]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - drivers/gpu/drm/i915/intel_dp.c
drm/i915: Use intel_dp->DP in eDP PLL setup
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
... / ...
CommitLineData
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <linux/notifier.h>
32#include <linux/reboot.h>
33#include <drm/drmP.h>
34#include <drm/drm_atomic_helper.h>
35#include <drm/drm_crtc.h>
36#include <drm/drm_crtc_helper.h>
37#include <drm/drm_edid.h>
38#include "intel_drv.h"
39#include <drm/i915_drm.h>
40#include "i915_drv.h"
41
42#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44/* Compliance test status bits */
45#define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46#define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47#define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48#define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53};
54
55static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60};
61
62static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67};
68
69static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74};
75
76/*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92};
93
94static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98static const int default_rates[] = { 162000, 270000, 540000 };
99
100/**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107static bool is_edp(struct intel_dp *intel_dp)
108{
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112}
113
114static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115{
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119}
120
121static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122{
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124}
125
126static void intel_dp_link_down(struct intel_dp *intel_dp);
127static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132
133static unsigned int intel_dp_unused_lane_mask(int lane_count)
134{
135 return ~((1 << lane_count) - 1) & 0xf;
136}
137
138static int
139intel_dp_max_link_bw(struct intel_dp *intel_dp)
140{
141 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
142
143 switch (max_link_bw) {
144 case DP_LINK_BW_1_62:
145 case DP_LINK_BW_2_7:
146 case DP_LINK_BW_5_4:
147 break;
148 default:
149 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
150 max_link_bw);
151 max_link_bw = DP_LINK_BW_1_62;
152 break;
153 }
154 return max_link_bw;
155}
156
157static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
158{
159 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
160 struct drm_device *dev = intel_dig_port->base.base.dev;
161 u8 source_max, sink_max;
162
163 source_max = 4;
164 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
165 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
166 source_max = 2;
167
168 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
169
170 return min(source_max, sink_max);
171}
172
173/*
174 * The units on the numbers in the next two are... bizarre. Examples will
175 * make it clearer; this one parallels an example in the eDP spec.
176 *
177 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
178 *
179 * 270000 * 1 * 8 / 10 == 216000
180 *
181 * The actual data capacity of that configuration is 2.16Gbit/s, so the
182 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
183 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
184 * 119000. At 18bpp that's 2142000 kilobits per second.
185 *
186 * Thus the strange-looking division by 10 in intel_dp_link_required, to
187 * get the result in decakilobits instead of kilobits.
188 */
189
190static int
191intel_dp_link_required(int pixel_clock, int bpp)
192{
193 return (pixel_clock * bpp + 9) / 10;
194}
195
196static int
197intel_dp_max_data_rate(int max_link_clock, int max_lanes)
198{
199 return (max_link_clock * max_lanes * 8) / 10;
200}
201
202static enum drm_mode_status
203intel_dp_mode_valid(struct drm_connector *connector,
204 struct drm_display_mode *mode)
205{
206 struct intel_dp *intel_dp = intel_attached_dp(connector);
207 struct intel_connector *intel_connector = to_intel_connector(connector);
208 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
209 int target_clock = mode->clock;
210 int max_rate, mode_rate, max_lanes, max_link_clock;
211
212 if (is_edp(intel_dp) && fixed_mode) {
213 if (mode->hdisplay > fixed_mode->hdisplay)
214 return MODE_PANEL;
215
216 if (mode->vdisplay > fixed_mode->vdisplay)
217 return MODE_PANEL;
218
219 target_clock = fixed_mode->clock;
220 }
221
222 max_link_clock = intel_dp_max_link_rate(intel_dp);
223 max_lanes = intel_dp_max_lane_count(intel_dp);
224
225 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
226 mode_rate = intel_dp_link_required(target_clock, 18);
227
228 if (mode_rate > max_rate)
229 return MODE_CLOCK_HIGH;
230
231 if (mode->clock < 10000)
232 return MODE_CLOCK_LOW;
233
234 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
235 return MODE_H_ILLEGAL;
236
237 return MODE_OK;
238}
239
240uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
241{
242 int i;
243 uint32_t v = 0;
244
245 if (src_bytes > 4)
246 src_bytes = 4;
247 for (i = 0; i < src_bytes; i++)
248 v |= ((uint32_t) src[i]) << ((3-i) * 8);
249 return v;
250}
251
252static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
253{
254 int i;
255 if (dst_bytes > 4)
256 dst_bytes = 4;
257 for (i = 0; i < dst_bytes; i++)
258 dst[i] = src >> ((3-i) * 8);
259}
260
261static void
262intel_dp_init_panel_power_sequencer(struct drm_device *dev,
263 struct intel_dp *intel_dp);
264static void
265intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
266 struct intel_dp *intel_dp);
267
268static void pps_lock(struct intel_dp *intel_dp)
269{
270 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
271 struct intel_encoder *encoder = &intel_dig_port->base;
272 struct drm_device *dev = encoder->base.dev;
273 struct drm_i915_private *dev_priv = dev->dev_private;
274 enum intel_display_power_domain power_domain;
275
276 /*
277 * See vlv_power_sequencer_reset() why we need
278 * a power domain reference here.
279 */
280 power_domain = intel_display_port_power_domain(encoder);
281 intel_display_power_get(dev_priv, power_domain);
282
283 mutex_lock(&dev_priv->pps_mutex);
284}
285
286static void pps_unlock(struct intel_dp *intel_dp)
287{
288 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
289 struct intel_encoder *encoder = &intel_dig_port->base;
290 struct drm_device *dev = encoder->base.dev;
291 struct drm_i915_private *dev_priv = dev->dev_private;
292 enum intel_display_power_domain power_domain;
293
294 mutex_unlock(&dev_priv->pps_mutex);
295
296 power_domain = intel_display_port_power_domain(encoder);
297 intel_display_power_put(dev_priv, power_domain);
298}
299
300static void
301vlv_power_sequencer_kick(struct intel_dp *intel_dp)
302{
303 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
304 struct drm_device *dev = intel_dig_port->base.base.dev;
305 struct drm_i915_private *dev_priv = dev->dev_private;
306 enum pipe pipe = intel_dp->pps_pipe;
307 bool pll_enabled, release_cl_override = false;
308 enum dpio_phy phy = DPIO_PHY(pipe);
309 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
310 uint32_t DP;
311
312 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
313 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
314 pipe_name(pipe), port_name(intel_dig_port->port)))
315 return;
316
317 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
318 pipe_name(pipe), port_name(intel_dig_port->port));
319
320 /* Preserve the BIOS-computed detected bit. This is
321 * supposed to be read-only.
322 */
323 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
324 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
325 DP |= DP_PORT_WIDTH(1);
326 DP |= DP_LINK_TRAIN_PAT_1;
327
328 if (IS_CHERRYVIEW(dev))
329 DP |= DP_PIPE_SELECT_CHV(pipe);
330 else if (pipe == PIPE_B)
331 DP |= DP_PIPEB_SELECT;
332
333 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
334
335 /*
336 * The DPLL for the pipe must be enabled for this to work.
337 * So enable temporarily it if it's not already enabled.
338 */
339 if (!pll_enabled) {
340 release_cl_override = IS_CHERRYVIEW(dev) &&
341 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
342
343 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
344 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
345 }
346
347 /*
348 * Similar magic as in intel_dp_enable_port().
349 * We _must_ do this port enable + disable trick
350 * to make this power seqeuencer lock onto the port.
351 * Otherwise even VDD force bit won't work.
352 */
353 I915_WRITE(intel_dp->output_reg, DP);
354 POSTING_READ(intel_dp->output_reg);
355
356 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
357 POSTING_READ(intel_dp->output_reg);
358
359 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
360 POSTING_READ(intel_dp->output_reg);
361
362 if (!pll_enabled) {
363 vlv_force_pll_off(dev, pipe);
364
365 if (release_cl_override)
366 chv_phy_powergate_ch(dev_priv, phy, ch, false);
367 }
368}
369
370static enum pipe
371vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
372{
373 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
374 struct drm_device *dev = intel_dig_port->base.base.dev;
375 struct drm_i915_private *dev_priv = dev->dev_private;
376 struct intel_encoder *encoder;
377 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
378 enum pipe pipe;
379
380 lockdep_assert_held(&dev_priv->pps_mutex);
381
382 /* We should never land here with regular DP ports */
383 WARN_ON(!is_edp(intel_dp));
384
385 if (intel_dp->pps_pipe != INVALID_PIPE)
386 return intel_dp->pps_pipe;
387
388 /*
389 * We don't have power sequencer currently.
390 * Pick one that's not used by other ports.
391 */
392 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
393 base.head) {
394 struct intel_dp *tmp;
395
396 if (encoder->type != INTEL_OUTPUT_EDP)
397 continue;
398
399 tmp = enc_to_intel_dp(&encoder->base);
400
401 if (tmp->pps_pipe != INVALID_PIPE)
402 pipes &= ~(1 << tmp->pps_pipe);
403 }
404
405 /*
406 * Didn't find one. This should not happen since there
407 * are two power sequencers and up to two eDP ports.
408 */
409 if (WARN_ON(pipes == 0))
410 pipe = PIPE_A;
411 else
412 pipe = ffs(pipes) - 1;
413
414 vlv_steal_power_sequencer(dev, pipe);
415 intel_dp->pps_pipe = pipe;
416
417 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
418 pipe_name(intel_dp->pps_pipe),
419 port_name(intel_dig_port->port));
420
421 /* init power sequencer on this pipe and port */
422 intel_dp_init_panel_power_sequencer(dev, intel_dp);
423 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
424
425 /*
426 * Even vdd force doesn't work until we've made
427 * the power sequencer lock in on the port.
428 */
429 vlv_power_sequencer_kick(intel_dp);
430
431 return intel_dp->pps_pipe;
432}
433
434typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
435 enum pipe pipe);
436
437static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
438 enum pipe pipe)
439{
440 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
441}
442
443static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
444 enum pipe pipe)
445{
446 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
447}
448
449static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
450 enum pipe pipe)
451{
452 return true;
453}
454
455static enum pipe
456vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
457 enum port port,
458 vlv_pipe_check pipe_check)
459{
460 enum pipe pipe;
461
462 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
463 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
464 PANEL_PORT_SELECT_MASK;
465
466 if (port_sel != PANEL_PORT_SELECT_VLV(port))
467 continue;
468
469 if (!pipe_check(dev_priv, pipe))
470 continue;
471
472 return pipe;
473 }
474
475 return INVALID_PIPE;
476}
477
478static void
479vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
480{
481 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
482 struct drm_device *dev = intel_dig_port->base.base.dev;
483 struct drm_i915_private *dev_priv = dev->dev_private;
484 enum port port = intel_dig_port->port;
485
486 lockdep_assert_held(&dev_priv->pps_mutex);
487
488 /* try to find a pipe with this port selected */
489 /* first pick one where the panel is on */
490 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
491 vlv_pipe_has_pp_on);
492 /* didn't find one? pick one where vdd is on */
493 if (intel_dp->pps_pipe == INVALID_PIPE)
494 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
495 vlv_pipe_has_vdd_on);
496 /* didn't find one? pick one with just the correct port */
497 if (intel_dp->pps_pipe == INVALID_PIPE)
498 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
499 vlv_pipe_any);
500
501 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
502 if (intel_dp->pps_pipe == INVALID_PIPE) {
503 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
504 port_name(port));
505 return;
506 }
507
508 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
509 port_name(port), pipe_name(intel_dp->pps_pipe));
510
511 intel_dp_init_panel_power_sequencer(dev, intel_dp);
512 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
513}
514
515void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
516{
517 struct drm_device *dev = dev_priv->dev;
518 struct intel_encoder *encoder;
519
520 if (WARN_ON(!IS_VALLEYVIEW(dev)))
521 return;
522
523 /*
524 * We can't grab pps_mutex here due to deadlock with power_domain
525 * mutex when power_domain functions are called while holding pps_mutex.
526 * That also means that in order to use pps_pipe the code needs to
527 * hold both a power domain reference and pps_mutex, and the power domain
528 * reference get/put must be done while _not_ holding pps_mutex.
529 * pps_{lock,unlock}() do these steps in the correct order, so one
530 * should use them always.
531 */
532
533 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
534 struct intel_dp *intel_dp;
535
536 if (encoder->type != INTEL_OUTPUT_EDP)
537 continue;
538
539 intel_dp = enc_to_intel_dp(&encoder->base);
540 intel_dp->pps_pipe = INVALID_PIPE;
541 }
542}
543
544static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
545{
546 struct drm_device *dev = intel_dp_to_dev(intel_dp);
547
548 if (IS_BROXTON(dev))
549 return BXT_PP_CONTROL(0);
550 else if (HAS_PCH_SPLIT(dev))
551 return PCH_PP_CONTROL;
552 else
553 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
554}
555
556static u32 _pp_stat_reg(struct intel_dp *intel_dp)
557{
558 struct drm_device *dev = intel_dp_to_dev(intel_dp);
559
560 if (IS_BROXTON(dev))
561 return BXT_PP_STATUS(0);
562 else if (HAS_PCH_SPLIT(dev))
563 return PCH_PP_STATUS;
564 else
565 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
566}
567
568/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
569 This function only applicable when panel PM state is not to be tracked */
570static int edp_notify_handler(struct notifier_block *this, unsigned long code,
571 void *unused)
572{
573 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
574 edp_notifier);
575 struct drm_device *dev = intel_dp_to_dev(intel_dp);
576 struct drm_i915_private *dev_priv = dev->dev_private;
577
578 if (!is_edp(intel_dp) || code != SYS_RESTART)
579 return 0;
580
581 pps_lock(intel_dp);
582
583 if (IS_VALLEYVIEW(dev)) {
584 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
585 u32 pp_ctrl_reg, pp_div_reg;
586 u32 pp_div;
587
588 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
589 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
590 pp_div = I915_READ(pp_div_reg);
591 pp_div &= PP_REFERENCE_DIVIDER_MASK;
592
593 /* 0x1F write to PP_DIV_REG sets max cycle delay */
594 I915_WRITE(pp_div_reg, pp_div | 0x1F);
595 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
596 msleep(intel_dp->panel_power_cycle_delay);
597 }
598
599 pps_unlock(intel_dp);
600
601 return 0;
602}
603
604static bool edp_have_panel_power(struct intel_dp *intel_dp)
605{
606 struct drm_device *dev = intel_dp_to_dev(intel_dp);
607 struct drm_i915_private *dev_priv = dev->dev_private;
608
609 lockdep_assert_held(&dev_priv->pps_mutex);
610
611 if (IS_VALLEYVIEW(dev) &&
612 intel_dp->pps_pipe == INVALID_PIPE)
613 return false;
614
615 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
616}
617
618static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
619{
620 struct drm_device *dev = intel_dp_to_dev(intel_dp);
621 struct drm_i915_private *dev_priv = dev->dev_private;
622
623 lockdep_assert_held(&dev_priv->pps_mutex);
624
625 if (IS_VALLEYVIEW(dev) &&
626 intel_dp->pps_pipe == INVALID_PIPE)
627 return false;
628
629 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
630}
631
632static void
633intel_dp_check_edp(struct intel_dp *intel_dp)
634{
635 struct drm_device *dev = intel_dp_to_dev(intel_dp);
636 struct drm_i915_private *dev_priv = dev->dev_private;
637
638 if (!is_edp(intel_dp))
639 return;
640
641 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
642 WARN(1, "eDP powered off while attempting aux channel communication.\n");
643 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
644 I915_READ(_pp_stat_reg(intel_dp)),
645 I915_READ(_pp_ctrl_reg(intel_dp)));
646 }
647}
648
649static uint32_t
650intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
651{
652 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
653 struct drm_device *dev = intel_dig_port->base.base.dev;
654 struct drm_i915_private *dev_priv = dev->dev_private;
655 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
656 uint32_t status;
657 bool done;
658
659#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
660 if (has_aux_irq)
661 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
662 msecs_to_jiffies_timeout(10));
663 else
664 done = wait_for_atomic(C, 10) == 0;
665 if (!done)
666 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
667 has_aux_irq);
668#undef C
669
670 return status;
671}
672
673static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
674{
675 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
676 struct drm_device *dev = intel_dig_port->base.base.dev;
677
678 /*
679 * The clock divider is based off the hrawclk, and would like to run at
680 * 2MHz. So, take the hrawclk value and divide by 2 and use that
681 */
682 return index ? 0 : intel_hrawclk(dev) / 2;
683}
684
685static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
686{
687 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
688 struct drm_device *dev = intel_dig_port->base.base.dev;
689 struct drm_i915_private *dev_priv = dev->dev_private;
690
691 if (index)
692 return 0;
693
694 if (intel_dig_port->port == PORT_A) {
695 return DIV_ROUND_UP(dev_priv->cdclk_freq, 2000);
696
697 } else {
698 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
699 }
700}
701
702static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
703{
704 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
705 struct drm_device *dev = intel_dig_port->base.base.dev;
706 struct drm_i915_private *dev_priv = dev->dev_private;
707
708 if (intel_dig_port->port == PORT_A) {
709 if (index)
710 return 0;
711 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
712 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
713 /* Workaround for non-ULT HSW */
714 switch (index) {
715 case 0: return 63;
716 case 1: return 72;
717 default: return 0;
718 }
719 } else {
720 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
721 }
722}
723
724static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
725{
726 return index ? 0 : 100;
727}
728
729static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
730{
731 /*
732 * SKL doesn't need us to program the AUX clock divider (Hardware will
733 * derive the clock from CDCLK automatically). We still implement the
734 * get_aux_clock_divider vfunc to plug-in into the existing code.
735 */
736 return index ? 0 : 1;
737}
738
739static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
740 bool has_aux_irq,
741 int send_bytes,
742 uint32_t aux_clock_divider)
743{
744 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
745 struct drm_device *dev = intel_dig_port->base.base.dev;
746 uint32_t precharge, timeout;
747
748 if (IS_GEN6(dev))
749 precharge = 3;
750 else
751 precharge = 5;
752
753 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
754 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
755 else
756 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
757
758 return DP_AUX_CH_CTL_SEND_BUSY |
759 DP_AUX_CH_CTL_DONE |
760 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
761 DP_AUX_CH_CTL_TIME_OUT_ERROR |
762 timeout |
763 DP_AUX_CH_CTL_RECEIVE_ERROR |
764 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
765 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
766 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
767}
768
769static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
770 bool has_aux_irq,
771 int send_bytes,
772 uint32_t unused)
773{
774 return DP_AUX_CH_CTL_SEND_BUSY |
775 DP_AUX_CH_CTL_DONE |
776 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
777 DP_AUX_CH_CTL_TIME_OUT_ERROR |
778 DP_AUX_CH_CTL_TIME_OUT_1600us |
779 DP_AUX_CH_CTL_RECEIVE_ERROR |
780 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
781 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
782}
783
784static int
785intel_dp_aux_ch(struct intel_dp *intel_dp,
786 const uint8_t *send, int send_bytes,
787 uint8_t *recv, int recv_size)
788{
789 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
790 struct drm_device *dev = intel_dig_port->base.base.dev;
791 struct drm_i915_private *dev_priv = dev->dev_private;
792 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
793 uint32_t ch_data = ch_ctl + 4;
794 uint32_t aux_clock_divider;
795 int i, ret, recv_bytes;
796 uint32_t status;
797 int try, clock = 0;
798 bool has_aux_irq = HAS_AUX_IRQ(dev);
799 bool vdd;
800
801 pps_lock(intel_dp);
802
803 /*
804 * We will be called with VDD already enabled for dpcd/edid/oui reads.
805 * In such cases we want to leave VDD enabled and it's up to upper layers
806 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
807 * ourselves.
808 */
809 vdd = edp_panel_vdd_on(intel_dp);
810
811 /* dp aux is extremely sensitive to irq latency, hence request the
812 * lowest possible wakeup latency and so prevent the cpu from going into
813 * deep sleep states.
814 */
815 pm_qos_update_request(&dev_priv->pm_qos, 0);
816
817 intel_dp_check_edp(intel_dp);
818
819 intel_aux_display_runtime_get(dev_priv);
820
821 /* Try to wait for any previous AUX channel activity */
822 for (try = 0; try < 3; try++) {
823 status = I915_READ_NOTRACE(ch_ctl);
824 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
825 break;
826 msleep(1);
827 }
828
829 if (try == 3) {
830 static u32 last_status = -1;
831 const u32 status = I915_READ(ch_ctl);
832
833 if (status != last_status) {
834 WARN(1, "dp_aux_ch not started status 0x%08x\n",
835 status);
836 last_status = status;
837 }
838
839 ret = -EBUSY;
840 goto out;
841 }
842
843 /* Only 5 data registers! */
844 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
845 ret = -E2BIG;
846 goto out;
847 }
848
849 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
850 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
851 has_aux_irq,
852 send_bytes,
853 aux_clock_divider);
854
855 /* Must try at least 3 times according to DP spec */
856 for (try = 0; try < 5; try++) {
857 /* Load the send data into the aux channel data registers */
858 for (i = 0; i < send_bytes; i += 4)
859 I915_WRITE(ch_data + i,
860 intel_dp_pack_aux(send + i,
861 send_bytes - i));
862
863 /* Send the command and wait for it to complete */
864 I915_WRITE(ch_ctl, send_ctl);
865
866 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
867
868 /* Clear done status and any errors */
869 I915_WRITE(ch_ctl,
870 status |
871 DP_AUX_CH_CTL_DONE |
872 DP_AUX_CH_CTL_TIME_OUT_ERROR |
873 DP_AUX_CH_CTL_RECEIVE_ERROR);
874
875 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
876 continue;
877
878 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
879 * 400us delay required for errors and timeouts
880 * Timeout errors from the HW already meet this
881 * requirement so skip to next iteration
882 */
883 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
884 usleep_range(400, 500);
885 continue;
886 }
887 if (status & DP_AUX_CH_CTL_DONE)
888 goto done;
889 }
890 }
891
892 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
893 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
894 ret = -EBUSY;
895 goto out;
896 }
897
898done:
899 /* Check for timeout or receive error.
900 * Timeouts occur when the sink is not connected
901 */
902 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
903 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
904 ret = -EIO;
905 goto out;
906 }
907
908 /* Timeouts occur when the device isn't connected, so they're
909 * "normal" -- don't fill the kernel log with these */
910 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
911 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
912 ret = -ETIMEDOUT;
913 goto out;
914 }
915
916 /* Unload any bytes sent back from the other side */
917 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
918 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
919 if (recv_bytes > recv_size)
920 recv_bytes = recv_size;
921
922 for (i = 0; i < recv_bytes; i += 4)
923 intel_dp_unpack_aux(I915_READ(ch_data + i),
924 recv + i, recv_bytes - i);
925
926 ret = recv_bytes;
927out:
928 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
929 intel_aux_display_runtime_put(dev_priv);
930
931 if (vdd)
932 edp_panel_vdd_off(intel_dp, false);
933
934 pps_unlock(intel_dp);
935
936 return ret;
937}
938
939#define BARE_ADDRESS_SIZE 3
940#define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
941static ssize_t
942intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
943{
944 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
945 uint8_t txbuf[20], rxbuf[20];
946 size_t txsize, rxsize;
947 int ret;
948
949 txbuf[0] = (msg->request << 4) |
950 ((msg->address >> 16) & 0xf);
951 txbuf[1] = (msg->address >> 8) & 0xff;
952 txbuf[2] = msg->address & 0xff;
953 txbuf[3] = msg->size - 1;
954
955 switch (msg->request & ~DP_AUX_I2C_MOT) {
956 case DP_AUX_NATIVE_WRITE:
957 case DP_AUX_I2C_WRITE:
958 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
959 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
960 rxsize = 2; /* 0 or 1 data bytes */
961
962 if (WARN_ON(txsize > 20))
963 return -E2BIG;
964
965 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
966
967 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
968 if (ret > 0) {
969 msg->reply = rxbuf[0] >> 4;
970
971 if (ret > 1) {
972 /* Number of bytes written in a short write. */
973 ret = clamp_t(int, rxbuf[1], 0, msg->size);
974 } else {
975 /* Return payload size. */
976 ret = msg->size;
977 }
978 }
979 break;
980
981 case DP_AUX_NATIVE_READ:
982 case DP_AUX_I2C_READ:
983 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
984 rxsize = msg->size + 1;
985
986 if (WARN_ON(rxsize > 20))
987 return -E2BIG;
988
989 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
990 if (ret > 0) {
991 msg->reply = rxbuf[0] >> 4;
992 /*
993 * Assume happy day, and copy the data. The caller is
994 * expected to check msg->reply before touching it.
995 *
996 * Return payload size.
997 */
998 ret--;
999 memcpy(msg->buffer, rxbuf + 1, ret);
1000 }
1001 break;
1002
1003 default:
1004 ret = -EINVAL;
1005 break;
1006 }
1007
1008 return ret;
1009}
1010
1011static void
1012intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1013{
1014 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1015 struct drm_i915_private *dev_priv = dev->dev_private;
1016 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1017 enum port port = intel_dig_port->port;
1018 struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1019 const char *name = NULL;
1020 uint32_t porte_aux_ctl_reg = DPA_AUX_CH_CTL;
1021 int ret;
1022
1023 /* On SKL we don't have Aux for port E so we rely on VBT to set
1024 * a proper alternate aux channel.
1025 */
1026 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) && port == PORT_E) {
1027 switch (info->alternate_aux_channel) {
1028 case DP_AUX_B:
1029 porte_aux_ctl_reg = DPB_AUX_CH_CTL;
1030 break;
1031 case DP_AUX_C:
1032 porte_aux_ctl_reg = DPC_AUX_CH_CTL;
1033 break;
1034 case DP_AUX_D:
1035 porte_aux_ctl_reg = DPD_AUX_CH_CTL;
1036 break;
1037 case DP_AUX_A:
1038 default:
1039 porte_aux_ctl_reg = DPA_AUX_CH_CTL;
1040 }
1041 }
1042
1043 switch (port) {
1044 case PORT_A:
1045 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1046 name = "DPDDC-A";
1047 break;
1048 case PORT_B:
1049 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1050 name = "DPDDC-B";
1051 break;
1052 case PORT_C:
1053 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1054 name = "DPDDC-C";
1055 break;
1056 case PORT_D:
1057 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1058 name = "DPDDC-D";
1059 break;
1060 case PORT_E:
1061 intel_dp->aux_ch_ctl_reg = porte_aux_ctl_reg;
1062 name = "DPDDC-E";
1063 break;
1064 default:
1065 BUG();
1066 }
1067
1068 /*
1069 * The AUX_CTL register is usually DP_CTL + 0x10.
1070 *
1071 * On Haswell and Broadwell though:
1072 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1073 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1074 *
1075 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1076 */
1077 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev) && port != PORT_E)
1078 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1079
1080 intel_dp->aux.name = name;
1081 intel_dp->aux.dev = dev->dev;
1082 intel_dp->aux.transfer = intel_dp_aux_transfer;
1083
1084 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1085 connector->base.kdev->kobj.name);
1086
1087 ret = drm_dp_aux_register(&intel_dp->aux);
1088 if (ret < 0) {
1089 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1090 name, ret);
1091 return;
1092 }
1093
1094 ret = sysfs_create_link(&connector->base.kdev->kobj,
1095 &intel_dp->aux.ddc.dev.kobj,
1096 intel_dp->aux.ddc.dev.kobj.name);
1097 if (ret < 0) {
1098 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1099 drm_dp_aux_unregister(&intel_dp->aux);
1100 }
1101}
1102
1103static void
1104intel_dp_connector_unregister(struct intel_connector *intel_connector)
1105{
1106 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1107
1108 if (!intel_connector->mst_port)
1109 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1110 intel_dp->aux.ddc.dev.kobj.name);
1111 intel_connector_unregister(intel_connector);
1112}
1113
1114static void
1115skl_edp_set_pll_config(struct intel_crtc_state *pipe_config)
1116{
1117 u32 ctrl1;
1118
1119 memset(&pipe_config->dpll_hw_state, 0,
1120 sizeof(pipe_config->dpll_hw_state));
1121
1122 pipe_config->ddi_pll_sel = SKL_DPLL0;
1123 pipe_config->dpll_hw_state.cfgcr1 = 0;
1124 pipe_config->dpll_hw_state.cfgcr2 = 0;
1125
1126 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1127 switch (pipe_config->port_clock / 2) {
1128 case 81000:
1129 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1130 SKL_DPLL0);
1131 break;
1132 case 135000:
1133 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1134 SKL_DPLL0);
1135 break;
1136 case 270000:
1137 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1138 SKL_DPLL0);
1139 break;
1140 case 162000:
1141 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1142 SKL_DPLL0);
1143 break;
1144 /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1145 results in CDCLK change. Need to handle the change of CDCLK by
1146 disabling pipes and re-enabling them */
1147 case 108000:
1148 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1149 SKL_DPLL0);
1150 break;
1151 case 216000:
1152 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1153 SKL_DPLL0);
1154 break;
1155
1156 }
1157 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1158}
1159
1160void
1161hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config)
1162{
1163 memset(&pipe_config->dpll_hw_state, 0,
1164 sizeof(pipe_config->dpll_hw_state));
1165
1166 switch (pipe_config->port_clock / 2) {
1167 case 81000:
1168 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1169 break;
1170 case 135000:
1171 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1172 break;
1173 case 270000:
1174 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1175 break;
1176 }
1177}
1178
1179static int
1180intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1181{
1182 if (intel_dp->num_sink_rates) {
1183 *sink_rates = intel_dp->sink_rates;
1184 return intel_dp->num_sink_rates;
1185 }
1186
1187 *sink_rates = default_rates;
1188
1189 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1190}
1191
1192bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1193{
1194 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1195 struct drm_device *dev = dig_port->base.base.dev;
1196
1197 /* WaDisableHBR2:skl */
1198 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1199 return false;
1200
1201 if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1202 (INTEL_INFO(dev)->gen >= 9))
1203 return true;
1204 else
1205 return false;
1206}
1207
1208static int
1209intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1210{
1211 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1212 struct drm_device *dev = dig_port->base.base.dev;
1213 int size;
1214
1215 if (IS_BROXTON(dev)) {
1216 *source_rates = bxt_rates;
1217 size = ARRAY_SIZE(bxt_rates);
1218 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1219 *source_rates = skl_rates;
1220 size = ARRAY_SIZE(skl_rates);
1221 } else {
1222 *source_rates = default_rates;
1223 size = ARRAY_SIZE(default_rates);
1224 }
1225
1226 /* This depends on the fact that 5.4 is last value in the array */
1227 if (!intel_dp_source_supports_hbr2(intel_dp))
1228 size--;
1229
1230 return size;
1231}
1232
1233static void
1234intel_dp_set_clock(struct intel_encoder *encoder,
1235 struct intel_crtc_state *pipe_config)
1236{
1237 struct drm_device *dev = encoder->base.dev;
1238 const struct dp_link_dpll *divisor = NULL;
1239 int i, count = 0;
1240
1241 if (IS_G4X(dev)) {
1242 divisor = gen4_dpll;
1243 count = ARRAY_SIZE(gen4_dpll);
1244 } else if (HAS_PCH_SPLIT(dev)) {
1245 divisor = pch_dpll;
1246 count = ARRAY_SIZE(pch_dpll);
1247 } else if (IS_CHERRYVIEW(dev)) {
1248 divisor = chv_dpll;
1249 count = ARRAY_SIZE(chv_dpll);
1250 } else if (IS_VALLEYVIEW(dev)) {
1251 divisor = vlv_dpll;
1252 count = ARRAY_SIZE(vlv_dpll);
1253 }
1254
1255 if (divisor && count) {
1256 for (i = 0; i < count; i++) {
1257 if (pipe_config->port_clock == divisor[i].clock) {
1258 pipe_config->dpll = divisor[i].dpll;
1259 pipe_config->clock_set = true;
1260 break;
1261 }
1262 }
1263 }
1264}
1265
1266static int intersect_rates(const int *source_rates, int source_len,
1267 const int *sink_rates, int sink_len,
1268 int *common_rates)
1269{
1270 int i = 0, j = 0, k = 0;
1271
1272 while (i < source_len && j < sink_len) {
1273 if (source_rates[i] == sink_rates[j]) {
1274 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1275 return k;
1276 common_rates[k] = source_rates[i];
1277 ++k;
1278 ++i;
1279 ++j;
1280 } else if (source_rates[i] < sink_rates[j]) {
1281 ++i;
1282 } else {
1283 ++j;
1284 }
1285 }
1286 return k;
1287}
1288
1289static int intel_dp_common_rates(struct intel_dp *intel_dp,
1290 int *common_rates)
1291{
1292 const int *source_rates, *sink_rates;
1293 int source_len, sink_len;
1294
1295 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1296 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1297
1298 return intersect_rates(source_rates, source_len,
1299 sink_rates, sink_len,
1300 common_rates);
1301}
1302
1303static void snprintf_int_array(char *str, size_t len,
1304 const int *array, int nelem)
1305{
1306 int i;
1307
1308 str[0] = '\0';
1309
1310 for (i = 0; i < nelem; i++) {
1311 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1312 if (r >= len)
1313 return;
1314 str += r;
1315 len -= r;
1316 }
1317}
1318
1319static void intel_dp_print_rates(struct intel_dp *intel_dp)
1320{
1321 const int *source_rates, *sink_rates;
1322 int source_len, sink_len, common_len;
1323 int common_rates[DP_MAX_SUPPORTED_RATES];
1324 char str[128]; /* FIXME: too big for stack? */
1325
1326 if ((drm_debug & DRM_UT_KMS) == 0)
1327 return;
1328
1329 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1330 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1331 DRM_DEBUG_KMS("source rates: %s\n", str);
1332
1333 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1334 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1335 DRM_DEBUG_KMS("sink rates: %s\n", str);
1336
1337 common_len = intel_dp_common_rates(intel_dp, common_rates);
1338 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1339 DRM_DEBUG_KMS("common rates: %s\n", str);
1340}
1341
1342static int rate_to_index(int find, const int *rates)
1343{
1344 int i = 0;
1345
1346 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1347 if (find == rates[i])
1348 break;
1349
1350 return i;
1351}
1352
1353int
1354intel_dp_max_link_rate(struct intel_dp *intel_dp)
1355{
1356 int rates[DP_MAX_SUPPORTED_RATES] = {};
1357 int len;
1358
1359 len = intel_dp_common_rates(intel_dp, rates);
1360 if (WARN_ON(len <= 0))
1361 return 162000;
1362
1363 return rates[rate_to_index(0, rates) - 1];
1364}
1365
1366int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1367{
1368 return rate_to_index(rate, intel_dp->sink_rates);
1369}
1370
1371void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1372 uint8_t *link_bw, uint8_t *rate_select)
1373{
1374 if (intel_dp->num_sink_rates) {
1375 *link_bw = 0;
1376 *rate_select =
1377 intel_dp_rate_select(intel_dp, port_clock);
1378 } else {
1379 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1380 *rate_select = 0;
1381 }
1382}
1383
1384bool
1385intel_dp_compute_config(struct intel_encoder *encoder,
1386 struct intel_crtc_state *pipe_config)
1387{
1388 struct drm_device *dev = encoder->base.dev;
1389 struct drm_i915_private *dev_priv = dev->dev_private;
1390 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1391 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1392 enum port port = dp_to_dig_port(intel_dp)->port;
1393 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1394 struct intel_connector *intel_connector = intel_dp->attached_connector;
1395 int lane_count, clock;
1396 int min_lane_count = 1;
1397 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1398 /* Conveniently, the link BW constants become indices with a shift...*/
1399 int min_clock = 0;
1400 int max_clock;
1401 int bpp, mode_rate;
1402 int link_avail, link_clock;
1403 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1404 int common_len;
1405 uint8_t link_bw, rate_select;
1406
1407 common_len = intel_dp_common_rates(intel_dp, common_rates);
1408
1409 /* No common link rates between source and sink */
1410 WARN_ON(common_len <= 0);
1411
1412 max_clock = common_len - 1;
1413
1414 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1415 pipe_config->has_pch_encoder = true;
1416
1417 pipe_config->has_dp_encoder = true;
1418 pipe_config->has_drrs = false;
1419 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1420
1421 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1422 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1423 adjusted_mode);
1424
1425 if (INTEL_INFO(dev)->gen >= 9) {
1426 int ret;
1427 ret = skl_update_scaler_crtc(pipe_config);
1428 if (ret)
1429 return ret;
1430 }
1431
1432 if (HAS_GMCH_DISPLAY(dev))
1433 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1434 intel_connector->panel.fitting_mode);
1435 else
1436 intel_pch_panel_fitting(intel_crtc, pipe_config,
1437 intel_connector->panel.fitting_mode);
1438 }
1439
1440 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1441 return false;
1442
1443 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1444 "max bw %d pixel clock %iKHz\n",
1445 max_lane_count, common_rates[max_clock],
1446 adjusted_mode->crtc_clock);
1447
1448 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1449 * bpc in between. */
1450 bpp = pipe_config->pipe_bpp;
1451 if (is_edp(intel_dp)) {
1452
1453 /* Get bpp from vbt only for panels that dont have bpp in edid */
1454 if (intel_connector->base.display_info.bpc == 0 &&
1455 (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp)) {
1456 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1457 dev_priv->vbt.edp_bpp);
1458 bpp = dev_priv->vbt.edp_bpp;
1459 }
1460
1461 /*
1462 * Use the maximum clock and number of lanes the eDP panel
1463 * advertizes being capable of. The panels are generally
1464 * designed to support only a single clock and lane
1465 * configuration, and typically these values correspond to the
1466 * native resolution of the panel.
1467 */
1468 min_lane_count = max_lane_count;
1469 min_clock = max_clock;
1470 }
1471
1472 for (; bpp >= 6*3; bpp -= 2*3) {
1473 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1474 bpp);
1475
1476 for (clock = min_clock; clock <= max_clock; clock++) {
1477 for (lane_count = min_lane_count;
1478 lane_count <= max_lane_count;
1479 lane_count <<= 1) {
1480
1481 link_clock = common_rates[clock];
1482 link_avail = intel_dp_max_data_rate(link_clock,
1483 lane_count);
1484
1485 if (mode_rate <= link_avail) {
1486 goto found;
1487 }
1488 }
1489 }
1490 }
1491
1492 return false;
1493
1494found:
1495 if (intel_dp->color_range_auto) {
1496 /*
1497 * See:
1498 * CEA-861-E - 5.1 Default Encoding Parameters
1499 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1500 */
1501 pipe_config->limited_color_range =
1502 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1503 } else {
1504 pipe_config->limited_color_range =
1505 intel_dp->limited_color_range;
1506 }
1507
1508 pipe_config->lane_count = lane_count;
1509
1510 pipe_config->pipe_bpp = bpp;
1511 pipe_config->port_clock = common_rates[clock];
1512
1513 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1514 &link_bw, &rate_select);
1515
1516 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1517 link_bw, rate_select, pipe_config->lane_count,
1518 pipe_config->port_clock, bpp);
1519 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1520 mode_rate, link_avail);
1521
1522 intel_link_compute_m_n(bpp, lane_count,
1523 adjusted_mode->crtc_clock,
1524 pipe_config->port_clock,
1525 &pipe_config->dp_m_n);
1526
1527 if (intel_connector->panel.downclock_mode != NULL &&
1528 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1529 pipe_config->has_drrs = true;
1530 intel_link_compute_m_n(bpp, lane_count,
1531 intel_connector->panel.downclock_mode->clock,
1532 pipe_config->port_clock,
1533 &pipe_config->dp_m2_n2);
1534 }
1535
1536 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) && is_edp(intel_dp))
1537 skl_edp_set_pll_config(pipe_config);
1538 else if (IS_BROXTON(dev))
1539 /* handled in ddi */;
1540 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1541 hsw_dp_set_ddi_pll_sel(pipe_config);
1542 else
1543 intel_dp_set_clock(encoder, pipe_config);
1544
1545 return true;
1546}
1547
1548static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1549{
1550 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1551 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1552 struct drm_device *dev = crtc->base.dev;
1553 struct drm_i915_private *dev_priv = dev->dev_private;
1554
1555 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1556 crtc->config->port_clock);
1557
1558 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
1559
1560 if (crtc->config->port_clock == 162000)
1561 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
1562 else
1563 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1564
1565 I915_WRITE(DP_A, intel_dp->DP);
1566 POSTING_READ(DP_A);
1567 udelay(500);
1568}
1569
1570void intel_dp_set_link_params(struct intel_dp *intel_dp,
1571 const struct intel_crtc_state *pipe_config)
1572{
1573 intel_dp->link_rate = pipe_config->port_clock;
1574 intel_dp->lane_count = pipe_config->lane_count;
1575}
1576
1577static void intel_dp_prepare(struct intel_encoder *encoder)
1578{
1579 struct drm_device *dev = encoder->base.dev;
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1582 enum port port = dp_to_dig_port(intel_dp)->port;
1583 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1584 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1585
1586 intel_dp_set_link_params(intel_dp, crtc->config);
1587
1588 /*
1589 * There are four kinds of DP registers:
1590 *
1591 * IBX PCH
1592 * SNB CPU
1593 * IVB CPU
1594 * CPT PCH
1595 *
1596 * IBX PCH and CPU are the same for almost everything,
1597 * except that the CPU DP PLL is configured in this
1598 * register
1599 *
1600 * CPT PCH is quite different, having many bits moved
1601 * to the TRANS_DP_CTL register instead. That
1602 * configuration happens (oddly) in ironlake_pch_enable
1603 */
1604
1605 /* Preserve the BIOS-computed detected bit. This is
1606 * supposed to be read-only.
1607 */
1608 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1609
1610 /* Handle DP bits in common between all three register formats */
1611 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1612 intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1613
1614 /* Split out the IBX/CPU vs CPT settings */
1615
1616 if (IS_GEN7(dev) && port == PORT_A) {
1617 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1618 intel_dp->DP |= DP_SYNC_HS_HIGH;
1619 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1620 intel_dp->DP |= DP_SYNC_VS_HIGH;
1621 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1622
1623 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1624 intel_dp->DP |= DP_ENHANCED_FRAMING;
1625
1626 intel_dp->DP |= crtc->pipe << 29;
1627 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1628 u32 trans_dp;
1629
1630 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1631
1632 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1633 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1634 trans_dp |= TRANS_DP_ENH_FRAMING;
1635 else
1636 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1637 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1638 } else {
1639 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1640 crtc->config->limited_color_range)
1641 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1642
1643 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1644 intel_dp->DP |= DP_SYNC_HS_HIGH;
1645 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1646 intel_dp->DP |= DP_SYNC_VS_HIGH;
1647 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1648
1649 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1650 intel_dp->DP |= DP_ENHANCED_FRAMING;
1651
1652 if (IS_CHERRYVIEW(dev))
1653 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1654 else if (crtc->pipe == PIPE_B)
1655 intel_dp->DP |= DP_PIPEB_SELECT;
1656 }
1657}
1658
1659#define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1660#define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1661
1662#define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1663#define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1664
1665#define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1666#define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1667
1668static void wait_panel_status(struct intel_dp *intel_dp,
1669 u32 mask,
1670 u32 value)
1671{
1672 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1673 struct drm_i915_private *dev_priv = dev->dev_private;
1674 u32 pp_stat_reg, pp_ctrl_reg;
1675
1676 lockdep_assert_held(&dev_priv->pps_mutex);
1677
1678 pp_stat_reg = _pp_stat_reg(intel_dp);
1679 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1680
1681 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1682 mask, value,
1683 I915_READ(pp_stat_reg),
1684 I915_READ(pp_ctrl_reg));
1685
1686 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1687 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1688 I915_READ(pp_stat_reg),
1689 I915_READ(pp_ctrl_reg));
1690 }
1691
1692 DRM_DEBUG_KMS("Wait complete\n");
1693}
1694
1695static void wait_panel_on(struct intel_dp *intel_dp)
1696{
1697 DRM_DEBUG_KMS("Wait for panel power on\n");
1698 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1699}
1700
1701static void wait_panel_off(struct intel_dp *intel_dp)
1702{
1703 DRM_DEBUG_KMS("Wait for panel power off time\n");
1704 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1705}
1706
1707static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1708{
1709 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1710
1711 /* When we disable the VDD override bit last we have to do the manual
1712 * wait. */
1713 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1714 intel_dp->panel_power_cycle_delay);
1715
1716 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1717}
1718
1719static void wait_backlight_on(struct intel_dp *intel_dp)
1720{
1721 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1722 intel_dp->backlight_on_delay);
1723}
1724
1725static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1726{
1727 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1728 intel_dp->backlight_off_delay);
1729}
1730
1731/* Read the current pp_control value, unlocking the register if it
1732 * is locked
1733 */
1734
1735static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1736{
1737 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1738 struct drm_i915_private *dev_priv = dev->dev_private;
1739 u32 control;
1740
1741 lockdep_assert_held(&dev_priv->pps_mutex);
1742
1743 control = I915_READ(_pp_ctrl_reg(intel_dp));
1744 if (!IS_BROXTON(dev)) {
1745 control &= ~PANEL_UNLOCK_MASK;
1746 control |= PANEL_UNLOCK_REGS;
1747 }
1748 return control;
1749}
1750
1751/*
1752 * Must be paired with edp_panel_vdd_off().
1753 * Must hold pps_mutex around the whole on/off sequence.
1754 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1755 */
1756static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1757{
1758 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1759 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1760 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1761 struct drm_i915_private *dev_priv = dev->dev_private;
1762 enum intel_display_power_domain power_domain;
1763 u32 pp;
1764 u32 pp_stat_reg, pp_ctrl_reg;
1765 bool need_to_disable = !intel_dp->want_panel_vdd;
1766
1767 lockdep_assert_held(&dev_priv->pps_mutex);
1768
1769 if (!is_edp(intel_dp))
1770 return false;
1771
1772 cancel_delayed_work(&intel_dp->panel_vdd_work);
1773 intel_dp->want_panel_vdd = true;
1774
1775 if (edp_have_panel_vdd(intel_dp))
1776 return need_to_disable;
1777
1778 power_domain = intel_display_port_power_domain(intel_encoder);
1779 intel_display_power_get(dev_priv, power_domain);
1780
1781 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1782 port_name(intel_dig_port->port));
1783
1784 if (!edp_have_panel_power(intel_dp))
1785 wait_panel_power_cycle(intel_dp);
1786
1787 pp = ironlake_get_pp_control(intel_dp);
1788 pp |= EDP_FORCE_VDD;
1789
1790 pp_stat_reg = _pp_stat_reg(intel_dp);
1791 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1792
1793 I915_WRITE(pp_ctrl_reg, pp);
1794 POSTING_READ(pp_ctrl_reg);
1795 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1796 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1797 /*
1798 * If the panel wasn't on, delay before accessing aux channel
1799 */
1800 if (!edp_have_panel_power(intel_dp)) {
1801 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1802 port_name(intel_dig_port->port));
1803 msleep(intel_dp->panel_power_up_delay);
1804 }
1805
1806 return need_to_disable;
1807}
1808
1809/*
1810 * Must be paired with intel_edp_panel_vdd_off() or
1811 * intel_edp_panel_off().
1812 * Nested calls to these functions are not allowed since
1813 * we drop the lock. Caller must use some higher level
1814 * locking to prevent nested calls from other threads.
1815 */
1816void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1817{
1818 bool vdd;
1819
1820 if (!is_edp(intel_dp))
1821 return;
1822
1823 pps_lock(intel_dp);
1824 vdd = edp_panel_vdd_on(intel_dp);
1825 pps_unlock(intel_dp);
1826
1827 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1828 port_name(dp_to_dig_port(intel_dp)->port));
1829}
1830
1831static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1832{
1833 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1834 struct drm_i915_private *dev_priv = dev->dev_private;
1835 struct intel_digital_port *intel_dig_port =
1836 dp_to_dig_port(intel_dp);
1837 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1838 enum intel_display_power_domain power_domain;
1839 u32 pp;
1840 u32 pp_stat_reg, pp_ctrl_reg;
1841
1842 lockdep_assert_held(&dev_priv->pps_mutex);
1843
1844 WARN_ON(intel_dp->want_panel_vdd);
1845
1846 if (!edp_have_panel_vdd(intel_dp))
1847 return;
1848
1849 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1850 port_name(intel_dig_port->port));
1851
1852 pp = ironlake_get_pp_control(intel_dp);
1853 pp &= ~EDP_FORCE_VDD;
1854
1855 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1856 pp_stat_reg = _pp_stat_reg(intel_dp);
1857
1858 I915_WRITE(pp_ctrl_reg, pp);
1859 POSTING_READ(pp_ctrl_reg);
1860
1861 /* Make sure sequencer is idle before allowing subsequent activity */
1862 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1863 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1864
1865 if ((pp & POWER_TARGET_ON) == 0)
1866 intel_dp->last_power_cycle = jiffies;
1867
1868 power_domain = intel_display_port_power_domain(intel_encoder);
1869 intel_display_power_put(dev_priv, power_domain);
1870}
1871
1872static void edp_panel_vdd_work(struct work_struct *__work)
1873{
1874 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1875 struct intel_dp, panel_vdd_work);
1876
1877 pps_lock(intel_dp);
1878 if (!intel_dp->want_panel_vdd)
1879 edp_panel_vdd_off_sync(intel_dp);
1880 pps_unlock(intel_dp);
1881}
1882
1883static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1884{
1885 unsigned long delay;
1886
1887 /*
1888 * Queue the timer to fire a long time from now (relative to the power
1889 * down delay) to keep the panel power up across a sequence of
1890 * operations.
1891 */
1892 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1893 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1894}
1895
1896/*
1897 * Must be paired with edp_panel_vdd_on().
1898 * Must hold pps_mutex around the whole on/off sequence.
1899 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1900 */
1901static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1902{
1903 struct drm_i915_private *dev_priv =
1904 intel_dp_to_dev(intel_dp)->dev_private;
1905
1906 lockdep_assert_held(&dev_priv->pps_mutex);
1907
1908 if (!is_edp(intel_dp))
1909 return;
1910
1911 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1912 port_name(dp_to_dig_port(intel_dp)->port));
1913
1914 intel_dp->want_panel_vdd = false;
1915
1916 if (sync)
1917 edp_panel_vdd_off_sync(intel_dp);
1918 else
1919 edp_panel_vdd_schedule_off(intel_dp);
1920}
1921
1922static void edp_panel_on(struct intel_dp *intel_dp)
1923{
1924 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1925 struct drm_i915_private *dev_priv = dev->dev_private;
1926 u32 pp;
1927 u32 pp_ctrl_reg;
1928
1929 lockdep_assert_held(&dev_priv->pps_mutex);
1930
1931 if (!is_edp(intel_dp))
1932 return;
1933
1934 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1935 port_name(dp_to_dig_port(intel_dp)->port));
1936
1937 if (WARN(edp_have_panel_power(intel_dp),
1938 "eDP port %c panel power already on\n",
1939 port_name(dp_to_dig_port(intel_dp)->port)))
1940 return;
1941
1942 wait_panel_power_cycle(intel_dp);
1943
1944 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1945 pp = ironlake_get_pp_control(intel_dp);
1946 if (IS_GEN5(dev)) {
1947 /* ILK workaround: disable reset around power sequence */
1948 pp &= ~PANEL_POWER_RESET;
1949 I915_WRITE(pp_ctrl_reg, pp);
1950 POSTING_READ(pp_ctrl_reg);
1951 }
1952
1953 pp |= POWER_TARGET_ON;
1954 if (!IS_GEN5(dev))
1955 pp |= PANEL_POWER_RESET;
1956
1957 I915_WRITE(pp_ctrl_reg, pp);
1958 POSTING_READ(pp_ctrl_reg);
1959
1960 wait_panel_on(intel_dp);
1961 intel_dp->last_power_on = jiffies;
1962
1963 if (IS_GEN5(dev)) {
1964 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1965 I915_WRITE(pp_ctrl_reg, pp);
1966 POSTING_READ(pp_ctrl_reg);
1967 }
1968}
1969
1970void intel_edp_panel_on(struct intel_dp *intel_dp)
1971{
1972 if (!is_edp(intel_dp))
1973 return;
1974
1975 pps_lock(intel_dp);
1976 edp_panel_on(intel_dp);
1977 pps_unlock(intel_dp);
1978}
1979
1980
1981static void edp_panel_off(struct intel_dp *intel_dp)
1982{
1983 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1984 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1985 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1986 struct drm_i915_private *dev_priv = dev->dev_private;
1987 enum intel_display_power_domain power_domain;
1988 u32 pp;
1989 u32 pp_ctrl_reg;
1990
1991 lockdep_assert_held(&dev_priv->pps_mutex);
1992
1993 if (!is_edp(intel_dp))
1994 return;
1995
1996 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
1997 port_name(dp_to_dig_port(intel_dp)->port));
1998
1999 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2000 port_name(dp_to_dig_port(intel_dp)->port));
2001
2002 pp = ironlake_get_pp_control(intel_dp);
2003 /* We need to switch off panel power _and_ force vdd, for otherwise some
2004 * panels get very unhappy and cease to work. */
2005 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2006 EDP_BLC_ENABLE);
2007
2008 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2009
2010 intel_dp->want_panel_vdd = false;
2011
2012 I915_WRITE(pp_ctrl_reg, pp);
2013 POSTING_READ(pp_ctrl_reg);
2014
2015 intel_dp->last_power_cycle = jiffies;
2016 wait_panel_off(intel_dp);
2017
2018 /* We got a reference when we enabled the VDD. */
2019 power_domain = intel_display_port_power_domain(intel_encoder);
2020 intel_display_power_put(dev_priv, power_domain);
2021}
2022
2023void intel_edp_panel_off(struct intel_dp *intel_dp)
2024{
2025 if (!is_edp(intel_dp))
2026 return;
2027
2028 pps_lock(intel_dp);
2029 edp_panel_off(intel_dp);
2030 pps_unlock(intel_dp);
2031}
2032
2033/* Enable backlight in the panel power control. */
2034static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2035{
2036 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2037 struct drm_device *dev = intel_dig_port->base.base.dev;
2038 struct drm_i915_private *dev_priv = dev->dev_private;
2039 u32 pp;
2040 u32 pp_ctrl_reg;
2041
2042 /*
2043 * If we enable the backlight right away following a panel power
2044 * on, we may see slight flicker as the panel syncs with the eDP
2045 * link. So delay a bit to make sure the image is solid before
2046 * allowing it to appear.
2047 */
2048 wait_backlight_on(intel_dp);
2049
2050 pps_lock(intel_dp);
2051
2052 pp = ironlake_get_pp_control(intel_dp);
2053 pp |= EDP_BLC_ENABLE;
2054
2055 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2056
2057 I915_WRITE(pp_ctrl_reg, pp);
2058 POSTING_READ(pp_ctrl_reg);
2059
2060 pps_unlock(intel_dp);
2061}
2062
2063/* Enable backlight PWM and backlight PP control. */
2064void intel_edp_backlight_on(struct intel_dp *intel_dp)
2065{
2066 if (!is_edp(intel_dp))
2067 return;
2068
2069 DRM_DEBUG_KMS("\n");
2070
2071 intel_panel_enable_backlight(intel_dp->attached_connector);
2072 _intel_edp_backlight_on(intel_dp);
2073}
2074
2075/* Disable backlight in the panel power control. */
2076static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2077{
2078 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2079 struct drm_i915_private *dev_priv = dev->dev_private;
2080 u32 pp;
2081 u32 pp_ctrl_reg;
2082
2083 if (!is_edp(intel_dp))
2084 return;
2085
2086 pps_lock(intel_dp);
2087
2088 pp = ironlake_get_pp_control(intel_dp);
2089 pp &= ~EDP_BLC_ENABLE;
2090
2091 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2092
2093 I915_WRITE(pp_ctrl_reg, pp);
2094 POSTING_READ(pp_ctrl_reg);
2095
2096 pps_unlock(intel_dp);
2097
2098 intel_dp->last_backlight_off = jiffies;
2099 edp_wait_backlight_off(intel_dp);
2100}
2101
2102/* Disable backlight PP control and backlight PWM. */
2103void intel_edp_backlight_off(struct intel_dp *intel_dp)
2104{
2105 if (!is_edp(intel_dp))
2106 return;
2107
2108 DRM_DEBUG_KMS("\n");
2109
2110 _intel_edp_backlight_off(intel_dp);
2111 intel_panel_disable_backlight(intel_dp->attached_connector);
2112}
2113
2114/*
2115 * Hook for controlling the panel power control backlight through the bl_power
2116 * sysfs attribute. Take care to handle multiple calls.
2117 */
2118static void intel_edp_backlight_power(struct intel_connector *connector,
2119 bool enable)
2120{
2121 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2122 bool is_enabled;
2123
2124 pps_lock(intel_dp);
2125 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2126 pps_unlock(intel_dp);
2127
2128 if (is_enabled == enable)
2129 return;
2130
2131 DRM_DEBUG_KMS("panel power control backlight %s\n",
2132 enable ? "enable" : "disable");
2133
2134 if (enable)
2135 _intel_edp_backlight_on(intel_dp);
2136 else
2137 _intel_edp_backlight_off(intel_dp);
2138}
2139
2140static const char *state_string(bool enabled)
2141{
2142 return enabled ? "on" : "off";
2143}
2144
2145static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2146{
2147 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2148 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2149 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2150
2151 I915_STATE_WARN(cur_state != state,
2152 "DP port %c state assertion failure (expected %s, current %s)\n",
2153 port_name(dig_port->port),
2154 state_string(state), state_string(cur_state));
2155}
2156#define assert_dp_port_disabled(d) assert_dp_port((d), false)
2157
2158static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2159{
2160 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2161
2162 I915_STATE_WARN(cur_state != state,
2163 "eDP PLL state assertion failure (expected %s, current %s)\n",
2164 state_string(state), state_string(cur_state));
2165}
2166#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2167#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2168
2169static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2170{
2171 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2172 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2173 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2174
2175 assert_pipe_disabled(dev_priv, crtc->pipe);
2176 assert_dp_port_disabled(intel_dp);
2177 assert_edp_pll_disabled(dev_priv);
2178
2179 DRM_DEBUG_KMS("\n");
2180 intel_dp->DP |= DP_PLL_ENABLE;
2181
2182 I915_WRITE(DP_A, intel_dp->DP);
2183 POSTING_READ(DP_A);
2184 udelay(200);
2185}
2186
2187static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2188{
2189 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2190 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2191 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2192
2193 assert_pipe_disabled(dev_priv, crtc->pipe);
2194 assert_dp_port_disabled(intel_dp);
2195 assert_edp_pll_enabled(dev_priv);
2196
2197 intel_dp->DP &= ~DP_PLL_ENABLE;
2198
2199 I915_WRITE(DP_A, intel_dp->DP);
2200 POSTING_READ(DP_A);
2201 udelay(200);
2202}
2203
2204/* If the sink supports it, try to set the power state appropriately */
2205void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2206{
2207 int ret, i;
2208
2209 /* Should have a valid DPCD by this point */
2210 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2211 return;
2212
2213 if (mode != DRM_MODE_DPMS_ON) {
2214 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2215 DP_SET_POWER_D3);
2216 } else {
2217 /*
2218 * When turning on, we need to retry for 1ms to give the sink
2219 * time to wake up.
2220 */
2221 for (i = 0; i < 3; i++) {
2222 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2223 DP_SET_POWER_D0);
2224 if (ret == 1)
2225 break;
2226 msleep(1);
2227 }
2228 }
2229
2230 if (ret != 1)
2231 DRM_DEBUG_KMS("failed to %s sink power state\n",
2232 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2233}
2234
2235static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2236 enum pipe *pipe)
2237{
2238 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2239 enum port port = dp_to_dig_port(intel_dp)->port;
2240 struct drm_device *dev = encoder->base.dev;
2241 struct drm_i915_private *dev_priv = dev->dev_private;
2242 enum intel_display_power_domain power_domain;
2243 u32 tmp;
2244
2245 power_domain = intel_display_port_power_domain(encoder);
2246 if (!intel_display_power_is_enabled(dev_priv, power_domain))
2247 return false;
2248
2249 tmp = I915_READ(intel_dp->output_reg);
2250
2251 if (!(tmp & DP_PORT_EN))
2252 return false;
2253
2254 if (IS_GEN7(dev) && port == PORT_A) {
2255 *pipe = PORT_TO_PIPE_CPT(tmp);
2256 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2257 enum pipe p;
2258
2259 for_each_pipe(dev_priv, p) {
2260 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2261 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2262 *pipe = p;
2263 return true;
2264 }
2265 }
2266
2267 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2268 intel_dp->output_reg);
2269 } else if (IS_CHERRYVIEW(dev)) {
2270 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2271 } else {
2272 *pipe = PORT_TO_PIPE(tmp);
2273 }
2274
2275 return true;
2276}
2277
2278static void intel_dp_get_config(struct intel_encoder *encoder,
2279 struct intel_crtc_state *pipe_config)
2280{
2281 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2282 u32 tmp, flags = 0;
2283 struct drm_device *dev = encoder->base.dev;
2284 struct drm_i915_private *dev_priv = dev->dev_private;
2285 enum port port = dp_to_dig_port(intel_dp)->port;
2286 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2287 int dotclock;
2288
2289 tmp = I915_READ(intel_dp->output_reg);
2290
2291 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2292
2293 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2294 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2295
2296 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2297 flags |= DRM_MODE_FLAG_PHSYNC;
2298 else
2299 flags |= DRM_MODE_FLAG_NHSYNC;
2300
2301 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2302 flags |= DRM_MODE_FLAG_PVSYNC;
2303 else
2304 flags |= DRM_MODE_FLAG_NVSYNC;
2305 } else {
2306 if (tmp & DP_SYNC_HS_HIGH)
2307 flags |= DRM_MODE_FLAG_PHSYNC;
2308 else
2309 flags |= DRM_MODE_FLAG_NHSYNC;
2310
2311 if (tmp & DP_SYNC_VS_HIGH)
2312 flags |= DRM_MODE_FLAG_PVSYNC;
2313 else
2314 flags |= DRM_MODE_FLAG_NVSYNC;
2315 }
2316
2317 pipe_config->base.adjusted_mode.flags |= flags;
2318
2319 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2320 tmp & DP_COLOR_RANGE_16_235)
2321 pipe_config->limited_color_range = true;
2322
2323 pipe_config->has_dp_encoder = true;
2324
2325 pipe_config->lane_count =
2326 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2327
2328 intel_dp_get_m_n(crtc, pipe_config);
2329
2330 if (port == PORT_A) {
2331 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2332 pipe_config->port_clock = 162000;
2333 else
2334 pipe_config->port_clock = 270000;
2335 }
2336
2337 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2338 &pipe_config->dp_m_n);
2339
2340 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2341 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2342
2343 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2344
2345 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2346 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2347 /*
2348 * This is a big fat ugly hack.
2349 *
2350 * Some machines in UEFI boot mode provide us a VBT that has 18
2351 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2352 * unknown we fail to light up. Yet the same BIOS boots up with
2353 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2354 * max, not what it tells us to use.
2355 *
2356 * Note: This will still be broken if the eDP panel is not lit
2357 * up by the BIOS, and thus we can't get the mode at module
2358 * load.
2359 */
2360 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2361 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2362 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2363 }
2364}
2365
2366static void intel_disable_dp(struct intel_encoder *encoder)
2367{
2368 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2369 struct drm_device *dev = encoder->base.dev;
2370 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2371
2372 if (crtc->config->has_audio)
2373 intel_audio_codec_disable(encoder);
2374
2375 if (HAS_PSR(dev) && !HAS_DDI(dev))
2376 intel_psr_disable(intel_dp);
2377
2378 /* Make sure the panel is off before trying to change the mode. But also
2379 * ensure that we have vdd while we switch off the panel. */
2380 intel_edp_panel_vdd_on(intel_dp);
2381 intel_edp_backlight_off(intel_dp);
2382 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2383 intel_edp_panel_off(intel_dp);
2384
2385 /* disable the port before the pipe on g4x */
2386 if (INTEL_INFO(dev)->gen < 5)
2387 intel_dp_link_down(intel_dp);
2388}
2389
2390static void ilk_post_disable_dp(struct intel_encoder *encoder)
2391{
2392 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2393 enum port port = dp_to_dig_port(intel_dp)->port;
2394
2395 intel_dp_link_down(intel_dp);
2396 if (port == PORT_A)
2397 ironlake_edp_pll_off(intel_dp);
2398}
2399
2400static void vlv_post_disable_dp(struct intel_encoder *encoder)
2401{
2402 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2403
2404 intel_dp_link_down(intel_dp);
2405}
2406
2407static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
2408 bool reset)
2409{
2410 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2411 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
2412 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2413 enum pipe pipe = crtc->pipe;
2414 uint32_t val;
2415
2416 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2417 if (reset)
2418 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2419 else
2420 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2421 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2422
2423 if (crtc->config->lane_count > 2) {
2424 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2425 if (reset)
2426 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2427 else
2428 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2429 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2430 }
2431
2432 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2433 val |= CHV_PCS_REQ_SOFTRESET_EN;
2434 if (reset)
2435 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2436 else
2437 val |= DPIO_PCS_CLK_SOFT_RESET;
2438 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2439
2440 if (crtc->config->lane_count > 2) {
2441 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2442 val |= CHV_PCS_REQ_SOFTRESET_EN;
2443 if (reset)
2444 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2445 else
2446 val |= DPIO_PCS_CLK_SOFT_RESET;
2447 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2448 }
2449}
2450
2451static void chv_post_disable_dp(struct intel_encoder *encoder)
2452{
2453 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2454 struct drm_device *dev = encoder->base.dev;
2455 struct drm_i915_private *dev_priv = dev->dev_private;
2456
2457 intel_dp_link_down(intel_dp);
2458
2459 mutex_lock(&dev_priv->sb_lock);
2460
2461 /* Assert data lane reset */
2462 chv_data_lane_soft_reset(encoder, true);
2463
2464 mutex_unlock(&dev_priv->sb_lock);
2465}
2466
2467static void
2468_intel_dp_set_link_train(struct intel_dp *intel_dp,
2469 uint32_t *DP,
2470 uint8_t dp_train_pat)
2471{
2472 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2473 struct drm_device *dev = intel_dig_port->base.base.dev;
2474 struct drm_i915_private *dev_priv = dev->dev_private;
2475 enum port port = intel_dig_port->port;
2476
2477 if (HAS_DDI(dev)) {
2478 uint32_t temp = I915_READ(DP_TP_CTL(port));
2479
2480 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2481 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2482 else
2483 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2484
2485 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2486 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2487 case DP_TRAINING_PATTERN_DISABLE:
2488 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2489
2490 break;
2491 case DP_TRAINING_PATTERN_1:
2492 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2493 break;
2494 case DP_TRAINING_PATTERN_2:
2495 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2496 break;
2497 case DP_TRAINING_PATTERN_3:
2498 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2499 break;
2500 }
2501 I915_WRITE(DP_TP_CTL(port), temp);
2502
2503 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2504 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2505 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2506
2507 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2508 case DP_TRAINING_PATTERN_DISABLE:
2509 *DP |= DP_LINK_TRAIN_OFF_CPT;
2510 break;
2511 case DP_TRAINING_PATTERN_1:
2512 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2513 break;
2514 case DP_TRAINING_PATTERN_2:
2515 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2516 break;
2517 case DP_TRAINING_PATTERN_3:
2518 DRM_ERROR("DP training pattern 3 not supported\n");
2519 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2520 break;
2521 }
2522
2523 } else {
2524 if (IS_CHERRYVIEW(dev))
2525 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2526 else
2527 *DP &= ~DP_LINK_TRAIN_MASK;
2528
2529 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2530 case DP_TRAINING_PATTERN_DISABLE:
2531 *DP |= DP_LINK_TRAIN_OFF;
2532 break;
2533 case DP_TRAINING_PATTERN_1:
2534 *DP |= DP_LINK_TRAIN_PAT_1;
2535 break;
2536 case DP_TRAINING_PATTERN_2:
2537 *DP |= DP_LINK_TRAIN_PAT_2;
2538 break;
2539 case DP_TRAINING_PATTERN_3:
2540 if (IS_CHERRYVIEW(dev)) {
2541 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2542 } else {
2543 DRM_ERROR("DP training pattern 3 not supported\n");
2544 *DP |= DP_LINK_TRAIN_PAT_2;
2545 }
2546 break;
2547 }
2548 }
2549}
2550
2551static void intel_dp_enable_port(struct intel_dp *intel_dp)
2552{
2553 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2554 struct drm_i915_private *dev_priv = dev->dev_private;
2555 struct intel_crtc *crtc =
2556 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2557
2558 /* enable with pattern 1 (as per spec) */
2559 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2560 DP_TRAINING_PATTERN_1);
2561
2562 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2563 POSTING_READ(intel_dp->output_reg);
2564
2565 /*
2566 * Magic for VLV/CHV. We _must_ first set up the register
2567 * without actually enabling the port, and then do another
2568 * write to enable the port. Otherwise link training will
2569 * fail when the power sequencer is freshly used for this port.
2570 */
2571 intel_dp->DP |= DP_PORT_EN;
2572 if (crtc->config->has_audio)
2573 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2574
2575 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2576 POSTING_READ(intel_dp->output_reg);
2577}
2578
2579static void intel_enable_dp(struct intel_encoder *encoder)
2580{
2581 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2582 struct drm_device *dev = encoder->base.dev;
2583 struct drm_i915_private *dev_priv = dev->dev_private;
2584 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2585 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2586 enum port port = dp_to_dig_port(intel_dp)->port;
2587 enum pipe pipe = crtc->pipe;
2588
2589 if (WARN_ON(dp_reg & DP_PORT_EN))
2590 return;
2591
2592 pps_lock(intel_dp);
2593
2594 if (IS_VALLEYVIEW(dev))
2595 vlv_init_panel_power_sequencer(intel_dp);
2596
2597 intel_dp_enable_port(intel_dp);
2598
2599 if (port == PORT_A && IS_GEN5(dev_priv)) {
2600 /*
2601 * Underrun reporting for the other pipe was disabled in
2602 * g4x_pre_enable_dp(). The eDP PLL and port have now been
2603 * enabled, so it's now safe to re-enable underrun reporting.
2604 */
2605 intel_wait_for_vblank_if_active(dev_priv->dev, !pipe);
2606 intel_set_cpu_fifo_underrun_reporting(dev_priv, !pipe, true);
2607 intel_set_pch_fifo_underrun_reporting(dev_priv, !pipe, true);
2608 }
2609
2610 edp_panel_vdd_on(intel_dp);
2611 edp_panel_on(intel_dp);
2612 edp_panel_vdd_off(intel_dp, true);
2613
2614 pps_unlock(intel_dp);
2615
2616 if (IS_VALLEYVIEW(dev)) {
2617 unsigned int lane_mask = 0x0;
2618
2619 if (IS_CHERRYVIEW(dev))
2620 lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2621
2622 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2623 lane_mask);
2624 }
2625
2626 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2627 intel_dp_start_link_train(intel_dp);
2628 intel_dp_stop_link_train(intel_dp);
2629
2630 if (crtc->config->has_audio) {
2631 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2632 pipe_name(pipe));
2633 intel_audio_codec_enable(encoder);
2634 }
2635}
2636
2637static void g4x_enable_dp(struct intel_encoder *encoder)
2638{
2639 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2640
2641 intel_enable_dp(encoder);
2642 intel_edp_backlight_on(intel_dp);
2643}
2644
2645static void vlv_enable_dp(struct intel_encoder *encoder)
2646{
2647 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2648
2649 intel_edp_backlight_on(intel_dp);
2650 intel_psr_enable(intel_dp);
2651}
2652
2653static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2654{
2655 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2656 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2657 enum port port = dp_to_dig_port(intel_dp)->port;
2658 enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
2659
2660 intel_dp_prepare(encoder);
2661
2662 if (port == PORT_A && IS_GEN5(dev_priv)) {
2663 /*
2664 * We get FIFO underruns on the other pipe when
2665 * enabling the CPU eDP PLL, and when enabling CPU
2666 * eDP port. We could potentially avoid the PLL
2667 * underrun with a vblank wait just prior to enabling
2668 * the PLL, but that doesn't appear to help the port
2669 * enable case. Just sweep it all under the rug.
2670 */
2671 intel_set_cpu_fifo_underrun_reporting(dev_priv, !pipe, false);
2672 intel_set_pch_fifo_underrun_reporting(dev_priv, !pipe, false);
2673 }
2674
2675 /* Only ilk+ has port A */
2676 if (port == PORT_A) {
2677 ironlake_set_pll_cpu_edp(intel_dp);
2678 ironlake_edp_pll_on(intel_dp);
2679 }
2680}
2681
2682static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2683{
2684 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2685 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2686 enum pipe pipe = intel_dp->pps_pipe;
2687 int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2688
2689 edp_panel_vdd_off_sync(intel_dp);
2690
2691 /*
2692 * VLV seems to get confused when multiple power seqeuencers
2693 * have the same port selected (even if only one has power/vdd
2694 * enabled). The failure manifests as vlv_wait_port_ready() failing
2695 * CHV on the other hand doesn't seem to mind having the same port
2696 * selected in multiple power seqeuencers, but let's clear the
2697 * port select always when logically disconnecting a power sequencer
2698 * from a port.
2699 */
2700 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2701 pipe_name(pipe), port_name(intel_dig_port->port));
2702 I915_WRITE(pp_on_reg, 0);
2703 POSTING_READ(pp_on_reg);
2704
2705 intel_dp->pps_pipe = INVALID_PIPE;
2706}
2707
2708static void vlv_steal_power_sequencer(struct drm_device *dev,
2709 enum pipe pipe)
2710{
2711 struct drm_i915_private *dev_priv = dev->dev_private;
2712 struct intel_encoder *encoder;
2713
2714 lockdep_assert_held(&dev_priv->pps_mutex);
2715
2716 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2717 return;
2718
2719 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2720 base.head) {
2721 struct intel_dp *intel_dp;
2722 enum port port;
2723
2724 if (encoder->type != INTEL_OUTPUT_EDP)
2725 continue;
2726
2727 intel_dp = enc_to_intel_dp(&encoder->base);
2728 port = dp_to_dig_port(intel_dp)->port;
2729
2730 if (intel_dp->pps_pipe != pipe)
2731 continue;
2732
2733 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2734 pipe_name(pipe), port_name(port));
2735
2736 WARN(encoder->base.crtc,
2737 "stealing pipe %c power sequencer from active eDP port %c\n",
2738 pipe_name(pipe), port_name(port));
2739
2740 /* make sure vdd is off before we steal it */
2741 vlv_detach_power_sequencer(intel_dp);
2742 }
2743}
2744
2745static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2746{
2747 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2748 struct intel_encoder *encoder = &intel_dig_port->base;
2749 struct drm_device *dev = encoder->base.dev;
2750 struct drm_i915_private *dev_priv = dev->dev_private;
2751 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2752
2753 lockdep_assert_held(&dev_priv->pps_mutex);
2754
2755 if (!is_edp(intel_dp))
2756 return;
2757
2758 if (intel_dp->pps_pipe == crtc->pipe)
2759 return;
2760
2761 /*
2762 * If another power sequencer was being used on this
2763 * port previously make sure to turn off vdd there while
2764 * we still have control of it.
2765 */
2766 if (intel_dp->pps_pipe != INVALID_PIPE)
2767 vlv_detach_power_sequencer(intel_dp);
2768
2769 /*
2770 * We may be stealing the power
2771 * sequencer from another port.
2772 */
2773 vlv_steal_power_sequencer(dev, crtc->pipe);
2774
2775 /* now it's all ours */
2776 intel_dp->pps_pipe = crtc->pipe;
2777
2778 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2779 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2780
2781 /* init power sequencer on this pipe and port */
2782 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2783 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2784}
2785
2786static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2787{
2788 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2789 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2790 struct drm_device *dev = encoder->base.dev;
2791 struct drm_i915_private *dev_priv = dev->dev_private;
2792 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2793 enum dpio_channel port = vlv_dport_to_channel(dport);
2794 int pipe = intel_crtc->pipe;
2795 u32 val;
2796
2797 mutex_lock(&dev_priv->sb_lock);
2798
2799 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2800 val = 0;
2801 if (pipe)
2802 val |= (1<<21);
2803 else
2804 val &= ~(1<<21);
2805 val |= 0x001000c4;
2806 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2807 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2808 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2809
2810 mutex_unlock(&dev_priv->sb_lock);
2811
2812 intel_enable_dp(encoder);
2813}
2814
2815static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2816{
2817 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2818 struct drm_device *dev = encoder->base.dev;
2819 struct drm_i915_private *dev_priv = dev->dev_private;
2820 struct intel_crtc *intel_crtc =
2821 to_intel_crtc(encoder->base.crtc);
2822 enum dpio_channel port = vlv_dport_to_channel(dport);
2823 int pipe = intel_crtc->pipe;
2824
2825 intel_dp_prepare(encoder);
2826
2827 /* Program Tx lane resets to default */
2828 mutex_lock(&dev_priv->sb_lock);
2829 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2830 DPIO_PCS_TX_LANE2_RESET |
2831 DPIO_PCS_TX_LANE1_RESET);
2832 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2833 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2834 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2835 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2836 DPIO_PCS_CLK_SOFT_RESET);
2837
2838 /* Fix up inter-pair skew failure */
2839 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2840 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2841 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2842 mutex_unlock(&dev_priv->sb_lock);
2843}
2844
2845static void chv_pre_enable_dp(struct intel_encoder *encoder)
2846{
2847 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2848 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2849 struct drm_device *dev = encoder->base.dev;
2850 struct drm_i915_private *dev_priv = dev->dev_private;
2851 struct intel_crtc *intel_crtc =
2852 to_intel_crtc(encoder->base.crtc);
2853 enum dpio_channel ch = vlv_dport_to_channel(dport);
2854 int pipe = intel_crtc->pipe;
2855 int data, i, stagger;
2856 u32 val;
2857
2858 mutex_lock(&dev_priv->sb_lock);
2859
2860 /* allow hardware to manage TX FIFO reset source */
2861 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2862 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2863 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2864
2865 if (intel_crtc->config->lane_count > 2) {
2866 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2867 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2868 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2869 }
2870
2871 /* Program Tx lane latency optimal setting*/
2872 for (i = 0; i < intel_crtc->config->lane_count; i++) {
2873 /* Set the upar bit */
2874 if (intel_crtc->config->lane_count == 1)
2875 data = 0x0;
2876 else
2877 data = (i == 1) ? 0x0 : 0x1;
2878 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2879 data << DPIO_UPAR_SHIFT);
2880 }
2881
2882 /* Data lane stagger programming */
2883 if (intel_crtc->config->port_clock > 270000)
2884 stagger = 0x18;
2885 else if (intel_crtc->config->port_clock > 135000)
2886 stagger = 0xd;
2887 else if (intel_crtc->config->port_clock > 67500)
2888 stagger = 0x7;
2889 else if (intel_crtc->config->port_clock > 33750)
2890 stagger = 0x4;
2891 else
2892 stagger = 0x2;
2893
2894 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2895 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2896 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2897
2898 if (intel_crtc->config->lane_count > 2) {
2899 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2900 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2901 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2902 }
2903
2904 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2905 DPIO_LANESTAGGER_STRAP(stagger) |
2906 DPIO_LANESTAGGER_STRAP_OVRD |
2907 DPIO_TX1_STAGGER_MASK(0x1f) |
2908 DPIO_TX1_STAGGER_MULT(6) |
2909 DPIO_TX2_STAGGER_MULT(0));
2910
2911 if (intel_crtc->config->lane_count > 2) {
2912 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2913 DPIO_LANESTAGGER_STRAP(stagger) |
2914 DPIO_LANESTAGGER_STRAP_OVRD |
2915 DPIO_TX1_STAGGER_MASK(0x1f) |
2916 DPIO_TX1_STAGGER_MULT(7) |
2917 DPIO_TX2_STAGGER_MULT(5));
2918 }
2919
2920 /* Deassert data lane reset */
2921 chv_data_lane_soft_reset(encoder, false);
2922
2923 mutex_unlock(&dev_priv->sb_lock);
2924
2925 intel_enable_dp(encoder);
2926
2927 /* Second common lane will stay alive on its own now */
2928 if (dport->release_cl2_override) {
2929 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
2930 dport->release_cl2_override = false;
2931 }
2932}
2933
2934static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2935{
2936 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2937 struct drm_device *dev = encoder->base.dev;
2938 struct drm_i915_private *dev_priv = dev->dev_private;
2939 struct intel_crtc *intel_crtc =
2940 to_intel_crtc(encoder->base.crtc);
2941 enum dpio_channel ch = vlv_dport_to_channel(dport);
2942 enum pipe pipe = intel_crtc->pipe;
2943 unsigned int lane_mask =
2944 intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
2945 u32 val;
2946
2947 intel_dp_prepare(encoder);
2948
2949 /*
2950 * Must trick the second common lane into life.
2951 * Otherwise we can't even access the PLL.
2952 */
2953 if (ch == DPIO_CH0 && pipe == PIPE_B)
2954 dport->release_cl2_override =
2955 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
2956
2957 chv_phy_powergate_lanes(encoder, true, lane_mask);
2958
2959 mutex_lock(&dev_priv->sb_lock);
2960
2961 /* Assert data lane reset */
2962 chv_data_lane_soft_reset(encoder, true);
2963
2964 /* program left/right clock distribution */
2965 if (pipe != PIPE_B) {
2966 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2967 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2968 if (ch == DPIO_CH0)
2969 val |= CHV_BUFLEFTENA1_FORCE;
2970 if (ch == DPIO_CH1)
2971 val |= CHV_BUFRIGHTENA1_FORCE;
2972 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2973 } else {
2974 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2975 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2976 if (ch == DPIO_CH0)
2977 val |= CHV_BUFLEFTENA2_FORCE;
2978 if (ch == DPIO_CH1)
2979 val |= CHV_BUFRIGHTENA2_FORCE;
2980 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2981 }
2982
2983 /* program clock channel usage */
2984 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2985 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2986 if (pipe != PIPE_B)
2987 val &= ~CHV_PCS_USEDCLKCHANNEL;
2988 else
2989 val |= CHV_PCS_USEDCLKCHANNEL;
2990 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2991
2992 if (intel_crtc->config->lane_count > 2) {
2993 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2994 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2995 if (pipe != PIPE_B)
2996 val &= ~CHV_PCS_USEDCLKCHANNEL;
2997 else
2998 val |= CHV_PCS_USEDCLKCHANNEL;
2999 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
3000 }
3001
3002 /*
3003 * This a a bit weird since generally CL
3004 * matches the pipe, but here we need to
3005 * pick the CL based on the port.
3006 */
3007 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
3008 if (pipe != PIPE_B)
3009 val &= ~CHV_CMN_USEDCLKCHANNEL;
3010 else
3011 val |= CHV_CMN_USEDCLKCHANNEL;
3012 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
3013
3014 mutex_unlock(&dev_priv->sb_lock);
3015}
3016
3017static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
3018{
3019 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3020 enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
3021 u32 val;
3022
3023 mutex_lock(&dev_priv->sb_lock);
3024
3025 /* disable left/right clock distribution */
3026 if (pipe != PIPE_B) {
3027 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3028 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3029 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3030 } else {
3031 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3032 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3033 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3034 }
3035
3036 mutex_unlock(&dev_priv->sb_lock);
3037
3038 /*
3039 * Leave the power down bit cleared for at least one
3040 * lane so that chv_powergate_phy_ch() will power
3041 * on something when the channel is otherwise unused.
3042 * When the port is off and the override is removed
3043 * the lanes power down anyway, so otherwise it doesn't
3044 * really matter what the state of power down bits is
3045 * after this.
3046 */
3047 chv_phy_powergate_lanes(encoder, false, 0x0);
3048}
3049
3050/*
3051 * Native read with retry for link status and receiver capability reads for
3052 * cases where the sink may still be asleep.
3053 *
3054 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
3055 * supposed to retry 3 times per the spec.
3056 */
3057static ssize_t
3058intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
3059 void *buffer, size_t size)
3060{
3061 ssize_t ret;
3062 int i;
3063
3064 /*
3065 * Sometime we just get the same incorrect byte repeated
3066 * over the entire buffer. Doing just one throw away read
3067 * initially seems to "solve" it.
3068 */
3069 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
3070
3071 for (i = 0; i < 3; i++) {
3072 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
3073 if (ret == size)
3074 return ret;
3075 msleep(1);
3076 }
3077
3078 return ret;
3079}
3080
3081/*
3082 * Fetch AUX CH registers 0x202 - 0x207 which contain
3083 * link status information
3084 */
3085bool
3086intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3087{
3088 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3089 DP_LANE0_1_STATUS,
3090 link_status,
3091 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3092}
3093
3094/* These are source-specific values. */
3095uint8_t
3096intel_dp_voltage_max(struct intel_dp *intel_dp)
3097{
3098 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3099 struct drm_i915_private *dev_priv = dev->dev_private;
3100 enum port port = dp_to_dig_port(intel_dp)->port;
3101
3102 if (IS_BROXTON(dev))
3103 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3104 else if (INTEL_INFO(dev)->gen >= 9) {
3105 if (dev_priv->edp_low_vswing && port == PORT_A)
3106 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3107 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3108 } else if (IS_VALLEYVIEW(dev))
3109 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3110 else if (IS_GEN7(dev) && port == PORT_A)
3111 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3112 else if (HAS_PCH_CPT(dev) && port != PORT_A)
3113 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3114 else
3115 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3116}
3117
3118uint8_t
3119intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3120{
3121 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3122 enum port port = dp_to_dig_port(intel_dp)->port;
3123
3124 if (INTEL_INFO(dev)->gen >= 9) {
3125 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3126 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3127 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3128 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3129 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3130 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3131 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3132 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3133 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3134 default:
3135 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3136 }
3137 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3138 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3139 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3140 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3141 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3142 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3143 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3144 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3145 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3146 default:
3147 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3148 }
3149 } else if (IS_VALLEYVIEW(dev)) {
3150 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3151 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3152 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3153 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3154 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3155 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3156 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3157 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3158 default:
3159 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3160 }
3161 } else if (IS_GEN7(dev) && port == PORT_A) {
3162 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3163 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3164 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3165 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3166 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3167 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3168 default:
3169 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3170 }
3171 } else {
3172 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3173 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3174 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3175 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3176 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3177 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3178 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3179 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3180 default:
3181 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3182 }
3183 }
3184}
3185
3186static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3187{
3188 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3189 struct drm_i915_private *dev_priv = dev->dev_private;
3190 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3191 struct intel_crtc *intel_crtc =
3192 to_intel_crtc(dport->base.base.crtc);
3193 unsigned long demph_reg_value, preemph_reg_value,
3194 uniqtranscale_reg_value;
3195 uint8_t train_set = intel_dp->train_set[0];
3196 enum dpio_channel port = vlv_dport_to_channel(dport);
3197 int pipe = intel_crtc->pipe;
3198
3199 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3200 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3201 preemph_reg_value = 0x0004000;
3202 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3203 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3204 demph_reg_value = 0x2B405555;
3205 uniqtranscale_reg_value = 0x552AB83A;
3206 break;
3207 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3208 demph_reg_value = 0x2B404040;
3209 uniqtranscale_reg_value = 0x5548B83A;
3210 break;
3211 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3212 demph_reg_value = 0x2B245555;
3213 uniqtranscale_reg_value = 0x5560B83A;
3214 break;
3215 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3216 demph_reg_value = 0x2B405555;
3217 uniqtranscale_reg_value = 0x5598DA3A;
3218 break;
3219 default:
3220 return 0;
3221 }
3222 break;
3223 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3224 preemph_reg_value = 0x0002000;
3225 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3226 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3227 demph_reg_value = 0x2B404040;
3228 uniqtranscale_reg_value = 0x5552B83A;
3229 break;
3230 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3231 demph_reg_value = 0x2B404848;
3232 uniqtranscale_reg_value = 0x5580B83A;
3233 break;
3234 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3235 demph_reg_value = 0x2B404040;
3236 uniqtranscale_reg_value = 0x55ADDA3A;
3237 break;
3238 default:
3239 return 0;
3240 }
3241 break;
3242 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3243 preemph_reg_value = 0x0000000;
3244 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3245 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3246 demph_reg_value = 0x2B305555;
3247 uniqtranscale_reg_value = 0x5570B83A;
3248 break;
3249 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3250 demph_reg_value = 0x2B2B4040;
3251 uniqtranscale_reg_value = 0x55ADDA3A;
3252 break;
3253 default:
3254 return 0;
3255 }
3256 break;
3257 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3258 preemph_reg_value = 0x0006000;
3259 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3260 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3261 demph_reg_value = 0x1B405555;
3262 uniqtranscale_reg_value = 0x55ADDA3A;
3263 break;
3264 default:
3265 return 0;
3266 }
3267 break;
3268 default:
3269 return 0;
3270 }
3271
3272 mutex_lock(&dev_priv->sb_lock);
3273 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3274 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3275 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3276 uniqtranscale_reg_value);
3277 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3278 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3279 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3280 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3281 mutex_unlock(&dev_priv->sb_lock);
3282
3283 return 0;
3284}
3285
3286static bool chv_need_uniq_trans_scale(uint8_t train_set)
3287{
3288 return (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0 &&
3289 (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3290}
3291
3292static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3293{
3294 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3295 struct drm_i915_private *dev_priv = dev->dev_private;
3296 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3297 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3298 u32 deemph_reg_value, margin_reg_value, val;
3299 uint8_t train_set = intel_dp->train_set[0];
3300 enum dpio_channel ch = vlv_dport_to_channel(dport);
3301 enum pipe pipe = intel_crtc->pipe;
3302 int i;
3303
3304 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3305 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3306 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3307 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3308 deemph_reg_value = 128;
3309 margin_reg_value = 52;
3310 break;
3311 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3312 deemph_reg_value = 128;
3313 margin_reg_value = 77;
3314 break;
3315 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3316 deemph_reg_value = 128;
3317 margin_reg_value = 102;
3318 break;
3319 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3320 deemph_reg_value = 128;
3321 margin_reg_value = 154;
3322 /* FIXME extra to set for 1200 */
3323 break;
3324 default:
3325 return 0;
3326 }
3327 break;
3328 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3329 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3330 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3331 deemph_reg_value = 85;
3332 margin_reg_value = 78;
3333 break;
3334 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3335 deemph_reg_value = 85;
3336 margin_reg_value = 116;
3337 break;
3338 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3339 deemph_reg_value = 85;
3340 margin_reg_value = 154;
3341 break;
3342 default:
3343 return 0;
3344 }
3345 break;
3346 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3347 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3348 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3349 deemph_reg_value = 64;
3350 margin_reg_value = 104;
3351 break;
3352 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3353 deemph_reg_value = 64;
3354 margin_reg_value = 154;
3355 break;
3356 default:
3357 return 0;
3358 }
3359 break;
3360 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3361 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3362 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3363 deemph_reg_value = 43;
3364 margin_reg_value = 154;
3365 break;
3366 default:
3367 return 0;
3368 }
3369 break;
3370 default:
3371 return 0;
3372 }
3373
3374 mutex_lock(&dev_priv->sb_lock);
3375
3376 /* Clear calc init */
3377 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3378 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3379 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3380 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3381 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3382
3383 if (intel_crtc->config->lane_count > 2) {
3384 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3385 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3386 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3387 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3388 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3389 }
3390
3391 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3392 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3393 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3394 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3395
3396 if (intel_crtc->config->lane_count > 2) {
3397 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3398 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3399 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3400 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3401 }
3402
3403 /* Program swing deemph */
3404 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3405 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3406 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3407 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3408 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3409 }
3410
3411 /* Program swing margin */
3412 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3413 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3414
3415 val &= ~DPIO_SWING_MARGIN000_MASK;
3416 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3417
3418 /*
3419 * Supposedly this value shouldn't matter when unique transition
3420 * scale is disabled, but in fact it does matter. Let's just
3421 * always program the same value and hope it's OK.
3422 */
3423 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3424 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
3425
3426 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3427 }
3428
3429 /*
3430 * The document said it needs to set bit 27 for ch0 and bit 26
3431 * for ch1. Might be a typo in the doc.
3432 * For now, for this unique transition scale selection, set bit
3433 * 27 for ch0 and ch1.
3434 */
3435 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3436 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3437 if (chv_need_uniq_trans_scale(train_set))
3438 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3439 else
3440 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3441 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3442 }
3443
3444 /* Start swing calculation */
3445 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3446 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3447 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3448
3449 if (intel_crtc->config->lane_count > 2) {
3450 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3451 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3452 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3453 }
3454
3455 mutex_unlock(&dev_priv->sb_lock);
3456
3457 return 0;
3458}
3459
3460static uint32_t
3461gen4_signal_levels(uint8_t train_set)
3462{
3463 uint32_t signal_levels = 0;
3464
3465 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3466 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3467 default:
3468 signal_levels |= DP_VOLTAGE_0_4;
3469 break;
3470 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3471 signal_levels |= DP_VOLTAGE_0_6;
3472 break;
3473 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3474 signal_levels |= DP_VOLTAGE_0_8;
3475 break;
3476 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3477 signal_levels |= DP_VOLTAGE_1_2;
3478 break;
3479 }
3480 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3481 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3482 default:
3483 signal_levels |= DP_PRE_EMPHASIS_0;
3484 break;
3485 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3486 signal_levels |= DP_PRE_EMPHASIS_3_5;
3487 break;
3488 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3489 signal_levels |= DP_PRE_EMPHASIS_6;
3490 break;
3491 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3492 signal_levels |= DP_PRE_EMPHASIS_9_5;
3493 break;
3494 }
3495 return signal_levels;
3496}
3497
3498/* Gen6's DP voltage swing and pre-emphasis control */
3499static uint32_t
3500gen6_edp_signal_levels(uint8_t train_set)
3501{
3502 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3503 DP_TRAIN_PRE_EMPHASIS_MASK);
3504 switch (signal_levels) {
3505 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3506 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3507 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3508 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3509 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3510 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3511 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3512 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3513 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3514 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3515 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3516 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3517 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3518 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3519 default:
3520 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3521 "0x%x\n", signal_levels);
3522 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3523 }
3524}
3525
3526/* Gen7's DP voltage swing and pre-emphasis control */
3527static uint32_t
3528gen7_edp_signal_levels(uint8_t train_set)
3529{
3530 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3531 DP_TRAIN_PRE_EMPHASIS_MASK);
3532 switch (signal_levels) {
3533 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3534 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3535 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3536 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3537 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3538 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3539
3540 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3541 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3542 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3543 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3544
3545 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3546 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3547 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3548 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3549
3550 default:
3551 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3552 "0x%x\n", signal_levels);
3553 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3554 }
3555}
3556
3557void
3558intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3559{
3560 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3561 enum port port = intel_dig_port->port;
3562 struct drm_device *dev = intel_dig_port->base.base.dev;
3563 struct drm_i915_private *dev_priv = to_i915(dev);
3564 uint32_t signal_levels, mask = 0;
3565 uint8_t train_set = intel_dp->train_set[0];
3566
3567 if (HAS_DDI(dev)) {
3568 signal_levels = ddi_signal_levels(intel_dp);
3569
3570 if (IS_BROXTON(dev))
3571 signal_levels = 0;
3572 else
3573 mask = DDI_BUF_EMP_MASK;
3574 } else if (IS_CHERRYVIEW(dev)) {
3575 signal_levels = chv_signal_levels(intel_dp);
3576 } else if (IS_VALLEYVIEW(dev)) {
3577 signal_levels = vlv_signal_levels(intel_dp);
3578 } else if (IS_GEN7(dev) && port == PORT_A) {
3579 signal_levels = gen7_edp_signal_levels(train_set);
3580 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3581 } else if (IS_GEN6(dev) && port == PORT_A) {
3582 signal_levels = gen6_edp_signal_levels(train_set);
3583 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3584 } else {
3585 signal_levels = gen4_signal_levels(train_set);
3586 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3587 }
3588
3589 if (mask)
3590 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3591
3592 DRM_DEBUG_KMS("Using vswing level %d\n",
3593 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3594 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3595 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3596 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3597
3598 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3599
3600 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3601 POSTING_READ(intel_dp->output_reg);
3602}
3603
3604void
3605intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3606 uint8_t dp_train_pat)
3607{
3608 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3609 struct drm_i915_private *dev_priv =
3610 to_i915(intel_dig_port->base.base.dev);
3611
3612 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3613
3614 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3615 POSTING_READ(intel_dp->output_reg);
3616}
3617
3618void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3619{
3620 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3621 struct drm_device *dev = intel_dig_port->base.base.dev;
3622 struct drm_i915_private *dev_priv = dev->dev_private;
3623 enum port port = intel_dig_port->port;
3624 uint32_t val;
3625
3626 if (!HAS_DDI(dev))
3627 return;
3628
3629 val = I915_READ(DP_TP_CTL(port));
3630 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3631 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3632 I915_WRITE(DP_TP_CTL(port), val);
3633
3634 /*
3635 * On PORT_A we can have only eDP in SST mode. There the only reason
3636 * we need to set idle transmission mode is to work around a HW issue
3637 * where we enable the pipe while not in idle link-training mode.
3638 * In this case there is requirement to wait for a minimum number of
3639 * idle patterns to be sent.
3640 */
3641 if (port == PORT_A)
3642 return;
3643
3644 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3645 1))
3646 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3647}
3648
3649static void
3650intel_dp_link_down(struct intel_dp *intel_dp)
3651{
3652 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3653 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3654 enum port port = intel_dig_port->port;
3655 struct drm_device *dev = intel_dig_port->base.base.dev;
3656 struct drm_i915_private *dev_priv = dev->dev_private;
3657 uint32_t DP = intel_dp->DP;
3658
3659 if (WARN_ON(HAS_DDI(dev)))
3660 return;
3661
3662 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3663 return;
3664
3665 DRM_DEBUG_KMS("\n");
3666
3667 if ((IS_GEN7(dev) && port == PORT_A) ||
3668 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3669 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3670 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3671 } else {
3672 if (IS_CHERRYVIEW(dev))
3673 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3674 else
3675 DP &= ~DP_LINK_TRAIN_MASK;
3676 DP |= DP_LINK_TRAIN_PAT_IDLE;
3677 }
3678 I915_WRITE(intel_dp->output_reg, DP);
3679 POSTING_READ(intel_dp->output_reg);
3680
3681 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3682 I915_WRITE(intel_dp->output_reg, DP);
3683 POSTING_READ(intel_dp->output_reg);
3684
3685 /*
3686 * HW workaround for IBX, we need to move the port
3687 * to transcoder A after disabling it to allow the
3688 * matching HDMI port to be enabled on transcoder A.
3689 */
3690 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3691 /*
3692 * We get CPU/PCH FIFO underruns on the other pipe when
3693 * doing the workaround. Sweep them under the rug.
3694 */
3695 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3696 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3697
3698 /* always enable with pattern 1 (as per spec) */
3699 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3700 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3701 I915_WRITE(intel_dp->output_reg, DP);
3702 POSTING_READ(intel_dp->output_reg);
3703
3704 DP &= ~DP_PORT_EN;
3705 I915_WRITE(intel_dp->output_reg, DP);
3706 POSTING_READ(intel_dp->output_reg);
3707
3708 intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
3709 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3710 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3711 }
3712
3713 msleep(intel_dp->panel_power_down_delay);
3714
3715 intel_dp->DP = DP;
3716}
3717
3718static bool
3719intel_dp_get_dpcd(struct intel_dp *intel_dp)
3720{
3721 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3722 struct drm_device *dev = dig_port->base.base.dev;
3723 struct drm_i915_private *dev_priv = dev->dev_private;
3724 uint8_t rev;
3725
3726 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3727 sizeof(intel_dp->dpcd)) < 0)
3728 return false; /* aux transfer failed */
3729
3730 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3731
3732 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3733 return false; /* DPCD not present */
3734
3735 /* Check if the panel supports PSR */
3736 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3737 if (is_edp(intel_dp)) {
3738 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3739 intel_dp->psr_dpcd,
3740 sizeof(intel_dp->psr_dpcd));
3741 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3742 dev_priv->psr.sink_support = true;
3743 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3744 }
3745
3746 if (INTEL_INFO(dev)->gen >= 9 &&
3747 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3748 uint8_t frame_sync_cap;
3749
3750 dev_priv->psr.sink_support = true;
3751 intel_dp_dpcd_read_wake(&intel_dp->aux,
3752 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3753 &frame_sync_cap, 1);
3754 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3755 /* PSR2 needs frame sync as well */
3756 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3757 DRM_DEBUG_KMS("PSR2 %s on sink",
3758 dev_priv->psr.psr2_support ? "supported" : "not supported");
3759 }
3760 }
3761
3762 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3763 yesno(intel_dp_source_supports_hbr2(intel_dp)),
3764 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3765
3766 /* Intermediate frequency support */
3767 if (is_edp(intel_dp) &&
3768 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3769 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3770 (rev >= 0x03)) { /* eDp v1.4 or higher */
3771 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3772 int i;
3773
3774 intel_dp_dpcd_read_wake(&intel_dp->aux,
3775 DP_SUPPORTED_LINK_RATES,
3776 sink_rates,
3777 sizeof(sink_rates));
3778
3779 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3780 int val = le16_to_cpu(sink_rates[i]);
3781
3782 if (val == 0)
3783 break;
3784
3785 /* Value read is in kHz while drm clock is saved in deca-kHz */
3786 intel_dp->sink_rates[i] = (val * 200) / 10;
3787 }
3788 intel_dp->num_sink_rates = i;
3789 }
3790
3791 intel_dp_print_rates(intel_dp);
3792
3793 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3794 DP_DWN_STRM_PORT_PRESENT))
3795 return true; /* native DP sink */
3796
3797 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3798 return true; /* no per-port downstream info */
3799
3800 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3801 intel_dp->downstream_ports,
3802 DP_MAX_DOWNSTREAM_PORTS) < 0)
3803 return false; /* downstream port status fetch failed */
3804
3805 return true;
3806}
3807
3808static void
3809intel_dp_probe_oui(struct intel_dp *intel_dp)
3810{
3811 u8 buf[3];
3812
3813 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3814 return;
3815
3816 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3817 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3818 buf[0], buf[1], buf[2]);
3819
3820 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3821 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3822 buf[0], buf[1], buf[2]);
3823}
3824
3825static bool
3826intel_dp_probe_mst(struct intel_dp *intel_dp)
3827{
3828 u8 buf[1];
3829
3830 if (!intel_dp->can_mst)
3831 return false;
3832
3833 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3834 return false;
3835
3836 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3837 if (buf[0] & DP_MST_CAP) {
3838 DRM_DEBUG_KMS("Sink is MST capable\n");
3839 intel_dp->is_mst = true;
3840 } else {
3841 DRM_DEBUG_KMS("Sink is not MST capable\n");
3842 intel_dp->is_mst = false;
3843 }
3844 }
3845
3846 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3847 return intel_dp->is_mst;
3848}
3849
3850static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3851{
3852 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3853 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3854 u8 buf;
3855 int ret = 0;
3856
3857 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3858 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3859 ret = -EIO;
3860 goto out;
3861 }
3862
3863 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3864 buf & ~DP_TEST_SINK_START) < 0) {
3865 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3866 ret = -EIO;
3867 goto out;
3868 }
3869
3870 intel_dp->sink_crc.started = false;
3871 out:
3872 hsw_enable_ips(intel_crtc);
3873 return ret;
3874}
3875
3876static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3877{
3878 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3879 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3880 u8 buf;
3881 int ret;
3882
3883 if (intel_dp->sink_crc.started) {
3884 ret = intel_dp_sink_crc_stop(intel_dp);
3885 if (ret)
3886 return ret;
3887 }
3888
3889 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3890 return -EIO;
3891
3892 if (!(buf & DP_TEST_CRC_SUPPORTED))
3893 return -ENOTTY;
3894
3895 intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
3896
3897 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3898 return -EIO;
3899
3900 hsw_disable_ips(intel_crtc);
3901
3902 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3903 buf | DP_TEST_SINK_START) < 0) {
3904 hsw_enable_ips(intel_crtc);
3905 return -EIO;
3906 }
3907
3908 intel_dp->sink_crc.started = true;
3909 return 0;
3910}
3911
3912int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3913{
3914 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3915 struct drm_device *dev = dig_port->base.base.dev;
3916 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3917 u8 buf;
3918 int count, ret;
3919 int attempts = 6;
3920 bool old_equal_new;
3921
3922 ret = intel_dp_sink_crc_start(intel_dp);
3923 if (ret)
3924 return ret;
3925
3926 do {
3927 intel_wait_for_vblank(dev, intel_crtc->pipe);
3928
3929 if (drm_dp_dpcd_readb(&intel_dp->aux,
3930 DP_TEST_SINK_MISC, &buf) < 0) {
3931 ret = -EIO;
3932 goto stop;
3933 }
3934 count = buf & DP_TEST_COUNT_MASK;
3935
3936 /*
3937 * Count might be reset during the loop. In this case
3938 * last known count needs to be reset as well.
3939 */
3940 if (count == 0)
3941 intel_dp->sink_crc.last_count = 0;
3942
3943 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3944 ret = -EIO;
3945 goto stop;
3946 }
3947
3948 old_equal_new = (count == intel_dp->sink_crc.last_count &&
3949 !memcmp(intel_dp->sink_crc.last_crc, crc,
3950 6 * sizeof(u8)));
3951
3952 } while (--attempts && (count == 0 || old_equal_new));
3953
3954 intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
3955 memcpy(intel_dp->sink_crc.last_crc, crc, 6 * sizeof(u8));
3956
3957 if (attempts == 0) {
3958 if (old_equal_new) {
3959 DRM_DEBUG_KMS("Unreliable Sink CRC counter: Current returned CRC is identical to the previous one\n");
3960 } else {
3961 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3962 ret = -ETIMEDOUT;
3963 goto stop;
3964 }
3965 }
3966
3967stop:
3968 intel_dp_sink_crc_stop(intel_dp);
3969 return ret;
3970}
3971
3972static bool
3973intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3974{
3975 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3976 DP_DEVICE_SERVICE_IRQ_VECTOR,
3977 sink_irq_vector, 1) == 1;
3978}
3979
3980static bool
3981intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3982{
3983 int ret;
3984
3985 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3986 DP_SINK_COUNT_ESI,
3987 sink_irq_vector, 14);
3988 if (ret != 14)
3989 return false;
3990
3991 return true;
3992}
3993
3994static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3995{
3996 uint8_t test_result = DP_TEST_ACK;
3997 return test_result;
3998}
3999
4000static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4001{
4002 uint8_t test_result = DP_TEST_NAK;
4003 return test_result;
4004}
4005
4006static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4007{
4008 uint8_t test_result = DP_TEST_NAK;
4009 struct intel_connector *intel_connector = intel_dp->attached_connector;
4010 struct drm_connector *connector = &intel_connector->base;
4011
4012 if (intel_connector->detect_edid == NULL ||
4013 connector->edid_corrupt ||
4014 intel_dp->aux.i2c_defer_count > 6) {
4015 /* Check EDID read for NACKs, DEFERs and corruption
4016 * (DP CTS 1.2 Core r1.1)
4017 * 4.2.2.4 : Failed EDID read, I2C_NAK
4018 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4019 * 4.2.2.6 : EDID corruption detected
4020 * Use failsafe mode for all cases
4021 */
4022 if (intel_dp->aux.i2c_nack_count > 0 ||
4023 intel_dp->aux.i2c_defer_count > 0)
4024 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4025 intel_dp->aux.i2c_nack_count,
4026 intel_dp->aux.i2c_defer_count);
4027 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4028 } else {
4029 struct edid *block = intel_connector->detect_edid;
4030
4031 /* We have to write the checksum
4032 * of the last block read
4033 */
4034 block += intel_connector->detect_edid->extensions;
4035
4036 if (!drm_dp_dpcd_write(&intel_dp->aux,
4037 DP_TEST_EDID_CHECKSUM,
4038 &block->checksum,
4039 1))
4040 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4041
4042 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4043 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4044 }
4045
4046 /* Set test active flag here so userspace doesn't interrupt things */
4047 intel_dp->compliance_test_active = 1;
4048
4049 return test_result;
4050}
4051
4052static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4053{
4054 uint8_t test_result = DP_TEST_NAK;
4055 return test_result;
4056}
4057
4058static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4059{
4060 uint8_t response = DP_TEST_NAK;
4061 uint8_t rxdata = 0;
4062 int status = 0;
4063
4064 intel_dp->compliance_test_active = 0;
4065 intel_dp->compliance_test_type = 0;
4066 intel_dp->compliance_test_data = 0;
4067
4068 intel_dp->aux.i2c_nack_count = 0;
4069 intel_dp->aux.i2c_defer_count = 0;
4070
4071 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4072 if (status <= 0) {
4073 DRM_DEBUG_KMS("Could not read test request from sink\n");
4074 goto update_status;
4075 }
4076
4077 switch (rxdata) {
4078 case DP_TEST_LINK_TRAINING:
4079 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4080 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4081 response = intel_dp_autotest_link_training(intel_dp);
4082 break;
4083 case DP_TEST_LINK_VIDEO_PATTERN:
4084 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4085 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4086 response = intel_dp_autotest_video_pattern(intel_dp);
4087 break;
4088 case DP_TEST_LINK_EDID_READ:
4089 DRM_DEBUG_KMS("EDID test requested\n");
4090 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4091 response = intel_dp_autotest_edid(intel_dp);
4092 break;
4093 case DP_TEST_LINK_PHY_TEST_PATTERN:
4094 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4095 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4096 response = intel_dp_autotest_phy_pattern(intel_dp);
4097 break;
4098 default:
4099 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4100 break;
4101 }
4102
4103update_status:
4104 status = drm_dp_dpcd_write(&intel_dp->aux,
4105 DP_TEST_RESPONSE,
4106 &response, 1);
4107 if (status <= 0)
4108 DRM_DEBUG_KMS("Could not write test response to sink\n");
4109}
4110
4111static int
4112intel_dp_check_mst_status(struct intel_dp *intel_dp)
4113{
4114 bool bret;
4115
4116 if (intel_dp->is_mst) {
4117 u8 esi[16] = { 0 };
4118 int ret = 0;
4119 int retry;
4120 bool handled;
4121 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4122go_again:
4123 if (bret == true) {
4124
4125 /* check link status - esi[10] = 0x200c */
4126 if (intel_dp->active_mst_links &&
4127 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4128 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4129 intel_dp_start_link_train(intel_dp);
4130 intel_dp_stop_link_train(intel_dp);
4131 }
4132
4133 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4134 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4135
4136 if (handled) {
4137 for (retry = 0; retry < 3; retry++) {
4138 int wret;
4139 wret = drm_dp_dpcd_write(&intel_dp->aux,
4140 DP_SINK_COUNT_ESI+1,
4141 &esi[1], 3);
4142 if (wret == 3) {
4143 break;
4144 }
4145 }
4146
4147 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4148 if (bret == true) {
4149 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4150 goto go_again;
4151 }
4152 } else
4153 ret = 0;
4154
4155 return ret;
4156 } else {
4157 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4158 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4159 intel_dp->is_mst = false;
4160 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4161 /* send a hotplug event */
4162 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4163 }
4164 }
4165 return -EINVAL;
4166}
4167
4168/*
4169 * According to DP spec
4170 * 5.1.2:
4171 * 1. Read DPCD
4172 * 2. Configure link according to Receiver Capabilities
4173 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4174 * 4. Check link status on receipt of hot-plug interrupt
4175 */
4176static void
4177intel_dp_check_link_status(struct intel_dp *intel_dp)
4178{
4179 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4180 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4181 u8 sink_irq_vector;
4182 u8 link_status[DP_LINK_STATUS_SIZE];
4183
4184 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4185
4186 if (!intel_encoder->base.crtc)
4187 return;
4188
4189 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4190 return;
4191
4192 /* Try to read receiver status if the link appears to be up */
4193 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4194 return;
4195 }
4196
4197 /* Now read the DPCD to see if it's actually running */
4198 if (!intel_dp_get_dpcd(intel_dp)) {
4199 return;
4200 }
4201
4202 /* Try to read the source of the interrupt */
4203 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4204 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4205 /* Clear interrupt source */
4206 drm_dp_dpcd_writeb(&intel_dp->aux,
4207 DP_DEVICE_SERVICE_IRQ_VECTOR,
4208 sink_irq_vector);
4209
4210 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4211 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4212 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4213 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4214 }
4215
4216 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4217 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4218 intel_encoder->base.name);
4219 intel_dp_start_link_train(intel_dp);
4220 intel_dp_stop_link_train(intel_dp);
4221 }
4222}
4223
4224/* XXX this is probably wrong for multiple downstream ports */
4225static enum drm_connector_status
4226intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4227{
4228 uint8_t *dpcd = intel_dp->dpcd;
4229 uint8_t type;
4230
4231 if (!intel_dp_get_dpcd(intel_dp))
4232 return connector_status_disconnected;
4233
4234 /* if there's no downstream port, we're done */
4235 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4236 return connector_status_connected;
4237
4238 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4239 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4240 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4241 uint8_t reg;
4242
4243 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4244 &reg, 1) < 0)
4245 return connector_status_unknown;
4246
4247 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4248 : connector_status_disconnected;
4249 }
4250
4251 /* If no HPD, poke DDC gently */
4252 if (drm_probe_ddc(&intel_dp->aux.ddc))
4253 return connector_status_connected;
4254
4255 /* Well we tried, say unknown for unreliable port types */
4256 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4257 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4258 if (type == DP_DS_PORT_TYPE_VGA ||
4259 type == DP_DS_PORT_TYPE_NON_EDID)
4260 return connector_status_unknown;
4261 } else {
4262 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4263 DP_DWN_STRM_PORT_TYPE_MASK;
4264 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4265 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4266 return connector_status_unknown;
4267 }
4268
4269 /* Anything else is out of spec, warn and ignore */
4270 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4271 return connector_status_disconnected;
4272}
4273
4274static enum drm_connector_status
4275edp_detect(struct intel_dp *intel_dp)
4276{
4277 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4278 enum drm_connector_status status;
4279
4280 status = intel_panel_detect(dev);
4281 if (status == connector_status_unknown)
4282 status = connector_status_connected;
4283
4284 return status;
4285}
4286
4287static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4288 struct intel_digital_port *port)
4289{
4290 u32 bit;
4291
4292 switch (port->port) {
4293 case PORT_A:
4294 return true;
4295 case PORT_B:
4296 bit = SDE_PORTB_HOTPLUG;
4297 break;
4298 case PORT_C:
4299 bit = SDE_PORTC_HOTPLUG;
4300 break;
4301 case PORT_D:
4302 bit = SDE_PORTD_HOTPLUG;
4303 break;
4304 default:
4305 MISSING_CASE(port->port);
4306 return false;
4307 }
4308
4309 return I915_READ(SDEISR) & bit;
4310}
4311
4312static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4313 struct intel_digital_port *port)
4314{
4315 u32 bit;
4316
4317 switch (port->port) {
4318 case PORT_A:
4319 return true;
4320 case PORT_B:
4321 bit = SDE_PORTB_HOTPLUG_CPT;
4322 break;
4323 case PORT_C:
4324 bit = SDE_PORTC_HOTPLUG_CPT;
4325 break;
4326 case PORT_D:
4327 bit = SDE_PORTD_HOTPLUG_CPT;
4328 break;
4329 case PORT_E:
4330 bit = SDE_PORTE_HOTPLUG_SPT;
4331 break;
4332 default:
4333 MISSING_CASE(port->port);
4334 return false;
4335 }
4336
4337 return I915_READ(SDEISR) & bit;
4338}
4339
4340static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4341 struct intel_digital_port *port)
4342{
4343 u32 bit;
4344
4345 switch (port->port) {
4346 case PORT_B:
4347 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4348 break;
4349 case PORT_C:
4350 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4351 break;
4352 case PORT_D:
4353 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4354 break;
4355 default:
4356 MISSING_CASE(port->port);
4357 return false;
4358 }
4359
4360 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4361}
4362
4363static bool vlv_digital_port_connected(struct drm_i915_private *dev_priv,
4364 struct intel_digital_port *port)
4365{
4366 u32 bit;
4367
4368 switch (port->port) {
4369 case PORT_B:
4370 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4371 break;
4372 case PORT_C:
4373 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4374 break;
4375 case PORT_D:
4376 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4377 break;
4378 default:
4379 MISSING_CASE(port->port);
4380 return false;
4381 }
4382
4383 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4384}
4385
4386static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4387 struct intel_digital_port *intel_dig_port)
4388{
4389 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4390 enum port port;
4391 u32 bit;
4392
4393 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4394 switch (port) {
4395 case PORT_A:
4396 bit = BXT_DE_PORT_HP_DDIA;
4397 break;
4398 case PORT_B:
4399 bit = BXT_DE_PORT_HP_DDIB;
4400 break;
4401 case PORT_C:
4402 bit = BXT_DE_PORT_HP_DDIC;
4403 break;
4404 default:
4405 MISSING_CASE(port);
4406 return false;
4407 }
4408
4409 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4410}
4411
4412/*
4413 * intel_digital_port_connected - is the specified port connected?
4414 * @dev_priv: i915 private structure
4415 * @port: the port to test
4416 *
4417 * Return %true if @port is connected, %false otherwise.
4418 */
4419bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4420 struct intel_digital_port *port)
4421{
4422 if (HAS_PCH_IBX(dev_priv))
4423 return ibx_digital_port_connected(dev_priv, port);
4424 if (HAS_PCH_SPLIT(dev_priv))
4425 return cpt_digital_port_connected(dev_priv, port);
4426 else if (IS_BROXTON(dev_priv))
4427 return bxt_digital_port_connected(dev_priv, port);
4428 else if (IS_VALLEYVIEW(dev_priv))
4429 return vlv_digital_port_connected(dev_priv, port);
4430 else
4431 return g4x_digital_port_connected(dev_priv, port);
4432}
4433
4434static enum drm_connector_status
4435ironlake_dp_detect(struct intel_dp *intel_dp)
4436{
4437 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4438 struct drm_i915_private *dev_priv = dev->dev_private;
4439 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4440
4441 if (!intel_digital_port_connected(dev_priv, intel_dig_port))
4442 return connector_status_disconnected;
4443
4444 return intel_dp_detect_dpcd(intel_dp);
4445}
4446
4447static enum drm_connector_status
4448g4x_dp_detect(struct intel_dp *intel_dp)
4449{
4450 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4451 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4452
4453 /* Can't disconnect eDP, but you can close the lid... */
4454 if (is_edp(intel_dp)) {
4455 enum drm_connector_status status;
4456
4457 status = intel_panel_detect(dev);
4458 if (status == connector_status_unknown)
4459 status = connector_status_connected;
4460 return status;
4461 }
4462
4463 if (!intel_digital_port_connected(dev->dev_private, intel_dig_port))
4464 return connector_status_disconnected;
4465
4466 return intel_dp_detect_dpcd(intel_dp);
4467}
4468
4469static struct edid *
4470intel_dp_get_edid(struct intel_dp *intel_dp)
4471{
4472 struct intel_connector *intel_connector = intel_dp->attached_connector;
4473
4474 /* use cached edid if we have one */
4475 if (intel_connector->edid) {
4476 /* invalid edid */
4477 if (IS_ERR(intel_connector->edid))
4478 return NULL;
4479
4480 return drm_edid_duplicate(intel_connector->edid);
4481 } else
4482 return drm_get_edid(&intel_connector->base,
4483 &intel_dp->aux.ddc);
4484}
4485
4486static void
4487intel_dp_set_edid(struct intel_dp *intel_dp)
4488{
4489 struct intel_connector *intel_connector = intel_dp->attached_connector;
4490 struct edid *edid;
4491
4492 edid = intel_dp_get_edid(intel_dp);
4493 intel_connector->detect_edid = edid;
4494
4495 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4496 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4497 else
4498 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4499}
4500
4501static void
4502intel_dp_unset_edid(struct intel_dp *intel_dp)
4503{
4504 struct intel_connector *intel_connector = intel_dp->attached_connector;
4505
4506 kfree(intel_connector->detect_edid);
4507 intel_connector->detect_edid = NULL;
4508
4509 intel_dp->has_audio = false;
4510}
4511
4512static enum intel_display_power_domain
4513intel_dp_power_get(struct intel_dp *dp)
4514{
4515 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4516 enum intel_display_power_domain power_domain;
4517
4518 power_domain = intel_display_port_power_domain(encoder);
4519 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4520
4521 return power_domain;
4522}
4523
4524static void
4525intel_dp_power_put(struct intel_dp *dp,
4526 enum intel_display_power_domain power_domain)
4527{
4528 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4529 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4530}
4531
4532static enum drm_connector_status
4533intel_dp_detect(struct drm_connector *connector, bool force)
4534{
4535 struct intel_dp *intel_dp = intel_attached_dp(connector);
4536 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4537 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4538 struct drm_device *dev = connector->dev;
4539 enum drm_connector_status status;
4540 enum intel_display_power_domain power_domain;
4541 bool ret;
4542 u8 sink_irq_vector;
4543
4544 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4545 connector->base.id, connector->name);
4546 intel_dp_unset_edid(intel_dp);
4547
4548 if (intel_dp->is_mst) {
4549 /* MST devices are disconnected from a monitor POV */
4550 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4551 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4552 return connector_status_disconnected;
4553 }
4554
4555 power_domain = intel_dp_power_get(intel_dp);
4556
4557 /* Can't disconnect eDP, but you can close the lid... */
4558 if (is_edp(intel_dp))
4559 status = edp_detect(intel_dp);
4560 else if (HAS_PCH_SPLIT(dev))
4561 status = ironlake_dp_detect(intel_dp);
4562 else
4563 status = g4x_dp_detect(intel_dp);
4564 if (status != connector_status_connected)
4565 goto out;
4566
4567 intel_dp_probe_oui(intel_dp);
4568
4569 ret = intel_dp_probe_mst(intel_dp);
4570 if (ret) {
4571 /* if we are in MST mode then this connector
4572 won't appear connected or have anything with EDID on it */
4573 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4574 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4575 status = connector_status_disconnected;
4576 goto out;
4577 }
4578
4579 intel_dp_set_edid(intel_dp);
4580
4581 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4582 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4583 status = connector_status_connected;
4584
4585 /* Try to read the source of the interrupt */
4586 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4587 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4588 /* Clear interrupt source */
4589 drm_dp_dpcd_writeb(&intel_dp->aux,
4590 DP_DEVICE_SERVICE_IRQ_VECTOR,
4591 sink_irq_vector);
4592
4593 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4594 intel_dp_handle_test_request(intel_dp);
4595 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4596 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4597 }
4598
4599out:
4600 intel_dp_power_put(intel_dp, power_domain);
4601 return status;
4602}
4603
4604static void
4605intel_dp_force(struct drm_connector *connector)
4606{
4607 struct intel_dp *intel_dp = intel_attached_dp(connector);
4608 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4609 enum intel_display_power_domain power_domain;
4610
4611 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4612 connector->base.id, connector->name);
4613 intel_dp_unset_edid(intel_dp);
4614
4615 if (connector->status != connector_status_connected)
4616 return;
4617
4618 power_domain = intel_dp_power_get(intel_dp);
4619
4620 intel_dp_set_edid(intel_dp);
4621
4622 intel_dp_power_put(intel_dp, power_domain);
4623
4624 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4625 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4626}
4627
4628static int intel_dp_get_modes(struct drm_connector *connector)
4629{
4630 struct intel_connector *intel_connector = to_intel_connector(connector);
4631 struct edid *edid;
4632
4633 edid = intel_connector->detect_edid;
4634 if (edid) {
4635 int ret = intel_connector_update_modes(connector, edid);
4636 if (ret)
4637 return ret;
4638 }
4639
4640 /* if eDP has no EDID, fall back to fixed mode */
4641 if (is_edp(intel_attached_dp(connector)) &&
4642 intel_connector->panel.fixed_mode) {
4643 struct drm_display_mode *mode;
4644
4645 mode = drm_mode_duplicate(connector->dev,
4646 intel_connector->panel.fixed_mode);
4647 if (mode) {
4648 drm_mode_probed_add(connector, mode);
4649 return 1;
4650 }
4651 }
4652
4653 return 0;
4654}
4655
4656static bool
4657intel_dp_detect_audio(struct drm_connector *connector)
4658{
4659 bool has_audio = false;
4660 struct edid *edid;
4661
4662 edid = to_intel_connector(connector)->detect_edid;
4663 if (edid)
4664 has_audio = drm_detect_monitor_audio(edid);
4665
4666 return has_audio;
4667}
4668
4669static int
4670intel_dp_set_property(struct drm_connector *connector,
4671 struct drm_property *property,
4672 uint64_t val)
4673{
4674 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4675 struct intel_connector *intel_connector = to_intel_connector(connector);
4676 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4677 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4678 int ret;
4679
4680 ret = drm_object_property_set_value(&connector->base, property, val);
4681 if (ret)
4682 return ret;
4683
4684 if (property == dev_priv->force_audio_property) {
4685 int i = val;
4686 bool has_audio;
4687
4688 if (i == intel_dp->force_audio)
4689 return 0;
4690
4691 intel_dp->force_audio = i;
4692
4693 if (i == HDMI_AUDIO_AUTO)
4694 has_audio = intel_dp_detect_audio(connector);
4695 else
4696 has_audio = (i == HDMI_AUDIO_ON);
4697
4698 if (has_audio == intel_dp->has_audio)
4699 return 0;
4700
4701 intel_dp->has_audio = has_audio;
4702 goto done;
4703 }
4704
4705 if (property == dev_priv->broadcast_rgb_property) {
4706 bool old_auto = intel_dp->color_range_auto;
4707 bool old_range = intel_dp->limited_color_range;
4708
4709 switch (val) {
4710 case INTEL_BROADCAST_RGB_AUTO:
4711 intel_dp->color_range_auto = true;
4712 break;
4713 case INTEL_BROADCAST_RGB_FULL:
4714 intel_dp->color_range_auto = false;
4715 intel_dp->limited_color_range = false;
4716 break;
4717 case INTEL_BROADCAST_RGB_LIMITED:
4718 intel_dp->color_range_auto = false;
4719 intel_dp->limited_color_range = true;
4720 break;
4721 default:
4722 return -EINVAL;
4723 }
4724
4725 if (old_auto == intel_dp->color_range_auto &&
4726 old_range == intel_dp->limited_color_range)
4727 return 0;
4728
4729 goto done;
4730 }
4731
4732 if (is_edp(intel_dp) &&
4733 property == connector->dev->mode_config.scaling_mode_property) {
4734 if (val == DRM_MODE_SCALE_NONE) {
4735 DRM_DEBUG_KMS("no scaling not supported\n");
4736 return -EINVAL;
4737 }
4738
4739 if (intel_connector->panel.fitting_mode == val) {
4740 /* the eDP scaling property is not changed */
4741 return 0;
4742 }
4743 intel_connector->panel.fitting_mode = val;
4744
4745 goto done;
4746 }
4747
4748 return -EINVAL;
4749
4750done:
4751 if (intel_encoder->base.crtc)
4752 intel_crtc_restore_mode(intel_encoder->base.crtc);
4753
4754 return 0;
4755}
4756
4757static void
4758intel_dp_connector_destroy(struct drm_connector *connector)
4759{
4760 struct intel_connector *intel_connector = to_intel_connector(connector);
4761
4762 kfree(intel_connector->detect_edid);
4763
4764 if (!IS_ERR_OR_NULL(intel_connector->edid))
4765 kfree(intel_connector->edid);
4766
4767 /* Can't call is_edp() since the encoder may have been destroyed
4768 * already. */
4769 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4770 intel_panel_fini(&intel_connector->panel);
4771
4772 drm_connector_cleanup(connector);
4773 kfree(connector);
4774}
4775
4776void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4777{
4778 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4779 struct intel_dp *intel_dp = &intel_dig_port->dp;
4780
4781 drm_dp_aux_unregister(&intel_dp->aux);
4782 intel_dp_mst_encoder_cleanup(intel_dig_port);
4783 if (is_edp(intel_dp)) {
4784 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4785 /*
4786 * vdd might still be enabled do to the delayed vdd off.
4787 * Make sure vdd is actually turned off here.
4788 */
4789 pps_lock(intel_dp);
4790 edp_panel_vdd_off_sync(intel_dp);
4791 pps_unlock(intel_dp);
4792
4793 if (intel_dp->edp_notifier.notifier_call) {
4794 unregister_reboot_notifier(&intel_dp->edp_notifier);
4795 intel_dp->edp_notifier.notifier_call = NULL;
4796 }
4797 }
4798 drm_encoder_cleanup(encoder);
4799 kfree(intel_dig_port);
4800}
4801
4802static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4803{
4804 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4805
4806 if (!is_edp(intel_dp))
4807 return;
4808
4809 /*
4810 * vdd might still be enabled do to the delayed vdd off.
4811 * Make sure vdd is actually turned off here.
4812 */
4813 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4814 pps_lock(intel_dp);
4815 edp_panel_vdd_off_sync(intel_dp);
4816 pps_unlock(intel_dp);
4817}
4818
4819static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4820{
4821 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4822 struct drm_device *dev = intel_dig_port->base.base.dev;
4823 struct drm_i915_private *dev_priv = dev->dev_private;
4824 enum intel_display_power_domain power_domain;
4825
4826 lockdep_assert_held(&dev_priv->pps_mutex);
4827
4828 if (!edp_have_panel_vdd(intel_dp))
4829 return;
4830
4831 /*
4832 * The VDD bit needs a power domain reference, so if the bit is
4833 * already enabled when we boot or resume, grab this reference and
4834 * schedule a vdd off, so we don't hold on to the reference
4835 * indefinitely.
4836 */
4837 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4838 power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4839 intel_display_power_get(dev_priv, power_domain);
4840
4841 edp_panel_vdd_schedule_off(intel_dp);
4842}
4843
4844static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4845{
4846 struct intel_dp *intel_dp;
4847
4848 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4849 return;
4850
4851 intel_dp = enc_to_intel_dp(encoder);
4852
4853 pps_lock(intel_dp);
4854
4855 /*
4856 * Read out the current power sequencer assignment,
4857 * in case the BIOS did something with it.
4858 */
4859 if (IS_VALLEYVIEW(encoder->dev))
4860 vlv_initial_power_sequencer_setup(intel_dp);
4861
4862 intel_edp_panel_vdd_sanitize(intel_dp);
4863
4864 pps_unlock(intel_dp);
4865}
4866
4867static const struct drm_connector_funcs intel_dp_connector_funcs = {
4868 .dpms = drm_atomic_helper_connector_dpms,
4869 .detect = intel_dp_detect,
4870 .force = intel_dp_force,
4871 .fill_modes = drm_helper_probe_single_connector_modes,
4872 .set_property = intel_dp_set_property,
4873 .atomic_get_property = intel_connector_atomic_get_property,
4874 .destroy = intel_dp_connector_destroy,
4875 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4876 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4877};
4878
4879static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4880 .get_modes = intel_dp_get_modes,
4881 .mode_valid = intel_dp_mode_valid,
4882 .best_encoder = intel_best_encoder,
4883};
4884
4885static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4886 .reset = intel_dp_encoder_reset,
4887 .destroy = intel_dp_encoder_destroy,
4888};
4889
4890enum irqreturn
4891intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4892{
4893 struct intel_dp *intel_dp = &intel_dig_port->dp;
4894 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4895 struct drm_device *dev = intel_dig_port->base.base.dev;
4896 struct drm_i915_private *dev_priv = dev->dev_private;
4897 enum intel_display_power_domain power_domain;
4898 enum irqreturn ret = IRQ_NONE;
4899
4900 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4901 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4902
4903 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4904 /*
4905 * vdd off can generate a long pulse on eDP which
4906 * would require vdd on to handle it, and thus we
4907 * would end up in an endless cycle of
4908 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4909 */
4910 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4911 port_name(intel_dig_port->port));
4912 return IRQ_HANDLED;
4913 }
4914
4915 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4916 port_name(intel_dig_port->port),
4917 long_hpd ? "long" : "short");
4918
4919 power_domain = intel_display_port_power_domain(intel_encoder);
4920 intel_display_power_get(dev_priv, power_domain);
4921
4922 if (long_hpd) {
4923 /* indicate that we need to restart link training */
4924 intel_dp->train_set_valid = false;
4925
4926 if (!intel_digital_port_connected(dev_priv, intel_dig_port))
4927 goto mst_fail;
4928
4929 if (!intel_dp_get_dpcd(intel_dp)) {
4930 goto mst_fail;
4931 }
4932
4933 intel_dp_probe_oui(intel_dp);
4934
4935 if (!intel_dp_probe_mst(intel_dp)) {
4936 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4937 intel_dp_check_link_status(intel_dp);
4938 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4939 goto mst_fail;
4940 }
4941 } else {
4942 if (intel_dp->is_mst) {
4943 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4944 goto mst_fail;
4945 }
4946
4947 if (!intel_dp->is_mst) {
4948 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4949 intel_dp_check_link_status(intel_dp);
4950 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4951 }
4952 }
4953
4954 ret = IRQ_HANDLED;
4955
4956 goto put_power;
4957mst_fail:
4958 /* if we were in MST mode, and device is not there get out of MST mode */
4959 if (intel_dp->is_mst) {
4960 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4961 intel_dp->is_mst = false;
4962 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4963 }
4964put_power:
4965 intel_display_power_put(dev_priv, power_domain);
4966
4967 return ret;
4968}
4969
4970/* Return which DP Port should be selected for Transcoder DP control */
4971int
4972intel_trans_dp_port_sel(struct drm_crtc *crtc)
4973{
4974 struct drm_device *dev = crtc->dev;
4975 struct intel_encoder *intel_encoder;
4976 struct intel_dp *intel_dp;
4977
4978 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4979 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4980
4981 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4982 intel_encoder->type == INTEL_OUTPUT_EDP)
4983 return intel_dp->output_reg;
4984 }
4985
4986 return -1;
4987}
4988
4989/* check the VBT to see whether the eDP is on another port */
4990bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4991{
4992 struct drm_i915_private *dev_priv = dev->dev_private;
4993 union child_device_config *p_child;
4994 int i;
4995 static const short port_mapping[] = {
4996 [PORT_B] = DVO_PORT_DPB,
4997 [PORT_C] = DVO_PORT_DPC,
4998 [PORT_D] = DVO_PORT_DPD,
4999 [PORT_E] = DVO_PORT_DPE,
5000 };
5001
5002 /*
5003 * eDP not supported on g4x. so bail out early just
5004 * for a bit extra safety in case the VBT is bonkers.
5005 */
5006 if (INTEL_INFO(dev)->gen < 5)
5007 return false;
5008
5009 if (port == PORT_A)
5010 return true;
5011
5012 if (!dev_priv->vbt.child_dev_num)
5013 return false;
5014
5015 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5016 p_child = dev_priv->vbt.child_dev + i;
5017
5018 if (p_child->common.dvo_port == port_mapping[port] &&
5019 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5020 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5021 return true;
5022 }
5023 return false;
5024}
5025
5026void
5027intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5028{
5029 struct intel_connector *intel_connector = to_intel_connector(connector);
5030
5031 intel_attach_force_audio_property(connector);
5032 intel_attach_broadcast_rgb_property(connector);
5033 intel_dp->color_range_auto = true;
5034
5035 if (is_edp(intel_dp)) {
5036 drm_mode_create_scaling_mode_property(connector->dev);
5037 drm_object_attach_property(
5038 &connector->base,
5039 connector->dev->mode_config.scaling_mode_property,
5040 DRM_MODE_SCALE_ASPECT);
5041 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5042 }
5043}
5044
5045static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5046{
5047 intel_dp->last_power_cycle = jiffies;
5048 intel_dp->last_power_on = jiffies;
5049 intel_dp->last_backlight_off = jiffies;
5050}
5051
5052static void
5053intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5054 struct intel_dp *intel_dp)
5055{
5056 struct drm_i915_private *dev_priv = dev->dev_private;
5057 struct edp_power_seq cur, vbt, spec,
5058 *final = &intel_dp->pps_delays;
5059 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5060 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg = 0;
5061
5062 lockdep_assert_held(&dev_priv->pps_mutex);
5063
5064 /* already initialized? */
5065 if (final->t11_t12 != 0)
5066 return;
5067
5068 if (IS_BROXTON(dev)) {
5069 /*
5070 * TODO: BXT has 2 sets of PPS registers.
5071 * Correct Register for Broxton need to be identified
5072 * using VBT. hardcoding for now
5073 */
5074 pp_ctrl_reg = BXT_PP_CONTROL(0);
5075 pp_on_reg = BXT_PP_ON_DELAYS(0);
5076 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5077 } else if (HAS_PCH_SPLIT(dev)) {
5078 pp_ctrl_reg = PCH_PP_CONTROL;
5079 pp_on_reg = PCH_PP_ON_DELAYS;
5080 pp_off_reg = PCH_PP_OFF_DELAYS;
5081 pp_div_reg = PCH_PP_DIVISOR;
5082 } else {
5083 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5084
5085 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5086 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5087 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5088 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5089 }
5090
5091 /* Workaround: Need to write PP_CONTROL with the unlock key as
5092 * the very first thing. */
5093 pp_ctl = ironlake_get_pp_control(intel_dp);
5094
5095 pp_on = I915_READ(pp_on_reg);
5096 pp_off = I915_READ(pp_off_reg);
5097 if (!IS_BROXTON(dev)) {
5098 I915_WRITE(pp_ctrl_reg, pp_ctl);
5099 pp_div = I915_READ(pp_div_reg);
5100 }
5101
5102 /* Pull timing values out of registers */
5103 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5104 PANEL_POWER_UP_DELAY_SHIFT;
5105
5106 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5107 PANEL_LIGHT_ON_DELAY_SHIFT;
5108
5109 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5110 PANEL_LIGHT_OFF_DELAY_SHIFT;
5111
5112 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5113 PANEL_POWER_DOWN_DELAY_SHIFT;
5114
5115 if (IS_BROXTON(dev)) {
5116 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5117 BXT_POWER_CYCLE_DELAY_SHIFT;
5118 if (tmp > 0)
5119 cur.t11_t12 = (tmp - 1) * 1000;
5120 else
5121 cur.t11_t12 = 0;
5122 } else {
5123 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5124 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5125 }
5126
5127 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5128 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5129
5130 vbt = dev_priv->vbt.edp_pps;
5131
5132 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5133 * our hw here, which are all in 100usec. */
5134 spec.t1_t3 = 210 * 10;
5135 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5136 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5137 spec.t10 = 500 * 10;
5138 /* This one is special and actually in units of 100ms, but zero
5139 * based in the hw (so we need to add 100 ms). But the sw vbt
5140 * table multiplies it with 1000 to make it in units of 100usec,
5141 * too. */
5142 spec.t11_t12 = (510 + 100) * 10;
5143
5144 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5145 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5146
5147 /* Use the max of the register settings and vbt. If both are
5148 * unset, fall back to the spec limits. */
5149#define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5150 spec.field : \
5151 max(cur.field, vbt.field))
5152 assign_final(t1_t3);
5153 assign_final(t8);
5154 assign_final(t9);
5155 assign_final(t10);
5156 assign_final(t11_t12);
5157#undef assign_final
5158
5159#define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5160 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5161 intel_dp->backlight_on_delay = get_delay(t8);
5162 intel_dp->backlight_off_delay = get_delay(t9);
5163 intel_dp->panel_power_down_delay = get_delay(t10);
5164 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5165#undef get_delay
5166
5167 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5168 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5169 intel_dp->panel_power_cycle_delay);
5170
5171 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5172 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5173}
5174
5175static void
5176intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5177 struct intel_dp *intel_dp)
5178{
5179 struct drm_i915_private *dev_priv = dev->dev_private;
5180 u32 pp_on, pp_off, pp_div, port_sel = 0;
5181 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5182 int pp_on_reg, pp_off_reg, pp_div_reg = 0, pp_ctrl_reg;
5183 enum port port = dp_to_dig_port(intel_dp)->port;
5184 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5185
5186 lockdep_assert_held(&dev_priv->pps_mutex);
5187
5188 if (IS_BROXTON(dev)) {
5189 /*
5190 * TODO: BXT has 2 sets of PPS registers.
5191 * Correct Register for Broxton need to be identified
5192 * using VBT. hardcoding for now
5193 */
5194 pp_ctrl_reg = BXT_PP_CONTROL(0);
5195 pp_on_reg = BXT_PP_ON_DELAYS(0);
5196 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5197
5198 } else if (HAS_PCH_SPLIT(dev)) {
5199 pp_on_reg = PCH_PP_ON_DELAYS;
5200 pp_off_reg = PCH_PP_OFF_DELAYS;
5201 pp_div_reg = PCH_PP_DIVISOR;
5202 } else {
5203 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5204
5205 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5206 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5207 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5208 }
5209
5210 /*
5211 * And finally store the new values in the power sequencer. The
5212 * backlight delays are set to 1 because we do manual waits on them. For
5213 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5214 * we'll end up waiting for the backlight off delay twice: once when we
5215 * do the manual sleep, and once when we disable the panel and wait for
5216 * the PP_STATUS bit to become zero.
5217 */
5218 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5219 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5220 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5221 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5222 /* Compute the divisor for the pp clock, simply match the Bspec
5223 * formula. */
5224 if (IS_BROXTON(dev)) {
5225 pp_div = I915_READ(pp_ctrl_reg);
5226 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5227 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5228 << BXT_POWER_CYCLE_DELAY_SHIFT);
5229 } else {
5230 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5231 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5232 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5233 }
5234
5235 /* Haswell doesn't have any port selection bits for the panel
5236 * power sequencer any more. */
5237 if (IS_VALLEYVIEW(dev)) {
5238 port_sel = PANEL_PORT_SELECT_VLV(port);
5239 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5240 if (port == PORT_A)
5241 port_sel = PANEL_PORT_SELECT_DPA;
5242 else
5243 port_sel = PANEL_PORT_SELECT_DPD;
5244 }
5245
5246 pp_on |= port_sel;
5247
5248 I915_WRITE(pp_on_reg, pp_on);
5249 I915_WRITE(pp_off_reg, pp_off);
5250 if (IS_BROXTON(dev))
5251 I915_WRITE(pp_ctrl_reg, pp_div);
5252 else
5253 I915_WRITE(pp_div_reg, pp_div);
5254
5255 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5256 I915_READ(pp_on_reg),
5257 I915_READ(pp_off_reg),
5258 IS_BROXTON(dev) ?
5259 (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5260 I915_READ(pp_div_reg));
5261}
5262
5263/**
5264 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5265 * @dev: DRM device
5266 * @refresh_rate: RR to be programmed
5267 *
5268 * This function gets called when refresh rate (RR) has to be changed from
5269 * one frequency to another. Switches can be between high and low RR
5270 * supported by the panel or to any other RR based on media playback (in
5271 * this case, RR value needs to be passed from user space).
5272 *
5273 * The caller of this function needs to take a lock on dev_priv->drrs.
5274 */
5275static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5276{
5277 struct drm_i915_private *dev_priv = dev->dev_private;
5278 struct intel_encoder *encoder;
5279 struct intel_digital_port *dig_port = NULL;
5280 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5281 struct intel_crtc_state *config = NULL;
5282 struct intel_crtc *intel_crtc = NULL;
5283 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5284
5285 if (refresh_rate <= 0) {
5286 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5287 return;
5288 }
5289
5290 if (intel_dp == NULL) {
5291 DRM_DEBUG_KMS("DRRS not supported.\n");
5292 return;
5293 }
5294
5295 /*
5296 * FIXME: This needs proper synchronization with psr state for some
5297 * platforms that cannot have PSR and DRRS enabled at the same time.
5298 */
5299
5300 dig_port = dp_to_dig_port(intel_dp);
5301 encoder = &dig_port->base;
5302 intel_crtc = to_intel_crtc(encoder->base.crtc);
5303
5304 if (!intel_crtc) {
5305 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5306 return;
5307 }
5308
5309 config = intel_crtc->config;
5310
5311 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5312 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5313 return;
5314 }
5315
5316 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5317 refresh_rate)
5318 index = DRRS_LOW_RR;
5319
5320 if (index == dev_priv->drrs.refresh_rate_type) {
5321 DRM_DEBUG_KMS(
5322 "DRRS requested for previously set RR...ignoring\n");
5323 return;
5324 }
5325
5326 if (!intel_crtc->active) {
5327 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5328 return;
5329 }
5330
5331 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5332 switch (index) {
5333 case DRRS_HIGH_RR:
5334 intel_dp_set_m_n(intel_crtc, M1_N1);
5335 break;
5336 case DRRS_LOW_RR:
5337 intel_dp_set_m_n(intel_crtc, M2_N2);
5338 break;
5339 case DRRS_MAX_RR:
5340 default:
5341 DRM_ERROR("Unsupported refreshrate type\n");
5342 }
5343 } else if (INTEL_INFO(dev)->gen > 6) {
5344 u32 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5345 u32 val;
5346
5347 val = I915_READ(reg);
5348 if (index > DRRS_HIGH_RR) {
5349 if (IS_VALLEYVIEW(dev))
5350 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5351 else
5352 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5353 } else {
5354 if (IS_VALLEYVIEW(dev))
5355 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5356 else
5357 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5358 }
5359 I915_WRITE(reg, val);
5360 }
5361
5362 dev_priv->drrs.refresh_rate_type = index;
5363
5364 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5365}
5366
5367/**
5368 * intel_edp_drrs_enable - init drrs struct if supported
5369 * @intel_dp: DP struct
5370 *
5371 * Initializes frontbuffer_bits and drrs.dp
5372 */
5373void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5374{
5375 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5376 struct drm_i915_private *dev_priv = dev->dev_private;
5377 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5378 struct drm_crtc *crtc = dig_port->base.base.crtc;
5379 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5380
5381 if (!intel_crtc->config->has_drrs) {
5382 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5383 return;
5384 }
5385
5386 mutex_lock(&dev_priv->drrs.mutex);
5387 if (WARN_ON(dev_priv->drrs.dp)) {
5388 DRM_ERROR("DRRS already enabled\n");
5389 goto unlock;
5390 }
5391
5392 dev_priv->drrs.busy_frontbuffer_bits = 0;
5393
5394 dev_priv->drrs.dp = intel_dp;
5395
5396unlock:
5397 mutex_unlock(&dev_priv->drrs.mutex);
5398}
5399
5400/**
5401 * intel_edp_drrs_disable - Disable DRRS
5402 * @intel_dp: DP struct
5403 *
5404 */
5405void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5406{
5407 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5408 struct drm_i915_private *dev_priv = dev->dev_private;
5409 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5410 struct drm_crtc *crtc = dig_port->base.base.crtc;
5411 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5412
5413 if (!intel_crtc->config->has_drrs)
5414 return;
5415
5416 mutex_lock(&dev_priv->drrs.mutex);
5417 if (!dev_priv->drrs.dp) {
5418 mutex_unlock(&dev_priv->drrs.mutex);
5419 return;
5420 }
5421
5422 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5423 intel_dp_set_drrs_state(dev_priv->dev,
5424 intel_dp->attached_connector->panel.
5425 fixed_mode->vrefresh);
5426
5427 dev_priv->drrs.dp = NULL;
5428 mutex_unlock(&dev_priv->drrs.mutex);
5429
5430 cancel_delayed_work_sync(&dev_priv->drrs.work);
5431}
5432
5433static void intel_edp_drrs_downclock_work(struct work_struct *work)
5434{
5435 struct drm_i915_private *dev_priv =
5436 container_of(work, typeof(*dev_priv), drrs.work.work);
5437 struct intel_dp *intel_dp;
5438
5439 mutex_lock(&dev_priv->drrs.mutex);
5440
5441 intel_dp = dev_priv->drrs.dp;
5442
5443 if (!intel_dp)
5444 goto unlock;
5445
5446 /*
5447 * The delayed work can race with an invalidate hence we need to
5448 * recheck.
5449 */
5450
5451 if (dev_priv->drrs.busy_frontbuffer_bits)
5452 goto unlock;
5453
5454 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5455 intel_dp_set_drrs_state(dev_priv->dev,
5456 intel_dp->attached_connector->panel.
5457 downclock_mode->vrefresh);
5458
5459unlock:
5460 mutex_unlock(&dev_priv->drrs.mutex);
5461}
5462
5463/**
5464 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5465 * @dev: DRM device
5466 * @frontbuffer_bits: frontbuffer plane tracking bits
5467 *
5468 * This function gets called everytime rendering on the given planes start.
5469 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5470 *
5471 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5472 */
5473void intel_edp_drrs_invalidate(struct drm_device *dev,
5474 unsigned frontbuffer_bits)
5475{
5476 struct drm_i915_private *dev_priv = dev->dev_private;
5477 struct drm_crtc *crtc;
5478 enum pipe pipe;
5479
5480 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5481 return;
5482
5483 cancel_delayed_work(&dev_priv->drrs.work);
5484
5485 mutex_lock(&dev_priv->drrs.mutex);
5486 if (!dev_priv->drrs.dp) {
5487 mutex_unlock(&dev_priv->drrs.mutex);
5488 return;
5489 }
5490
5491 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5492 pipe = to_intel_crtc(crtc)->pipe;
5493
5494 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5495 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5496
5497 /* invalidate means busy screen hence upclock */
5498 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5499 intel_dp_set_drrs_state(dev_priv->dev,
5500 dev_priv->drrs.dp->attached_connector->panel.
5501 fixed_mode->vrefresh);
5502
5503 mutex_unlock(&dev_priv->drrs.mutex);
5504}
5505
5506/**
5507 * intel_edp_drrs_flush - Restart Idleness DRRS
5508 * @dev: DRM device
5509 * @frontbuffer_bits: frontbuffer plane tracking bits
5510 *
5511 * This function gets called every time rendering on the given planes has
5512 * completed or flip on a crtc is completed. So DRRS should be upclocked
5513 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5514 * if no other planes are dirty.
5515 *
5516 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5517 */
5518void intel_edp_drrs_flush(struct drm_device *dev,
5519 unsigned frontbuffer_bits)
5520{
5521 struct drm_i915_private *dev_priv = dev->dev_private;
5522 struct drm_crtc *crtc;
5523 enum pipe pipe;
5524
5525 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5526 return;
5527
5528 cancel_delayed_work(&dev_priv->drrs.work);
5529
5530 mutex_lock(&dev_priv->drrs.mutex);
5531 if (!dev_priv->drrs.dp) {
5532 mutex_unlock(&dev_priv->drrs.mutex);
5533 return;
5534 }
5535
5536 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5537 pipe = to_intel_crtc(crtc)->pipe;
5538
5539 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5540 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5541
5542 /* flush means busy screen hence upclock */
5543 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5544 intel_dp_set_drrs_state(dev_priv->dev,
5545 dev_priv->drrs.dp->attached_connector->panel.
5546 fixed_mode->vrefresh);
5547
5548 /*
5549 * flush also means no more activity hence schedule downclock, if all
5550 * other fbs are quiescent too
5551 */
5552 if (!dev_priv->drrs.busy_frontbuffer_bits)
5553 schedule_delayed_work(&dev_priv->drrs.work,
5554 msecs_to_jiffies(1000));
5555 mutex_unlock(&dev_priv->drrs.mutex);
5556}
5557
5558/**
5559 * DOC: Display Refresh Rate Switching (DRRS)
5560 *
5561 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5562 * which enables swtching between low and high refresh rates,
5563 * dynamically, based on the usage scenario. This feature is applicable
5564 * for internal panels.
5565 *
5566 * Indication that the panel supports DRRS is given by the panel EDID, which
5567 * would list multiple refresh rates for one resolution.
5568 *
5569 * DRRS is of 2 types - static and seamless.
5570 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5571 * (may appear as a blink on screen) and is used in dock-undock scenario.
5572 * Seamless DRRS involves changing RR without any visual effect to the user
5573 * and can be used during normal system usage. This is done by programming
5574 * certain registers.
5575 *
5576 * Support for static/seamless DRRS may be indicated in the VBT based on
5577 * inputs from the panel spec.
5578 *
5579 * DRRS saves power by switching to low RR based on usage scenarios.
5580 *
5581 * eDP DRRS:-
5582 * The implementation is based on frontbuffer tracking implementation.
5583 * When there is a disturbance on the screen triggered by user activity or a
5584 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5585 * When there is no movement on screen, after a timeout of 1 second, a switch
5586 * to low RR is made.
5587 * For integration with frontbuffer tracking code,
5588 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5589 *
5590 * DRRS can be further extended to support other internal panels and also
5591 * the scenario of video playback wherein RR is set based on the rate
5592 * requested by userspace.
5593 */
5594
5595/**
5596 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5597 * @intel_connector: eDP connector
5598 * @fixed_mode: preferred mode of panel
5599 *
5600 * This function is called only once at driver load to initialize basic
5601 * DRRS stuff.
5602 *
5603 * Returns:
5604 * Downclock mode if panel supports it, else return NULL.
5605 * DRRS support is determined by the presence of downclock mode (apart
5606 * from VBT setting).
5607 */
5608static struct drm_display_mode *
5609intel_dp_drrs_init(struct intel_connector *intel_connector,
5610 struct drm_display_mode *fixed_mode)
5611{
5612 struct drm_connector *connector = &intel_connector->base;
5613 struct drm_device *dev = connector->dev;
5614 struct drm_i915_private *dev_priv = dev->dev_private;
5615 struct drm_display_mode *downclock_mode = NULL;
5616
5617 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5618 mutex_init(&dev_priv->drrs.mutex);
5619
5620 if (INTEL_INFO(dev)->gen <= 6) {
5621 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5622 return NULL;
5623 }
5624
5625 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5626 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5627 return NULL;
5628 }
5629
5630 downclock_mode = intel_find_panel_downclock
5631 (dev, fixed_mode, connector);
5632
5633 if (!downclock_mode) {
5634 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5635 return NULL;
5636 }
5637
5638 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5639
5640 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5641 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5642 return downclock_mode;
5643}
5644
5645static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5646 struct intel_connector *intel_connector)
5647{
5648 struct drm_connector *connector = &intel_connector->base;
5649 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5650 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5651 struct drm_device *dev = intel_encoder->base.dev;
5652 struct drm_i915_private *dev_priv = dev->dev_private;
5653 struct drm_display_mode *fixed_mode = NULL;
5654 struct drm_display_mode *downclock_mode = NULL;
5655 bool has_dpcd;
5656 struct drm_display_mode *scan;
5657 struct edid *edid;
5658 enum pipe pipe = INVALID_PIPE;
5659
5660 if (!is_edp(intel_dp))
5661 return true;
5662
5663 pps_lock(intel_dp);
5664 intel_edp_panel_vdd_sanitize(intel_dp);
5665 pps_unlock(intel_dp);
5666
5667 /* Cache DPCD and EDID for edp. */
5668 has_dpcd = intel_dp_get_dpcd(intel_dp);
5669
5670 if (has_dpcd) {
5671 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5672 dev_priv->no_aux_handshake =
5673 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5674 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5675 } else {
5676 /* if this fails, presume the device is a ghost */
5677 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5678 return false;
5679 }
5680
5681 /* We now know it's not a ghost, init power sequence regs. */
5682 pps_lock(intel_dp);
5683 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5684 pps_unlock(intel_dp);
5685
5686 mutex_lock(&dev->mode_config.mutex);
5687 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5688 if (edid) {
5689 if (drm_add_edid_modes(connector, edid)) {
5690 drm_mode_connector_update_edid_property(connector,
5691 edid);
5692 drm_edid_to_eld(connector, edid);
5693 } else {
5694 kfree(edid);
5695 edid = ERR_PTR(-EINVAL);
5696 }
5697 } else {
5698 edid = ERR_PTR(-ENOENT);
5699 }
5700 intel_connector->edid = edid;
5701
5702 /* prefer fixed mode from EDID if available */
5703 list_for_each_entry(scan, &connector->probed_modes, head) {
5704 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5705 fixed_mode = drm_mode_duplicate(dev, scan);
5706 downclock_mode = intel_dp_drrs_init(
5707 intel_connector, fixed_mode);
5708 break;
5709 }
5710 }
5711
5712 /* fallback to VBT if available for eDP */
5713 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5714 fixed_mode = drm_mode_duplicate(dev,
5715 dev_priv->vbt.lfp_lvds_vbt_mode);
5716 if (fixed_mode)
5717 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5718 }
5719 mutex_unlock(&dev->mode_config.mutex);
5720
5721 if (IS_VALLEYVIEW(dev)) {
5722 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5723 register_reboot_notifier(&intel_dp->edp_notifier);
5724
5725 /*
5726 * Figure out the current pipe for the initial backlight setup.
5727 * If the current pipe isn't valid, try the PPS pipe, and if that
5728 * fails just assume pipe A.
5729 */
5730 if (IS_CHERRYVIEW(dev))
5731 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5732 else
5733 pipe = PORT_TO_PIPE(intel_dp->DP);
5734
5735 if (pipe != PIPE_A && pipe != PIPE_B)
5736 pipe = intel_dp->pps_pipe;
5737
5738 if (pipe != PIPE_A && pipe != PIPE_B)
5739 pipe = PIPE_A;
5740
5741 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5742 pipe_name(pipe));
5743 }
5744
5745 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5746 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5747 intel_panel_setup_backlight(connector, pipe);
5748
5749 return true;
5750}
5751
5752bool
5753intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5754 struct intel_connector *intel_connector)
5755{
5756 struct drm_connector *connector = &intel_connector->base;
5757 struct intel_dp *intel_dp = &intel_dig_port->dp;
5758 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5759 struct drm_device *dev = intel_encoder->base.dev;
5760 struct drm_i915_private *dev_priv = dev->dev_private;
5761 enum port port = intel_dig_port->port;
5762 int type;
5763
5764 intel_dp->pps_pipe = INVALID_PIPE;
5765
5766 /* intel_dp vfuncs */
5767 if (INTEL_INFO(dev)->gen >= 9)
5768 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5769 else if (IS_VALLEYVIEW(dev))
5770 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5771 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5772 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5773 else if (HAS_PCH_SPLIT(dev))
5774 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5775 else
5776 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5777
5778 if (INTEL_INFO(dev)->gen >= 9)
5779 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5780 else
5781 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5782
5783 if (HAS_DDI(dev))
5784 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5785
5786 /* Preserve the current hw state. */
5787 intel_dp->DP = I915_READ(intel_dp->output_reg);
5788 intel_dp->attached_connector = intel_connector;
5789
5790 if (intel_dp_is_edp(dev, port))
5791 type = DRM_MODE_CONNECTOR_eDP;
5792 else
5793 type = DRM_MODE_CONNECTOR_DisplayPort;
5794
5795 /*
5796 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5797 * for DP the encoder type can be set by the caller to
5798 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5799 */
5800 if (type == DRM_MODE_CONNECTOR_eDP)
5801 intel_encoder->type = INTEL_OUTPUT_EDP;
5802
5803 /* eDP only on port B and/or C on vlv/chv */
5804 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5805 port != PORT_B && port != PORT_C))
5806 return false;
5807
5808 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5809 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5810 port_name(port));
5811
5812 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5813 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5814
5815 connector->interlace_allowed = true;
5816 connector->doublescan_allowed = 0;
5817
5818 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5819 edp_panel_vdd_work);
5820
5821 intel_connector_attach_encoder(intel_connector, intel_encoder);
5822 drm_connector_register(connector);
5823
5824 if (HAS_DDI(dev))
5825 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5826 else
5827 intel_connector->get_hw_state = intel_connector_get_hw_state;
5828 intel_connector->unregister = intel_dp_connector_unregister;
5829
5830 /* Set up the hotplug pin. */
5831 switch (port) {
5832 case PORT_A:
5833 intel_encoder->hpd_pin = HPD_PORT_A;
5834 break;
5835 case PORT_B:
5836 intel_encoder->hpd_pin = HPD_PORT_B;
5837 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5838 intel_encoder->hpd_pin = HPD_PORT_A;
5839 break;
5840 case PORT_C:
5841 intel_encoder->hpd_pin = HPD_PORT_C;
5842 break;
5843 case PORT_D:
5844 intel_encoder->hpd_pin = HPD_PORT_D;
5845 break;
5846 case PORT_E:
5847 intel_encoder->hpd_pin = HPD_PORT_E;
5848 break;
5849 default:
5850 BUG();
5851 }
5852
5853 if (is_edp(intel_dp)) {
5854 pps_lock(intel_dp);
5855 intel_dp_init_panel_power_timestamps(intel_dp);
5856 if (IS_VALLEYVIEW(dev))
5857 vlv_initial_power_sequencer_setup(intel_dp);
5858 else
5859 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5860 pps_unlock(intel_dp);
5861 }
5862
5863 intel_dp_aux_init(intel_dp, intel_connector);
5864
5865 /* init MST on ports that can support it */
5866 if (HAS_DP_MST(dev) &&
5867 (port == PORT_B || port == PORT_C || port == PORT_D))
5868 intel_dp_mst_encoder_init(intel_dig_port,
5869 intel_connector->base.base.id);
5870
5871 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5872 drm_dp_aux_unregister(&intel_dp->aux);
5873 if (is_edp(intel_dp)) {
5874 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5875 /*
5876 * vdd might still be enabled do to the delayed vdd off.
5877 * Make sure vdd is actually turned off here.
5878 */
5879 pps_lock(intel_dp);
5880 edp_panel_vdd_off_sync(intel_dp);
5881 pps_unlock(intel_dp);
5882 }
5883 drm_connector_unregister(connector);
5884 drm_connector_cleanup(connector);
5885 return false;
5886 }
5887
5888 intel_dp_add_properties(intel_dp, connector);
5889
5890 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5891 * 0xd. Failure to do so will result in spurious interrupts being
5892 * generated on the port when a cable is not attached.
5893 */
5894 if (IS_G4X(dev) && !IS_GM45(dev)) {
5895 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5896 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5897 }
5898
5899 i915_debugfs_connector_add(connector);
5900
5901 return true;
5902}
5903
5904void
5905intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5906{
5907 struct drm_i915_private *dev_priv = dev->dev_private;
5908 struct intel_digital_port *intel_dig_port;
5909 struct intel_encoder *intel_encoder;
5910 struct drm_encoder *encoder;
5911 struct intel_connector *intel_connector;
5912
5913 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5914 if (!intel_dig_port)
5915 return;
5916
5917 intel_connector = intel_connector_alloc();
5918 if (!intel_connector)
5919 goto err_connector_alloc;
5920
5921 intel_encoder = &intel_dig_port->base;
5922 encoder = &intel_encoder->base;
5923
5924 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5925 DRM_MODE_ENCODER_TMDS);
5926
5927 intel_encoder->compute_config = intel_dp_compute_config;
5928 intel_encoder->disable = intel_disable_dp;
5929 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5930 intel_encoder->get_config = intel_dp_get_config;
5931 intel_encoder->suspend = intel_dp_encoder_suspend;
5932 if (IS_CHERRYVIEW(dev)) {
5933 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5934 intel_encoder->pre_enable = chv_pre_enable_dp;
5935 intel_encoder->enable = vlv_enable_dp;
5936 intel_encoder->post_disable = chv_post_disable_dp;
5937 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5938 } else if (IS_VALLEYVIEW(dev)) {
5939 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5940 intel_encoder->pre_enable = vlv_pre_enable_dp;
5941 intel_encoder->enable = vlv_enable_dp;
5942 intel_encoder->post_disable = vlv_post_disable_dp;
5943 } else {
5944 intel_encoder->pre_enable = g4x_pre_enable_dp;
5945 intel_encoder->enable = g4x_enable_dp;
5946 if (INTEL_INFO(dev)->gen >= 5)
5947 intel_encoder->post_disable = ilk_post_disable_dp;
5948 }
5949
5950 intel_dig_port->port = port;
5951 intel_dig_port->dp.output_reg = output_reg;
5952
5953 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5954 if (IS_CHERRYVIEW(dev)) {
5955 if (port == PORT_D)
5956 intel_encoder->crtc_mask = 1 << 2;
5957 else
5958 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5959 } else {
5960 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5961 }
5962 intel_encoder->cloneable = 0;
5963
5964 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5965 dev_priv->hotplug.irq_port[port] = intel_dig_port;
5966
5967 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5968 goto err_init_connector;
5969
5970 return;
5971
5972err_init_connector:
5973 drm_encoder_cleanup(encoder);
5974 kfree(intel_connector);
5975err_connector_alloc:
5976 kfree(intel_dig_port);
5977
5978 return;
5979}
5980
5981void intel_dp_mst_suspend(struct drm_device *dev)
5982{
5983 struct drm_i915_private *dev_priv = dev->dev_private;
5984 int i;
5985
5986 /* disable MST */
5987 for (i = 0; i < I915_MAX_PORTS; i++) {
5988 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5989 if (!intel_dig_port)
5990 continue;
5991
5992 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5993 if (!intel_dig_port->dp.can_mst)
5994 continue;
5995 if (intel_dig_port->dp.is_mst)
5996 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5997 }
5998 }
5999}
6000
6001void intel_dp_mst_resume(struct drm_device *dev)
6002{
6003 struct drm_i915_private *dev_priv = dev->dev_private;
6004 int i;
6005
6006 for (i = 0; i < I915_MAX_PORTS; i++) {
6007 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6008 if (!intel_dig_port)
6009 continue;
6010 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6011 int ret;
6012
6013 if (!intel_dig_port->dp.can_mst)
6014 continue;
6015
6016 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6017 if (ret != 0) {
6018 intel_dp_check_mst_status(&intel_dig_port->dp);
6019 }
6020 }
6021 }
6022}