]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - drivers/gpu/drm/i915/intel_ringbuffer.h
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_ringbuffer.h
... / ...
CommitLineData
1#ifndef _INTEL_RINGBUFFER_H_
2#define _INTEL_RINGBUFFER_H_
3
4#include <linux/hashtable.h>
5#include "i915_gem_batch_pool.h"
6#include "i915_gem_request.h"
7#include "i915_gem_timeline.h"
8#include "i915_selftest.h"
9
10#define I915_CMD_HASH_ORDER 9
11
12/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
13 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
14 * to give some inclination as to some of the magic values used in the various
15 * workarounds!
16 */
17#define CACHELINE_BYTES 64
18#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
19
20struct intel_hw_status_page {
21 struct i915_vma *vma;
22 u32 *page_addr;
23 u32 ggtt_offset;
24};
25
26#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
27#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
28
29#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
30#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
31
32#define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
33#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
34
35#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
36#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
37
38#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
39#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
40
41#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
42#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
43
44/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
45 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
46 */
47#define gen8_semaphore_seqno_size sizeof(uint64_t)
48#define GEN8_SEMAPHORE_OFFSET(__from, __to) \
49 (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
50#define GEN8_SIGNAL_OFFSET(__ring, to) \
51 (dev_priv->semaphore->node.start + \
52 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
53#define GEN8_WAIT_OFFSET(__ring, from) \
54 (dev_priv->semaphore->node.start + \
55 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
56
57enum intel_engine_hangcheck_action {
58 ENGINE_IDLE = 0,
59 ENGINE_WAIT,
60 ENGINE_ACTIVE_SEQNO,
61 ENGINE_ACTIVE_HEAD,
62 ENGINE_ACTIVE_SUBUNITS,
63 ENGINE_WAIT_KICK,
64 ENGINE_DEAD,
65};
66
67static inline const char *
68hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
69{
70 switch (a) {
71 case ENGINE_IDLE:
72 return "idle";
73 case ENGINE_WAIT:
74 return "wait";
75 case ENGINE_ACTIVE_SEQNO:
76 return "active seqno";
77 case ENGINE_ACTIVE_HEAD:
78 return "active head";
79 case ENGINE_ACTIVE_SUBUNITS:
80 return "active subunits";
81 case ENGINE_WAIT_KICK:
82 return "wait kick";
83 case ENGINE_DEAD:
84 return "dead";
85 }
86
87 return "unknown";
88}
89
90#define I915_MAX_SLICES 3
91#define I915_MAX_SUBSLICES 3
92
93#define instdone_slice_mask(dev_priv__) \
94 (INTEL_GEN(dev_priv__) == 7 ? \
95 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
96
97#define instdone_subslice_mask(dev_priv__) \
98 (INTEL_GEN(dev_priv__) == 7 ? \
99 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
100
101#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
102 for ((slice__) = 0, (subslice__) = 0; \
103 (slice__) < I915_MAX_SLICES; \
104 (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
105 (slice__) += ((subslice__) == 0)) \
106 for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
107 (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
108
109struct intel_instdone {
110 u32 instdone;
111 /* The following exist only in the RCS engine */
112 u32 slice_common;
113 u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
114 u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
115};
116
117struct intel_engine_hangcheck {
118 u64 acthd;
119 u32 seqno;
120 enum intel_engine_hangcheck_action action;
121 unsigned long action_timestamp;
122 int deadlock;
123 struct intel_instdone instdone;
124 bool stalled;
125};
126
127struct intel_ring {
128 struct i915_vma *vma;
129 void *vaddr;
130
131 struct list_head request_list;
132
133 u32 head;
134 u32 tail;
135 u32 emit;
136
137 u32 space;
138 u32 size;
139 u32 effective_size;
140};
141
142struct i915_gem_context;
143struct drm_i915_reg_table;
144
145/*
146 * we use a single page to load ctx workarounds so all of these
147 * values are referred in terms of dwords
148 *
149 * struct i915_wa_ctx_bb:
150 * offset: specifies batch starting position, also helpful in case
151 * if we want to have multiple batches at different offsets based on
152 * some criteria. It is not a requirement at the moment but provides
153 * an option for future use.
154 * size: size of the batch in DWORDS
155 */
156struct i915_ctx_workarounds {
157 struct i915_wa_ctx_bb {
158 u32 offset;
159 u32 size;
160 } indirect_ctx, per_ctx;
161 struct i915_vma *vma;
162};
163
164struct drm_i915_gem_request;
165struct intel_render_state;
166
167/*
168 * Engine IDs definitions.
169 * Keep instances of the same type engine together.
170 */
171enum intel_engine_id {
172 RCS = 0,
173 BCS,
174 VCS,
175 VCS2,
176#define _VCS(n) (VCS + (n))
177 VECS
178};
179
180struct i915_priolist {
181 struct rb_node node;
182 struct list_head requests;
183 int priority;
184};
185
186#define INTEL_ENGINE_CS_MAX_NAME 8
187
188struct intel_engine_cs {
189 struct drm_i915_private *i915;
190 char name[INTEL_ENGINE_CS_MAX_NAME];
191 enum intel_engine_id id;
192 unsigned int uabi_id;
193 unsigned int hw_id;
194 unsigned int guc_id;
195
196 u8 class;
197 u8 instance;
198 u32 context_size;
199 u32 mmio_base;
200 unsigned int irq_shift;
201
202 struct intel_ring *buffer;
203 struct intel_timeline *timeline;
204
205 struct intel_render_state *render_state;
206
207 atomic_t irq_count;
208 unsigned long irq_posted;
209#define ENGINE_IRQ_BREADCRUMB 0
210#define ENGINE_IRQ_EXECLIST 1
211
212 /* Rather than have every client wait upon all user interrupts,
213 * with the herd waking after every interrupt and each doing the
214 * heavyweight seqno dance, we delegate the task (of being the
215 * bottom-half of the user interrupt) to the first client. After
216 * every interrupt, we wake up one client, who does the heavyweight
217 * coherent seqno read and either goes back to sleep (if incomplete),
218 * or wakes up all the completed clients in parallel, before then
219 * transferring the bottom-half status to the next client in the queue.
220 *
221 * Compared to walking the entire list of waiters in a single dedicated
222 * bottom-half, we reduce the latency of the first waiter by avoiding
223 * a context switch, but incur additional coherent seqno reads when
224 * following the chain of request breadcrumbs. Since it is most likely
225 * that we have a single client waiting on each seqno, then reducing
226 * the overhead of waking that client is much preferred.
227 */
228 struct intel_breadcrumbs {
229 spinlock_t irq_lock; /* protects irq_*; irqsafe */
230 struct intel_wait *irq_wait; /* oldest waiter by retirement */
231
232 spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
233 struct rb_root waiters; /* sorted by retirement, priority */
234 struct rb_root signals; /* sorted by retirement */
235 struct task_struct *signaler; /* used for fence signalling */
236 struct drm_i915_gem_request __rcu *first_signal;
237 struct timer_list fake_irq; /* used after a missed interrupt */
238 struct timer_list hangcheck; /* detect missed interrupts */
239
240 unsigned int hangcheck_interrupts;
241
242 bool irq_armed : 1;
243 bool irq_enabled : 1;
244 I915_SELFTEST_DECLARE(bool mock : 1);
245 } breadcrumbs;
246
247 /*
248 * A pool of objects to use as shadow copies of client batch buffers
249 * when the command parser is enabled. Prevents the client from
250 * modifying the batch contents after software parsing.
251 */
252 struct i915_gem_batch_pool batch_pool;
253
254 struct intel_hw_status_page status_page;
255 struct i915_ctx_workarounds wa_ctx;
256 struct i915_vma *scratch;
257
258 u32 irq_keep_mask; /* always keep these interrupts */
259 u32 irq_enable_mask; /* bitmask to enable ring interrupt */
260 void (*irq_enable)(struct intel_engine_cs *engine);
261 void (*irq_disable)(struct intel_engine_cs *engine);
262
263 int (*init_hw)(struct intel_engine_cs *engine);
264 void (*reset_hw)(struct intel_engine_cs *engine,
265 struct drm_i915_gem_request *req);
266
267 void (*set_default_submission)(struct intel_engine_cs *engine);
268
269 struct intel_ring *(*context_pin)(struct intel_engine_cs *engine,
270 struct i915_gem_context *ctx);
271 void (*context_unpin)(struct intel_engine_cs *engine,
272 struct i915_gem_context *ctx);
273 int (*request_alloc)(struct drm_i915_gem_request *req);
274 int (*init_context)(struct drm_i915_gem_request *req);
275
276 int (*emit_flush)(struct drm_i915_gem_request *request,
277 u32 mode);
278#define EMIT_INVALIDATE BIT(0)
279#define EMIT_FLUSH BIT(1)
280#define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
281 int (*emit_bb_start)(struct drm_i915_gem_request *req,
282 u64 offset, u32 length,
283 unsigned int dispatch_flags);
284#define I915_DISPATCH_SECURE BIT(0)
285#define I915_DISPATCH_PINNED BIT(1)
286#define I915_DISPATCH_RS BIT(2)
287 void (*emit_breadcrumb)(struct drm_i915_gem_request *req,
288 u32 *cs);
289 int emit_breadcrumb_sz;
290
291 /* Pass the request to the hardware queue (e.g. directly into
292 * the legacy ringbuffer or to the end of an execlist).
293 *
294 * This is called from an atomic context with irqs disabled; must
295 * be irq safe.
296 */
297 void (*submit_request)(struct drm_i915_gem_request *req);
298
299 /* Call when the priority on a request has changed and it and its
300 * dependencies may need rescheduling. Note the request itself may
301 * not be ready to run!
302 *
303 * Called under the struct_mutex.
304 */
305 void (*schedule)(struct drm_i915_gem_request *request,
306 int priority);
307
308 /* Some chipsets are not quite as coherent as advertised and need
309 * an expensive kick to force a true read of the up-to-date seqno.
310 * However, the up-to-date seqno is not always required and the last
311 * seen value is good enough. Note that the seqno will always be
312 * monotonic, even if not coherent.
313 */
314 void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
315 void (*cleanup)(struct intel_engine_cs *engine);
316
317 /* GEN8 signal/wait table - never trust comments!
318 * signal to signal to signal to signal to signal to
319 * RCS VCS BCS VECS VCS2
320 * --------------------------------------------------------------------
321 * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
322 * |-------------------------------------------------------------------
323 * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
324 * |-------------------------------------------------------------------
325 * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
326 * |-------------------------------------------------------------------
327 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
328 * |-------------------------------------------------------------------
329 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
330 * |-------------------------------------------------------------------
331 *
332 * Generalization:
333 * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
334 * ie. transpose of g(x, y)
335 *
336 * sync from sync from sync from sync from sync from
337 * RCS VCS BCS VECS VCS2
338 * --------------------------------------------------------------------
339 * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
340 * |-------------------------------------------------------------------
341 * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
342 * |-------------------------------------------------------------------
343 * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
344 * |-------------------------------------------------------------------
345 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
346 * |-------------------------------------------------------------------
347 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
348 * |-------------------------------------------------------------------
349 *
350 * Generalization:
351 * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
352 * ie. transpose of f(x, y)
353 */
354 struct {
355 union {
356#define GEN6_SEMAPHORE_LAST VECS_HW
357#define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
358#define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
359 struct {
360 /* our mbox written by others */
361 u32 wait[GEN6_NUM_SEMAPHORES];
362 /* mboxes this ring signals to */
363 i915_reg_t signal[GEN6_NUM_SEMAPHORES];
364 } mbox;
365 u64 signal_ggtt[I915_NUM_ENGINES];
366 };
367
368 /* AKA wait() */
369 int (*sync_to)(struct drm_i915_gem_request *req,
370 struct drm_i915_gem_request *signal);
371 u32 *(*signal)(struct drm_i915_gem_request *req, u32 *cs);
372 } semaphore;
373
374 /* Execlists */
375 struct tasklet_struct irq_tasklet;
376 struct i915_priolist default_priolist;
377 bool no_priolist;
378 struct execlist_port {
379 struct drm_i915_gem_request *request_count;
380#define EXECLIST_COUNT_BITS 2
381#define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
382#define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
383#define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
384#define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
385#define port_set(p, packed) ((p)->request_count = (packed))
386#define port_isset(p) ((p)->request_count)
387#define port_index(p, e) ((p) - (e)->execlist_port)
388 GEM_DEBUG_DECL(u32 context_id);
389 } execlist_port[2];
390 struct rb_root execlist_queue;
391 struct rb_node *execlist_first;
392 unsigned int fw_domains;
393
394 /* Contexts are pinned whilst they are active on the GPU. The last
395 * context executed remains active whilst the GPU is idle - the
396 * switch away and write to the context object only occurs on the
397 * next execution. Contexts are only unpinned on retirement of the
398 * following request ensuring that we can always write to the object
399 * on the context switch even after idling. Across suspend, we switch
400 * to the kernel context and trash it as the save may not happen
401 * before the hardware is powered down.
402 */
403 struct i915_gem_context *last_retired_context;
404
405 /* We track the current MI_SET_CONTEXT in order to eliminate
406 * redudant context switches. This presumes that requests are not
407 * reordered! Or when they are the tracking is updated along with
408 * the emission of individual requests into the legacy command
409 * stream (ring).
410 */
411 struct i915_gem_context *legacy_active_context;
412
413 /* status_notifier: list of callbacks for context-switch changes */
414 struct atomic_notifier_head context_status_notifier;
415
416 struct intel_engine_hangcheck hangcheck;
417
418 bool needs_cmd_parser;
419
420 /*
421 * Table of commands the command parser needs to know about
422 * for this engine.
423 */
424 DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
425
426 /*
427 * Table of registers allowed in commands that read/write registers.
428 */
429 const struct drm_i915_reg_table *reg_tables;
430 int reg_table_count;
431
432 /*
433 * Returns the bitmask for the length field of the specified command.
434 * Return 0 for an unrecognized/invalid command.
435 *
436 * If the command parser finds an entry for a command in the engine's
437 * cmd_tables, it gets the command's length based on the table entry.
438 * If not, it calls this function to determine the per-engine length
439 * field encoding for the command (i.e. different opcode ranges use
440 * certain bits to encode the command length in the header).
441 */
442 u32 (*get_cmd_length_mask)(u32 cmd_header);
443};
444
445static inline unsigned int
446intel_engine_flag(const struct intel_engine_cs *engine)
447{
448 return BIT(engine->id);
449}
450
451static inline u32
452intel_read_status_page(struct intel_engine_cs *engine, int reg)
453{
454 /* Ensure that the compiler doesn't optimize away the load. */
455 return READ_ONCE(engine->status_page.page_addr[reg]);
456}
457
458static inline void
459intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
460{
461 /* Writing into the status page should be done sparingly. Since
462 * we do when we are uncertain of the device state, we take a bit
463 * of extra paranoia to try and ensure that the HWS takes the value
464 * we give and that it doesn't end up trapped inside the CPU!
465 */
466 if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
467 mb();
468 clflush(&engine->status_page.page_addr[reg]);
469 engine->status_page.page_addr[reg] = value;
470 clflush(&engine->status_page.page_addr[reg]);
471 mb();
472 } else {
473 WRITE_ONCE(engine->status_page.page_addr[reg], value);
474 }
475}
476
477/*
478 * Reads a dword out of the status page, which is written to from the command
479 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
480 * MI_STORE_DATA_IMM.
481 *
482 * The following dwords have a reserved meaning:
483 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
484 * 0x04: ring 0 head pointer
485 * 0x05: ring 1 head pointer (915-class)
486 * 0x06: ring 2 head pointer (915-class)
487 * 0x10-0x1b: Context status DWords (GM45)
488 * 0x1f: Last written status offset. (GM45)
489 * 0x20-0x2f: Reserved (Gen6+)
490 *
491 * The area from dword 0x30 to 0x3ff is available for driver usage.
492 */
493#define I915_GEM_HWS_INDEX 0x30
494#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
495#define I915_GEM_HWS_SCRATCH_INDEX 0x40
496#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
497
498struct intel_ring *
499intel_engine_create_ring(struct intel_engine_cs *engine, int size);
500int intel_ring_pin(struct intel_ring *ring,
501 struct drm_i915_private *i915,
502 unsigned int offset_bias);
503void intel_ring_reset(struct intel_ring *ring, u32 tail);
504unsigned int intel_ring_update_space(struct intel_ring *ring);
505void intel_ring_unpin(struct intel_ring *ring);
506void intel_ring_free(struct intel_ring *ring);
507
508void intel_engine_stop(struct intel_engine_cs *engine);
509void intel_engine_cleanup(struct intel_engine_cs *engine);
510
511void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
512
513int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
514
515u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req,
516 unsigned int n);
517
518static inline void
519intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
520{
521 /* Dummy function.
522 *
523 * This serves as a placeholder in the code so that the reader
524 * can compare against the preceding intel_ring_begin() and
525 * check that the number of dwords emitted matches the space
526 * reserved for the command packet (i.e. the value passed to
527 * intel_ring_begin()).
528 */
529 GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
530}
531
532static inline u32
533intel_ring_wrap(const struct intel_ring *ring, u32 pos)
534{
535 return pos & (ring->size - 1);
536}
537
538static inline u32
539intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
540{
541 /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
542 u32 offset = addr - req->ring->vaddr;
543 GEM_BUG_ON(offset > req->ring->size);
544 return intel_ring_wrap(req->ring, offset);
545}
546
547static inline void
548assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
549{
550 /* We could combine these into a single tail operation, but keeping
551 * them as seperate tests will help identify the cause should one
552 * ever fire.
553 */
554 GEM_BUG_ON(!IS_ALIGNED(tail, 8));
555 GEM_BUG_ON(tail >= ring->size);
556
557 /*
558 * "Ring Buffer Use"
559 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6
560 * Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
561 * Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
562 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
563 * same cacheline, the Head Pointer must not be greater than the Tail
564 * Pointer."
565 *
566 * We use ring->head as the last known location of the actual RING_HEAD,
567 * it may have advanced but in the worst case it is equally the same
568 * as ring->head and so we should never program RING_TAIL to advance
569 * into the same cacheline as ring->head.
570 */
571#define cacheline(a) round_down(a, CACHELINE_BYTES)
572 GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
573 tail < ring->head);
574#undef cacheline
575}
576
577static inline unsigned int
578intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
579{
580 /* Whilst writes to the tail are strictly order, there is no
581 * serialisation between readers and the writers. The tail may be
582 * read by i915_gem_request_retire() just as it is being updated
583 * by execlists, as although the breadcrumb is complete, the context
584 * switch hasn't been seen.
585 */
586 assert_ring_tail_valid(ring, tail);
587 ring->tail = tail;
588 return tail;
589}
590
591void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
592
593void intel_engine_setup_common(struct intel_engine_cs *engine);
594int intel_engine_init_common(struct intel_engine_cs *engine);
595int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
596void intel_engine_cleanup_common(struct intel_engine_cs *engine);
597
598int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
599int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
600int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
601int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
602
603u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
604u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
605
606static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
607{
608 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
609}
610
611static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
612{
613 /* We are only peeking at the tail of the submit queue (and not the
614 * queue itself) in order to gain a hint as to the current active
615 * state of the engine. Callers are not expected to be taking
616 * engine->timeline->lock, nor are they expected to be concerned
617 * wtih serialising this hint with anything, so document it as
618 * a hint and nothing more.
619 */
620 return READ_ONCE(engine->timeline->seqno);
621}
622
623int init_workarounds_ring(struct intel_engine_cs *engine);
624int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
625
626void intel_engine_get_instdone(struct intel_engine_cs *engine,
627 struct intel_instdone *instdone);
628
629/*
630 * Arbitrary size for largest possible 'add request' sequence. The code paths
631 * are complex and variable. Empirical measurement shows that the worst case
632 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
633 * we need to allocate double the largest single packet within that emission
634 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
635 */
636#define MIN_SPACE_FOR_ADD_REQUEST 336
637
638static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
639{
640 return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
641}
642
643/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
644int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
645
646static inline void intel_wait_init(struct intel_wait *wait,
647 struct drm_i915_gem_request *rq)
648{
649 wait->tsk = current;
650 wait->request = rq;
651}
652
653static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
654{
655 wait->tsk = current;
656 wait->seqno = seqno;
657}
658
659static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
660{
661 return wait->seqno;
662}
663
664static inline bool
665intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
666{
667 wait->seqno = seqno;
668 return intel_wait_has_seqno(wait);
669}
670
671static inline bool
672intel_wait_update_request(struct intel_wait *wait,
673 const struct drm_i915_gem_request *rq)
674{
675 return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
676}
677
678static inline bool
679intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
680{
681 return wait->seqno == seqno;
682}
683
684static inline bool
685intel_wait_check_request(const struct intel_wait *wait,
686 const struct drm_i915_gem_request *rq)
687{
688 return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
689}
690
691static inline bool intel_wait_complete(const struct intel_wait *wait)
692{
693 return RB_EMPTY_NODE(&wait->node);
694}
695
696bool intel_engine_add_wait(struct intel_engine_cs *engine,
697 struct intel_wait *wait);
698void intel_engine_remove_wait(struct intel_engine_cs *engine,
699 struct intel_wait *wait);
700void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
701 bool wakeup);
702void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
703
704static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
705{
706 return READ_ONCE(engine->breadcrumbs.irq_wait);
707}
708
709unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
710#define ENGINE_WAKEUP_WAITER BIT(0)
711#define ENGINE_WAKEUP_ASLEEP BIT(1)
712
713void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
714void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
715
716void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
717void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
718bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
719
720static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
721{
722 memset(batch, 0, 6 * sizeof(u32));
723
724 batch[0] = GFX_OP_PIPE_CONTROL(6);
725 batch[1] = flags;
726 batch[2] = offset;
727
728 return batch + 6;
729}
730
731bool intel_engine_is_idle(struct intel_engine_cs *engine);
732bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
733
734void intel_engines_mark_idle(struct drm_i915_private *i915);
735void intel_engines_reset_default_submission(struct drm_i915_private *i915);
736
737#endif /* _INTEL_RINGBUFFER_H_ */