]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Always wake the device to flush the GTT
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
... / ...
CommitLineData
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/drmP.h>
29#include <drm/drm_vma_manager.h>
30#include <drm/i915_drm.h>
31#include "i915_drv.h"
32#include "i915_gem_clflush.h"
33#include "i915_vgpu.h"
34#include "i915_trace.h"
35#include "intel_drv.h"
36#include "intel_frontbuffer.h"
37#include "intel_mocs.h"
38#include <linux/dma-fence-array.h>
39#include <linux/kthread.h>
40#include <linux/reservation.h>
41#include <linux/shmem_fs.h>
42#include <linux/slab.h>
43#include <linux/stop_machine.h>
44#include <linux/swap.h>
45#include <linux/pci.h>
46#include <linux/dma-buf.h>
47
48static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
50static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51{
52 if (obj->cache_dirty)
53 return false;
54
55 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
56 return true;
57
58 return obj->pin_display;
59}
60
61static int
62insert_mappable_node(struct i915_ggtt *ggtt,
63 struct drm_mm_node *node, u32 size)
64{
65 memset(node, 0, sizeof(*node));
66 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67 size, 0, I915_COLOR_UNEVICTABLE,
68 0, ggtt->mappable_end,
69 DRM_MM_INSERT_LOW);
70}
71
72static void
73remove_mappable_node(struct drm_mm_node *node)
74{
75 drm_mm_remove_node(node);
76}
77
78/* some bookkeeping */
79static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80 u64 size)
81{
82 spin_lock(&dev_priv->mm.object_stat_lock);
83 dev_priv->mm.object_count++;
84 dev_priv->mm.object_memory += size;
85 spin_unlock(&dev_priv->mm.object_stat_lock);
86}
87
88static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89 u64 size)
90{
91 spin_lock(&dev_priv->mm.object_stat_lock);
92 dev_priv->mm.object_count--;
93 dev_priv->mm.object_memory -= size;
94 spin_unlock(&dev_priv->mm.object_stat_lock);
95}
96
97static int
98i915_gem_wait_for_error(struct i915_gpu_error *error)
99{
100 int ret;
101
102 might_sleep();
103
104 /*
105 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106 * userspace. If it takes that long something really bad is going on and
107 * we should simply try to bail out and fail as gracefully as possible.
108 */
109 ret = wait_event_interruptible_timeout(error->reset_queue,
110 !i915_reset_backoff(error),
111 I915_RESET_TIMEOUT);
112 if (ret == 0) {
113 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114 return -EIO;
115 } else if (ret < 0) {
116 return ret;
117 } else {
118 return 0;
119 }
120}
121
122int i915_mutex_lock_interruptible(struct drm_device *dev)
123{
124 struct drm_i915_private *dev_priv = to_i915(dev);
125 int ret;
126
127 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 if (ret)
129 return ret;
130
131 ret = mutex_lock_interruptible(&dev->struct_mutex);
132 if (ret)
133 return ret;
134
135 return 0;
136}
137
138int
139i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140 struct drm_file *file)
141{
142 struct drm_i915_private *dev_priv = to_i915(dev);
143 struct i915_ggtt *ggtt = &dev_priv->ggtt;
144 struct drm_i915_gem_get_aperture *args = data;
145 struct i915_vma *vma;
146 u64 pinned;
147
148 pinned = ggtt->base.reserved;
149 mutex_lock(&dev->struct_mutex);
150 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151 if (i915_vma_is_pinned(vma))
152 pinned += vma->node.size;
153 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154 if (i915_vma_is_pinned(vma))
155 pinned += vma->node.size;
156 mutex_unlock(&dev->struct_mutex);
157
158 args->aper_size = ggtt->base.total;
159 args->aper_available_size = args->aper_size - pinned;
160
161 return 0;
162}
163
164static struct sg_table *
165i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166{
167 struct address_space *mapping = obj->base.filp->f_mapping;
168 drm_dma_handle_t *phys;
169 struct sg_table *st;
170 struct scatterlist *sg;
171 char *vaddr;
172 int i;
173
174 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175 return ERR_PTR(-EINVAL);
176
177 /* Always aligning to the object size, allows a single allocation
178 * to handle all possible callers, and given typical object sizes,
179 * the alignment of the buddy allocation will naturally match.
180 */
181 phys = drm_pci_alloc(obj->base.dev,
182 obj->base.size,
183 roundup_pow_of_two(obj->base.size));
184 if (!phys)
185 return ERR_PTR(-ENOMEM);
186
187 vaddr = phys->vaddr;
188 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189 struct page *page;
190 char *src;
191
192 page = shmem_read_mapping_page(mapping, i);
193 if (IS_ERR(page)) {
194 st = ERR_CAST(page);
195 goto err_phys;
196 }
197
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 kunmap_atomic(src);
202
203 put_page(page);
204 vaddr += PAGE_SIZE;
205 }
206
207 i915_gem_chipset_flush(to_i915(obj->base.dev));
208
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
210 if (!st) {
211 st = ERR_PTR(-ENOMEM);
212 goto err_phys;
213 }
214
215 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216 kfree(st);
217 st = ERR_PTR(-ENOMEM);
218 goto err_phys;
219 }
220
221 sg = st->sgl;
222 sg->offset = 0;
223 sg->length = obj->base.size;
224
225 sg_dma_address(sg) = phys->busaddr;
226 sg_dma_len(sg) = obj->base.size;
227
228 obj->phys_handle = phys;
229 return st;
230
231err_phys:
232 drm_pci_free(obj->base.dev, phys);
233 return st;
234}
235
236static void __start_cpu_write(struct drm_i915_gem_object *obj)
237{
238 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240 if (cpu_write_needs_clflush(obj))
241 obj->cache_dirty = true;
242}
243
244static void
245__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 struct sg_table *pages,
247 bool needs_clflush)
248{
249 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250
251 if (obj->mm.madv == I915_MADV_DONTNEED)
252 obj->mm.dirty = false;
253
254 if (needs_clflush &&
255 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257 drm_clflush_sg(pages);
258
259 __start_cpu_write(obj);
260}
261
262static void
263i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264 struct sg_table *pages)
265{
266 __i915_gem_object_release_shmem(obj, pages, false);
267
268 if (obj->mm.dirty) {
269 struct address_space *mapping = obj->base.filp->f_mapping;
270 char *vaddr = obj->phys_handle->vaddr;
271 int i;
272
273 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 struct page *page;
275 char *dst;
276
277 page = shmem_read_mapping_page(mapping, i);
278 if (IS_ERR(page))
279 continue;
280
281 dst = kmap_atomic(page);
282 drm_clflush_virt_range(vaddr, PAGE_SIZE);
283 memcpy(dst, vaddr, PAGE_SIZE);
284 kunmap_atomic(dst);
285
286 set_page_dirty(page);
287 if (obj->mm.madv == I915_MADV_WILLNEED)
288 mark_page_accessed(page);
289 put_page(page);
290 vaddr += PAGE_SIZE;
291 }
292 obj->mm.dirty = false;
293 }
294
295 sg_free_table(pages);
296 kfree(pages);
297
298 drm_pci_free(obj->base.dev, obj->phys_handle);
299}
300
301static void
302i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303{
304 i915_gem_object_unpin_pages(obj);
305}
306
307static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308 .get_pages = i915_gem_object_get_pages_phys,
309 .put_pages = i915_gem_object_put_pages_phys,
310 .release = i915_gem_object_release_phys,
311};
312
313static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314
315int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316{
317 struct i915_vma *vma;
318 LIST_HEAD(still_in_list);
319 int ret;
320
321 lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323 /* Closed vma are removed from the obj->vma_list - but they may
324 * still have an active binding on the object. To remove those we
325 * must wait for all rendering to complete to the object (as unbinding
326 * must anyway), and retire the requests.
327 */
328 ret = i915_gem_object_wait(obj,
329 I915_WAIT_INTERRUPTIBLE |
330 I915_WAIT_LOCKED |
331 I915_WAIT_ALL,
332 MAX_SCHEDULE_TIMEOUT,
333 NULL);
334 if (ret)
335 return ret;
336
337 i915_gem_retire_requests(to_i915(obj->base.dev));
338
339 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 struct i915_vma,
341 obj_link))) {
342 list_move_tail(&vma->obj_link, &still_in_list);
343 ret = i915_vma_unbind(vma);
344 if (ret)
345 break;
346 }
347 list_splice(&still_in_list, &obj->vma_list);
348
349 return ret;
350}
351
352static long
353i915_gem_object_wait_fence(struct dma_fence *fence,
354 unsigned int flags,
355 long timeout,
356 struct intel_rps_client *rps)
357{
358 struct drm_i915_gem_request *rq;
359
360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 return timeout;
364
365 if (!dma_fence_is_i915(fence))
366 return dma_fence_wait_timeout(fence,
367 flags & I915_WAIT_INTERRUPTIBLE,
368 timeout);
369
370 rq = to_request(fence);
371 if (i915_gem_request_completed(rq))
372 goto out;
373
374 /* This client is about to stall waiting for the GPU. In many cases
375 * this is undesirable and limits the throughput of the system, as
376 * many clients cannot continue processing user input/output whilst
377 * blocked. RPS autotuning may take tens of milliseconds to respond
378 * to the GPU load and thus incurs additional latency for the client.
379 * We can circumvent that by promoting the GPU frequency to maximum
380 * before we wait. This makes the GPU throttle up much more quickly
381 * (good for benchmarks and user experience, e.g. window animations),
382 * but at a cost of spending more power processing the workload
383 * (bad for battery). Not all clients even want their results
384 * immediately and for them we should just let the GPU select its own
385 * frequency to maximise efficiency. To prevent a single client from
386 * forcing the clocks too high for the whole system, we only allow
387 * each client to waitboost once in a busy period.
388 */
389 if (rps) {
390 if (INTEL_GEN(rq->i915) >= 6)
391 gen6_rps_boost(rq, rps);
392 else
393 rps = NULL;
394 }
395
396 timeout = i915_wait_request(rq, flags, timeout);
397
398out:
399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 i915_gem_request_retire_upto(rq);
401
402 return timeout;
403}
404
405static long
406i915_gem_object_wait_reservation(struct reservation_object *resv,
407 unsigned int flags,
408 long timeout,
409 struct intel_rps_client *rps)
410{
411 unsigned int seq = __read_seqcount_begin(&resv->seq);
412 struct dma_fence *excl;
413 bool prune_fences = false;
414
415 if (flags & I915_WAIT_ALL) {
416 struct dma_fence **shared;
417 unsigned int count, i;
418 int ret;
419
420 ret = reservation_object_get_fences_rcu(resv,
421 &excl, &count, &shared);
422 if (ret)
423 return ret;
424
425 for (i = 0; i < count; i++) {
426 timeout = i915_gem_object_wait_fence(shared[i],
427 flags, timeout,
428 rps);
429 if (timeout < 0)
430 break;
431
432 dma_fence_put(shared[i]);
433 }
434
435 for (; i < count; i++)
436 dma_fence_put(shared[i]);
437 kfree(shared);
438
439 prune_fences = count && timeout >= 0;
440 } else {
441 excl = reservation_object_get_excl_rcu(resv);
442 }
443
444 if (excl && timeout >= 0) {
445 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446 prune_fences = timeout >= 0;
447 }
448
449 dma_fence_put(excl);
450
451 /* Oportunistically prune the fences iff we know they have *all* been
452 * signaled and that the reservation object has not been changed (i.e.
453 * no new fences have been added).
454 */
455 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456 if (reservation_object_trylock(resv)) {
457 if (!__read_seqcount_retry(&resv->seq, seq))
458 reservation_object_add_excl_fence(resv, NULL);
459 reservation_object_unlock(resv);
460 }
461 }
462
463 return timeout;
464}
465
466static void __fence_set_priority(struct dma_fence *fence, int prio)
467{
468 struct drm_i915_gem_request *rq;
469 struct intel_engine_cs *engine;
470
471 if (!dma_fence_is_i915(fence))
472 return;
473
474 rq = to_request(fence);
475 engine = rq->engine;
476 if (!engine->schedule)
477 return;
478
479 engine->schedule(rq, prio);
480}
481
482static void fence_set_priority(struct dma_fence *fence, int prio)
483{
484 /* Recurse once into a fence-array */
485 if (dma_fence_is_array(fence)) {
486 struct dma_fence_array *array = to_dma_fence_array(fence);
487 int i;
488
489 for (i = 0; i < array->num_fences; i++)
490 __fence_set_priority(array->fences[i], prio);
491 } else {
492 __fence_set_priority(fence, prio);
493 }
494}
495
496int
497i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
498 unsigned int flags,
499 int prio)
500{
501 struct dma_fence *excl;
502
503 if (flags & I915_WAIT_ALL) {
504 struct dma_fence **shared;
505 unsigned int count, i;
506 int ret;
507
508 ret = reservation_object_get_fences_rcu(obj->resv,
509 &excl, &count, &shared);
510 if (ret)
511 return ret;
512
513 for (i = 0; i < count; i++) {
514 fence_set_priority(shared[i], prio);
515 dma_fence_put(shared[i]);
516 }
517
518 kfree(shared);
519 } else {
520 excl = reservation_object_get_excl_rcu(obj->resv);
521 }
522
523 if (excl) {
524 fence_set_priority(excl, prio);
525 dma_fence_put(excl);
526 }
527 return 0;
528}
529
530/**
531 * Waits for rendering to the object to be completed
532 * @obj: i915 gem object
533 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
534 * @timeout: how long to wait
535 * @rps: client (user process) to charge for any waitboosting
536 */
537int
538i915_gem_object_wait(struct drm_i915_gem_object *obj,
539 unsigned int flags,
540 long timeout,
541 struct intel_rps_client *rps)
542{
543 might_sleep();
544#if IS_ENABLED(CONFIG_LOCKDEP)
545 GEM_BUG_ON(debug_locks &&
546 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
547 !!(flags & I915_WAIT_LOCKED));
548#endif
549 GEM_BUG_ON(timeout < 0);
550
551 timeout = i915_gem_object_wait_reservation(obj->resv,
552 flags, timeout,
553 rps);
554 return timeout < 0 ? timeout : 0;
555}
556
557static struct intel_rps_client *to_rps_client(struct drm_file *file)
558{
559 struct drm_i915_file_private *fpriv = file->driver_priv;
560
561 return &fpriv->rps;
562}
563
564static int
565i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
566 struct drm_i915_gem_pwrite *args,
567 struct drm_file *file)
568{
569 void *vaddr = obj->phys_handle->vaddr + args->offset;
570 char __user *user_data = u64_to_user_ptr(args->data_ptr);
571
572 /* We manually control the domain here and pretend that it
573 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
574 */
575 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
576 if (copy_from_user(vaddr, user_data, args->size))
577 return -EFAULT;
578
579 drm_clflush_virt_range(vaddr, args->size);
580 i915_gem_chipset_flush(to_i915(obj->base.dev));
581
582 intel_fb_obj_flush(obj, ORIGIN_CPU);
583 return 0;
584}
585
586void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
587{
588 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
589}
590
591void i915_gem_object_free(struct drm_i915_gem_object *obj)
592{
593 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
594 kmem_cache_free(dev_priv->objects, obj);
595}
596
597static int
598i915_gem_create(struct drm_file *file,
599 struct drm_i915_private *dev_priv,
600 uint64_t size,
601 uint32_t *handle_p)
602{
603 struct drm_i915_gem_object *obj;
604 int ret;
605 u32 handle;
606
607 size = roundup(size, PAGE_SIZE);
608 if (size == 0)
609 return -EINVAL;
610
611 /* Allocate the new object */
612 obj = i915_gem_object_create(dev_priv, size);
613 if (IS_ERR(obj))
614 return PTR_ERR(obj);
615
616 ret = drm_gem_handle_create(file, &obj->base, &handle);
617 /* drop reference from allocate - handle holds it now */
618 i915_gem_object_put(obj);
619 if (ret)
620 return ret;
621
622 *handle_p = handle;
623 return 0;
624}
625
626int
627i915_gem_dumb_create(struct drm_file *file,
628 struct drm_device *dev,
629 struct drm_mode_create_dumb *args)
630{
631 /* have to work out size/pitch and return them */
632 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
633 args->size = args->pitch * args->height;
634 return i915_gem_create(file, to_i915(dev),
635 args->size, &args->handle);
636}
637
638static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
639{
640 return !(obj->cache_level == I915_CACHE_NONE ||
641 obj->cache_level == I915_CACHE_WT);
642}
643
644/**
645 * Creates a new mm object and returns a handle to it.
646 * @dev: drm device pointer
647 * @data: ioctl data blob
648 * @file: drm file pointer
649 */
650int
651i915_gem_create_ioctl(struct drm_device *dev, void *data,
652 struct drm_file *file)
653{
654 struct drm_i915_private *dev_priv = to_i915(dev);
655 struct drm_i915_gem_create *args = data;
656
657 i915_gem_flush_free_objects(dev_priv);
658
659 return i915_gem_create(file, dev_priv,
660 args->size, &args->handle);
661}
662
663static inline enum fb_op_origin
664fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
665{
666 return (domain == I915_GEM_DOMAIN_GTT ?
667 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
668}
669
670static void
671flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
672{
673 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
674
675 if (!(obj->base.write_domain & flush_domains))
676 return;
677
678 /* No actual flushing is required for the GTT write domain. Writes
679 * to it "immediately" go to main memory as far as we know, so there's
680 * no chipset flush. It also doesn't land in render cache.
681 *
682 * However, we do have to enforce the order so that all writes through
683 * the GTT land before any writes to the device, such as updates to
684 * the GATT itself.
685 *
686 * We also have to wait a bit for the writes to land from the GTT.
687 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
688 * timing. This issue has only been observed when switching quickly
689 * between GTT writes and CPU reads from inside the kernel on recent hw,
690 * and it appears to only affect discrete GTT blocks (i.e. on LLC
691 * system agents we cannot reproduce this behaviour).
692 */
693 wmb();
694
695 switch (obj->base.write_domain) {
696 case I915_GEM_DOMAIN_GTT:
697 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
698 intel_runtime_pm_get(dev_priv);
699 spin_lock_irq(&dev_priv->uncore.lock);
700 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
701 spin_unlock_irq(&dev_priv->uncore.lock);
702 intel_runtime_pm_put(dev_priv);
703 }
704
705 intel_fb_obj_flush(obj,
706 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
707 break;
708
709 case I915_GEM_DOMAIN_CPU:
710 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
711 break;
712
713 case I915_GEM_DOMAIN_RENDER:
714 if (gpu_write_needs_clflush(obj))
715 obj->cache_dirty = true;
716 break;
717 }
718
719 obj->base.write_domain = 0;
720}
721
722static inline int
723__copy_to_user_swizzled(char __user *cpu_vaddr,
724 const char *gpu_vaddr, int gpu_offset,
725 int length)
726{
727 int ret, cpu_offset = 0;
728
729 while (length > 0) {
730 int cacheline_end = ALIGN(gpu_offset + 1, 64);
731 int this_length = min(cacheline_end - gpu_offset, length);
732 int swizzled_gpu_offset = gpu_offset ^ 64;
733
734 ret = __copy_to_user(cpu_vaddr + cpu_offset,
735 gpu_vaddr + swizzled_gpu_offset,
736 this_length);
737 if (ret)
738 return ret + length;
739
740 cpu_offset += this_length;
741 gpu_offset += this_length;
742 length -= this_length;
743 }
744
745 return 0;
746}
747
748static inline int
749__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
750 const char __user *cpu_vaddr,
751 int length)
752{
753 int ret, cpu_offset = 0;
754
755 while (length > 0) {
756 int cacheline_end = ALIGN(gpu_offset + 1, 64);
757 int this_length = min(cacheline_end - gpu_offset, length);
758 int swizzled_gpu_offset = gpu_offset ^ 64;
759
760 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
761 cpu_vaddr + cpu_offset,
762 this_length);
763 if (ret)
764 return ret + length;
765
766 cpu_offset += this_length;
767 gpu_offset += this_length;
768 length -= this_length;
769 }
770
771 return 0;
772}
773
774/*
775 * Pins the specified object's pages and synchronizes the object with
776 * GPU accesses. Sets needs_clflush to non-zero if the caller should
777 * flush the object from the CPU cache.
778 */
779int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
780 unsigned int *needs_clflush)
781{
782 int ret;
783
784 lockdep_assert_held(&obj->base.dev->struct_mutex);
785
786 *needs_clflush = 0;
787 if (!i915_gem_object_has_struct_page(obj))
788 return -ENODEV;
789
790 ret = i915_gem_object_wait(obj,
791 I915_WAIT_INTERRUPTIBLE |
792 I915_WAIT_LOCKED,
793 MAX_SCHEDULE_TIMEOUT,
794 NULL);
795 if (ret)
796 return ret;
797
798 ret = i915_gem_object_pin_pages(obj);
799 if (ret)
800 return ret;
801
802 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
803 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804 ret = i915_gem_object_set_to_cpu_domain(obj, false);
805 if (ret)
806 goto err_unpin;
807 else
808 goto out;
809 }
810
811 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
812
813 /* If we're not in the cpu read domain, set ourself into the gtt
814 * read domain and manually flush cachelines (if required). This
815 * optimizes for the case when the gpu will dirty the data
816 * anyway again before the next pread happens.
817 */
818 if (!obj->cache_dirty &&
819 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
820 *needs_clflush = CLFLUSH_BEFORE;
821
822out:
823 /* return with the pages pinned */
824 return 0;
825
826err_unpin:
827 i915_gem_object_unpin_pages(obj);
828 return ret;
829}
830
831int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
832 unsigned int *needs_clflush)
833{
834 int ret;
835
836 lockdep_assert_held(&obj->base.dev->struct_mutex);
837
838 *needs_clflush = 0;
839 if (!i915_gem_object_has_struct_page(obj))
840 return -ENODEV;
841
842 ret = i915_gem_object_wait(obj,
843 I915_WAIT_INTERRUPTIBLE |
844 I915_WAIT_LOCKED |
845 I915_WAIT_ALL,
846 MAX_SCHEDULE_TIMEOUT,
847 NULL);
848 if (ret)
849 return ret;
850
851 ret = i915_gem_object_pin_pages(obj);
852 if (ret)
853 return ret;
854
855 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
856 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
857 ret = i915_gem_object_set_to_cpu_domain(obj, true);
858 if (ret)
859 goto err_unpin;
860 else
861 goto out;
862 }
863
864 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
865
866 /* If we're not in the cpu write domain, set ourself into the
867 * gtt write domain and manually flush cachelines (as required).
868 * This optimizes for the case when the gpu will use the data
869 * right away and we therefore have to clflush anyway.
870 */
871 if (!obj->cache_dirty) {
872 *needs_clflush |= CLFLUSH_AFTER;
873
874 /*
875 * Same trick applies to invalidate partially written
876 * cachelines read before writing.
877 */
878 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
879 *needs_clflush |= CLFLUSH_BEFORE;
880 }
881
882out:
883 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
884 obj->mm.dirty = true;
885 /* return with the pages pinned */
886 return 0;
887
888err_unpin:
889 i915_gem_object_unpin_pages(obj);
890 return ret;
891}
892
893static void
894shmem_clflush_swizzled_range(char *addr, unsigned long length,
895 bool swizzled)
896{
897 if (unlikely(swizzled)) {
898 unsigned long start = (unsigned long) addr;
899 unsigned long end = (unsigned long) addr + length;
900
901 /* For swizzling simply ensure that we always flush both
902 * channels. Lame, but simple and it works. Swizzled
903 * pwrite/pread is far from a hotpath - current userspace
904 * doesn't use it at all. */
905 start = round_down(start, 128);
906 end = round_up(end, 128);
907
908 drm_clflush_virt_range((void *)start, end - start);
909 } else {
910 drm_clflush_virt_range(addr, length);
911 }
912
913}
914
915/* Only difference to the fast-path function is that this can handle bit17
916 * and uses non-atomic copy and kmap functions. */
917static int
918shmem_pread_slow(struct page *page, int offset, int length,
919 char __user *user_data,
920 bool page_do_bit17_swizzling, bool needs_clflush)
921{
922 char *vaddr;
923 int ret;
924
925 vaddr = kmap(page);
926 if (needs_clflush)
927 shmem_clflush_swizzled_range(vaddr + offset, length,
928 page_do_bit17_swizzling);
929
930 if (page_do_bit17_swizzling)
931 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
932 else
933 ret = __copy_to_user(user_data, vaddr + offset, length);
934 kunmap(page);
935
936 return ret ? - EFAULT : 0;
937}
938
939static int
940shmem_pread(struct page *page, int offset, int length, char __user *user_data,
941 bool page_do_bit17_swizzling, bool needs_clflush)
942{
943 int ret;
944
945 ret = -ENODEV;
946 if (!page_do_bit17_swizzling) {
947 char *vaddr = kmap_atomic(page);
948
949 if (needs_clflush)
950 drm_clflush_virt_range(vaddr + offset, length);
951 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
952 kunmap_atomic(vaddr);
953 }
954 if (ret == 0)
955 return 0;
956
957 return shmem_pread_slow(page, offset, length, user_data,
958 page_do_bit17_swizzling, needs_clflush);
959}
960
961static int
962i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
963 struct drm_i915_gem_pread *args)
964{
965 char __user *user_data;
966 u64 remain;
967 unsigned int obj_do_bit17_swizzling;
968 unsigned int needs_clflush;
969 unsigned int idx, offset;
970 int ret;
971
972 obj_do_bit17_swizzling = 0;
973 if (i915_gem_object_needs_bit17_swizzle(obj))
974 obj_do_bit17_swizzling = BIT(17);
975
976 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
977 if (ret)
978 return ret;
979
980 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
981 mutex_unlock(&obj->base.dev->struct_mutex);
982 if (ret)
983 return ret;
984
985 remain = args->size;
986 user_data = u64_to_user_ptr(args->data_ptr);
987 offset = offset_in_page(args->offset);
988 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
989 struct page *page = i915_gem_object_get_page(obj, idx);
990 int length;
991
992 length = remain;
993 if (offset + length > PAGE_SIZE)
994 length = PAGE_SIZE - offset;
995
996 ret = shmem_pread(page, offset, length, user_data,
997 page_to_phys(page) & obj_do_bit17_swizzling,
998 needs_clflush);
999 if (ret)
1000 break;
1001
1002 remain -= length;
1003 user_data += length;
1004 offset = 0;
1005 }
1006
1007 i915_gem_obj_finish_shmem_access(obj);
1008 return ret;
1009}
1010
1011static inline bool
1012gtt_user_read(struct io_mapping *mapping,
1013 loff_t base, int offset,
1014 char __user *user_data, int length)
1015{
1016 void *vaddr;
1017 unsigned long unwritten;
1018
1019 /* We can use the cpu mem copy function because this is X86. */
1020 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1021 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1022 io_mapping_unmap_atomic(vaddr);
1023 if (unwritten) {
1024 vaddr = (void __force *)
1025 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1026 unwritten = copy_to_user(user_data, vaddr + offset, length);
1027 io_mapping_unmap(vaddr);
1028 }
1029 return unwritten;
1030}
1031
1032static int
1033i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1034 const struct drm_i915_gem_pread *args)
1035{
1036 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1037 struct i915_ggtt *ggtt = &i915->ggtt;
1038 struct drm_mm_node node;
1039 struct i915_vma *vma;
1040 void __user *user_data;
1041 u64 remain, offset;
1042 int ret;
1043
1044 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1045 if (ret)
1046 return ret;
1047
1048 intel_runtime_pm_get(i915);
1049 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1050 PIN_MAPPABLE | PIN_NONBLOCK);
1051 if (!IS_ERR(vma)) {
1052 node.start = i915_ggtt_offset(vma);
1053 node.allocated = false;
1054 ret = i915_vma_put_fence(vma);
1055 if (ret) {
1056 i915_vma_unpin(vma);
1057 vma = ERR_PTR(ret);
1058 }
1059 }
1060 if (IS_ERR(vma)) {
1061 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1062 if (ret)
1063 goto out_unlock;
1064 GEM_BUG_ON(!node.allocated);
1065 }
1066
1067 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1068 if (ret)
1069 goto out_unpin;
1070
1071 mutex_unlock(&i915->drm.struct_mutex);
1072
1073 user_data = u64_to_user_ptr(args->data_ptr);
1074 remain = args->size;
1075 offset = args->offset;
1076
1077 while (remain > 0) {
1078 /* Operation in this page
1079 *
1080 * page_base = page offset within aperture
1081 * page_offset = offset within page
1082 * page_length = bytes to copy for this page
1083 */
1084 u32 page_base = node.start;
1085 unsigned page_offset = offset_in_page(offset);
1086 unsigned page_length = PAGE_SIZE - page_offset;
1087 page_length = remain < page_length ? remain : page_length;
1088 if (node.allocated) {
1089 wmb();
1090 ggtt->base.insert_page(&ggtt->base,
1091 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1092 node.start, I915_CACHE_NONE, 0);
1093 wmb();
1094 } else {
1095 page_base += offset & PAGE_MASK;
1096 }
1097
1098 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1099 user_data, page_length)) {
1100 ret = -EFAULT;
1101 break;
1102 }
1103
1104 remain -= page_length;
1105 user_data += page_length;
1106 offset += page_length;
1107 }
1108
1109 mutex_lock(&i915->drm.struct_mutex);
1110out_unpin:
1111 if (node.allocated) {
1112 wmb();
1113 ggtt->base.clear_range(&ggtt->base,
1114 node.start, node.size);
1115 remove_mappable_node(&node);
1116 } else {
1117 i915_vma_unpin(vma);
1118 }
1119out_unlock:
1120 intel_runtime_pm_put(i915);
1121 mutex_unlock(&i915->drm.struct_mutex);
1122
1123 return ret;
1124}
1125
1126/**
1127 * Reads data from the object referenced by handle.
1128 * @dev: drm device pointer
1129 * @data: ioctl data blob
1130 * @file: drm file pointer
1131 *
1132 * On error, the contents of *data are undefined.
1133 */
1134int
1135i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1136 struct drm_file *file)
1137{
1138 struct drm_i915_gem_pread *args = data;
1139 struct drm_i915_gem_object *obj;
1140 int ret;
1141
1142 if (args->size == 0)
1143 return 0;
1144
1145 if (!access_ok(VERIFY_WRITE,
1146 u64_to_user_ptr(args->data_ptr),
1147 args->size))
1148 return -EFAULT;
1149
1150 obj = i915_gem_object_lookup(file, args->handle);
1151 if (!obj)
1152 return -ENOENT;
1153
1154 /* Bounds check source. */
1155 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1156 ret = -EINVAL;
1157 goto out;
1158 }
1159
1160 trace_i915_gem_object_pread(obj, args->offset, args->size);
1161
1162 ret = i915_gem_object_wait(obj,
1163 I915_WAIT_INTERRUPTIBLE,
1164 MAX_SCHEDULE_TIMEOUT,
1165 to_rps_client(file));
1166 if (ret)
1167 goto out;
1168
1169 ret = i915_gem_object_pin_pages(obj);
1170 if (ret)
1171 goto out;
1172
1173 ret = i915_gem_shmem_pread(obj, args);
1174 if (ret == -EFAULT || ret == -ENODEV)
1175 ret = i915_gem_gtt_pread(obj, args);
1176
1177 i915_gem_object_unpin_pages(obj);
1178out:
1179 i915_gem_object_put(obj);
1180 return ret;
1181}
1182
1183/* This is the fast write path which cannot handle
1184 * page faults in the source data
1185 */
1186
1187static inline bool
1188ggtt_write(struct io_mapping *mapping,
1189 loff_t base, int offset,
1190 char __user *user_data, int length)
1191{
1192 void *vaddr;
1193 unsigned long unwritten;
1194
1195 /* We can use the cpu mem copy function because this is X86. */
1196 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1197 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1198 user_data, length);
1199 io_mapping_unmap_atomic(vaddr);
1200 if (unwritten) {
1201 vaddr = (void __force *)
1202 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1203 unwritten = copy_from_user(vaddr + offset, user_data, length);
1204 io_mapping_unmap(vaddr);
1205 }
1206
1207 return unwritten;
1208}
1209
1210/**
1211 * This is the fast pwrite path, where we copy the data directly from the
1212 * user into the GTT, uncached.
1213 * @obj: i915 GEM object
1214 * @args: pwrite arguments structure
1215 */
1216static int
1217i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1218 const struct drm_i915_gem_pwrite *args)
1219{
1220 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1221 struct i915_ggtt *ggtt = &i915->ggtt;
1222 struct drm_mm_node node;
1223 struct i915_vma *vma;
1224 u64 remain, offset;
1225 void __user *user_data;
1226 int ret;
1227
1228 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1229 if (ret)
1230 return ret;
1231
1232 intel_runtime_pm_get(i915);
1233 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1234 PIN_MAPPABLE | PIN_NONBLOCK);
1235 if (!IS_ERR(vma)) {
1236 node.start = i915_ggtt_offset(vma);
1237 node.allocated = false;
1238 ret = i915_vma_put_fence(vma);
1239 if (ret) {
1240 i915_vma_unpin(vma);
1241 vma = ERR_PTR(ret);
1242 }
1243 }
1244 if (IS_ERR(vma)) {
1245 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1246 if (ret)
1247 goto out_unlock;
1248 GEM_BUG_ON(!node.allocated);
1249 }
1250
1251 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1252 if (ret)
1253 goto out_unpin;
1254
1255 mutex_unlock(&i915->drm.struct_mutex);
1256
1257 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1258
1259 user_data = u64_to_user_ptr(args->data_ptr);
1260 offset = args->offset;
1261 remain = args->size;
1262 while (remain) {
1263 /* Operation in this page
1264 *
1265 * page_base = page offset within aperture
1266 * page_offset = offset within page
1267 * page_length = bytes to copy for this page
1268 */
1269 u32 page_base = node.start;
1270 unsigned int page_offset = offset_in_page(offset);
1271 unsigned int page_length = PAGE_SIZE - page_offset;
1272 page_length = remain < page_length ? remain : page_length;
1273 if (node.allocated) {
1274 wmb(); /* flush the write before we modify the GGTT */
1275 ggtt->base.insert_page(&ggtt->base,
1276 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1277 node.start, I915_CACHE_NONE, 0);
1278 wmb(); /* flush modifications to the GGTT (insert_page) */
1279 } else {
1280 page_base += offset & PAGE_MASK;
1281 }
1282 /* If we get a fault while copying data, then (presumably) our
1283 * source page isn't available. Return the error and we'll
1284 * retry in the slow path.
1285 * If the object is non-shmem backed, we retry again with the
1286 * path that handles page fault.
1287 */
1288 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1289 user_data, page_length)) {
1290 ret = -EFAULT;
1291 break;
1292 }
1293
1294 remain -= page_length;
1295 user_data += page_length;
1296 offset += page_length;
1297 }
1298 intel_fb_obj_flush(obj, ORIGIN_CPU);
1299
1300 mutex_lock(&i915->drm.struct_mutex);
1301out_unpin:
1302 if (node.allocated) {
1303 wmb();
1304 ggtt->base.clear_range(&ggtt->base,
1305 node.start, node.size);
1306 remove_mappable_node(&node);
1307 } else {
1308 i915_vma_unpin(vma);
1309 }
1310out_unlock:
1311 intel_runtime_pm_put(i915);
1312 mutex_unlock(&i915->drm.struct_mutex);
1313 return ret;
1314}
1315
1316static int
1317shmem_pwrite_slow(struct page *page, int offset, int length,
1318 char __user *user_data,
1319 bool page_do_bit17_swizzling,
1320 bool needs_clflush_before,
1321 bool needs_clflush_after)
1322{
1323 char *vaddr;
1324 int ret;
1325
1326 vaddr = kmap(page);
1327 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1328 shmem_clflush_swizzled_range(vaddr + offset, length,
1329 page_do_bit17_swizzling);
1330 if (page_do_bit17_swizzling)
1331 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1332 length);
1333 else
1334 ret = __copy_from_user(vaddr + offset, user_data, length);
1335 if (needs_clflush_after)
1336 shmem_clflush_swizzled_range(vaddr + offset, length,
1337 page_do_bit17_swizzling);
1338 kunmap(page);
1339
1340 return ret ? -EFAULT : 0;
1341}
1342
1343/* Per-page copy function for the shmem pwrite fastpath.
1344 * Flushes invalid cachelines before writing to the target if
1345 * needs_clflush_before is set and flushes out any written cachelines after
1346 * writing if needs_clflush is set.
1347 */
1348static int
1349shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1350 bool page_do_bit17_swizzling,
1351 bool needs_clflush_before,
1352 bool needs_clflush_after)
1353{
1354 int ret;
1355
1356 ret = -ENODEV;
1357 if (!page_do_bit17_swizzling) {
1358 char *vaddr = kmap_atomic(page);
1359
1360 if (needs_clflush_before)
1361 drm_clflush_virt_range(vaddr + offset, len);
1362 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1363 if (needs_clflush_after)
1364 drm_clflush_virt_range(vaddr + offset, len);
1365
1366 kunmap_atomic(vaddr);
1367 }
1368 if (ret == 0)
1369 return ret;
1370
1371 return shmem_pwrite_slow(page, offset, len, user_data,
1372 page_do_bit17_swizzling,
1373 needs_clflush_before,
1374 needs_clflush_after);
1375}
1376
1377static int
1378i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1379 const struct drm_i915_gem_pwrite *args)
1380{
1381 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1382 void __user *user_data;
1383 u64 remain;
1384 unsigned int obj_do_bit17_swizzling;
1385 unsigned int partial_cacheline_write;
1386 unsigned int needs_clflush;
1387 unsigned int offset, idx;
1388 int ret;
1389
1390 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1391 if (ret)
1392 return ret;
1393
1394 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1395 mutex_unlock(&i915->drm.struct_mutex);
1396 if (ret)
1397 return ret;
1398
1399 obj_do_bit17_swizzling = 0;
1400 if (i915_gem_object_needs_bit17_swizzle(obj))
1401 obj_do_bit17_swizzling = BIT(17);
1402
1403 /* If we don't overwrite a cacheline completely we need to be
1404 * careful to have up-to-date data by first clflushing. Don't
1405 * overcomplicate things and flush the entire patch.
1406 */
1407 partial_cacheline_write = 0;
1408 if (needs_clflush & CLFLUSH_BEFORE)
1409 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1410
1411 user_data = u64_to_user_ptr(args->data_ptr);
1412 remain = args->size;
1413 offset = offset_in_page(args->offset);
1414 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1415 struct page *page = i915_gem_object_get_page(obj, idx);
1416 int length;
1417
1418 length = remain;
1419 if (offset + length > PAGE_SIZE)
1420 length = PAGE_SIZE - offset;
1421
1422 ret = shmem_pwrite(page, offset, length, user_data,
1423 page_to_phys(page) & obj_do_bit17_swizzling,
1424 (offset | length) & partial_cacheline_write,
1425 needs_clflush & CLFLUSH_AFTER);
1426 if (ret)
1427 break;
1428
1429 remain -= length;
1430 user_data += length;
1431 offset = 0;
1432 }
1433
1434 intel_fb_obj_flush(obj, ORIGIN_CPU);
1435 i915_gem_obj_finish_shmem_access(obj);
1436 return ret;
1437}
1438
1439/**
1440 * Writes data to the object referenced by handle.
1441 * @dev: drm device
1442 * @data: ioctl data blob
1443 * @file: drm file
1444 *
1445 * On error, the contents of the buffer that were to be modified are undefined.
1446 */
1447int
1448i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1449 struct drm_file *file)
1450{
1451 struct drm_i915_gem_pwrite *args = data;
1452 struct drm_i915_gem_object *obj;
1453 int ret;
1454
1455 if (args->size == 0)
1456 return 0;
1457
1458 if (!access_ok(VERIFY_READ,
1459 u64_to_user_ptr(args->data_ptr),
1460 args->size))
1461 return -EFAULT;
1462
1463 obj = i915_gem_object_lookup(file, args->handle);
1464 if (!obj)
1465 return -ENOENT;
1466
1467 /* Bounds check destination. */
1468 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1469 ret = -EINVAL;
1470 goto err;
1471 }
1472
1473 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1474
1475 ret = -ENODEV;
1476 if (obj->ops->pwrite)
1477 ret = obj->ops->pwrite(obj, args);
1478 if (ret != -ENODEV)
1479 goto err;
1480
1481 ret = i915_gem_object_wait(obj,
1482 I915_WAIT_INTERRUPTIBLE |
1483 I915_WAIT_ALL,
1484 MAX_SCHEDULE_TIMEOUT,
1485 to_rps_client(file));
1486 if (ret)
1487 goto err;
1488
1489 ret = i915_gem_object_pin_pages(obj);
1490 if (ret)
1491 goto err;
1492
1493 ret = -EFAULT;
1494 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1495 * it would end up going through the fenced access, and we'll get
1496 * different detiling behavior between reading and writing.
1497 * pread/pwrite currently are reading and writing from the CPU
1498 * perspective, requiring manual detiling by the client.
1499 */
1500 if (!i915_gem_object_has_struct_page(obj) ||
1501 cpu_write_needs_clflush(obj))
1502 /* Note that the gtt paths might fail with non-page-backed user
1503 * pointers (e.g. gtt mappings when moving data between
1504 * textures). Fallback to the shmem path in that case.
1505 */
1506 ret = i915_gem_gtt_pwrite_fast(obj, args);
1507
1508 if (ret == -EFAULT || ret == -ENOSPC) {
1509 if (obj->phys_handle)
1510 ret = i915_gem_phys_pwrite(obj, args, file);
1511 else
1512 ret = i915_gem_shmem_pwrite(obj, args);
1513 }
1514
1515 i915_gem_object_unpin_pages(obj);
1516err:
1517 i915_gem_object_put(obj);
1518 return ret;
1519}
1520
1521static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1522{
1523 struct drm_i915_private *i915;
1524 struct list_head *list;
1525 struct i915_vma *vma;
1526
1527 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1528 if (!i915_vma_is_ggtt(vma))
1529 break;
1530
1531 if (i915_vma_is_active(vma))
1532 continue;
1533
1534 if (!drm_mm_node_allocated(&vma->node))
1535 continue;
1536
1537 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1538 }
1539
1540 i915 = to_i915(obj->base.dev);
1541 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1542 list_move_tail(&obj->global_link, list);
1543}
1544
1545/**
1546 * Called when user space prepares to use an object with the CPU, either
1547 * through the mmap ioctl's mapping or a GTT mapping.
1548 * @dev: drm device
1549 * @data: ioctl data blob
1550 * @file: drm file
1551 */
1552int
1553i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1554 struct drm_file *file)
1555{
1556 struct drm_i915_gem_set_domain *args = data;
1557 struct drm_i915_gem_object *obj;
1558 uint32_t read_domains = args->read_domains;
1559 uint32_t write_domain = args->write_domain;
1560 int err;
1561
1562 /* Only handle setting domains to types used by the CPU. */
1563 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1564 return -EINVAL;
1565
1566 /* Having something in the write domain implies it's in the read
1567 * domain, and only that read domain. Enforce that in the request.
1568 */
1569 if (write_domain != 0 && read_domains != write_domain)
1570 return -EINVAL;
1571
1572 obj = i915_gem_object_lookup(file, args->handle);
1573 if (!obj)
1574 return -ENOENT;
1575
1576 /* Try to flush the object off the GPU without holding the lock.
1577 * We will repeat the flush holding the lock in the normal manner
1578 * to catch cases where we are gazumped.
1579 */
1580 err = i915_gem_object_wait(obj,
1581 I915_WAIT_INTERRUPTIBLE |
1582 (write_domain ? I915_WAIT_ALL : 0),
1583 MAX_SCHEDULE_TIMEOUT,
1584 to_rps_client(file));
1585 if (err)
1586 goto out;
1587
1588 /* Flush and acquire obj->pages so that we are coherent through
1589 * direct access in memory with previous cached writes through
1590 * shmemfs and that our cache domain tracking remains valid.
1591 * For example, if the obj->filp was moved to swap without us
1592 * being notified and releasing the pages, we would mistakenly
1593 * continue to assume that the obj remained out of the CPU cached
1594 * domain.
1595 */
1596 err = i915_gem_object_pin_pages(obj);
1597 if (err)
1598 goto out;
1599
1600 err = i915_mutex_lock_interruptible(dev);
1601 if (err)
1602 goto out_unpin;
1603
1604 if (read_domains & I915_GEM_DOMAIN_WC)
1605 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1606 else if (read_domains & I915_GEM_DOMAIN_GTT)
1607 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1608 else
1609 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1610
1611 /* And bump the LRU for this access */
1612 i915_gem_object_bump_inactive_ggtt(obj);
1613
1614 mutex_unlock(&dev->struct_mutex);
1615
1616 if (write_domain != 0)
1617 intel_fb_obj_invalidate(obj,
1618 fb_write_origin(obj, write_domain));
1619
1620out_unpin:
1621 i915_gem_object_unpin_pages(obj);
1622out:
1623 i915_gem_object_put(obj);
1624 return err;
1625}
1626
1627/**
1628 * Called when user space has done writes to this buffer
1629 * @dev: drm device
1630 * @data: ioctl data blob
1631 * @file: drm file
1632 */
1633int
1634i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1635 struct drm_file *file)
1636{
1637 struct drm_i915_gem_sw_finish *args = data;
1638 struct drm_i915_gem_object *obj;
1639
1640 obj = i915_gem_object_lookup(file, args->handle);
1641 if (!obj)
1642 return -ENOENT;
1643
1644 /* Pinned buffers may be scanout, so flush the cache */
1645 i915_gem_object_flush_if_display(obj);
1646 i915_gem_object_put(obj);
1647
1648 return 0;
1649}
1650
1651/**
1652 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1653 * it is mapped to.
1654 * @dev: drm device
1655 * @data: ioctl data blob
1656 * @file: drm file
1657 *
1658 * While the mapping holds a reference on the contents of the object, it doesn't
1659 * imply a ref on the object itself.
1660 *
1661 * IMPORTANT:
1662 *
1663 * DRM driver writers who look a this function as an example for how to do GEM
1664 * mmap support, please don't implement mmap support like here. The modern way
1665 * to implement DRM mmap support is with an mmap offset ioctl (like
1666 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667 * That way debug tooling like valgrind will understand what's going on, hiding
1668 * the mmap call in a driver private ioctl will break that. The i915 driver only
1669 * does cpu mmaps this way because we didn't know better.
1670 */
1671int
1672i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1673 struct drm_file *file)
1674{
1675 struct drm_i915_gem_mmap *args = data;
1676 struct drm_i915_gem_object *obj;
1677 unsigned long addr;
1678
1679 if (args->flags & ~(I915_MMAP_WC))
1680 return -EINVAL;
1681
1682 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1683 return -ENODEV;
1684
1685 obj = i915_gem_object_lookup(file, args->handle);
1686 if (!obj)
1687 return -ENOENT;
1688
1689 /* prime objects have no backing filp to GEM mmap
1690 * pages from.
1691 */
1692 if (!obj->base.filp) {
1693 i915_gem_object_put(obj);
1694 return -EINVAL;
1695 }
1696
1697 addr = vm_mmap(obj->base.filp, 0, args->size,
1698 PROT_READ | PROT_WRITE, MAP_SHARED,
1699 args->offset);
1700 if (args->flags & I915_MMAP_WC) {
1701 struct mm_struct *mm = current->mm;
1702 struct vm_area_struct *vma;
1703
1704 if (down_write_killable(&mm->mmap_sem)) {
1705 i915_gem_object_put(obj);
1706 return -EINTR;
1707 }
1708 vma = find_vma(mm, addr);
1709 if (vma)
1710 vma->vm_page_prot =
1711 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1712 else
1713 addr = -ENOMEM;
1714 up_write(&mm->mmap_sem);
1715
1716 /* This may race, but that's ok, it only gets set */
1717 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1718 }
1719 i915_gem_object_put(obj);
1720 if (IS_ERR((void *)addr))
1721 return addr;
1722
1723 args->addr_ptr = (uint64_t) addr;
1724
1725 return 0;
1726}
1727
1728static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1729{
1730 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1731}
1732
1733/**
1734 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1735 *
1736 * A history of the GTT mmap interface:
1737 *
1738 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1739 * aligned and suitable for fencing, and still fit into the available
1740 * mappable space left by the pinned display objects. A classic problem
1741 * we called the page-fault-of-doom where we would ping-pong between
1742 * two objects that could not fit inside the GTT and so the memcpy
1743 * would page one object in at the expense of the other between every
1744 * single byte.
1745 *
1746 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1747 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1748 * object is too large for the available space (or simply too large
1749 * for the mappable aperture!), a view is created instead and faulted
1750 * into userspace. (This view is aligned and sized appropriately for
1751 * fenced access.)
1752 *
1753 * 2 - Recognise WC as a separate cache domain so that we can flush the
1754 * delayed writes via GTT before performing direct access via WC.
1755 *
1756 * Restrictions:
1757 *
1758 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1759 * hangs on some architectures, corruption on others. An attempt to service
1760 * a GTT page fault from a snoopable object will generate a SIGBUS.
1761 *
1762 * * the object must be able to fit into RAM (physical memory, though no
1763 * limited to the mappable aperture).
1764 *
1765 *
1766 * Caveats:
1767 *
1768 * * a new GTT page fault will synchronize rendering from the GPU and flush
1769 * all data to system memory. Subsequent access will not be synchronized.
1770 *
1771 * * all mappings are revoked on runtime device suspend.
1772 *
1773 * * there are only 8, 16 or 32 fence registers to share between all users
1774 * (older machines require fence register for display and blitter access
1775 * as well). Contention of the fence registers will cause the previous users
1776 * to be unmapped and any new access will generate new page faults.
1777 *
1778 * * running out of memory while servicing a fault may generate a SIGBUS,
1779 * rather than the expected SIGSEGV.
1780 */
1781int i915_gem_mmap_gtt_version(void)
1782{
1783 return 2;
1784}
1785
1786static inline struct i915_ggtt_view
1787compute_partial_view(struct drm_i915_gem_object *obj,
1788 pgoff_t page_offset,
1789 unsigned int chunk)
1790{
1791 struct i915_ggtt_view view;
1792
1793 if (i915_gem_object_is_tiled(obj))
1794 chunk = roundup(chunk, tile_row_pages(obj));
1795
1796 view.type = I915_GGTT_VIEW_PARTIAL;
1797 view.partial.offset = rounddown(page_offset, chunk);
1798 view.partial.size =
1799 min_t(unsigned int, chunk,
1800 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1801
1802 /* If the partial covers the entire object, just create a normal VMA. */
1803 if (chunk >= obj->base.size >> PAGE_SHIFT)
1804 view.type = I915_GGTT_VIEW_NORMAL;
1805
1806 return view;
1807}
1808
1809/**
1810 * i915_gem_fault - fault a page into the GTT
1811 * @vmf: fault info
1812 *
1813 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1814 * from userspace. The fault handler takes care of binding the object to
1815 * the GTT (if needed), allocating and programming a fence register (again,
1816 * only if needed based on whether the old reg is still valid or the object
1817 * is tiled) and inserting a new PTE into the faulting process.
1818 *
1819 * Note that the faulting process may involve evicting existing objects
1820 * from the GTT and/or fence registers to make room. So performance may
1821 * suffer if the GTT working set is large or there are few fence registers
1822 * left.
1823 *
1824 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1825 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1826 */
1827int i915_gem_fault(struct vm_fault *vmf)
1828{
1829#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1830 struct vm_area_struct *area = vmf->vma;
1831 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1832 struct drm_device *dev = obj->base.dev;
1833 struct drm_i915_private *dev_priv = to_i915(dev);
1834 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1835 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1836 struct i915_vma *vma;
1837 pgoff_t page_offset;
1838 unsigned int flags;
1839 int ret;
1840
1841 /* We don't use vmf->pgoff since that has the fake offset */
1842 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1843
1844 trace_i915_gem_object_fault(obj, page_offset, true, write);
1845
1846 /* Try to flush the object off the GPU first without holding the lock.
1847 * Upon acquiring the lock, we will perform our sanity checks and then
1848 * repeat the flush holding the lock in the normal manner to catch cases
1849 * where we are gazumped.
1850 */
1851 ret = i915_gem_object_wait(obj,
1852 I915_WAIT_INTERRUPTIBLE,
1853 MAX_SCHEDULE_TIMEOUT,
1854 NULL);
1855 if (ret)
1856 goto err;
1857
1858 ret = i915_gem_object_pin_pages(obj);
1859 if (ret)
1860 goto err;
1861
1862 intel_runtime_pm_get(dev_priv);
1863
1864 ret = i915_mutex_lock_interruptible(dev);
1865 if (ret)
1866 goto err_rpm;
1867
1868 /* Access to snoopable pages through the GTT is incoherent. */
1869 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1870 ret = -EFAULT;
1871 goto err_unlock;
1872 }
1873
1874 /* If the object is smaller than a couple of partial vma, it is
1875 * not worth only creating a single partial vma - we may as well
1876 * clear enough space for the full object.
1877 */
1878 flags = PIN_MAPPABLE;
1879 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1880 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1881
1882 /* Now pin it into the GTT as needed */
1883 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1884 if (IS_ERR(vma)) {
1885 /* Use a partial view if it is bigger than available space */
1886 struct i915_ggtt_view view =
1887 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1888
1889 /* Userspace is now writing through an untracked VMA, abandon
1890 * all hope that the hardware is able to track future writes.
1891 */
1892 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1893
1894 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1895 }
1896 if (IS_ERR(vma)) {
1897 ret = PTR_ERR(vma);
1898 goto err_unlock;
1899 }
1900
1901 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1902 if (ret)
1903 goto err_unpin;
1904
1905 ret = i915_vma_get_fence(vma);
1906 if (ret)
1907 goto err_unpin;
1908
1909 /* Mark as being mmapped into userspace for later revocation */
1910 assert_rpm_wakelock_held(dev_priv);
1911 if (list_empty(&obj->userfault_link))
1912 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1913
1914 /* Finally, remap it using the new GTT offset */
1915 ret = remap_io_mapping(area,
1916 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1917 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1918 min_t(u64, vma->size, area->vm_end - area->vm_start),
1919 &ggtt->mappable);
1920
1921err_unpin:
1922 __i915_vma_unpin(vma);
1923err_unlock:
1924 mutex_unlock(&dev->struct_mutex);
1925err_rpm:
1926 intel_runtime_pm_put(dev_priv);
1927 i915_gem_object_unpin_pages(obj);
1928err:
1929 switch (ret) {
1930 case -EIO:
1931 /*
1932 * We eat errors when the gpu is terminally wedged to avoid
1933 * userspace unduly crashing (gl has no provisions for mmaps to
1934 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1935 * and so needs to be reported.
1936 */
1937 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1938 ret = VM_FAULT_SIGBUS;
1939 break;
1940 }
1941 case -EAGAIN:
1942 /*
1943 * EAGAIN means the gpu is hung and we'll wait for the error
1944 * handler to reset everything when re-faulting in
1945 * i915_mutex_lock_interruptible.
1946 */
1947 case 0:
1948 case -ERESTARTSYS:
1949 case -EINTR:
1950 case -EBUSY:
1951 /*
1952 * EBUSY is ok: this just means that another thread
1953 * already did the job.
1954 */
1955 ret = VM_FAULT_NOPAGE;
1956 break;
1957 case -ENOMEM:
1958 ret = VM_FAULT_OOM;
1959 break;
1960 case -ENOSPC:
1961 case -EFAULT:
1962 ret = VM_FAULT_SIGBUS;
1963 break;
1964 default:
1965 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1966 ret = VM_FAULT_SIGBUS;
1967 break;
1968 }
1969 return ret;
1970}
1971
1972/**
1973 * i915_gem_release_mmap - remove physical page mappings
1974 * @obj: obj in question
1975 *
1976 * Preserve the reservation of the mmapping with the DRM core code, but
1977 * relinquish ownership of the pages back to the system.
1978 *
1979 * It is vital that we remove the page mapping if we have mapped a tiled
1980 * object through the GTT and then lose the fence register due to
1981 * resource pressure. Similarly if the object has been moved out of the
1982 * aperture, than pages mapped into userspace must be revoked. Removing the
1983 * mapping will then trigger a page fault on the next user access, allowing
1984 * fixup by i915_gem_fault().
1985 */
1986void
1987i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1988{
1989 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1990
1991 /* Serialisation between user GTT access and our code depends upon
1992 * revoking the CPU's PTE whilst the mutex is held. The next user
1993 * pagefault then has to wait until we release the mutex.
1994 *
1995 * Note that RPM complicates somewhat by adding an additional
1996 * requirement that operations to the GGTT be made holding the RPM
1997 * wakeref.
1998 */
1999 lockdep_assert_held(&i915->drm.struct_mutex);
2000 intel_runtime_pm_get(i915);
2001
2002 if (list_empty(&obj->userfault_link))
2003 goto out;
2004
2005 list_del_init(&obj->userfault_link);
2006 drm_vma_node_unmap(&obj->base.vma_node,
2007 obj->base.dev->anon_inode->i_mapping);
2008
2009 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2010 * memory transactions from userspace before we return. The TLB
2011 * flushing implied above by changing the PTE above *should* be
2012 * sufficient, an extra barrier here just provides us with a bit
2013 * of paranoid documentation about our requirement to serialise
2014 * memory writes before touching registers / GSM.
2015 */
2016 wmb();
2017
2018out:
2019 intel_runtime_pm_put(i915);
2020}
2021
2022void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2023{
2024 struct drm_i915_gem_object *obj, *on;
2025 int i;
2026
2027 /*
2028 * Only called during RPM suspend. All users of the userfault_list
2029 * must be holding an RPM wakeref to ensure that this can not
2030 * run concurrently with themselves (and use the struct_mutex for
2031 * protection between themselves).
2032 */
2033
2034 list_for_each_entry_safe(obj, on,
2035 &dev_priv->mm.userfault_list, userfault_link) {
2036 list_del_init(&obj->userfault_link);
2037 drm_vma_node_unmap(&obj->base.vma_node,
2038 obj->base.dev->anon_inode->i_mapping);
2039 }
2040
2041 /* The fence will be lost when the device powers down. If any were
2042 * in use by hardware (i.e. they are pinned), we should not be powering
2043 * down! All other fences will be reacquired by the user upon waking.
2044 */
2045 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2046 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2047
2048 /* Ideally we want to assert that the fence register is not
2049 * live at this point (i.e. that no piece of code will be
2050 * trying to write through fence + GTT, as that both violates
2051 * our tracking of activity and associated locking/barriers,
2052 * but also is illegal given that the hw is powered down).
2053 *
2054 * Previously we used reg->pin_count as a "liveness" indicator.
2055 * That is not sufficient, and we need a more fine-grained
2056 * tool if we want to have a sanity check here.
2057 */
2058
2059 if (!reg->vma)
2060 continue;
2061
2062 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2063 reg->dirty = true;
2064 }
2065}
2066
2067static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2068{
2069 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2070 int err;
2071
2072 err = drm_gem_create_mmap_offset(&obj->base);
2073 if (likely(!err))
2074 return 0;
2075
2076 /* Attempt to reap some mmap space from dead objects */
2077 do {
2078 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2079 if (err)
2080 break;
2081
2082 i915_gem_drain_freed_objects(dev_priv);
2083 err = drm_gem_create_mmap_offset(&obj->base);
2084 if (!err)
2085 break;
2086
2087 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2088
2089 return err;
2090}
2091
2092static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2093{
2094 drm_gem_free_mmap_offset(&obj->base);
2095}
2096
2097int
2098i915_gem_mmap_gtt(struct drm_file *file,
2099 struct drm_device *dev,
2100 uint32_t handle,
2101 uint64_t *offset)
2102{
2103 struct drm_i915_gem_object *obj;
2104 int ret;
2105
2106 obj = i915_gem_object_lookup(file, handle);
2107 if (!obj)
2108 return -ENOENT;
2109
2110 ret = i915_gem_object_create_mmap_offset(obj);
2111 if (ret == 0)
2112 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2113
2114 i915_gem_object_put(obj);
2115 return ret;
2116}
2117
2118/**
2119 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2120 * @dev: DRM device
2121 * @data: GTT mapping ioctl data
2122 * @file: GEM object info
2123 *
2124 * Simply returns the fake offset to userspace so it can mmap it.
2125 * The mmap call will end up in drm_gem_mmap(), which will set things
2126 * up so we can get faults in the handler above.
2127 *
2128 * The fault handler will take care of binding the object into the GTT
2129 * (since it may have been evicted to make room for something), allocating
2130 * a fence register, and mapping the appropriate aperture address into
2131 * userspace.
2132 */
2133int
2134i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2135 struct drm_file *file)
2136{
2137 struct drm_i915_gem_mmap_gtt *args = data;
2138
2139 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2140}
2141
2142/* Immediately discard the backing storage */
2143static void
2144i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2145{
2146 i915_gem_object_free_mmap_offset(obj);
2147
2148 if (obj->base.filp == NULL)
2149 return;
2150
2151 /* Our goal here is to return as much of the memory as
2152 * is possible back to the system as we are called from OOM.
2153 * To do this we must instruct the shmfs to drop all of its
2154 * backing pages, *now*.
2155 */
2156 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2157 obj->mm.madv = __I915_MADV_PURGED;
2158 obj->mm.pages = ERR_PTR(-EFAULT);
2159}
2160
2161/* Try to discard unwanted pages */
2162void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2163{
2164 struct address_space *mapping;
2165
2166 lockdep_assert_held(&obj->mm.lock);
2167 GEM_BUG_ON(obj->mm.pages);
2168
2169 switch (obj->mm.madv) {
2170 case I915_MADV_DONTNEED:
2171 i915_gem_object_truncate(obj);
2172 case __I915_MADV_PURGED:
2173 return;
2174 }
2175
2176 if (obj->base.filp == NULL)
2177 return;
2178
2179 mapping = obj->base.filp->f_mapping,
2180 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2181}
2182
2183static void
2184i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2185 struct sg_table *pages)
2186{
2187 struct sgt_iter sgt_iter;
2188 struct page *page;
2189
2190 __i915_gem_object_release_shmem(obj, pages, true);
2191
2192 i915_gem_gtt_finish_pages(obj, pages);
2193
2194 if (i915_gem_object_needs_bit17_swizzle(obj))
2195 i915_gem_object_save_bit_17_swizzle(obj, pages);
2196
2197 for_each_sgt_page(page, sgt_iter, pages) {
2198 if (obj->mm.dirty)
2199 set_page_dirty(page);
2200
2201 if (obj->mm.madv == I915_MADV_WILLNEED)
2202 mark_page_accessed(page);
2203
2204 put_page(page);
2205 }
2206 obj->mm.dirty = false;
2207
2208 sg_free_table(pages);
2209 kfree(pages);
2210}
2211
2212static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2213{
2214 struct radix_tree_iter iter;
2215 void **slot;
2216
2217 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2218 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2219}
2220
2221void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2222 enum i915_mm_subclass subclass)
2223{
2224 struct sg_table *pages;
2225
2226 if (i915_gem_object_has_pinned_pages(obj))
2227 return;
2228
2229 GEM_BUG_ON(obj->bind_count);
2230 if (!READ_ONCE(obj->mm.pages))
2231 return;
2232
2233 /* May be called by shrinker from within get_pages() (on another bo) */
2234 mutex_lock_nested(&obj->mm.lock, subclass);
2235 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2236 goto unlock;
2237
2238 /* ->put_pages might need to allocate memory for the bit17 swizzle
2239 * array, hence protect them from being reaped by removing them from gtt
2240 * lists early. */
2241 pages = fetch_and_zero(&obj->mm.pages);
2242 GEM_BUG_ON(!pages);
2243
2244 if (obj->mm.mapping) {
2245 void *ptr;
2246
2247 ptr = page_mask_bits(obj->mm.mapping);
2248 if (is_vmalloc_addr(ptr))
2249 vunmap(ptr);
2250 else
2251 kunmap(kmap_to_page(ptr));
2252
2253 obj->mm.mapping = NULL;
2254 }
2255
2256 __i915_gem_object_reset_page_iter(obj);
2257
2258 if (!IS_ERR(pages))
2259 obj->ops->put_pages(obj, pages);
2260
2261unlock:
2262 mutex_unlock(&obj->mm.lock);
2263}
2264
2265static bool i915_sg_trim(struct sg_table *orig_st)
2266{
2267 struct sg_table new_st;
2268 struct scatterlist *sg, *new_sg;
2269 unsigned int i;
2270
2271 if (orig_st->nents == orig_st->orig_nents)
2272 return false;
2273
2274 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2275 return false;
2276
2277 new_sg = new_st.sgl;
2278 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2279 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2280 /* called before being DMA mapped, no need to copy sg->dma_* */
2281 new_sg = sg_next(new_sg);
2282 }
2283 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2284
2285 sg_free_table(orig_st);
2286
2287 *orig_st = new_st;
2288 return true;
2289}
2290
2291static struct sg_table *
2292i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2293{
2294 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2295 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2296 unsigned long i;
2297 struct address_space *mapping;
2298 struct sg_table *st;
2299 struct scatterlist *sg;
2300 struct sgt_iter sgt_iter;
2301 struct page *page;
2302 unsigned long last_pfn = 0; /* suppress gcc warning */
2303 unsigned int max_segment;
2304 gfp_t noreclaim;
2305 int ret;
2306
2307 /* Assert that the object is not currently in any GPU domain. As it
2308 * wasn't in the GTT, there shouldn't be any way it could have been in
2309 * a GPU cache
2310 */
2311 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2312 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2313
2314 max_segment = swiotlb_max_segment();
2315 if (!max_segment)
2316 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2317
2318 st = kmalloc(sizeof(*st), GFP_KERNEL);
2319 if (st == NULL)
2320 return ERR_PTR(-ENOMEM);
2321
2322rebuild_st:
2323 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2324 kfree(st);
2325 return ERR_PTR(-ENOMEM);
2326 }
2327
2328 /* Get the list of pages out of our struct file. They'll be pinned
2329 * at this point until we release them.
2330 *
2331 * Fail silently without starting the shrinker
2332 */
2333 mapping = obj->base.filp->f_mapping;
2334 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2335 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2336
2337 sg = st->sgl;
2338 st->nents = 0;
2339 for (i = 0; i < page_count; i++) {
2340 const unsigned int shrink[] = {
2341 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2342 0,
2343 }, *s = shrink;
2344 gfp_t gfp = noreclaim;
2345
2346 do {
2347 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2348 if (likely(!IS_ERR(page)))
2349 break;
2350
2351 if (!*s) {
2352 ret = PTR_ERR(page);
2353 goto err_sg;
2354 }
2355
2356 i915_gem_shrink(dev_priv, 2 * page_count, *s++);
2357 cond_resched();
2358
2359 /* We've tried hard to allocate the memory by reaping
2360 * our own buffer, now let the real VM do its job and
2361 * go down in flames if truly OOM.
2362 *
2363 * However, since graphics tend to be disposable,
2364 * defer the oom here by reporting the ENOMEM back
2365 * to userspace.
2366 */
2367 if (!*s) {
2368 /* reclaim and warn, but no oom */
2369 gfp = mapping_gfp_mask(mapping);
2370
2371 /* Our bo are always dirty and so we require
2372 * kswapd to reclaim our pages (direct reclaim
2373 * does not effectively begin pageout of our
2374 * buffers on its own). However, direct reclaim
2375 * only waits for kswapd when under allocation
2376 * congestion. So as a result __GFP_RECLAIM is
2377 * unreliable and fails to actually reclaim our
2378 * dirty pages -- unless you try over and over
2379 * again with !__GFP_NORETRY. However, we still
2380 * want to fail this allocation rather than
2381 * trigger the out-of-memory killer and for
2382 * this we want __GFP_RETRY_MAYFAIL.
2383 */
2384 gfp |= __GFP_RETRY_MAYFAIL;
2385 }
2386 } while (1);
2387
2388 if (!i ||
2389 sg->length >= max_segment ||
2390 page_to_pfn(page) != last_pfn + 1) {
2391 if (i)
2392 sg = sg_next(sg);
2393 st->nents++;
2394 sg_set_page(sg, page, PAGE_SIZE, 0);
2395 } else {
2396 sg->length += PAGE_SIZE;
2397 }
2398 last_pfn = page_to_pfn(page);
2399
2400 /* Check that the i965g/gm workaround works. */
2401 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2402 }
2403 if (sg) /* loop terminated early; short sg table */
2404 sg_mark_end(sg);
2405
2406 /* Trim unused sg entries to avoid wasting memory. */
2407 i915_sg_trim(st);
2408
2409 ret = i915_gem_gtt_prepare_pages(obj, st);
2410 if (ret) {
2411 /* DMA remapping failed? One possible cause is that
2412 * it could not reserve enough large entries, asking
2413 * for PAGE_SIZE chunks instead may be helpful.
2414 */
2415 if (max_segment > PAGE_SIZE) {
2416 for_each_sgt_page(page, sgt_iter, st)
2417 put_page(page);
2418 sg_free_table(st);
2419
2420 max_segment = PAGE_SIZE;
2421 goto rebuild_st;
2422 } else {
2423 dev_warn(&dev_priv->drm.pdev->dev,
2424 "Failed to DMA remap %lu pages\n",
2425 page_count);
2426 goto err_pages;
2427 }
2428 }
2429
2430 if (i915_gem_object_needs_bit17_swizzle(obj))
2431 i915_gem_object_do_bit_17_swizzle(obj, st);
2432
2433 return st;
2434
2435err_sg:
2436 sg_mark_end(sg);
2437err_pages:
2438 for_each_sgt_page(page, sgt_iter, st)
2439 put_page(page);
2440 sg_free_table(st);
2441 kfree(st);
2442
2443 /* shmemfs first checks if there is enough memory to allocate the page
2444 * and reports ENOSPC should there be insufficient, along with the usual
2445 * ENOMEM for a genuine allocation failure.
2446 *
2447 * We use ENOSPC in our driver to mean that we have run out of aperture
2448 * space and so want to translate the error from shmemfs back to our
2449 * usual understanding of ENOMEM.
2450 */
2451 if (ret == -ENOSPC)
2452 ret = -ENOMEM;
2453
2454 return ERR_PTR(ret);
2455}
2456
2457void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2458 struct sg_table *pages)
2459{
2460 lockdep_assert_held(&obj->mm.lock);
2461
2462 obj->mm.get_page.sg_pos = pages->sgl;
2463 obj->mm.get_page.sg_idx = 0;
2464
2465 obj->mm.pages = pages;
2466
2467 if (i915_gem_object_is_tiled(obj) &&
2468 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2469 GEM_BUG_ON(obj->mm.quirked);
2470 __i915_gem_object_pin_pages(obj);
2471 obj->mm.quirked = true;
2472 }
2473}
2474
2475static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2476{
2477 struct sg_table *pages;
2478
2479 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2480
2481 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2482 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2483 return -EFAULT;
2484 }
2485
2486 pages = obj->ops->get_pages(obj);
2487 if (unlikely(IS_ERR(pages)))
2488 return PTR_ERR(pages);
2489
2490 __i915_gem_object_set_pages(obj, pages);
2491 return 0;
2492}
2493
2494/* Ensure that the associated pages are gathered from the backing storage
2495 * and pinned into our object. i915_gem_object_pin_pages() may be called
2496 * multiple times before they are released by a single call to
2497 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2498 * either as a result of memory pressure (reaping pages under the shrinker)
2499 * or as the object is itself released.
2500 */
2501int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2502{
2503 int err;
2504
2505 err = mutex_lock_interruptible(&obj->mm.lock);
2506 if (err)
2507 return err;
2508
2509 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2510 err = ____i915_gem_object_get_pages(obj);
2511 if (err)
2512 goto unlock;
2513
2514 smp_mb__before_atomic();
2515 }
2516 atomic_inc(&obj->mm.pages_pin_count);
2517
2518unlock:
2519 mutex_unlock(&obj->mm.lock);
2520 return err;
2521}
2522
2523/* The 'mapping' part of i915_gem_object_pin_map() below */
2524static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2525 enum i915_map_type type)
2526{
2527 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2528 struct sg_table *sgt = obj->mm.pages;
2529 struct sgt_iter sgt_iter;
2530 struct page *page;
2531 struct page *stack_pages[32];
2532 struct page **pages = stack_pages;
2533 unsigned long i = 0;
2534 pgprot_t pgprot;
2535 void *addr;
2536
2537 /* A single page can always be kmapped */
2538 if (n_pages == 1 && type == I915_MAP_WB)
2539 return kmap(sg_page(sgt->sgl));
2540
2541 if (n_pages > ARRAY_SIZE(stack_pages)) {
2542 /* Too big for stack -- allocate temporary array instead */
2543 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2544 if (!pages)
2545 return NULL;
2546 }
2547
2548 for_each_sgt_page(page, sgt_iter, sgt)
2549 pages[i++] = page;
2550
2551 /* Check that we have the expected number of pages */
2552 GEM_BUG_ON(i != n_pages);
2553
2554 switch (type) {
2555 default:
2556 MISSING_CASE(type);
2557 /* fallthrough to use PAGE_KERNEL anyway */
2558 case I915_MAP_WB:
2559 pgprot = PAGE_KERNEL;
2560 break;
2561 case I915_MAP_WC:
2562 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2563 break;
2564 }
2565 addr = vmap(pages, n_pages, 0, pgprot);
2566
2567 if (pages != stack_pages)
2568 kvfree(pages);
2569
2570 return addr;
2571}
2572
2573/* get, pin, and map the pages of the object into kernel space */
2574void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2575 enum i915_map_type type)
2576{
2577 enum i915_map_type has_type;
2578 bool pinned;
2579 void *ptr;
2580 int ret;
2581
2582 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2583
2584 ret = mutex_lock_interruptible(&obj->mm.lock);
2585 if (ret)
2586 return ERR_PTR(ret);
2587
2588 pinned = !(type & I915_MAP_OVERRIDE);
2589 type &= ~I915_MAP_OVERRIDE;
2590
2591 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2592 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2593 ret = ____i915_gem_object_get_pages(obj);
2594 if (ret)
2595 goto err_unlock;
2596
2597 smp_mb__before_atomic();
2598 }
2599 atomic_inc(&obj->mm.pages_pin_count);
2600 pinned = false;
2601 }
2602 GEM_BUG_ON(!obj->mm.pages);
2603
2604 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2605 if (ptr && has_type != type) {
2606 if (pinned) {
2607 ret = -EBUSY;
2608 goto err_unpin;
2609 }
2610
2611 if (is_vmalloc_addr(ptr))
2612 vunmap(ptr);
2613 else
2614 kunmap(kmap_to_page(ptr));
2615
2616 ptr = obj->mm.mapping = NULL;
2617 }
2618
2619 if (!ptr) {
2620 ptr = i915_gem_object_map(obj, type);
2621 if (!ptr) {
2622 ret = -ENOMEM;
2623 goto err_unpin;
2624 }
2625
2626 obj->mm.mapping = page_pack_bits(ptr, type);
2627 }
2628
2629out_unlock:
2630 mutex_unlock(&obj->mm.lock);
2631 return ptr;
2632
2633err_unpin:
2634 atomic_dec(&obj->mm.pages_pin_count);
2635err_unlock:
2636 ptr = ERR_PTR(ret);
2637 goto out_unlock;
2638}
2639
2640static int
2641i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2642 const struct drm_i915_gem_pwrite *arg)
2643{
2644 struct address_space *mapping = obj->base.filp->f_mapping;
2645 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2646 u64 remain, offset;
2647 unsigned int pg;
2648
2649 /* Before we instantiate/pin the backing store for our use, we
2650 * can prepopulate the shmemfs filp efficiently using a write into
2651 * the pagecache. We avoid the penalty of instantiating all the
2652 * pages, important if the user is just writing to a few and never
2653 * uses the object on the GPU, and using a direct write into shmemfs
2654 * allows it to avoid the cost of retrieving a page (either swapin
2655 * or clearing-before-use) before it is overwritten.
2656 */
2657 if (READ_ONCE(obj->mm.pages))
2658 return -ENODEV;
2659
2660 /* Before the pages are instantiated the object is treated as being
2661 * in the CPU domain. The pages will be clflushed as required before
2662 * use, and we can freely write into the pages directly. If userspace
2663 * races pwrite with any other operation; corruption will ensue -
2664 * that is userspace's prerogative!
2665 */
2666
2667 remain = arg->size;
2668 offset = arg->offset;
2669 pg = offset_in_page(offset);
2670
2671 do {
2672 unsigned int len, unwritten;
2673 struct page *page;
2674 void *data, *vaddr;
2675 int err;
2676
2677 len = PAGE_SIZE - pg;
2678 if (len > remain)
2679 len = remain;
2680
2681 err = pagecache_write_begin(obj->base.filp, mapping,
2682 offset, len, 0,
2683 &page, &data);
2684 if (err < 0)
2685 return err;
2686
2687 vaddr = kmap(page);
2688 unwritten = copy_from_user(vaddr + pg, user_data, len);
2689 kunmap(page);
2690
2691 err = pagecache_write_end(obj->base.filp, mapping,
2692 offset, len, len - unwritten,
2693 page, data);
2694 if (err < 0)
2695 return err;
2696
2697 if (unwritten)
2698 return -EFAULT;
2699
2700 remain -= len;
2701 user_data += len;
2702 offset += len;
2703 pg = 0;
2704 } while (remain);
2705
2706 return 0;
2707}
2708
2709static bool ban_context(const struct i915_gem_context *ctx,
2710 unsigned int score)
2711{
2712 return (i915_gem_context_is_bannable(ctx) &&
2713 score >= CONTEXT_SCORE_BAN_THRESHOLD);
2714}
2715
2716static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2717{
2718 unsigned int score;
2719 bool banned;
2720
2721 atomic_inc(&ctx->guilty_count);
2722
2723 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2724 banned = ban_context(ctx, score);
2725 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2726 ctx->name, score, yesno(banned));
2727 if (!banned)
2728 return;
2729
2730 i915_gem_context_set_banned(ctx);
2731 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2732 atomic_inc(&ctx->file_priv->context_bans);
2733 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2734 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2735 }
2736}
2737
2738static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2739{
2740 atomic_inc(&ctx->active_count);
2741}
2742
2743struct drm_i915_gem_request *
2744i915_gem_find_active_request(struct intel_engine_cs *engine)
2745{
2746 struct drm_i915_gem_request *request, *active = NULL;
2747 unsigned long flags;
2748
2749 /* We are called by the error capture and reset at a random
2750 * point in time. In particular, note that neither is crucially
2751 * ordered with an interrupt. After a hang, the GPU is dead and we
2752 * assume that no more writes can happen (we waited long enough for
2753 * all writes that were in transaction to be flushed) - adding an
2754 * extra delay for a recent interrupt is pointless. Hence, we do
2755 * not need an engine->irq_seqno_barrier() before the seqno reads.
2756 */
2757 spin_lock_irqsave(&engine->timeline->lock, flags);
2758 list_for_each_entry(request, &engine->timeline->requests, link) {
2759 if (__i915_gem_request_completed(request,
2760 request->global_seqno))
2761 continue;
2762
2763 GEM_BUG_ON(request->engine != engine);
2764 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2765 &request->fence.flags));
2766
2767 active = request;
2768 break;
2769 }
2770 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2771
2772 return active;
2773}
2774
2775static bool engine_stalled(struct intel_engine_cs *engine)
2776{
2777 if (!engine->hangcheck.stalled)
2778 return false;
2779
2780 /* Check for possible seqno movement after hang declaration */
2781 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2782 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2783 return false;
2784 }
2785
2786 return true;
2787}
2788
2789/*
2790 * Ensure irq handler finishes, and not run again.
2791 * Also return the active request so that we only search for it once.
2792 */
2793struct drm_i915_gem_request *
2794i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2795{
2796 struct drm_i915_gem_request *request = NULL;
2797
2798 /* Prevent the signaler thread from updating the request
2799 * state (by calling dma_fence_signal) as we are processing
2800 * the reset. The write from the GPU of the seqno is
2801 * asynchronous and the signaler thread may see a different
2802 * value to us and declare the request complete, even though
2803 * the reset routine have picked that request as the active
2804 * (incomplete) request. This conflict is not handled
2805 * gracefully!
2806 */
2807 kthread_park(engine->breadcrumbs.signaler);
2808
2809 /* Prevent request submission to the hardware until we have
2810 * completed the reset in i915_gem_reset_finish(). If a request
2811 * is completed by one engine, it may then queue a request
2812 * to a second via its engine->irq_tasklet *just* as we are
2813 * calling engine->init_hw() and also writing the ELSP.
2814 * Turning off the engine->irq_tasklet until the reset is over
2815 * prevents the race.
2816 */
2817 tasklet_kill(&engine->irq_tasklet);
2818 tasklet_disable(&engine->irq_tasklet);
2819
2820 if (engine->irq_seqno_barrier)
2821 engine->irq_seqno_barrier(engine);
2822
2823 request = i915_gem_find_active_request(engine);
2824 if (request && request->fence.error == -EIO)
2825 request = ERR_PTR(-EIO); /* Previous reset failed! */
2826
2827 return request;
2828}
2829
2830int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2831{
2832 struct intel_engine_cs *engine;
2833 struct drm_i915_gem_request *request;
2834 enum intel_engine_id id;
2835 int err = 0;
2836
2837 for_each_engine(engine, dev_priv, id) {
2838 request = i915_gem_reset_prepare_engine(engine);
2839 if (IS_ERR(request)) {
2840 err = PTR_ERR(request);
2841 continue;
2842 }
2843
2844 engine->hangcheck.active_request = request;
2845 }
2846
2847 i915_gem_revoke_fences(dev_priv);
2848
2849 return err;
2850}
2851
2852static void skip_request(struct drm_i915_gem_request *request)
2853{
2854 void *vaddr = request->ring->vaddr;
2855 u32 head;
2856
2857 /* As this request likely depends on state from the lost
2858 * context, clear out all the user operations leaving the
2859 * breadcrumb at the end (so we get the fence notifications).
2860 */
2861 head = request->head;
2862 if (request->postfix < head) {
2863 memset(vaddr + head, 0, request->ring->size - head);
2864 head = 0;
2865 }
2866 memset(vaddr + head, 0, request->postfix - head);
2867
2868 dma_fence_set_error(&request->fence, -EIO);
2869}
2870
2871static void engine_skip_context(struct drm_i915_gem_request *request)
2872{
2873 struct intel_engine_cs *engine = request->engine;
2874 struct i915_gem_context *hung_ctx = request->ctx;
2875 struct intel_timeline *timeline;
2876 unsigned long flags;
2877
2878 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2879
2880 spin_lock_irqsave(&engine->timeline->lock, flags);
2881 spin_lock(&timeline->lock);
2882
2883 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2884 if (request->ctx == hung_ctx)
2885 skip_request(request);
2886
2887 list_for_each_entry(request, &timeline->requests, link)
2888 skip_request(request);
2889
2890 spin_unlock(&timeline->lock);
2891 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2892}
2893
2894/* Returns the request if it was guilty of the hang */
2895static struct drm_i915_gem_request *
2896i915_gem_reset_request(struct intel_engine_cs *engine,
2897 struct drm_i915_gem_request *request)
2898{
2899 /* The guilty request will get skipped on a hung engine.
2900 *
2901 * Users of client default contexts do not rely on logical
2902 * state preserved between batches so it is safe to execute
2903 * queued requests following the hang. Non default contexts
2904 * rely on preserved state, so skipping a batch loses the
2905 * evolution of the state and it needs to be considered corrupted.
2906 * Executing more queued batches on top of corrupted state is
2907 * risky. But we take the risk by trying to advance through
2908 * the queued requests in order to make the client behaviour
2909 * more predictable around resets, by not throwing away random
2910 * amount of batches it has prepared for execution. Sophisticated
2911 * clients can use gem_reset_stats_ioctl and dma fence status
2912 * (exported via sync_file info ioctl on explicit fences) to observe
2913 * when it loses the context state and should rebuild accordingly.
2914 *
2915 * The context ban, and ultimately the client ban, mechanism are safety
2916 * valves if client submission ends up resulting in nothing more than
2917 * subsequent hangs.
2918 */
2919
2920 if (engine_stalled(engine)) {
2921 i915_gem_context_mark_guilty(request->ctx);
2922 skip_request(request);
2923
2924 /* If this context is now banned, skip all pending requests. */
2925 if (i915_gem_context_is_banned(request->ctx))
2926 engine_skip_context(request);
2927 } else {
2928 /*
2929 * Since this is not the hung engine, it may have advanced
2930 * since the hang declaration. Double check by refinding
2931 * the active request at the time of the reset.
2932 */
2933 request = i915_gem_find_active_request(engine);
2934 if (request) {
2935 i915_gem_context_mark_innocent(request->ctx);
2936 dma_fence_set_error(&request->fence, -EAGAIN);
2937
2938 /* Rewind the engine to replay the incomplete rq */
2939 spin_lock_irq(&engine->timeline->lock);
2940 request = list_prev_entry(request, link);
2941 if (&request->link == &engine->timeline->requests)
2942 request = NULL;
2943 spin_unlock_irq(&engine->timeline->lock);
2944 }
2945 }
2946
2947 return request;
2948}
2949
2950void i915_gem_reset_engine(struct intel_engine_cs *engine,
2951 struct drm_i915_gem_request *request)
2952{
2953 engine->irq_posted = 0;
2954
2955 if (request)
2956 request = i915_gem_reset_request(engine, request);
2957
2958 if (request) {
2959 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2960 engine->name, request->global_seqno);
2961 }
2962
2963 /* Setup the CS to resume from the breadcrumb of the hung request */
2964 engine->reset_hw(engine, request);
2965}
2966
2967void i915_gem_reset(struct drm_i915_private *dev_priv)
2968{
2969 struct intel_engine_cs *engine;
2970 enum intel_engine_id id;
2971
2972 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2973
2974 i915_gem_retire_requests(dev_priv);
2975
2976 for_each_engine(engine, dev_priv, id) {
2977 struct i915_gem_context *ctx;
2978
2979 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2980 ctx = fetch_and_zero(&engine->last_retired_context);
2981 if (ctx)
2982 engine->context_unpin(engine, ctx);
2983 }
2984
2985 i915_gem_restore_fences(dev_priv);
2986
2987 if (dev_priv->gt.awake) {
2988 intel_sanitize_gt_powersave(dev_priv);
2989 intel_enable_gt_powersave(dev_priv);
2990 if (INTEL_GEN(dev_priv) >= 6)
2991 gen6_rps_busy(dev_priv);
2992 }
2993}
2994
2995void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
2996{
2997 tasklet_enable(&engine->irq_tasklet);
2998 kthread_unpark(engine->breadcrumbs.signaler);
2999}
3000
3001void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3002{
3003 struct intel_engine_cs *engine;
3004 enum intel_engine_id id;
3005
3006 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3007
3008 for_each_engine(engine, dev_priv, id) {
3009 engine->hangcheck.active_request = NULL;
3010 i915_gem_reset_finish_engine(engine);
3011 }
3012}
3013
3014static void nop_submit_request(struct drm_i915_gem_request *request)
3015{
3016 GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3017 dma_fence_set_error(&request->fence, -EIO);
3018 i915_gem_request_submit(request);
3019 intel_engine_init_global_seqno(request->engine, request->global_seqno);
3020}
3021
3022static void engine_set_wedged(struct intel_engine_cs *engine)
3023{
3024 struct drm_i915_gem_request *request;
3025 unsigned long flags;
3026
3027 /* We need to be sure that no thread is running the old callback as
3028 * we install the nop handler (otherwise we would submit a request
3029 * to hardware that will never complete). In order to prevent this
3030 * race, we wait until the machine is idle before making the swap
3031 * (using stop_machine()).
3032 */
3033 engine->submit_request = nop_submit_request;
3034
3035 /* Mark all executing requests as skipped */
3036 spin_lock_irqsave(&engine->timeline->lock, flags);
3037 list_for_each_entry(request, &engine->timeline->requests, link)
3038 if (!i915_gem_request_completed(request))
3039 dma_fence_set_error(&request->fence, -EIO);
3040 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3041
3042 /*
3043 * Clear the execlists queue up before freeing the requests, as those
3044 * are the ones that keep the context and ringbuffer backing objects
3045 * pinned in place.
3046 */
3047
3048 if (i915.enable_execlists) {
3049 struct execlist_port *port = engine->execlist_port;
3050 unsigned long flags;
3051 unsigned int n;
3052
3053 spin_lock_irqsave(&engine->timeline->lock, flags);
3054
3055 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3056 i915_gem_request_put(port_request(&port[n]));
3057 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3058 engine->execlist_queue = RB_ROOT;
3059 engine->execlist_first = NULL;
3060
3061 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3062
3063 /* The port is checked prior to scheduling a tasklet, but
3064 * just in case we have suspended the tasklet to do the
3065 * wedging make sure that when it wakes, it decides there
3066 * is no work to do by clearing the irq_posted bit.
3067 */
3068 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3069 }
3070
3071 /* Mark all pending requests as complete so that any concurrent
3072 * (lockless) lookup doesn't try and wait upon the request as we
3073 * reset it.
3074 */
3075 intel_engine_init_global_seqno(engine,
3076 intel_engine_last_submit(engine));
3077}
3078
3079static int __i915_gem_set_wedged_BKL(void *data)
3080{
3081 struct drm_i915_private *i915 = data;
3082 struct intel_engine_cs *engine;
3083 enum intel_engine_id id;
3084
3085 for_each_engine(engine, i915, id)
3086 engine_set_wedged(engine);
3087
3088 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3089 wake_up_all(&i915->gpu_error.reset_queue);
3090
3091 return 0;
3092}
3093
3094void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3095{
3096 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3097}
3098
3099bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3100{
3101 struct i915_gem_timeline *tl;
3102 int i;
3103
3104 lockdep_assert_held(&i915->drm.struct_mutex);
3105 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3106 return true;
3107
3108 /* Before unwedging, make sure that all pending operations
3109 * are flushed and errored out - we may have requests waiting upon
3110 * third party fences. We marked all inflight requests as EIO, and
3111 * every execbuf since returned EIO, for consistency we want all
3112 * the currently pending requests to also be marked as EIO, which
3113 * is done inside our nop_submit_request - and so we must wait.
3114 *
3115 * No more can be submitted until we reset the wedged bit.
3116 */
3117 list_for_each_entry(tl, &i915->gt.timelines, link) {
3118 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3119 struct drm_i915_gem_request *rq;
3120
3121 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3122 &i915->drm.struct_mutex);
3123 if (!rq)
3124 continue;
3125
3126 /* We can't use our normal waiter as we want to
3127 * avoid recursively trying to handle the current
3128 * reset. The basic dma_fence_default_wait() installs
3129 * a callback for dma_fence_signal(), which is
3130 * triggered by our nop handler (indirectly, the
3131 * callback enables the signaler thread which is
3132 * woken by the nop_submit_request() advancing the seqno
3133 * and when the seqno passes the fence, the signaler
3134 * then signals the fence waking us up).
3135 */
3136 if (dma_fence_default_wait(&rq->fence, true,
3137 MAX_SCHEDULE_TIMEOUT) < 0)
3138 return false;
3139 }
3140 }
3141
3142 /* Undo nop_submit_request. We prevent all new i915 requests from
3143 * being queued (by disallowing execbuf whilst wedged) so having
3144 * waited for all active requests above, we know the system is idle
3145 * and do not have to worry about a thread being inside
3146 * engine->submit_request() as we swap over. So unlike installing
3147 * the nop_submit_request on reset, we can do this from normal
3148 * context and do not require stop_machine().
3149 */
3150 intel_engines_reset_default_submission(i915);
3151 i915_gem_contexts_lost(i915);
3152
3153 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3154 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3155
3156 return true;
3157}
3158
3159static void
3160i915_gem_retire_work_handler(struct work_struct *work)
3161{
3162 struct drm_i915_private *dev_priv =
3163 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3164 struct drm_device *dev = &dev_priv->drm;
3165
3166 /* Come back later if the device is busy... */
3167 if (mutex_trylock(&dev->struct_mutex)) {
3168 i915_gem_retire_requests(dev_priv);
3169 mutex_unlock(&dev->struct_mutex);
3170 }
3171
3172 /* Keep the retire handler running until we are finally idle.
3173 * We do not need to do this test under locking as in the worst-case
3174 * we queue the retire worker once too often.
3175 */
3176 if (READ_ONCE(dev_priv->gt.awake)) {
3177 i915_queue_hangcheck(dev_priv);
3178 queue_delayed_work(dev_priv->wq,
3179 &dev_priv->gt.retire_work,
3180 round_jiffies_up_relative(HZ));
3181 }
3182}
3183
3184static void
3185i915_gem_idle_work_handler(struct work_struct *work)
3186{
3187 struct drm_i915_private *dev_priv =
3188 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3189 struct drm_device *dev = &dev_priv->drm;
3190 bool rearm_hangcheck;
3191
3192 if (!READ_ONCE(dev_priv->gt.awake))
3193 return;
3194
3195 /*
3196 * Wait for last execlists context complete, but bail out in case a
3197 * new request is submitted.
3198 */
3199 wait_for(intel_engines_are_idle(dev_priv), 10);
3200 if (READ_ONCE(dev_priv->gt.active_requests))
3201 return;
3202
3203 rearm_hangcheck =
3204 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3205
3206 if (!mutex_trylock(&dev->struct_mutex)) {
3207 /* Currently busy, come back later */
3208 mod_delayed_work(dev_priv->wq,
3209 &dev_priv->gt.idle_work,
3210 msecs_to_jiffies(50));
3211 goto out_rearm;
3212 }
3213
3214 /*
3215 * New request retired after this work handler started, extend active
3216 * period until next instance of the work.
3217 */
3218 if (work_pending(work))
3219 goto out_unlock;
3220
3221 if (dev_priv->gt.active_requests)
3222 goto out_unlock;
3223
3224 if (wait_for(intel_engines_are_idle(dev_priv), 10))
3225 DRM_ERROR("Timeout waiting for engines to idle\n");
3226
3227 intel_engines_mark_idle(dev_priv);
3228 i915_gem_timelines_mark_idle(dev_priv);
3229
3230 GEM_BUG_ON(!dev_priv->gt.awake);
3231 dev_priv->gt.awake = false;
3232 rearm_hangcheck = false;
3233
3234 if (INTEL_GEN(dev_priv) >= 6)
3235 gen6_rps_idle(dev_priv);
3236 intel_runtime_pm_put(dev_priv);
3237out_unlock:
3238 mutex_unlock(&dev->struct_mutex);
3239
3240out_rearm:
3241 if (rearm_hangcheck) {
3242 GEM_BUG_ON(!dev_priv->gt.awake);
3243 i915_queue_hangcheck(dev_priv);
3244 }
3245}
3246
3247void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3248{
3249 struct drm_i915_private *i915 = to_i915(gem->dev);
3250 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3251 struct drm_i915_file_private *fpriv = file->driver_priv;
3252 struct i915_lut_handle *lut, *ln;
3253
3254 mutex_lock(&i915->drm.struct_mutex);
3255
3256 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3257 struct i915_gem_context *ctx = lut->ctx;
3258 struct i915_vma *vma;
3259
3260 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3261 if (ctx->file_priv != fpriv)
3262 continue;
3263
3264 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3265 GEM_BUG_ON(vma->obj != obj);
3266
3267 /* We allow the process to have multiple handles to the same
3268 * vma, in the same fd namespace, by virtue of flink/open.
3269 */
3270 GEM_BUG_ON(!vma->open_count);
3271 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3272 i915_vma_close(vma);
3273
3274 list_del(&lut->obj_link);
3275 list_del(&lut->ctx_link);
3276
3277 kmem_cache_free(i915->luts, lut);
3278 __i915_gem_object_release_unless_active(obj);
3279 }
3280
3281 mutex_unlock(&i915->drm.struct_mutex);
3282}
3283
3284static unsigned long to_wait_timeout(s64 timeout_ns)
3285{
3286 if (timeout_ns < 0)
3287 return MAX_SCHEDULE_TIMEOUT;
3288
3289 if (timeout_ns == 0)
3290 return 0;
3291
3292 return nsecs_to_jiffies_timeout(timeout_ns);
3293}
3294
3295/**
3296 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3297 * @dev: drm device pointer
3298 * @data: ioctl data blob
3299 * @file: drm file pointer
3300 *
3301 * Returns 0 if successful, else an error is returned with the remaining time in
3302 * the timeout parameter.
3303 * -ETIME: object is still busy after timeout
3304 * -ERESTARTSYS: signal interrupted the wait
3305 * -ENONENT: object doesn't exist
3306 * Also possible, but rare:
3307 * -EAGAIN: incomplete, restart syscall
3308 * -ENOMEM: damn
3309 * -ENODEV: Internal IRQ fail
3310 * -E?: The add request failed
3311 *
3312 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3313 * non-zero timeout parameter the wait ioctl will wait for the given number of
3314 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3315 * without holding struct_mutex the object may become re-busied before this
3316 * function completes. A similar but shorter * race condition exists in the busy
3317 * ioctl
3318 */
3319int
3320i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3321{
3322 struct drm_i915_gem_wait *args = data;
3323 struct drm_i915_gem_object *obj;
3324 ktime_t start;
3325 long ret;
3326
3327 if (args->flags != 0)
3328 return -EINVAL;
3329
3330 obj = i915_gem_object_lookup(file, args->bo_handle);
3331 if (!obj)
3332 return -ENOENT;
3333
3334 start = ktime_get();
3335
3336 ret = i915_gem_object_wait(obj,
3337 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3338 to_wait_timeout(args->timeout_ns),
3339 to_rps_client(file));
3340
3341 if (args->timeout_ns > 0) {
3342 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3343 if (args->timeout_ns < 0)
3344 args->timeout_ns = 0;
3345
3346 /*
3347 * Apparently ktime isn't accurate enough and occasionally has a
3348 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3349 * things up to make the test happy. We allow up to 1 jiffy.
3350 *
3351 * This is a regression from the timespec->ktime conversion.
3352 */
3353 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3354 args->timeout_ns = 0;
3355
3356 /* Asked to wait beyond the jiffie/scheduler precision? */
3357 if (ret == -ETIME && args->timeout_ns)
3358 ret = -EAGAIN;
3359 }
3360
3361 i915_gem_object_put(obj);
3362 return ret;
3363}
3364
3365static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3366{
3367 int ret, i;
3368
3369 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3370 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3371 if (ret)
3372 return ret;
3373 }
3374
3375 return 0;
3376}
3377
3378static int wait_for_engines(struct drm_i915_private *i915)
3379{
3380 if (wait_for(intel_engines_are_idle(i915), 50)) {
3381 DRM_ERROR("Failed to idle engines, declaring wedged!\n");
3382 i915_gem_set_wedged(i915);
3383 return -EIO;
3384 }
3385
3386 return 0;
3387}
3388
3389int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3390{
3391 int ret;
3392
3393 /* If the device is asleep, we have no requests outstanding */
3394 if (!READ_ONCE(i915->gt.awake))
3395 return 0;
3396
3397 if (flags & I915_WAIT_LOCKED) {
3398 struct i915_gem_timeline *tl;
3399
3400 lockdep_assert_held(&i915->drm.struct_mutex);
3401
3402 list_for_each_entry(tl, &i915->gt.timelines, link) {
3403 ret = wait_for_timeline(tl, flags);
3404 if (ret)
3405 return ret;
3406 }
3407
3408 i915_gem_retire_requests(i915);
3409 GEM_BUG_ON(i915->gt.active_requests);
3410
3411 ret = wait_for_engines(i915);
3412 } else {
3413 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3414 }
3415
3416 return ret;
3417}
3418
3419static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3420{
3421 /*
3422 * We manually flush the CPU domain so that we can override and
3423 * force the flush for the display, and perform it asyncrhonously.
3424 */
3425 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3426 if (obj->cache_dirty)
3427 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3428 obj->base.write_domain = 0;
3429}
3430
3431void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3432{
3433 if (!READ_ONCE(obj->pin_display))
3434 return;
3435
3436 mutex_lock(&obj->base.dev->struct_mutex);
3437 __i915_gem_object_flush_for_display(obj);
3438 mutex_unlock(&obj->base.dev->struct_mutex);
3439}
3440
3441/**
3442 * Moves a single object to the WC read, and possibly write domain.
3443 * @obj: object to act on
3444 * @write: ask for write access or read only
3445 *
3446 * This function returns when the move is complete, including waiting on
3447 * flushes to occur.
3448 */
3449int
3450i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3451{
3452 int ret;
3453
3454 lockdep_assert_held(&obj->base.dev->struct_mutex);
3455
3456 ret = i915_gem_object_wait(obj,
3457 I915_WAIT_INTERRUPTIBLE |
3458 I915_WAIT_LOCKED |
3459 (write ? I915_WAIT_ALL : 0),
3460 MAX_SCHEDULE_TIMEOUT,
3461 NULL);
3462 if (ret)
3463 return ret;
3464
3465 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3466 return 0;
3467
3468 /* Flush and acquire obj->pages so that we are coherent through
3469 * direct access in memory with previous cached writes through
3470 * shmemfs and that our cache domain tracking remains valid.
3471 * For example, if the obj->filp was moved to swap without us
3472 * being notified and releasing the pages, we would mistakenly
3473 * continue to assume that the obj remained out of the CPU cached
3474 * domain.
3475 */
3476 ret = i915_gem_object_pin_pages(obj);
3477 if (ret)
3478 return ret;
3479
3480 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3481
3482 /* Serialise direct access to this object with the barriers for
3483 * coherent writes from the GPU, by effectively invalidating the
3484 * WC domain upon first access.
3485 */
3486 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3487 mb();
3488
3489 /* It should now be out of any other write domains, and we can update
3490 * the domain values for our changes.
3491 */
3492 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3493 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3494 if (write) {
3495 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3496 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3497 obj->mm.dirty = true;
3498 }
3499
3500 i915_gem_object_unpin_pages(obj);
3501 return 0;
3502}
3503
3504/**
3505 * Moves a single object to the GTT read, and possibly write domain.
3506 * @obj: object to act on
3507 * @write: ask for write access or read only
3508 *
3509 * This function returns when the move is complete, including waiting on
3510 * flushes to occur.
3511 */
3512int
3513i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3514{
3515 int ret;
3516
3517 lockdep_assert_held(&obj->base.dev->struct_mutex);
3518
3519 ret = i915_gem_object_wait(obj,
3520 I915_WAIT_INTERRUPTIBLE |
3521 I915_WAIT_LOCKED |
3522 (write ? I915_WAIT_ALL : 0),
3523 MAX_SCHEDULE_TIMEOUT,
3524 NULL);
3525 if (ret)
3526 return ret;
3527
3528 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3529 return 0;
3530
3531 /* Flush and acquire obj->pages so that we are coherent through
3532 * direct access in memory with previous cached writes through
3533 * shmemfs and that our cache domain tracking remains valid.
3534 * For example, if the obj->filp was moved to swap without us
3535 * being notified and releasing the pages, we would mistakenly
3536 * continue to assume that the obj remained out of the CPU cached
3537 * domain.
3538 */
3539 ret = i915_gem_object_pin_pages(obj);
3540 if (ret)
3541 return ret;
3542
3543 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3544
3545 /* Serialise direct access to this object with the barriers for
3546 * coherent writes from the GPU, by effectively invalidating the
3547 * GTT domain upon first access.
3548 */
3549 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3550 mb();
3551
3552 /* It should now be out of any other write domains, and we can update
3553 * the domain values for our changes.
3554 */
3555 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3556 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3557 if (write) {
3558 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3559 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3560 obj->mm.dirty = true;
3561 }
3562
3563 i915_gem_object_unpin_pages(obj);
3564 return 0;
3565}
3566
3567/**
3568 * Changes the cache-level of an object across all VMA.
3569 * @obj: object to act on
3570 * @cache_level: new cache level to set for the object
3571 *
3572 * After this function returns, the object will be in the new cache-level
3573 * across all GTT and the contents of the backing storage will be coherent,
3574 * with respect to the new cache-level. In order to keep the backing storage
3575 * coherent for all users, we only allow a single cache level to be set
3576 * globally on the object and prevent it from being changed whilst the
3577 * hardware is reading from the object. That is if the object is currently
3578 * on the scanout it will be set to uncached (or equivalent display
3579 * cache coherency) and all non-MOCS GPU access will also be uncached so
3580 * that all direct access to the scanout remains coherent.
3581 */
3582int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3583 enum i915_cache_level cache_level)
3584{
3585 struct i915_vma *vma;
3586 int ret;
3587
3588 lockdep_assert_held(&obj->base.dev->struct_mutex);
3589
3590 if (obj->cache_level == cache_level)
3591 return 0;
3592
3593 /* Inspect the list of currently bound VMA and unbind any that would
3594 * be invalid given the new cache-level. This is principally to
3595 * catch the issue of the CS prefetch crossing page boundaries and
3596 * reading an invalid PTE on older architectures.
3597 */
3598restart:
3599 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3600 if (!drm_mm_node_allocated(&vma->node))
3601 continue;
3602
3603 if (i915_vma_is_pinned(vma)) {
3604 DRM_DEBUG("can not change the cache level of pinned objects\n");
3605 return -EBUSY;
3606 }
3607
3608 if (i915_gem_valid_gtt_space(vma, cache_level))
3609 continue;
3610
3611 ret = i915_vma_unbind(vma);
3612 if (ret)
3613 return ret;
3614
3615 /* As unbinding may affect other elements in the
3616 * obj->vma_list (due to side-effects from retiring
3617 * an active vma), play safe and restart the iterator.
3618 */
3619 goto restart;
3620 }
3621
3622 /* We can reuse the existing drm_mm nodes but need to change the
3623 * cache-level on the PTE. We could simply unbind them all and
3624 * rebind with the correct cache-level on next use. However since
3625 * we already have a valid slot, dma mapping, pages etc, we may as
3626 * rewrite the PTE in the belief that doing so tramples upon less
3627 * state and so involves less work.
3628 */
3629 if (obj->bind_count) {
3630 /* Before we change the PTE, the GPU must not be accessing it.
3631 * If we wait upon the object, we know that all the bound
3632 * VMA are no longer active.
3633 */
3634 ret = i915_gem_object_wait(obj,
3635 I915_WAIT_INTERRUPTIBLE |
3636 I915_WAIT_LOCKED |
3637 I915_WAIT_ALL,
3638 MAX_SCHEDULE_TIMEOUT,
3639 NULL);
3640 if (ret)
3641 return ret;
3642
3643 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3644 cache_level != I915_CACHE_NONE) {
3645 /* Access to snoopable pages through the GTT is
3646 * incoherent and on some machines causes a hard
3647 * lockup. Relinquish the CPU mmaping to force
3648 * userspace to refault in the pages and we can
3649 * then double check if the GTT mapping is still
3650 * valid for that pointer access.
3651 */
3652 i915_gem_release_mmap(obj);
3653
3654 /* As we no longer need a fence for GTT access,
3655 * we can relinquish it now (and so prevent having
3656 * to steal a fence from someone else on the next
3657 * fence request). Note GPU activity would have
3658 * dropped the fence as all snoopable access is
3659 * supposed to be linear.
3660 */
3661 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3662 ret = i915_vma_put_fence(vma);
3663 if (ret)
3664 return ret;
3665 }
3666 } else {
3667 /* We either have incoherent backing store and
3668 * so no GTT access or the architecture is fully
3669 * coherent. In such cases, existing GTT mmaps
3670 * ignore the cache bit in the PTE and we can
3671 * rewrite it without confusing the GPU or having
3672 * to force userspace to fault back in its mmaps.
3673 */
3674 }
3675
3676 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3677 if (!drm_mm_node_allocated(&vma->node))
3678 continue;
3679
3680 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3681 if (ret)
3682 return ret;
3683 }
3684 }
3685
3686 list_for_each_entry(vma, &obj->vma_list, obj_link)
3687 vma->node.color = cache_level;
3688 i915_gem_object_set_cache_coherency(obj, cache_level);
3689 obj->cache_dirty = true; /* Always invalidate stale cachelines */
3690
3691 return 0;
3692}
3693
3694int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3695 struct drm_file *file)
3696{
3697 struct drm_i915_gem_caching *args = data;
3698 struct drm_i915_gem_object *obj;
3699 int err = 0;
3700
3701 rcu_read_lock();
3702 obj = i915_gem_object_lookup_rcu(file, args->handle);
3703 if (!obj) {
3704 err = -ENOENT;
3705 goto out;
3706 }
3707
3708 switch (obj->cache_level) {
3709 case I915_CACHE_LLC:
3710 case I915_CACHE_L3_LLC:
3711 args->caching = I915_CACHING_CACHED;
3712 break;
3713
3714 case I915_CACHE_WT:
3715 args->caching = I915_CACHING_DISPLAY;
3716 break;
3717
3718 default:
3719 args->caching = I915_CACHING_NONE;
3720 break;
3721 }
3722out:
3723 rcu_read_unlock();
3724 return err;
3725}
3726
3727int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3728 struct drm_file *file)
3729{
3730 struct drm_i915_private *i915 = to_i915(dev);
3731 struct drm_i915_gem_caching *args = data;
3732 struct drm_i915_gem_object *obj;
3733 enum i915_cache_level level;
3734 int ret = 0;
3735
3736 switch (args->caching) {
3737 case I915_CACHING_NONE:
3738 level = I915_CACHE_NONE;
3739 break;
3740 case I915_CACHING_CACHED:
3741 /*
3742 * Due to a HW issue on BXT A stepping, GPU stores via a
3743 * snooped mapping may leave stale data in a corresponding CPU
3744 * cacheline, whereas normally such cachelines would get
3745 * invalidated.
3746 */
3747 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3748 return -ENODEV;
3749
3750 level = I915_CACHE_LLC;
3751 break;
3752 case I915_CACHING_DISPLAY:
3753 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3754 break;
3755 default:
3756 return -EINVAL;
3757 }
3758
3759 obj = i915_gem_object_lookup(file, args->handle);
3760 if (!obj)
3761 return -ENOENT;
3762
3763 if (obj->cache_level == level)
3764 goto out;
3765
3766 ret = i915_gem_object_wait(obj,
3767 I915_WAIT_INTERRUPTIBLE,
3768 MAX_SCHEDULE_TIMEOUT,
3769 to_rps_client(file));
3770 if (ret)
3771 goto out;
3772
3773 ret = i915_mutex_lock_interruptible(dev);
3774 if (ret)
3775 goto out;
3776
3777 ret = i915_gem_object_set_cache_level(obj, level);
3778 mutex_unlock(&dev->struct_mutex);
3779
3780out:
3781 i915_gem_object_put(obj);
3782 return ret;
3783}
3784
3785/*
3786 * Prepare buffer for display plane (scanout, cursors, etc).
3787 * Can be called from an uninterruptible phase (modesetting) and allows
3788 * any flushes to be pipelined (for pageflips).
3789 */
3790struct i915_vma *
3791i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3792 u32 alignment,
3793 const struct i915_ggtt_view *view)
3794{
3795 struct i915_vma *vma;
3796 int ret;
3797
3798 lockdep_assert_held(&obj->base.dev->struct_mutex);
3799
3800 /* Mark the pin_display early so that we account for the
3801 * display coherency whilst setting up the cache domains.
3802 */
3803 obj->pin_display++;
3804
3805 /* The display engine is not coherent with the LLC cache on gen6. As
3806 * a result, we make sure that the pinning that is about to occur is
3807 * done with uncached PTEs. This is lowest common denominator for all
3808 * chipsets.
3809 *
3810 * However for gen6+, we could do better by using the GFDT bit instead
3811 * of uncaching, which would allow us to flush all the LLC-cached data
3812 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3813 */
3814 ret = i915_gem_object_set_cache_level(obj,
3815 HAS_WT(to_i915(obj->base.dev)) ?
3816 I915_CACHE_WT : I915_CACHE_NONE);
3817 if (ret) {
3818 vma = ERR_PTR(ret);
3819 goto err_unpin_display;
3820 }
3821
3822 /* As the user may map the buffer once pinned in the display plane
3823 * (e.g. libkms for the bootup splash), we have to ensure that we
3824 * always use map_and_fenceable for all scanout buffers. However,
3825 * it may simply be too big to fit into mappable, in which case
3826 * put it anyway and hope that userspace can cope (but always first
3827 * try to preserve the existing ABI).
3828 */
3829 vma = ERR_PTR(-ENOSPC);
3830 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3831 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3832 PIN_MAPPABLE | PIN_NONBLOCK);
3833 if (IS_ERR(vma)) {
3834 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3835 unsigned int flags;
3836
3837 /* Valleyview is definitely limited to scanning out the first
3838 * 512MiB. Lets presume this behaviour was inherited from the
3839 * g4x display engine and that all earlier gen are similarly
3840 * limited. Testing suggests that it is a little more
3841 * complicated than this. For example, Cherryview appears quite
3842 * happy to scanout from anywhere within its global aperture.
3843 */
3844 flags = 0;
3845 if (HAS_GMCH_DISPLAY(i915))
3846 flags = PIN_MAPPABLE;
3847 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3848 }
3849 if (IS_ERR(vma))
3850 goto err_unpin_display;
3851
3852 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3853
3854 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3855 __i915_gem_object_flush_for_display(obj);
3856 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3857
3858 /* It should now be out of any other write domains, and we can update
3859 * the domain values for our changes.
3860 */
3861 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3862
3863 return vma;
3864
3865err_unpin_display:
3866 obj->pin_display--;
3867 return vma;
3868}
3869
3870void
3871i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3872{
3873 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3874
3875 if (WARN_ON(vma->obj->pin_display == 0))
3876 return;
3877
3878 if (--vma->obj->pin_display == 0)
3879 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3880
3881 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3882 i915_gem_object_bump_inactive_ggtt(vma->obj);
3883
3884 i915_vma_unpin(vma);
3885}
3886
3887/**
3888 * Moves a single object to the CPU read, and possibly write domain.
3889 * @obj: object to act on
3890 * @write: requesting write or read-only access
3891 *
3892 * This function returns when the move is complete, including waiting on
3893 * flushes to occur.
3894 */
3895int
3896i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3897{
3898 int ret;
3899
3900 lockdep_assert_held(&obj->base.dev->struct_mutex);
3901
3902 ret = i915_gem_object_wait(obj,
3903 I915_WAIT_INTERRUPTIBLE |
3904 I915_WAIT_LOCKED |
3905 (write ? I915_WAIT_ALL : 0),
3906 MAX_SCHEDULE_TIMEOUT,
3907 NULL);
3908 if (ret)
3909 return ret;
3910
3911 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3912
3913 /* Flush the CPU cache if it's still invalid. */
3914 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3915 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3916 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3917 }
3918
3919 /* It should now be out of any other write domains, and we can update
3920 * the domain values for our changes.
3921 */
3922 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3923
3924 /* If we're writing through the CPU, then the GPU read domains will
3925 * need to be invalidated at next use.
3926 */
3927 if (write)
3928 __start_cpu_write(obj);
3929
3930 return 0;
3931}
3932
3933/* Throttle our rendering by waiting until the ring has completed our requests
3934 * emitted over 20 msec ago.
3935 *
3936 * Note that if we were to use the current jiffies each time around the loop,
3937 * we wouldn't escape the function with any frames outstanding if the time to
3938 * render a frame was over 20ms.
3939 *
3940 * This should get us reasonable parallelism between CPU and GPU but also
3941 * relatively low latency when blocking on a particular request to finish.
3942 */
3943static int
3944i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3945{
3946 struct drm_i915_private *dev_priv = to_i915(dev);
3947 struct drm_i915_file_private *file_priv = file->driver_priv;
3948 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3949 struct drm_i915_gem_request *request, *target = NULL;
3950 long ret;
3951
3952 /* ABI: return -EIO if already wedged */
3953 if (i915_terminally_wedged(&dev_priv->gpu_error))
3954 return -EIO;
3955
3956 spin_lock(&file_priv->mm.lock);
3957 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3958 if (time_after_eq(request->emitted_jiffies, recent_enough))
3959 break;
3960
3961 if (target) {
3962 list_del(&target->client_link);
3963 target->file_priv = NULL;
3964 }
3965
3966 target = request;
3967 }
3968 if (target)
3969 i915_gem_request_get(target);
3970 spin_unlock(&file_priv->mm.lock);
3971
3972 if (target == NULL)
3973 return 0;
3974
3975 ret = i915_wait_request(target,
3976 I915_WAIT_INTERRUPTIBLE,
3977 MAX_SCHEDULE_TIMEOUT);
3978 i915_gem_request_put(target);
3979
3980 return ret < 0 ? ret : 0;
3981}
3982
3983struct i915_vma *
3984i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3985 const struct i915_ggtt_view *view,
3986 u64 size,
3987 u64 alignment,
3988 u64 flags)
3989{
3990 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3991 struct i915_address_space *vm = &dev_priv->ggtt.base;
3992 struct i915_vma *vma;
3993 int ret;
3994
3995 lockdep_assert_held(&obj->base.dev->struct_mutex);
3996
3997 vma = i915_vma_instance(obj, vm, view);
3998 if (unlikely(IS_ERR(vma)))
3999 return vma;
4000
4001 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4002 if (flags & PIN_NONBLOCK &&
4003 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4004 return ERR_PTR(-ENOSPC);
4005
4006 if (flags & PIN_MAPPABLE) {
4007 /* If the required space is larger than the available
4008 * aperture, we will not able to find a slot for the
4009 * object and unbinding the object now will be in
4010 * vain. Worse, doing so may cause us to ping-pong
4011 * the object in and out of the Global GTT and
4012 * waste a lot of cycles under the mutex.
4013 */
4014 if (vma->fence_size > dev_priv->ggtt.mappable_end)
4015 return ERR_PTR(-E2BIG);
4016
4017 /* If NONBLOCK is set the caller is optimistically
4018 * trying to cache the full object within the mappable
4019 * aperture, and *must* have a fallback in place for
4020 * situations where we cannot bind the object. We
4021 * can be a little more lax here and use the fallback
4022 * more often to avoid costly migrations of ourselves
4023 * and other objects within the aperture.
4024 *
4025 * Half-the-aperture is used as a simple heuristic.
4026 * More interesting would to do search for a free
4027 * block prior to making the commitment to unbind.
4028 * That caters for the self-harm case, and with a
4029 * little more heuristics (e.g. NOFAULT, NOEVICT)
4030 * we could try to minimise harm to others.
4031 */
4032 if (flags & PIN_NONBLOCK &&
4033 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4034 return ERR_PTR(-ENOSPC);
4035 }
4036
4037 WARN(i915_vma_is_pinned(vma),
4038 "bo is already pinned in ggtt with incorrect alignment:"
4039 " offset=%08x, req.alignment=%llx,"
4040 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4041 i915_ggtt_offset(vma), alignment,
4042 !!(flags & PIN_MAPPABLE),
4043 i915_vma_is_map_and_fenceable(vma));
4044 ret = i915_vma_unbind(vma);
4045 if (ret)
4046 return ERR_PTR(ret);
4047 }
4048
4049 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4050 if (ret)
4051 return ERR_PTR(ret);
4052
4053 return vma;
4054}
4055
4056static __always_inline unsigned int __busy_read_flag(unsigned int id)
4057{
4058 /* Note that we could alias engines in the execbuf API, but
4059 * that would be very unwise as it prevents userspace from
4060 * fine control over engine selection. Ahem.
4061 *
4062 * This should be something like EXEC_MAX_ENGINE instead of
4063 * I915_NUM_ENGINES.
4064 */
4065 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4066 return 0x10000 << id;
4067}
4068
4069static __always_inline unsigned int __busy_write_id(unsigned int id)
4070{
4071 /* The uABI guarantees an active writer is also amongst the read
4072 * engines. This would be true if we accessed the activity tracking
4073 * under the lock, but as we perform the lookup of the object and
4074 * its activity locklessly we can not guarantee that the last_write
4075 * being active implies that we have set the same engine flag from
4076 * last_read - hence we always set both read and write busy for
4077 * last_write.
4078 */
4079 return id | __busy_read_flag(id);
4080}
4081
4082static __always_inline unsigned int
4083__busy_set_if_active(const struct dma_fence *fence,
4084 unsigned int (*flag)(unsigned int id))
4085{
4086 struct drm_i915_gem_request *rq;
4087
4088 /* We have to check the current hw status of the fence as the uABI
4089 * guarantees forward progress. We could rely on the idle worker
4090 * to eventually flush us, but to minimise latency just ask the
4091 * hardware.
4092 *
4093 * Note we only report on the status of native fences.
4094 */
4095 if (!dma_fence_is_i915(fence))
4096 return 0;
4097
4098 /* opencode to_request() in order to avoid const warnings */
4099 rq = container_of(fence, struct drm_i915_gem_request, fence);
4100 if (i915_gem_request_completed(rq))
4101 return 0;
4102
4103 return flag(rq->engine->uabi_id);
4104}
4105
4106static __always_inline unsigned int
4107busy_check_reader(const struct dma_fence *fence)
4108{
4109 return __busy_set_if_active(fence, __busy_read_flag);
4110}
4111
4112static __always_inline unsigned int
4113busy_check_writer(const struct dma_fence *fence)
4114{
4115 if (!fence)
4116 return 0;
4117
4118 return __busy_set_if_active(fence, __busy_write_id);
4119}
4120
4121int
4122i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4123 struct drm_file *file)
4124{
4125 struct drm_i915_gem_busy *args = data;
4126 struct drm_i915_gem_object *obj;
4127 struct reservation_object_list *list;
4128 unsigned int seq;
4129 int err;
4130
4131 err = -ENOENT;
4132 rcu_read_lock();
4133 obj = i915_gem_object_lookup_rcu(file, args->handle);
4134 if (!obj)
4135 goto out;
4136
4137 /* A discrepancy here is that we do not report the status of
4138 * non-i915 fences, i.e. even though we may report the object as idle,
4139 * a call to set-domain may still stall waiting for foreign rendering.
4140 * This also means that wait-ioctl may report an object as busy,
4141 * where busy-ioctl considers it idle.
4142 *
4143 * We trade the ability to warn of foreign fences to report on which
4144 * i915 engines are active for the object.
4145 *
4146 * Alternatively, we can trade that extra information on read/write
4147 * activity with
4148 * args->busy =
4149 * !reservation_object_test_signaled_rcu(obj->resv, true);
4150 * to report the overall busyness. This is what the wait-ioctl does.
4151 *
4152 */
4153retry:
4154 seq = raw_read_seqcount(&obj->resv->seq);
4155
4156 /* Translate the exclusive fence to the READ *and* WRITE engine */
4157 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4158
4159 /* Translate shared fences to READ set of engines */
4160 list = rcu_dereference(obj->resv->fence);
4161 if (list) {
4162 unsigned int shared_count = list->shared_count, i;
4163
4164 for (i = 0; i < shared_count; ++i) {
4165 struct dma_fence *fence =
4166 rcu_dereference(list->shared[i]);
4167
4168 args->busy |= busy_check_reader(fence);
4169 }
4170 }
4171
4172 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4173 goto retry;
4174
4175 err = 0;
4176out:
4177 rcu_read_unlock();
4178 return err;
4179}
4180
4181int
4182i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4183 struct drm_file *file_priv)
4184{
4185 return i915_gem_ring_throttle(dev, file_priv);
4186}
4187
4188int
4189i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4190 struct drm_file *file_priv)
4191{
4192 struct drm_i915_private *dev_priv = to_i915(dev);
4193 struct drm_i915_gem_madvise *args = data;
4194 struct drm_i915_gem_object *obj;
4195 int err;
4196
4197 switch (args->madv) {
4198 case I915_MADV_DONTNEED:
4199 case I915_MADV_WILLNEED:
4200 break;
4201 default:
4202 return -EINVAL;
4203 }
4204
4205 obj = i915_gem_object_lookup(file_priv, args->handle);
4206 if (!obj)
4207 return -ENOENT;
4208
4209 err = mutex_lock_interruptible(&obj->mm.lock);
4210 if (err)
4211 goto out;
4212
4213 if (obj->mm.pages &&
4214 i915_gem_object_is_tiled(obj) &&
4215 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4216 if (obj->mm.madv == I915_MADV_WILLNEED) {
4217 GEM_BUG_ON(!obj->mm.quirked);
4218 __i915_gem_object_unpin_pages(obj);
4219 obj->mm.quirked = false;
4220 }
4221 if (args->madv == I915_MADV_WILLNEED) {
4222 GEM_BUG_ON(obj->mm.quirked);
4223 __i915_gem_object_pin_pages(obj);
4224 obj->mm.quirked = true;
4225 }
4226 }
4227
4228 if (obj->mm.madv != __I915_MADV_PURGED)
4229 obj->mm.madv = args->madv;
4230
4231 /* if the object is no longer attached, discard its backing storage */
4232 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4233 i915_gem_object_truncate(obj);
4234
4235 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4236 mutex_unlock(&obj->mm.lock);
4237
4238out:
4239 i915_gem_object_put(obj);
4240 return err;
4241}
4242
4243static void
4244frontbuffer_retire(struct i915_gem_active *active,
4245 struct drm_i915_gem_request *request)
4246{
4247 struct drm_i915_gem_object *obj =
4248 container_of(active, typeof(*obj), frontbuffer_write);
4249
4250 intel_fb_obj_flush(obj, ORIGIN_CS);
4251}
4252
4253void i915_gem_object_init(struct drm_i915_gem_object *obj,
4254 const struct drm_i915_gem_object_ops *ops)
4255{
4256 mutex_init(&obj->mm.lock);
4257
4258 INIT_LIST_HEAD(&obj->global_link);
4259 INIT_LIST_HEAD(&obj->userfault_link);
4260 INIT_LIST_HEAD(&obj->vma_list);
4261 INIT_LIST_HEAD(&obj->lut_list);
4262 INIT_LIST_HEAD(&obj->batch_pool_link);
4263
4264 obj->ops = ops;
4265
4266 reservation_object_init(&obj->__builtin_resv);
4267 obj->resv = &obj->__builtin_resv;
4268
4269 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4270 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4271
4272 obj->mm.madv = I915_MADV_WILLNEED;
4273 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4274 mutex_init(&obj->mm.get_page.lock);
4275
4276 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4277}
4278
4279static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4280 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4281 I915_GEM_OBJECT_IS_SHRINKABLE,
4282
4283 .get_pages = i915_gem_object_get_pages_gtt,
4284 .put_pages = i915_gem_object_put_pages_gtt,
4285
4286 .pwrite = i915_gem_object_pwrite_gtt,
4287};
4288
4289struct drm_i915_gem_object *
4290i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4291{
4292 struct drm_i915_gem_object *obj;
4293 struct address_space *mapping;
4294 unsigned int cache_level;
4295 gfp_t mask;
4296 int ret;
4297
4298 /* There is a prevalence of the assumption that we fit the object's
4299 * page count inside a 32bit _signed_ variable. Let's document this and
4300 * catch if we ever need to fix it. In the meantime, if you do spot
4301 * such a local variable, please consider fixing!
4302 */
4303 if (size >> PAGE_SHIFT > INT_MAX)
4304 return ERR_PTR(-E2BIG);
4305
4306 if (overflows_type(size, obj->base.size))
4307 return ERR_PTR(-E2BIG);
4308
4309 obj = i915_gem_object_alloc(dev_priv);
4310 if (obj == NULL)
4311 return ERR_PTR(-ENOMEM);
4312
4313 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4314 if (ret)
4315 goto fail;
4316
4317 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4318 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4319 /* 965gm cannot relocate objects above 4GiB. */
4320 mask &= ~__GFP_HIGHMEM;
4321 mask |= __GFP_DMA32;
4322 }
4323
4324 mapping = obj->base.filp->f_mapping;
4325 mapping_set_gfp_mask(mapping, mask);
4326 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4327
4328 i915_gem_object_init(obj, &i915_gem_object_ops);
4329
4330 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4331 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4332
4333 if (HAS_LLC(dev_priv))
4334 /* On some devices, we can have the GPU use the LLC (the CPU
4335 * cache) for about a 10% performance improvement
4336 * compared to uncached. Graphics requests other than
4337 * display scanout are coherent with the CPU in
4338 * accessing this cache. This means in this mode we
4339 * don't need to clflush on the CPU side, and on the
4340 * GPU side we only need to flush internal caches to
4341 * get data visible to the CPU.
4342 *
4343 * However, we maintain the display planes as UC, and so
4344 * need to rebind when first used as such.
4345 */
4346 cache_level = I915_CACHE_LLC;
4347 else
4348 cache_level = I915_CACHE_NONE;
4349
4350 i915_gem_object_set_cache_coherency(obj, cache_level);
4351
4352 trace_i915_gem_object_create(obj);
4353
4354 return obj;
4355
4356fail:
4357 i915_gem_object_free(obj);
4358 return ERR_PTR(ret);
4359}
4360
4361static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4362{
4363 /* If we are the last user of the backing storage (be it shmemfs
4364 * pages or stolen etc), we know that the pages are going to be
4365 * immediately released. In this case, we can then skip copying
4366 * back the contents from the GPU.
4367 */
4368
4369 if (obj->mm.madv != I915_MADV_WILLNEED)
4370 return false;
4371
4372 if (obj->base.filp == NULL)
4373 return true;
4374
4375 /* At first glance, this looks racy, but then again so would be
4376 * userspace racing mmap against close. However, the first external
4377 * reference to the filp can only be obtained through the
4378 * i915_gem_mmap_ioctl() which safeguards us against the user
4379 * acquiring such a reference whilst we are in the middle of
4380 * freeing the object.
4381 */
4382 return atomic_long_read(&obj->base.filp->f_count) == 1;
4383}
4384
4385static void __i915_gem_free_objects(struct drm_i915_private *i915,
4386 struct llist_node *freed)
4387{
4388 struct drm_i915_gem_object *obj, *on;
4389
4390 mutex_lock(&i915->drm.struct_mutex);
4391 intel_runtime_pm_get(i915);
4392 llist_for_each_entry(obj, freed, freed) {
4393 struct i915_vma *vma, *vn;
4394
4395 trace_i915_gem_object_destroy(obj);
4396
4397 GEM_BUG_ON(i915_gem_object_is_active(obj));
4398 list_for_each_entry_safe(vma, vn,
4399 &obj->vma_list, obj_link) {
4400 GEM_BUG_ON(i915_vma_is_active(vma));
4401 vma->flags &= ~I915_VMA_PIN_MASK;
4402 i915_vma_close(vma);
4403 }
4404 GEM_BUG_ON(!list_empty(&obj->vma_list));
4405 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4406
4407 list_del(&obj->global_link);
4408 }
4409 intel_runtime_pm_put(i915);
4410 mutex_unlock(&i915->drm.struct_mutex);
4411
4412 cond_resched();
4413
4414 llist_for_each_entry_safe(obj, on, freed, freed) {
4415 GEM_BUG_ON(obj->bind_count);
4416 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4417 GEM_BUG_ON(!list_empty(&obj->lut_list));
4418
4419 if (obj->ops->release)
4420 obj->ops->release(obj);
4421
4422 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4423 atomic_set(&obj->mm.pages_pin_count, 0);
4424 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4425 GEM_BUG_ON(obj->mm.pages);
4426
4427 if (obj->base.import_attach)
4428 drm_prime_gem_destroy(&obj->base, NULL);
4429
4430 reservation_object_fini(&obj->__builtin_resv);
4431 drm_gem_object_release(&obj->base);
4432 i915_gem_info_remove_obj(i915, obj->base.size);
4433
4434 kfree(obj->bit_17);
4435 i915_gem_object_free(obj);
4436 }
4437}
4438
4439static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4440{
4441 struct llist_node *freed;
4442
4443 freed = llist_del_all(&i915->mm.free_list);
4444 if (unlikely(freed))
4445 __i915_gem_free_objects(i915, freed);
4446}
4447
4448static void __i915_gem_free_work(struct work_struct *work)
4449{
4450 struct drm_i915_private *i915 =
4451 container_of(work, struct drm_i915_private, mm.free_work);
4452 struct llist_node *freed;
4453
4454 /* All file-owned VMA should have been released by this point through
4455 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4456 * However, the object may also be bound into the global GTT (e.g.
4457 * older GPUs without per-process support, or for direct access through
4458 * the GTT either for the user or for scanout). Those VMA still need to
4459 * unbound now.
4460 */
4461
4462 while ((freed = llist_del_all(&i915->mm.free_list))) {
4463 __i915_gem_free_objects(i915, freed);
4464 if (need_resched())
4465 break;
4466 }
4467}
4468
4469static void __i915_gem_free_object_rcu(struct rcu_head *head)
4470{
4471 struct drm_i915_gem_object *obj =
4472 container_of(head, typeof(*obj), rcu);
4473 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4474
4475 /* We can't simply use call_rcu() from i915_gem_free_object()
4476 * as we need to block whilst unbinding, and the call_rcu
4477 * task may be called from softirq context. So we take a
4478 * detour through a worker.
4479 */
4480 if (llist_add(&obj->freed, &i915->mm.free_list))
4481 schedule_work(&i915->mm.free_work);
4482}
4483
4484void i915_gem_free_object(struct drm_gem_object *gem_obj)
4485{
4486 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4487
4488 if (obj->mm.quirked)
4489 __i915_gem_object_unpin_pages(obj);
4490
4491 if (discard_backing_storage(obj))
4492 obj->mm.madv = I915_MADV_DONTNEED;
4493
4494 /* Before we free the object, make sure any pure RCU-only
4495 * read-side critical sections are complete, e.g.
4496 * i915_gem_busy_ioctl(). For the corresponding synchronized
4497 * lookup see i915_gem_object_lookup_rcu().
4498 */
4499 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4500}
4501
4502void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4503{
4504 lockdep_assert_held(&obj->base.dev->struct_mutex);
4505
4506 if (!i915_gem_object_has_active_reference(obj) &&
4507 i915_gem_object_is_active(obj))
4508 i915_gem_object_set_active_reference(obj);
4509 else
4510 i915_gem_object_put(obj);
4511}
4512
4513static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4514{
4515 struct intel_engine_cs *engine;
4516 enum intel_engine_id id;
4517
4518 for_each_engine(engine, dev_priv, id)
4519 GEM_BUG_ON(engine->last_retired_context &&
4520 !i915_gem_context_is_kernel(engine->last_retired_context));
4521}
4522
4523void i915_gem_sanitize(struct drm_i915_private *i915)
4524{
4525 if (i915_terminally_wedged(&i915->gpu_error)) {
4526 mutex_lock(&i915->drm.struct_mutex);
4527 i915_gem_unset_wedged(i915);
4528 mutex_unlock(&i915->drm.struct_mutex);
4529 }
4530
4531 /*
4532 * If we inherit context state from the BIOS or earlier occupants
4533 * of the GPU, the GPU may be in an inconsistent state when we
4534 * try to take over. The only way to remove the earlier state
4535 * is by resetting. However, resetting on earlier gen is tricky as
4536 * it may impact the display and we are uncertain about the stability
4537 * of the reset, so this could be applied to even earlier gen.
4538 */
4539 if (INTEL_GEN(i915) >= 5) {
4540 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4541 WARN_ON(reset && reset != -ENODEV);
4542 }
4543}
4544
4545int i915_gem_suspend(struct drm_i915_private *dev_priv)
4546{
4547 struct drm_device *dev = &dev_priv->drm;
4548 int ret;
4549
4550 intel_runtime_pm_get(dev_priv);
4551 intel_suspend_gt_powersave(dev_priv);
4552
4553 mutex_lock(&dev->struct_mutex);
4554
4555 /* We have to flush all the executing contexts to main memory so
4556 * that they can saved in the hibernation image. To ensure the last
4557 * context image is coherent, we have to switch away from it. That
4558 * leaves the dev_priv->kernel_context still active when
4559 * we actually suspend, and its image in memory may not match the GPU
4560 * state. Fortunately, the kernel_context is disposable and we do
4561 * not rely on its state.
4562 */
4563 ret = i915_gem_switch_to_kernel_context(dev_priv);
4564 if (ret)
4565 goto err_unlock;
4566
4567 ret = i915_gem_wait_for_idle(dev_priv,
4568 I915_WAIT_INTERRUPTIBLE |
4569 I915_WAIT_LOCKED);
4570 if (ret && ret != -EIO)
4571 goto err_unlock;
4572
4573 assert_kernel_context_is_current(dev_priv);
4574 i915_gem_contexts_lost(dev_priv);
4575 mutex_unlock(&dev->struct_mutex);
4576
4577 intel_guc_suspend(dev_priv);
4578
4579 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4580 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4581
4582 /* As the idle_work is rearming if it detects a race, play safe and
4583 * repeat the flush until it is definitely idle.
4584 */
4585 while (flush_delayed_work(&dev_priv->gt.idle_work))
4586 ;
4587
4588 /* Assert that we sucessfully flushed all the work and
4589 * reset the GPU back to its idle, low power state.
4590 */
4591 WARN_ON(dev_priv->gt.awake);
4592 if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4593 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4594
4595 /*
4596 * Neither the BIOS, ourselves or any other kernel
4597 * expects the system to be in execlists mode on startup,
4598 * so we need to reset the GPU back to legacy mode. And the only
4599 * known way to disable logical contexts is through a GPU reset.
4600 *
4601 * So in order to leave the system in a known default configuration,
4602 * always reset the GPU upon unload and suspend. Afterwards we then
4603 * clean up the GEM state tracking, flushing off the requests and
4604 * leaving the system in a known idle state.
4605 *
4606 * Note that is of the upmost importance that the GPU is idle and
4607 * all stray writes are flushed *before* we dismantle the backing
4608 * storage for the pinned objects.
4609 *
4610 * However, since we are uncertain that resetting the GPU on older
4611 * machines is a good idea, we don't - just in case it leaves the
4612 * machine in an unusable condition.
4613 */
4614 i915_gem_sanitize(dev_priv);
4615
4616 intel_runtime_pm_put(dev_priv);
4617 return 0;
4618
4619err_unlock:
4620 mutex_unlock(&dev->struct_mutex);
4621 intel_runtime_pm_put(dev_priv);
4622 return ret;
4623}
4624
4625void i915_gem_resume(struct drm_i915_private *dev_priv)
4626{
4627 struct drm_device *dev = &dev_priv->drm;
4628
4629 WARN_ON(dev_priv->gt.awake);
4630
4631 mutex_lock(&dev->struct_mutex);
4632 i915_gem_restore_gtt_mappings(dev_priv);
4633
4634 /* As we didn't flush the kernel context before suspend, we cannot
4635 * guarantee that the context image is complete. So let's just reset
4636 * it and start again.
4637 */
4638 dev_priv->gt.resume(dev_priv);
4639
4640 mutex_unlock(&dev->struct_mutex);
4641}
4642
4643void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4644{
4645 if (INTEL_GEN(dev_priv) < 5 ||
4646 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4647 return;
4648
4649 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4650 DISP_TILE_SURFACE_SWIZZLING);
4651
4652 if (IS_GEN5(dev_priv))
4653 return;
4654
4655 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4656 if (IS_GEN6(dev_priv))
4657 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4658 else if (IS_GEN7(dev_priv))
4659 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4660 else if (IS_GEN8(dev_priv))
4661 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4662 else
4663 BUG();
4664}
4665
4666static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4667{
4668 I915_WRITE(RING_CTL(base), 0);
4669 I915_WRITE(RING_HEAD(base), 0);
4670 I915_WRITE(RING_TAIL(base), 0);
4671 I915_WRITE(RING_START(base), 0);
4672}
4673
4674static void init_unused_rings(struct drm_i915_private *dev_priv)
4675{
4676 if (IS_I830(dev_priv)) {
4677 init_unused_ring(dev_priv, PRB1_BASE);
4678 init_unused_ring(dev_priv, SRB0_BASE);
4679 init_unused_ring(dev_priv, SRB1_BASE);
4680 init_unused_ring(dev_priv, SRB2_BASE);
4681 init_unused_ring(dev_priv, SRB3_BASE);
4682 } else if (IS_GEN2(dev_priv)) {
4683 init_unused_ring(dev_priv, SRB0_BASE);
4684 init_unused_ring(dev_priv, SRB1_BASE);
4685 } else if (IS_GEN3(dev_priv)) {
4686 init_unused_ring(dev_priv, PRB1_BASE);
4687 init_unused_ring(dev_priv, PRB2_BASE);
4688 }
4689}
4690
4691static int __i915_gem_restart_engines(void *data)
4692{
4693 struct drm_i915_private *i915 = data;
4694 struct intel_engine_cs *engine;
4695 enum intel_engine_id id;
4696 int err;
4697
4698 for_each_engine(engine, i915, id) {
4699 err = engine->init_hw(engine);
4700 if (err)
4701 return err;
4702 }
4703
4704 return 0;
4705}
4706
4707int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4708{
4709 int ret;
4710
4711 dev_priv->gt.last_init_time = ktime_get();
4712
4713 /* Double layer security blanket, see i915_gem_init() */
4714 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4715
4716 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4717 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4718
4719 if (IS_HASWELL(dev_priv))
4720 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4721 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4722
4723 if (HAS_PCH_NOP(dev_priv)) {
4724 if (IS_IVYBRIDGE(dev_priv)) {
4725 u32 temp = I915_READ(GEN7_MSG_CTL);
4726 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4727 I915_WRITE(GEN7_MSG_CTL, temp);
4728 } else if (INTEL_GEN(dev_priv) >= 7) {
4729 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4730 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4731 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4732 }
4733 }
4734
4735 i915_gem_init_swizzling(dev_priv);
4736
4737 /*
4738 * At least 830 can leave some of the unused rings
4739 * "active" (ie. head != tail) after resume which
4740 * will prevent c3 entry. Makes sure all unused rings
4741 * are totally idle.
4742 */
4743 init_unused_rings(dev_priv);
4744
4745 BUG_ON(!dev_priv->kernel_context);
4746
4747 ret = i915_ppgtt_init_hw(dev_priv);
4748 if (ret) {
4749 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4750 goto out;
4751 }
4752
4753 /* Need to do basic initialisation of all rings first: */
4754 ret = __i915_gem_restart_engines(dev_priv);
4755 if (ret)
4756 goto out;
4757
4758 intel_mocs_init_l3cc_table(dev_priv);
4759
4760 /* We can't enable contexts until all firmware is loaded */
4761 ret = intel_uc_init_hw(dev_priv);
4762 if (ret)
4763 goto out;
4764
4765out:
4766 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4767 return ret;
4768}
4769
4770bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4771{
4772 if (INTEL_INFO(dev_priv)->gen < 6)
4773 return false;
4774
4775 /* TODO: make semaphores and Execlists play nicely together */
4776 if (i915.enable_execlists)
4777 return false;
4778
4779 if (value >= 0)
4780 return value;
4781
4782 /* Enable semaphores on SNB when IO remapping is off */
4783 if (IS_GEN6(dev_priv) && intel_vtd_active())
4784 return false;
4785
4786 return true;
4787}
4788
4789int i915_gem_init(struct drm_i915_private *dev_priv)
4790{
4791 int ret;
4792
4793 mutex_lock(&dev_priv->drm.struct_mutex);
4794
4795 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4796
4797 if (!i915.enable_execlists) {
4798 dev_priv->gt.resume = intel_legacy_submission_resume;
4799 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4800 } else {
4801 dev_priv->gt.resume = intel_lr_context_resume;
4802 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4803 }
4804
4805 /* This is just a security blanket to placate dragons.
4806 * On some systems, we very sporadically observe that the first TLBs
4807 * used by the CS may be stale, despite us poking the TLB reset. If
4808 * we hold the forcewake during initialisation these problems
4809 * just magically go away.
4810 */
4811 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4812
4813 ret = i915_gem_init_userptr(dev_priv);
4814 if (ret)
4815 goto out_unlock;
4816
4817 ret = i915_gem_init_ggtt(dev_priv);
4818 if (ret)
4819 goto out_unlock;
4820
4821 ret = i915_gem_contexts_init(dev_priv);
4822 if (ret)
4823 goto out_unlock;
4824
4825 ret = intel_engines_init(dev_priv);
4826 if (ret)
4827 goto out_unlock;
4828
4829 ret = i915_gem_init_hw(dev_priv);
4830 if (ret == -EIO) {
4831 /* Allow engine initialisation to fail by marking the GPU as
4832 * wedged. But we only want to do this where the GPU is angry,
4833 * for all other failure, such as an allocation failure, bail.
4834 */
4835 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4836 i915_gem_set_wedged(dev_priv);
4837 ret = 0;
4838 }
4839
4840out_unlock:
4841 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4842 mutex_unlock(&dev_priv->drm.struct_mutex);
4843
4844 return ret;
4845}
4846
4847void i915_gem_init_mmio(struct drm_i915_private *i915)
4848{
4849 i915_gem_sanitize(i915);
4850}
4851
4852void
4853i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4854{
4855 struct intel_engine_cs *engine;
4856 enum intel_engine_id id;
4857
4858 for_each_engine(engine, dev_priv, id)
4859 dev_priv->gt.cleanup_engine(engine);
4860}
4861
4862void
4863i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4864{
4865 int i;
4866
4867 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4868 !IS_CHERRYVIEW(dev_priv))
4869 dev_priv->num_fence_regs = 32;
4870 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4871 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4872 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4873 dev_priv->num_fence_regs = 16;
4874 else
4875 dev_priv->num_fence_regs = 8;
4876
4877 if (intel_vgpu_active(dev_priv))
4878 dev_priv->num_fence_regs =
4879 I915_READ(vgtif_reg(avail_rs.fence_num));
4880
4881 /* Initialize fence registers to zero */
4882 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4883 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4884
4885 fence->i915 = dev_priv;
4886 fence->id = i;
4887 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4888 }
4889 i915_gem_restore_fences(dev_priv);
4890
4891 i915_gem_detect_bit_6_swizzle(dev_priv);
4892}
4893
4894int
4895i915_gem_load_init(struct drm_i915_private *dev_priv)
4896{
4897 int err = -ENOMEM;
4898
4899 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4900 if (!dev_priv->objects)
4901 goto err_out;
4902
4903 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4904 if (!dev_priv->vmas)
4905 goto err_objects;
4906
4907 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
4908 if (!dev_priv->luts)
4909 goto err_vmas;
4910
4911 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4912 SLAB_HWCACHE_ALIGN |
4913 SLAB_RECLAIM_ACCOUNT |
4914 SLAB_TYPESAFE_BY_RCU);
4915 if (!dev_priv->requests)
4916 goto err_luts;
4917
4918 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4919 SLAB_HWCACHE_ALIGN |
4920 SLAB_RECLAIM_ACCOUNT);
4921 if (!dev_priv->dependencies)
4922 goto err_requests;
4923
4924 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4925 if (!dev_priv->priorities)
4926 goto err_dependencies;
4927
4928 mutex_lock(&dev_priv->drm.struct_mutex);
4929 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4930 err = i915_gem_timeline_init__global(dev_priv);
4931 mutex_unlock(&dev_priv->drm.struct_mutex);
4932 if (err)
4933 goto err_priorities;
4934
4935 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4936 init_llist_head(&dev_priv->mm.free_list);
4937 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4938 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4939 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4940 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4941 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4942 i915_gem_retire_work_handler);
4943 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4944 i915_gem_idle_work_handler);
4945 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4946 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4947
4948 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4949
4950 spin_lock_init(&dev_priv->fb_tracking.lock);
4951
4952 return 0;
4953
4954err_priorities:
4955 kmem_cache_destroy(dev_priv->priorities);
4956err_dependencies:
4957 kmem_cache_destroy(dev_priv->dependencies);
4958err_requests:
4959 kmem_cache_destroy(dev_priv->requests);
4960err_luts:
4961 kmem_cache_destroy(dev_priv->luts);
4962err_vmas:
4963 kmem_cache_destroy(dev_priv->vmas);
4964err_objects:
4965 kmem_cache_destroy(dev_priv->objects);
4966err_out:
4967 return err;
4968}
4969
4970void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4971{
4972 i915_gem_drain_freed_objects(dev_priv);
4973 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4974 WARN_ON(dev_priv->mm.object_count);
4975
4976 mutex_lock(&dev_priv->drm.struct_mutex);
4977 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4978 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4979 mutex_unlock(&dev_priv->drm.struct_mutex);
4980
4981 kmem_cache_destroy(dev_priv->priorities);
4982 kmem_cache_destroy(dev_priv->dependencies);
4983 kmem_cache_destroy(dev_priv->requests);
4984 kmem_cache_destroy(dev_priv->luts);
4985 kmem_cache_destroy(dev_priv->vmas);
4986 kmem_cache_destroy(dev_priv->objects);
4987
4988 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4989 rcu_barrier();
4990}
4991
4992int i915_gem_freeze(struct drm_i915_private *dev_priv)
4993{
4994 /* Discard all purgeable objects, let userspace recover those as
4995 * required after resuming.
4996 */
4997 i915_gem_shrink_all(dev_priv);
4998
4999 return 0;
5000}
5001
5002int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5003{
5004 struct drm_i915_gem_object *obj;
5005 struct list_head *phases[] = {
5006 &dev_priv->mm.unbound_list,
5007 &dev_priv->mm.bound_list,
5008 NULL
5009 }, **p;
5010
5011 /* Called just before we write the hibernation image.
5012 *
5013 * We need to update the domain tracking to reflect that the CPU
5014 * will be accessing all the pages to create and restore from the
5015 * hibernation, and so upon restoration those pages will be in the
5016 * CPU domain.
5017 *
5018 * To make sure the hibernation image contains the latest state,
5019 * we update that state just before writing out the image.
5020 *
5021 * To try and reduce the hibernation image, we manually shrink
5022 * the objects as well, see i915_gem_freeze()
5023 */
5024
5025 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5026 i915_gem_drain_freed_objects(dev_priv);
5027
5028 mutex_lock(&dev_priv->drm.struct_mutex);
5029 for (p = phases; *p; p++) {
5030 list_for_each_entry(obj, *p, global_link)
5031 __start_cpu_write(obj);
5032 }
5033 mutex_unlock(&dev_priv->drm.struct_mutex);
5034
5035 return 0;
5036}
5037
5038void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5039{
5040 struct drm_i915_file_private *file_priv = file->driver_priv;
5041 struct drm_i915_gem_request *request;
5042
5043 /* Clean up our request list when the client is going away, so that
5044 * later retire_requests won't dereference our soon-to-be-gone
5045 * file_priv.
5046 */
5047 spin_lock(&file_priv->mm.lock);
5048 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5049 request->file_priv = NULL;
5050 spin_unlock(&file_priv->mm.lock);
5051}
5052
5053int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5054{
5055 struct drm_i915_file_private *file_priv;
5056 int ret;
5057
5058 DRM_DEBUG("\n");
5059
5060 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5061 if (!file_priv)
5062 return -ENOMEM;
5063
5064 file->driver_priv = file_priv;
5065 file_priv->dev_priv = i915;
5066 file_priv->file = file;
5067
5068 spin_lock_init(&file_priv->mm.lock);
5069 INIT_LIST_HEAD(&file_priv->mm.request_list);
5070
5071 file_priv->bsd_engine = -1;
5072
5073 ret = i915_gem_context_open(i915, file);
5074 if (ret)
5075 kfree(file_priv);
5076
5077 return ret;
5078}
5079
5080/**
5081 * i915_gem_track_fb - update frontbuffer tracking
5082 * @old: current GEM buffer for the frontbuffer slots
5083 * @new: new GEM buffer for the frontbuffer slots
5084 * @frontbuffer_bits: bitmask of frontbuffer slots
5085 *
5086 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5087 * from @old and setting them in @new. Both @old and @new can be NULL.
5088 */
5089void i915_gem_track_fb(struct drm_i915_gem_object *old,
5090 struct drm_i915_gem_object *new,
5091 unsigned frontbuffer_bits)
5092{
5093 /* Control of individual bits within the mask are guarded by
5094 * the owning plane->mutex, i.e. we can never see concurrent
5095 * manipulation of individual bits. But since the bitfield as a whole
5096 * is updated using RMW, we need to use atomics in order to update
5097 * the bits.
5098 */
5099 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5100 sizeof(atomic_t) * BITS_PER_BYTE);
5101
5102 if (old) {
5103 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5104 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5105 }
5106
5107 if (new) {
5108 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5109 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5110 }
5111}
5112
5113/* Allocate a new GEM object and fill it with the supplied data */
5114struct drm_i915_gem_object *
5115i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5116 const void *data, size_t size)
5117{
5118 struct drm_i915_gem_object *obj;
5119 struct file *file;
5120 size_t offset;
5121 int err;
5122
5123 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5124 if (IS_ERR(obj))
5125 return obj;
5126
5127 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5128
5129 file = obj->base.filp;
5130 offset = 0;
5131 do {
5132 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5133 struct page *page;
5134 void *pgdata, *vaddr;
5135
5136 err = pagecache_write_begin(file, file->f_mapping,
5137 offset, len, 0,
5138 &page, &pgdata);
5139 if (err < 0)
5140 goto fail;
5141
5142 vaddr = kmap(page);
5143 memcpy(vaddr, data, len);
5144 kunmap(page);
5145
5146 err = pagecache_write_end(file, file->f_mapping,
5147 offset, len, len,
5148 page, pgdata);
5149 if (err < 0)
5150 goto fail;
5151
5152 size -= len;
5153 data += len;
5154 offset += len;
5155 } while (size);
5156
5157 return obj;
5158
5159fail:
5160 i915_gem_object_put(obj);
5161 return ERR_PTR(err);
5162}
5163
5164struct scatterlist *
5165i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5166 unsigned int n,
5167 unsigned int *offset)
5168{
5169 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5170 struct scatterlist *sg;
5171 unsigned int idx, count;
5172
5173 might_sleep();
5174 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5175 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5176
5177 /* As we iterate forward through the sg, we record each entry in a
5178 * radixtree for quick repeated (backwards) lookups. If we have seen
5179 * this index previously, we will have an entry for it.
5180 *
5181 * Initial lookup is O(N), but this is amortized to O(1) for
5182 * sequential page access (where each new request is consecutive
5183 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5184 * i.e. O(1) with a large constant!
5185 */
5186 if (n < READ_ONCE(iter->sg_idx))
5187 goto lookup;
5188
5189 mutex_lock(&iter->lock);
5190
5191 /* We prefer to reuse the last sg so that repeated lookup of this
5192 * (or the subsequent) sg are fast - comparing against the last
5193 * sg is faster than going through the radixtree.
5194 */
5195
5196 sg = iter->sg_pos;
5197 idx = iter->sg_idx;
5198 count = __sg_page_count(sg);
5199
5200 while (idx + count <= n) {
5201 unsigned long exception, i;
5202 int ret;
5203
5204 /* If we cannot allocate and insert this entry, or the
5205 * individual pages from this range, cancel updating the
5206 * sg_idx so that on this lookup we are forced to linearly
5207 * scan onwards, but on future lookups we will try the
5208 * insertion again (in which case we need to be careful of
5209 * the error return reporting that we have already inserted
5210 * this index).
5211 */
5212 ret = radix_tree_insert(&iter->radix, idx, sg);
5213 if (ret && ret != -EEXIST)
5214 goto scan;
5215
5216 exception =
5217 RADIX_TREE_EXCEPTIONAL_ENTRY |
5218 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5219 for (i = 1; i < count; i++) {
5220 ret = radix_tree_insert(&iter->radix, idx + i,
5221 (void *)exception);
5222 if (ret && ret != -EEXIST)
5223 goto scan;
5224 }
5225
5226 idx += count;
5227 sg = ____sg_next(sg);
5228 count = __sg_page_count(sg);
5229 }
5230
5231scan:
5232 iter->sg_pos = sg;
5233 iter->sg_idx = idx;
5234
5235 mutex_unlock(&iter->lock);
5236
5237 if (unlikely(n < idx)) /* insertion completed by another thread */
5238 goto lookup;
5239
5240 /* In case we failed to insert the entry into the radixtree, we need
5241 * to look beyond the current sg.
5242 */
5243 while (idx + count <= n) {
5244 idx += count;
5245 sg = ____sg_next(sg);
5246 count = __sg_page_count(sg);
5247 }
5248
5249 *offset = n - idx;
5250 return sg;
5251
5252lookup:
5253 rcu_read_lock();
5254
5255 sg = radix_tree_lookup(&iter->radix, n);
5256 GEM_BUG_ON(!sg);
5257
5258 /* If this index is in the middle of multi-page sg entry,
5259 * the radixtree will contain an exceptional entry that points
5260 * to the start of that range. We will return the pointer to
5261 * the base page and the offset of this page within the
5262 * sg entry's range.
5263 */
5264 *offset = 0;
5265 if (unlikely(radix_tree_exception(sg))) {
5266 unsigned long base =
5267 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5268
5269 sg = radix_tree_lookup(&iter->radix, base);
5270 GEM_BUG_ON(!sg);
5271
5272 *offset = n - base;
5273 }
5274
5275 rcu_read_unlock();
5276
5277 return sg;
5278}
5279
5280struct page *
5281i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5282{
5283 struct scatterlist *sg;
5284 unsigned int offset;
5285
5286 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5287
5288 sg = i915_gem_object_get_sg(obj, n, &offset);
5289 return nth_page(sg_page(sg), offset);
5290}
5291
5292/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5293struct page *
5294i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5295 unsigned int n)
5296{
5297 struct page *page;
5298
5299 page = i915_gem_object_get_page(obj, n);
5300 if (!obj->mm.dirty)
5301 set_page_dirty(page);
5302
5303 return page;
5304}
5305
5306dma_addr_t
5307i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5308 unsigned long n)
5309{
5310 struct scatterlist *sg;
5311 unsigned int offset;
5312
5313 sg = i915_gem_object_get_sg(obj, n, &offset);
5314 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5315}
5316
5317int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5318{
5319 struct sg_table *pages;
5320 int err;
5321
5322 if (align > obj->base.size)
5323 return -EINVAL;
5324
5325 if (obj->ops == &i915_gem_phys_ops)
5326 return 0;
5327
5328 if (obj->ops != &i915_gem_object_ops)
5329 return -EINVAL;
5330
5331 err = i915_gem_object_unbind(obj);
5332 if (err)
5333 return err;
5334
5335 mutex_lock(&obj->mm.lock);
5336
5337 if (obj->mm.madv != I915_MADV_WILLNEED) {
5338 err = -EFAULT;
5339 goto err_unlock;
5340 }
5341
5342 if (obj->mm.quirked) {
5343 err = -EFAULT;
5344 goto err_unlock;
5345 }
5346
5347 if (obj->mm.mapping) {
5348 err = -EBUSY;
5349 goto err_unlock;
5350 }
5351
5352 pages = obj->mm.pages;
5353 obj->ops = &i915_gem_phys_ops;
5354
5355 err = ____i915_gem_object_get_pages(obj);
5356 if (err)
5357 goto err_xfer;
5358
5359 /* Perma-pin (until release) the physical set of pages */
5360 __i915_gem_object_pin_pages(obj);
5361
5362 if (!IS_ERR_OR_NULL(pages))
5363 i915_gem_object_ops.put_pages(obj, pages);
5364 mutex_unlock(&obj->mm.lock);
5365 return 0;
5366
5367err_xfer:
5368 obj->ops = &i915_gem_object_ops;
5369 obj->mm.pages = pages;
5370err_unlock:
5371 mutex_unlock(&obj->mm.lock);
5372 return err;
5373}
5374
5375#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5376#include "selftests/scatterlist.c"
5377#include "selftests/mock_gem_device.c"
5378#include "selftests/huge_gem_object.c"
5379#include "selftests/i915_gem_object.c"
5380#include "selftests/i915_gem_coherency.c"
5381#endif