305 acthd = intel_ring_get_active_head(ring);
2306 completed_seqno = ring->get_seqno(ring, false);
2307
2308 while (!list_empty(&ring->request_list)) {
2309 struct drm_i915_gem_request *request;
2310
2311 request = list_first_entry(&ring->request_list,
2312 struct drm_i915_gem_request,
2313 list);
2314
2315 if (request->seqno > completed_seqno)
2316 i915_set_reset_status(ring, request, acthd);
2317
2318 i915_gem_free_request(request);
2319 }
2320
2321 while (!list_empty(&ring->active_list)) {
2322 struct drm_i915_gem_object *obj;
2323
2324 obj = list_first_entry(&ring->active_list,
2325 struct drm_i915_gem_object,
2326 ring_list);
2327
2328 i915_gem_object_move_to_inactive(obj);
2329 }
2330}
2331
2332void i915_gem_restore_fences(struct drm_device *dev)
2333{
2334 struct drm_i915_private *dev_priv = dev->dev_private;
2335 int i;
2336
2337 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2338 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2339
2340 /*
2341 * Commit delayed tiling changes if we have an object still
2342 * attached to the fence, otherwise just clear the fence.
2343 */
2344 if (reg->obj) {
2345 i915_gem_object_update_fence(reg->obj, reg,
2346 reg->obj->tiling_mode);
2347 } else {
2348 i915_gem_write_fence(dev, i, NULL);
2349 }
2350 }
2351}
2352
2353void i915_gem_reset(struct drm_device *dev)
2354{
2355 struct drm_i915_private *dev_priv = dev->dev_private;
2356 struct intel_ring_buffer *ring;
2357 int i;
2358
2359 for_each_ring(ring, dev_priv, i)
2360 i915_gem_reset_ring_lists(dev_priv, ring);
2361
2362 i915_gem_restore_fences(dev);
2363}
2364
2365/**
2366 * This function clears the request list as sequence numbers are passed.
2367 */
2368void
2369i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2370{
2371 uint32_t seqno;
2372
2373 if (list_empty(&ring->request_list))
2374 return;
2375
2376 WARN_ON(i915_verify_lists(ring->dev));
2377
2378 seqno = ring->get_seqno(ring, true);
2379
2380 while (!list_empty(&ring->request_list)) {
2381 struct drm_i915_gem_request *request;
2382
2383 request = list_first_entry(&ring->request_list,
2384 struct drm_i915_gem_request,
2385 list);
2386
2387 if (!i915_seqno_passed(seqno, request->seqno))
2388 break;
2389
2390 trace_i915_gem_request_retire(ring, request->seqno);
2391 /* We know the GPU must have read the request to have
2392 * sent us the seqno + interrupt, so use the position
2393 * of tail of the request to update the last known position
2394 * of the GPU head.
2395 */
2396 ring->last_retired_head = request->tail;
2397
2398 i915_gem_free_request(request);
2399 }
2400
2401 /* Move any buffers on the active list that are no longer referenced
2402 * by the ringbuffer to the flushing/inactive lists as appropriate.
2403 */
2404 while (!list_empty(&ring->active_list)) {
2405 struct drm_i915_gem_object *obj;
2406
2407 obj = list_first_entry(&ring->active_list,
2408 struct drm_i915_gem_object,
2409 ring_list);
2410
2411 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2412 break;
2413
2414 i915_gem_object_move_to_inactive(obj);
2415 }
2416
2417 if (unlikely(ring->trace_irq_seqno &&
2418 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2419 ring->irq_put(ring);
2420 ring->trace_irq_seqno = 0;
2421 }
2422
2423 WARN_ON(i915_verify_lists(ring->dev));
2424}
2425
2426void
2427i915_gem_retire_requests(struct drm_device *dev)
2428{
2429 drm_i915_private_t *dev_priv = dev->dev_private;
2430 struct intel_ring_buffer *ring;
2431 int i;
2432
2433 for_each_ring(ring, dev_priv, i)
2434 i915_gem_retire_requests_ring(ring);
2435}
2436
2437static void
2438i915_gem_retire_work_handler(struct work_struct *work)
2439{
2440 drm_i915_private_t *dev_priv;
2441 struct drm_device *dev;
2442 struct intel_ring_buffer *ring;
2443 bool idle;
2444 int i;
2445
2446 dev_priv = container_of(work, drm_i915_private_t,
2447 mm.retire_work.work);
2448 dev = dev_priv->dev;
2449
2450 /* Come back later if the device is busy... */
2451 if (!mutex_trylock(&dev->struct_mutex)) {
2452 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2453 round_jiffies_up_relative(HZ));
2454 return;
2455 }
2456
2457 i915_gem_retire_requests(dev);
2458
2459 /* Send a periodic flush down the ring so we don't hold onto GEM
2460 * objects indefinitely.
2461 */
2462 idle = true;
2463 for_each_ring(ring, dev_priv, i) {
2464 if (ring->gpu_caches_dirty)
2465 i915_add_request(ring, NULL);
2466
2467 idle &= list_empty(&ring->request_list);
2468 }
2469
2470 if (!dev_priv->ums.mm_suspended && !idle)
2471 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2472 round_jiffies_up_relative(HZ));
2473 if (idle)
2474 intel_mark_idle(dev);
2475
2476 mutex_unlock(&dev->struct_mutex);
2477}
2478
2479/**
2480 * Ensures that an object will eventually get non-busy by flushing any required
2481 * write domains, emitting any outstanding lazy request and retiring and
2482 * completed requests.
2483 */
2484static int
2485i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2486{
2487 int ret;
2488
2489 if (obj->active) {
2490 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2491 if (ret)
2492 return ret;
2493
2494 i915_gem_retire_requests_ring(obj->ring);
2495 }
2496
2497 return 0;
2498}
2499
2500/**
2501 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2502 * @DRM_IOCTL_ARGS: standard ioctl arguments
2503 *
2504 * Returns 0 if successful, else an error is returned with the remaining time in
2505 * the timeout parameter.
2506 * -ETIME: object is still busy after timeout
2507 * -ERESTARTSYS: signal interrupted the wait
2508 * -ENONENT: object doesn't exist
2509 * Also possible, but rare:
2510 * -EAGAIN: GPU wedged
2511 * -ENOMEM: damn
2512 * -ENODEV: Internal IRQ fail
2513 * -E?: The add request failed
2514 *
2515 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2516 * non-zero timeout parameter the wait ioctl will wait for the given number of
2517 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2518 * without holding struct_mutex the object may become re-busied before this
2519 * function completes. A similar but shorter * race condition exists in the busy
2520 * ioctl
2521 */
2522int
2523i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2524{
2525 drm_i915_private_t *dev_priv = dev->dev_private;
2526 struct drm_i915_gem_wait *args = data;
2527 struct drm_i915_gem_object *obj;
2528 struct intel_ring_buffer *ring = NULL;
2529 struct timespec timeout_stack, *timeout = NULL;
2530 unsigned reset_counter;
2531 u32 seqno = 0;
2532 int ret = 0;
2533
2534 if (args->timeout_ns >= 0) {
2535 timeout_stack = ns_to_timespec(args->timeout_ns);
2536 timeout = &timeout_stack;
2537 }
2538
2539 ret = i915_mutex_lock_interruptible(dev);
2540 if (ret)
2541 return ret;
2542
2543 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2544 if (&obj->base == NULL) {
2545 mutex_unlock(&dev->struct_mutex);
2546 return -ENOENT;
2547 }
2548
2549 /* Need to make sure the object gets inactive eventually. */
2550 ret = i915_gem_object_flush_active(obj);
2551 if (ret)
2552 goto out;
2553
2554 if (obj->active) {
2555 seqno = obj->last_read_seqno;
2556 ring = obj->ring;
2557 }
2558
2559 if (seqno == 0)
2560 goto out;
2561
2562 /* Do this after OLR check to make sure we make forward progress polling
2563 * on this IOCTL with a 0 timeout (like busy ioctl)
2564 */
2565 if (!args->timeout_ns) {
2566 ret = -ETIME;
2567 goto out;
2568 }
2569
2570 drm_gem_object_unreference(&obj->base);
2571 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2572 mutex_unlock(&dev->struct_mutex);
2573
2574 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2575 if (timeout)
2576 args->timeout_ns = timespec_to_ns(timeout);
2577 return ret;
2578
2579out:
2580 drm_gem_object_unreference(&obj->base);
2581 mutex_unlock(&dev->struct_mutex);
2582 return ret;
2583}
2584
2585/**
2586 * i915_gem_object_sync - sync an object to a ring.
2587 *
2588 * @obj: object which may be in use on another ring.
2589 * @to: ring we wish to use the object on. May be NULL.
2590 *
2591 * This code is meant to abstract object synchronization with the GPU.
2592 * Calling with NULL implies synchronizing the object with the CPU
2593 * rather than a particular GPU ring.
2594 *
2595 * Returns 0 if successful, else propagates up the lower layer error.
2596 */
2597int
2598i915_gem_object_sync(struct drm_i915_gem_object *obj,
2599 struct intel_ring_buffer *to)
2600{
2601 struct intel_ring_buffer *from = obj->ring;
2602 u32 seqno;
2603 int ret, idx;
2604
2605 if (from == NULL || to == from)
2606 return 0;
2607
2608 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2609 return i915_gem_object_wait_rendering(obj, false);
2610
2611 idx = intel_ring_sync_index(from, to);
2612
2613 seqno = obj->last_read_seqno;
2614 if (seqno <= from->sync_seqno[idx])
2615 return 0;
2616
2617 ret = i915_gem_check_olr(obj->ring, seqno);
2618 if (ret)
2619 return ret;
2620
2621 ret = to->sync_to(to, from, seqno);
2622 if (!ret)
2623 /* We use last_read_seqno because sync_to()
2624 * might have just caused seqno wrap under
2625 * the radar.
2626 */
2627 from->sync_seqno[idx] = obj->last_read_seqno;
2628
2629 return ret;
2630}
2631
2632static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2633{
2634 u32 old_write_domain, old_read_domains;
2635
2636 /* Force a pagefault for domain tracking on next user access */
2637 i915_gem_release_mmap(obj);
2638
2639 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2640 return;
2641
2642 /* Wait for any direct GTT access to complete */
2643 mb();
2644
2645 old_read_domains = obj->base.read_domains;
2646 old_write_domain = obj->base.write_domain;
2647
2648 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2649 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2650
2651 trace_i915_gem_object_change_domain(obj,
2652 old_read_domains,
2653 old_write_domain);
2654}
2655
2656int i915_vma_unbind(struct i915_vma *vma)
2657{
2658 struct drm_i915_gem_object *obj = vma->obj;
2659 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2660 int ret;
2661
2662 /* For now we only ever use 1 vma per object */
2663 WARN_ON(!list_is_singular(&obj->vma_list));
2664
2665 if (list_empty(&vma->vma_link))
2666 return 0;
2667
2668 if (!drm_mm_node_allocated(&vma->node)) {
2669 i915_gem_vma_destroy(vma);
2670
2671 return 0;
2672 }
2673
2674 if (obj->pin_count)
2675 return -EBUSY;
2676
2677 BUG_ON(obj->pages == NULL);
2678
2679 ret = i915_gem_object_finish_gpu(obj);
2680 if (ret)
2681 return ret;
2682 /* Continue on if we fail due to EIO, the GPU is hung so we
2683 * should be safe and we need to cleanup or else we might
2684 * cause memory corruption through use-after-free.
2685 */
2686
2687 i915_gem_object_finish_gtt(obj);
2688
2689 /* release the fence reg _after_ flushing */
2690 ret = i915_gem_object_put_fence(obj);
2691 if (ret)
2692 return ret;
2693
2694 trace_i915_vma_unbind(vma);
2695
2696 if (obj->has_global_gtt_mapping)
2697 i915_gem_gtt_unbind_object(obj);
2698 if (obj->has_aliasing_ppgtt_mapping) {
2699 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2700 obj->has_aliasing_ppgtt_mapping = 0;
2701 }
2702 i915_gem_gtt_finish_object(obj);
2703 i915_gem_object_unpin_pages(obj);
2704
2705 list_del(&vma->mm_list);
2706 /* Avoid an unnecessary call to unbind on rebind. */
2707 if (i915_is_ggtt(vma->vm))
2708 obj->map_and_fenceable = true;
2709
2710 drm_mm_remove_node(&vma->node);
2711
2712 i915_gem_vma_destroy(vma);
2713
2714 /* Since the unbound list is global, only move to that list if
2715 * no more VMAs exist. */
2716 if (list_empty(&obj->vma_list))
2717 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2718
2719 return 0;
2720}
2721
2722/**
2723 * Unbinds an object from the global GTT aperture.
2724 */
2725int
2726i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2727{
2728 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2729 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2730
2731 if (!i915_gem_obj_ggtt_bound(obj))
2732 return 0;
2733
2734 if (obj->pin_count)
2735 return -EBUSY;
2736
2737 BUG_ON(obj->pages == NULL);
2738
2739 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2740}
2741
2742int i915_gpu_idle(struct drm_device *dev)
2743{
2744 drm_i915_private_t *dev_priv = dev->dev_private;
2745 struct intel_ring_buffer *ring;
2746 int ret, i;
2747
2748 /* Flush everything onto the inactive list. */
2749 for_each_ring(ring, dev_priv, i) {
2750 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2751 if (ret)
2752 return ret;
2753
2754 ret = intel_ring_idle(ring);
2755 if (ret)
2756 return ret;
2757 }
2758
2759 return 0;
2760}
2761
2762static void i965_write_fence_reg(struct drm_device *dev, int reg,
2763 struct drm_i915_gem_object *obj)
2764{
2765 drm_i915_private_t *dev_priv = dev->dev_private;
2766 int fence_reg;
2767 int fence_pitch_shift;
2768
2769 if (INTEL_INFO(dev)->gen >= 6) {
2770 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2771 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2772 } else {
2773 fence_reg = FENCE_REG_965_0;
2774 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2775 }
2776
2777 fence_reg += reg * 8;
2778
2779 /* To w/a incoherency with non-atomic 64-bit register updates,
2780 * we split the 64-bit update into two 32-bit writes. In order
2781 * for a partial fence not to be evaluated between writes, we
2782 * precede the update with write to turn off the fence register,
2783 * and only enable the fence as the last step.
2784 *
2785 * For extra levels of paranoia, we make sure each step lands
2786 * before applying the next step.
2787 */
2788 I915_WRITE(fence_reg, 0);
2789 POSTING_READ(fence_reg);
2790
2791 if (obj) {
2792 u32 size = i915_gem_obj_ggtt_size(obj);
2793 uint64_t val;
2794
2795 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2796 0xfffff000) << 32;
2797 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2798 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2799 if (obj->tiling_mode == I915_TILING_Y)
2800 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2801 val |= I965_FENCE_REG_VALID;
2802
2803 I915_WRITE(fence_reg + 4, val >> 32);
2804 POSTING_READ(fence_reg + 4);
2805
2806 I915_WRITE(fence_reg + 0, val);
2807 POSTING_READ(fence_reg);
2808 } else {
2809 I915_WRITE(fence_reg + 4, 0);
2810 POSTING_READ(fence_reg + 4);
2811 }
2812}
2813
2814static void i915_write_fence_reg(struct drm_device *dev, int reg,
2815 struct drm_i915_gem_object *obj)
2816{
2817 drm_i915_private_t *dev_priv = dev->dev_private;
2818 u32 val;
2819
2820 if (obj) {
2821 u32 size = i915_gem_obj_ggtt_size(obj);
2822 int pitch_val;
2823 int tile_width;
2824
2825 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2826 (size & -size) != size ||
2827 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2828 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2829 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2830
2831 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2832 tile_width = 128;
2833 else
2834 tile_width = 512;
2835
2836 /* Note: pitch better be a power of two tile widths */
2837 pitch_val = obj->stride / tile_width;
2838 pitch_val = ffs(pitch_val) - 1;
2839
2840 val = i915_gem_obj_ggtt_offset(obj);
2841 if (obj->tiling_mode == I915_TILING_Y)
2842 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2843 val |= I915_FENCE_SIZE_BITS(size);
2844 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2845 val |= I830_FENCE_REG_VALID;
2846 } else
2847 val = 0;
2848
2849 if (reg < 8)
2850 reg = FENCE_REG_830_0 + reg * 4;
2851 else
2852 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2853
2854 I915_WRITE(reg, val);
2855 POSTING_READ(reg);
2856}
2857
2858static void i830_write_fence_reg(struct drm_device *dev, int reg,
2859 struct drm_i915_gem_object *obj)
2860{
2861 drm_i915_private_t *dev_priv = dev->dev_private;
2862 uint32_t val;
2863
2864 if (obj) {
2865 u32 size = i915_gem_obj_ggtt_size(obj);
2866 uint32_t pitch_val;
2867
2868 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2869 (size & -size) != size ||
2870 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2871 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2872 i915_gem_obj_ggtt_offset(obj), size);
2873
2874 pitch_val = obj->stride / 128;
2875 pitch_val = ffs(pitch_val) - 1;
2876
2877 val = i915_gem_obj_ggtt_offset(obj);
2878 if (obj->tiling_mode == I915_TILING_Y)
2879 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2880 val |= I830_FENCE_SIZE_BITS(size);
2881 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2882 val |= I830_FENCE_REG_VALID;
2883 } else
2884 val = 0;
2885
2886 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2887 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2888}
2889
2890inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2891{
2892 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2893}
2894
2895static void i915_gem_write_fence(struct drm_device *dev, int reg,
2896 struct drm_i915_gem_object *obj)
2897{
2898 struct drm_i915_private *dev_priv = dev->dev_private;
2899
2900 /* Ensure that all CPU reads are completed before installing a fence
2901 * and all writes before removing the fence.
2902 */
2903 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2904 mb();
2905
2906 WARN(obj && (!obj->stride || !obj->tiling_mode),
2907 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2908 obj->stride, obj->tiling_mode);
2909
2910 switch (INTEL_INFO(dev)->gen) {
2911 case 7:
2912 case 6:
2913 case 5:
2914 case 4: i965_write_fence_reg(dev, reg, obj); break;
2915 case 3: i915_write_fence_reg(dev, reg, obj); break;
2916 case 2: i830_write_fence_reg(dev, reg, obj); break;
2917 default: BUG();
2918 }
2919
2920 /* And similarly be paranoid that no direct access to this region
2921 * is reordered to before the fence is installed.
2922 */
2923 if (i915_gem_object_needs_mb(obj))
2924 mb();
2925}
2926
2927static inline int fence_number(struct drm_i915_private *dev_priv,
2928 struct drm_i915_fence_reg *fence)
2929{
2930 return fence - dev_priv->fence_regs;
2931}
2932
2933static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2934 struct drm_i915_fence_reg *fence,
2935 bool enable)
2936{
2937 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2938 int reg = fence_number(dev_priv, fence);
2939
2940 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2941
2942 if (enable) {
2943 obj->fence_reg = reg;
2944 fence->obj = obj;
2945 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2946 } else {
2947 obj->fence_reg = I915_FENCE_REG_NONE;
2948 fence->obj = NULL;
2949 list_del_init(&fence->lru_list);
2950 }
2951 obj->fence_dirty = false;
2952}
2953
2954static int
2955i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2956{
2957 if (obj->last_fenced_seqno) {
2958 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2959 if (ret)
2960 return ret;
2961
2962 obj->last_fenced_seqno = 0;
2963 }
2964
2965 obj->fenced_gpu_access = false;
2966 return 0;
2967}
2968
2969int
2970i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2971{
2972 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2973 struct drm_i915_fence_reg *fence;
2974 int ret;
2975
2976 ret = i915_gem_object_wait_fence(obj);
2977 if (ret)
2978 return ret;
2979
2980 if (obj->fence_reg == I915_FENCE_REG_NONE)
2981 return 0;
2982
2983 fence = &dev_priv->fence_regs[obj->fence_reg];
2984
2985 i915_gem_object_fence_lost(obj);
2986 i915_gem_object_update_fence(obj, fence, false);
2987
2988 return 0;
2989}
2990
2991static struct drm_i915_fence_reg *
2992i915_find_fence_reg(struct drm_device *dev)
2993{
2994 struct drm_i915_private *dev_priv = dev->dev_private;
2995 struct drm_i915_fence_reg *reg, *avail;
2996 int i;
2997
2998 /* First try to find a free reg */
2999 avail = NULL;
3000 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3001 reg = &dev_priv->fence_regs[i];
3002 if (!reg->obj)
3003 return reg;
3004
3005 if (!reg->pin_count)
3006 avail = reg;
3007 }
3008
3009 if (avail == NULL)
3010 return NULL;
3011
3012 /* None available, try to steal one or wait for a user to finish */
3013 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3014 if (reg->pin_count)
3015 continue;
3016
3017 return reg;
3018 }
3019
3020 return NULL;
3021}
3022
3023/**
3024 * i915_gem_object_get_fence - set up fencing for an object
3025 * @obj: object to map through a fence reg
3026 *
3027 * When mapping objects through the GTT, userspace wants to be able to write
3028 * to them without having to worry about swizzling if the object is tiled.
3029 * This function walks the fence regs looking for a free one for @obj,
3030 * stealing one if it can't find any.
3031 *
3032 * It then sets up the reg based on the object's properties: address, pitch
3033 * and tiling format.
3034 *
3035 * For an untiled surface, this removes any existing fence.
3036 */
3037int
3038i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3039{
3040 struct drm_device *dev = obj->base.dev;
3041 struct drm_i915_private *dev_priv = dev->dev_private;
3042 bool enable = obj->tiling_mode != I915_TILING_NONE;
3043 struct drm_i915_fence_reg *reg;
3044 int ret;
3045
3046 /* Have we updated the tiling parameters upon the object and so
3047 * will need to serialise the write to the associated fence register?
3048 */
3049 if (obj->fence_dirty) {
3050 ret = i915_gem_object_wait_fence(obj);
3051 if (ret)
3052 return ret;
3053 }
3054
3055 /* Just update our place in the LRU if our fence is getting reused. */
3056 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3057 reg = &dev_priv->fence_regs[obj->fence_reg];
3058 if (!obj->fence_dirty) {
3059 list_move_tail(&reg->lru_list,
3060 &dev_priv->mm.fence_list);
3061 return 0;
3062 }
3063 } else if (enable) {
3064 reg = i915_find_fence_reg(dev);
3065 if (reg == NULL)
3066 return -EDEADLK;
3067
3068 if (reg->obj) {
3069 struct drm_i915_gem_object *old = reg->obj;
3070
3071 ret = i915_gem_object_wait_fence(old);
3072 if (ret)
3073 return ret;
3074
3075 i915_gem_object_fence_lost(old);
3076 }
3077 } else
3078 return 0;
3079
3080 i915_gem_object_update_fence(obj, reg, enable);
3081
3082 return 0;
3083}
3084
3085static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3086 struct drm_mm_node *gtt_space,
3087 unsigned long cache_level)
3088{
3089 struct drm_mm_node *other;
3090
3091 /* On non-LLC machines we have to be careful when putting differing
3092 * types of snoopable memory together to avoid the prefetcher
3093 * crossing memory domains and dying.
3094 */
3095 if (HAS_LLC(dev))
3096 return true;
3097
3098 if (!drm_mm_node_allocated(gtt_space))
3099 return true;
3100
3101 if (list_empty(&gtt_space->node_list))
3102 return true;
3103
3104 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3105 if (other->allocated && !other->hole_follows && other->color != cache_level)
3106 return false;
3107
3108 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3109 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3110 return false;
3111
3112 return true;
3113}
3114
3115static void i915_gem_verify_gtt(struct drm_device *dev)
3116{
3117#if WATCH_GTT
3118 struct drm_i915_private *dev_priv = dev->dev_private;
3119 struct drm_i915_gem_object *obj;
3120 int err = 0;
3121
3122 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3123 if (obj->gtt_space == NULL) {
3124 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3125 err++;
3126 continue;
3127 }
3128
3129 if (obj->cache_level != obj->gtt_space->color) {
3130 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3131 i915_gem_obj_ggtt_offset(obj),
3132 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3133 obj->cache_level,
3134 obj->gtt_space->color);
3135 err++;
3136 continue;
3137 }
3138
3139 if (!i915_gem_valid_gtt_space(dev,
3140 obj->gtt_space,
3141 obj->cache_level)) {
3142 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3143 i915_gem_obj_ggtt_offset(obj),
3144 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3145 obj->cache_level);
3146 err++;
3147 continue;
3148 }
3149 }
3150
3151 WARN_ON(err);
3152#endif
3153}
3154
3155/**
3156 * Finds free space in the GTT aperture and binds the object there.
3157 */
3158static int
3159i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3160 struct i915_address_space *vm,
3161 unsigned alignment,
3162 bool map_and_fenceable,
3163 bool nonblocking)
3164{
3165 struct drm_device *dev = obj->base.dev;
3166 drm_i915_private_t *dev_priv = dev->dev_private;
3167 u32 size, fence_size, fence_alignment, unfenced_alignment;
3168 size_t gtt_max =
3169 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3170 struct i915_vma *vma;
3171 int ret;
3172
3173 fence_size = i915_gem_get_gtt_size(dev,
3174 obj->base.size,
3175 obj->tiling_mode);
3176 fence_alignment = i915_gem_get_gtt_alignment(dev,
3177 obj->base.size,
3178 obj->tiling_mode, true);
3179 unfenced_alignment =
3180 i915_gem_get_gtt_alignment(dev,
3181 obj->base.size,
3182 obj->tiling_mode, false);
3183
3184 if (alignment == 0)
3185 alignment = map_and_fenceable ? fence_alignment :
3186 unfenced_alignment;
3187 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3188 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3189 return -EINVAL;
3190 }
3191
3192 size = map_and_fenceable ? fence_size : obj->base.size;
3193
3194 /* If the object is bigger than the entire aperture, reject it early
3195 * before evicting everything in a vain attempt to find space.
3196 */
3197 if (obj->base.size > gtt_max) {
3198 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3199 obj->base.size,
3200 map_and_fenceable ? "mappable" : "total",
3201 gtt_max);
3202 return -E2BIG;
3203 }
3204
3205 ret = i915_gem_object_get_pages(obj);
3206 if (ret)
3207 return ret;
3208
3209 i915_gem_object_pin_pages(obj);
3210
3211 BUG_ON(!i915_is_ggtt(vm));
3212
3213 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3214 if (IS_ERR(vma)) {
3215 ret = PTR_ERR(vma);
3216 goto err_unpin;
3217 }
3218
3219 /* For now we only ever use 1 vma per object */
3220 WARN_ON(!list_is_singular(&obj->vma_list));
3221
3222search_free:
3223 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3224 size, alignment,
3225 obj->cache_level, 0, gtt_max,
3226 DRM_MM_SEARCH_DEFAULT);
3227 if (ret) {
3228 ret = i915_gem_evict_something(dev, vm, size, alignment,
3229 obj->cache_level,
3230 map_and_fenceable,
3231 nonblocking);
3232 if (ret == 0)
3233 goto search_free;
3234
3235 goto err_free_vma;
3236 }
3237 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3238 obj->cache_level))) {
3239 ret = -EINVAL;
3240 goto err_remove_node;
3241 }
3242
3243 ret = i915_gem_gtt_prepare_object(obj);
3244 if (ret)
3245 goto err_remove_node;
3246
3247 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3248 list_add_tail(&vma->mm_list, &vm->inactive_list);
3249
3250 if (i915_is_ggtt(vm)) {
3251 bool mappable, fenceable;
3252
3253 fenceable = (vma->node.size == fence_size &&
3254 (vma->node.start & (fence_alignment - 1)) == 0);
3255
3256 mappable = (vma->node.start + obj->base.size <=
3257 dev_priv->gtt.mappable_end);
3258
3259 obj->map_and_fenceable = mappable && fenceable;
3260 }
3261
3262 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3263
3264 trace_i915_vma_bind(vma, map_and_fenceable);
3265 i915_gem_verify_gtt(dev);
3266 return 0;
3267
3268err_remove_node:
3269 drm_mm_remove_node(&vma->node);
3270err_free_vma:
3271 i915_gem_vma_destroy(vma);
3272err_unpin:
3273 i915_gem_object_unpin_pages(obj);
3274 return ret;
3275}
3276
3277bool
3278i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3279 bool force)
3280{
3281 /* If we don't have a page list set up, then we're not pinned
3282 * to GPU, and we can ignore the cache flush because it'll happen
3283 * again at bind time.
3284 */
3285 if (obj->pages == NULL)
3286 return false;
3287
3288 /*
3289 * Stolen memory is always coherent with the GPU as it is explicitly
3290 * marked as wc by the system, or the system is cache-coherent.
3291 */
3292 if (obj->stolen)
3293 return false;
3294
3295 /* If the GPU is snooping the contents of the CPU cache,
3296 * we do not need to manually clear the CPU cache lines. However,
3297 * the caches are only snooped when the render cache is
3298 * flushed/invalidated. As we always have to emit invalidations
3299 * and flushes when moving into and out of the RENDER domain, correct
3300 * snooping behaviour occurs naturally as the result of our domain
3301 * tracking.
3302 */
3303 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3304 return false;
3305
3306 trace_i915_gem_object_clflush(obj);
3307 drm_clflush_sg(obj->pages);
3308
3309 return true;
3310}
3311
3312/** Flushes the GTT write domain for the object if it's dirty. */
3313static void
3314i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3315{
3316 uint32_t old_write_domain;
3317
3318 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3319 return;
3320
3321 /* No actual flushing is required for the GTT write domain. Writes
3322 * to it immediately go to main memory as far as we know, so there's
3323 * no chipset flush. It also doesn't land in render cache.
3324 *
3325 * However, we do have to enforce the order so that all writes through
3326 * the GTT land before any writes to the device, such as updates to
3327 * the GATT itself.
3328 */
3329 wmb();
3330
3331 old_write_domain = obj->base.write_domain;
3332 obj->base.write_domain = 0;
3333
3334 trace_i915_gem_object_change_domain(obj,
3335 obj->base.read_domains,
3336 old_write_domain);
3337}
3338
3339/** Flushes the CPU write domain for the object if it's dirty. */
3340static void
3341i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3342 bool force)
3343{
3344 uint32_t old_write_domain;
3345
3346 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3347 return;
3348
3349 if (i915_gem_clflush_object(obj, force))
3350 i915_gem_chipset_flush(obj->base.dev);
3351
3352 old_write_domain = obj->base.write_domain;
3353 obj->base.write_domain = 0;
3354
3355 trace_i915_gem_object_change_domain(obj,
3356 obj->base.read_domains,
3357 old_write_domain);
3358}
3359
3360/**
3361 * Moves a single object to the GTT read, and possibly write domain.
3362 *
3363 * This function returns when the move is complete, including waiting on
3364 * flushes to occur.
3365 */
3366int
3367i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3368{
3369 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3370 uint32_t old_write_domain, old_read_domains;
3371 int ret;
3372
3373 /* Not valid to be called on unbound objects. */
3374 if (!i915_gem_obj_bound_any(obj))
3375 return -EINVAL;
3376
3377 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3378 return 0;
3379
3380 ret = i915_gem_object_wait_rendering(obj, !write);
3381 if (ret)
3382 return ret;
3383
3384 i915_gem_object_flush_cpu_write_domain(obj, false);
3385
3386 /* Serialise direct access to this object with the barriers for
3387 * coherent writes from the GPU, by effectively invalidating the
3388 * GTT domain upon first access.
3389 */
3390 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3391 mb();
3392
3393 old_write_domain = obj->base.write_domain;
3394 old_read_domains = obj->base.read_domains;
3395
3396 /* It should now be out of any other write domains, and we can update
3397 * the domain values for our changes.
3398 */
3399 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3400 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3401 if (write) {
3402 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3403 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3404 obj->dirty = 1;
3405 }
3406
3407 trace_i915_gem_object_change_domain(obj,
3408 old_read_domains,
3409 old_write_domain);
3410
3411 /* And bump the LRU for this access */
3412 if (i915_gem_object_is_inactive(obj)) {
3413 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3414 &dev_priv->gtt.base);
3415 if (vma)
3416 list_move_tail(&vma->mm_list,
3417 &dev_priv->gtt.base.inactive_list);
3418
3419 }
3420
3421 return 0;
3422}
3423
3424int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3425 enum i915_cache_level cache_level)
3426{
3427 struct drm_device *dev = obj->base.dev;
3428 drm_i915_private_t *dev_priv = dev->dev_private;
3429 struct i915_vma *vma;
3430 int ret;
3431
3432 if (obj->cache_level == cache_level)
3433 return 0;
3434
3435 if (obj->pin_count) {
3436 DRM_DEBUG("can not change the cache level of pinned objects\n");
3437 return -EBUSY;
3438 }
3439
3440 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3441 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3442 ret = i915_vma_unbind(vma);
3443 if (ret)
3444 return ret;
3445
3446 break;
3447 }
3448 }
3449
3450 if (i915_gem_obj_bound_any(obj)) {
3451 ret = i915_gem_object_finish_gpu(obj);
3452 if (ret)
3453 return ret;
3454
3455 i915_gem_object_finish_gtt(obj);
3456
3457 /* Before SandyBridge, you could not use tiling or fence
3458 * registers with snooped memory, so relinquish any fences
3459 * currently pointing to our region in the aperture.
3460 */
3461 if (INTEL_INFO(dev)->gen < 6) {
3462 ret = i915_gem_object_put_fence(obj);
3463 if (ret)
3464 return ret;
3465 }
3466
3467 if (obj->has_global_gtt_mapping)
3468 i915_gem_gtt_bind_object(obj, cache_level);
3469 if (obj->has_aliasing_ppgtt_mapping)
3470 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3471 obj, cache_level);
3472 }
3473
3474 list_for_each_entry(vma, &obj->vma_list, vma_link)
3475 vma->node.color = cache_level;
3476 obj->cache_level = cache_level;
3477
3478 if (cpu_write_needs_clflush(obj)) {
3479 u32 old_read_domains, old_write_domain;
3480
3481 /* If we're coming from LLC cached, then we haven't
3482 * actually been tracking whether the data is in the
3483 * CPU cache or not, since we only allow one bit set
3484 * in obj->write_domain and have been skipping the clflushes.
3485 * Just set it to the CPU cache for now.
3486 */
3487 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3488
3489 old_read_domains = obj->base.read_domains;
3490 old_write_domain = obj->base.write_domain;
3491
3492 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3493 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3494
3495 trace_i915_gem_object_change_domain(obj,
3496 old_read_domains,
3497 old_write_domain);
3498 }
3499
3500 i915_gem_verify_gtt(dev);
3501 return 0;
3502}
3503
3504int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3505 struct drm_file *file)
3506{
3507 struct drm_i915_gem_caching *args = data;
3508 struct drm_i915_gem_object *obj;
3509 int ret;
3510
3511 ret = i915_mutex_lock_interruptible(dev);
3512 if (ret)
3513 return ret;
3514
3515 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3516 if (&obj->base == NULL) {
3517 ret = -ENOENT;
3518 goto unlock;
3519 }
3520
3521 switch (obj->cache_level) {
3522 case I915_CACHE_LLC:
3523 case I915_CACHE_L3_LLC:
3524 args->caching = I915_CACHING_CACHED;
3525 break;
3526
3527 case I915_CACHE_WT:
3528 args->caching = I915_CACHING_DISPLAY;
3529 break;
3530
3531 default:
3532 args->caching = I915_CACHING_NONE;
3533 break;
3534 }
3535
3536 drm_gem_object_unreference(&obj->base);
3537unlock:
3538 mutex_unlock(&dev->struct_mutex);
3539 return ret;
3540}
3541
3542int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3543 struct drm_file *file)
3544{
3545 struct drm_i915_gem_caching *args = data;
3546 struct drm_i915_gem_object *obj;
3547 enum i915_cache_level level;
3548 int ret;
3549
3550 switch (args->caching) {
3551 case I915_CACHING_NONE:
3552 level = I915_CACHE_NONE;
3553 break;
3554 case I915_CACHING_CACHED:
3555 level = I915_CACHE_LLC;
3556 break;
3557 case I915_CACHING_DISPLAY:
3558 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3559 break;
3560 default:
3561 return -EINVAL;
3562 }
3563
3564 ret = i915_mutex_lock_interruptible(dev);
3565 if (ret)
3566 return ret;
3567
3568 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3569 if (&obj->base == NULL) {
3570 ret = -ENOENT;
3571 goto unlock;
3572 }
3573
3574 ret = i915_gem_object_set_cache_level(obj, level);
3575
3576 drm_gem_object_unreference(&obj->base);
3577unlock:
3578 mutex_unlock(&dev->struct_mutex);
3579 return ret;
3580}
3581
3582static bool is_pin_display(struct drm_i915_gem_object *obj)
3583{
3584 /* There are 3 sources that pin objects:
3585 * 1. The display engine (scanouts, sprites, cursors);
3586 * 2. Reservations for execbuffer;
3587 * 3. The user.
3588 *
3589 * We can ignore reservations as we hold the struct_mutex and
3590 * are only called outside of the reservation path. The user
3591 * can only increment pin_count once, and so if after
3592 * subtracting the potential reference by the user, any pin_count
3593 * remains, it must be due to another use by the display engine.
3594 */
3595 return obj->pin_count - !!obj->user_pin_count;
3596}
3597
3598/*
3599 * Prepare buffer for display plane (scanout, cursors, etc).
3600 * Can be called from an uninterruptible phase (modesetting) and allows
3601 * any flushes to be pipelined (for pageflips).
3602 */
3603int
3604i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3605 u32 alignment,
3606 struct intel_ring_buffer *pipelined)
3607{
3608 u32 old_read_domains, old_write_domain;
3609 int ret;
3610
3611 if (pipelined != obj->ring) {
3612 ret = i915_gem_object_sync(obj, pipelined);
3613 if (ret)
3614 return ret;
3615 }
3616
3617 /* Mark the pin_display early so that we account for the
3618 * display coherency whilst setting up the cache domains.
3619 */
3620 obj->pin_display = true;
3621
3622 /* The display engine is not coherent with the LLC cache on gen6. As
3623 * a result, we make sure that the pinning that is about to occur is
3624 * done with uncached PTEs. This is lowest common denominator for all
3625 * chipsets.
3626 *
3627 * However for gen6+, we could do better by using the GFDT bit instead
3628 * of uncaching, which would allow us to flush all the LLC-cached data
3629 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3630 */
3631 ret = i915_gem_object_set_cache_level(obj,
3632 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3633 if (ret)
3634 goto err_unpin_display;
3635
3636 /* As the user may map the buffer once pinned in the display plane
3637 * (e.g. libkms for the bootup splash), we have to ensure that we
3638 * always use map_and_fenceable for all scanout buffers.
3639 */
3640 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3641 if (ret)
3642 goto err_unpin_display;
3643
3644 i915_gem_object_flush_cpu_write_domain(obj, true);
3645
3646 old_write_domain = obj->base.write_domain;
3647 old_read_domains = obj->base.read_domains;
3648
3649 /* It should now be out of any other write domains, and we can update
3650 * the domain values for our changes.
3651 */
3652 obj->base.write_domain = 0;
3653 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3654
3655 trace_i915_gem_object_change_domain(obj,
3656 old_read_domains,
3657 old_write_domain);
3658
3659 return 0;
3660
3661err_unpin_display:
3662 obj->pin_display = is_pin_display(obj);
3663 return ret;
3664}
3665
3666void
3667i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3668{
3669 i915_gem_object_unpin(obj);
3670 obj->pin_display = is_pin_display(obj);
3671}
3672
3673int
3674i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3675{
3676 int ret;
3677
3678 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3679 return 0;
3680
3681 ret = i915_gem_object_wait_rendering(obj, false);
3682 if (ret)
3683 return ret;
3684
3685 /* Ensure that we invalidate the GPU's caches and TLBs. */
3686 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3687 return 0;
3688}
3689
3690/**
3691 * Moves a single object to the CPU read, and possibly write domain.
3692 *
3693 * This function returns when the move is complete, including waiting on
3694 * flushes to occur.
3695 */
3696int
3697i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3698{
3699 uint32_t old_write_domain, old_read_domains;
3700 int ret;
3701
3702 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3703 return 0;
3704
3705 ret = i915_gem_object_wait_rendering(obj, !write);
3706 if (ret)
3707 return ret;
3708
3709 i915_gem_object_flush_gtt_write_domain(obj);
3710
3711 old_write_domain = obj->base.write_domain;
3712 old_read_domains = obj->base.read_domains;
3713
3714 /* Flush the CPU cache if it's still invalid. */
3715 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3716 i915_gem_clflush_object(obj, false);
3717
3718 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3719 }
3720
3721 /* It should now be out of any other write domains, and we can update
3722 * the domain values for our changes.
3723 */
3724 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3725
3726 /* If we're writing through the CPU, then the GPU read domains will
3727 * need to be invalidated at next use.
3728 */
3729 if (write) {
3730 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3731 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3732 }
3733
3734 trace_i915_gem_object_change_domain(obj,
3735 old_read_domains,
3736 old_write_domain);
3737
3738 return 0;
3739}
3740
3741/* Throttle our rendering by waiting until the ring has completed our requests
3742 * emitted over 20 msec ago.
3743 *
3744 * Note that if we were to use the current jiffies each time around the loop,
3745 * we wouldn't escape the function with any frames outstanding if the time to
3746 * render a frame was over 20ms.
3747 *
3748 * This should get us reasonable parallelism between CPU and GPU but also
3749 * relatively low latency when blocking on a particular request to finish.
3750 */
3751static int
3752i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3753{
3754 struct drm_i915_private *dev_priv = dev->dev_private;
3755 struct drm_i915_file_private *file_priv = file->driver_priv;
3756 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3757 struct drm_i915_gem_request *request;
3758 struct intel_ring_buffer *ring = NULL;
3759 unsigned reset_counter;
3760 u32 seqno = 0;
3761 int ret;
3762
3763 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3764 if (ret)
3765 return ret;
3766
3767 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3768 if (ret)
3769 return ret;
3770
3771 spin_lock(&file_priv->mm.lock);
3772 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3773 if (time_after_eq(request->emitted_jiffies, recent_enough))
3774 break;
3775
3776 ring = request->ring;
3777 seqno = request->seqno;
3778 }
3779 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3780 spin_unlock(&file_priv->mm.lock);
3781
3782 if (seqno == 0)
3783 return 0;
3784
3785 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3786 if (ret == 0)
3787 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3788
3789 return ret;
3790}
3791
3792int
3793i915_gem_object_pin(struct drm_i915_gem_object *obj,
3794 struct i915_address_space *vm,
3795 uint32_t alignment,
3796 bool map_and_fenceable,
3797 bool nonblocking)
3798{
3799 struct i915_vma *vma;
3800 int ret;
3801
3802 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3803 return -EBUSY;
3804
3805 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3806
3807 vma = i915_gem_obj_to_vma(obj, vm);
3808
3809 if (vma) {
3810 if ((alignment &&
3811 vma->node.start & (alignment - 1)) ||
3812 (map_and_fenceable && !obj->map_and_fenceable)) {
3813 WARN(obj->pin_count,
3814 "bo is already pinned with incorrect alignment:"
3815 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3816 " obj->map_and_fenceable=%d\n",
3817 i915_gem_obj_offset(obj, vm), alignment,
3818 map_and_fenceable,
3819 obj->map_and_fenceable);
3820 ret = i915_vma_unbind(vma);
3821 if (ret)
3822 return ret;
3823 }
3824 }
3825
3826 if (!i915_gem_obj_bound(obj, vm)) {
3827 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3828
3829 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3830 map_and_fenceable,
3831 nonblocking);
3832 if (ret)
3833 return ret;
3834
3835 if (!dev_priv->mm.aliasing_ppgtt)
3836 i915_gem_gtt_bind_object(obj, obj->cache_level);
3837 }
3838
3839 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3840 i915_gem_gtt_bind_object(obj, obj->cache_level);
3841
3842 obj->pin_count++;
3843 obj->pin_mappable |= map_and_fenceable;
3844
3845 return 0;
3846}
3847
3848void
3849i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3850{
3851 BUG_ON(obj->pin_count == 0);
3852 BUG_ON(!i915_gem_obj_bound_any(obj));
3853
3854 if (--obj->pin_count == 0)
3855 obj->pin_mappable = false;
3856}
3857
3858int
3859i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3860 struct drm_file *file)
3861{
3862 struct drm_i915_gem_pin *args = data;
3863 struct drm_i915_gem_object *obj;
3864 int ret;
3865
3866 ret = i915_mutex_lock_interruptible(dev);
3867 if (ret)
3868 return ret;
3869
3870 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3871 if (&obj->base == NULL) {
3872 ret = -ENOENT;
3873 goto unlock;
3874 }
3875
3876 if (obj->madv != I915_MADV_WILLNEED) {
3877 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3878 ret = -EINVAL;
3879 goto out;
3880 }
3881
3882 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3883 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3884 args->handle);
3885 ret = -EINVAL;
3886 goto out;
3887 }
3888
3889 if (obj->user_pin_count == 0) {
3890 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3891 if (ret)
3892 goto out;
3893 }
3894
3895 obj->user_pin_count++;
3896 obj->pin_filp = file;
3897
3898 args->offset = i915_gem_obj_ggtt_offset(obj);
3899out:
3900 drm_gem_object_unreference(&obj->base);
3901unlock:
3902 mutex_unlock(&dev->struct_mutex);
3903 return ret;
3904}
3905
3906int
3907i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3908 struct drm_file *file)
3909{
3910 struct drm_i915_gem_pin *args = data;
3911 struct drm_i915_gem_object *obj;
3912 int ret;
3913
3914 ret = i915_mutex_lock_interruptible(dev);
3915 if (ret)
3916 return ret;
3917
3918 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3919 if (&obj->base == NULL) {
3920 ret = -ENOENT;
3921 goto unlock;
3922 }
3923
3924 if (obj->pin_filp != file) {
3925 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3926 args->handle);
3927 ret = -EINVAL;
3928 goto out;
3929 }
3930 obj->user_pin_count--;
3931 if (obj->user_pin_count == 0) {
3932 obj->pin_filp = NULL;
3933 i915_gem_object_unpin(obj);
3934 }
3935
3936out:
3937 drm_gem_object_unreference(&obj->base);
3938unlock:
3939 mutex_unlock(&dev->struct_mutex);
3940 return ret;
3941}
3942
3943int
3944i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3945 struct drm_file *file)
3946{
3947 struct drm_i915_gem_busy *args = data;
3948 struct drm_i915_gem_object *obj;
3949 int ret;
3950
3951 ret = i915_mutex_lock_interruptible(dev);
3952 if (ret)
3953 return ret;
3954
3955 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3956 if (&obj->base == NULL) {
3957 ret = -ENOENT;
3958 goto unlock;
3959 }
3960
3961 /* Count all active objects as busy, even if they are currently not used
3962 * by the gpu. Users of this interface expect objects to eventually
3963 * become non-busy without any further actions, therefore emit any
3964 * necessary flushes here.
3965 */
3966 ret = i915_gem_object_flush_active(obj);
3967
3968 args->busy = obj->active;
3969 if (obj->ring) {
3970 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3971 args->busy |= intel_ring_flag(obj->ring) << 16;
3972 }
3973
3974 drm_gem_object_unreference(&obj->base);
3975unlock:
3976 mutex_unlock(&dev->struct_mutex);
3977 return ret;
3978}
3979
3980int
3981i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3982 struct drm_file *file_priv)
3983{
3984 return i915_gem_ring_throttle(dev, file_priv);
3985}
3986
3987int
3988i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3989 struct drm_file *file_priv)
3990{
3991 struct drm_i915_gem_madvise *args = data;
3992 struct drm_i915_gem_object *obj;
3993 int ret;
3994
3995 switch (args->madv) {
3996 case I915_MADV_DONTNEED:
3997 case I915_MADV_WILLNEED:
3998 break;
3999 default:
4000 return -EINVAL;
4001 }
4002
4003 ret = i915_mutex_lock_interruptible(dev);
4004 if (ret)
4005 return ret;
4006
4007 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4008 if (&obj->base == NULL) {
4009 ret = -ENOENT;
4010 goto unlock;
4011 }
4012
4013 if (obj->pin_count) {
4014 ret = -EINVAL;
4015 goto out;
4016 }
4017
4018 if (obj->madv != __I915_MADV_PURGED)
4019 obj->madv = args->madv;
4020
4021 /* if the object is no longer attached, discard its backing storage */
4022 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4023 i915_gem_object_truncate(obj);
4024
4025 args->retained = obj->madv != __I915_MADV_PURGED;
4026
4027out:
4028 drm_gem_object_unreference(&obj->base);
4029unlock:
4030 mutex_unlock(&dev->struct_mutex);
4031 return ret;
4032}
4033
4034void i915_gem_object_init(struct drm_i915_gem_object *obj,
4035 const struct drm_i915_gem_object_ops *ops)
4036{
4037 INIT_LIST_HEAD(&obj->global_list);
4038 INIT_LIST_HEAD(&obj->ring_list);
4039 INIT_LIST_HEAD(&obj->obj_exec_link);
4040 INIT_LIST_HEAD(&obj->vma_list);
4041
4042 obj->ops = ops;
4043
4044 obj->fence_reg = I915_FENCE_REG_NONE;
4045 obj->madv = I915_MADV_WILLNEED;
4046 /* Avoid an unnecessary call to unbind on the first bind. */
4047 obj->map_and_fenceable = true;
4048
4049 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4050}
4051
4052static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4053 .get_pages = i915_gem_object_get_pages_gtt,
4054 .put_pages = i915_gem_object_put_pages_gtt,
4055};
4056
4057struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4058 size_t size)
4059{
4060 struct drm_i915_gem_object *obj;
4061 struct address_space *mapping;
4062 gfp_t mask;
4063
4064 obj = i915_gem_object_alloc(dev);
4065 if (obj == NULL)
4066 return NULL;
4067
4068 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4069 i915_gem_object_free(obj);
4070 return NULL;
4071 }
4072
4073 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4074 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4075 /* 965gm cannot relocate objects above 4GiB. */
4076 mask &= ~__GFP_HIGHMEM;
4077 mask |= __GFP_DMA32;
4078 }
4079
4080 mapping = file_inode(obj->base.filp)->i_mapping;
4081 mapping_set_gfp_mask(mapping, mask);
4082
4083 i915_gem_object_init(obj, &i915_gem_object_ops);
4084
4085 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4086 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4087
4088 if (HAS_LLC(dev)) {
4089 /* On some devices, we can have the GPU use the LLC (the CPU
4090 * cache) for about a 10% performance improvement
4091 * compared to uncached. Graphics requests other than
4092 * display scanout are coherent with the CPU in
4093 * accessing this cache. This means in this mode we
4094 * don't need to clflush on the CPU side, and on the
4095 * GPU side we only need to flush internal caches to
4096 * get data visible to the CPU.
4097 *
4098 * However, we maintain the display planes as UC, and so
4099 * need to rebind when first used as such.
4100 */
4101 obj->cache_level = I915_CACHE_LLC;
4102 } else
4103 obj->cache_level = I915_CACHE_NONE;
4104
4105 trace_i915_gem_object_create(obj);
4106
4107 return obj;
4108}
4109
4110int i915_gem_init_object(struct drm_gem_object *obj)
4111{
4112 BUG();
4113
4114 return 0;
4115}
4116
4117void i915_gem_free_object(struct drm_gem_object *gem_obj)
4118{
4119 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4120 struct drm_device *dev = obj->base.dev;
4121 drm_i915_private_t *dev_priv = dev->dev_private;
4122 struct i915_vma *vma, *next;
4123
4124 trace_i915_gem_object_destroy(obj);
4125
4126 if (obj->phys_obj)
4127 i915_gem_detach_phys_object(dev, obj);
4128
4129 obj->pin_count = 0;
4130 /* NB: 0 or 1 elements */
4131 WARN_ON(!list_empty(&obj->vma_list) &&
4132 !list_is_singular(&obj->vma_list));
4133 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4134 int ret = i915_vma_unbind(vma);
4135 if (WARN_ON(ret == -ERESTARTSYS)) {
4136 bool was_interruptible;
4137
4138 was_interruptible = dev_priv->mm.interruptible;
4139 dev_priv->mm.interruptible = false;
4140
4141 WARN_ON(i915_vma_unbind(vma));
4142
4143 dev_priv->mm.interruptible = was_interruptible;
4144 }
4145 }
4146
4147 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4148 * before progressing. */
4149 if (obj->stolen)
4150 i915_gem_object_unpin_pages(obj);
4151
4152 if (WARN_ON(obj->pages_pin_count))
4153 obj->pages_pin_count = 0;
4154 i915_gem_object_put_pages(obj);
4155 i915_gem_object_free_mmap_offset(obj);
4156 i915_gem_object_release_stolen(obj);
4157
4158 BUG_ON(obj->pages);
4159
4160 if (obj->base.import_attach)
4161 drm_prime_gem_destroy(&obj->base, NULL);
4162
4163 drm_gem_object_release(&obj->base);
4164 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4165
4166 kfree(obj->bit_17);
4167 i915_gem_object_free(obj);
4168}
4169
4170struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4171 struct i915_address_space *vm)
4172{
4173 struct i915_vma *vma;
4174 list_for_each_entry(vma, &obj->vma_list, vma_link)
4175 if (vma->vm == vm)
4176 return vma;
4177
4178 return NULL;
4179}
4180
4181static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4182 struct i915_address_space *vm)
4183{
4184 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4185 if (vma == NULL)
4186 return ERR_PTR(-ENOMEM);
4187
4188 INIT_LIST_HEAD(&vma->vma_link);
4189 INIT_LIST_HEAD(&vma->mm_list);
4190 INIT_LIST_HEAD(&vma->exec_list);
4191 vma->vm = vm;
4192 vma->obj = obj;
4193
4194 /* Keep GGTT vmas first to make debug easier */
4195 if (i915_is_ggtt(vm))
4196 list_add(&vma->vma_link, &obj->vma_list);
4197 else
4198 list_add_tail(&vma->vma_link, &obj->vma_list);
4199
4200 return vma;
4201}
4202
4203struct i915_vma *
4204i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4205 struct i915_address_space *vm)
4206{
4207 struct i915_vma *vma;
4208
4209 vma = i915_gem_obj_to_vma(obj, vm);
4210 if (!vma)
4211 vma = __i915_gem_vma_create(obj, vm);
4212
4213 return vma;
4214}
4215
4216void i915_gem_vma_destroy(struct i915_vma *vma)
4217{
4218 WARN_ON(vma->node.allocated);
4219
4220 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4221 if (!list_empty(&vma->exec_list))
4222 return;
4223
4224 list_del(&vma->vma_link);
4225
4226 kfree(vma);
4227}
4228
4229int
4230i915_gem_idle(struct drm_device *dev)
4231{
4232 drm_i915_private_t *dev_priv = dev->dev_private;
4233 int ret;
4234
4235 if (dev_priv->ums.mm_suspended) {
4236 mutex_unlock(&dev->struct_mutex);
4237 return 0;
4238 }
4239
4240 ret = i915_gpu_idle(dev);
4241 if (ret) {
4242 mutex_unlock(&dev->struct_mutex);
4243 return ret;
4244 }
4245 i915_gem_retire_requests(dev);
4246
4247 /* Under UMS, be paranoid and evict. */
4248 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4249 i915_gem_evict_everything(dev);
4250
4251 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4252
4253 i915_kernel_lost_context(dev);
4254 i915_gem_cleanup_ringbuffer(dev);
4255
4256 /* Cancel the retire work handler, which should be idle now. */
4257 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4258
4259 return 0;
4260}
4261
4262int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4263{
4264 struct drm_device *dev = ring->dev;
4265 drm_i915_private_t *dev_priv = dev->dev_private;
4266 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4267 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4268 int i, ret;
4269
4270 if (!HAS_L3_DPF(dev) || !remap_info)
4271 return 0;
4272
4273 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4274 if (ret)
4275 return ret;
4276
4277 /*
4278 * Note: We do not worry about the concurrent register cacheline hang
4279 * here because no other code should access these registers other than
4280 * at initialization time.
4281 */
4282 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4283 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4284 intel_ring_emit(ring, reg_base + i);
4285 intel_ring_emit(ring, remap_info[i/4]);
4286 }
4287
4288 intel_ring_advance(ring);
4289
4290 return ret;
4291}
4292
4293void i915_gem_init_swizzling(struct drm_device *dev)
4294{
4295 drm_i915_private_t *dev_priv = dev->dev_private;
4296
4297 if (INTEL_INFO(dev)->gen < 5 ||
4298 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4299 return;
4300
4301 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4302 DISP_TILE_SURFACE_SWIZZLING);
4303
4304 if (IS_GEN5(dev))
4305 return;
4306
4307 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4308 if (IS_GEN6(dev))
4309 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4310 else if (IS_GEN7(dev))
4311 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4312 else
4313 BUG();
4314}
4315
4316static bool
4317intel_enable_blt(struct drm_device *dev)
4318{
4319 if (!HAS_BLT(dev))
4320 return false;
4321
4322 /* The blitter was dysfunctional on early prototypes */
4323 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4324 DRM_INFO("BLT not supported on this pre-production hardware;"
4325 " graphics performance will be degraded.\n");
4326 return false;
4327 }
4328
4329 return true;
4330}
4331
4332static int i915_gem_init_rings(struct drm_device *dev)
4333{
4334 struct drm_i915_private *dev_priv = dev->dev_private;
4335 int ret;
4336
4337 ret = intel_init_render_ring_buffer(dev);
4338 if (ret)
4339 return ret;
4340
4341 if (HAS_BSD(dev)) {
4342 ret = intel_init_bsd_ring_buffer(dev);
4343 if (ret)
4344 goto cleanup_render_ring;
4345 }
4346
4347 if (intel_enable_blt(dev)) {
4348 ret = intel_init_blt_ring_buffer(dev);
4349 if (ret)
4350 goto cleanup_bsd_ring;
4351 }
4352
4353 if (HAS_VEBOX(dev)) {
4354 ret = intel_init_vebox_ring_buffer(dev);
4355 if (ret)
4356 goto cleanup_blt_ring;
4357 }
4358
4359
4360 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4361 if (ret)
4362 goto cleanup_vebox_ring;
4363
4364 return 0;
4365
4366cleanup_vebox_ring:
4367 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4368cleanup_blt_ring:
4369 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4370cleanup_bsd_ring:
4371 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4372cleanup_render_ring:
4373 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4374
4375 return ret;
4376}
4377
4378int
4379i915_gem_init_hw(struct drm_device *dev)
4380{
4381 drm_i915_private_t *dev_priv = dev->dev_private;
4382 int ret, i;
4383
4384 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4385 return -EIO;
4386
4387 if (dev_priv->ellc_size)
4388 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4389
4390 if (IS_HSW_GT3(dev))
4391 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_ENABLED);
4392 else
4393 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_DISABLED);
4394
4395 if (HAS_PCH_NOP(dev)) {
4396 u32 temp = I915_READ(GEN7_MSG_CTL);
4397 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4398 I915_WRITE(GEN7_MSG_CTL, temp);
4399 }
4400
4401 i915_gem_init_swizzling(dev);
4402
4403 ret = i915_gem_init_rings(dev);
4404 if (ret)
4405 return ret;
4406
4407 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4408 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4409
4410 /*
4411 * XXX: There was some w/a described somewhere suggesting loading
4412 * contexts before PPGTT.
4413 */
4414 i915_gem_context_init(dev);
4415 if (dev_priv->mm.aliasing_ppgtt) {
4416 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4417 if (ret) {
4418 i915_gem_cleanup_aliasing_ppgtt(dev);
4419 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4420 }
4421 }
4422
4423 return 0;
4424}
4425
4426int i915_gem_init(struct drm_device *dev)
4427{
4428 struct drm_i915_private *dev_priv = dev->dev_private;
4429 int ret;
4430
4431 mutex_lock(&dev->struct_mutex);
4432
4433 if (IS_VALLEYVIEW(dev)) {
4434 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4435 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4436 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4437 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4438 }
4439
4440 i915_gem_init_global_gtt(dev);
4441
4442 ret = i915_gem_init_hw(dev);
4443 mutex_unlock(&dev->struct_mutex);
4444 if (ret) {
4445 i915_gem_cleanup_aliasing_ppgtt(dev);
4446 return ret;
4447 }
4448
4449 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4450 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4451 dev_priv->dri1.allow_batchbuffer = 1;
4452 return 0;
4453}
4454
4455void
4456i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4457{
4458 drm_i915_private_t *dev_priv = dev->dev_private;
4459 struct intel_ring_buffer *ring;
4460 int i;
4461
4462 for_each_ring(ring, dev_priv, i)
4463 intel_cleanup_ring_buffer(ring);
4464}
4465
4466int
4467i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4468 struct drm_file *file_priv)
4469{
4470 struct drm_i915_private *dev_priv = dev->dev_private;
4471 int ret;
4472
4473 if (drm_core_check_feature(dev, DRIVER_MODESET))
4474 return 0;
4475
4476 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4477 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4478 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4479 }
4480
4481 mutex_lock(&dev->struct_mutex);
4482 dev_priv->ums.mm_suspended = 0;
4483
4484 ret = i915_gem_init_hw(dev);
4485 if (ret != 0) {
4486 mutex_unlock(&dev->struct_mutex);
4487 return ret;
4488 }
4489
4490 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4491 mutex_unlock(&dev->struct_mutex);
4492
4493 ret = drm_irq_install(dev);
4494 if (ret)
4495 goto cleanup_ringbuffer;
4496
4497 return 0;
4498
4499cleanup_ringbuffer:
4500 mutex_lock(&dev->struct_mutex);
4501 i915_gem_cleanup_ringbuffer(dev);
4502 dev_priv->ums.mm_suspended = 1;
4503 mutex_unlock(&dev->struct_mutex);
4504
4505 return ret;
4506}
4507
4508int
4509i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4510 struct drm_file *file_priv)
4511{
4512 struct drm_i915_private *dev_priv = dev->dev_private;
4513 int ret;
4514
4515 if (drm_core_check_feature(dev, DRIVER_MODESET))
4516 return 0;
4517
4518 drm_irq_uninstall(dev);
4519
4520 mutex_lock(&dev->struct_mutex);
4521 ret = i915_gem_idle(dev);
4522
4523 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4524 * We need to replace this with a semaphore, or something.
4525 * And not confound ums.mm_suspended!
4526 */
4527 if (ret != 0)
4528 dev_priv->ums.mm_suspended = 1;
4529 mutex_unlock(&dev->struct_mutex);
4530
4531 return ret;
4532}
4533
4534void
4535i915_gem_lastclose(struct drm_device *dev)
4536{
4537 int ret;
4538
4539 if (drm_core_check_feature(dev, DRIVER_MODESET))
4540 return;
4541
4542 mutex_lock(&dev->struct_mutex);
4543 ret = i915_gem_idle(dev);
4544 if (ret)
4545 DRM_ERROR("failed to idle hardware: %d\n", ret);
4546 mutex_unlock(&dev->struct_mutex);
4547}
4548
4549static void
4550init_ring_lists(struct intel_ring_buffer *ring)
4551{
4552 INIT_LIST_HEAD(&ring->active_list);
4553 INIT_LIST_HEAD(&ring->request_list);
4554}
4555
4556static void i915_init_vm(struct drm_i915_private *dev_priv,
4557 struct i915_address_space *vm)
4558{
4559 vm->dev = dev_priv->dev;
4560 INIT_LIST_HEAD(&vm->active_list);
4561 INIT_LIST_HEAD(&vm->inactive_list);
4562 INIT_LIST_HEAD(&vm->global_link);
4563 list_add(&vm->global_link, &dev_priv->vm_list);
4564}
4565
4566void
4567i915_gem_load(struct drm_device *dev)
4568{
4569 drm_i915_private_t *dev_priv = dev->dev_private;
4570 int i;
4571
4572 dev_priv->slab =
4573 kmem_cache_create("i915_gem_object",
4574 sizeof(struct drm_i915_gem_object), 0,
4575 SLAB_HWCACHE_ALIGN,
4576 NULL);
4577
4578 INIT_LIST_HEAD(&dev_priv->vm_list);
4579 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4580
4581 INIT_LIST_HEAD(&dev_priv->context_list);
4582 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4583 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4584 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4585 for (i = 0; i < I915_NUM_RINGS; i++)
4586 init_ring_lists(&dev_priv->ring[i]);
4587 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4588 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4589 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4590 i915_gem_retire_work_handler);
4591 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4592
4593 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4594 if (IS_GEN3(dev)) {
4595 I915_WRITE(MI_ARB_STATE,
4596 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4597 }
4598
4599 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4600
4601 /* Old X drivers will take 0-2 for front, back, depth buffers */
4602 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4603 dev_priv->fence_reg_start = 3;
4604
4605 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4606 dev_priv->num_fence_regs = 32;
4607 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4608 dev_priv->num_fence_regs = 16;
4609 else
4610 dev_priv->num_fence_regs = 8;
4611
4612 /* Initialize fence registers to zero */
4613 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4614 i915_gem_restore_fences(dev);
4615
4616 i915_gem_detect_bit_6_swizzle(dev);
4617 init_waitqueue_head(&dev_priv->pending_flip_queue);
4618
4619 dev_priv->mm.interruptible = true;
4620
4621 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4622 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4623 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4624 register_shrinker(&dev_priv->mm.inactive_shrinker);
4625}
4626
4627/*
4628 * Create a physically contiguous memory object for this object
4629 * e.g. for cursor + overlay regs
4630 */
4631static int i915_gem_init_phys_object(struct drm_device *dev,
4632 int id, int size, int align)
4633{
4634 drm_i915_private_t *dev_priv = dev->dev_private;
4635 struct drm_i915_gem_phys_object *phys_obj;
4636 int ret;
4637
4638 if (dev_priv->mm.phys_objs[id - 1] || !size)
4639 return 0;
4640
4641 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4642 if (!phys_obj)
4643 return -ENOMEM;
4644
4645 phys_obj->id = id;
4646
4647 phys_obj->handle = drm_pci_alloc(dev, size, align);
4648 if (!phys_obj->handle) {
4649 ret = -ENOMEM;
4650 goto kfree_obj;
4651 }
4652#ifdef CONFIG_X86
4653 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4654#endif
4655
4656 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4657
4658 return 0;
4659kfree_obj:
4660 kfree(phys_obj);
4661 return ret;
4662}
4663
4664static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4665{
4666 drm_i915_private_t *dev_priv = dev->dev_private;
4667 struct drm_i915_gem_phys_object *phys_obj;
4668
4669 if (!dev_priv->mm.phys_objs[id - 1])
4670 return;
4671
4672 phys_obj = dev_priv->mm.phys_objs[id - 1];
4673 if (phys_obj->cur_obj) {
4674 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4675 }
4676
4677#ifdef CONFIG_X86
4678 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4679#endif
4680 drm_pci_free(dev, phys_obj->handle);
4681 kfree(phys_obj);
4682 dev_priv->mm.phys_objs[id - 1] = NULL;
4683}
4684
4685void i915_gem_free_all_phys_object(struct drm_device *dev)
4686{
4687 int i;
4688
4689 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4690 i915_gem_free_phys_object(dev, i);
4691}
4692
4693void i915_gem_detach_phys_object(struct drm_device *dev,
4694 struct drm_i915_gem_object *obj)
4695{
4696 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4697 char *vaddr;
4698 int i;
4699 int page_count;
4700
4701 if (!obj->phys_obj)
4702 return;
4703 vaddr = obj->phys_obj->handle->vaddr;
4704
4705 page_count = obj->base.size / PAGE_SIZE;
4706 for (i = 0; i < page_count; i++) {
4707 struct page *page = shmem_read_mapping_page(mapping, i);
4708 if (!IS_ERR(page)) {
4709 char *dst = kmap_atomic(page);
4710 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4711 kunmap_atomic(dst);
4712
4713 drm_clflush_pages(&page, 1);
4714
4715 set_page_dirty(page);
4716 mark_page_accessed(page);
4717 page_cache_release(page);
4718 }
4719 }
4720 i915_gem_chipset_flush(dev);
4721
4722 obj->phys_obj->cur_obj = NULL;
4723 obj->phys_obj = NULL;
4724}
4725
4726int
4727i915_gem_attach_phys_object(struct drm_device *dev,
4728 struct drm_i915_gem_object *obj,
4729 int id,
4730 int align)
4731{
4732 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4733 drm_i915_private_t *dev_priv = dev->dev_private;
4734 int ret = 0;
4735 int page_count;
4736 int i;
4737
4738 if (id > I915_MAX_PHYS_OBJECT)
4739 return -EINVAL;
4740
4741 if (obj->phys_obj) {
4742 if (obj->phys_obj->id == id)
4743 return 0;
4744 i915_gem_detach_phys_object(dev, obj);
4745 }
4746
4747 /* create a new object */
4748 if (!dev_priv->mm.phys_objs[id - 1]) {
4749 ret = i915_gem_init_phys_object(dev, id,
4750 obj->base.size, align);
4751 if (ret) {
4752 DRM_ERROR("failed to init phys object %d size: %zu\n",
4753 id, obj->base.size);
4754 return ret;
4755 }
4756 }
4757
4758 /* bind to the object */
4759 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4760 obj->phys_obj->cur_obj = obj;
4761
4762 page_count = obj->base.size / PAGE_SIZE;
4763
4764 for (i = 0; i < page_count; i++) {
4765 struct page *page;
4766 char *dst, *src;
4767
4768 page = shmem_read_mapping_page(mapping, i);
4769 if (IS_ERR(page))
4770 return PTR_ERR(page);
4771
4772 src = kmap_atomic(page);
4773 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4774 memcpy(dst, src, PAGE_SIZE);
4775 kunmap_atomic(src);
4776
4777 mark_page_accessed(page);
4778 page_cache_release(page);
4779 }
4780
4781 return 0;
4782}
4783
4784static int
4785i915_gem_phys_pwrite(struct drm_device *dev,
4786 struct drm_i915_gem_object *obj,
4787 struct drm_i915_gem_pwrite *args,
4788 struct drm_file *file_priv)
4789{
4790 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4791 char __user *user_data = to_user_ptr(args->data_ptr);
4792
4793 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4794 unsigned long unwritten;
4795
4796 /* The physical object once assigned is fixed for the lifetime
4797 * of the obj, so we can safely drop the lock and continue
4798 * to access vaddr.
4799 */
4800 mutex_unlock(&dev->struct_mutex);
4801 unwritten = copy_from_user(vaddr, user_data, args->size);
4802 mutex_lock(&dev->struct_mutex);
4803 if (unwritten)
4804 return -EFAULT;
4805 }
4806
4807 i915_gem_chipset_flush(dev);
4808 return 0;
4809}
4810
4811void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4812{
4813 struct drm_i915_file_private *file_priv = file->driver_priv;
4814
4815 /* Clean up our request list when the client is going away, so that
4816 * later retire_requests won't dereference our soon-to-be-gone
4817 * file_priv.
4818 */
4819 spin_lock(&file_priv->mm.lock);
4820 while (!list_empty(&file_priv->mm.request_list)) {
4821 struct drm_i915_gem_request *request;
4822
4823 request = list_first_entry(&file_priv->mm.request_list,
4824 struct drm_i915_gem_request,
4825 client_list);
4826 list_del(&request->client_list);
4827 request->file_priv = NULL;
4828 }
4829 spin_unlock(&file_priv->mm.lock);
4830}
4831
4832static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4833{
4834 if (!mutex_is_locked(mutex))
4835 return false;
4836
4837#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4838 return mutex->owner == task;
4839#else
4840 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4841 return false;
4842#endif
4843}
4844
4845static unsigned long
4846i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4847{
4848 struct drm_i915_private *dev_priv =
4849 container_of(shrinker,
4850 struct drm_i915_private,
4851 mm.inactive_shrinker);
4852 struct drm_device *dev = dev_priv->dev;
4853 struct drm_i915_gem_object *obj;
4854 bool unlock = true;
4855 unsigned long count;
4856
4857 if (!mutex_trylock(&dev->struct_mutex)) {
4858 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4859 return 0;
4860
4861 if (dev_priv->mm.shrinker_no_lock_stealing)
4862 return 0;
4863
4864 unlock = false;
4865 }
4866
4867 count = 0;
4868 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4869 if (obj->pages_pin_count == 0)
4870 count += obj->base.size >> PAGE_SHIFT;
4871
4872 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4873 if (obj->active)
4874 continue;
4875
4876 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4877 count += obj->base.size >> PAGE_SHIFT;
4878 }
4879
4880 if (unlock)
4881 mutex_unlock(&dev->struct_mutex);
4882 return count;
4883}
4884
4885/* All the new VM stuff */
4886unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4887 struct i915_address_space *vm)
4888{
4889 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4890 struct i915_vma *vma;
4891
4892 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4893 vm = &dev_priv->gtt.base;
4894
4895 BUG_ON(list_empty(&o->vma_list));
4896 list_for_each_entry(vma, &o->vma_list, vma_link) {
4897 if (vma->vm == vm)
4898 return vma->node.start;
4899
4900 }
4901 return -1;
4902}
4903
4904bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4905 struct i915_address_space *vm)
4906{
4907 struct i915_vma *vma;
4908
4909 list_for_each_entry(vma, &o->vma_list, vma_link)
4910 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4911 return true;
4912
4913 return false;
4914}
4915
4916bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4917{
4918 struct i915_vma *vma;
4919
4920 list_for_each_entry(vma, &o->vma_list, vma_link)
4921 if (drm_mm_node_allocated(&vma->node))
4922 return true;
4923
4924 return false;
4925}
4926
4927unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4928 struct i915_address_space *vm)
4929{
4930 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4931 struct i915_vma *vma;
4932
4933 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4934 vm = &dev_priv->gtt.base;
4935
4936 BUG_ON(list_empty(&o->vma_list));
4937
4938 list_for_each_entry(vma, &o->vma_list, vma_link)
4939 if (vma->vm == vm)
4940 return vma->node.size;
4941
4942 return 0;
4943}
4944
4945static unsigned long
4946i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
4947{
4948 struct drm_i915_private *dev_priv =
4949 container_of(shrinker,
4950 struct drm_i915_private,
4951 mm.inactive_shrinker);
4952 struct drm_device *dev = dev_priv->dev;
4953 int nr_to_scan = sc->nr_to_scan;
4954 unsigned long freed;
4955 bool unlock = true;
4956
4957 if (!mutex_trylock(&dev->struct_mutex)) {
4958 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4959 return SHRINK_STOP;
4960
4961 if (dev_priv->mm.shrinker_no_lock_stealing)
4962 return SHRINK_STOP;
4963
4964 unlock = false;
4965 }
4966
4967 freed = i915_gem_purge(dev_priv, nr_to_scan);
4968 if (freed < nr_to_scan)
4969 freed += __i915_gem_shrink(dev_priv, nr_to_scan,
4970 false);
4971 if (freed < nr_to_scan)
4972 freed += i915_gem_shrink_all(dev_priv);
4973
4974 if (unlock)
4975 mutex_unlock(&dev->struct_mutex);
4976 return freed;
4977}