]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - drivers/gpu/drm/i915/intel_pm.c
drm/i915: Eliminate usage of plane_wm_parameters from ILK-style WM code (v2)
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
... / ...
CommitLineData
1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28#include <linux/cpufreq.h>
29#include "i915_drv.h"
30#include "intel_drv.h"
31#include "../../../platform/x86/intel_ips.h"
32#include <linux/module.h>
33
34/**
35 * RC6 is a special power stage which allows the GPU to enter an very
36 * low-voltage mode when idle, using down to 0V while at this stage. This
37 * stage is entered automatically when the GPU is idle when RC6 support is
38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39 *
40 * There are different RC6 modes available in Intel GPU, which differentiate
41 * among each other with the latency required to enter and leave RC6 and
42 * voltage consumed by the GPU in different states.
43 *
44 * The combination of the following flags define which states GPU is allowed
45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46 * RC6pp is deepest RC6. Their support by hardware varies according to the
47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48 * which brings the most power savings; deeper states save more power, but
49 * require higher latency to switch to and wake up.
50 */
51#define INTEL_RC6_ENABLE (1<<0)
52#define INTEL_RC6p_ENABLE (1<<1)
53#define INTEL_RC6pp_ENABLE (1<<2)
54
55static void gen9_init_clock_gating(struct drm_device *dev)
56{
57 struct drm_i915_private *dev_priv = dev->dev_private;
58
59 /* WaEnableLbsSlaRetryTimerDecrement:skl */
60 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
61 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62
63 /* WaDisableKillLogic:bxt,skl */
64 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
65 ECOCHK_DIS_TLB);
66}
67
68static void skl_init_clock_gating(struct drm_device *dev)
69{
70 struct drm_i915_private *dev_priv = dev->dev_private;
71
72 gen9_init_clock_gating(dev);
73
74 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
75 /* WaDisableHDCInvalidation:skl */
76 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
77 BDW_DISABLE_HDC_INVALIDATION);
78
79 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
80 I915_WRITE(FF_SLICE_CS_CHICKEN2,
81 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
82 }
83
84 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
85 * involving this register should also be added to WA batch as required.
86 */
87 if (INTEL_REVID(dev) <= SKL_REVID_E0)
88 /* WaDisableLSQCROPERFforOCL:skl */
89 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
90 GEN8_LQSC_RO_PERF_DIS);
91
92 /* WaEnableGapsTsvCreditFix:skl */
93 if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
94 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
95 GEN9_GAPS_TSV_CREDIT_DISABLE));
96 }
97}
98
99static void bxt_init_clock_gating(struct drm_device *dev)
100{
101 struct drm_i915_private *dev_priv = dev->dev_private;
102
103 gen9_init_clock_gating(dev);
104
105 /* WaDisableSDEUnitClockGating:bxt */
106 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
107 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
108
109 /*
110 * FIXME:
111 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
112 */
113 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
114 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
115
116 /* WaStoreMultiplePTEenable:bxt */
117 /* This is a requirement according to Hardware specification */
118 if (INTEL_REVID(dev) == BXT_REVID_A0)
119 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
120
121 /* WaSetClckGatingDisableMedia:bxt */
122 if (INTEL_REVID(dev) == BXT_REVID_A0) {
123 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
124 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
125 }
126}
127
128static void i915_pineview_get_mem_freq(struct drm_device *dev)
129{
130 struct drm_i915_private *dev_priv = dev->dev_private;
131 u32 tmp;
132
133 tmp = I915_READ(CLKCFG);
134
135 switch (tmp & CLKCFG_FSB_MASK) {
136 case CLKCFG_FSB_533:
137 dev_priv->fsb_freq = 533; /* 133*4 */
138 break;
139 case CLKCFG_FSB_800:
140 dev_priv->fsb_freq = 800; /* 200*4 */
141 break;
142 case CLKCFG_FSB_667:
143 dev_priv->fsb_freq = 667; /* 167*4 */
144 break;
145 case CLKCFG_FSB_400:
146 dev_priv->fsb_freq = 400; /* 100*4 */
147 break;
148 }
149
150 switch (tmp & CLKCFG_MEM_MASK) {
151 case CLKCFG_MEM_533:
152 dev_priv->mem_freq = 533;
153 break;
154 case CLKCFG_MEM_667:
155 dev_priv->mem_freq = 667;
156 break;
157 case CLKCFG_MEM_800:
158 dev_priv->mem_freq = 800;
159 break;
160 }
161
162 /* detect pineview DDR3 setting */
163 tmp = I915_READ(CSHRDDR3CTL);
164 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
165}
166
167static void i915_ironlake_get_mem_freq(struct drm_device *dev)
168{
169 struct drm_i915_private *dev_priv = dev->dev_private;
170 u16 ddrpll, csipll;
171
172 ddrpll = I915_READ16(DDRMPLL1);
173 csipll = I915_READ16(CSIPLL0);
174
175 switch (ddrpll & 0xff) {
176 case 0xc:
177 dev_priv->mem_freq = 800;
178 break;
179 case 0x10:
180 dev_priv->mem_freq = 1066;
181 break;
182 case 0x14:
183 dev_priv->mem_freq = 1333;
184 break;
185 case 0x18:
186 dev_priv->mem_freq = 1600;
187 break;
188 default:
189 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
190 ddrpll & 0xff);
191 dev_priv->mem_freq = 0;
192 break;
193 }
194
195 dev_priv->ips.r_t = dev_priv->mem_freq;
196
197 switch (csipll & 0x3ff) {
198 case 0x00c:
199 dev_priv->fsb_freq = 3200;
200 break;
201 case 0x00e:
202 dev_priv->fsb_freq = 3733;
203 break;
204 case 0x010:
205 dev_priv->fsb_freq = 4266;
206 break;
207 case 0x012:
208 dev_priv->fsb_freq = 4800;
209 break;
210 case 0x014:
211 dev_priv->fsb_freq = 5333;
212 break;
213 case 0x016:
214 dev_priv->fsb_freq = 5866;
215 break;
216 case 0x018:
217 dev_priv->fsb_freq = 6400;
218 break;
219 default:
220 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
221 csipll & 0x3ff);
222 dev_priv->fsb_freq = 0;
223 break;
224 }
225
226 if (dev_priv->fsb_freq == 3200) {
227 dev_priv->ips.c_m = 0;
228 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
229 dev_priv->ips.c_m = 1;
230 } else {
231 dev_priv->ips.c_m = 2;
232 }
233}
234
235static const struct cxsr_latency cxsr_latency_table[] = {
236 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
237 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
238 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
239 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
240 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
241
242 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
243 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
244 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
245 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
246 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
247
248 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
249 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
250 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
251 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
252 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
253
254 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
255 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
256 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
257 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
258 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
259
260 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
261 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
262 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
263 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
264 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
265
266 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
267 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
268 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
269 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
270 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
271};
272
273static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
274 int is_ddr3,
275 int fsb,
276 int mem)
277{
278 const struct cxsr_latency *latency;
279 int i;
280
281 if (fsb == 0 || mem == 0)
282 return NULL;
283
284 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
285 latency = &cxsr_latency_table[i];
286 if (is_desktop == latency->is_desktop &&
287 is_ddr3 == latency->is_ddr3 &&
288 fsb == latency->fsb_freq && mem == latency->mem_freq)
289 return latency;
290 }
291
292 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
293
294 return NULL;
295}
296
297static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
298{
299 u32 val;
300
301 mutex_lock(&dev_priv->rps.hw_lock);
302
303 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
304 if (enable)
305 val &= ~FORCE_DDR_HIGH_FREQ;
306 else
307 val |= FORCE_DDR_HIGH_FREQ;
308 val &= ~FORCE_DDR_LOW_FREQ;
309 val |= FORCE_DDR_FREQ_REQ_ACK;
310 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
311
312 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
313 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
314 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
315
316 mutex_unlock(&dev_priv->rps.hw_lock);
317}
318
319static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
320{
321 u32 val;
322
323 mutex_lock(&dev_priv->rps.hw_lock);
324
325 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
326 if (enable)
327 val |= DSP_MAXFIFO_PM5_ENABLE;
328 else
329 val &= ~DSP_MAXFIFO_PM5_ENABLE;
330 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
331
332 mutex_unlock(&dev_priv->rps.hw_lock);
333}
334
335#define FW_WM(value, plane) \
336 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
337
338void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
339{
340 struct drm_device *dev = dev_priv->dev;
341 u32 val;
342
343 if (IS_VALLEYVIEW(dev)) {
344 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345 POSTING_READ(FW_BLC_SELF_VLV);
346 dev_priv->wm.vlv.cxsr = enable;
347 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
348 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349 POSTING_READ(FW_BLC_SELF);
350 } else if (IS_PINEVIEW(dev)) {
351 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
352 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
353 I915_WRITE(DSPFW3, val);
354 POSTING_READ(DSPFW3);
355 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
356 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
357 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
358 I915_WRITE(FW_BLC_SELF, val);
359 POSTING_READ(FW_BLC_SELF);
360 } else if (IS_I915GM(dev)) {
361 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
362 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
363 I915_WRITE(INSTPM, val);
364 POSTING_READ(INSTPM);
365 } else {
366 return;
367 }
368
369 DRM_DEBUG_KMS("memory self-refresh is %s\n",
370 enable ? "enabled" : "disabled");
371}
372
373
374/*
375 * Latency for FIFO fetches is dependent on several factors:
376 * - memory configuration (speed, channels)
377 * - chipset
378 * - current MCH state
379 * It can be fairly high in some situations, so here we assume a fairly
380 * pessimal value. It's a tradeoff between extra memory fetches (if we
381 * set this value too high, the FIFO will fetch frequently to stay full)
382 * and power consumption (set it too low to save power and we might see
383 * FIFO underruns and display "flicker").
384 *
385 * A value of 5us seems to be a good balance; safe for very low end
386 * platforms but not overly aggressive on lower latency configs.
387 */
388static const int pessimal_latency_ns = 5000;
389
390#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
391 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
392
393static int vlv_get_fifo_size(struct drm_device *dev,
394 enum pipe pipe, int plane)
395{
396 struct drm_i915_private *dev_priv = dev->dev_private;
397 int sprite0_start, sprite1_start, size;
398
399 switch (pipe) {
400 uint32_t dsparb, dsparb2, dsparb3;
401 case PIPE_A:
402 dsparb = I915_READ(DSPARB);
403 dsparb2 = I915_READ(DSPARB2);
404 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
405 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
406 break;
407 case PIPE_B:
408 dsparb = I915_READ(DSPARB);
409 dsparb2 = I915_READ(DSPARB2);
410 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
411 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
412 break;
413 case PIPE_C:
414 dsparb2 = I915_READ(DSPARB2);
415 dsparb3 = I915_READ(DSPARB3);
416 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
417 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
418 break;
419 default:
420 return 0;
421 }
422
423 switch (plane) {
424 case 0:
425 size = sprite0_start;
426 break;
427 case 1:
428 size = sprite1_start - sprite0_start;
429 break;
430 case 2:
431 size = 512 - 1 - sprite1_start;
432 break;
433 default:
434 return 0;
435 }
436
437 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
438 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
439 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
440 size);
441
442 return size;
443}
444
445static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
446{
447 struct drm_i915_private *dev_priv = dev->dev_private;
448 uint32_t dsparb = I915_READ(DSPARB);
449 int size;
450
451 size = dsparb & 0x7f;
452 if (plane)
453 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
454
455 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
456 plane ? "B" : "A", size);
457
458 return size;
459}
460
461static int i830_get_fifo_size(struct drm_device *dev, int plane)
462{
463 struct drm_i915_private *dev_priv = dev->dev_private;
464 uint32_t dsparb = I915_READ(DSPARB);
465 int size;
466
467 size = dsparb & 0x1ff;
468 if (plane)
469 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
470 size >>= 1; /* Convert to cachelines */
471
472 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
473 plane ? "B" : "A", size);
474
475 return size;
476}
477
478static int i845_get_fifo_size(struct drm_device *dev, int plane)
479{
480 struct drm_i915_private *dev_priv = dev->dev_private;
481 uint32_t dsparb = I915_READ(DSPARB);
482 int size;
483
484 size = dsparb & 0x7f;
485 size >>= 2; /* Convert to cachelines */
486
487 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
488 plane ? "B" : "A",
489 size);
490
491 return size;
492}
493
494/* Pineview has different values for various configs */
495static const struct intel_watermark_params pineview_display_wm = {
496 .fifo_size = PINEVIEW_DISPLAY_FIFO,
497 .max_wm = PINEVIEW_MAX_WM,
498 .default_wm = PINEVIEW_DFT_WM,
499 .guard_size = PINEVIEW_GUARD_WM,
500 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
501};
502static const struct intel_watermark_params pineview_display_hplloff_wm = {
503 .fifo_size = PINEVIEW_DISPLAY_FIFO,
504 .max_wm = PINEVIEW_MAX_WM,
505 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
506 .guard_size = PINEVIEW_GUARD_WM,
507 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
508};
509static const struct intel_watermark_params pineview_cursor_wm = {
510 .fifo_size = PINEVIEW_CURSOR_FIFO,
511 .max_wm = PINEVIEW_CURSOR_MAX_WM,
512 .default_wm = PINEVIEW_CURSOR_DFT_WM,
513 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
514 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
515};
516static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
517 .fifo_size = PINEVIEW_CURSOR_FIFO,
518 .max_wm = PINEVIEW_CURSOR_MAX_WM,
519 .default_wm = PINEVIEW_CURSOR_DFT_WM,
520 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
521 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
522};
523static const struct intel_watermark_params g4x_wm_info = {
524 .fifo_size = G4X_FIFO_SIZE,
525 .max_wm = G4X_MAX_WM,
526 .default_wm = G4X_MAX_WM,
527 .guard_size = 2,
528 .cacheline_size = G4X_FIFO_LINE_SIZE,
529};
530static const struct intel_watermark_params g4x_cursor_wm_info = {
531 .fifo_size = I965_CURSOR_FIFO,
532 .max_wm = I965_CURSOR_MAX_WM,
533 .default_wm = I965_CURSOR_DFT_WM,
534 .guard_size = 2,
535 .cacheline_size = G4X_FIFO_LINE_SIZE,
536};
537static const struct intel_watermark_params valleyview_wm_info = {
538 .fifo_size = VALLEYVIEW_FIFO_SIZE,
539 .max_wm = VALLEYVIEW_MAX_WM,
540 .default_wm = VALLEYVIEW_MAX_WM,
541 .guard_size = 2,
542 .cacheline_size = G4X_FIFO_LINE_SIZE,
543};
544static const struct intel_watermark_params valleyview_cursor_wm_info = {
545 .fifo_size = I965_CURSOR_FIFO,
546 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
547 .default_wm = I965_CURSOR_DFT_WM,
548 .guard_size = 2,
549 .cacheline_size = G4X_FIFO_LINE_SIZE,
550};
551static const struct intel_watermark_params i965_cursor_wm_info = {
552 .fifo_size = I965_CURSOR_FIFO,
553 .max_wm = I965_CURSOR_MAX_WM,
554 .default_wm = I965_CURSOR_DFT_WM,
555 .guard_size = 2,
556 .cacheline_size = I915_FIFO_LINE_SIZE,
557};
558static const struct intel_watermark_params i945_wm_info = {
559 .fifo_size = I945_FIFO_SIZE,
560 .max_wm = I915_MAX_WM,
561 .default_wm = 1,
562 .guard_size = 2,
563 .cacheline_size = I915_FIFO_LINE_SIZE,
564};
565static const struct intel_watermark_params i915_wm_info = {
566 .fifo_size = I915_FIFO_SIZE,
567 .max_wm = I915_MAX_WM,
568 .default_wm = 1,
569 .guard_size = 2,
570 .cacheline_size = I915_FIFO_LINE_SIZE,
571};
572static const struct intel_watermark_params i830_a_wm_info = {
573 .fifo_size = I855GM_FIFO_SIZE,
574 .max_wm = I915_MAX_WM,
575 .default_wm = 1,
576 .guard_size = 2,
577 .cacheline_size = I830_FIFO_LINE_SIZE,
578};
579static const struct intel_watermark_params i830_bc_wm_info = {
580 .fifo_size = I855GM_FIFO_SIZE,
581 .max_wm = I915_MAX_WM/2,
582 .default_wm = 1,
583 .guard_size = 2,
584 .cacheline_size = I830_FIFO_LINE_SIZE,
585};
586static const struct intel_watermark_params i845_wm_info = {
587 .fifo_size = I830_FIFO_SIZE,
588 .max_wm = I915_MAX_WM,
589 .default_wm = 1,
590 .guard_size = 2,
591 .cacheline_size = I830_FIFO_LINE_SIZE,
592};
593
594/**
595 * intel_calculate_wm - calculate watermark level
596 * @clock_in_khz: pixel clock
597 * @wm: chip FIFO params
598 * @pixel_size: display pixel size
599 * @latency_ns: memory latency for the platform
600 *
601 * Calculate the watermark level (the level at which the display plane will
602 * start fetching from memory again). Each chip has a different display
603 * FIFO size and allocation, so the caller needs to figure that out and pass
604 * in the correct intel_watermark_params structure.
605 *
606 * As the pixel clock runs, the FIFO will be drained at a rate that depends
607 * on the pixel size. When it reaches the watermark level, it'll start
608 * fetching FIFO line sized based chunks from memory until the FIFO fills
609 * past the watermark point. If the FIFO drains completely, a FIFO underrun
610 * will occur, and a display engine hang could result.
611 */
612static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
613 const struct intel_watermark_params *wm,
614 int fifo_size,
615 int pixel_size,
616 unsigned long latency_ns)
617{
618 long entries_required, wm_size;
619
620 /*
621 * Note: we need to make sure we don't overflow for various clock &
622 * latency values.
623 * clocks go from a few thousand to several hundred thousand.
624 * latency is usually a few thousand
625 */
626 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
627 1000;
628 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
629
630 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
631
632 wm_size = fifo_size - (entries_required + wm->guard_size);
633
634 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
635
636 /* Don't promote wm_size to unsigned... */
637 if (wm_size > (long)wm->max_wm)
638 wm_size = wm->max_wm;
639 if (wm_size <= 0)
640 wm_size = wm->default_wm;
641
642 /*
643 * Bspec seems to indicate that the value shouldn't be lower than
644 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
645 * Lets go for 8 which is the burst size since certain platforms
646 * already use a hardcoded 8 (which is what the spec says should be
647 * done).
648 */
649 if (wm_size <= 8)
650 wm_size = 8;
651
652 return wm_size;
653}
654
655static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
656{
657 struct drm_crtc *crtc, *enabled = NULL;
658
659 for_each_crtc(dev, crtc) {
660 if (intel_crtc_active(crtc)) {
661 if (enabled)
662 return NULL;
663 enabled = crtc;
664 }
665 }
666
667 return enabled;
668}
669
670static void pineview_update_wm(struct drm_crtc *unused_crtc)
671{
672 struct drm_device *dev = unused_crtc->dev;
673 struct drm_i915_private *dev_priv = dev->dev_private;
674 struct drm_crtc *crtc;
675 const struct cxsr_latency *latency;
676 u32 reg;
677 unsigned long wm;
678
679 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
680 dev_priv->fsb_freq, dev_priv->mem_freq);
681 if (!latency) {
682 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
683 intel_set_memory_cxsr(dev_priv, false);
684 return;
685 }
686
687 crtc = single_enabled_crtc(dev);
688 if (crtc) {
689 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
690 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
691 int clock = adjusted_mode->crtc_clock;
692
693 /* Display SR */
694 wm = intel_calculate_wm(clock, &pineview_display_wm,
695 pineview_display_wm.fifo_size,
696 pixel_size, latency->display_sr);
697 reg = I915_READ(DSPFW1);
698 reg &= ~DSPFW_SR_MASK;
699 reg |= FW_WM(wm, SR);
700 I915_WRITE(DSPFW1, reg);
701 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
702
703 /* cursor SR */
704 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
705 pineview_display_wm.fifo_size,
706 pixel_size, latency->cursor_sr);
707 reg = I915_READ(DSPFW3);
708 reg &= ~DSPFW_CURSOR_SR_MASK;
709 reg |= FW_WM(wm, CURSOR_SR);
710 I915_WRITE(DSPFW3, reg);
711
712 /* Display HPLL off SR */
713 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
714 pineview_display_hplloff_wm.fifo_size,
715 pixel_size, latency->display_hpll_disable);
716 reg = I915_READ(DSPFW3);
717 reg &= ~DSPFW_HPLL_SR_MASK;
718 reg |= FW_WM(wm, HPLL_SR);
719 I915_WRITE(DSPFW3, reg);
720
721 /* cursor HPLL off SR */
722 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
723 pineview_display_hplloff_wm.fifo_size,
724 pixel_size, latency->cursor_hpll_disable);
725 reg = I915_READ(DSPFW3);
726 reg &= ~DSPFW_HPLL_CURSOR_MASK;
727 reg |= FW_WM(wm, HPLL_CURSOR);
728 I915_WRITE(DSPFW3, reg);
729 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
730
731 intel_set_memory_cxsr(dev_priv, true);
732 } else {
733 intel_set_memory_cxsr(dev_priv, false);
734 }
735}
736
737static bool g4x_compute_wm0(struct drm_device *dev,
738 int plane,
739 const struct intel_watermark_params *display,
740 int display_latency_ns,
741 const struct intel_watermark_params *cursor,
742 int cursor_latency_ns,
743 int *plane_wm,
744 int *cursor_wm)
745{
746 struct drm_crtc *crtc;
747 const struct drm_display_mode *adjusted_mode;
748 int htotal, hdisplay, clock, pixel_size;
749 int line_time_us, line_count;
750 int entries, tlb_miss;
751
752 crtc = intel_get_crtc_for_plane(dev, plane);
753 if (!intel_crtc_active(crtc)) {
754 *cursor_wm = cursor->guard_size;
755 *plane_wm = display->guard_size;
756 return false;
757 }
758
759 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
760 clock = adjusted_mode->crtc_clock;
761 htotal = adjusted_mode->crtc_htotal;
762 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
763 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
764
765 /* Use the small buffer method to calculate plane watermark */
766 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
767 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
768 if (tlb_miss > 0)
769 entries += tlb_miss;
770 entries = DIV_ROUND_UP(entries, display->cacheline_size);
771 *plane_wm = entries + display->guard_size;
772 if (*plane_wm > (int)display->max_wm)
773 *plane_wm = display->max_wm;
774
775 /* Use the large buffer method to calculate cursor watermark */
776 line_time_us = max(htotal * 1000 / clock, 1);
777 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
778 entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
779 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
780 if (tlb_miss > 0)
781 entries += tlb_miss;
782 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
783 *cursor_wm = entries + cursor->guard_size;
784 if (*cursor_wm > (int)cursor->max_wm)
785 *cursor_wm = (int)cursor->max_wm;
786
787 return true;
788}
789
790/*
791 * Check the wm result.
792 *
793 * If any calculated watermark values is larger than the maximum value that
794 * can be programmed into the associated watermark register, that watermark
795 * must be disabled.
796 */
797static bool g4x_check_srwm(struct drm_device *dev,
798 int display_wm, int cursor_wm,
799 const struct intel_watermark_params *display,
800 const struct intel_watermark_params *cursor)
801{
802 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
803 display_wm, cursor_wm);
804
805 if (display_wm > display->max_wm) {
806 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
807 display_wm, display->max_wm);
808 return false;
809 }
810
811 if (cursor_wm > cursor->max_wm) {
812 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
813 cursor_wm, cursor->max_wm);
814 return false;
815 }
816
817 if (!(display_wm || cursor_wm)) {
818 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
819 return false;
820 }
821
822 return true;
823}
824
825static bool g4x_compute_srwm(struct drm_device *dev,
826 int plane,
827 int latency_ns,
828 const struct intel_watermark_params *display,
829 const struct intel_watermark_params *cursor,
830 int *display_wm, int *cursor_wm)
831{
832 struct drm_crtc *crtc;
833 const struct drm_display_mode *adjusted_mode;
834 int hdisplay, htotal, pixel_size, clock;
835 unsigned long line_time_us;
836 int line_count, line_size;
837 int small, large;
838 int entries;
839
840 if (!latency_ns) {
841 *display_wm = *cursor_wm = 0;
842 return false;
843 }
844
845 crtc = intel_get_crtc_for_plane(dev, plane);
846 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
847 clock = adjusted_mode->crtc_clock;
848 htotal = adjusted_mode->crtc_htotal;
849 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
850 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
851
852 line_time_us = max(htotal * 1000 / clock, 1);
853 line_count = (latency_ns / line_time_us + 1000) / 1000;
854 line_size = hdisplay * pixel_size;
855
856 /* Use the minimum of the small and large buffer method for primary */
857 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
858 large = line_count * line_size;
859
860 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
861 *display_wm = entries + display->guard_size;
862
863 /* calculate the self-refresh watermark for display cursor */
864 entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
865 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
866 *cursor_wm = entries + cursor->guard_size;
867
868 return g4x_check_srwm(dev,
869 *display_wm, *cursor_wm,
870 display, cursor);
871}
872
873#define FW_WM_VLV(value, plane) \
874 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
875
876static void vlv_write_wm_values(struct intel_crtc *crtc,
877 const struct vlv_wm_values *wm)
878{
879 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
880 enum pipe pipe = crtc->pipe;
881
882 I915_WRITE(VLV_DDL(pipe),
883 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
884 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
885 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
886 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
887
888 I915_WRITE(DSPFW1,
889 FW_WM(wm->sr.plane, SR) |
890 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
891 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
892 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
893 I915_WRITE(DSPFW2,
894 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
895 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
896 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
897 I915_WRITE(DSPFW3,
898 FW_WM(wm->sr.cursor, CURSOR_SR));
899
900 if (IS_CHERRYVIEW(dev_priv)) {
901 I915_WRITE(DSPFW7_CHV,
902 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
903 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
904 I915_WRITE(DSPFW8_CHV,
905 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
906 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
907 I915_WRITE(DSPFW9_CHV,
908 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
909 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
910 I915_WRITE(DSPHOWM,
911 FW_WM(wm->sr.plane >> 9, SR_HI) |
912 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
913 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
914 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
915 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
916 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
917 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
918 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
919 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
920 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
921 } else {
922 I915_WRITE(DSPFW7,
923 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
924 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
925 I915_WRITE(DSPHOWM,
926 FW_WM(wm->sr.plane >> 9, SR_HI) |
927 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
928 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
929 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
930 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
931 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
932 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
933 }
934
935 /* zero (unused) WM1 watermarks */
936 I915_WRITE(DSPFW4, 0);
937 I915_WRITE(DSPFW5, 0);
938 I915_WRITE(DSPFW6, 0);
939 I915_WRITE(DSPHOWM1, 0);
940
941 POSTING_READ(DSPFW1);
942}
943
944#undef FW_WM_VLV
945
946enum vlv_wm_level {
947 VLV_WM_LEVEL_PM2,
948 VLV_WM_LEVEL_PM5,
949 VLV_WM_LEVEL_DDR_DVFS,
950};
951
952/* latency must be in 0.1us units. */
953static unsigned int vlv_wm_method2(unsigned int pixel_rate,
954 unsigned int pipe_htotal,
955 unsigned int horiz_pixels,
956 unsigned int bytes_per_pixel,
957 unsigned int latency)
958{
959 unsigned int ret;
960
961 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
962 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
963 ret = DIV_ROUND_UP(ret, 64);
964
965 return ret;
966}
967
968static void vlv_setup_wm_latency(struct drm_device *dev)
969{
970 struct drm_i915_private *dev_priv = dev->dev_private;
971
972 /* all latencies in usec */
973 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
974
975 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
976
977 if (IS_CHERRYVIEW(dev_priv)) {
978 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
979 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
980
981 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
982 }
983}
984
985static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
986 struct intel_crtc *crtc,
987 const struct intel_plane_state *state,
988 int level)
989{
990 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
991 int clock, htotal, pixel_size, width, wm;
992
993 if (dev_priv->wm.pri_latency[level] == 0)
994 return USHRT_MAX;
995
996 if (!state->visible)
997 return 0;
998
999 pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1000 clock = crtc->config->base.adjusted_mode.crtc_clock;
1001 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
1002 width = crtc->config->pipe_src_w;
1003 if (WARN_ON(htotal == 0))
1004 htotal = 1;
1005
1006 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1007 /*
1008 * FIXME the formula gives values that are
1009 * too big for the cursor FIFO, and hence we
1010 * would never be able to use cursors. For
1011 * now just hardcode the watermark.
1012 */
1013 wm = 63;
1014 } else {
1015 wm = vlv_wm_method2(clock, htotal, width, pixel_size,
1016 dev_priv->wm.pri_latency[level] * 10);
1017 }
1018
1019 return min_t(int, wm, USHRT_MAX);
1020}
1021
1022static void vlv_compute_fifo(struct intel_crtc *crtc)
1023{
1024 struct drm_device *dev = crtc->base.dev;
1025 struct vlv_wm_state *wm_state = &crtc->wm_state;
1026 struct intel_plane *plane;
1027 unsigned int total_rate = 0;
1028 const int fifo_size = 512 - 1;
1029 int fifo_extra, fifo_left = fifo_size;
1030
1031 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1032 struct intel_plane_state *state =
1033 to_intel_plane_state(plane->base.state);
1034
1035 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1036 continue;
1037
1038 if (state->visible) {
1039 wm_state->num_active_planes++;
1040 total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1041 }
1042 }
1043
1044 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1045 struct intel_plane_state *state =
1046 to_intel_plane_state(plane->base.state);
1047 unsigned int rate;
1048
1049 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1050 plane->wm.fifo_size = 63;
1051 continue;
1052 }
1053
1054 if (!state->visible) {
1055 plane->wm.fifo_size = 0;
1056 continue;
1057 }
1058
1059 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1060 plane->wm.fifo_size = fifo_size * rate / total_rate;
1061 fifo_left -= plane->wm.fifo_size;
1062 }
1063
1064 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1065
1066 /* spread the remainder evenly */
1067 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1068 int plane_extra;
1069
1070 if (fifo_left == 0)
1071 break;
1072
1073 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1074 continue;
1075
1076 /* give it all to the first plane if none are active */
1077 if (plane->wm.fifo_size == 0 &&
1078 wm_state->num_active_planes)
1079 continue;
1080
1081 plane_extra = min(fifo_extra, fifo_left);
1082 plane->wm.fifo_size += plane_extra;
1083 fifo_left -= plane_extra;
1084 }
1085
1086 WARN_ON(fifo_left != 0);
1087}
1088
1089static void vlv_invert_wms(struct intel_crtc *crtc)
1090{
1091 struct vlv_wm_state *wm_state = &crtc->wm_state;
1092 int level;
1093
1094 for (level = 0; level < wm_state->num_levels; level++) {
1095 struct drm_device *dev = crtc->base.dev;
1096 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1097 struct intel_plane *plane;
1098
1099 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1100 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1101
1102 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1103 switch (plane->base.type) {
1104 int sprite;
1105 case DRM_PLANE_TYPE_CURSOR:
1106 wm_state->wm[level].cursor = plane->wm.fifo_size -
1107 wm_state->wm[level].cursor;
1108 break;
1109 case DRM_PLANE_TYPE_PRIMARY:
1110 wm_state->wm[level].primary = plane->wm.fifo_size -
1111 wm_state->wm[level].primary;
1112 break;
1113 case DRM_PLANE_TYPE_OVERLAY:
1114 sprite = plane->plane;
1115 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1116 wm_state->wm[level].sprite[sprite];
1117 break;
1118 }
1119 }
1120 }
1121}
1122
1123static void vlv_compute_wm(struct intel_crtc *crtc)
1124{
1125 struct drm_device *dev = crtc->base.dev;
1126 struct vlv_wm_state *wm_state = &crtc->wm_state;
1127 struct intel_plane *plane;
1128 int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1129 int level;
1130
1131 memset(wm_state, 0, sizeof(*wm_state));
1132
1133 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1134 wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1135
1136 wm_state->num_active_planes = 0;
1137
1138 vlv_compute_fifo(crtc);
1139
1140 if (wm_state->num_active_planes != 1)
1141 wm_state->cxsr = false;
1142
1143 if (wm_state->cxsr) {
1144 for (level = 0; level < wm_state->num_levels; level++) {
1145 wm_state->sr[level].plane = sr_fifo_size;
1146 wm_state->sr[level].cursor = 63;
1147 }
1148 }
1149
1150 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1151 struct intel_plane_state *state =
1152 to_intel_plane_state(plane->base.state);
1153
1154 if (!state->visible)
1155 continue;
1156
1157 /* normal watermarks */
1158 for (level = 0; level < wm_state->num_levels; level++) {
1159 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1160 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1161
1162 /* hack */
1163 if (WARN_ON(level == 0 && wm > max_wm))
1164 wm = max_wm;
1165
1166 if (wm > plane->wm.fifo_size)
1167 break;
1168
1169 switch (plane->base.type) {
1170 int sprite;
1171 case DRM_PLANE_TYPE_CURSOR:
1172 wm_state->wm[level].cursor = wm;
1173 break;
1174 case DRM_PLANE_TYPE_PRIMARY:
1175 wm_state->wm[level].primary = wm;
1176 break;
1177 case DRM_PLANE_TYPE_OVERLAY:
1178 sprite = plane->plane;
1179 wm_state->wm[level].sprite[sprite] = wm;
1180 break;
1181 }
1182 }
1183
1184 wm_state->num_levels = level;
1185
1186 if (!wm_state->cxsr)
1187 continue;
1188
1189 /* maxfifo watermarks */
1190 switch (plane->base.type) {
1191 int sprite, level;
1192 case DRM_PLANE_TYPE_CURSOR:
1193 for (level = 0; level < wm_state->num_levels; level++)
1194 wm_state->sr[level].cursor =
1195 wm_state->sr[level].cursor;
1196 break;
1197 case DRM_PLANE_TYPE_PRIMARY:
1198 for (level = 0; level < wm_state->num_levels; level++)
1199 wm_state->sr[level].plane =
1200 min(wm_state->sr[level].plane,
1201 wm_state->wm[level].primary);
1202 break;
1203 case DRM_PLANE_TYPE_OVERLAY:
1204 sprite = plane->plane;
1205 for (level = 0; level < wm_state->num_levels; level++)
1206 wm_state->sr[level].plane =
1207 min(wm_state->sr[level].plane,
1208 wm_state->wm[level].sprite[sprite]);
1209 break;
1210 }
1211 }
1212
1213 /* clear any (partially) filled invalid levels */
1214 for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1215 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1216 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1217 }
1218
1219 vlv_invert_wms(crtc);
1220}
1221
1222#define VLV_FIFO(plane, value) \
1223 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1224
1225static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1226{
1227 struct drm_device *dev = crtc->base.dev;
1228 struct drm_i915_private *dev_priv = to_i915(dev);
1229 struct intel_plane *plane;
1230 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1231
1232 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1233 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1234 WARN_ON(plane->wm.fifo_size != 63);
1235 continue;
1236 }
1237
1238 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1239 sprite0_start = plane->wm.fifo_size;
1240 else if (plane->plane == 0)
1241 sprite1_start = sprite0_start + plane->wm.fifo_size;
1242 else
1243 fifo_size = sprite1_start + plane->wm.fifo_size;
1244 }
1245
1246 WARN_ON(fifo_size != 512 - 1);
1247
1248 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1249 pipe_name(crtc->pipe), sprite0_start,
1250 sprite1_start, fifo_size);
1251
1252 switch (crtc->pipe) {
1253 uint32_t dsparb, dsparb2, dsparb3;
1254 case PIPE_A:
1255 dsparb = I915_READ(DSPARB);
1256 dsparb2 = I915_READ(DSPARB2);
1257
1258 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1259 VLV_FIFO(SPRITEB, 0xff));
1260 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1261 VLV_FIFO(SPRITEB, sprite1_start));
1262
1263 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1264 VLV_FIFO(SPRITEB_HI, 0x1));
1265 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1266 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1267
1268 I915_WRITE(DSPARB, dsparb);
1269 I915_WRITE(DSPARB2, dsparb2);
1270 break;
1271 case PIPE_B:
1272 dsparb = I915_READ(DSPARB);
1273 dsparb2 = I915_READ(DSPARB2);
1274
1275 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1276 VLV_FIFO(SPRITED, 0xff));
1277 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1278 VLV_FIFO(SPRITED, sprite1_start));
1279
1280 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1281 VLV_FIFO(SPRITED_HI, 0xff));
1282 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1283 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1284
1285 I915_WRITE(DSPARB, dsparb);
1286 I915_WRITE(DSPARB2, dsparb2);
1287 break;
1288 case PIPE_C:
1289 dsparb3 = I915_READ(DSPARB3);
1290 dsparb2 = I915_READ(DSPARB2);
1291
1292 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1293 VLV_FIFO(SPRITEF, 0xff));
1294 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1295 VLV_FIFO(SPRITEF, sprite1_start));
1296
1297 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1298 VLV_FIFO(SPRITEF_HI, 0xff));
1299 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1300 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1301
1302 I915_WRITE(DSPARB3, dsparb3);
1303 I915_WRITE(DSPARB2, dsparb2);
1304 break;
1305 default:
1306 break;
1307 }
1308}
1309
1310#undef VLV_FIFO
1311
1312static void vlv_merge_wm(struct drm_device *dev,
1313 struct vlv_wm_values *wm)
1314{
1315 struct intel_crtc *crtc;
1316 int num_active_crtcs = 0;
1317
1318 wm->level = to_i915(dev)->wm.max_level;
1319 wm->cxsr = true;
1320
1321 for_each_intel_crtc(dev, crtc) {
1322 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1323
1324 if (!crtc->active)
1325 continue;
1326
1327 if (!wm_state->cxsr)
1328 wm->cxsr = false;
1329
1330 num_active_crtcs++;
1331 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1332 }
1333
1334 if (num_active_crtcs != 1)
1335 wm->cxsr = false;
1336
1337 if (num_active_crtcs > 1)
1338 wm->level = VLV_WM_LEVEL_PM2;
1339
1340 for_each_intel_crtc(dev, crtc) {
1341 struct vlv_wm_state *wm_state = &crtc->wm_state;
1342 enum pipe pipe = crtc->pipe;
1343
1344 if (!crtc->active)
1345 continue;
1346
1347 wm->pipe[pipe] = wm_state->wm[wm->level];
1348 if (wm->cxsr)
1349 wm->sr = wm_state->sr[wm->level];
1350
1351 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1352 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1353 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1354 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1355 }
1356}
1357
1358static void vlv_update_wm(struct drm_crtc *crtc)
1359{
1360 struct drm_device *dev = crtc->dev;
1361 struct drm_i915_private *dev_priv = dev->dev_private;
1362 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1363 enum pipe pipe = intel_crtc->pipe;
1364 struct vlv_wm_values wm = {};
1365
1366 vlv_compute_wm(intel_crtc);
1367 vlv_merge_wm(dev, &wm);
1368
1369 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1370 /* FIXME should be part of crtc atomic commit */
1371 vlv_pipe_set_fifo_size(intel_crtc);
1372 return;
1373 }
1374
1375 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1376 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1377 chv_set_memory_dvfs(dev_priv, false);
1378
1379 if (wm.level < VLV_WM_LEVEL_PM5 &&
1380 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1381 chv_set_memory_pm5(dev_priv, false);
1382
1383 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1384 intel_set_memory_cxsr(dev_priv, false);
1385
1386 /* FIXME should be part of crtc atomic commit */
1387 vlv_pipe_set_fifo_size(intel_crtc);
1388
1389 vlv_write_wm_values(intel_crtc, &wm);
1390
1391 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1392 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1393 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1394 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1395 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1396
1397 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1398 intel_set_memory_cxsr(dev_priv, true);
1399
1400 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1401 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1402 chv_set_memory_pm5(dev_priv, true);
1403
1404 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1405 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1406 chv_set_memory_dvfs(dev_priv, true);
1407
1408 dev_priv->wm.vlv = wm;
1409}
1410
1411#define single_plane_enabled(mask) is_power_of_2(mask)
1412
1413static void g4x_update_wm(struct drm_crtc *crtc)
1414{
1415 struct drm_device *dev = crtc->dev;
1416 static const int sr_latency_ns = 12000;
1417 struct drm_i915_private *dev_priv = dev->dev_private;
1418 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1419 int plane_sr, cursor_sr;
1420 unsigned int enabled = 0;
1421 bool cxsr_enabled;
1422
1423 if (g4x_compute_wm0(dev, PIPE_A,
1424 &g4x_wm_info, pessimal_latency_ns,
1425 &g4x_cursor_wm_info, pessimal_latency_ns,
1426 &planea_wm, &cursora_wm))
1427 enabled |= 1 << PIPE_A;
1428
1429 if (g4x_compute_wm0(dev, PIPE_B,
1430 &g4x_wm_info, pessimal_latency_ns,
1431 &g4x_cursor_wm_info, pessimal_latency_ns,
1432 &planeb_wm, &cursorb_wm))
1433 enabled |= 1 << PIPE_B;
1434
1435 if (single_plane_enabled(enabled) &&
1436 g4x_compute_srwm(dev, ffs(enabled) - 1,
1437 sr_latency_ns,
1438 &g4x_wm_info,
1439 &g4x_cursor_wm_info,
1440 &plane_sr, &cursor_sr)) {
1441 cxsr_enabled = true;
1442 } else {
1443 cxsr_enabled = false;
1444 intel_set_memory_cxsr(dev_priv, false);
1445 plane_sr = cursor_sr = 0;
1446 }
1447
1448 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1449 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1450 planea_wm, cursora_wm,
1451 planeb_wm, cursorb_wm,
1452 plane_sr, cursor_sr);
1453
1454 I915_WRITE(DSPFW1,
1455 FW_WM(plane_sr, SR) |
1456 FW_WM(cursorb_wm, CURSORB) |
1457 FW_WM(planeb_wm, PLANEB) |
1458 FW_WM(planea_wm, PLANEA));
1459 I915_WRITE(DSPFW2,
1460 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1461 FW_WM(cursora_wm, CURSORA));
1462 /* HPLL off in SR has some issues on G4x... disable it */
1463 I915_WRITE(DSPFW3,
1464 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1465 FW_WM(cursor_sr, CURSOR_SR));
1466
1467 if (cxsr_enabled)
1468 intel_set_memory_cxsr(dev_priv, true);
1469}
1470
1471static void i965_update_wm(struct drm_crtc *unused_crtc)
1472{
1473 struct drm_device *dev = unused_crtc->dev;
1474 struct drm_i915_private *dev_priv = dev->dev_private;
1475 struct drm_crtc *crtc;
1476 int srwm = 1;
1477 int cursor_sr = 16;
1478 bool cxsr_enabled;
1479
1480 /* Calc sr entries for one plane configs */
1481 crtc = single_enabled_crtc(dev);
1482 if (crtc) {
1483 /* self-refresh has much higher latency */
1484 static const int sr_latency_ns = 12000;
1485 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1486 int clock = adjusted_mode->crtc_clock;
1487 int htotal = adjusted_mode->crtc_htotal;
1488 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1489 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1490 unsigned long line_time_us;
1491 int entries;
1492
1493 line_time_us = max(htotal * 1000 / clock, 1);
1494
1495 /* Use ns/us then divide to preserve precision */
1496 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1497 pixel_size * hdisplay;
1498 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1499 srwm = I965_FIFO_SIZE - entries;
1500 if (srwm < 0)
1501 srwm = 1;
1502 srwm &= 0x1ff;
1503 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1504 entries, srwm);
1505
1506 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1507 pixel_size * crtc->cursor->state->crtc_w;
1508 entries = DIV_ROUND_UP(entries,
1509 i965_cursor_wm_info.cacheline_size);
1510 cursor_sr = i965_cursor_wm_info.fifo_size -
1511 (entries + i965_cursor_wm_info.guard_size);
1512
1513 if (cursor_sr > i965_cursor_wm_info.max_wm)
1514 cursor_sr = i965_cursor_wm_info.max_wm;
1515
1516 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1517 "cursor %d\n", srwm, cursor_sr);
1518
1519 cxsr_enabled = true;
1520 } else {
1521 cxsr_enabled = false;
1522 /* Turn off self refresh if both pipes are enabled */
1523 intel_set_memory_cxsr(dev_priv, false);
1524 }
1525
1526 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1527 srwm);
1528
1529 /* 965 has limitations... */
1530 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1531 FW_WM(8, CURSORB) |
1532 FW_WM(8, PLANEB) |
1533 FW_WM(8, PLANEA));
1534 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1535 FW_WM(8, PLANEC_OLD));
1536 /* update cursor SR watermark */
1537 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1538
1539 if (cxsr_enabled)
1540 intel_set_memory_cxsr(dev_priv, true);
1541}
1542
1543#undef FW_WM
1544
1545static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1546{
1547 struct drm_device *dev = unused_crtc->dev;
1548 struct drm_i915_private *dev_priv = dev->dev_private;
1549 const struct intel_watermark_params *wm_info;
1550 uint32_t fwater_lo;
1551 uint32_t fwater_hi;
1552 int cwm, srwm = 1;
1553 int fifo_size;
1554 int planea_wm, planeb_wm;
1555 struct drm_crtc *crtc, *enabled = NULL;
1556
1557 if (IS_I945GM(dev))
1558 wm_info = &i945_wm_info;
1559 else if (!IS_GEN2(dev))
1560 wm_info = &i915_wm_info;
1561 else
1562 wm_info = &i830_a_wm_info;
1563
1564 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1565 crtc = intel_get_crtc_for_plane(dev, 0);
1566 if (intel_crtc_active(crtc)) {
1567 const struct drm_display_mode *adjusted_mode;
1568 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1569 if (IS_GEN2(dev))
1570 cpp = 4;
1571
1572 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1573 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1574 wm_info, fifo_size, cpp,
1575 pessimal_latency_ns);
1576 enabled = crtc;
1577 } else {
1578 planea_wm = fifo_size - wm_info->guard_size;
1579 if (planea_wm > (long)wm_info->max_wm)
1580 planea_wm = wm_info->max_wm;
1581 }
1582
1583 if (IS_GEN2(dev))
1584 wm_info = &i830_bc_wm_info;
1585
1586 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1587 crtc = intel_get_crtc_for_plane(dev, 1);
1588 if (intel_crtc_active(crtc)) {
1589 const struct drm_display_mode *adjusted_mode;
1590 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1591 if (IS_GEN2(dev))
1592 cpp = 4;
1593
1594 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1595 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1596 wm_info, fifo_size, cpp,
1597 pessimal_latency_ns);
1598 if (enabled == NULL)
1599 enabled = crtc;
1600 else
1601 enabled = NULL;
1602 } else {
1603 planeb_wm = fifo_size - wm_info->guard_size;
1604 if (planeb_wm > (long)wm_info->max_wm)
1605 planeb_wm = wm_info->max_wm;
1606 }
1607
1608 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1609
1610 if (IS_I915GM(dev) && enabled) {
1611 struct drm_i915_gem_object *obj;
1612
1613 obj = intel_fb_obj(enabled->primary->state->fb);
1614
1615 /* self-refresh seems busted with untiled */
1616 if (obj->tiling_mode == I915_TILING_NONE)
1617 enabled = NULL;
1618 }
1619
1620 /*
1621 * Overlay gets an aggressive default since video jitter is bad.
1622 */
1623 cwm = 2;
1624
1625 /* Play safe and disable self-refresh before adjusting watermarks. */
1626 intel_set_memory_cxsr(dev_priv, false);
1627
1628 /* Calc sr entries for one plane configs */
1629 if (HAS_FW_BLC(dev) && enabled) {
1630 /* self-refresh has much higher latency */
1631 static const int sr_latency_ns = 6000;
1632 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1633 int clock = adjusted_mode->crtc_clock;
1634 int htotal = adjusted_mode->crtc_htotal;
1635 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1636 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1637 unsigned long line_time_us;
1638 int entries;
1639
1640 line_time_us = max(htotal * 1000 / clock, 1);
1641
1642 /* Use ns/us then divide to preserve precision */
1643 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1644 pixel_size * hdisplay;
1645 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1646 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1647 srwm = wm_info->fifo_size - entries;
1648 if (srwm < 0)
1649 srwm = 1;
1650
1651 if (IS_I945G(dev) || IS_I945GM(dev))
1652 I915_WRITE(FW_BLC_SELF,
1653 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1654 else if (IS_I915GM(dev))
1655 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1656 }
1657
1658 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1659 planea_wm, planeb_wm, cwm, srwm);
1660
1661 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1662 fwater_hi = (cwm & 0x1f);
1663
1664 /* Set request length to 8 cachelines per fetch */
1665 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1666 fwater_hi = fwater_hi | (1 << 8);
1667
1668 I915_WRITE(FW_BLC, fwater_lo);
1669 I915_WRITE(FW_BLC2, fwater_hi);
1670
1671 if (enabled)
1672 intel_set_memory_cxsr(dev_priv, true);
1673}
1674
1675static void i845_update_wm(struct drm_crtc *unused_crtc)
1676{
1677 struct drm_device *dev = unused_crtc->dev;
1678 struct drm_i915_private *dev_priv = dev->dev_private;
1679 struct drm_crtc *crtc;
1680 const struct drm_display_mode *adjusted_mode;
1681 uint32_t fwater_lo;
1682 int planea_wm;
1683
1684 crtc = single_enabled_crtc(dev);
1685 if (crtc == NULL)
1686 return;
1687
1688 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1689 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1690 &i845_wm_info,
1691 dev_priv->display.get_fifo_size(dev, 0),
1692 4, pessimal_latency_ns);
1693 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1694 fwater_lo |= (3<<8) | planea_wm;
1695
1696 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1697
1698 I915_WRITE(FW_BLC, fwater_lo);
1699}
1700
1701uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1702{
1703 uint32_t pixel_rate;
1704
1705 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1706
1707 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1708 * adjust the pixel_rate here. */
1709
1710 if (pipe_config->pch_pfit.enabled) {
1711 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1712 uint32_t pfit_size = pipe_config->pch_pfit.size;
1713
1714 pipe_w = pipe_config->pipe_src_w;
1715 pipe_h = pipe_config->pipe_src_h;
1716
1717 pfit_w = (pfit_size >> 16) & 0xFFFF;
1718 pfit_h = pfit_size & 0xFFFF;
1719 if (pipe_w < pfit_w)
1720 pipe_w = pfit_w;
1721 if (pipe_h < pfit_h)
1722 pipe_h = pfit_h;
1723
1724 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1725 pfit_w * pfit_h);
1726 }
1727
1728 return pixel_rate;
1729}
1730
1731/* latency must be in 0.1us units. */
1732static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1733 uint32_t latency)
1734{
1735 uint64_t ret;
1736
1737 if (WARN(latency == 0, "Latency value missing\n"))
1738 return UINT_MAX;
1739
1740 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1741 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1742
1743 return ret;
1744}
1745
1746/* latency must be in 0.1us units. */
1747static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1748 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1749 uint32_t latency)
1750{
1751 uint32_t ret;
1752
1753 if (WARN(latency == 0, "Latency value missing\n"))
1754 return UINT_MAX;
1755
1756 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1757 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1758 ret = DIV_ROUND_UP(ret, 64) + 2;
1759 return ret;
1760}
1761
1762static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1763 uint8_t bytes_per_pixel)
1764{
1765 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1766}
1767
1768struct skl_pipe_wm_parameters {
1769 bool active;
1770 uint32_t pipe_htotal;
1771 uint32_t pixel_rate; /* in KHz */
1772 struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1773 struct intel_plane_wm_parameters cursor;
1774};
1775
1776struct ilk_pipe_wm_parameters {
1777 bool active;
1778 uint32_t pipe_htotal;
1779 uint32_t pixel_rate;
1780};
1781
1782struct ilk_wm_maximums {
1783 uint16_t pri;
1784 uint16_t spr;
1785 uint16_t cur;
1786 uint16_t fbc;
1787};
1788
1789/* used in computing the new watermarks state */
1790struct intel_wm_config {
1791 unsigned int num_pipes_active;
1792 bool sprites_enabled;
1793 bool sprites_scaled;
1794};
1795
1796/*
1797 * For both WM_PIPE and WM_LP.
1798 * mem_value must be in 0.1us units.
1799 */
1800static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1801 const struct intel_plane_state *pstate,
1802 uint32_t mem_value,
1803 bool is_lp)
1804{
1805 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1806 uint32_t method1, method2;
1807
1808 if (!params->active || !pstate->visible)
1809 return 0;
1810
1811 method1 = ilk_wm_method1(params->pixel_rate, bpp, mem_value);
1812
1813 if (!is_lp)
1814 return method1;
1815
1816 method2 = ilk_wm_method2(params->pixel_rate,
1817 params->pipe_htotal,
1818 drm_rect_width(&pstate->dst),
1819 bpp,
1820 mem_value);
1821
1822 return min(method1, method2);
1823}
1824
1825/*
1826 * For both WM_PIPE and WM_LP.
1827 * mem_value must be in 0.1us units.
1828 */
1829static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1830 const struct intel_plane_state *pstate,
1831 uint32_t mem_value)
1832{
1833 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1834 uint32_t method1, method2;
1835
1836 if (!params->active || !pstate->visible)
1837 return 0;
1838
1839 method1 = ilk_wm_method1(params->pixel_rate, bpp, mem_value);
1840 method2 = ilk_wm_method2(params->pixel_rate,
1841 params->pipe_htotal,
1842 drm_rect_width(&pstate->dst),
1843 bpp,
1844 mem_value);
1845 return min(method1, method2);
1846}
1847
1848/*
1849 * For both WM_PIPE and WM_LP.
1850 * mem_value must be in 0.1us units.
1851 */
1852static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1853 const struct intel_plane_state *pstate,
1854 uint32_t mem_value)
1855{
1856 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1857
1858 if (!params->active || !pstate->visible)
1859 return 0;
1860
1861 return ilk_wm_method2(params->pixel_rate,
1862 params->pipe_htotal,
1863 drm_rect_width(&pstate->dst),
1864 bpp,
1865 mem_value);
1866}
1867
1868/* Only for WM_LP. */
1869static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1870 const struct intel_plane_state *pstate,
1871 uint32_t pri_val)
1872{
1873 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1874
1875 if (!params->active || !pstate->visible)
1876 return 0;
1877
1878 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1879}
1880
1881static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1882{
1883 if (INTEL_INFO(dev)->gen >= 8)
1884 return 3072;
1885 else if (INTEL_INFO(dev)->gen >= 7)
1886 return 768;
1887 else
1888 return 512;
1889}
1890
1891static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1892 int level, bool is_sprite)
1893{
1894 if (INTEL_INFO(dev)->gen >= 8)
1895 /* BDW primary/sprite plane watermarks */
1896 return level == 0 ? 255 : 2047;
1897 else if (INTEL_INFO(dev)->gen >= 7)
1898 /* IVB/HSW primary/sprite plane watermarks */
1899 return level == 0 ? 127 : 1023;
1900 else if (!is_sprite)
1901 /* ILK/SNB primary plane watermarks */
1902 return level == 0 ? 127 : 511;
1903 else
1904 /* ILK/SNB sprite plane watermarks */
1905 return level == 0 ? 63 : 255;
1906}
1907
1908static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1909 int level)
1910{
1911 if (INTEL_INFO(dev)->gen >= 7)
1912 return level == 0 ? 63 : 255;
1913 else
1914 return level == 0 ? 31 : 63;
1915}
1916
1917static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1918{
1919 if (INTEL_INFO(dev)->gen >= 8)
1920 return 31;
1921 else
1922 return 15;
1923}
1924
1925/* Calculate the maximum primary/sprite plane watermark */
1926static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1927 int level,
1928 const struct intel_wm_config *config,
1929 enum intel_ddb_partitioning ddb_partitioning,
1930 bool is_sprite)
1931{
1932 unsigned int fifo_size = ilk_display_fifo_size(dev);
1933
1934 /* if sprites aren't enabled, sprites get nothing */
1935 if (is_sprite && !config->sprites_enabled)
1936 return 0;
1937
1938 /* HSW allows LP1+ watermarks even with multiple pipes */
1939 if (level == 0 || config->num_pipes_active > 1) {
1940 fifo_size /= INTEL_INFO(dev)->num_pipes;
1941
1942 /*
1943 * For some reason the non self refresh
1944 * FIFO size is only half of the self
1945 * refresh FIFO size on ILK/SNB.
1946 */
1947 if (INTEL_INFO(dev)->gen <= 6)
1948 fifo_size /= 2;
1949 }
1950
1951 if (config->sprites_enabled) {
1952 /* level 0 is always calculated with 1:1 split */
1953 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1954 if (is_sprite)
1955 fifo_size *= 5;
1956 fifo_size /= 6;
1957 } else {
1958 fifo_size /= 2;
1959 }
1960 }
1961
1962 /* clamp to max that the registers can hold */
1963 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1964}
1965
1966/* Calculate the maximum cursor plane watermark */
1967static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1968 int level,
1969 const struct intel_wm_config *config)
1970{
1971 /* HSW LP1+ watermarks w/ multiple pipes */
1972 if (level > 0 && config->num_pipes_active > 1)
1973 return 64;
1974
1975 /* otherwise just report max that registers can hold */
1976 return ilk_cursor_wm_reg_max(dev, level);
1977}
1978
1979static void ilk_compute_wm_maximums(const struct drm_device *dev,
1980 int level,
1981 const struct intel_wm_config *config,
1982 enum intel_ddb_partitioning ddb_partitioning,
1983 struct ilk_wm_maximums *max)
1984{
1985 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1986 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1987 max->cur = ilk_cursor_wm_max(dev, level, config);
1988 max->fbc = ilk_fbc_wm_reg_max(dev);
1989}
1990
1991static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1992 int level,
1993 struct ilk_wm_maximums *max)
1994{
1995 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1996 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1997 max->cur = ilk_cursor_wm_reg_max(dev, level);
1998 max->fbc = ilk_fbc_wm_reg_max(dev);
1999}
2000
2001static bool ilk_validate_wm_level(int level,
2002 const struct ilk_wm_maximums *max,
2003 struct intel_wm_level *result)
2004{
2005 bool ret;
2006
2007 /* already determined to be invalid? */
2008 if (!result->enable)
2009 return false;
2010
2011 result->enable = result->pri_val <= max->pri &&
2012 result->spr_val <= max->spr &&
2013 result->cur_val <= max->cur;
2014
2015 ret = result->enable;
2016
2017 /*
2018 * HACK until we can pre-compute everything,
2019 * and thus fail gracefully if LP0 watermarks
2020 * are exceeded...
2021 */
2022 if (level == 0 && !result->enable) {
2023 if (result->pri_val > max->pri)
2024 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2025 level, result->pri_val, max->pri);
2026 if (result->spr_val > max->spr)
2027 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2028 level, result->spr_val, max->spr);
2029 if (result->cur_val > max->cur)
2030 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2031 level, result->cur_val, max->cur);
2032
2033 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2034 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2035 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2036 result->enable = true;
2037 }
2038
2039 return ret;
2040}
2041
2042static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2043 const struct intel_crtc *intel_crtc,
2044 int level,
2045 const struct ilk_pipe_wm_parameters *p,
2046 struct intel_wm_level *result)
2047{
2048 struct intel_plane *intel_plane;
2049 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2050 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2051 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2052
2053 /* WM1+ latency values stored in 0.5us units */
2054 if (level > 0) {
2055 pri_latency *= 5;
2056 spr_latency *= 5;
2057 cur_latency *= 5;
2058 }
2059
2060 for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
2061 struct intel_plane_state *pstate =
2062 to_intel_plane_state(intel_plane->base.state);
2063
2064 switch (intel_plane->base.type) {
2065 case DRM_PLANE_TYPE_PRIMARY:
2066 result->pri_val = ilk_compute_pri_wm(p, pstate,
2067 pri_latency,
2068 level);
2069 result->fbc_val = ilk_compute_fbc_wm(p, pstate,
2070 result->pri_val);
2071 break;
2072 case DRM_PLANE_TYPE_OVERLAY:
2073 result->spr_val = ilk_compute_spr_wm(p, pstate,
2074 spr_latency);
2075 break;
2076 case DRM_PLANE_TYPE_CURSOR:
2077 result->cur_val = ilk_compute_cur_wm(p, pstate,
2078 cur_latency);
2079 break;
2080 }
2081 }
2082
2083 result->enable = true;
2084}
2085
2086static uint32_t
2087hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2088{
2089 struct drm_i915_private *dev_priv = dev->dev_private;
2090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2091 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2092 u32 linetime, ips_linetime;
2093
2094 if (!intel_crtc->active)
2095 return 0;
2096
2097 /* The WM are computed with base on how long it takes to fill a single
2098 * row at the given clock rate, multiplied by 8.
2099 * */
2100 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2101 adjusted_mode->crtc_clock);
2102 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2103 dev_priv->cdclk_freq);
2104
2105 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2106 PIPE_WM_LINETIME_TIME(linetime);
2107}
2108
2109static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2110{
2111 struct drm_i915_private *dev_priv = dev->dev_private;
2112
2113 if (IS_GEN9(dev)) {
2114 uint32_t val;
2115 int ret, i;
2116 int level, max_level = ilk_wm_max_level(dev);
2117
2118 /* read the first set of memory latencies[0:3] */
2119 val = 0; /* data0 to be programmed to 0 for first set */
2120 mutex_lock(&dev_priv->rps.hw_lock);
2121 ret = sandybridge_pcode_read(dev_priv,
2122 GEN9_PCODE_READ_MEM_LATENCY,
2123 &val);
2124 mutex_unlock(&dev_priv->rps.hw_lock);
2125
2126 if (ret) {
2127 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2128 return;
2129 }
2130
2131 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2132 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2133 GEN9_MEM_LATENCY_LEVEL_MASK;
2134 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2135 GEN9_MEM_LATENCY_LEVEL_MASK;
2136 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2137 GEN9_MEM_LATENCY_LEVEL_MASK;
2138
2139 /* read the second set of memory latencies[4:7] */
2140 val = 1; /* data0 to be programmed to 1 for second set */
2141 mutex_lock(&dev_priv->rps.hw_lock);
2142 ret = sandybridge_pcode_read(dev_priv,
2143 GEN9_PCODE_READ_MEM_LATENCY,
2144 &val);
2145 mutex_unlock(&dev_priv->rps.hw_lock);
2146 if (ret) {
2147 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2148 return;
2149 }
2150
2151 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2152 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2153 GEN9_MEM_LATENCY_LEVEL_MASK;
2154 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2155 GEN9_MEM_LATENCY_LEVEL_MASK;
2156 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2157 GEN9_MEM_LATENCY_LEVEL_MASK;
2158
2159 /*
2160 * WaWmMemoryReadLatency:skl
2161 *
2162 * punit doesn't take into account the read latency so we need
2163 * to add 2us to the various latency levels we retrieve from
2164 * the punit.
2165 * - W0 is a bit special in that it's the only level that
2166 * can't be disabled if we want to have display working, so
2167 * we always add 2us there.
2168 * - For levels >=1, punit returns 0us latency when they are
2169 * disabled, so we respect that and don't add 2us then
2170 *
2171 * Additionally, if a level n (n > 1) has a 0us latency, all
2172 * levels m (m >= n) need to be disabled. We make sure to
2173 * sanitize the values out of the punit to satisfy this
2174 * requirement.
2175 */
2176 wm[0] += 2;
2177 for (level = 1; level <= max_level; level++)
2178 if (wm[level] != 0)
2179 wm[level] += 2;
2180 else {
2181 for (i = level + 1; i <= max_level; i++)
2182 wm[i] = 0;
2183
2184 break;
2185 }
2186 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2187 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2188
2189 wm[0] = (sskpd >> 56) & 0xFF;
2190 if (wm[0] == 0)
2191 wm[0] = sskpd & 0xF;
2192 wm[1] = (sskpd >> 4) & 0xFF;
2193 wm[2] = (sskpd >> 12) & 0xFF;
2194 wm[3] = (sskpd >> 20) & 0x1FF;
2195 wm[4] = (sskpd >> 32) & 0x1FF;
2196 } else if (INTEL_INFO(dev)->gen >= 6) {
2197 uint32_t sskpd = I915_READ(MCH_SSKPD);
2198
2199 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2200 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2201 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2202 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2203 } else if (INTEL_INFO(dev)->gen >= 5) {
2204 uint32_t mltr = I915_READ(MLTR_ILK);
2205
2206 /* ILK primary LP0 latency is 700 ns */
2207 wm[0] = 7;
2208 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2209 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2210 }
2211}
2212
2213static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2214{
2215 /* ILK sprite LP0 latency is 1300 ns */
2216 if (INTEL_INFO(dev)->gen == 5)
2217 wm[0] = 13;
2218}
2219
2220static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2221{
2222 /* ILK cursor LP0 latency is 1300 ns */
2223 if (INTEL_INFO(dev)->gen == 5)
2224 wm[0] = 13;
2225
2226 /* WaDoubleCursorLP3Latency:ivb */
2227 if (IS_IVYBRIDGE(dev))
2228 wm[3] *= 2;
2229}
2230
2231int ilk_wm_max_level(const struct drm_device *dev)
2232{
2233 /* how many WM levels are we expecting */
2234 if (INTEL_INFO(dev)->gen >= 9)
2235 return 7;
2236 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2237 return 4;
2238 else if (INTEL_INFO(dev)->gen >= 6)
2239 return 3;
2240 else
2241 return 2;
2242}
2243
2244static void intel_print_wm_latency(struct drm_device *dev,
2245 const char *name,
2246 const uint16_t wm[8])
2247{
2248 int level, max_level = ilk_wm_max_level(dev);
2249
2250 for (level = 0; level <= max_level; level++) {
2251 unsigned int latency = wm[level];
2252
2253 if (latency == 0) {
2254 DRM_ERROR("%s WM%d latency not provided\n",
2255 name, level);
2256 continue;
2257 }
2258
2259 /*
2260 * - latencies are in us on gen9.
2261 * - before then, WM1+ latency values are in 0.5us units
2262 */
2263 if (IS_GEN9(dev))
2264 latency *= 10;
2265 else if (level > 0)
2266 latency *= 5;
2267
2268 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2269 name, level, wm[level],
2270 latency / 10, latency % 10);
2271 }
2272}
2273
2274static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2275 uint16_t wm[5], uint16_t min)
2276{
2277 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2278
2279 if (wm[0] >= min)
2280 return false;
2281
2282 wm[0] = max(wm[0], min);
2283 for (level = 1; level <= max_level; level++)
2284 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2285
2286 return true;
2287}
2288
2289static void snb_wm_latency_quirk(struct drm_device *dev)
2290{
2291 struct drm_i915_private *dev_priv = dev->dev_private;
2292 bool changed;
2293
2294 /*
2295 * The BIOS provided WM memory latency values are often
2296 * inadequate for high resolution displays. Adjust them.
2297 */
2298 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2299 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2300 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2301
2302 if (!changed)
2303 return;
2304
2305 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2306 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2307 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2308 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2309}
2310
2311static void ilk_setup_wm_latency(struct drm_device *dev)
2312{
2313 struct drm_i915_private *dev_priv = dev->dev_private;
2314
2315 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2316
2317 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2318 sizeof(dev_priv->wm.pri_latency));
2319 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2320 sizeof(dev_priv->wm.pri_latency));
2321
2322 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2323 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2324
2325 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2326 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2327 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2328
2329 if (IS_GEN6(dev))
2330 snb_wm_latency_quirk(dev);
2331}
2332
2333static void skl_setup_wm_latency(struct drm_device *dev)
2334{
2335 struct drm_i915_private *dev_priv = dev->dev_private;
2336
2337 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2338 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2339}
2340
2341static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2342 struct ilk_pipe_wm_parameters *p)
2343{
2344 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2345
2346 if (!intel_crtc->active)
2347 return;
2348
2349 p->active = true;
2350 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2351 p->pixel_rate = ilk_pipe_pixel_rate(intel_crtc->config);
2352}
2353
2354static void ilk_compute_wm_config(struct drm_device *dev,
2355 struct intel_wm_config *config)
2356{
2357 struct intel_crtc *intel_crtc;
2358
2359 /* Compute the currently _active_ config */
2360 for_each_intel_crtc(dev, intel_crtc) {
2361 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2362
2363 if (!wm->pipe_enabled)
2364 continue;
2365
2366 config->sprites_enabled |= wm->sprites_enabled;
2367 config->sprites_scaled |= wm->sprites_scaled;
2368 config->num_pipes_active++;
2369 }
2370}
2371
2372/* Compute new watermarks for the pipe */
2373static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2374 const struct ilk_pipe_wm_parameters *params,
2375 struct intel_pipe_wm *pipe_wm)
2376{
2377 struct drm_device *dev = crtc->dev;
2378 const struct drm_i915_private *dev_priv = dev->dev_private;
2379 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2380 struct intel_plane *intel_plane;
2381 struct intel_plane_state *sprstate = NULL;
2382 int level, max_level = ilk_wm_max_level(dev);
2383 /* LP0 watermark maximums depend on this pipe alone */
2384 struct intel_wm_config config = {
2385 .num_pipes_active = 1,
2386 };
2387 struct ilk_wm_maximums max;
2388
2389 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2390 if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
2391 sprstate = to_intel_plane_state(intel_plane->base.state);
2392 break;
2393 }
2394 }
2395
2396 config.sprites_enabled = sprstate->visible;
2397 config.sprites_scaled = sprstate->visible &&
2398 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2399 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2400
2401
2402 pipe_wm->pipe_enabled = params->active;
2403 pipe_wm->sprites_enabled = sprstate->visible;
2404 pipe_wm->sprites_scaled = config.sprites_scaled;
2405
2406 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2407 if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2408 max_level = 1;
2409
2410 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2411 if (config.sprites_scaled)
2412 max_level = 0;
2413
2414 ilk_compute_wm_level(dev_priv, intel_crtc, 0, params, &pipe_wm->wm[0]);
2415
2416 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2417 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2418
2419 /* LP0 watermarks always use 1/2 DDB partitioning */
2420 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2421
2422 /* At least LP0 must be valid */
2423 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2424 return false;
2425
2426 ilk_compute_wm_reg_maximums(dev, 1, &max);
2427
2428 for (level = 1; level <= max_level; level++) {
2429 struct intel_wm_level wm = {};
2430
2431 ilk_compute_wm_level(dev_priv, intel_crtc, level, params, &wm);
2432
2433 /*
2434 * Disable any watermark level that exceeds the
2435 * register maximums since such watermarks are
2436 * always invalid.
2437 */
2438 if (!ilk_validate_wm_level(level, &max, &wm))
2439 break;
2440
2441 pipe_wm->wm[level] = wm;
2442 }
2443
2444 return true;
2445}
2446
2447/*
2448 * Merge the watermarks from all active pipes for a specific level.
2449 */
2450static void ilk_merge_wm_level(struct drm_device *dev,
2451 int level,
2452 struct intel_wm_level *ret_wm)
2453{
2454 const struct intel_crtc *intel_crtc;
2455
2456 ret_wm->enable = true;
2457
2458 for_each_intel_crtc(dev, intel_crtc) {
2459 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2460 const struct intel_wm_level *wm = &active->wm[level];
2461
2462 if (!active->pipe_enabled)
2463 continue;
2464
2465 /*
2466 * The watermark values may have been used in the past,
2467 * so we must maintain them in the registers for some
2468 * time even if the level is now disabled.
2469 */
2470 if (!wm->enable)
2471 ret_wm->enable = false;
2472
2473 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2474 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2475 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2476 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2477 }
2478}
2479
2480/*
2481 * Merge all low power watermarks for all active pipes.
2482 */
2483static void ilk_wm_merge(struct drm_device *dev,
2484 const struct intel_wm_config *config,
2485 const struct ilk_wm_maximums *max,
2486 struct intel_pipe_wm *merged)
2487{
2488 struct drm_i915_private *dev_priv = dev->dev_private;
2489 int level, max_level = ilk_wm_max_level(dev);
2490 int last_enabled_level = max_level;
2491
2492 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2493 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2494 config->num_pipes_active > 1)
2495 return;
2496
2497 /* ILK: FBC WM must be disabled always */
2498 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2499
2500 /* merge each WM1+ level */
2501 for (level = 1; level <= max_level; level++) {
2502 struct intel_wm_level *wm = &merged->wm[level];
2503
2504 ilk_merge_wm_level(dev, level, wm);
2505
2506 if (level > last_enabled_level)
2507 wm->enable = false;
2508 else if (!ilk_validate_wm_level(level, max, wm))
2509 /* make sure all following levels get disabled */
2510 last_enabled_level = level - 1;
2511
2512 /*
2513 * The spec says it is preferred to disable
2514 * FBC WMs instead of disabling a WM level.
2515 */
2516 if (wm->fbc_val > max->fbc) {
2517 if (wm->enable)
2518 merged->fbc_wm_enabled = false;
2519 wm->fbc_val = 0;
2520 }
2521 }
2522
2523 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2524 /*
2525 * FIXME this is racy. FBC might get enabled later.
2526 * What we should check here is whether FBC can be
2527 * enabled sometime later.
2528 */
2529 if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2530 intel_fbc_enabled(dev_priv)) {
2531 for (level = 2; level <= max_level; level++) {
2532 struct intel_wm_level *wm = &merged->wm[level];
2533
2534 wm->enable = false;
2535 }
2536 }
2537}
2538
2539static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2540{
2541 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2542 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2543}
2544
2545/* The value we need to program into the WM_LPx latency field */
2546static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2547{
2548 struct drm_i915_private *dev_priv = dev->dev_private;
2549
2550 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2551 return 2 * level;
2552 else
2553 return dev_priv->wm.pri_latency[level];
2554}
2555
2556static void ilk_compute_wm_results(struct drm_device *dev,
2557 const struct intel_pipe_wm *merged,
2558 enum intel_ddb_partitioning partitioning,
2559 struct ilk_wm_values *results)
2560{
2561 struct intel_crtc *intel_crtc;
2562 int level, wm_lp;
2563
2564 results->enable_fbc_wm = merged->fbc_wm_enabled;
2565 results->partitioning = partitioning;
2566
2567 /* LP1+ register values */
2568 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2569 const struct intel_wm_level *r;
2570
2571 level = ilk_wm_lp_to_level(wm_lp, merged);
2572
2573 r = &merged->wm[level];
2574
2575 /*
2576 * Maintain the watermark values even if the level is
2577 * disabled. Doing otherwise could cause underruns.
2578 */
2579 results->wm_lp[wm_lp - 1] =
2580 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2581 (r->pri_val << WM1_LP_SR_SHIFT) |
2582 r->cur_val;
2583
2584 if (r->enable)
2585 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2586
2587 if (INTEL_INFO(dev)->gen >= 8)
2588 results->wm_lp[wm_lp - 1] |=
2589 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2590 else
2591 results->wm_lp[wm_lp - 1] |=
2592 r->fbc_val << WM1_LP_FBC_SHIFT;
2593
2594 /*
2595 * Always set WM1S_LP_EN when spr_val != 0, even if the
2596 * level is disabled. Doing otherwise could cause underruns.
2597 */
2598 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2599 WARN_ON(wm_lp != 1);
2600 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2601 } else
2602 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2603 }
2604
2605 /* LP0 register values */
2606 for_each_intel_crtc(dev, intel_crtc) {
2607 enum pipe pipe = intel_crtc->pipe;
2608 const struct intel_wm_level *r =
2609 &intel_crtc->wm.active.wm[0];
2610
2611 if (WARN_ON(!r->enable))
2612 continue;
2613
2614 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2615
2616 results->wm_pipe[pipe] =
2617 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2618 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2619 r->cur_val;
2620 }
2621}
2622
2623/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2624 * case both are at the same level. Prefer r1 in case they're the same. */
2625static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2626 struct intel_pipe_wm *r1,
2627 struct intel_pipe_wm *r2)
2628{
2629 int level, max_level = ilk_wm_max_level(dev);
2630 int level1 = 0, level2 = 0;
2631
2632 for (level = 1; level <= max_level; level++) {
2633 if (r1->wm[level].enable)
2634 level1 = level;
2635 if (r2->wm[level].enable)
2636 level2 = level;
2637 }
2638
2639 if (level1 == level2) {
2640 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2641 return r2;
2642 else
2643 return r1;
2644 } else if (level1 > level2) {
2645 return r1;
2646 } else {
2647 return r2;
2648 }
2649}
2650
2651/* dirty bits used to track which watermarks need changes */
2652#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2653#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2654#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2655#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2656#define WM_DIRTY_FBC (1 << 24)
2657#define WM_DIRTY_DDB (1 << 25)
2658
2659static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2660 const struct ilk_wm_values *old,
2661 const struct ilk_wm_values *new)
2662{
2663 unsigned int dirty = 0;
2664 enum pipe pipe;
2665 int wm_lp;
2666
2667 for_each_pipe(dev_priv, pipe) {
2668 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2669 dirty |= WM_DIRTY_LINETIME(pipe);
2670 /* Must disable LP1+ watermarks too */
2671 dirty |= WM_DIRTY_LP_ALL;
2672 }
2673
2674 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2675 dirty |= WM_DIRTY_PIPE(pipe);
2676 /* Must disable LP1+ watermarks too */
2677 dirty |= WM_DIRTY_LP_ALL;
2678 }
2679 }
2680
2681 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2682 dirty |= WM_DIRTY_FBC;
2683 /* Must disable LP1+ watermarks too */
2684 dirty |= WM_DIRTY_LP_ALL;
2685 }
2686
2687 if (old->partitioning != new->partitioning) {
2688 dirty |= WM_DIRTY_DDB;
2689 /* Must disable LP1+ watermarks too */
2690 dirty |= WM_DIRTY_LP_ALL;
2691 }
2692
2693 /* LP1+ watermarks already deemed dirty, no need to continue */
2694 if (dirty & WM_DIRTY_LP_ALL)
2695 return dirty;
2696
2697 /* Find the lowest numbered LP1+ watermark in need of an update... */
2698 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2699 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2700 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2701 break;
2702 }
2703
2704 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2705 for (; wm_lp <= 3; wm_lp++)
2706 dirty |= WM_DIRTY_LP(wm_lp);
2707
2708 return dirty;
2709}
2710
2711static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2712 unsigned int dirty)
2713{
2714 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2715 bool changed = false;
2716
2717 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2718 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2719 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2720 changed = true;
2721 }
2722 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2723 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2724 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2725 changed = true;
2726 }
2727 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2728 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2729 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2730 changed = true;
2731 }
2732
2733 /*
2734 * Don't touch WM1S_LP_EN here.
2735 * Doing so could cause underruns.
2736 */
2737
2738 return changed;
2739}
2740
2741/*
2742 * The spec says we shouldn't write when we don't need, because every write
2743 * causes WMs to be re-evaluated, expending some power.
2744 */
2745static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2746 struct ilk_wm_values *results)
2747{
2748 struct drm_device *dev = dev_priv->dev;
2749 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2750 unsigned int dirty;
2751 uint32_t val;
2752
2753 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2754 if (!dirty)
2755 return;
2756
2757 _ilk_disable_lp_wm(dev_priv, dirty);
2758
2759 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2760 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2761 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2762 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2763 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2764 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2765
2766 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2767 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2768 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2769 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2770 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2771 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2772
2773 if (dirty & WM_DIRTY_DDB) {
2774 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2775 val = I915_READ(WM_MISC);
2776 if (results->partitioning == INTEL_DDB_PART_1_2)
2777 val &= ~WM_MISC_DATA_PARTITION_5_6;
2778 else
2779 val |= WM_MISC_DATA_PARTITION_5_6;
2780 I915_WRITE(WM_MISC, val);
2781 } else {
2782 val = I915_READ(DISP_ARB_CTL2);
2783 if (results->partitioning == INTEL_DDB_PART_1_2)
2784 val &= ~DISP_DATA_PARTITION_5_6;
2785 else
2786 val |= DISP_DATA_PARTITION_5_6;
2787 I915_WRITE(DISP_ARB_CTL2, val);
2788 }
2789 }
2790
2791 if (dirty & WM_DIRTY_FBC) {
2792 val = I915_READ(DISP_ARB_CTL);
2793 if (results->enable_fbc_wm)
2794 val &= ~DISP_FBC_WM_DIS;
2795 else
2796 val |= DISP_FBC_WM_DIS;
2797 I915_WRITE(DISP_ARB_CTL, val);
2798 }
2799
2800 if (dirty & WM_DIRTY_LP(1) &&
2801 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2802 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2803
2804 if (INTEL_INFO(dev)->gen >= 7) {
2805 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2806 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2807 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2808 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2809 }
2810
2811 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2812 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2813 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2814 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2815 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2816 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2817
2818 dev_priv->wm.hw = *results;
2819}
2820
2821static bool ilk_disable_lp_wm(struct drm_device *dev)
2822{
2823 struct drm_i915_private *dev_priv = dev->dev_private;
2824
2825 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2826}
2827
2828/*
2829 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2830 * different active planes.
2831 */
2832
2833#define SKL_DDB_SIZE 896 /* in blocks */
2834#define BXT_DDB_SIZE 512
2835
2836static void
2837skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2838 struct drm_crtc *for_crtc,
2839 const struct intel_wm_config *config,
2840 const struct skl_pipe_wm_parameters *params,
2841 struct skl_ddb_entry *alloc /* out */)
2842{
2843 struct drm_crtc *crtc;
2844 unsigned int pipe_size, ddb_size;
2845 int nth_active_pipe;
2846
2847 if (!params->active) {
2848 alloc->start = 0;
2849 alloc->end = 0;
2850 return;
2851 }
2852
2853 if (IS_BROXTON(dev))
2854 ddb_size = BXT_DDB_SIZE;
2855 else
2856 ddb_size = SKL_DDB_SIZE;
2857
2858 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2859
2860 nth_active_pipe = 0;
2861 for_each_crtc(dev, crtc) {
2862 if (!to_intel_crtc(crtc)->active)
2863 continue;
2864
2865 if (crtc == for_crtc)
2866 break;
2867
2868 nth_active_pipe++;
2869 }
2870
2871 pipe_size = ddb_size / config->num_pipes_active;
2872 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2873 alloc->end = alloc->start + pipe_size;
2874}
2875
2876static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2877{
2878 if (config->num_pipes_active == 1)
2879 return 32;
2880
2881 return 8;
2882}
2883
2884static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2885{
2886 entry->start = reg & 0x3ff;
2887 entry->end = (reg >> 16) & 0x3ff;
2888 if (entry->end)
2889 entry->end += 1;
2890}
2891
2892void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2893 struct skl_ddb_allocation *ddb /* out */)
2894{
2895 enum pipe pipe;
2896 int plane;
2897 u32 val;
2898
2899 for_each_pipe(dev_priv, pipe) {
2900 for_each_plane(dev_priv, pipe, plane) {
2901 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2902 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2903 val);
2904 }
2905
2906 val = I915_READ(CUR_BUF_CFG(pipe));
2907 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2908 }
2909}
2910
2911static unsigned int
2912skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2913{
2914
2915 /* for planar format */
2916 if (p->y_bytes_per_pixel) {
2917 if (y) /* y-plane data rate */
2918 return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2919 else /* uv-plane data rate */
2920 return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2921 }
2922
2923 /* for packed formats */
2924 return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2925}
2926
2927/*
2928 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2929 * a 8192x4096@32bpp framebuffer:
2930 * 3 * 4096 * 8192 * 4 < 2^32
2931 */
2932static unsigned int
2933skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2934 const struct skl_pipe_wm_parameters *params)
2935{
2936 unsigned int total_data_rate = 0;
2937 int plane;
2938
2939 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2940 const struct intel_plane_wm_parameters *p;
2941
2942 p = &params->plane[plane];
2943 if (!p->enabled)
2944 continue;
2945
2946 total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2947 if (p->y_bytes_per_pixel) {
2948 total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2949 }
2950 }
2951
2952 return total_data_rate;
2953}
2954
2955static void
2956skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2957 const struct intel_wm_config *config,
2958 const struct skl_pipe_wm_parameters *params,
2959 struct skl_ddb_allocation *ddb /* out */)
2960{
2961 struct drm_device *dev = crtc->dev;
2962 struct drm_i915_private *dev_priv = dev->dev_private;
2963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2964 enum pipe pipe = intel_crtc->pipe;
2965 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2966 uint16_t alloc_size, start, cursor_blocks;
2967 uint16_t minimum[I915_MAX_PLANES];
2968 uint16_t y_minimum[I915_MAX_PLANES];
2969 unsigned int total_data_rate;
2970 int plane;
2971
2972 skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2973 alloc_size = skl_ddb_entry_size(alloc);
2974 if (alloc_size == 0) {
2975 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2976 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2977 return;
2978 }
2979
2980 cursor_blocks = skl_cursor_allocation(config);
2981 ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2982 ddb->cursor[pipe].end = alloc->end;
2983
2984 alloc_size -= cursor_blocks;
2985 alloc->end -= cursor_blocks;
2986
2987 /* 1. Allocate the mininum required blocks for each active plane */
2988 for_each_plane(dev_priv, pipe, plane) {
2989 const struct intel_plane_wm_parameters *p;
2990
2991 p = &params->plane[plane];
2992 if (!p->enabled)
2993 continue;
2994
2995 minimum[plane] = 8;
2996 alloc_size -= minimum[plane];
2997 y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
2998 alloc_size -= y_minimum[plane];
2999 }
3000
3001 /*
3002 * 2. Distribute the remaining space in proportion to the amount of
3003 * data each plane needs to fetch from memory.
3004 *
3005 * FIXME: we may not allocate every single block here.
3006 */
3007 total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
3008
3009 start = alloc->start;
3010 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
3011 const struct intel_plane_wm_parameters *p;
3012 unsigned int data_rate, y_data_rate;
3013 uint16_t plane_blocks, y_plane_blocks = 0;
3014
3015 p = &params->plane[plane];
3016 if (!p->enabled)
3017 continue;
3018
3019 data_rate = skl_plane_relative_data_rate(p, 0);
3020
3021 /*
3022 * allocation for (packed formats) or (uv-plane part of planar format):
3023 * promote the expression to 64 bits to avoid overflowing, the
3024 * result is < available as data_rate / total_data_rate < 1
3025 */
3026 plane_blocks = minimum[plane];
3027 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3028 total_data_rate);
3029
3030 ddb->plane[pipe][plane].start = start;
3031 ddb->plane[pipe][plane].end = start + plane_blocks;
3032
3033 start += plane_blocks;
3034
3035 /*
3036 * allocation for y_plane part of planar format:
3037 */
3038 if (p->y_bytes_per_pixel) {
3039 y_data_rate = skl_plane_relative_data_rate(p, 1);
3040 y_plane_blocks = y_minimum[plane];
3041 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3042 total_data_rate);
3043
3044 ddb->y_plane[pipe][plane].start = start;
3045 ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
3046
3047 start += y_plane_blocks;
3048 }
3049
3050 }
3051
3052}
3053
3054static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3055{
3056 /* TODO: Take into account the scalers once we support them */
3057 return config->base.adjusted_mode.crtc_clock;
3058}
3059
3060/*
3061 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3062 * for the read latency) and bytes_per_pixel should always be <= 8, so that
3063 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3064 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3065*/
3066static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3067 uint32_t latency)
3068{
3069 uint32_t wm_intermediate_val, ret;
3070
3071 if (latency == 0)
3072 return UINT_MAX;
3073
3074 wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3075 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3076
3077 return ret;
3078}
3079
3080static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3081 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3082 uint64_t tiling, uint32_t latency)
3083{
3084 uint32_t ret;
3085 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3086 uint32_t wm_intermediate_val;
3087
3088 if (latency == 0)
3089 return UINT_MAX;
3090
3091 plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3092
3093 if (tiling == I915_FORMAT_MOD_Y_TILED ||
3094 tiling == I915_FORMAT_MOD_Yf_TILED) {
3095 plane_bytes_per_line *= 4;
3096 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3097 plane_blocks_per_line /= 4;
3098 } else {
3099 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3100 }
3101
3102 wm_intermediate_val = latency * pixel_rate;
3103 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3104 plane_blocks_per_line;
3105
3106 return ret;
3107}
3108
3109static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3110 const struct intel_crtc *intel_crtc)
3111{
3112 struct drm_device *dev = intel_crtc->base.dev;
3113 struct drm_i915_private *dev_priv = dev->dev_private;
3114 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3115 enum pipe pipe = intel_crtc->pipe;
3116
3117 if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3118 sizeof(new_ddb->plane[pipe])))
3119 return true;
3120
3121 if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
3122 sizeof(new_ddb->cursor[pipe])))
3123 return true;
3124
3125 return false;
3126}
3127
3128static void skl_compute_wm_global_parameters(struct drm_device *dev,
3129 struct intel_wm_config *config)
3130{
3131 struct drm_crtc *crtc;
3132 struct drm_plane *plane;
3133
3134 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3135 config->num_pipes_active += to_intel_crtc(crtc)->active;
3136
3137 /* FIXME: I don't think we need those two global parameters on SKL */
3138 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3139 struct intel_plane *intel_plane = to_intel_plane(plane);
3140
3141 config->sprites_enabled |= intel_plane->wm.enabled;
3142 config->sprites_scaled |= intel_plane->wm.scaled;
3143 }
3144}
3145
3146static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3147 struct skl_pipe_wm_parameters *p)
3148{
3149 struct drm_device *dev = crtc->dev;
3150 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3151 enum pipe pipe = intel_crtc->pipe;
3152 struct drm_plane *plane;
3153 struct drm_framebuffer *fb;
3154 int i = 1; /* Index for sprite planes start */
3155
3156 p->active = intel_crtc->active;
3157 if (p->active) {
3158 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3159 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3160
3161 fb = crtc->primary->state->fb;
3162 /* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3163 if (fb) {
3164 p->plane[0].enabled = true;
3165 p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3166 drm_format_plane_cpp(fb->pixel_format, 1) :
3167 drm_format_plane_cpp(fb->pixel_format, 0);
3168 p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3169 drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3170 p->plane[0].tiling = fb->modifier[0];
3171 } else {
3172 p->plane[0].enabled = false;
3173 p->plane[0].bytes_per_pixel = 0;
3174 p->plane[0].y_bytes_per_pixel = 0;
3175 p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3176 }
3177 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3178 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3179 p->plane[0].rotation = crtc->primary->state->rotation;
3180
3181 fb = crtc->cursor->state->fb;
3182 p->cursor.y_bytes_per_pixel = 0;
3183 if (fb) {
3184 p->cursor.enabled = true;
3185 p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
3186 p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
3187 p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
3188 } else {
3189 p->cursor.enabled = false;
3190 p->cursor.bytes_per_pixel = 0;
3191 p->cursor.horiz_pixels = 64;
3192 p->cursor.vert_pixels = 64;
3193 }
3194 }
3195
3196 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3197 struct intel_plane *intel_plane = to_intel_plane(plane);
3198
3199 if (intel_plane->pipe == pipe &&
3200 plane->type == DRM_PLANE_TYPE_OVERLAY)
3201 p->plane[i++] = intel_plane->wm;
3202 }
3203}
3204
3205static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3206 struct skl_pipe_wm_parameters *p,
3207 struct intel_plane_wm_parameters *p_params,
3208 uint16_t ddb_allocation,
3209 int level,
3210 uint16_t *out_blocks, /* out */
3211 uint8_t *out_lines /* out */)
3212{
3213 uint32_t latency = dev_priv->wm.skl_latency[level];
3214 uint32_t method1, method2;
3215 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3216 uint32_t res_blocks, res_lines;
3217 uint32_t selected_result;
3218 uint8_t bytes_per_pixel;
3219
3220 if (latency == 0 || !p->active || !p_params->enabled)
3221 return false;
3222
3223 bytes_per_pixel = p_params->y_bytes_per_pixel ?
3224 p_params->y_bytes_per_pixel :
3225 p_params->bytes_per_pixel;
3226 method1 = skl_wm_method1(p->pixel_rate,
3227 bytes_per_pixel,
3228 latency);
3229 method2 = skl_wm_method2(p->pixel_rate,
3230 p->pipe_htotal,
3231 p_params->horiz_pixels,
3232 bytes_per_pixel,
3233 p_params->tiling,
3234 latency);
3235
3236 plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3237 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3238
3239 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3240 p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3241 uint32_t min_scanlines = 4;
3242 uint32_t y_tile_minimum;
3243 if (intel_rotation_90_or_270(p_params->rotation)) {
3244 switch (p_params->bytes_per_pixel) {
3245 case 1:
3246 min_scanlines = 16;
3247 break;
3248 case 2:
3249 min_scanlines = 8;
3250 break;
3251 case 8:
3252 WARN(1, "Unsupported pixel depth for rotation");
3253 }
3254 }
3255 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3256 selected_result = max(method2, y_tile_minimum);
3257 } else {
3258 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3259 selected_result = min(method1, method2);
3260 else
3261 selected_result = method1;
3262 }
3263
3264 res_blocks = selected_result + 1;
3265 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3266
3267 if (level >= 1 && level <= 7) {
3268 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3269 p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3270 res_lines += 4;
3271 else
3272 res_blocks++;
3273 }
3274
3275 if (res_blocks >= ddb_allocation || res_lines > 31)
3276 return false;
3277
3278 *out_blocks = res_blocks;
3279 *out_lines = res_lines;
3280
3281 return true;
3282}
3283
3284static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3285 struct skl_ddb_allocation *ddb,
3286 struct skl_pipe_wm_parameters *p,
3287 enum pipe pipe,
3288 int level,
3289 int num_planes,
3290 struct skl_wm_level *result)
3291{
3292 uint16_t ddb_blocks;
3293 int i;
3294
3295 for (i = 0; i < num_planes; i++) {
3296 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3297
3298 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3299 p, &p->plane[i],
3300 ddb_blocks,
3301 level,
3302 &result->plane_res_b[i],
3303 &result->plane_res_l[i]);
3304 }
3305
3306 ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
3307 result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
3308 ddb_blocks, level,
3309 &result->cursor_res_b,
3310 &result->cursor_res_l);
3311}
3312
3313static uint32_t
3314skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3315{
3316 if (!to_intel_crtc(crtc)->active)
3317 return 0;
3318
3319 if (WARN_ON(p->pixel_rate == 0))
3320 return 0;
3321
3322 return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3323}
3324
3325static void skl_compute_transition_wm(struct drm_crtc *crtc,
3326 struct skl_pipe_wm_parameters *params,
3327 struct skl_wm_level *trans_wm /* out */)
3328{
3329 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3330 int i;
3331
3332 if (!params->active)
3333 return;
3334
3335 /* Until we know more, just disable transition WMs */
3336 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3337 trans_wm->plane_en[i] = false;
3338 trans_wm->cursor_en = false;
3339}
3340
3341static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3342 struct skl_ddb_allocation *ddb,
3343 struct skl_pipe_wm_parameters *params,
3344 struct skl_pipe_wm *pipe_wm)
3345{
3346 struct drm_device *dev = crtc->dev;
3347 const struct drm_i915_private *dev_priv = dev->dev_private;
3348 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3349 int level, max_level = ilk_wm_max_level(dev);
3350
3351 for (level = 0; level <= max_level; level++) {
3352 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3353 level, intel_num_planes(intel_crtc),
3354 &pipe_wm->wm[level]);
3355 }
3356 pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3357
3358 skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3359}
3360
3361static void skl_compute_wm_results(struct drm_device *dev,
3362 struct skl_pipe_wm_parameters *p,
3363 struct skl_pipe_wm *p_wm,
3364 struct skl_wm_values *r,
3365 struct intel_crtc *intel_crtc)
3366{
3367 int level, max_level = ilk_wm_max_level(dev);
3368 enum pipe pipe = intel_crtc->pipe;
3369 uint32_t temp;
3370 int i;
3371
3372 for (level = 0; level <= max_level; level++) {
3373 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3374 temp = 0;
3375
3376 temp |= p_wm->wm[level].plane_res_l[i] <<
3377 PLANE_WM_LINES_SHIFT;
3378 temp |= p_wm->wm[level].plane_res_b[i];
3379 if (p_wm->wm[level].plane_en[i])
3380 temp |= PLANE_WM_EN;
3381
3382 r->plane[pipe][i][level] = temp;
3383 }
3384
3385 temp = 0;
3386
3387 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
3388 temp |= p_wm->wm[level].cursor_res_b;
3389
3390 if (p_wm->wm[level].cursor_en)
3391 temp |= PLANE_WM_EN;
3392
3393 r->cursor[pipe][level] = temp;
3394
3395 }
3396
3397 /* transition WMs */
3398 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3399 temp = 0;
3400 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3401 temp |= p_wm->trans_wm.plane_res_b[i];
3402 if (p_wm->trans_wm.plane_en[i])
3403 temp |= PLANE_WM_EN;
3404
3405 r->plane_trans[pipe][i] = temp;
3406 }
3407
3408 temp = 0;
3409 temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
3410 temp |= p_wm->trans_wm.cursor_res_b;
3411 if (p_wm->trans_wm.cursor_en)
3412 temp |= PLANE_WM_EN;
3413
3414 r->cursor_trans[pipe] = temp;
3415
3416 r->wm_linetime[pipe] = p_wm->linetime;
3417}
3418
3419static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3420 const struct skl_ddb_entry *entry)
3421{
3422 if (entry->end)
3423 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3424 else
3425 I915_WRITE(reg, 0);
3426}
3427
3428static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3429 const struct skl_wm_values *new)
3430{
3431 struct drm_device *dev = dev_priv->dev;
3432 struct intel_crtc *crtc;
3433
3434 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3435 int i, level, max_level = ilk_wm_max_level(dev);
3436 enum pipe pipe = crtc->pipe;
3437
3438 if (!new->dirty[pipe])
3439 continue;
3440
3441 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3442
3443 for (level = 0; level <= max_level; level++) {
3444 for (i = 0; i < intel_num_planes(crtc); i++)
3445 I915_WRITE(PLANE_WM(pipe, i, level),
3446 new->plane[pipe][i][level]);
3447 I915_WRITE(CUR_WM(pipe, level),
3448 new->cursor[pipe][level]);
3449 }
3450 for (i = 0; i < intel_num_planes(crtc); i++)
3451 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3452 new->plane_trans[pipe][i]);
3453 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
3454
3455 for (i = 0; i < intel_num_planes(crtc); i++) {
3456 skl_ddb_entry_write(dev_priv,
3457 PLANE_BUF_CFG(pipe, i),
3458 &new->ddb.plane[pipe][i]);
3459 skl_ddb_entry_write(dev_priv,
3460 PLANE_NV12_BUF_CFG(pipe, i),
3461 &new->ddb.y_plane[pipe][i]);
3462 }
3463
3464 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3465 &new->ddb.cursor[pipe]);
3466 }
3467}
3468
3469/*
3470 * When setting up a new DDB allocation arrangement, we need to correctly
3471 * sequence the times at which the new allocations for the pipes are taken into
3472 * account or we'll have pipes fetching from space previously allocated to
3473 * another pipe.
3474 *
3475 * Roughly the sequence looks like:
3476 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3477 * overlapping with a previous light-up pipe (another way to put it is:
3478 * pipes with their new allocation strickly included into their old ones).
3479 * 2. re-allocate the other pipes that get their allocation reduced
3480 * 3. allocate the pipes having their allocation increased
3481 *
3482 * Steps 1. and 2. are here to take care of the following case:
3483 * - Initially DDB looks like this:
3484 * | B | C |
3485 * - enable pipe A.
3486 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3487 * allocation
3488 * | A | B | C |
3489 *
3490 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3491 */
3492
3493static void
3494skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3495{
3496 int plane;
3497
3498 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3499
3500 for_each_plane(dev_priv, pipe, plane) {
3501 I915_WRITE(PLANE_SURF(pipe, plane),
3502 I915_READ(PLANE_SURF(pipe, plane)));
3503 }
3504 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3505}
3506
3507static bool
3508skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3509 const struct skl_ddb_allocation *new,
3510 enum pipe pipe)
3511{
3512 uint16_t old_size, new_size;
3513
3514 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3515 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3516
3517 return old_size != new_size &&
3518 new->pipe[pipe].start >= old->pipe[pipe].start &&
3519 new->pipe[pipe].end <= old->pipe[pipe].end;
3520}
3521
3522static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3523 struct skl_wm_values *new_values)
3524{
3525 struct drm_device *dev = dev_priv->dev;
3526 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3527 bool reallocated[I915_MAX_PIPES] = {};
3528 struct intel_crtc *crtc;
3529 enum pipe pipe;
3530
3531 new_ddb = &new_values->ddb;
3532 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3533
3534 /*
3535 * First pass: flush the pipes with the new allocation contained into
3536 * the old space.
3537 *
3538 * We'll wait for the vblank on those pipes to ensure we can safely
3539 * re-allocate the freed space without this pipe fetching from it.
3540 */
3541 for_each_intel_crtc(dev, crtc) {
3542 if (!crtc->active)
3543 continue;
3544
3545 pipe = crtc->pipe;
3546
3547 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3548 continue;
3549
3550 skl_wm_flush_pipe(dev_priv, pipe, 1);
3551 intel_wait_for_vblank(dev, pipe);
3552
3553 reallocated[pipe] = true;
3554 }
3555
3556
3557 /*
3558 * Second pass: flush the pipes that are having their allocation
3559 * reduced, but overlapping with a previous allocation.
3560 *
3561 * Here as well we need to wait for the vblank to make sure the freed
3562 * space is not used anymore.
3563 */
3564 for_each_intel_crtc(dev, crtc) {
3565 if (!crtc->active)
3566 continue;
3567
3568 pipe = crtc->pipe;
3569
3570 if (reallocated[pipe])
3571 continue;
3572
3573 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3574 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3575 skl_wm_flush_pipe(dev_priv, pipe, 2);
3576 intel_wait_for_vblank(dev, pipe);
3577 reallocated[pipe] = true;
3578 }
3579 }
3580
3581 /*
3582 * Third pass: flush the pipes that got more space allocated.
3583 *
3584 * We don't need to actively wait for the update here, next vblank
3585 * will just get more DDB space with the correct WM values.
3586 */
3587 for_each_intel_crtc(dev, crtc) {
3588 if (!crtc->active)
3589 continue;
3590
3591 pipe = crtc->pipe;
3592
3593 /*
3594 * At this point, only the pipes more space than before are
3595 * left to re-allocate.
3596 */
3597 if (reallocated[pipe])
3598 continue;
3599
3600 skl_wm_flush_pipe(dev_priv, pipe, 3);
3601 }
3602}
3603
3604static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3605 struct skl_pipe_wm_parameters *params,
3606 struct intel_wm_config *config,
3607 struct skl_ddb_allocation *ddb, /* out */
3608 struct skl_pipe_wm *pipe_wm /* out */)
3609{
3610 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3611
3612 skl_compute_wm_pipe_parameters(crtc, params);
3613 skl_allocate_pipe_ddb(crtc, config, params, ddb);
3614 skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3615
3616 if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3617 return false;
3618
3619 intel_crtc->wm.skl_active = *pipe_wm;
3620
3621 return true;
3622}
3623
3624static void skl_update_other_pipe_wm(struct drm_device *dev,
3625 struct drm_crtc *crtc,
3626 struct intel_wm_config *config,
3627 struct skl_wm_values *r)
3628{
3629 struct intel_crtc *intel_crtc;
3630 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3631
3632 /*
3633 * If the WM update hasn't changed the allocation for this_crtc (the
3634 * crtc we are currently computing the new WM values for), other
3635 * enabled crtcs will keep the same allocation and we don't need to
3636 * recompute anything for them.
3637 */
3638 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3639 return;
3640
3641 /*
3642 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3643 * other active pipes need new DDB allocation and WM values.
3644 */
3645 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3646 base.head) {
3647 struct skl_pipe_wm_parameters params = {};
3648 struct skl_pipe_wm pipe_wm = {};
3649 bool wm_changed;
3650
3651 if (this_crtc->pipe == intel_crtc->pipe)
3652 continue;
3653
3654 if (!intel_crtc->active)
3655 continue;
3656
3657 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3658 &params, config,
3659 &r->ddb, &pipe_wm);
3660
3661 /*
3662 * If we end up re-computing the other pipe WM values, it's
3663 * because it was really needed, so we expect the WM values to
3664 * be different.
3665 */
3666 WARN_ON(!wm_changed);
3667
3668 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3669 r->dirty[intel_crtc->pipe] = true;
3670 }
3671}
3672
3673static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3674{
3675 watermarks->wm_linetime[pipe] = 0;
3676 memset(watermarks->plane[pipe], 0,
3677 sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3678 memset(watermarks->cursor[pipe], 0, sizeof(uint32_t) * 8);
3679 memset(watermarks->plane_trans[pipe],
3680 0, sizeof(uint32_t) * I915_MAX_PLANES);
3681 watermarks->cursor_trans[pipe] = 0;
3682
3683 /* Clear ddb entries for pipe */
3684 memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3685 memset(&watermarks->ddb.plane[pipe], 0,
3686 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3687 memset(&watermarks->ddb.y_plane[pipe], 0,
3688 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3689 memset(&watermarks->ddb.cursor[pipe], 0, sizeof(struct skl_ddb_entry));
3690
3691}
3692
3693static void skl_update_wm(struct drm_crtc *crtc)
3694{
3695 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3696 struct drm_device *dev = crtc->dev;
3697 struct drm_i915_private *dev_priv = dev->dev_private;
3698 struct skl_pipe_wm_parameters params = {};
3699 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3700 struct skl_pipe_wm pipe_wm = {};
3701 struct intel_wm_config config = {};
3702
3703
3704 /* Clear all dirty flags */
3705 memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3706
3707 skl_clear_wm(results, intel_crtc->pipe);
3708
3709 skl_compute_wm_global_parameters(dev, &config);
3710
3711 if (!skl_update_pipe_wm(crtc, &params, &config,
3712 &results->ddb, &pipe_wm))
3713 return;
3714
3715 skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3716 results->dirty[intel_crtc->pipe] = true;
3717
3718 skl_update_other_pipe_wm(dev, crtc, &config, results);
3719 skl_write_wm_values(dev_priv, results);
3720 skl_flush_wm_values(dev_priv, results);
3721
3722 /* store the new configuration */
3723 dev_priv->wm.skl_hw = *results;
3724}
3725
3726static void
3727skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3728 uint32_t sprite_width, uint32_t sprite_height,
3729 int pixel_size, bool enabled, bool scaled)
3730{
3731 struct intel_plane *intel_plane = to_intel_plane(plane);
3732 struct drm_framebuffer *fb = plane->state->fb;
3733
3734 intel_plane->wm.enabled = enabled;
3735 intel_plane->wm.scaled = scaled;
3736 intel_plane->wm.horiz_pixels = sprite_width;
3737 intel_plane->wm.vert_pixels = sprite_height;
3738 intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3739
3740 /* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3741 intel_plane->wm.bytes_per_pixel =
3742 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3743 drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3744 intel_plane->wm.y_bytes_per_pixel =
3745 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3746 drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3747
3748 /*
3749 * Framebuffer can be NULL on plane disable, but it does not
3750 * matter for watermarks if we assume no tiling in that case.
3751 */
3752 if (fb)
3753 intel_plane->wm.tiling = fb->modifier[0];
3754 intel_plane->wm.rotation = plane->state->rotation;
3755
3756 skl_update_wm(crtc);
3757}
3758
3759static void ilk_update_wm(struct drm_crtc *crtc)
3760{
3761 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3762 struct drm_device *dev = crtc->dev;
3763 struct drm_i915_private *dev_priv = dev->dev_private;
3764 struct ilk_wm_maximums max;
3765 struct ilk_pipe_wm_parameters params = {};
3766 struct ilk_wm_values results = {};
3767 enum intel_ddb_partitioning partitioning;
3768 struct intel_pipe_wm pipe_wm = {};
3769 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3770 struct intel_wm_config config = {};
3771
3772 ilk_compute_wm_parameters(crtc, &params);
3773
3774 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3775
3776 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3777 return;
3778
3779 intel_crtc->wm.active = pipe_wm;
3780
3781 ilk_compute_wm_config(dev, &config);
3782
3783 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3784 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3785
3786 /* 5/6 split only in single pipe config on IVB+ */
3787 if (INTEL_INFO(dev)->gen >= 7 &&
3788 config.num_pipes_active == 1 && config.sprites_enabled) {
3789 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3790 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3791
3792 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3793 } else {
3794 best_lp_wm = &lp_wm_1_2;
3795 }
3796
3797 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3798 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3799
3800 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3801
3802 ilk_write_wm_values(dev_priv, &results);
3803}
3804
3805static void
3806ilk_update_sprite_wm(struct drm_plane *plane,
3807 struct drm_crtc *crtc,
3808 uint32_t sprite_width, uint32_t sprite_height,
3809 int pixel_size, bool enabled, bool scaled)
3810{
3811 struct drm_device *dev = plane->dev;
3812 struct intel_plane *intel_plane = to_intel_plane(plane);
3813
3814 intel_plane->wm.enabled = enabled;
3815 intel_plane->wm.scaled = scaled;
3816 intel_plane->wm.horiz_pixels = sprite_width;
3817 intel_plane->wm.vert_pixels = sprite_width;
3818 intel_plane->wm.bytes_per_pixel = pixel_size;
3819
3820 /*
3821 * IVB workaround: must disable low power watermarks for at least
3822 * one frame before enabling scaling. LP watermarks can be re-enabled
3823 * when scaling is disabled.
3824 *
3825 * WaCxSRDisabledForSpriteScaling:ivb
3826 */
3827 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3828 intel_wait_for_vblank(dev, intel_plane->pipe);
3829
3830 ilk_update_wm(crtc);
3831}
3832
3833static void skl_pipe_wm_active_state(uint32_t val,
3834 struct skl_pipe_wm *active,
3835 bool is_transwm,
3836 bool is_cursor,
3837 int i,
3838 int level)
3839{
3840 bool is_enabled = (val & PLANE_WM_EN) != 0;
3841
3842 if (!is_transwm) {
3843 if (!is_cursor) {
3844 active->wm[level].plane_en[i] = is_enabled;
3845 active->wm[level].plane_res_b[i] =
3846 val & PLANE_WM_BLOCKS_MASK;
3847 active->wm[level].plane_res_l[i] =
3848 (val >> PLANE_WM_LINES_SHIFT) &
3849 PLANE_WM_LINES_MASK;
3850 } else {
3851 active->wm[level].cursor_en = is_enabled;
3852 active->wm[level].cursor_res_b =
3853 val & PLANE_WM_BLOCKS_MASK;
3854 active->wm[level].cursor_res_l =
3855 (val >> PLANE_WM_LINES_SHIFT) &
3856 PLANE_WM_LINES_MASK;
3857 }
3858 } else {
3859 if (!is_cursor) {
3860 active->trans_wm.plane_en[i] = is_enabled;
3861 active->trans_wm.plane_res_b[i] =
3862 val & PLANE_WM_BLOCKS_MASK;
3863 active->trans_wm.plane_res_l[i] =
3864 (val >> PLANE_WM_LINES_SHIFT) &
3865 PLANE_WM_LINES_MASK;
3866 } else {
3867 active->trans_wm.cursor_en = is_enabled;
3868 active->trans_wm.cursor_res_b =
3869 val & PLANE_WM_BLOCKS_MASK;
3870 active->trans_wm.cursor_res_l =
3871 (val >> PLANE_WM_LINES_SHIFT) &
3872 PLANE_WM_LINES_MASK;
3873 }
3874 }
3875}
3876
3877static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3878{
3879 struct drm_device *dev = crtc->dev;
3880 struct drm_i915_private *dev_priv = dev->dev_private;
3881 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3882 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3883 struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3884 enum pipe pipe = intel_crtc->pipe;
3885 int level, i, max_level;
3886 uint32_t temp;
3887
3888 max_level = ilk_wm_max_level(dev);
3889
3890 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3891
3892 for (level = 0; level <= max_level; level++) {
3893 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3894 hw->plane[pipe][i][level] =
3895 I915_READ(PLANE_WM(pipe, i, level));
3896 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3897 }
3898
3899 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3900 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3901 hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3902
3903 if (!intel_crtc->active)
3904 return;
3905
3906 hw->dirty[pipe] = true;
3907
3908 active->linetime = hw->wm_linetime[pipe];
3909
3910 for (level = 0; level <= max_level; level++) {
3911 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3912 temp = hw->plane[pipe][i][level];
3913 skl_pipe_wm_active_state(temp, active, false,
3914 false, i, level);
3915 }
3916 temp = hw->cursor[pipe][level];
3917 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3918 }
3919
3920 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3921 temp = hw->plane_trans[pipe][i];
3922 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3923 }
3924
3925 temp = hw->cursor_trans[pipe];
3926 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3927}
3928
3929void skl_wm_get_hw_state(struct drm_device *dev)
3930{
3931 struct drm_i915_private *dev_priv = dev->dev_private;
3932 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3933 struct drm_crtc *crtc;
3934
3935 skl_ddb_get_hw_state(dev_priv, ddb);
3936 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3937 skl_pipe_wm_get_hw_state(crtc);
3938}
3939
3940static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3941{
3942 struct drm_device *dev = crtc->dev;
3943 struct drm_i915_private *dev_priv = dev->dev_private;
3944 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3945 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3946 struct intel_pipe_wm *active = &intel_crtc->wm.active;
3947 enum pipe pipe = intel_crtc->pipe;
3948 static const unsigned int wm0_pipe_reg[] = {
3949 [PIPE_A] = WM0_PIPEA_ILK,
3950 [PIPE_B] = WM0_PIPEB_ILK,
3951 [PIPE_C] = WM0_PIPEC_IVB,
3952 };
3953
3954 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3955 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3956 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3957
3958 active->pipe_enabled = intel_crtc->active;
3959
3960 if (active->pipe_enabled) {
3961 u32 tmp = hw->wm_pipe[pipe];
3962
3963 /*
3964 * For active pipes LP0 watermark is marked as
3965 * enabled, and LP1+ watermaks as disabled since
3966 * we can't really reverse compute them in case
3967 * multiple pipes are active.
3968 */
3969 active->wm[0].enable = true;
3970 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3971 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3972 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3973 active->linetime = hw->wm_linetime[pipe];
3974 } else {
3975 int level, max_level = ilk_wm_max_level(dev);
3976
3977 /*
3978 * For inactive pipes, all watermark levels
3979 * should be marked as enabled but zeroed,
3980 * which is what we'd compute them to.
3981 */
3982 for (level = 0; level <= max_level; level++)
3983 active->wm[level].enable = true;
3984 }
3985}
3986
3987#define _FW_WM(value, plane) \
3988 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3989#define _FW_WM_VLV(value, plane) \
3990 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3991
3992static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3993 struct vlv_wm_values *wm)
3994{
3995 enum pipe pipe;
3996 uint32_t tmp;
3997
3998 for_each_pipe(dev_priv, pipe) {
3999 tmp = I915_READ(VLV_DDL(pipe));
4000
4001 wm->ddl[pipe].primary =
4002 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4003 wm->ddl[pipe].cursor =
4004 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4005 wm->ddl[pipe].sprite[0] =
4006 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4007 wm->ddl[pipe].sprite[1] =
4008 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4009 }
4010
4011 tmp = I915_READ(DSPFW1);
4012 wm->sr.plane = _FW_WM(tmp, SR);
4013 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4014 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4015 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4016
4017 tmp = I915_READ(DSPFW2);
4018 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4019 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4020 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4021
4022 tmp = I915_READ(DSPFW3);
4023 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4024
4025 if (IS_CHERRYVIEW(dev_priv)) {
4026 tmp = I915_READ(DSPFW7_CHV);
4027 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4028 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4029
4030 tmp = I915_READ(DSPFW8_CHV);
4031 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4032 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4033
4034 tmp = I915_READ(DSPFW9_CHV);
4035 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4036 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4037
4038 tmp = I915_READ(DSPHOWM);
4039 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4040 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4041 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4042 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4043 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4044 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4045 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4046 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4047 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4048 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4049 } else {
4050 tmp = I915_READ(DSPFW7);
4051 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4052 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4053
4054 tmp = I915_READ(DSPHOWM);
4055 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4056 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4057 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4058 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4059 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4060 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4061 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4062 }
4063}
4064
4065#undef _FW_WM
4066#undef _FW_WM_VLV
4067
4068void vlv_wm_get_hw_state(struct drm_device *dev)
4069{
4070 struct drm_i915_private *dev_priv = to_i915(dev);
4071 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4072 struct intel_plane *plane;
4073 enum pipe pipe;
4074 u32 val;
4075
4076 vlv_read_wm_values(dev_priv, wm);
4077
4078 for_each_intel_plane(dev, plane) {
4079 switch (plane->base.type) {
4080 int sprite;
4081 case DRM_PLANE_TYPE_CURSOR:
4082 plane->wm.fifo_size = 63;
4083 break;
4084 case DRM_PLANE_TYPE_PRIMARY:
4085 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4086 break;
4087 case DRM_PLANE_TYPE_OVERLAY:
4088 sprite = plane->plane;
4089 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4090 break;
4091 }
4092 }
4093
4094 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4095 wm->level = VLV_WM_LEVEL_PM2;
4096
4097 if (IS_CHERRYVIEW(dev_priv)) {
4098 mutex_lock(&dev_priv->rps.hw_lock);
4099
4100 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4101 if (val & DSP_MAXFIFO_PM5_ENABLE)
4102 wm->level = VLV_WM_LEVEL_PM5;
4103
4104 /*
4105 * If DDR DVFS is disabled in the BIOS, Punit
4106 * will never ack the request. So if that happens
4107 * assume we don't have to enable/disable DDR DVFS
4108 * dynamically. To test that just set the REQ_ACK
4109 * bit to poke the Punit, but don't change the
4110 * HIGH/LOW bits so that we don't actually change
4111 * the current state.
4112 */
4113 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4114 val |= FORCE_DDR_FREQ_REQ_ACK;
4115 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4116
4117 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4118 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4119 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4120 "assuming DDR DVFS is disabled\n");
4121 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4122 } else {
4123 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4124 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4125 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4126 }
4127
4128 mutex_unlock(&dev_priv->rps.hw_lock);
4129 }
4130
4131 for_each_pipe(dev_priv, pipe)
4132 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4133 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4134 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4135
4136 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4137 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4138}
4139
4140void ilk_wm_get_hw_state(struct drm_device *dev)
4141{
4142 struct drm_i915_private *dev_priv = dev->dev_private;
4143 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4144 struct drm_crtc *crtc;
4145
4146 for_each_crtc(dev, crtc)
4147 ilk_pipe_wm_get_hw_state(crtc);
4148
4149 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4150 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4151 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4152
4153 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4154 if (INTEL_INFO(dev)->gen >= 7) {
4155 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4156 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4157 }
4158
4159 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4160 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4161 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4162 else if (IS_IVYBRIDGE(dev))
4163 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4164 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4165
4166 hw->enable_fbc_wm =
4167 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4168}
4169
4170/**
4171 * intel_update_watermarks - update FIFO watermark values based on current modes
4172 *
4173 * Calculate watermark values for the various WM regs based on current mode
4174 * and plane configuration.
4175 *
4176 * There are several cases to deal with here:
4177 * - normal (i.e. non-self-refresh)
4178 * - self-refresh (SR) mode
4179 * - lines are large relative to FIFO size (buffer can hold up to 2)
4180 * - lines are small relative to FIFO size (buffer can hold more than 2
4181 * lines), so need to account for TLB latency
4182 *
4183 * The normal calculation is:
4184 * watermark = dotclock * bytes per pixel * latency
4185 * where latency is platform & configuration dependent (we assume pessimal
4186 * values here).
4187 *
4188 * The SR calculation is:
4189 * watermark = (trunc(latency/line time)+1) * surface width *
4190 * bytes per pixel
4191 * where
4192 * line time = htotal / dotclock
4193 * surface width = hdisplay for normal plane and 64 for cursor
4194 * and latency is assumed to be high, as above.
4195 *
4196 * The final value programmed to the register should always be rounded up,
4197 * and include an extra 2 entries to account for clock crossings.
4198 *
4199 * We don't use the sprite, so we can ignore that. And on Crestline we have
4200 * to set the non-SR watermarks to 8.
4201 */
4202void intel_update_watermarks(struct drm_crtc *crtc)
4203{
4204 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4205
4206 if (dev_priv->display.update_wm)
4207 dev_priv->display.update_wm(crtc);
4208}
4209
4210void intel_update_sprite_watermarks(struct drm_plane *plane,
4211 struct drm_crtc *crtc,
4212 uint32_t sprite_width,
4213 uint32_t sprite_height,
4214 int pixel_size,
4215 bool enabled, bool scaled)
4216{
4217 struct drm_i915_private *dev_priv = plane->dev->dev_private;
4218
4219 if (dev_priv->display.update_sprite_wm)
4220 dev_priv->display.update_sprite_wm(plane, crtc,
4221 sprite_width, sprite_height,
4222 pixel_size, enabled, scaled);
4223}
4224
4225/**
4226 * Lock protecting IPS related data structures
4227 */
4228DEFINE_SPINLOCK(mchdev_lock);
4229
4230/* Global for IPS driver to get at the current i915 device. Protected by
4231 * mchdev_lock. */
4232static struct drm_i915_private *i915_mch_dev;
4233
4234bool ironlake_set_drps(struct drm_device *dev, u8 val)
4235{
4236 struct drm_i915_private *dev_priv = dev->dev_private;
4237 u16 rgvswctl;
4238
4239 assert_spin_locked(&mchdev_lock);
4240
4241 rgvswctl = I915_READ16(MEMSWCTL);
4242 if (rgvswctl & MEMCTL_CMD_STS) {
4243 DRM_DEBUG("gpu busy, RCS change rejected\n");
4244 return false; /* still busy with another command */
4245 }
4246
4247 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4248 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4249 I915_WRITE16(MEMSWCTL, rgvswctl);
4250 POSTING_READ16(MEMSWCTL);
4251
4252 rgvswctl |= MEMCTL_CMD_STS;
4253 I915_WRITE16(MEMSWCTL, rgvswctl);
4254
4255 return true;
4256}
4257
4258static void ironlake_enable_drps(struct drm_device *dev)
4259{
4260 struct drm_i915_private *dev_priv = dev->dev_private;
4261 u32 rgvmodectl = I915_READ(MEMMODECTL);
4262 u8 fmax, fmin, fstart, vstart;
4263
4264 spin_lock_irq(&mchdev_lock);
4265
4266 /* Enable temp reporting */
4267 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4268 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4269
4270 /* 100ms RC evaluation intervals */
4271 I915_WRITE(RCUPEI, 100000);
4272 I915_WRITE(RCDNEI, 100000);
4273
4274 /* Set max/min thresholds to 90ms and 80ms respectively */
4275 I915_WRITE(RCBMAXAVG, 90000);
4276 I915_WRITE(RCBMINAVG, 80000);
4277
4278 I915_WRITE(MEMIHYST, 1);
4279
4280 /* Set up min, max, and cur for interrupt handling */
4281 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4282 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4283 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4284 MEMMODE_FSTART_SHIFT;
4285
4286 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4287 PXVFREQ_PX_SHIFT;
4288
4289 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4290 dev_priv->ips.fstart = fstart;
4291
4292 dev_priv->ips.max_delay = fstart;
4293 dev_priv->ips.min_delay = fmin;
4294 dev_priv->ips.cur_delay = fstart;
4295
4296 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4297 fmax, fmin, fstart);
4298
4299 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4300
4301 /*
4302 * Interrupts will be enabled in ironlake_irq_postinstall
4303 */
4304
4305 I915_WRITE(VIDSTART, vstart);
4306 POSTING_READ(VIDSTART);
4307
4308 rgvmodectl |= MEMMODE_SWMODE_EN;
4309 I915_WRITE(MEMMODECTL, rgvmodectl);
4310
4311 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4312 DRM_ERROR("stuck trying to change perf mode\n");
4313 mdelay(1);
4314
4315 ironlake_set_drps(dev, fstart);
4316
4317 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4318 I915_READ(DDREC) + I915_READ(CSIEC);
4319 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4320 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4321 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4322
4323 spin_unlock_irq(&mchdev_lock);
4324}
4325
4326static void ironlake_disable_drps(struct drm_device *dev)
4327{
4328 struct drm_i915_private *dev_priv = dev->dev_private;
4329 u16 rgvswctl;
4330
4331 spin_lock_irq(&mchdev_lock);
4332
4333 rgvswctl = I915_READ16(MEMSWCTL);
4334
4335 /* Ack interrupts, disable EFC interrupt */
4336 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4337 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4338 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4339 I915_WRITE(DEIIR, DE_PCU_EVENT);
4340 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4341
4342 /* Go back to the starting frequency */
4343 ironlake_set_drps(dev, dev_priv->ips.fstart);
4344 mdelay(1);
4345 rgvswctl |= MEMCTL_CMD_STS;
4346 I915_WRITE(MEMSWCTL, rgvswctl);
4347 mdelay(1);
4348
4349 spin_unlock_irq(&mchdev_lock);
4350}
4351
4352/* There's a funny hw issue where the hw returns all 0 when reading from
4353 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4354 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4355 * all limits and the gpu stuck at whatever frequency it is at atm).
4356 */
4357static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4358{
4359 u32 limits;
4360
4361 /* Only set the down limit when we've reached the lowest level to avoid
4362 * getting more interrupts, otherwise leave this clear. This prevents a
4363 * race in the hw when coming out of rc6: There's a tiny window where
4364 * the hw runs at the minimal clock before selecting the desired
4365 * frequency, if the down threshold expires in that window we will not
4366 * receive a down interrupt. */
4367 if (IS_GEN9(dev_priv->dev)) {
4368 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4369 if (val <= dev_priv->rps.min_freq_softlimit)
4370 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4371 } else {
4372 limits = dev_priv->rps.max_freq_softlimit << 24;
4373 if (val <= dev_priv->rps.min_freq_softlimit)
4374 limits |= dev_priv->rps.min_freq_softlimit << 16;
4375 }
4376
4377 return limits;
4378}
4379
4380static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4381{
4382 int new_power;
4383 u32 threshold_up = 0, threshold_down = 0; /* in % */
4384 u32 ei_up = 0, ei_down = 0;
4385
4386 new_power = dev_priv->rps.power;
4387 switch (dev_priv->rps.power) {
4388 case LOW_POWER:
4389 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4390 new_power = BETWEEN;
4391 break;
4392
4393 case BETWEEN:
4394 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4395 new_power = LOW_POWER;
4396 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4397 new_power = HIGH_POWER;
4398 break;
4399
4400 case HIGH_POWER:
4401 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4402 new_power = BETWEEN;
4403 break;
4404 }
4405 /* Max/min bins are special */
4406 if (val <= dev_priv->rps.min_freq_softlimit)
4407 new_power = LOW_POWER;
4408 if (val >= dev_priv->rps.max_freq_softlimit)
4409 new_power = HIGH_POWER;
4410 if (new_power == dev_priv->rps.power)
4411 return;
4412
4413 /* Note the units here are not exactly 1us, but 1280ns. */
4414 switch (new_power) {
4415 case LOW_POWER:
4416 /* Upclock if more than 95% busy over 16ms */
4417 ei_up = 16000;
4418 threshold_up = 95;
4419
4420 /* Downclock if less than 85% busy over 32ms */
4421 ei_down = 32000;
4422 threshold_down = 85;
4423 break;
4424
4425 case BETWEEN:
4426 /* Upclock if more than 90% busy over 13ms */
4427 ei_up = 13000;
4428 threshold_up = 90;
4429
4430 /* Downclock if less than 75% busy over 32ms */
4431 ei_down = 32000;
4432 threshold_down = 75;
4433 break;
4434
4435 case HIGH_POWER:
4436 /* Upclock if more than 85% busy over 10ms */
4437 ei_up = 10000;
4438 threshold_up = 85;
4439
4440 /* Downclock if less than 60% busy over 32ms */
4441 ei_down = 32000;
4442 threshold_down = 60;
4443 break;
4444 }
4445
4446 I915_WRITE(GEN6_RP_UP_EI,
4447 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4448 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4449 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4450
4451 I915_WRITE(GEN6_RP_DOWN_EI,
4452 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4453 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4454 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4455
4456 I915_WRITE(GEN6_RP_CONTROL,
4457 GEN6_RP_MEDIA_TURBO |
4458 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4459 GEN6_RP_MEDIA_IS_GFX |
4460 GEN6_RP_ENABLE |
4461 GEN6_RP_UP_BUSY_AVG |
4462 GEN6_RP_DOWN_IDLE_AVG);
4463
4464 dev_priv->rps.power = new_power;
4465 dev_priv->rps.up_threshold = threshold_up;
4466 dev_priv->rps.down_threshold = threshold_down;
4467 dev_priv->rps.last_adj = 0;
4468}
4469
4470static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4471{
4472 u32 mask = 0;
4473
4474 if (val > dev_priv->rps.min_freq_softlimit)
4475 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4476 if (val < dev_priv->rps.max_freq_softlimit)
4477 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4478
4479 mask &= dev_priv->pm_rps_events;
4480
4481 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4482}
4483
4484/* gen6_set_rps is called to update the frequency request, but should also be
4485 * called when the range (min_delay and max_delay) is modified so that we can
4486 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4487static void gen6_set_rps(struct drm_device *dev, u8 val)
4488{
4489 struct drm_i915_private *dev_priv = dev->dev_private;
4490
4491 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4492 if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
4493 return;
4494
4495 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4496 WARN_ON(val > dev_priv->rps.max_freq);
4497 WARN_ON(val < dev_priv->rps.min_freq);
4498
4499 /* min/max delay may still have been modified so be sure to
4500 * write the limits value.
4501 */
4502 if (val != dev_priv->rps.cur_freq) {
4503 gen6_set_rps_thresholds(dev_priv, val);
4504
4505 if (IS_GEN9(dev))
4506 I915_WRITE(GEN6_RPNSWREQ,
4507 GEN9_FREQUENCY(val));
4508 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4509 I915_WRITE(GEN6_RPNSWREQ,
4510 HSW_FREQUENCY(val));
4511 else
4512 I915_WRITE(GEN6_RPNSWREQ,
4513 GEN6_FREQUENCY(val) |
4514 GEN6_OFFSET(0) |
4515 GEN6_AGGRESSIVE_TURBO);
4516 }
4517
4518 /* Make sure we continue to get interrupts
4519 * until we hit the minimum or maximum frequencies.
4520 */
4521 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4522 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4523
4524 POSTING_READ(GEN6_RPNSWREQ);
4525
4526 dev_priv->rps.cur_freq = val;
4527 trace_intel_gpu_freq_change(val * 50);
4528}
4529
4530static void valleyview_set_rps(struct drm_device *dev, u8 val)
4531{
4532 struct drm_i915_private *dev_priv = dev->dev_private;
4533
4534 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4535 WARN_ON(val > dev_priv->rps.max_freq);
4536 WARN_ON(val < dev_priv->rps.min_freq);
4537
4538 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4539 "Odd GPU freq value\n"))
4540 val &= ~1;
4541
4542 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4543
4544 if (val != dev_priv->rps.cur_freq) {
4545 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4546 if (!IS_CHERRYVIEW(dev_priv))
4547 gen6_set_rps_thresholds(dev_priv, val);
4548 }
4549
4550 dev_priv->rps.cur_freq = val;
4551 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4552}
4553
4554/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4555 *
4556 * * If Gfx is Idle, then
4557 * 1. Forcewake Media well.
4558 * 2. Request idle freq.
4559 * 3. Release Forcewake of Media well.
4560*/
4561static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4562{
4563 u32 val = dev_priv->rps.idle_freq;
4564
4565 if (dev_priv->rps.cur_freq <= val)
4566 return;
4567
4568 /* Wake up the media well, as that takes a lot less
4569 * power than the Render well. */
4570 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4571 valleyview_set_rps(dev_priv->dev, val);
4572 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4573}
4574
4575void gen6_rps_busy(struct drm_i915_private *dev_priv)
4576{
4577 mutex_lock(&dev_priv->rps.hw_lock);
4578 if (dev_priv->rps.enabled) {
4579 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4580 gen6_rps_reset_ei(dev_priv);
4581 I915_WRITE(GEN6_PMINTRMSK,
4582 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4583 }
4584 mutex_unlock(&dev_priv->rps.hw_lock);
4585}
4586
4587void gen6_rps_idle(struct drm_i915_private *dev_priv)
4588{
4589 struct drm_device *dev = dev_priv->dev;
4590
4591 mutex_lock(&dev_priv->rps.hw_lock);
4592 if (dev_priv->rps.enabled) {
4593 if (IS_VALLEYVIEW(dev))
4594 vlv_set_rps_idle(dev_priv);
4595 else
4596 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4597 dev_priv->rps.last_adj = 0;
4598 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4599 }
4600 mutex_unlock(&dev_priv->rps.hw_lock);
4601
4602 spin_lock(&dev_priv->rps.client_lock);
4603 while (!list_empty(&dev_priv->rps.clients))
4604 list_del_init(dev_priv->rps.clients.next);
4605 spin_unlock(&dev_priv->rps.client_lock);
4606}
4607
4608void gen6_rps_boost(struct drm_i915_private *dev_priv,
4609 struct intel_rps_client *rps,
4610 unsigned long submitted)
4611{
4612 /* This is intentionally racy! We peek at the state here, then
4613 * validate inside the RPS worker.
4614 */
4615 if (!(dev_priv->mm.busy &&
4616 dev_priv->rps.enabled &&
4617 dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4618 return;
4619
4620 /* Force a RPS boost (and don't count it against the client) if
4621 * the GPU is severely congested.
4622 */
4623 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4624 rps = NULL;
4625
4626 spin_lock(&dev_priv->rps.client_lock);
4627 if (rps == NULL || list_empty(&rps->link)) {
4628 spin_lock_irq(&dev_priv->irq_lock);
4629 if (dev_priv->rps.interrupts_enabled) {
4630 dev_priv->rps.client_boost = true;
4631 queue_work(dev_priv->wq, &dev_priv->rps.work);
4632 }
4633 spin_unlock_irq(&dev_priv->irq_lock);
4634
4635 if (rps != NULL) {
4636 list_add(&rps->link, &dev_priv->rps.clients);
4637 rps->boosts++;
4638 } else
4639 dev_priv->rps.boosts++;
4640 }
4641 spin_unlock(&dev_priv->rps.client_lock);
4642}
4643
4644void intel_set_rps(struct drm_device *dev, u8 val)
4645{
4646 if (IS_VALLEYVIEW(dev))
4647 valleyview_set_rps(dev, val);
4648 else
4649 gen6_set_rps(dev, val);
4650}
4651
4652static void gen9_disable_rps(struct drm_device *dev)
4653{
4654 struct drm_i915_private *dev_priv = dev->dev_private;
4655
4656 I915_WRITE(GEN6_RC_CONTROL, 0);
4657 I915_WRITE(GEN9_PG_ENABLE, 0);
4658}
4659
4660static void gen6_disable_rps(struct drm_device *dev)
4661{
4662 struct drm_i915_private *dev_priv = dev->dev_private;
4663
4664 I915_WRITE(GEN6_RC_CONTROL, 0);
4665 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4666}
4667
4668static void cherryview_disable_rps(struct drm_device *dev)
4669{
4670 struct drm_i915_private *dev_priv = dev->dev_private;
4671
4672 I915_WRITE(GEN6_RC_CONTROL, 0);
4673}
4674
4675static void valleyview_disable_rps(struct drm_device *dev)
4676{
4677 struct drm_i915_private *dev_priv = dev->dev_private;
4678
4679 /* we're doing forcewake before Disabling RC6,
4680 * This what the BIOS expects when going into suspend */
4681 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4682
4683 I915_WRITE(GEN6_RC_CONTROL, 0);
4684
4685 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4686}
4687
4688static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4689{
4690 if (IS_VALLEYVIEW(dev)) {
4691 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4692 mode = GEN6_RC_CTL_RC6_ENABLE;
4693 else
4694 mode = 0;
4695 }
4696 if (HAS_RC6p(dev))
4697 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4698 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4699 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4700 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4701
4702 else
4703 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4704 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4705}
4706
4707static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4708{
4709 /* No RC6 before Ironlake and code is gone for ilk. */
4710 if (INTEL_INFO(dev)->gen < 6)
4711 return 0;
4712
4713 /* Respect the kernel parameter if it is set */
4714 if (enable_rc6 >= 0) {
4715 int mask;
4716
4717 if (HAS_RC6p(dev))
4718 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4719 INTEL_RC6pp_ENABLE;
4720 else
4721 mask = INTEL_RC6_ENABLE;
4722
4723 if ((enable_rc6 & mask) != enable_rc6)
4724 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4725 enable_rc6 & mask, enable_rc6, mask);
4726
4727 return enable_rc6 & mask;
4728 }
4729
4730 if (IS_IVYBRIDGE(dev))
4731 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4732
4733 return INTEL_RC6_ENABLE;
4734}
4735
4736int intel_enable_rc6(const struct drm_device *dev)
4737{
4738 return i915.enable_rc6;
4739}
4740
4741static void gen6_init_rps_frequencies(struct drm_device *dev)
4742{
4743 struct drm_i915_private *dev_priv = dev->dev_private;
4744 uint32_t rp_state_cap;
4745 u32 ddcc_status = 0;
4746 int ret;
4747
4748 /* All of these values are in units of 50MHz */
4749 dev_priv->rps.cur_freq = 0;
4750 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4751 if (IS_BROXTON(dev)) {
4752 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4753 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4754 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4755 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
4756 } else {
4757 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4758 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
4759 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4760 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4761 }
4762
4763 /* hw_max = RP0 until we check for overclocking */
4764 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4765
4766 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4767 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4768 ret = sandybridge_pcode_read(dev_priv,
4769 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4770 &ddcc_status);
4771 if (0 == ret)
4772 dev_priv->rps.efficient_freq =
4773 clamp_t(u8,
4774 ((ddcc_status >> 8) & 0xff),
4775 dev_priv->rps.min_freq,
4776 dev_priv->rps.max_freq);
4777 }
4778
4779 if (IS_SKYLAKE(dev)) {
4780 /* Store the frequency values in 16.66 MHZ units, which is
4781 the natural hardware unit for SKL */
4782 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4783 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4784 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4785 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4786 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4787 }
4788
4789 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4790
4791 /* Preserve min/max settings in case of re-init */
4792 if (dev_priv->rps.max_freq_softlimit == 0)
4793 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4794
4795 if (dev_priv->rps.min_freq_softlimit == 0) {
4796 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4797 dev_priv->rps.min_freq_softlimit =
4798 max_t(int, dev_priv->rps.efficient_freq,
4799 intel_freq_opcode(dev_priv, 450));
4800 else
4801 dev_priv->rps.min_freq_softlimit =
4802 dev_priv->rps.min_freq;
4803 }
4804}
4805
4806/* See the Gen9_GT_PM_Programming_Guide doc for the below */
4807static void gen9_enable_rps(struct drm_device *dev)
4808{
4809 struct drm_i915_private *dev_priv = dev->dev_private;
4810
4811 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4812
4813 gen6_init_rps_frequencies(dev);
4814
4815 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4816 if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
4817 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4818 return;
4819 }
4820
4821 /* Program defaults and thresholds for RPS*/
4822 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4823 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4824
4825 /* 1 second timeout*/
4826 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4827 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4828
4829 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4830
4831 /* Leaning on the below call to gen6_set_rps to program/setup the
4832 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4833 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4834 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4835 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4836
4837 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4838}
4839
4840static void gen9_enable_rc6(struct drm_device *dev)
4841{
4842 struct drm_i915_private *dev_priv = dev->dev_private;
4843 struct intel_engine_cs *ring;
4844 uint32_t rc6_mask = 0;
4845 int unused;
4846
4847 /* 1a: Software RC state - RC0 */
4848 I915_WRITE(GEN6_RC_STATE, 0);
4849
4850 /* 1b: Get forcewake during program sequence. Although the driver
4851 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4852 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4853
4854 /* 2a: Disable RC states. */
4855 I915_WRITE(GEN6_RC_CONTROL, 0);
4856
4857 /* 2b: Program RC6 thresholds.*/
4858
4859 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4860 if (IS_SKYLAKE(dev) && !((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) &&
4861 (INTEL_REVID(dev) <= SKL_REVID_E0)))
4862 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4863 else
4864 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4865 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4866 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4867 for_each_ring(ring, dev_priv, unused)
4868 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4869
4870 if (HAS_GUC_UCODE(dev))
4871 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4872
4873 I915_WRITE(GEN6_RC_SLEEP, 0);
4874 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4875
4876 /* 2c: Program Coarse Power Gating Policies. */
4877 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4878 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4879
4880 /* 3a: Enable RC6 */
4881 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4882 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4883 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4884 "on" : "off");
4885
4886 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4887 (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0))
4888 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4889 GEN7_RC_CTL_TO_MODE |
4890 rc6_mask);
4891 else
4892 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4893 GEN6_RC_CTL_EI_MODE(1) |
4894 rc6_mask);
4895
4896 /*
4897 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4898 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4899 */
4900 if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4901 ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_E0)))
4902 I915_WRITE(GEN9_PG_ENABLE, 0);
4903 else
4904 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4905 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4906
4907 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4908
4909}
4910
4911static void gen8_enable_rps(struct drm_device *dev)
4912{
4913 struct drm_i915_private *dev_priv = dev->dev_private;
4914 struct intel_engine_cs *ring;
4915 uint32_t rc6_mask = 0;
4916 int unused;
4917
4918 /* 1a: Software RC state - RC0 */
4919 I915_WRITE(GEN6_RC_STATE, 0);
4920
4921 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4922 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4923 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4924
4925 /* 2a: Disable RC states. */
4926 I915_WRITE(GEN6_RC_CONTROL, 0);
4927
4928 /* Initialize rps frequencies */
4929 gen6_init_rps_frequencies(dev);
4930
4931 /* 2b: Program RC6 thresholds.*/
4932 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4933 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4934 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4935 for_each_ring(ring, dev_priv, unused)
4936 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4937 I915_WRITE(GEN6_RC_SLEEP, 0);
4938 if (IS_BROADWELL(dev))
4939 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4940 else
4941 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4942
4943 /* 3: Enable RC6 */
4944 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4945 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4946 intel_print_rc6_info(dev, rc6_mask);
4947 if (IS_BROADWELL(dev))
4948 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4949 GEN7_RC_CTL_TO_MODE |
4950 rc6_mask);
4951 else
4952 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4953 GEN6_RC_CTL_EI_MODE(1) |
4954 rc6_mask);
4955
4956 /* 4 Program defaults and thresholds for RPS*/
4957 I915_WRITE(GEN6_RPNSWREQ,
4958 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4959 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4960 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4961 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4962 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4963
4964 /* Docs recommend 900MHz, and 300 MHz respectively */
4965 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4966 dev_priv->rps.max_freq_softlimit << 24 |
4967 dev_priv->rps.min_freq_softlimit << 16);
4968
4969 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4970 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4971 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4972 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4973
4974 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4975
4976 /* 5: Enable RPS */
4977 I915_WRITE(GEN6_RP_CONTROL,
4978 GEN6_RP_MEDIA_TURBO |
4979 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4980 GEN6_RP_MEDIA_IS_GFX |
4981 GEN6_RP_ENABLE |
4982 GEN6_RP_UP_BUSY_AVG |
4983 GEN6_RP_DOWN_IDLE_AVG);
4984
4985 /* 6: Ring frequency + overclocking (our driver does this later */
4986
4987 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4988 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4989
4990 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4991}
4992
4993static void gen6_enable_rps(struct drm_device *dev)
4994{
4995 struct drm_i915_private *dev_priv = dev->dev_private;
4996 struct intel_engine_cs *ring;
4997 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4998 u32 gtfifodbg;
4999 int rc6_mode;
5000 int i, ret;
5001
5002 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5003
5004 /* Here begins a magic sequence of register writes to enable
5005 * auto-downclocking.
5006 *
5007 * Perhaps there might be some value in exposing these to
5008 * userspace...
5009 */
5010 I915_WRITE(GEN6_RC_STATE, 0);
5011
5012 /* Clear the DBG now so we don't confuse earlier errors */
5013 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5014 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5015 I915_WRITE(GTFIFODBG, gtfifodbg);
5016 }
5017
5018 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5019
5020 /* Initialize rps frequencies */
5021 gen6_init_rps_frequencies(dev);
5022
5023 /* disable the counters and set deterministic thresholds */
5024 I915_WRITE(GEN6_RC_CONTROL, 0);
5025
5026 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5027 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5028 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5029 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5030 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5031
5032 for_each_ring(ring, dev_priv, i)
5033 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5034
5035 I915_WRITE(GEN6_RC_SLEEP, 0);
5036 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5037 if (IS_IVYBRIDGE(dev))
5038 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5039 else
5040 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5041 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5042 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5043
5044 /* Check if we are enabling RC6 */
5045 rc6_mode = intel_enable_rc6(dev_priv->dev);
5046 if (rc6_mode & INTEL_RC6_ENABLE)
5047 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5048
5049 /* We don't use those on Haswell */
5050 if (!IS_HASWELL(dev)) {
5051 if (rc6_mode & INTEL_RC6p_ENABLE)
5052 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5053
5054 if (rc6_mode & INTEL_RC6pp_ENABLE)
5055 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5056 }
5057
5058 intel_print_rc6_info(dev, rc6_mask);
5059
5060 I915_WRITE(GEN6_RC_CONTROL,
5061 rc6_mask |
5062 GEN6_RC_CTL_EI_MODE(1) |
5063 GEN6_RC_CTL_HW_ENABLE);
5064
5065 /* Power down if completely idle for over 50ms */
5066 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5067 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5068
5069 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5070 if (ret)
5071 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5072
5073 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5074 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5075 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5076 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5077 (pcu_mbox & 0xff) * 50);
5078 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5079 }
5080
5081 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5082 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5083
5084 rc6vids = 0;
5085 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5086 if (IS_GEN6(dev) && ret) {
5087 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5088 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5089 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5090 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5091 rc6vids &= 0xffff00;
5092 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5093 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5094 if (ret)
5095 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5096 }
5097
5098 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5099}
5100
5101static void __gen6_update_ring_freq(struct drm_device *dev)
5102{
5103 struct drm_i915_private *dev_priv = dev->dev_private;
5104 int min_freq = 15;
5105 unsigned int gpu_freq;
5106 unsigned int max_ia_freq, min_ring_freq;
5107 unsigned int max_gpu_freq, min_gpu_freq;
5108 int scaling_factor = 180;
5109 struct cpufreq_policy *policy;
5110
5111 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5112
5113 policy = cpufreq_cpu_get(0);
5114 if (policy) {
5115 max_ia_freq = policy->cpuinfo.max_freq;
5116 cpufreq_cpu_put(policy);
5117 } else {
5118 /*
5119 * Default to measured freq if none found, PCU will ensure we
5120 * don't go over
5121 */
5122 max_ia_freq = tsc_khz;
5123 }
5124
5125 /* Convert from kHz to MHz */
5126 max_ia_freq /= 1000;
5127
5128 min_ring_freq = I915_READ(DCLK) & 0xf;
5129 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5130 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5131
5132 if (IS_SKYLAKE(dev)) {
5133 /* Convert GT frequency to 50 HZ units */
5134 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5135 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5136 } else {
5137 min_gpu_freq = dev_priv->rps.min_freq;
5138 max_gpu_freq = dev_priv->rps.max_freq;
5139 }
5140
5141 /*
5142 * For each potential GPU frequency, load a ring frequency we'd like
5143 * to use for memory access. We do this by specifying the IA frequency
5144 * the PCU should use as a reference to determine the ring frequency.
5145 */
5146 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5147 int diff = max_gpu_freq - gpu_freq;
5148 unsigned int ia_freq = 0, ring_freq = 0;
5149
5150 if (IS_SKYLAKE(dev)) {
5151 /*
5152 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5153 * No floor required for ring frequency on SKL.
5154 */
5155 ring_freq = gpu_freq;
5156 } else if (INTEL_INFO(dev)->gen >= 8) {
5157 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5158 ring_freq = max(min_ring_freq, gpu_freq);
5159 } else if (IS_HASWELL(dev)) {
5160 ring_freq = mult_frac(gpu_freq, 5, 4);
5161 ring_freq = max(min_ring_freq, ring_freq);
5162 /* leave ia_freq as the default, chosen by cpufreq */
5163 } else {
5164 /* On older processors, there is no separate ring
5165 * clock domain, so in order to boost the bandwidth
5166 * of the ring, we need to upclock the CPU (ia_freq).
5167 *
5168 * For GPU frequencies less than 750MHz,
5169 * just use the lowest ring freq.
5170 */
5171 if (gpu_freq < min_freq)
5172 ia_freq = 800;
5173 else
5174 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5175 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5176 }
5177
5178 sandybridge_pcode_write(dev_priv,
5179 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5180 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5181 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5182 gpu_freq);
5183 }
5184}
5185
5186void gen6_update_ring_freq(struct drm_device *dev)
5187{
5188 struct drm_i915_private *dev_priv = dev->dev_private;
5189
5190 if (!HAS_CORE_RING_FREQ(dev))
5191 return;
5192
5193 mutex_lock(&dev_priv->rps.hw_lock);
5194 __gen6_update_ring_freq(dev);
5195 mutex_unlock(&dev_priv->rps.hw_lock);
5196}
5197
5198static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5199{
5200 struct drm_device *dev = dev_priv->dev;
5201 u32 val, rp0;
5202
5203 if (dev->pdev->revision >= 0x20) {
5204 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5205
5206 switch (INTEL_INFO(dev)->eu_total) {
5207 case 8:
5208 /* (2 * 4) config */
5209 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5210 break;
5211 case 12:
5212 /* (2 * 6) config */
5213 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5214 break;
5215 case 16:
5216 /* (2 * 8) config */
5217 default:
5218 /* Setting (2 * 8) Min RP0 for any other combination */
5219 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5220 break;
5221 }
5222 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5223 } else {
5224 /* For pre-production hardware */
5225 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
5226 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
5227 PUNIT_GPU_STATUS_MAX_FREQ_MASK;
5228 }
5229 return rp0;
5230}
5231
5232static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5233{
5234 u32 val, rpe;
5235
5236 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5237 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5238
5239 return rpe;
5240}
5241
5242static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5243{
5244 struct drm_device *dev = dev_priv->dev;
5245 u32 val, rp1;
5246
5247 if (dev->pdev->revision >= 0x20) {
5248 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5249 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5250 } else {
5251 /* For pre-production hardware */
5252 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5253 rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
5254 PUNIT_GPU_STATUS_MAX_FREQ_MASK);
5255 }
5256 return rp1;
5257}
5258
5259static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5260{
5261 u32 val, rp1;
5262
5263 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5264
5265 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5266
5267 return rp1;
5268}
5269
5270static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5271{
5272 u32 val, rp0;
5273
5274 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5275
5276 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5277 /* Clamp to max */
5278 rp0 = min_t(u32, rp0, 0xea);
5279
5280 return rp0;
5281}
5282
5283static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5284{
5285 u32 val, rpe;
5286
5287 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5288 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5289 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5290 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5291
5292 return rpe;
5293}
5294
5295static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5296{
5297 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5298}
5299
5300/* Check that the pctx buffer wasn't move under us. */
5301static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5302{
5303 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5304
5305 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5306 dev_priv->vlv_pctx->stolen->start);
5307}
5308
5309
5310/* Check that the pcbr address is not empty. */
5311static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5312{
5313 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5314
5315 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5316}
5317
5318static void cherryview_setup_pctx(struct drm_device *dev)
5319{
5320 struct drm_i915_private *dev_priv = dev->dev_private;
5321 unsigned long pctx_paddr, paddr;
5322 struct i915_gtt *gtt = &dev_priv->gtt;
5323 u32 pcbr;
5324 int pctx_size = 32*1024;
5325
5326 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5327
5328 pcbr = I915_READ(VLV_PCBR);
5329 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5330 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5331 paddr = (dev_priv->mm.stolen_base +
5332 (gtt->stolen_size - pctx_size));
5333
5334 pctx_paddr = (paddr & (~4095));
5335 I915_WRITE(VLV_PCBR, pctx_paddr);
5336 }
5337
5338 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5339}
5340
5341static void valleyview_setup_pctx(struct drm_device *dev)
5342{
5343 struct drm_i915_private *dev_priv = dev->dev_private;
5344 struct drm_i915_gem_object *pctx;
5345 unsigned long pctx_paddr;
5346 u32 pcbr;
5347 int pctx_size = 24*1024;
5348
5349 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5350
5351 pcbr = I915_READ(VLV_PCBR);
5352 if (pcbr) {
5353 /* BIOS set it up already, grab the pre-alloc'd space */
5354 int pcbr_offset;
5355
5356 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5357 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5358 pcbr_offset,
5359 I915_GTT_OFFSET_NONE,
5360 pctx_size);
5361 goto out;
5362 }
5363
5364 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5365
5366 /*
5367 * From the Gunit register HAS:
5368 * The Gfx driver is expected to program this register and ensure
5369 * proper allocation within Gfx stolen memory. For example, this
5370 * register should be programmed such than the PCBR range does not
5371 * overlap with other ranges, such as the frame buffer, protected
5372 * memory, or any other relevant ranges.
5373 */
5374 pctx = i915_gem_object_create_stolen(dev, pctx_size);
5375 if (!pctx) {
5376 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5377 return;
5378 }
5379
5380 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5381 I915_WRITE(VLV_PCBR, pctx_paddr);
5382
5383out:
5384 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5385 dev_priv->vlv_pctx = pctx;
5386}
5387
5388static void valleyview_cleanup_pctx(struct drm_device *dev)
5389{
5390 struct drm_i915_private *dev_priv = dev->dev_private;
5391
5392 if (WARN_ON(!dev_priv->vlv_pctx))
5393 return;
5394
5395 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5396 dev_priv->vlv_pctx = NULL;
5397}
5398
5399static void valleyview_init_gt_powersave(struct drm_device *dev)
5400{
5401 struct drm_i915_private *dev_priv = dev->dev_private;
5402 u32 val;
5403
5404 valleyview_setup_pctx(dev);
5405
5406 mutex_lock(&dev_priv->rps.hw_lock);
5407
5408 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5409 switch ((val >> 6) & 3) {
5410 case 0:
5411 case 1:
5412 dev_priv->mem_freq = 800;
5413 break;
5414 case 2:
5415 dev_priv->mem_freq = 1066;
5416 break;
5417 case 3:
5418 dev_priv->mem_freq = 1333;
5419 break;
5420 }
5421 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5422
5423 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5424 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5425 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5426 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5427 dev_priv->rps.max_freq);
5428
5429 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5430 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5431 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5432 dev_priv->rps.efficient_freq);
5433
5434 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5435 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5436 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5437 dev_priv->rps.rp1_freq);
5438
5439 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5440 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5441 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5442 dev_priv->rps.min_freq);
5443
5444 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5445
5446 /* Preserve min/max settings in case of re-init */
5447 if (dev_priv->rps.max_freq_softlimit == 0)
5448 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5449
5450 if (dev_priv->rps.min_freq_softlimit == 0)
5451 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5452
5453 mutex_unlock(&dev_priv->rps.hw_lock);
5454}
5455
5456static void cherryview_init_gt_powersave(struct drm_device *dev)
5457{
5458 struct drm_i915_private *dev_priv = dev->dev_private;
5459 u32 val;
5460
5461 cherryview_setup_pctx(dev);
5462
5463 mutex_lock(&dev_priv->rps.hw_lock);
5464
5465 mutex_lock(&dev_priv->sb_lock);
5466 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5467 mutex_unlock(&dev_priv->sb_lock);
5468
5469 switch ((val >> 2) & 0x7) {
5470 case 3:
5471 dev_priv->mem_freq = 2000;
5472 break;
5473 default:
5474 dev_priv->mem_freq = 1600;
5475 break;
5476 }
5477 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5478
5479 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5480 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5481 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5482 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5483 dev_priv->rps.max_freq);
5484
5485 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5486 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5487 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5488 dev_priv->rps.efficient_freq);
5489
5490 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5491 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5492 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5493 dev_priv->rps.rp1_freq);
5494
5495 /* PUnit validated range is only [RPe, RP0] */
5496 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5497 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5498 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5499 dev_priv->rps.min_freq);
5500
5501 WARN_ONCE((dev_priv->rps.max_freq |
5502 dev_priv->rps.efficient_freq |
5503 dev_priv->rps.rp1_freq |
5504 dev_priv->rps.min_freq) & 1,
5505 "Odd GPU freq values\n");
5506
5507 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5508
5509 /* Preserve min/max settings in case of re-init */
5510 if (dev_priv->rps.max_freq_softlimit == 0)
5511 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5512
5513 if (dev_priv->rps.min_freq_softlimit == 0)
5514 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5515
5516 mutex_unlock(&dev_priv->rps.hw_lock);
5517}
5518
5519static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5520{
5521 valleyview_cleanup_pctx(dev);
5522}
5523
5524static void cherryview_enable_rps(struct drm_device *dev)
5525{
5526 struct drm_i915_private *dev_priv = dev->dev_private;
5527 struct intel_engine_cs *ring;
5528 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5529 int i;
5530
5531 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5532
5533 gtfifodbg = I915_READ(GTFIFODBG);
5534 if (gtfifodbg) {
5535 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5536 gtfifodbg);
5537 I915_WRITE(GTFIFODBG, gtfifodbg);
5538 }
5539
5540 cherryview_check_pctx(dev_priv);
5541
5542 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5543 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5544 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5545
5546 /* Disable RC states. */
5547 I915_WRITE(GEN6_RC_CONTROL, 0);
5548
5549 /* 2a: Program RC6 thresholds.*/
5550 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5551 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5552 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5553
5554 for_each_ring(ring, dev_priv, i)
5555 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5556 I915_WRITE(GEN6_RC_SLEEP, 0);
5557
5558 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5559 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5560
5561 /* allows RC6 residency counter to work */
5562 I915_WRITE(VLV_COUNTER_CONTROL,
5563 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5564 VLV_MEDIA_RC6_COUNT_EN |
5565 VLV_RENDER_RC6_COUNT_EN));
5566
5567 /* For now we assume BIOS is allocating and populating the PCBR */
5568 pcbr = I915_READ(VLV_PCBR);
5569
5570 /* 3: Enable RC6 */
5571 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5572 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5573 rc6_mode = GEN7_RC_CTL_TO_MODE;
5574
5575 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5576
5577 /* 4 Program defaults and thresholds for RPS*/
5578 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5579 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5580 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5581 I915_WRITE(GEN6_RP_UP_EI, 66000);
5582 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5583
5584 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5585
5586 /* 5: Enable RPS */
5587 I915_WRITE(GEN6_RP_CONTROL,
5588 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5589 GEN6_RP_MEDIA_IS_GFX |
5590 GEN6_RP_ENABLE |
5591 GEN6_RP_UP_BUSY_AVG |
5592 GEN6_RP_DOWN_IDLE_AVG);
5593
5594 /* Setting Fixed Bias */
5595 val = VLV_OVERRIDE_EN |
5596 VLV_SOC_TDP_EN |
5597 CHV_BIAS_CPU_50_SOC_50;
5598 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5599
5600 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5601
5602 /* RPS code assumes GPLL is used */
5603 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5604
5605 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5606 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5607
5608 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5609 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5610 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5611 dev_priv->rps.cur_freq);
5612
5613 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5614 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5615 dev_priv->rps.efficient_freq);
5616
5617 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5618
5619 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5620}
5621
5622static void valleyview_enable_rps(struct drm_device *dev)
5623{
5624 struct drm_i915_private *dev_priv = dev->dev_private;
5625 struct intel_engine_cs *ring;
5626 u32 gtfifodbg, val, rc6_mode = 0;
5627 int i;
5628
5629 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5630
5631 valleyview_check_pctx(dev_priv);
5632
5633 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5634 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5635 gtfifodbg);
5636 I915_WRITE(GTFIFODBG, gtfifodbg);
5637 }
5638
5639 /* If VLV, Forcewake all wells, else re-direct to regular path */
5640 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5641
5642 /* Disable RC states. */
5643 I915_WRITE(GEN6_RC_CONTROL, 0);
5644
5645 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5646 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5647 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5648 I915_WRITE(GEN6_RP_UP_EI, 66000);
5649 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5650
5651 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5652
5653 I915_WRITE(GEN6_RP_CONTROL,
5654 GEN6_RP_MEDIA_TURBO |
5655 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5656 GEN6_RP_MEDIA_IS_GFX |
5657 GEN6_RP_ENABLE |
5658 GEN6_RP_UP_BUSY_AVG |
5659 GEN6_RP_DOWN_IDLE_CONT);
5660
5661 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5662 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5663 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5664
5665 for_each_ring(ring, dev_priv, i)
5666 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5667
5668 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5669
5670 /* allows RC6 residency counter to work */
5671 I915_WRITE(VLV_COUNTER_CONTROL,
5672 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5673 VLV_RENDER_RC0_COUNT_EN |
5674 VLV_MEDIA_RC6_COUNT_EN |
5675 VLV_RENDER_RC6_COUNT_EN));
5676
5677 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5678 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5679
5680 intel_print_rc6_info(dev, rc6_mode);
5681
5682 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5683
5684 /* Setting Fixed Bias */
5685 val = VLV_OVERRIDE_EN |
5686 VLV_SOC_TDP_EN |
5687 VLV_BIAS_CPU_125_SOC_875;
5688 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5689
5690 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5691
5692 /* RPS code assumes GPLL is used */
5693 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5694
5695 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5696 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5697
5698 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5699 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5700 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5701 dev_priv->rps.cur_freq);
5702
5703 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5704 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5705 dev_priv->rps.efficient_freq);
5706
5707 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5708
5709 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5710}
5711
5712static unsigned long intel_pxfreq(u32 vidfreq)
5713{
5714 unsigned long freq;
5715 int div = (vidfreq & 0x3f0000) >> 16;
5716 int post = (vidfreq & 0x3000) >> 12;
5717 int pre = (vidfreq & 0x7);
5718
5719 if (!pre)
5720 return 0;
5721
5722 freq = ((div * 133333) / ((1<<post) * pre));
5723
5724 return freq;
5725}
5726
5727static const struct cparams {
5728 u16 i;
5729 u16 t;
5730 u16 m;
5731 u16 c;
5732} cparams[] = {
5733 { 1, 1333, 301, 28664 },
5734 { 1, 1066, 294, 24460 },
5735 { 1, 800, 294, 25192 },
5736 { 0, 1333, 276, 27605 },
5737 { 0, 1066, 276, 27605 },
5738 { 0, 800, 231, 23784 },
5739};
5740
5741static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5742{
5743 u64 total_count, diff, ret;
5744 u32 count1, count2, count3, m = 0, c = 0;
5745 unsigned long now = jiffies_to_msecs(jiffies), diff1;
5746 int i;
5747
5748 assert_spin_locked(&mchdev_lock);
5749
5750 diff1 = now - dev_priv->ips.last_time1;
5751
5752 /* Prevent division-by-zero if we are asking too fast.
5753 * Also, we don't get interesting results if we are polling
5754 * faster than once in 10ms, so just return the saved value
5755 * in such cases.
5756 */
5757 if (diff1 <= 10)
5758 return dev_priv->ips.chipset_power;
5759
5760 count1 = I915_READ(DMIEC);
5761 count2 = I915_READ(DDREC);
5762 count3 = I915_READ(CSIEC);
5763
5764 total_count = count1 + count2 + count3;
5765
5766 /* FIXME: handle per-counter overflow */
5767 if (total_count < dev_priv->ips.last_count1) {
5768 diff = ~0UL - dev_priv->ips.last_count1;
5769 diff += total_count;
5770 } else {
5771 diff = total_count - dev_priv->ips.last_count1;
5772 }
5773
5774 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5775 if (cparams[i].i == dev_priv->ips.c_m &&
5776 cparams[i].t == dev_priv->ips.r_t) {
5777 m = cparams[i].m;
5778 c = cparams[i].c;
5779 break;
5780 }
5781 }
5782
5783 diff = div_u64(diff, diff1);
5784 ret = ((m * diff) + c);
5785 ret = div_u64(ret, 10);
5786
5787 dev_priv->ips.last_count1 = total_count;
5788 dev_priv->ips.last_time1 = now;
5789
5790 dev_priv->ips.chipset_power = ret;
5791
5792 return ret;
5793}
5794
5795unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5796{
5797 struct drm_device *dev = dev_priv->dev;
5798 unsigned long val;
5799
5800 if (INTEL_INFO(dev)->gen != 5)
5801 return 0;
5802
5803 spin_lock_irq(&mchdev_lock);
5804
5805 val = __i915_chipset_val(dev_priv);
5806
5807 spin_unlock_irq(&mchdev_lock);
5808
5809 return val;
5810}
5811
5812unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5813{
5814 unsigned long m, x, b;
5815 u32 tsfs;
5816
5817 tsfs = I915_READ(TSFS);
5818
5819 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5820 x = I915_READ8(TR1);
5821
5822 b = tsfs & TSFS_INTR_MASK;
5823
5824 return ((m * x) / 127) - b;
5825}
5826
5827static int _pxvid_to_vd(u8 pxvid)
5828{
5829 if (pxvid == 0)
5830 return 0;
5831
5832 if (pxvid >= 8 && pxvid < 31)
5833 pxvid = 31;
5834
5835 return (pxvid + 2) * 125;
5836}
5837
5838static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5839{
5840 struct drm_device *dev = dev_priv->dev;
5841 const int vd = _pxvid_to_vd(pxvid);
5842 const int vm = vd - 1125;
5843
5844 if (INTEL_INFO(dev)->is_mobile)
5845 return vm > 0 ? vm : 0;
5846
5847 return vd;
5848}
5849
5850static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5851{
5852 u64 now, diff, diffms;
5853 u32 count;
5854
5855 assert_spin_locked(&mchdev_lock);
5856
5857 now = ktime_get_raw_ns();
5858 diffms = now - dev_priv->ips.last_time2;
5859 do_div(diffms, NSEC_PER_MSEC);
5860
5861 /* Don't divide by 0 */
5862 if (!diffms)
5863 return;
5864
5865 count = I915_READ(GFXEC);
5866
5867 if (count < dev_priv->ips.last_count2) {
5868 diff = ~0UL - dev_priv->ips.last_count2;
5869 diff += count;
5870 } else {
5871 diff = count - dev_priv->ips.last_count2;
5872 }
5873
5874 dev_priv->ips.last_count2 = count;
5875 dev_priv->ips.last_time2 = now;
5876
5877 /* More magic constants... */
5878 diff = diff * 1181;
5879 diff = div_u64(diff, diffms * 10);
5880 dev_priv->ips.gfx_power = diff;
5881}
5882
5883void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5884{
5885 struct drm_device *dev = dev_priv->dev;
5886
5887 if (INTEL_INFO(dev)->gen != 5)
5888 return;
5889
5890 spin_lock_irq(&mchdev_lock);
5891
5892 __i915_update_gfx_val(dev_priv);
5893
5894 spin_unlock_irq(&mchdev_lock);
5895}
5896
5897static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5898{
5899 unsigned long t, corr, state1, corr2, state2;
5900 u32 pxvid, ext_v;
5901
5902 assert_spin_locked(&mchdev_lock);
5903
5904 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5905 pxvid = (pxvid >> 24) & 0x7f;
5906 ext_v = pvid_to_extvid(dev_priv, pxvid);
5907
5908 state1 = ext_v;
5909
5910 t = i915_mch_val(dev_priv);
5911
5912 /* Revel in the empirically derived constants */
5913
5914 /* Correction factor in 1/100000 units */
5915 if (t > 80)
5916 corr = ((t * 2349) + 135940);
5917 else if (t >= 50)
5918 corr = ((t * 964) + 29317);
5919 else /* < 50 */
5920 corr = ((t * 301) + 1004);
5921
5922 corr = corr * ((150142 * state1) / 10000 - 78642);
5923 corr /= 100000;
5924 corr2 = (corr * dev_priv->ips.corr);
5925
5926 state2 = (corr2 * state1) / 10000;
5927 state2 /= 100; /* convert to mW */
5928
5929 __i915_update_gfx_val(dev_priv);
5930
5931 return dev_priv->ips.gfx_power + state2;
5932}
5933
5934unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5935{
5936 struct drm_device *dev = dev_priv->dev;
5937 unsigned long val;
5938
5939 if (INTEL_INFO(dev)->gen != 5)
5940 return 0;
5941
5942 spin_lock_irq(&mchdev_lock);
5943
5944 val = __i915_gfx_val(dev_priv);
5945
5946 spin_unlock_irq(&mchdev_lock);
5947
5948 return val;
5949}
5950
5951/**
5952 * i915_read_mch_val - return value for IPS use
5953 *
5954 * Calculate and return a value for the IPS driver to use when deciding whether
5955 * we have thermal and power headroom to increase CPU or GPU power budget.
5956 */
5957unsigned long i915_read_mch_val(void)
5958{
5959 struct drm_i915_private *dev_priv;
5960 unsigned long chipset_val, graphics_val, ret = 0;
5961
5962 spin_lock_irq(&mchdev_lock);
5963 if (!i915_mch_dev)
5964 goto out_unlock;
5965 dev_priv = i915_mch_dev;
5966
5967 chipset_val = __i915_chipset_val(dev_priv);
5968 graphics_val = __i915_gfx_val(dev_priv);
5969
5970 ret = chipset_val + graphics_val;
5971
5972out_unlock:
5973 spin_unlock_irq(&mchdev_lock);
5974
5975 return ret;
5976}
5977EXPORT_SYMBOL_GPL(i915_read_mch_val);
5978
5979/**
5980 * i915_gpu_raise - raise GPU frequency limit
5981 *
5982 * Raise the limit; IPS indicates we have thermal headroom.
5983 */
5984bool i915_gpu_raise(void)
5985{
5986 struct drm_i915_private *dev_priv;
5987 bool ret = true;
5988
5989 spin_lock_irq(&mchdev_lock);
5990 if (!i915_mch_dev) {
5991 ret = false;
5992 goto out_unlock;
5993 }
5994 dev_priv = i915_mch_dev;
5995
5996 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5997 dev_priv->ips.max_delay--;
5998
5999out_unlock:
6000 spin_unlock_irq(&mchdev_lock);
6001
6002 return ret;
6003}
6004EXPORT_SYMBOL_GPL(i915_gpu_raise);
6005
6006/**
6007 * i915_gpu_lower - lower GPU frequency limit
6008 *
6009 * IPS indicates we're close to a thermal limit, so throttle back the GPU
6010 * frequency maximum.
6011 */
6012bool i915_gpu_lower(void)
6013{
6014 struct drm_i915_private *dev_priv;
6015 bool ret = true;
6016
6017 spin_lock_irq(&mchdev_lock);
6018 if (!i915_mch_dev) {
6019 ret = false;
6020 goto out_unlock;
6021 }
6022 dev_priv = i915_mch_dev;
6023
6024 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6025 dev_priv->ips.max_delay++;
6026
6027out_unlock:
6028 spin_unlock_irq(&mchdev_lock);
6029
6030 return ret;
6031}
6032EXPORT_SYMBOL_GPL(i915_gpu_lower);
6033
6034/**
6035 * i915_gpu_busy - indicate GPU business to IPS
6036 *
6037 * Tell the IPS driver whether or not the GPU is busy.
6038 */
6039bool i915_gpu_busy(void)
6040{
6041 struct drm_i915_private *dev_priv;
6042 struct intel_engine_cs *ring;
6043 bool ret = false;
6044 int i;
6045
6046 spin_lock_irq(&mchdev_lock);
6047 if (!i915_mch_dev)
6048 goto out_unlock;
6049 dev_priv = i915_mch_dev;
6050
6051 for_each_ring(ring, dev_priv, i)
6052 ret |= !list_empty(&ring->request_list);
6053
6054out_unlock:
6055 spin_unlock_irq(&mchdev_lock);
6056
6057 return ret;
6058}
6059EXPORT_SYMBOL_GPL(i915_gpu_busy);
6060
6061/**
6062 * i915_gpu_turbo_disable - disable graphics turbo
6063 *
6064 * Disable graphics turbo by resetting the max frequency and setting the
6065 * current frequency to the default.
6066 */
6067bool i915_gpu_turbo_disable(void)
6068{
6069 struct drm_i915_private *dev_priv;
6070 bool ret = true;
6071
6072 spin_lock_irq(&mchdev_lock);
6073 if (!i915_mch_dev) {
6074 ret = false;
6075 goto out_unlock;
6076 }
6077 dev_priv = i915_mch_dev;
6078
6079 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6080
6081 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6082 ret = false;
6083
6084out_unlock:
6085 spin_unlock_irq(&mchdev_lock);
6086
6087 return ret;
6088}
6089EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6090
6091/**
6092 * Tells the intel_ips driver that the i915 driver is now loaded, if
6093 * IPS got loaded first.
6094 *
6095 * This awkward dance is so that neither module has to depend on the
6096 * other in order for IPS to do the appropriate communication of
6097 * GPU turbo limits to i915.
6098 */
6099static void
6100ips_ping_for_i915_load(void)
6101{
6102 void (*link)(void);
6103
6104 link = symbol_get(ips_link_to_i915_driver);
6105 if (link) {
6106 link();
6107 symbol_put(ips_link_to_i915_driver);
6108 }
6109}
6110
6111void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6112{
6113 /* We only register the i915 ips part with intel-ips once everything is
6114 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6115 spin_lock_irq(&mchdev_lock);
6116 i915_mch_dev = dev_priv;
6117 spin_unlock_irq(&mchdev_lock);
6118
6119 ips_ping_for_i915_load();
6120}
6121
6122void intel_gpu_ips_teardown(void)
6123{
6124 spin_lock_irq(&mchdev_lock);
6125 i915_mch_dev = NULL;
6126 spin_unlock_irq(&mchdev_lock);
6127}
6128
6129static void intel_init_emon(struct drm_device *dev)
6130{
6131 struct drm_i915_private *dev_priv = dev->dev_private;
6132 u32 lcfuse;
6133 u8 pxw[16];
6134 int i;
6135
6136 /* Disable to program */
6137 I915_WRITE(ECR, 0);
6138 POSTING_READ(ECR);
6139
6140 /* Program energy weights for various events */
6141 I915_WRITE(SDEW, 0x15040d00);
6142 I915_WRITE(CSIEW0, 0x007f0000);
6143 I915_WRITE(CSIEW1, 0x1e220004);
6144 I915_WRITE(CSIEW2, 0x04000004);
6145
6146 for (i = 0; i < 5; i++)
6147 I915_WRITE(PEW(i), 0);
6148 for (i = 0; i < 3; i++)
6149 I915_WRITE(DEW(i), 0);
6150
6151 /* Program P-state weights to account for frequency power adjustment */
6152 for (i = 0; i < 16; i++) {
6153 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6154 unsigned long freq = intel_pxfreq(pxvidfreq);
6155 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6156 PXVFREQ_PX_SHIFT;
6157 unsigned long val;
6158
6159 val = vid * vid;
6160 val *= (freq / 1000);
6161 val *= 255;
6162 val /= (127*127*900);
6163 if (val > 0xff)
6164 DRM_ERROR("bad pxval: %ld\n", val);
6165 pxw[i] = val;
6166 }
6167 /* Render standby states get 0 weight */
6168 pxw[14] = 0;
6169 pxw[15] = 0;
6170
6171 for (i = 0; i < 4; i++) {
6172 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6173 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6174 I915_WRITE(PXW(i), val);
6175 }
6176
6177 /* Adjust magic regs to magic values (more experimental results) */
6178 I915_WRITE(OGW0, 0);
6179 I915_WRITE(OGW1, 0);
6180 I915_WRITE(EG0, 0x00007f00);
6181 I915_WRITE(EG1, 0x0000000e);
6182 I915_WRITE(EG2, 0x000e0000);
6183 I915_WRITE(EG3, 0x68000300);
6184 I915_WRITE(EG4, 0x42000000);
6185 I915_WRITE(EG5, 0x00140031);
6186 I915_WRITE(EG6, 0);
6187 I915_WRITE(EG7, 0);
6188
6189 for (i = 0; i < 8; i++)
6190 I915_WRITE(PXWL(i), 0);
6191
6192 /* Enable PMON + select events */
6193 I915_WRITE(ECR, 0x80000019);
6194
6195 lcfuse = I915_READ(LCFUSE02);
6196
6197 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6198}
6199
6200void intel_init_gt_powersave(struct drm_device *dev)
6201{
6202 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6203
6204 if (IS_CHERRYVIEW(dev))
6205 cherryview_init_gt_powersave(dev);
6206 else if (IS_VALLEYVIEW(dev))
6207 valleyview_init_gt_powersave(dev);
6208}
6209
6210void intel_cleanup_gt_powersave(struct drm_device *dev)
6211{
6212 if (IS_CHERRYVIEW(dev))
6213 return;
6214 else if (IS_VALLEYVIEW(dev))
6215 valleyview_cleanup_gt_powersave(dev);
6216}
6217
6218static void gen6_suspend_rps(struct drm_device *dev)
6219{
6220 struct drm_i915_private *dev_priv = dev->dev_private;
6221
6222 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6223
6224 gen6_disable_rps_interrupts(dev);
6225}
6226
6227/**
6228 * intel_suspend_gt_powersave - suspend PM work and helper threads
6229 * @dev: drm device
6230 *
6231 * We don't want to disable RC6 or other features here, we just want
6232 * to make sure any work we've queued has finished and won't bother
6233 * us while we're suspended.
6234 */
6235void intel_suspend_gt_powersave(struct drm_device *dev)
6236{
6237 struct drm_i915_private *dev_priv = dev->dev_private;
6238
6239 if (INTEL_INFO(dev)->gen < 6)
6240 return;
6241
6242 gen6_suspend_rps(dev);
6243
6244 /* Force GPU to min freq during suspend */
6245 gen6_rps_idle(dev_priv);
6246}
6247
6248void intel_disable_gt_powersave(struct drm_device *dev)
6249{
6250 struct drm_i915_private *dev_priv = dev->dev_private;
6251
6252 if (IS_IRONLAKE_M(dev)) {
6253 ironlake_disable_drps(dev);
6254 } else if (INTEL_INFO(dev)->gen >= 6) {
6255 intel_suspend_gt_powersave(dev);
6256
6257 mutex_lock(&dev_priv->rps.hw_lock);
6258 if (INTEL_INFO(dev)->gen >= 9)
6259 gen9_disable_rps(dev);
6260 else if (IS_CHERRYVIEW(dev))
6261 cherryview_disable_rps(dev);
6262 else if (IS_VALLEYVIEW(dev))
6263 valleyview_disable_rps(dev);
6264 else
6265 gen6_disable_rps(dev);
6266
6267 dev_priv->rps.enabled = false;
6268 mutex_unlock(&dev_priv->rps.hw_lock);
6269 }
6270}
6271
6272static void intel_gen6_powersave_work(struct work_struct *work)
6273{
6274 struct drm_i915_private *dev_priv =
6275 container_of(work, struct drm_i915_private,
6276 rps.delayed_resume_work.work);
6277 struct drm_device *dev = dev_priv->dev;
6278
6279 mutex_lock(&dev_priv->rps.hw_lock);
6280
6281 gen6_reset_rps_interrupts(dev);
6282
6283 if (IS_CHERRYVIEW(dev)) {
6284 cherryview_enable_rps(dev);
6285 } else if (IS_VALLEYVIEW(dev)) {
6286 valleyview_enable_rps(dev);
6287 } else if (INTEL_INFO(dev)->gen >= 9) {
6288 gen9_enable_rc6(dev);
6289 gen9_enable_rps(dev);
6290 if (IS_SKYLAKE(dev))
6291 __gen6_update_ring_freq(dev);
6292 } else if (IS_BROADWELL(dev)) {
6293 gen8_enable_rps(dev);
6294 __gen6_update_ring_freq(dev);
6295 } else {
6296 gen6_enable_rps(dev);
6297 __gen6_update_ring_freq(dev);
6298 }
6299
6300 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6301 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6302
6303 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6304 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6305
6306 dev_priv->rps.enabled = true;
6307
6308 gen6_enable_rps_interrupts(dev);
6309
6310 mutex_unlock(&dev_priv->rps.hw_lock);
6311
6312 intel_runtime_pm_put(dev_priv);
6313}
6314
6315void intel_enable_gt_powersave(struct drm_device *dev)
6316{
6317 struct drm_i915_private *dev_priv = dev->dev_private;
6318
6319 /* Powersaving is controlled by the host when inside a VM */
6320 if (intel_vgpu_active(dev))
6321 return;
6322
6323 if (IS_IRONLAKE_M(dev)) {
6324 mutex_lock(&dev->struct_mutex);
6325 ironlake_enable_drps(dev);
6326 intel_init_emon(dev);
6327 mutex_unlock(&dev->struct_mutex);
6328 } else if (INTEL_INFO(dev)->gen >= 6) {
6329 /*
6330 * PCU communication is slow and this doesn't need to be
6331 * done at any specific time, so do this out of our fast path
6332 * to make resume and init faster.
6333 *
6334 * We depend on the HW RC6 power context save/restore
6335 * mechanism when entering D3 through runtime PM suspend. So
6336 * disable RPM until RPS/RC6 is properly setup. We can only
6337 * get here via the driver load/system resume/runtime resume
6338 * paths, so the _noresume version is enough (and in case of
6339 * runtime resume it's necessary).
6340 */
6341 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6342 round_jiffies_up_relative(HZ)))
6343 intel_runtime_pm_get_noresume(dev_priv);
6344 }
6345}
6346
6347void intel_reset_gt_powersave(struct drm_device *dev)
6348{
6349 struct drm_i915_private *dev_priv = dev->dev_private;
6350
6351 if (INTEL_INFO(dev)->gen < 6)
6352 return;
6353
6354 gen6_suspend_rps(dev);
6355 dev_priv->rps.enabled = false;
6356}
6357
6358static void ibx_init_clock_gating(struct drm_device *dev)
6359{
6360 struct drm_i915_private *dev_priv = dev->dev_private;
6361
6362 /*
6363 * On Ibex Peak and Cougar Point, we need to disable clock
6364 * gating for the panel power sequencer or it will fail to
6365 * start up when no ports are active.
6366 */
6367 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6368}
6369
6370static void g4x_disable_trickle_feed(struct drm_device *dev)
6371{
6372 struct drm_i915_private *dev_priv = dev->dev_private;
6373 enum pipe pipe;
6374
6375 for_each_pipe(dev_priv, pipe) {
6376 I915_WRITE(DSPCNTR(pipe),
6377 I915_READ(DSPCNTR(pipe)) |
6378 DISPPLANE_TRICKLE_FEED_DISABLE);
6379
6380 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6381 POSTING_READ(DSPSURF(pipe));
6382 }
6383}
6384
6385static void ilk_init_lp_watermarks(struct drm_device *dev)
6386{
6387 struct drm_i915_private *dev_priv = dev->dev_private;
6388
6389 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6390 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6391 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6392
6393 /*
6394 * Don't touch WM1S_LP_EN here.
6395 * Doing so could cause underruns.
6396 */
6397}
6398
6399static void ironlake_init_clock_gating(struct drm_device *dev)
6400{
6401 struct drm_i915_private *dev_priv = dev->dev_private;
6402 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6403
6404 /*
6405 * Required for FBC
6406 * WaFbcDisableDpfcClockGating:ilk
6407 */
6408 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6409 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6410 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6411
6412 I915_WRITE(PCH_3DCGDIS0,
6413 MARIUNIT_CLOCK_GATE_DISABLE |
6414 SVSMUNIT_CLOCK_GATE_DISABLE);
6415 I915_WRITE(PCH_3DCGDIS1,
6416 VFMUNIT_CLOCK_GATE_DISABLE);
6417
6418 /*
6419 * According to the spec the following bits should be set in
6420 * order to enable memory self-refresh
6421 * The bit 22/21 of 0x42004
6422 * The bit 5 of 0x42020
6423 * The bit 15 of 0x45000
6424 */
6425 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6426 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6427 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6428 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6429 I915_WRITE(DISP_ARB_CTL,
6430 (I915_READ(DISP_ARB_CTL) |
6431 DISP_FBC_WM_DIS));
6432
6433 ilk_init_lp_watermarks(dev);
6434
6435 /*
6436 * Based on the document from hardware guys the following bits
6437 * should be set unconditionally in order to enable FBC.
6438 * The bit 22 of 0x42000
6439 * The bit 22 of 0x42004
6440 * The bit 7,8,9 of 0x42020.
6441 */
6442 if (IS_IRONLAKE_M(dev)) {
6443 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6444 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6445 I915_READ(ILK_DISPLAY_CHICKEN1) |
6446 ILK_FBCQ_DIS);
6447 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6448 I915_READ(ILK_DISPLAY_CHICKEN2) |
6449 ILK_DPARB_GATE);
6450 }
6451
6452 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6453
6454 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6455 I915_READ(ILK_DISPLAY_CHICKEN2) |
6456 ILK_ELPIN_409_SELECT);
6457 I915_WRITE(_3D_CHICKEN2,
6458 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6459 _3D_CHICKEN2_WM_READ_PIPELINED);
6460
6461 /* WaDisableRenderCachePipelinedFlush:ilk */
6462 I915_WRITE(CACHE_MODE_0,
6463 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6464
6465 /* WaDisable_RenderCache_OperationalFlush:ilk */
6466 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6467
6468 g4x_disable_trickle_feed(dev);
6469
6470 ibx_init_clock_gating(dev);
6471}
6472
6473static void cpt_init_clock_gating(struct drm_device *dev)
6474{
6475 struct drm_i915_private *dev_priv = dev->dev_private;
6476 int pipe;
6477 uint32_t val;
6478
6479 /*
6480 * On Ibex Peak and Cougar Point, we need to disable clock
6481 * gating for the panel power sequencer or it will fail to
6482 * start up when no ports are active.
6483 */
6484 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6485 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6486 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6487 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6488 DPLS_EDP_PPS_FIX_DIS);
6489 /* The below fixes the weird display corruption, a few pixels shifted
6490 * downward, on (only) LVDS of some HP laptops with IVY.
6491 */
6492 for_each_pipe(dev_priv, pipe) {
6493 val = I915_READ(TRANS_CHICKEN2(pipe));
6494 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6495 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6496 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6497 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6498 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6499 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6500 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6501 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6502 }
6503 /* WADP0ClockGatingDisable */
6504 for_each_pipe(dev_priv, pipe) {
6505 I915_WRITE(TRANS_CHICKEN1(pipe),
6506 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6507 }
6508}
6509
6510static void gen6_check_mch_setup(struct drm_device *dev)
6511{
6512 struct drm_i915_private *dev_priv = dev->dev_private;
6513 uint32_t tmp;
6514
6515 tmp = I915_READ(MCH_SSKPD);
6516 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6517 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6518 tmp);
6519}
6520
6521static void gen6_init_clock_gating(struct drm_device *dev)
6522{
6523 struct drm_i915_private *dev_priv = dev->dev_private;
6524 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6525
6526 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6527
6528 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6529 I915_READ(ILK_DISPLAY_CHICKEN2) |
6530 ILK_ELPIN_409_SELECT);
6531
6532 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6533 I915_WRITE(_3D_CHICKEN,
6534 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6535
6536 /* WaDisable_RenderCache_OperationalFlush:snb */
6537 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6538
6539 /*
6540 * BSpec recoomends 8x4 when MSAA is used,
6541 * however in practice 16x4 seems fastest.
6542 *
6543 * Note that PS/WM thread counts depend on the WIZ hashing
6544 * disable bit, which we don't touch here, but it's good
6545 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6546 */
6547 I915_WRITE(GEN6_GT_MODE,
6548 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6549
6550 ilk_init_lp_watermarks(dev);
6551
6552 I915_WRITE(CACHE_MODE_0,
6553 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6554
6555 I915_WRITE(GEN6_UCGCTL1,
6556 I915_READ(GEN6_UCGCTL1) |
6557 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6558 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6559
6560 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6561 * gating disable must be set. Failure to set it results in
6562 * flickering pixels due to Z write ordering failures after
6563 * some amount of runtime in the Mesa "fire" demo, and Unigine
6564 * Sanctuary and Tropics, and apparently anything else with
6565 * alpha test or pixel discard.
6566 *
6567 * According to the spec, bit 11 (RCCUNIT) must also be set,
6568 * but we didn't debug actual testcases to find it out.
6569 *
6570 * WaDisableRCCUnitClockGating:snb
6571 * WaDisableRCPBUnitClockGating:snb
6572 */
6573 I915_WRITE(GEN6_UCGCTL2,
6574 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6575 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6576
6577 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6578 I915_WRITE(_3D_CHICKEN3,
6579 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6580
6581 /*
6582 * Bspec says:
6583 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6584 * 3DSTATE_SF number of SF output attributes is more than 16."
6585 */
6586 I915_WRITE(_3D_CHICKEN3,
6587 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6588
6589 /*
6590 * According to the spec the following bits should be
6591 * set in order to enable memory self-refresh and fbc:
6592 * The bit21 and bit22 of 0x42000
6593 * The bit21 and bit22 of 0x42004
6594 * The bit5 and bit7 of 0x42020
6595 * The bit14 of 0x70180
6596 * The bit14 of 0x71180
6597 *
6598 * WaFbcAsynchFlipDisableFbcQueue:snb
6599 */
6600 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6601 I915_READ(ILK_DISPLAY_CHICKEN1) |
6602 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6603 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6604 I915_READ(ILK_DISPLAY_CHICKEN2) |
6605 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6606 I915_WRITE(ILK_DSPCLK_GATE_D,
6607 I915_READ(ILK_DSPCLK_GATE_D) |
6608 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6609 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6610
6611 g4x_disable_trickle_feed(dev);
6612
6613 cpt_init_clock_gating(dev);
6614
6615 gen6_check_mch_setup(dev);
6616}
6617
6618static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6619{
6620 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6621
6622 /*
6623 * WaVSThreadDispatchOverride:ivb,vlv
6624 *
6625 * This actually overrides the dispatch
6626 * mode for all thread types.
6627 */
6628 reg &= ~GEN7_FF_SCHED_MASK;
6629 reg |= GEN7_FF_TS_SCHED_HW;
6630 reg |= GEN7_FF_VS_SCHED_HW;
6631 reg |= GEN7_FF_DS_SCHED_HW;
6632
6633 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6634}
6635
6636static void lpt_init_clock_gating(struct drm_device *dev)
6637{
6638 struct drm_i915_private *dev_priv = dev->dev_private;
6639
6640 /*
6641 * TODO: this bit should only be enabled when really needed, then
6642 * disabled when not needed anymore in order to save power.
6643 */
6644 if (HAS_PCH_LPT_LP(dev))
6645 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6646 I915_READ(SOUTH_DSPCLK_GATE_D) |
6647 PCH_LP_PARTITION_LEVEL_DISABLE);
6648
6649 /* WADPOClockGatingDisable:hsw */
6650 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6651 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6652 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6653}
6654
6655static void lpt_suspend_hw(struct drm_device *dev)
6656{
6657 struct drm_i915_private *dev_priv = dev->dev_private;
6658
6659 if (HAS_PCH_LPT_LP(dev)) {
6660 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6661
6662 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6663 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6664 }
6665}
6666
6667static void broadwell_init_clock_gating(struct drm_device *dev)
6668{
6669 struct drm_i915_private *dev_priv = dev->dev_private;
6670 enum pipe pipe;
6671 uint32_t misccpctl;
6672
6673 ilk_init_lp_watermarks(dev);
6674
6675 /* WaSwitchSolVfFArbitrationPriority:bdw */
6676 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6677
6678 /* WaPsrDPAMaskVBlankInSRD:bdw */
6679 I915_WRITE(CHICKEN_PAR1_1,
6680 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6681
6682 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6683 for_each_pipe(dev_priv, pipe) {
6684 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6685 I915_READ(CHICKEN_PIPESL_1(pipe)) |
6686 BDW_DPRS_MASK_VBLANK_SRD);
6687 }
6688
6689 /* WaVSRefCountFullforceMissDisable:bdw */
6690 /* WaDSRefCountFullforceMissDisable:bdw */
6691 I915_WRITE(GEN7_FF_THREAD_MODE,
6692 I915_READ(GEN7_FF_THREAD_MODE) &
6693 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6694
6695 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6696 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6697
6698 /* WaDisableSDEUnitClockGating:bdw */
6699 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6700 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6701
6702 /*
6703 * WaProgramL3SqcReg1Default:bdw
6704 * WaTempDisableDOPClkGating:bdw
6705 */
6706 misccpctl = I915_READ(GEN7_MISCCPCTL);
6707 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6708 I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6709 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6710
6711 /*
6712 * WaGttCachingOffByDefault:bdw
6713 * GTT cache may not work with big pages, so if those
6714 * are ever enabled GTT cache may need to be disabled.
6715 */
6716 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6717
6718 lpt_init_clock_gating(dev);
6719}
6720
6721static void haswell_init_clock_gating(struct drm_device *dev)
6722{
6723 struct drm_i915_private *dev_priv = dev->dev_private;
6724
6725 ilk_init_lp_watermarks(dev);
6726
6727 /* L3 caching of data atomics doesn't work -- disable it. */
6728 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6729 I915_WRITE(HSW_ROW_CHICKEN3,
6730 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6731
6732 /* This is required by WaCatErrorRejectionIssue:hsw */
6733 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6734 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6735 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6736
6737 /* WaVSRefCountFullforceMissDisable:hsw */
6738 I915_WRITE(GEN7_FF_THREAD_MODE,
6739 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6740
6741 /* WaDisable_RenderCache_OperationalFlush:hsw */
6742 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6743
6744 /* enable HiZ Raw Stall Optimization */
6745 I915_WRITE(CACHE_MODE_0_GEN7,
6746 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6747
6748 /* WaDisable4x2SubspanOptimization:hsw */
6749 I915_WRITE(CACHE_MODE_1,
6750 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6751
6752 /*
6753 * BSpec recommends 8x4 when MSAA is used,
6754 * however in practice 16x4 seems fastest.
6755 *
6756 * Note that PS/WM thread counts depend on the WIZ hashing
6757 * disable bit, which we don't touch here, but it's good
6758 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6759 */
6760 I915_WRITE(GEN7_GT_MODE,
6761 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6762
6763 /* WaSampleCChickenBitEnable:hsw */
6764 I915_WRITE(HALF_SLICE_CHICKEN3,
6765 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6766
6767 /* WaSwitchSolVfFArbitrationPriority:hsw */
6768 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6769
6770 /* WaRsPkgCStateDisplayPMReq:hsw */
6771 I915_WRITE(CHICKEN_PAR1_1,
6772 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6773
6774 lpt_init_clock_gating(dev);
6775}
6776
6777static void ivybridge_init_clock_gating(struct drm_device *dev)
6778{
6779 struct drm_i915_private *dev_priv = dev->dev_private;
6780 uint32_t snpcr;
6781
6782 ilk_init_lp_watermarks(dev);
6783
6784 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6785
6786 /* WaDisableEarlyCull:ivb */
6787 I915_WRITE(_3D_CHICKEN3,
6788 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6789
6790 /* WaDisableBackToBackFlipFix:ivb */
6791 I915_WRITE(IVB_CHICKEN3,
6792 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6793 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6794
6795 /* WaDisablePSDDualDispatchEnable:ivb */
6796 if (IS_IVB_GT1(dev))
6797 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6798 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6799
6800 /* WaDisable_RenderCache_OperationalFlush:ivb */
6801 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6802
6803 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6804 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6805 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6806
6807 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6808 I915_WRITE(GEN7_L3CNTLREG1,
6809 GEN7_WA_FOR_GEN7_L3_CONTROL);
6810 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6811 GEN7_WA_L3_CHICKEN_MODE);
6812 if (IS_IVB_GT1(dev))
6813 I915_WRITE(GEN7_ROW_CHICKEN2,
6814 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6815 else {
6816 /* must write both registers */
6817 I915_WRITE(GEN7_ROW_CHICKEN2,
6818 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6819 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6820 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6821 }
6822
6823 /* WaForceL3Serialization:ivb */
6824 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6825 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6826
6827 /*
6828 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6829 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6830 */
6831 I915_WRITE(GEN6_UCGCTL2,
6832 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6833
6834 /* This is required by WaCatErrorRejectionIssue:ivb */
6835 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6836 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6837 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6838
6839 g4x_disable_trickle_feed(dev);
6840
6841 gen7_setup_fixed_func_scheduler(dev_priv);
6842
6843 if (0) { /* causes HiZ corruption on ivb:gt1 */
6844 /* enable HiZ Raw Stall Optimization */
6845 I915_WRITE(CACHE_MODE_0_GEN7,
6846 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6847 }
6848
6849 /* WaDisable4x2SubspanOptimization:ivb */
6850 I915_WRITE(CACHE_MODE_1,
6851 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6852
6853 /*
6854 * BSpec recommends 8x4 when MSAA is used,
6855 * however in practice 16x4 seems fastest.
6856 *
6857 * Note that PS/WM thread counts depend on the WIZ hashing
6858 * disable bit, which we don't touch here, but it's good
6859 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6860 */
6861 I915_WRITE(GEN7_GT_MODE,
6862 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6863
6864 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6865 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6866 snpcr |= GEN6_MBC_SNPCR_MED;
6867 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6868
6869 if (!HAS_PCH_NOP(dev))
6870 cpt_init_clock_gating(dev);
6871
6872 gen6_check_mch_setup(dev);
6873}
6874
6875static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6876{
6877 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6878
6879 /*
6880 * Disable trickle feed and enable pnd deadline calculation
6881 */
6882 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6883 I915_WRITE(CBR1_VLV, 0);
6884}
6885
6886static void valleyview_init_clock_gating(struct drm_device *dev)
6887{
6888 struct drm_i915_private *dev_priv = dev->dev_private;
6889
6890 vlv_init_display_clock_gating(dev_priv);
6891
6892 /* WaDisableEarlyCull:vlv */
6893 I915_WRITE(_3D_CHICKEN3,
6894 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6895
6896 /* WaDisableBackToBackFlipFix:vlv */
6897 I915_WRITE(IVB_CHICKEN3,
6898 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6899 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6900
6901 /* WaPsdDispatchEnable:vlv */
6902 /* WaDisablePSDDualDispatchEnable:vlv */
6903 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6904 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6905 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6906
6907 /* WaDisable_RenderCache_OperationalFlush:vlv */
6908 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6909
6910 /* WaForceL3Serialization:vlv */
6911 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6912 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6913
6914 /* WaDisableDopClockGating:vlv */
6915 I915_WRITE(GEN7_ROW_CHICKEN2,
6916 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6917
6918 /* This is required by WaCatErrorRejectionIssue:vlv */
6919 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6920 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6921 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6922
6923 gen7_setup_fixed_func_scheduler(dev_priv);
6924
6925 /*
6926 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6927 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6928 */
6929 I915_WRITE(GEN6_UCGCTL2,
6930 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6931
6932 /* WaDisableL3Bank2xClockGate:vlv
6933 * Disabling L3 clock gating- MMIO 940c[25] = 1
6934 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6935 I915_WRITE(GEN7_UCGCTL4,
6936 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6937
6938 /*
6939 * BSpec says this must be set, even though
6940 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6941 */
6942 I915_WRITE(CACHE_MODE_1,
6943 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6944
6945 /*
6946 * BSpec recommends 8x4 when MSAA is used,
6947 * however in practice 16x4 seems fastest.
6948 *
6949 * Note that PS/WM thread counts depend on the WIZ hashing
6950 * disable bit, which we don't touch here, but it's good
6951 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6952 */
6953 I915_WRITE(GEN7_GT_MODE,
6954 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6955
6956 /*
6957 * WaIncreaseL3CreditsForVLVB0:vlv
6958 * This is the hardware default actually.
6959 */
6960 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6961
6962 /*
6963 * WaDisableVLVClockGating_VBIIssue:vlv
6964 * Disable clock gating on th GCFG unit to prevent a delay
6965 * in the reporting of vblank events.
6966 */
6967 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6968}
6969
6970static void cherryview_init_clock_gating(struct drm_device *dev)
6971{
6972 struct drm_i915_private *dev_priv = dev->dev_private;
6973
6974 vlv_init_display_clock_gating(dev_priv);
6975
6976 /* WaVSRefCountFullforceMissDisable:chv */
6977 /* WaDSRefCountFullforceMissDisable:chv */
6978 I915_WRITE(GEN7_FF_THREAD_MODE,
6979 I915_READ(GEN7_FF_THREAD_MODE) &
6980 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6981
6982 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6983 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6984 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6985
6986 /* WaDisableCSUnitClockGating:chv */
6987 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6988 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6989
6990 /* WaDisableSDEUnitClockGating:chv */
6991 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6992 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6993
6994 /*
6995 * GTT cache may not work with big pages, so if those
6996 * are ever enabled GTT cache may need to be disabled.
6997 */
6998 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6999}
7000
7001static void g4x_init_clock_gating(struct drm_device *dev)
7002{
7003 struct drm_i915_private *dev_priv = dev->dev_private;
7004 uint32_t dspclk_gate;
7005
7006 I915_WRITE(RENCLK_GATE_D1, 0);
7007 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7008 GS_UNIT_CLOCK_GATE_DISABLE |
7009 CL_UNIT_CLOCK_GATE_DISABLE);
7010 I915_WRITE(RAMCLK_GATE_D, 0);
7011 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7012 OVRUNIT_CLOCK_GATE_DISABLE |
7013 OVCUNIT_CLOCK_GATE_DISABLE;
7014 if (IS_GM45(dev))
7015 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7016 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7017
7018 /* WaDisableRenderCachePipelinedFlush */
7019 I915_WRITE(CACHE_MODE_0,
7020 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7021
7022 /* WaDisable_RenderCache_OperationalFlush:g4x */
7023 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7024
7025 g4x_disable_trickle_feed(dev);
7026}
7027
7028static void crestline_init_clock_gating(struct drm_device *dev)
7029{
7030 struct drm_i915_private *dev_priv = dev->dev_private;
7031
7032 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7033 I915_WRITE(RENCLK_GATE_D2, 0);
7034 I915_WRITE(DSPCLK_GATE_D, 0);
7035 I915_WRITE(RAMCLK_GATE_D, 0);
7036 I915_WRITE16(DEUC, 0);
7037 I915_WRITE(MI_ARB_STATE,
7038 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7039
7040 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7041 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7042}
7043
7044static void broadwater_init_clock_gating(struct drm_device *dev)
7045{
7046 struct drm_i915_private *dev_priv = dev->dev_private;
7047
7048 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7049 I965_RCC_CLOCK_GATE_DISABLE |
7050 I965_RCPB_CLOCK_GATE_DISABLE |
7051 I965_ISC_CLOCK_GATE_DISABLE |
7052 I965_FBC_CLOCK_GATE_DISABLE);
7053 I915_WRITE(RENCLK_GATE_D2, 0);
7054 I915_WRITE(MI_ARB_STATE,
7055 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7056
7057 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7058 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7059}
7060
7061static void gen3_init_clock_gating(struct drm_device *dev)
7062{
7063 struct drm_i915_private *dev_priv = dev->dev_private;
7064 u32 dstate = I915_READ(D_STATE);
7065
7066 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7067 DSTATE_DOT_CLOCK_GATING;
7068 I915_WRITE(D_STATE, dstate);
7069
7070 if (IS_PINEVIEW(dev))
7071 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7072
7073 /* IIR "flip pending" means done if this bit is set */
7074 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7075
7076 /* interrupts should cause a wake up from C3 */
7077 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7078
7079 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7080 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7081
7082 I915_WRITE(MI_ARB_STATE,
7083 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7084}
7085
7086static void i85x_init_clock_gating(struct drm_device *dev)
7087{
7088 struct drm_i915_private *dev_priv = dev->dev_private;
7089
7090 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7091
7092 /* interrupts should cause a wake up from C3 */
7093 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7094 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7095
7096 I915_WRITE(MEM_MODE,
7097 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7098}
7099
7100static void i830_init_clock_gating(struct drm_device *dev)
7101{
7102 struct drm_i915_private *dev_priv = dev->dev_private;
7103
7104 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7105
7106 I915_WRITE(MEM_MODE,
7107 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7108 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7109}
7110
7111void intel_init_clock_gating(struct drm_device *dev)
7112{
7113 struct drm_i915_private *dev_priv = dev->dev_private;
7114
7115 if (dev_priv->display.init_clock_gating)
7116 dev_priv->display.init_clock_gating(dev);
7117}
7118
7119void intel_suspend_hw(struct drm_device *dev)
7120{
7121 if (HAS_PCH_LPT(dev))
7122 lpt_suspend_hw(dev);
7123}
7124
7125/* Set up chip specific power management-related functions */
7126void intel_init_pm(struct drm_device *dev)
7127{
7128 struct drm_i915_private *dev_priv = dev->dev_private;
7129
7130 intel_fbc_init(dev_priv);
7131
7132 /* For cxsr */
7133 if (IS_PINEVIEW(dev))
7134 i915_pineview_get_mem_freq(dev);
7135 else if (IS_GEN5(dev))
7136 i915_ironlake_get_mem_freq(dev);
7137
7138 /* For FIFO watermark updates */
7139 if (INTEL_INFO(dev)->gen >= 9) {
7140 skl_setup_wm_latency(dev);
7141
7142 if (IS_BROXTON(dev))
7143 dev_priv->display.init_clock_gating =
7144 bxt_init_clock_gating;
7145 else if (IS_SKYLAKE(dev))
7146 dev_priv->display.init_clock_gating =
7147 skl_init_clock_gating;
7148 dev_priv->display.update_wm = skl_update_wm;
7149 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7150 } else if (HAS_PCH_SPLIT(dev)) {
7151 ilk_setup_wm_latency(dev);
7152
7153 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7154 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7155 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7156 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7157 dev_priv->display.update_wm = ilk_update_wm;
7158 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7159 } else {
7160 DRM_DEBUG_KMS("Failed to read display plane latency. "
7161 "Disable CxSR\n");
7162 }
7163
7164 if (IS_GEN5(dev))
7165 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7166 else if (IS_GEN6(dev))
7167 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7168 else if (IS_IVYBRIDGE(dev))
7169 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7170 else if (IS_HASWELL(dev))
7171 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7172 else if (INTEL_INFO(dev)->gen == 8)
7173 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7174 } else if (IS_CHERRYVIEW(dev)) {
7175 vlv_setup_wm_latency(dev);
7176
7177 dev_priv->display.update_wm = vlv_update_wm;
7178 dev_priv->display.init_clock_gating =
7179 cherryview_init_clock_gating;
7180 } else if (IS_VALLEYVIEW(dev)) {
7181 vlv_setup_wm_latency(dev);
7182
7183 dev_priv->display.update_wm = vlv_update_wm;
7184 dev_priv->display.init_clock_gating =
7185 valleyview_init_clock_gating;
7186 } else if (IS_PINEVIEW(dev)) {
7187 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7188 dev_priv->is_ddr3,
7189 dev_priv->fsb_freq,
7190 dev_priv->mem_freq)) {
7191 DRM_INFO("failed to find known CxSR latency "
7192 "(found ddr%s fsb freq %d, mem freq %d), "
7193 "disabling CxSR\n",
7194 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7195 dev_priv->fsb_freq, dev_priv->mem_freq);
7196 /* Disable CxSR and never update its watermark again */
7197 intel_set_memory_cxsr(dev_priv, false);
7198 dev_priv->display.update_wm = NULL;
7199 } else
7200 dev_priv->display.update_wm = pineview_update_wm;
7201 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7202 } else if (IS_G4X(dev)) {
7203 dev_priv->display.update_wm = g4x_update_wm;
7204 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7205 } else if (IS_GEN4(dev)) {
7206 dev_priv->display.update_wm = i965_update_wm;
7207 if (IS_CRESTLINE(dev))
7208 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7209 else if (IS_BROADWATER(dev))
7210 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7211 } else if (IS_GEN3(dev)) {
7212 dev_priv->display.update_wm = i9xx_update_wm;
7213 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7214 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7215 } else if (IS_GEN2(dev)) {
7216 if (INTEL_INFO(dev)->num_pipes == 1) {
7217 dev_priv->display.update_wm = i845_update_wm;
7218 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7219 } else {
7220 dev_priv->display.update_wm = i9xx_update_wm;
7221 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7222 }
7223
7224 if (IS_I85X(dev) || IS_I865G(dev))
7225 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7226 else
7227 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7228 } else {
7229 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7230 }
7231}
7232
7233int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7234{
7235 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7236
7237 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7238 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7239 return -EAGAIN;
7240 }
7241
7242 I915_WRITE(GEN6_PCODE_DATA, *val);
7243 I915_WRITE(GEN6_PCODE_DATA1, 0);
7244 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7245
7246 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7247 500)) {
7248 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7249 return -ETIMEDOUT;
7250 }
7251
7252 *val = I915_READ(GEN6_PCODE_DATA);
7253 I915_WRITE(GEN6_PCODE_DATA, 0);
7254
7255 return 0;
7256}
7257
7258int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7259{
7260 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7261
7262 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7263 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7264 return -EAGAIN;
7265 }
7266
7267 I915_WRITE(GEN6_PCODE_DATA, val);
7268 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7269
7270 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7271 500)) {
7272 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7273 return -ETIMEDOUT;
7274 }
7275
7276 I915_WRITE(GEN6_PCODE_DATA, 0);
7277
7278 return 0;
7279}
7280
7281static int vlv_gpu_freq_div(unsigned int czclk_freq)
7282{
7283 switch (czclk_freq) {
7284 case 200:
7285 return 10;
7286 case 267:
7287 return 12;
7288 case 320:
7289 case 333:
7290 return 16;
7291 case 400:
7292 return 20;
7293 default:
7294 return -1;
7295 }
7296}
7297
7298static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7299{
7300 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7301
7302 div = vlv_gpu_freq_div(czclk_freq);
7303 if (div < 0)
7304 return div;
7305
7306 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7307}
7308
7309static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7310{
7311 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7312
7313 mul = vlv_gpu_freq_div(czclk_freq);
7314 if (mul < 0)
7315 return mul;
7316
7317 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7318}
7319
7320static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7321{
7322 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7323
7324 div = vlv_gpu_freq_div(czclk_freq) / 2;
7325 if (div < 0)
7326 return div;
7327
7328 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7329}
7330
7331static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7332{
7333 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7334
7335 mul = vlv_gpu_freq_div(czclk_freq) / 2;
7336 if (mul < 0)
7337 return mul;
7338
7339 /* CHV needs even values */
7340 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7341}
7342
7343int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7344{
7345 if (IS_GEN9(dev_priv->dev))
7346 return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
7347 else if (IS_CHERRYVIEW(dev_priv->dev))
7348 return chv_gpu_freq(dev_priv, val);
7349 else if (IS_VALLEYVIEW(dev_priv->dev))
7350 return byt_gpu_freq(dev_priv, val);
7351 else
7352 return val * GT_FREQUENCY_MULTIPLIER;
7353}
7354
7355int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7356{
7357 if (IS_GEN9(dev_priv->dev))
7358 return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
7359 else if (IS_CHERRYVIEW(dev_priv->dev))
7360 return chv_freq_opcode(dev_priv, val);
7361 else if (IS_VALLEYVIEW(dev_priv->dev))
7362 return byt_freq_opcode(dev_priv, val);
7363 else
7364 return val / GT_FREQUENCY_MULTIPLIER;
7365}
7366
7367struct request_boost {
7368 struct work_struct work;
7369 struct drm_i915_gem_request *req;
7370};
7371
7372static void __intel_rps_boost_work(struct work_struct *work)
7373{
7374 struct request_boost *boost = container_of(work, struct request_boost, work);
7375 struct drm_i915_gem_request *req = boost->req;
7376
7377 if (!i915_gem_request_completed(req, true))
7378 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7379 req->emitted_jiffies);
7380
7381 i915_gem_request_unreference__unlocked(req);
7382 kfree(boost);
7383}
7384
7385void intel_queue_rps_boost_for_request(struct drm_device *dev,
7386 struct drm_i915_gem_request *req)
7387{
7388 struct request_boost *boost;
7389
7390 if (req == NULL || INTEL_INFO(dev)->gen < 6)
7391 return;
7392
7393 if (i915_gem_request_completed(req, true))
7394 return;
7395
7396 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7397 if (boost == NULL)
7398 return;
7399
7400 i915_gem_request_reference(req);
7401 boost->req = req;
7402
7403 INIT_WORK(&boost->work, __intel_rps_boost_work);
7404 queue_work(to_i915(dev)->wq, &boost->work);
7405}
7406
7407void intel_pm_setup(struct drm_device *dev)
7408{
7409 struct drm_i915_private *dev_priv = dev->dev_private;
7410
7411 mutex_init(&dev_priv->rps.hw_lock);
7412 spin_lock_init(&dev_priv->rps.client_lock);
7413
7414 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7415 intel_gen6_powersave_work);
7416 INIT_LIST_HEAD(&dev_priv->rps.clients);
7417 INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7418 INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7419
7420 dev_priv->pm.suspended = false;
7421}