]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - drivers/iommu/intel-iommu.c
iommu: Add sysfs bindings for struct iommu_device
[mirror_ubuntu-jammy-kernel.git] / drivers / iommu / intel-iommu.c
... / ...
CommitLineData
1/*
2 * Copyright © 2006-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 * Joerg Roedel <jroedel@suse.de>
19 */
20
21#define pr_fmt(fmt) "DMAR: " fmt
22
23#include <linux/init.h>
24#include <linux/bitmap.h>
25#include <linux/debugfs.h>
26#include <linux/export.h>
27#include <linux/slab.h>
28#include <linux/irq.h>
29#include <linux/interrupt.h>
30#include <linux/spinlock.h>
31#include <linux/pci.h>
32#include <linux/dmar.h>
33#include <linux/dma-mapping.h>
34#include <linux/mempool.h>
35#include <linux/memory.h>
36#include <linux/cpu.h>
37#include <linux/timer.h>
38#include <linux/io.h>
39#include <linux/iova.h>
40#include <linux/iommu.h>
41#include <linux/intel-iommu.h>
42#include <linux/syscore_ops.h>
43#include <linux/tboot.h>
44#include <linux/dmi.h>
45#include <linux/pci-ats.h>
46#include <linux/memblock.h>
47#include <linux/dma-contiguous.h>
48#include <linux/crash_dump.h>
49#include <asm/irq_remapping.h>
50#include <asm/cacheflush.h>
51#include <asm/iommu.h>
52
53#include "irq_remapping.h"
54
55#define ROOT_SIZE VTD_PAGE_SIZE
56#define CONTEXT_SIZE VTD_PAGE_SIZE
57
58#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
59#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
60#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
61#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
62
63#define IOAPIC_RANGE_START (0xfee00000)
64#define IOAPIC_RANGE_END (0xfeefffff)
65#define IOVA_START_ADDR (0x1000)
66
67#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
68
69#define MAX_AGAW_WIDTH 64
70#define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
71
72#define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
73#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
74
75/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
76 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
77#define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
78 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
79#define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
80
81/* IO virtual address start page frame number */
82#define IOVA_START_PFN (1)
83
84#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
85#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
86#define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
87
88/* page table handling */
89#define LEVEL_STRIDE (9)
90#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
91
92/*
93 * This bitmap is used to advertise the page sizes our hardware support
94 * to the IOMMU core, which will then use this information to split
95 * physically contiguous memory regions it is mapping into page sizes
96 * that we support.
97 *
98 * Traditionally the IOMMU core just handed us the mappings directly,
99 * after making sure the size is an order of a 4KiB page and that the
100 * mapping has natural alignment.
101 *
102 * To retain this behavior, we currently advertise that we support
103 * all page sizes that are an order of 4KiB.
104 *
105 * If at some point we'd like to utilize the IOMMU core's new behavior,
106 * we could change this to advertise the real page sizes we support.
107 */
108#define INTEL_IOMMU_PGSIZES (~0xFFFUL)
109
110static inline int agaw_to_level(int agaw)
111{
112 return agaw + 2;
113}
114
115static inline int agaw_to_width(int agaw)
116{
117 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
118}
119
120static inline int width_to_agaw(int width)
121{
122 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
123}
124
125static inline unsigned int level_to_offset_bits(int level)
126{
127 return (level - 1) * LEVEL_STRIDE;
128}
129
130static inline int pfn_level_offset(unsigned long pfn, int level)
131{
132 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
133}
134
135static inline unsigned long level_mask(int level)
136{
137 return -1UL << level_to_offset_bits(level);
138}
139
140static inline unsigned long level_size(int level)
141{
142 return 1UL << level_to_offset_bits(level);
143}
144
145static inline unsigned long align_to_level(unsigned long pfn, int level)
146{
147 return (pfn + level_size(level) - 1) & level_mask(level);
148}
149
150static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
151{
152 return 1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
153}
154
155/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
156 are never going to work. */
157static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
158{
159 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
160}
161
162static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
163{
164 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
165}
166static inline unsigned long page_to_dma_pfn(struct page *pg)
167{
168 return mm_to_dma_pfn(page_to_pfn(pg));
169}
170static inline unsigned long virt_to_dma_pfn(void *p)
171{
172 return page_to_dma_pfn(virt_to_page(p));
173}
174
175/* global iommu list, set NULL for ignored DMAR units */
176static struct intel_iommu **g_iommus;
177
178static void __init check_tylersburg_isoch(void);
179static int rwbf_quirk;
180
181/*
182 * set to 1 to panic kernel if can't successfully enable VT-d
183 * (used when kernel is launched w/ TXT)
184 */
185static int force_on = 0;
186
187/*
188 * 0: Present
189 * 1-11: Reserved
190 * 12-63: Context Ptr (12 - (haw-1))
191 * 64-127: Reserved
192 */
193struct root_entry {
194 u64 lo;
195 u64 hi;
196};
197#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
198
199/*
200 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
201 * if marked present.
202 */
203static phys_addr_t root_entry_lctp(struct root_entry *re)
204{
205 if (!(re->lo & 1))
206 return 0;
207
208 return re->lo & VTD_PAGE_MASK;
209}
210
211/*
212 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
213 * if marked present.
214 */
215static phys_addr_t root_entry_uctp(struct root_entry *re)
216{
217 if (!(re->hi & 1))
218 return 0;
219
220 return re->hi & VTD_PAGE_MASK;
221}
222/*
223 * low 64 bits:
224 * 0: present
225 * 1: fault processing disable
226 * 2-3: translation type
227 * 12-63: address space root
228 * high 64 bits:
229 * 0-2: address width
230 * 3-6: aval
231 * 8-23: domain id
232 */
233struct context_entry {
234 u64 lo;
235 u64 hi;
236};
237
238static inline void context_clear_pasid_enable(struct context_entry *context)
239{
240 context->lo &= ~(1ULL << 11);
241}
242
243static inline bool context_pasid_enabled(struct context_entry *context)
244{
245 return !!(context->lo & (1ULL << 11));
246}
247
248static inline void context_set_copied(struct context_entry *context)
249{
250 context->hi |= (1ull << 3);
251}
252
253static inline bool context_copied(struct context_entry *context)
254{
255 return !!(context->hi & (1ULL << 3));
256}
257
258static inline bool __context_present(struct context_entry *context)
259{
260 return (context->lo & 1);
261}
262
263static inline bool context_present(struct context_entry *context)
264{
265 return context_pasid_enabled(context) ?
266 __context_present(context) :
267 __context_present(context) && !context_copied(context);
268}
269
270static inline void context_set_present(struct context_entry *context)
271{
272 context->lo |= 1;
273}
274
275static inline void context_set_fault_enable(struct context_entry *context)
276{
277 context->lo &= (((u64)-1) << 2) | 1;
278}
279
280static inline void context_set_translation_type(struct context_entry *context,
281 unsigned long value)
282{
283 context->lo &= (((u64)-1) << 4) | 3;
284 context->lo |= (value & 3) << 2;
285}
286
287static inline void context_set_address_root(struct context_entry *context,
288 unsigned long value)
289{
290 context->lo &= ~VTD_PAGE_MASK;
291 context->lo |= value & VTD_PAGE_MASK;
292}
293
294static inline void context_set_address_width(struct context_entry *context,
295 unsigned long value)
296{
297 context->hi |= value & 7;
298}
299
300static inline void context_set_domain_id(struct context_entry *context,
301 unsigned long value)
302{
303 context->hi |= (value & ((1 << 16) - 1)) << 8;
304}
305
306static inline int context_domain_id(struct context_entry *c)
307{
308 return((c->hi >> 8) & 0xffff);
309}
310
311static inline void context_clear_entry(struct context_entry *context)
312{
313 context->lo = 0;
314 context->hi = 0;
315}
316
317/*
318 * 0: readable
319 * 1: writable
320 * 2-6: reserved
321 * 7: super page
322 * 8-10: available
323 * 11: snoop behavior
324 * 12-63: Host physcial address
325 */
326struct dma_pte {
327 u64 val;
328};
329
330static inline void dma_clear_pte(struct dma_pte *pte)
331{
332 pte->val = 0;
333}
334
335static inline u64 dma_pte_addr(struct dma_pte *pte)
336{
337#ifdef CONFIG_64BIT
338 return pte->val & VTD_PAGE_MASK;
339#else
340 /* Must have a full atomic 64-bit read */
341 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
342#endif
343}
344
345static inline bool dma_pte_present(struct dma_pte *pte)
346{
347 return (pte->val & 3) != 0;
348}
349
350static inline bool dma_pte_superpage(struct dma_pte *pte)
351{
352 return (pte->val & DMA_PTE_LARGE_PAGE);
353}
354
355static inline int first_pte_in_page(struct dma_pte *pte)
356{
357 return !((unsigned long)pte & ~VTD_PAGE_MASK);
358}
359
360/*
361 * This domain is a statically identity mapping domain.
362 * 1. This domain creats a static 1:1 mapping to all usable memory.
363 * 2. It maps to each iommu if successful.
364 * 3. Each iommu mapps to this domain if successful.
365 */
366static struct dmar_domain *si_domain;
367static int hw_pass_through = 1;
368
369/*
370 * Domain represents a virtual machine, more than one devices
371 * across iommus may be owned in one domain, e.g. kvm guest.
372 */
373#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
374
375/* si_domain contains mulitple devices */
376#define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
377
378#define for_each_domain_iommu(idx, domain) \
379 for (idx = 0; idx < g_num_of_iommus; idx++) \
380 if (domain->iommu_refcnt[idx])
381
382struct dmar_domain {
383 int nid; /* node id */
384
385 unsigned iommu_refcnt[DMAR_UNITS_SUPPORTED];
386 /* Refcount of devices per iommu */
387
388
389 u16 iommu_did[DMAR_UNITS_SUPPORTED];
390 /* Domain ids per IOMMU. Use u16 since
391 * domain ids are 16 bit wide according
392 * to VT-d spec, section 9.3 */
393
394 bool has_iotlb_device;
395 struct list_head devices; /* all devices' list */
396 struct iova_domain iovad; /* iova's that belong to this domain */
397
398 struct dma_pte *pgd; /* virtual address */
399 int gaw; /* max guest address width */
400
401 /* adjusted guest address width, 0 is level 2 30-bit */
402 int agaw;
403
404 int flags; /* flags to find out type of domain */
405
406 int iommu_coherency;/* indicate coherency of iommu access */
407 int iommu_snooping; /* indicate snooping control feature*/
408 int iommu_count; /* reference count of iommu */
409 int iommu_superpage;/* Level of superpages supported:
410 0 == 4KiB (no superpages), 1 == 2MiB,
411 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
412 u64 max_addr; /* maximum mapped address */
413
414 struct iommu_domain domain; /* generic domain data structure for
415 iommu core */
416};
417
418/* PCI domain-device relationship */
419struct device_domain_info {
420 struct list_head link; /* link to domain siblings */
421 struct list_head global; /* link to global list */
422 u8 bus; /* PCI bus number */
423 u8 devfn; /* PCI devfn number */
424 u8 pasid_supported:3;
425 u8 pasid_enabled:1;
426 u8 pri_supported:1;
427 u8 pri_enabled:1;
428 u8 ats_supported:1;
429 u8 ats_enabled:1;
430 u8 ats_qdep;
431 struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
432 struct intel_iommu *iommu; /* IOMMU used by this device */
433 struct dmar_domain *domain; /* pointer to domain */
434};
435
436struct dmar_rmrr_unit {
437 struct list_head list; /* list of rmrr units */
438 struct acpi_dmar_header *hdr; /* ACPI header */
439 u64 base_address; /* reserved base address*/
440 u64 end_address; /* reserved end address */
441 struct dmar_dev_scope *devices; /* target devices */
442 int devices_cnt; /* target device count */
443};
444
445struct dmar_atsr_unit {
446 struct list_head list; /* list of ATSR units */
447 struct acpi_dmar_header *hdr; /* ACPI header */
448 struct dmar_dev_scope *devices; /* target devices */
449 int devices_cnt; /* target device count */
450 u8 include_all:1; /* include all ports */
451};
452
453static LIST_HEAD(dmar_atsr_units);
454static LIST_HEAD(dmar_rmrr_units);
455
456#define for_each_rmrr_units(rmrr) \
457 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
458
459static void flush_unmaps_timeout(unsigned long data);
460
461struct deferred_flush_entry {
462 unsigned long iova_pfn;
463 unsigned long nrpages;
464 struct dmar_domain *domain;
465 struct page *freelist;
466};
467
468#define HIGH_WATER_MARK 250
469struct deferred_flush_table {
470 int next;
471 struct deferred_flush_entry entries[HIGH_WATER_MARK];
472};
473
474struct deferred_flush_data {
475 spinlock_t lock;
476 int timer_on;
477 struct timer_list timer;
478 long size;
479 struct deferred_flush_table *tables;
480};
481
482DEFINE_PER_CPU(struct deferred_flush_data, deferred_flush);
483
484/* bitmap for indexing intel_iommus */
485static int g_num_of_iommus;
486
487static void domain_exit(struct dmar_domain *domain);
488static void domain_remove_dev_info(struct dmar_domain *domain);
489static void dmar_remove_one_dev_info(struct dmar_domain *domain,
490 struct device *dev);
491static void __dmar_remove_one_dev_info(struct device_domain_info *info);
492static void domain_context_clear(struct intel_iommu *iommu,
493 struct device *dev);
494static int domain_detach_iommu(struct dmar_domain *domain,
495 struct intel_iommu *iommu);
496
497#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
498int dmar_disabled = 0;
499#else
500int dmar_disabled = 1;
501#endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
502
503int intel_iommu_enabled = 0;
504EXPORT_SYMBOL_GPL(intel_iommu_enabled);
505
506static int dmar_map_gfx = 1;
507static int dmar_forcedac;
508static int intel_iommu_strict;
509static int intel_iommu_superpage = 1;
510static int intel_iommu_ecs = 1;
511static int intel_iommu_pasid28;
512static int iommu_identity_mapping;
513
514#define IDENTMAP_ALL 1
515#define IDENTMAP_GFX 2
516#define IDENTMAP_AZALIA 4
517
518/* Broadwell and Skylake have broken ECS support — normal so-called "second
519 * level" translation of DMA requests-without-PASID doesn't actually happen
520 * unless you also set the NESTE bit in an extended context-entry. Which of
521 * course means that SVM doesn't work because it's trying to do nested
522 * translation of the physical addresses it finds in the process page tables,
523 * through the IOVA->phys mapping found in the "second level" page tables.
524 *
525 * The VT-d specification was retroactively changed to change the definition
526 * of the capability bits and pretend that Broadwell/Skylake never happened...
527 * but unfortunately the wrong bit was changed. It's ECS which is broken, but
528 * for some reason it was the PASID capability bit which was redefined (from
529 * bit 28 on BDW/SKL to bit 40 in future).
530 *
531 * So our test for ECS needs to eschew those implementations which set the old
532 * PASID capabiity bit 28, since those are the ones on which ECS is broken.
533 * Unless we are working around the 'pasid28' limitations, that is, by putting
534 * the device into passthrough mode for normal DMA and thus masking the bug.
535 */
536#define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
537 (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
538/* PASID support is thus enabled if ECS is enabled and *either* of the old
539 * or new capability bits are set. */
540#define pasid_enabled(iommu) (ecs_enabled(iommu) && \
541 (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
542
543int intel_iommu_gfx_mapped;
544EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
545
546#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
547static DEFINE_SPINLOCK(device_domain_lock);
548static LIST_HEAD(device_domain_list);
549
550const struct iommu_ops intel_iommu_ops;
551
552static bool translation_pre_enabled(struct intel_iommu *iommu)
553{
554 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
555}
556
557static void clear_translation_pre_enabled(struct intel_iommu *iommu)
558{
559 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
560}
561
562static void init_translation_status(struct intel_iommu *iommu)
563{
564 u32 gsts;
565
566 gsts = readl(iommu->reg + DMAR_GSTS_REG);
567 if (gsts & DMA_GSTS_TES)
568 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
569}
570
571/* Convert generic 'struct iommu_domain to private struct dmar_domain */
572static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
573{
574 return container_of(dom, struct dmar_domain, domain);
575}
576
577static int __init intel_iommu_setup(char *str)
578{
579 if (!str)
580 return -EINVAL;
581 while (*str) {
582 if (!strncmp(str, "on", 2)) {
583 dmar_disabled = 0;
584 pr_info("IOMMU enabled\n");
585 } else if (!strncmp(str, "off", 3)) {
586 dmar_disabled = 1;
587 pr_info("IOMMU disabled\n");
588 } else if (!strncmp(str, "igfx_off", 8)) {
589 dmar_map_gfx = 0;
590 pr_info("Disable GFX device mapping\n");
591 } else if (!strncmp(str, "forcedac", 8)) {
592 pr_info("Forcing DAC for PCI devices\n");
593 dmar_forcedac = 1;
594 } else if (!strncmp(str, "strict", 6)) {
595 pr_info("Disable batched IOTLB flush\n");
596 intel_iommu_strict = 1;
597 } else if (!strncmp(str, "sp_off", 6)) {
598 pr_info("Disable supported super page\n");
599 intel_iommu_superpage = 0;
600 } else if (!strncmp(str, "ecs_off", 7)) {
601 printk(KERN_INFO
602 "Intel-IOMMU: disable extended context table support\n");
603 intel_iommu_ecs = 0;
604 } else if (!strncmp(str, "pasid28", 7)) {
605 printk(KERN_INFO
606 "Intel-IOMMU: enable pre-production PASID support\n");
607 intel_iommu_pasid28 = 1;
608 iommu_identity_mapping |= IDENTMAP_GFX;
609 }
610
611 str += strcspn(str, ",");
612 while (*str == ',')
613 str++;
614 }
615 return 0;
616}
617__setup("intel_iommu=", intel_iommu_setup);
618
619static struct kmem_cache *iommu_domain_cache;
620static struct kmem_cache *iommu_devinfo_cache;
621
622static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
623{
624 struct dmar_domain **domains;
625 int idx = did >> 8;
626
627 domains = iommu->domains[idx];
628 if (!domains)
629 return NULL;
630
631 return domains[did & 0xff];
632}
633
634static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
635 struct dmar_domain *domain)
636{
637 struct dmar_domain **domains;
638 int idx = did >> 8;
639
640 if (!iommu->domains[idx]) {
641 size_t size = 256 * sizeof(struct dmar_domain *);
642 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
643 }
644
645 domains = iommu->domains[idx];
646 if (WARN_ON(!domains))
647 return;
648 else
649 domains[did & 0xff] = domain;
650}
651
652static inline void *alloc_pgtable_page(int node)
653{
654 struct page *page;
655 void *vaddr = NULL;
656
657 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
658 if (page)
659 vaddr = page_address(page);
660 return vaddr;
661}
662
663static inline void free_pgtable_page(void *vaddr)
664{
665 free_page((unsigned long)vaddr);
666}
667
668static inline void *alloc_domain_mem(void)
669{
670 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
671}
672
673static void free_domain_mem(void *vaddr)
674{
675 kmem_cache_free(iommu_domain_cache, vaddr);
676}
677
678static inline void * alloc_devinfo_mem(void)
679{
680 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
681}
682
683static inline void free_devinfo_mem(void *vaddr)
684{
685 kmem_cache_free(iommu_devinfo_cache, vaddr);
686}
687
688static inline int domain_type_is_vm(struct dmar_domain *domain)
689{
690 return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
691}
692
693static inline int domain_type_is_si(struct dmar_domain *domain)
694{
695 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
696}
697
698static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
699{
700 return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
701 DOMAIN_FLAG_STATIC_IDENTITY);
702}
703
704static inline int domain_pfn_supported(struct dmar_domain *domain,
705 unsigned long pfn)
706{
707 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
708
709 return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
710}
711
712static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
713{
714 unsigned long sagaw;
715 int agaw = -1;
716
717 sagaw = cap_sagaw(iommu->cap);
718 for (agaw = width_to_agaw(max_gaw);
719 agaw >= 0; agaw--) {
720 if (test_bit(agaw, &sagaw))
721 break;
722 }
723
724 return agaw;
725}
726
727/*
728 * Calculate max SAGAW for each iommu.
729 */
730int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
731{
732 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
733}
734
735/*
736 * calculate agaw for each iommu.
737 * "SAGAW" may be different across iommus, use a default agaw, and
738 * get a supported less agaw for iommus that don't support the default agaw.
739 */
740int iommu_calculate_agaw(struct intel_iommu *iommu)
741{
742 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
743}
744
745/* This functionin only returns single iommu in a domain */
746static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
747{
748 int iommu_id;
749
750 /* si_domain and vm domain should not get here. */
751 BUG_ON(domain_type_is_vm_or_si(domain));
752 for_each_domain_iommu(iommu_id, domain)
753 break;
754
755 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
756 return NULL;
757
758 return g_iommus[iommu_id];
759}
760
761static void domain_update_iommu_coherency(struct dmar_domain *domain)
762{
763 struct dmar_drhd_unit *drhd;
764 struct intel_iommu *iommu;
765 bool found = false;
766 int i;
767
768 domain->iommu_coherency = 1;
769
770 for_each_domain_iommu(i, domain) {
771 found = true;
772 if (!ecap_coherent(g_iommus[i]->ecap)) {
773 domain->iommu_coherency = 0;
774 break;
775 }
776 }
777 if (found)
778 return;
779
780 /* No hardware attached; use lowest common denominator */
781 rcu_read_lock();
782 for_each_active_iommu(iommu, drhd) {
783 if (!ecap_coherent(iommu->ecap)) {
784 domain->iommu_coherency = 0;
785 break;
786 }
787 }
788 rcu_read_unlock();
789}
790
791static int domain_update_iommu_snooping(struct intel_iommu *skip)
792{
793 struct dmar_drhd_unit *drhd;
794 struct intel_iommu *iommu;
795 int ret = 1;
796
797 rcu_read_lock();
798 for_each_active_iommu(iommu, drhd) {
799 if (iommu != skip) {
800 if (!ecap_sc_support(iommu->ecap)) {
801 ret = 0;
802 break;
803 }
804 }
805 }
806 rcu_read_unlock();
807
808 return ret;
809}
810
811static int domain_update_iommu_superpage(struct intel_iommu *skip)
812{
813 struct dmar_drhd_unit *drhd;
814 struct intel_iommu *iommu;
815 int mask = 0xf;
816
817 if (!intel_iommu_superpage) {
818 return 0;
819 }
820
821 /* set iommu_superpage to the smallest common denominator */
822 rcu_read_lock();
823 for_each_active_iommu(iommu, drhd) {
824 if (iommu != skip) {
825 mask &= cap_super_page_val(iommu->cap);
826 if (!mask)
827 break;
828 }
829 }
830 rcu_read_unlock();
831
832 return fls(mask);
833}
834
835/* Some capabilities may be different across iommus */
836static void domain_update_iommu_cap(struct dmar_domain *domain)
837{
838 domain_update_iommu_coherency(domain);
839 domain->iommu_snooping = domain_update_iommu_snooping(NULL);
840 domain->iommu_superpage = domain_update_iommu_superpage(NULL);
841}
842
843static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
844 u8 bus, u8 devfn, int alloc)
845{
846 struct root_entry *root = &iommu->root_entry[bus];
847 struct context_entry *context;
848 u64 *entry;
849
850 entry = &root->lo;
851 if (ecs_enabled(iommu)) {
852 if (devfn >= 0x80) {
853 devfn -= 0x80;
854 entry = &root->hi;
855 }
856 devfn *= 2;
857 }
858 if (*entry & 1)
859 context = phys_to_virt(*entry & VTD_PAGE_MASK);
860 else {
861 unsigned long phy_addr;
862 if (!alloc)
863 return NULL;
864
865 context = alloc_pgtable_page(iommu->node);
866 if (!context)
867 return NULL;
868
869 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
870 phy_addr = virt_to_phys((void *)context);
871 *entry = phy_addr | 1;
872 __iommu_flush_cache(iommu, entry, sizeof(*entry));
873 }
874 return &context[devfn];
875}
876
877static int iommu_dummy(struct device *dev)
878{
879 return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
880}
881
882static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
883{
884 struct dmar_drhd_unit *drhd = NULL;
885 struct intel_iommu *iommu;
886 struct device *tmp;
887 struct pci_dev *ptmp, *pdev = NULL;
888 u16 segment = 0;
889 int i;
890
891 if (iommu_dummy(dev))
892 return NULL;
893
894 if (dev_is_pci(dev)) {
895 struct pci_dev *pf_pdev;
896
897 pdev = to_pci_dev(dev);
898 /* VFs aren't listed in scope tables; we need to look up
899 * the PF instead to find the IOMMU. */
900 pf_pdev = pci_physfn(pdev);
901 dev = &pf_pdev->dev;
902 segment = pci_domain_nr(pdev->bus);
903 } else if (has_acpi_companion(dev))
904 dev = &ACPI_COMPANION(dev)->dev;
905
906 rcu_read_lock();
907 for_each_active_iommu(iommu, drhd) {
908 if (pdev && segment != drhd->segment)
909 continue;
910
911 for_each_active_dev_scope(drhd->devices,
912 drhd->devices_cnt, i, tmp) {
913 if (tmp == dev) {
914 /* For a VF use its original BDF# not that of the PF
915 * which we used for the IOMMU lookup. Strictly speaking
916 * we could do this for all PCI devices; we only need to
917 * get the BDF# from the scope table for ACPI matches. */
918 if (pdev->is_virtfn)
919 goto got_pdev;
920
921 *bus = drhd->devices[i].bus;
922 *devfn = drhd->devices[i].devfn;
923 goto out;
924 }
925
926 if (!pdev || !dev_is_pci(tmp))
927 continue;
928
929 ptmp = to_pci_dev(tmp);
930 if (ptmp->subordinate &&
931 ptmp->subordinate->number <= pdev->bus->number &&
932 ptmp->subordinate->busn_res.end >= pdev->bus->number)
933 goto got_pdev;
934 }
935
936 if (pdev && drhd->include_all) {
937 got_pdev:
938 *bus = pdev->bus->number;
939 *devfn = pdev->devfn;
940 goto out;
941 }
942 }
943 iommu = NULL;
944 out:
945 rcu_read_unlock();
946
947 return iommu;
948}
949
950static void domain_flush_cache(struct dmar_domain *domain,
951 void *addr, int size)
952{
953 if (!domain->iommu_coherency)
954 clflush_cache_range(addr, size);
955}
956
957static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
958{
959 struct context_entry *context;
960 int ret = 0;
961 unsigned long flags;
962
963 spin_lock_irqsave(&iommu->lock, flags);
964 context = iommu_context_addr(iommu, bus, devfn, 0);
965 if (context)
966 ret = context_present(context);
967 spin_unlock_irqrestore(&iommu->lock, flags);
968 return ret;
969}
970
971static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
972{
973 struct context_entry *context;
974 unsigned long flags;
975
976 spin_lock_irqsave(&iommu->lock, flags);
977 context = iommu_context_addr(iommu, bus, devfn, 0);
978 if (context) {
979 context_clear_entry(context);
980 __iommu_flush_cache(iommu, context, sizeof(*context));
981 }
982 spin_unlock_irqrestore(&iommu->lock, flags);
983}
984
985static void free_context_table(struct intel_iommu *iommu)
986{
987 int i;
988 unsigned long flags;
989 struct context_entry *context;
990
991 spin_lock_irqsave(&iommu->lock, flags);
992 if (!iommu->root_entry) {
993 goto out;
994 }
995 for (i = 0; i < ROOT_ENTRY_NR; i++) {
996 context = iommu_context_addr(iommu, i, 0, 0);
997 if (context)
998 free_pgtable_page(context);
999
1000 if (!ecs_enabled(iommu))
1001 continue;
1002
1003 context = iommu_context_addr(iommu, i, 0x80, 0);
1004 if (context)
1005 free_pgtable_page(context);
1006
1007 }
1008 free_pgtable_page(iommu->root_entry);
1009 iommu->root_entry = NULL;
1010out:
1011 spin_unlock_irqrestore(&iommu->lock, flags);
1012}
1013
1014static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
1015 unsigned long pfn, int *target_level)
1016{
1017 struct dma_pte *parent, *pte = NULL;
1018 int level = agaw_to_level(domain->agaw);
1019 int offset;
1020
1021 BUG_ON(!domain->pgd);
1022
1023 if (!domain_pfn_supported(domain, pfn))
1024 /* Address beyond IOMMU's addressing capabilities. */
1025 return NULL;
1026
1027 parent = domain->pgd;
1028
1029 while (1) {
1030 void *tmp_page;
1031
1032 offset = pfn_level_offset(pfn, level);
1033 pte = &parent[offset];
1034 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1035 break;
1036 if (level == *target_level)
1037 break;
1038
1039 if (!dma_pte_present(pte)) {
1040 uint64_t pteval;
1041
1042 tmp_page = alloc_pgtable_page(domain->nid);
1043
1044 if (!tmp_page)
1045 return NULL;
1046
1047 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1048 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1049 if (cmpxchg64(&pte->val, 0ULL, pteval))
1050 /* Someone else set it while we were thinking; use theirs. */
1051 free_pgtable_page(tmp_page);
1052 else
1053 domain_flush_cache(domain, pte, sizeof(*pte));
1054 }
1055 if (level == 1)
1056 break;
1057
1058 parent = phys_to_virt(dma_pte_addr(pte));
1059 level--;
1060 }
1061
1062 if (!*target_level)
1063 *target_level = level;
1064
1065 return pte;
1066}
1067
1068
1069/* return address's pte at specific level */
1070static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1071 unsigned long pfn,
1072 int level, int *large_page)
1073{
1074 struct dma_pte *parent, *pte = NULL;
1075 int total = agaw_to_level(domain->agaw);
1076 int offset;
1077
1078 parent = domain->pgd;
1079 while (level <= total) {
1080 offset = pfn_level_offset(pfn, total);
1081 pte = &parent[offset];
1082 if (level == total)
1083 return pte;
1084
1085 if (!dma_pte_present(pte)) {
1086 *large_page = total;
1087 break;
1088 }
1089
1090 if (dma_pte_superpage(pte)) {
1091 *large_page = total;
1092 return pte;
1093 }
1094
1095 parent = phys_to_virt(dma_pte_addr(pte));
1096 total--;
1097 }
1098 return NULL;
1099}
1100
1101/* clear last level pte, a tlb flush should be followed */
1102static void dma_pte_clear_range(struct dmar_domain *domain,
1103 unsigned long start_pfn,
1104 unsigned long last_pfn)
1105{
1106 unsigned int large_page = 1;
1107 struct dma_pte *first_pte, *pte;
1108
1109 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1110 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1111 BUG_ON(start_pfn > last_pfn);
1112
1113 /* we don't need lock here; nobody else touches the iova range */
1114 do {
1115 large_page = 1;
1116 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1117 if (!pte) {
1118 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1119 continue;
1120 }
1121 do {
1122 dma_clear_pte(pte);
1123 start_pfn += lvl_to_nr_pages(large_page);
1124 pte++;
1125 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1126
1127 domain_flush_cache(domain, first_pte,
1128 (void *)pte - (void *)first_pte);
1129
1130 } while (start_pfn && start_pfn <= last_pfn);
1131}
1132
1133static void dma_pte_free_level(struct dmar_domain *domain, int level,
1134 struct dma_pte *pte, unsigned long pfn,
1135 unsigned long start_pfn, unsigned long last_pfn)
1136{
1137 pfn = max(start_pfn, pfn);
1138 pte = &pte[pfn_level_offset(pfn, level)];
1139
1140 do {
1141 unsigned long level_pfn;
1142 struct dma_pte *level_pte;
1143
1144 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1145 goto next;
1146
1147 level_pfn = pfn & level_mask(level - 1);
1148 level_pte = phys_to_virt(dma_pte_addr(pte));
1149
1150 if (level > 2)
1151 dma_pte_free_level(domain, level - 1, level_pte,
1152 level_pfn, start_pfn, last_pfn);
1153
1154 /* If range covers entire pagetable, free it */
1155 if (!(start_pfn > level_pfn ||
1156 last_pfn < level_pfn + level_size(level) - 1)) {
1157 dma_clear_pte(pte);
1158 domain_flush_cache(domain, pte, sizeof(*pte));
1159 free_pgtable_page(level_pte);
1160 }
1161next:
1162 pfn += level_size(level);
1163 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1164}
1165
1166/* clear last level (leaf) ptes and free page table pages. */
1167static void dma_pte_free_pagetable(struct dmar_domain *domain,
1168 unsigned long start_pfn,
1169 unsigned long last_pfn)
1170{
1171 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1172 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1173 BUG_ON(start_pfn > last_pfn);
1174
1175 dma_pte_clear_range(domain, start_pfn, last_pfn);
1176
1177 /* We don't need lock here; nobody else touches the iova range */
1178 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1179 domain->pgd, 0, start_pfn, last_pfn);
1180
1181 /* free pgd */
1182 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1183 free_pgtable_page(domain->pgd);
1184 domain->pgd = NULL;
1185 }
1186}
1187
1188/* When a page at a given level is being unlinked from its parent, we don't
1189 need to *modify* it at all. All we need to do is make a list of all the
1190 pages which can be freed just as soon as we've flushed the IOTLB and we
1191 know the hardware page-walk will no longer touch them.
1192 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1193 be freed. */
1194static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1195 int level, struct dma_pte *pte,
1196 struct page *freelist)
1197{
1198 struct page *pg;
1199
1200 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1201 pg->freelist = freelist;
1202 freelist = pg;
1203
1204 if (level == 1)
1205 return freelist;
1206
1207 pte = page_address(pg);
1208 do {
1209 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1210 freelist = dma_pte_list_pagetables(domain, level - 1,
1211 pte, freelist);
1212 pte++;
1213 } while (!first_pte_in_page(pte));
1214
1215 return freelist;
1216}
1217
1218static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1219 struct dma_pte *pte, unsigned long pfn,
1220 unsigned long start_pfn,
1221 unsigned long last_pfn,
1222 struct page *freelist)
1223{
1224 struct dma_pte *first_pte = NULL, *last_pte = NULL;
1225
1226 pfn = max(start_pfn, pfn);
1227 pte = &pte[pfn_level_offset(pfn, level)];
1228
1229 do {
1230 unsigned long level_pfn;
1231
1232 if (!dma_pte_present(pte))
1233 goto next;
1234
1235 level_pfn = pfn & level_mask(level);
1236
1237 /* If range covers entire pagetable, free it */
1238 if (start_pfn <= level_pfn &&
1239 last_pfn >= level_pfn + level_size(level) - 1) {
1240 /* These suborbinate page tables are going away entirely. Don't
1241 bother to clear them; we're just going to *free* them. */
1242 if (level > 1 && !dma_pte_superpage(pte))
1243 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1244
1245 dma_clear_pte(pte);
1246 if (!first_pte)
1247 first_pte = pte;
1248 last_pte = pte;
1249 } else if (level > 1) {
1250 /* Recurse down into a level that isn't *entirely* obsolete */
1251 freelist = dma_pte_clear_level(domain, level - 1,
1252 phys_to_virt(dma_pte_addr(pte)),
1253 level_pfn, start_pfn, last_pfn,
1254 freelist);
1255 }
1256next:
1257 pfn += level_size(level);
1258 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1259
1260 if (first_pte)
1261 domain_flush_cache(domain, first_pte,
1262 (void *)++last_pte - (void *)first_pte);
1263
1264 return freelist;
1265}
1266
1267/* We can't just free the pages because the IOMMU may still be walking
1268 the page tables, and may have cached the intermediate levels. The
1269 pages can only be freed after the IOTLB flush has been done. */
1270static struct page *domain_unmap(struct dmar_domain *domain,
1271 unsigned long start_pfn,
1272 unsigned long last_pfn)
1273{
1274 struct page *freelist = NULL;
1275
1276 BUG_ON(!domain_pfn_supported(domain, start_pfn));
1277 BUG_ON(!domain_pfn_supported(domain, last_pfn));
1278 BUG_ON(start_pfn > last_pfn);
1279
1280 /* we don't need lock here; nobody else touches the iova range */
1281 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1282 domain->pgd, 0, start_pfn, last_pfn, NULL);
1283
1284 /* free pgd */
1285 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1286 struct page *pgd_page = virt_to_page(domain->pgd);
1287 pgd_page->freelist = freelist;
1288 freelist = pgd_page;
1289
1290 domain->pgd = NULL;
1291 }
1292
1293 return freelist;
1294}
1295
1296static void dma_free_pagelist(struct page *freelist)
1297{
1298 struct page *pg;
1299
1300 while ((pg = freelist)) {
1301 freelist = pg->freelist;
1302 free_pgtable_page(page_address(pg));
1303 }
1304}
1305
1306/* iommu handling */
1307static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1308{
1309 struct root_entry *root;
1310 unsigned long flags;
1311
1312 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1313 if (!root) {
1314 pr_err("Allocating root entry for %s failed\n",
1315 iommu->name);
1316 return -ENOMEM;
1317 }
1318
1319 __iommu_flush_cache(iommu, root, ROOT_SIZE);
1320
1321 spin_lock_irqsave(&iommu->lock, flags);
1322 iommu->root_entry = root;
1323 spin_unlock_irqrestore(&iommu->lock, flags);
1324
1325 return 0;
1326}
1327
1328static void iommu_set_root_entry(struct intel_iommu *iommu)
1329{
1330 u64 addr;
1331 u32 sts;
1332 unsigned long flag;
1333
1334 addr = virt_to_phys(iommu->root_entry);
1335 if (ecs_enabled(iommu))
1336 addr |= DMA_RTADDR_RTT;
1337
1338 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1339 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1340
1341 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1342
1343 /* Make sure hardware complete it */
1344 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1345 readl, (sts & DMA_GSTS_RTPS), sts);
1346
1347 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1348}
1349
1350static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1351{
1352 u32 val;
1353 unsigned long flag;
1354
1355 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1356 return;
1357
1358 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1359 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1360
1361 /* Make sure hardware complete it */
1362 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1363 readl, (!(val & DMA_GSTS_WBFS)), val);
1364
1365 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1366}
1367
1368/* return value determine if we need a write buffer flush */
1369static void __iommu_flush_context(struct intel_iommu *iommu,
1370 u16 did, u16 source_id, u8 function_mask,
1371 u64 type)
1372{
1373 u64 val = 0;
1374 unsigned long flag;
1375
1376 switch (type) {
1377 case DMA_CCMD_GLOBAL_INVL:
1378 val = DMA_CCMD_GLOBAL_INVL;
1379 break;
1380 case DMA_CCMD_DOMAIN_INVL:
1381 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1382 break;
1383 case DMA_CCMD_DEVICE_INVL:
1384 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1385 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1386 break;
1387 default:
1388 BUG();
1389 }
1390 val |= DMA_CCMD_ICC;
1391
1392 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1393 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1394
1395 /* Make sure hardware complete it */
1396 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1397 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1398
1399 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1400}
1401
1402/* return value determine if we need a write buffer flush */
1403static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1404 u64 addr, unsigned int size_order, u64 type)
1405{
1406 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1407 u64 val = 0, val_iva = 0;
1408 unsigned long flag;
1409
1410 switch (type) {
1411 case DMA_TLB_GLOBAL_FLUSH:
1412 /* global flush doesn't need set IVA_REG */
1413 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1414 break;
1415 case DMA_TLB_DSI_FLUSH:
1416 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1417 break;
1418 case DMA_TLB_PSI_FLUSH:
1419 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1420 /* IH bit is passed in as part of address */
1421 val_iva = size_order | addr;
1422 break;
1423 default:
1424 BUG();
1425 }
1426 /* Note: set drain read/write */
1427#if 0
1428 /*
1429 * This is probably to be super secure.. Looks like we can
1430 * ignore it without any impact.
1431 */
1432 if (cap_read_drain(iommu->cap))
1433 val |= DMA_TLB_READ_DRAIN;
1434#endif
1435 if (cap_write_drain(iommu->cap))
1436 val |= DMA_TLB_WRITE_DRAIN;
1437
1438 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1439 /* Note: Only uses first TLB reg currently */
1440 if (val_iva)
1441 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1442 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1443
1444 /* Make sure hardware complete it */
1445 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1446 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1447
1448 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1449
1450 /* check IOTLB invalidation granularity */
1451 if (DMA_TLB_IAIG(val) == 0)
1452 pr_err("Flush IOTLB failed\n");
1453 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1454 pr_debug("TLB flush request %Lx, actual %Lx\n",
1455 (unsigned long long)DMA_TLB_IIRG(type),
1456 (unsigned long long)DMA_TLB_IAIG(val));
1457}
1458
1459static struct device_domain_info *
1460iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1461 u8 bus, u8 devfn)
1462{
1463 struct device_domain_info *info;
1464
1465 assert_spin_locked(&device_domain_lock);
1466
1467 if (!iommu->qi)
1468 return NULL;
1469
1470 list_for_each_entry(info, &domain->devices, link)
1471 if (info->iommu == iommu && info->bus == bus &&
1472 info->devfn == devfn) {
1473 if (info->ats_supported && info->dev)
1474 return info;
1475 break;
1476 }
1477
1478 return NULL;
1479}
1480
1481static void domain_update_iotlb(struct dmar_domain *domain)
1482{
1483 struct device_domain_info *info;
1484 bool has_iotlb_device = false;
1485
1486 assert_spin_locked(&device_domain_lock);
1487
1488 list_for_each_entry(info, &domain->devices, link) {
1489 struct pci_dev *pdev;
1490
1491 if (!info->dev || !dev_is_pci(info->dev))
1492 continue;
1493
1494 pdev = to_pci_dev(info->dev);
1495 if (pdev->ats_enabled) {
1496 has_iotlb_device = true;
1497 break;
1498 }
1499 }
1500
1501 domain->has_iotlb_device = has_iotlb_device;
1502}
1503
1504static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1505{
1506 struct pci_dev *pdev;
1507
1508 assert_spin_locked(&device_domain_lock);
1509
1510 if (!info || !dev_is_pci(info->dev))
1511 return;
1512
1513 pdev = to_pci_dev(info->dev);
1514
1515#ifdef CONFIG_INTEL_IOMMU_SVM
1516 /* The PCIe spec, in its wisdom, declares that the behaviour of
1517 the device if you enable PASID support after ATS support is
1518 undefined. So always enable PASID support on devices which
1519 have it, even if we can't yet know if we're ever going to
1520 use it. */
1521 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1522 info->pasid_enabled = 1;
1523
1524 if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1525 info->pri_enabled = 1;
1526#endif
1527 if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1528 info->ats_enabled = 1;
1529 domain_update_iotlb(info->domain);
1530 info->ats_qdep = pci_ats_queue_depth(pdev);
1531 }
1532}
1533
1534static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1535{
1536 struct pci_dev *pdev;
1537
1538 assert_spin_locked(&device_domain_lock);
1539
1540 if (!dev_is_pci(info->dev))
1541 return;
1542
1543 pdev = to_pci_dev(info->dev);
1544
1545 if (info->ats_enabled) {
1546 pci_disable_ats(pdev);
1547 info->ats_enabled = 0;
1548 domain_update_iotlb(info->domain);
1549 }
1550#ifdef CONFIG_INTEL_IOMMU_SVM
1551 if (info->pri_enabled) {
1552 pci_disable_pri(pdev);
1553 info->pri_enabled = 0;
1554 }
1555 if (info->pasid_enabled) {
1556 pci_disable_pasid(pdev);
1557 info->pasid_enabled = 0;
1558 }
1559#endif
1560}
1561
1562static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1563 u64 addr, unsigned mask)
1564{
1565 u16 sid, qdep;
1566 unsigned long flags;
1567 struct device_domain_info *info;
1568
1569 if (!domain->has_iotlb_device)
1570 return;
1571
1572 spin_lock_irqsave(&device_domain_lock, flags);
1573 list_for_each_entry(info, &domain->devices, link) {
1574 if (!info->ats_enabled)
1575 continue;
1576
1577 sid = info->bus << 8 | info->devfn;
1578 qdep = info->ats_qdep;
1579 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1580 }
1581 spin_unlock_irqrestore(&device_domain_lock, flags);
1582}
1583
1584static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1585 struct dmar_domain *domain,
1586 unsigned long pfn, unsigned int pages,
1587 int ih, int map)
1588{
1589 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1590 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1591 u16 did = domain->iommu_did[iommu->seq_id];
1592
1593 BUG_ON(pages == 0);
1594
1595 if (ih)
1596 ih = 1 << 6;
1597 /*
1598 * Fallback to domain selective flush if no PSI support or the size is
1599 * too big.
1600 * PSI requires page size to be 2 ^ x, and the base address is naturally
1601 * aligned to the size
1602 */
1603 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1604 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1605 DMA_TLB_DSI_FLUSH);
1606 else
1607 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1608 DMA_TLB_PSI_FLUSH);
1609
1610 /*
1611 * In caching mode, changes of pages from non-present to present require
1612 * flush. However, device IOTLB doesn't need to be flushed in this case.
1613 */
1614 if (!cap_caching_mode(iommu->cap) || !map)
1615 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1616 addr, mask);
1617}
1618
1619static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1620{
1621 u32 pmen;
1622 unsigned long flags;
1623
1624 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1625 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1626 pmen &= ~DMA_PMEN_EPM;
1627 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1628
1629 /* wait for the protected region status bit to clear */
1630 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1631 readl, !(pmen & DMA_PMEN_PRS), pmen);
1632
1633 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1634}
1635
1636static void iommu_enable_translation(struct intel_iommu *iommu)
1637{
1638 u32 sts;
1639 unsigned long flags;
1640
1641 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1642 iommu->gcmd |= DMA_GCMD_TE;
1643 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1644
1645 /* Make sure hardware complete it */
1646 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1647 readl, (sts & DMA_GSTS_TES), sts);
1648
1649 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1650}
1651
1652static void iommu_disable_translation(struct intel_iommu *iommu)
1653{
1654 u32 sts;
1655 unsigned long flag;
1656
1657 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1658 iommu->gcmd &= ~DMA_GCMD_TE;
1659 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1660
1661 /* Make sure hardware complete it */
1662 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1663 readl, (!(sts & DMA_GSTS_TES)), sts);
1664
1665 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1666}
1667
1668
1669static int iommu_init_domains(struct intel_iommu *iommu)
1670{
1671 u32 ndomains, nlongs;
1672 size_t size;
1673
1674 ndomains = cap_ndoms(iommu->cap);
1675 pr_debug("%s: Number of Domains supported <%d>\n",
1676 iommu->name, ndomains);
1677 nlongs = BITS_TO_LONGS(ndomains);
1678
1679 spin_lock_init(&iommu->lock);
1680
1681 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1682 if (!iommu->domain_ids) {
1683 pr_err("%s: Allocating domain id array failed\n",
1684 iommu->name);
1685 return -ENOMEM;
1686 }
1687
1688 size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1689 iommu->domains = kzalloc(size, GFP_KERNEL);
1690
1691 if (iommu->domains) {
1692 size = 256 * sizeof(struct dmar_domain *);
1693 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1694 }
1695
1696 if (!iommu->domains || !iommu->domains[0]) {
1697 pr_err("%s: Allocating domain array failed\n",
1698 iommu->name);
1699 kfree(iommu->domain_ids);
1700 kfree(iommu->domains);
1701 iommu->domain_ids = NULL;
1702 iommu->domains = NULL;
1703 return -ENOMEM;
1704 }
1705
1706
1707
1708 /*
1709 * If Caching mode is set, then invalid translations are tagged
1710 * with domain-id 0, hence we need to pre-allocate it. We also
1711 * use domain-id 0 as a marker for non-allocated domain-id, so
1712 * make sure it is not used for a real domain.
1713 */
1714 set_bit(0, iommu->domain_ids);
1715
1716 return 0;
1717}
1718
1719static void disable_dmar_iommu(struct intel_iommu *iommu)
1720{
1721 struct device_domain_info *info, *tmp;
1722 unsigned long flags;
1723
1724 if (!iommu->domains || !iommu->domain_ids)
1725 return;
1726
1727again:
1728 spin_lock_irqsave(&device_domain_lock, flags);
1729 list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1730 struct dmar_domain *domain;
1731
1732 if (info->iommu != iommu)
1733 continue;
1734
1735 if (!info->dev || !info->domain)
1736 continue;
1737
1738 domain = info->domain;
1739
1740 __dmar_remove_one_dev_info(info);
1741
1742 if (!domain_type_is_vm_or_si(domain)) {
1743 /*
1744 * The domain_exit() function can't be called under
1745 * device_domain_lock, as it takes this lock itself.
1746 * So release the lock here and re-run the loop
1747 * afterwards.
1748 */
1749 spin_unlock_irqrestore(&device_domain_lock, flags);
1750 domain_exit(domain);
1751 goto again;
1752 }
1753 }
1754 spin_unlock_irqrestore(&device_domain_lock, flags);
1755
1756 if (iommu->gcmd & DMA_GCMD_TE)
1757 iommu_disable_translation(iommu);
1758}
1759
1760static void free_dmar_iommu(struct intel_iommu *iommu)
1761{
1762 if ((iommu->domains) && (iommu->domain_ids)) {
1763 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1764 int i;
1765
1766 for (i = 0; i < elems; i++)
1767 kfree(iommu->domains[i]);
1768 kfree(iommu->domains);
1769 kfree(iommu->domain_ids);
1770 iommu->domains = NULL;
1771 iommu->domain_ids = NULL;
1772 }
1773
1774 g_iommus[iommu->seq_id] = NULL;
1775
1776 /* free context mapping */
1777 free_context_table(iommu);
1778
1779#ifdef CONFIG_INTEL_IOMMU_SVM
1780 if (pasid_enabled(iommu)) {
1781 if (ecap_prs(iommu->ecap))
1782 intel_svm_finish_prq(iommu);
1783 intel_svm_free_pasid_tables(iommu);
1784 }
1785#endif
1786}
1787
1788static struct dmar_domain *alloc_domain(int flags)
1789{
1790 struct dmar_domain *domain;
1791
1792 domain = alloc_domain_mem();
1793 if (!domain)
1794 return NULL;
1795
1796 memset(domain, 0, sizeof(*domain));
1797 domain->nid = -1;
1798 domain->flags = flags;
1799 domain->has_iotlb_device = false;
1800 INIT_LIST_HEAD(&domain->devices);
1801
1802 return domain;
1803}
1804
1805/* Must be called with iommu->lock */
1806static int domain_attach_iommu(struct dmar_domain *domain,
1807 struct intel_iommu *iommu)
1808{
1809 unsigned long ndomains;
1810 int num;
1811
1812 assert_spin_locked(&device_domain_lock);
1813 assert_spin_locked(&iommu->lock);
1814
1815 domain->iommu_refcnt[iommu->seq_id] += 1;
1816 domain->iommu_count += 1;
1817 if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1818 ndomains = cap_ndoms(iommu->cap);
1819 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1820
1821 if (num >= ndomains) {
1822 pr_err("%s: No free domain ids\n", iommu->name);
1823 domain->iommu_refcnt[iommu->seq_id] -= 1;
1824 domain->iommu_count -= 1;
1825 return -ENOSPC;
1826 }
1827
1828 set_bit(num, iommu->domain_ids);
1829 set_iommu_domain(iommu, num, domain);
1830
1831 domain->iommu_did[iommu->seq_id] = num;
1832 domain->nid = iommu->node;
1833
1834 domain_update_iommu_cap(domain);
1835 }
1836
1837 return 0;
1838}
1839
1840static int domain_detach_iommu(struct dmar_domain *domain,
1841 struct intel_iommu *iommu)
1842{
1843 int num, count = INT_MAX;
1844
1845 assert_spin_locked(&device_domain_lock);
1846 assert_spin_locked(&iommu->lock);
1847
1848 domain->iommu_refcnt[iommu->seq_id] -= 1;
1849 count = --domain->iommu_count;
1850 if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1851 num = domain->iommu_did[iommu->seq_id];
1852 clear_bit(num, iommu->domain_ids);
1853 set_iommu_domain(iommu, num, NULL);
1854
1855 domain_update_iommu_cap(domain);
1856 domain->iommu_did[iommu->seq_id] = 0;
1857 }
1858
1859 return count;
1860}
1861
1862static struct iova_domain reserved_iova_list;
1863static struct lock_class_key reserved_rbtree_key;
1864
1865static int dmar_init_reserved_ranges(void)
1866{
1867 struct pci_dev *pdev = NULL;
1868 struct iova *iova;
1869 int i;
1870
1871 init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1872 DMA_32BIT_PFN);
1873
1874 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1875 &reserved_rbtree_key);
1876
1877 /* IOAPIC ranges shouldn't be accessed by DMA */
1878 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1879 IOVA_PFN(IOAPIC_RANGE_END));
1880 if (!iova) {
1881 pr_err("Reserve IOAPIC range failed\n");
1882 return -ENODEV;
1883 }
1884
1885 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1886 for_each_pci_dev(pdev) {
1887 struct resource *r;
1888
1889 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1890 r = &pdev->resource[i];
1891 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1892 continue;
1893 iova = reserve_iova(&reserved_iova_list,
1894 IOVA_PFN(r->start),
1895 IOVA_PFN(r->end));
1896 if (!iova) {
1897 pr_err("Reserve iova failed\n");
1898 return -ENODEV;
1899 }
1900 }
1901 }
1902 return 0;
1903}
1904
1905static void domain_reserve_special_ranges(struct dmar_domain *domain)
1906{
1907 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1908}
1909
1910static inline int guestwidth_to_adjustwidth(int gaw)
1911{
1912 int agaw;
1913 int r = (gaw - 12) % 9;
1914
1915 if (r == 0)
1916 agaw = gaw;
1917 else
1918 agaw = gaw + 9 - r;
1919 if (agaw > 64)
1920 agaw = 64;
1921 return agaw;
1922}
1923
1924static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1925 int guest_width)
1926{
1927 int adjust_width, agaw;
1928 unsigned long sagaw;
1929
1930 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1931 DMA_32BIT_PFN);
1932 domain_reserve_special_ranges(domain);
1933
1934 /* calculate AGAW */
1935 if (guest_width > cap_mgaw(iommu->cap))
1936 guest_width = cap_mgaw(iommu->cap);
1937 domain->gaw = guest_width;
1938 adjust_width = guestwidth_to_adjustwidth(guest_width);
1939 agaw = width_to_agaw(adjust_width);
1940 sagaw = cap_sagaw(iommu->cap);
1941 if (!test_bit(agaw, &sagaw)) {
1942 /* hardware doesn't support it, choose a bigger one */
1943 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1944 agaw = find_next_bit(&sagaw, 5, agaw);
1945 if (agaw >= 5)
1946 return -ENODEV;
1947 }
1948 domain->agaw = agaw;
1949
1950 if (ecap_coherent(iommu->ecap))
1951 domain->iommu_coherency = 1;
1952 else
1953 domain->iommu_coherency = 0;
1954
1955 if (ecap_sc_support(iommu->ecap))
1956 domain->iommu_snooping = 1;
1957 else
1958 domain->iommu_snooping = 0;
1959
1960 if (intel_iommu_superpage)
1961 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1962 else
1963 domain->iommu_superpage = 0;
1964
1965 domain->nid = iommu->node;
1966
1967 /* always allocate the top pgd */
1968 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1969 if (!domain->pgd)
1970 return -ENOMEM;
1971 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1972 return 0;
1973}
1974
1975static void domain_exit(struct dmar_domain *domain)
1976{
1977 struct page *freelist = NULL;
1978
1979 /* Domain 0 is reserved, so dont process it */
1980 if (!domain)
1981 return;
1982
1983 /* Flush any lazy unmaps that may reference this domain */
1984 if (!intel_iommu_strict) {
1985 int cpu;
1986
1987 for_each_possible_cpu(cpu)
1988 flush_unmaps_timeout(cpu);
1989 }
1990
1991 /* Remove associated devices and clear attached or cached domains */
1992 rcu_read_lock();
1993 domain_remove_dev_info(domain);
1994 rcu_read_unlock();
1995
1996 /* destroy iovas */
1997 put_iova_domain(&domain->iovad);
1998
1999 freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
2000
2001 dma_free_pagelist(freelist);
2002
2003 free_domain_mem(domain);
2004}
2005
2006static int domain_context_mapping_one(struct dmar_domain *domain,
2007 struct intel_iommu *iommu,
2008 u8 bus, u8 devfn)
2009{
2010 u16 did = domain->iommu_did[iommu->seq_id];
2011 int translation = CONTEXT_TT_MULTI_LEVEL;
2012 struct device_domain_info *info = NULL;
2013 struct context_entry *context;
2014 unsigned long flags;
2015 struct dma_pte *pgd;
2016 int ret, agaw;
2017
2018 WARN_ON(did == 0);
2019
2020 if (hw_pass_through && domain_type_is_si(domain))
2021 translation = CONTEXT_TT_PASS_THROUGH;
2022
2023 pr_debug("Set context mapping for %02x:%02x.%d\n",
2024 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2025
2026 BUG_ON(!domain->pgd);
2027
2028 spin_lock_irqsave(&device_domain_lock, flags);
2029 spin_lock(&iommu->lock);
2030
2031 ret = -ENOMEM;
2032 context = iommu_context_addr(iommu, bus, devfn, 1);
2033 if (!context)
2034 goto out_unlock;
2035
2036 ret = 0;
2037 if (context_present(context))
2038 goto out_unlock;
2039
2040 pgd = domain->pgd;
2041
2042 context_clear_entry(context);
2043 context_set_domain_id(context, did);
2044
2045 /*
2046 * Skip top levels of page tables for iommu which has less agaw
2047 * than default. Unnecessary for PT mode.
2048 */
2049 if (translation != CONTEXT_TT_PASS_THROUGH) {
2050 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
2051 ret = -ENOMEM;
2052 pgd = phys_to_virt(dma_pte_addr(pgd));
2053 if (!dma_pte_present(pgd))
2054 goto out_unlock;
2055 }
2056
2057 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2058 if (info && info->ats_supported)
2059 translation = CONTEXT_TT_DEV_IOTLB;
2060 else
2061 translation = CONTEXT_TT_MULTI_LEVEL;
2062
2063 context_set_address_root(context, virt_to_phys(pgd));
2064 context_set_address_width(context, iommu->agaw);
2065 } else {
2066 /*
2067 * In pass through mode, AW must be programmed to
2068 * indicate the largest AGAW value supported by
2069 * hardware. And ASR is ignored by hardware.
2070 */
2071 context_set_address_width(context, iommu->msagaw);
2072 }
2073
2074 context_set_translation_type(context, translation);
2075 context_set_fault_enable(context);
2076 context_set_present(context);
2077 domain_flush_cache(domain, context, sizeof(*context));
2078
2079 /*
2080 * It's a non-present to present mapping. If hardware doesn't cache
2081 * non-present entry we only need to flush the write-buffer. If the
2082 * _does_ cache non-present entries, then it does so in the special
2083 * domain #0, which we have to flush:
2084 */
2085 if (cap_caching_mode(iommu->cap)) {
2086 iommu->flush.flush_context(iommu, 0,
2087 (((u16)bus) << 8) | devfn,
2088 DMA_CCMD_MASK_NOBIT,
2089 DMA_CCMD_DEVICE_INVL);
2090 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2091 } else {
2092 iommu_flush_write_buffer(iommu);
2093 }
2094 iommu_enable_dev_iotlb(info);
2095
2096 ret = 0;
2097
2098out_unlock:
2099 spin_unlock(&iommu->lock);
2100 spin_unlock_irqrestore(&device_domain_lock, flags);
2101
2102 return ret;
2103}
2104
2105struct domain_context_mapping_data {
2106 struct dmar_domain *domain;
2107 struct intel_iommu *iommu;
2108};
2109
2110static int domain_context_mapping_cb(struct pci_dev *pdev,
2111 u16 alias, void *opaque)
2112{
2113 struct domain_context_mapping_data *data = opaque;
2114
2115 return domain_context_mapping_one(data->domain, data->iommu,
2116 PCI_BUS_NUM(alias), alias & 0xff);
2117}
2118
2119static int
2120domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2121{
2122 struct intel_iommu *iommu;
2123 u8 bus, devfn;
2124 struct domain_context_mapping_data data;
2125
2126 iommu = device_to_iommu(dev, &bus, &devfn);
2127 if (!iommu)
2128 return -ENODEV;
2129
2130 if (!dev_is_pci(dev))
2131 return domain_context_mapping_one(domain, iommu, bus, devfn);
2132
2133 data.domain = domain;
2134 data.iommu = iommu;
2135
2136 return pci_for_each_dma_alias(to_pci_dev(dev),
2137 &domain_context_mapping_cb, &data);
2138}
2139
2140static int domain_context_mapped_cb(struct pci_dev *pdev,
2141 u16 alias, void *opaque)
2142{
2143 struct intel_iommu *iommu = opaque;
2144
2145 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2146}
2147
2148static int domain_context_mapped(struct device *dev)
2149{
2150 struct intel_iommu *iommu;
2151 u8 bus, devfn;
2152
2153 iommu = device_to_iommu(dev, &bus, &devfn);
2154 if (!iommu)
2155 return -ENODEV;
2156
2157 if (!dev_is_pci(dev))
2158 return device_context_mapped(iommu, bus, devfn);
2159
2160 return !pci_for_each_dma_alias(to_pci_dev(dev),
2161 domain_context_mapped_cb, iommu);
2162}
2163
2164/* Returns a number of VTD pages, but aligned to MM page size */
2165static inline unsigned long aligned_nrpages(unsigned long host_addr,
2166 size_t size)
2167{
2168 host_addr &= ~PAGE_MASK;
2169 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2170}
2171
2172/* Return largest possible superpage level for a given mapping */
2173static inline int hardware_largepage_caps(struct dmar_domain *domain,
2174 unsigned long iov_pfn,
2175 unsigned long phy_pfn,
2176 unsigned long pages)
2177{
2178 int support, level = 1;
2179 unsigned long pfnmerge;
2180
2181 support = domain->iommu_superpage;
2182
2183 /* To use a large page, the virtual *and* physical addresses
2184 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2185 of them will mean we have to use smaller pages. So just
2186 merge them and check both at once. */
2187 pfnmerge = iov_pfn | phy_pfn;
2188
2189 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2190 pages >>= VTD_STRIDE_SHIFT;
2191 if (!pages)
2192 break;
2193 pfnmerge >>= VTD_STRIDE_SHIFT;
2194 level++;
2195 support--;
2196 }
2197 return level;
2198}
2199
2200static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2201 struct scatterlist *sg, unsigned long phys_pfn,
2202 unsigned long nr_pages, int prot)
2203{
2204 struct dma_pte *first_pte = NULL, *pte = NULL;
2205 phys_addr_t uninitialized_var(pteval);
2206 unsigned long sg_res = 0;
2207 unsigned int largepage_lvl = 0;
2208 unsigned long lvl_pages = 0;
2209
2210 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2211
2212 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2213 return -EINVAL;
2214
2215 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2216
2217 if (!sg) {
2218 sg_res = nr_pages;
2219 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2220 }
2221
2222 while (nr_pages > 0) {
2223 uint64_t tmp;
2224
2225 if (!sg_res) {
2226 sg_res = aligned_nrpages(sg->offset, sg->length);
2227 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2228 sg->dma_length = sg->length;
2229 pteval = page_to_phys(sg_page(sg)) | prot;
2230 phys_pfn = pteval >> VTD_PAGE_SHIFT;
2231 }
2232
2233 if (!pte) {
2234 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2235
2236 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2237 if (!pte)
2238 return -ENOMEM;
2239 /* It is large page*/
2240 if (largepage_lvl > 1) {
2241 unsigned long nr_superpages, end_pfn;
2242
2243 pteval |= DMA_PTE_LARGE_PAGE;
2244 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2245
2246 nr_superpages = sg_res / lvl_pages;
2247 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2248
2249 /*
2250 * Ensure that old small page tables are
2251 * removed to make room for superpage(s).
2252 */
2253 dma_pte_free_pagetable(domain, iov_pfn, end_pfn);
2254 } else {
2255 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2256 }
2257
2258 }
2259 /* We don't need lock here, nobody else
2260 * touches the iova range
2261 */
2262 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2263 if (tmp) {
2264 static int dumps = 5;
2265 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2266 iov_pfn, tmp, (unsigned long long)pteval);
2267 if (dumps) {
2268 dumps--;
2269 debug_dma_dump_mappings(NULL);
2270 }
2271 WARN_ON(1);
2272 }
2273
2274 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2275
2276 BUG_ON(nr_pages < lvl_pages);
2277 BUG_ON(sg_res < lvl_pages);
2278
2279 nr_pages -= lvl_pages;
2280 iov_pfn += lvl_pages;
2281 phys_pfn += lvl_pages;
2282 pteval += lvl_pages * VTD_PAGE_SIZE;
2283 sg_res -= lvl_pages;
2284
2285 /* If the next PTE would be the first in a new page, then we
2286 need to flush the cache on the entries we've just written.
2287 And then we'll need to recalculate 'pte', so clear it and
2288 let it get set again in the if (!pte) block above.
2289
2290 If we're done (!nr_pages) we need to flush the cache too.
2291
2292 Also if we've been setting superpages, we may need to
2293 recalculate 'pte' and switch back to smaller pages for the
2294 end of the mapping, if the trailing size is not enough to
2295 use another superpage (i.e. sg_res < lvl_pages). */
2296 pte++;
2297 if (!nr_pages || first_pte_in_page(pte) ||
2298 (largepage_lvl > 1 && sg_res < lvl_pages)) {
2299 domain_flush_cache(domain, first_pte,
2300 (void *)pte - (void *)first_pte);
2301 pte = NULL;
2302 }
2303
2304 if (!sg_res && nr_pages)
2305 sg = sg_next(sg);
2306 }
2307 return 0;
2308}
2309
2310static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2311 struct scatterlist *sg, unsigned long nr_pages,
2312 int prot)
2313{
2314 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2315}
2316
2317static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2318 unsigned long phys_pfn, unsigned long nr_pages,
2319 int prot)
2320{
2321 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2322}
2323
2324static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2325{
2326 if (!iommu)
2327 return;
2328
2329 clear_context_table(iommu, bus, devfn);
2330 iommu->flush.flush_context(iommu, 0, 0, 0,
2331 DMA_CCMD_GLOBAL_INVL);
2332 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2333}
2334
2335static inline void unlink_domain_info(struct device_domain_info *info)
2336{
2337 assert_spin_locked(&device_domain_lock);
2338 list_del(&info->link);
2339 list_del(&info->global);
2340 if (info->dev)
2341 info->dev->archdata.iommu = NULL;
2342}
2343
2344static void domain_remove_dev_info(struct dmar_domain *domain)
2345{
2346 struct device_domain_info *info, *tmp;
2347 unsigned long flags;
2348
2349 spin_lock_irqsave(&device_domain_lock, flags);
2350 list_for_each_entry_safe(info, tmp, &domain->devices, link)
2351 __dmar_remove_one_dev_info(info);
2352 spin_unlock_irqrestore(&device_domain_lock, flags);
2353}
2354
2355/*
2356 * find_domain
2357 * Note: we use struct device->archdata.iommu stores the info
2358 */
2359static struct dmar_domain *find_domain(struct device *dev)
2360{
2361 struct device_domain_info *info;
2362
2363 /* No lock here, assumes no domain exit in normal case */
2364 info = dev->archdata.iommu;
2365 if (info)
2366 return info->domain;
2367 return NULL;
2368}
2369
2370static inline struct device_domain_info *
2371dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2372{
2373 struct device_domain_info *info;
2374
2375 list_for_each_entry(info, &device_domain_list, global)
2376 if (info->iommu->segment == segment && info->bus == bus &&
2377 info->devfn == devfn)
2378 return info;
2379
2380 return NULL;
2381}
2382
2383static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2384 int bus, int devfn,
2385 struct device *dev,
2386 struct dmar_domain *domain)
2387{
2388 struct dmar_domain *found = NULL;
2389 struct device_domain_info *info;
2390 unsigned long flags;
2391 int ret;
2392
2393 info = alloc_devinfo_mem();
2394 if (!info)
2395 return NULL;
2396
2397 info->bus = bus;
2398 info->devfn = devfn;
2399 info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2400 info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2401 info->ats_qdep = 0;
2402 info->dev = dev;
2403 info->domain = domain;
2404 info->iommu = iommu;
2405
2406 if (dev && dev_is_pci(dev)) {
2407 struct pci_dev *pdev = to_pci_dev(info->dev);
2408
2409 if (ecap_dev_iotlb_support(iommu->ecap) &&
2410 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2411 dmar_find_matched_atsr_unit(pdev))
2412 info->ats_supported = 1;
2413
2414 if (ecs_enabled(iommu)) {
2415 if (pasid_enabled(iommu)) {
2416 int features = pci_pasid_features(pdev);
2417 if (features >= 0)
2418 info->pasid_supported = features | 1;
2419 }
2420
2421 if (info->ats_supported && ecap_prs(iommu->ecap) &&
2422 pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2423 info->pri_supported = 1;
2424 }
2425 }
2426
2427 spin_lock_irqsave(&device_domain_lock, flags);
2428 if (dev)
2429 found = find_domain(dev);
2430
2431 if (!found) {
2432 struct device_domain_info *info2;
2433 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2434 if (info2) {
2435 found = info2->domain;
2436 info2->dev = dev;
2437 }
2438 }
2439
2440 if (found) {
2441 spin_unlock_irqrestore(&device_domain_lock, flags);
2442 free_devinfo_mem(info);
2443 /* Caller must free the original domain */
2444 return found;
2445 }
2446
2447 spin_lock(&iommu->lock);
2448 ret = domain_attach_iommu(domain, iommu);
2449 spin_unlock(&iommu->lock);
2450
2451 if (ret) {
2452 spin_unlock_irqrestore(&device_domain_lock, flags);
2453 free_devinfo_mem(info);
2454 return NULL;
2455 }
2456
2457 list_add(&info->link, &domain->devices);
2458 list_add(&info->global, &device_domain_list);
2459 if (dev)
2460 dev->archdata.iommu = info;
2461 spin_unlock_irqrestore(&device_domain_lock, flags);
2462
2463 if (dev && domain_context_mapping(domain, dev)) {
2464 pr_err("Domain context map for %s failed\n", dev_name(dev));
2465 dmar_remove_one_dev_info(domain, dev);
2466 return NULL;
2467 }
2468
2469 return domain;
2470}
2471
2472static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2473{
2474 *(u16 *)opaque = alias;
2475 return 0;
2476}
2477
2478static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2479{
2480 struct device_domain_info *info = NULL;
2481 struct dmar_domain *domain = NULL;
2482 struct intel_iommu *iommu;
2483 u16 req_id, dma_alias;
2484 unsigned long flags;
2485 u8 bus, devfn;
2486
2487 iommu = device_to_iommu(dev, &bus, &devfn);
2488 if (!iommu)
2489 return NULL;
2490
2491 req_id = ((u16)bus << 8) | devfn;
2492
2493 if (dev_is_pci(dev)) {
2494 struct pci_dev *pdev = to_pci_dev(dev);
2495
2496 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2497
2498 spin_lock_irqsave(&device_domain_lock, flags);
2499 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2500 PCI_BUS_NUM(dma_alias),
2501 dma_alias & 0xff);
2502 if (info) {
2503 iommu = info->iommu;
2504 domain = info->domain;
2505 }
2506 spin_unlock_irqrestore(&device_domain_lock, flags);
2507
2508 /* DMA alias already has a domain, use it */
2509 if (info)
2510 goto out;
2511 }
2512
2513 /* Allocate and initialize new domain for the device */
2514 domain = alloc_domain(0);
2515 if (!domain)
2516 return NULL;
2517 if (domain_init(domain, iommu, gaw)) {
2518 domain_exit(domain);
2519 return NULL;
2520 }
2521
2522out:
2523
2524 return domain;
2525}
2526
2527static struct dmar_domain *set_domain_for_dev(struct device *dev,
2528 struct dmar_domain *domain)
2529{
2530 struct intel_iommu *iommu;
2531 struct dmar_domain *tmp;
2532 u16 req_id, dma_alias;
2533 u8 bus, devfn;
2534
2535 iommu = device_to_iommu(dev, &bus, &devfn);
2536 if (!iommu)
2537 return NULL;
2538
2539 req_id = ((u16)bus << 8) | devfn;
2540
2541 if (dev_is_pci(dev)) {
2542 struct pci_dev *pdev = to_pci_dev(dev);
2543
2544 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2545
2546 /* register PCI DMA alias device */
2547 if (req_id != dma_alias) {
2548 tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2549 dma_alias & 0xff, NULL, domain);
2550
2551 if (!tmp || tmp != domain)
2552 return tmp;
2553 }
2554 }
2555
2556 tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2557 if (!tmp || tmp != domain)
2558 return tmp;
2559
2560 return domain;
2561}
2562
2563static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2564{
2565 struct dmar_domain *domain, *tmp;
2566
2567 domain = find_domain(dev);
2568 if (domain)
2569 goto out;
2570
2571 domain = find_or_alloc_domain(dev, gaw);
2572 if (!domain)
2573 goto out;
2574
2575 tmp = set_domain_for_dev(dev, domain);
2576 if (!tmp || domain != tmp) {
2577 domain_exit(domain);
2578 domain = tmp;
2579 }
2580
2581out:
2582
2583 return domain;
2584}
2585
2586static int iommu_domain_identity_map(struct dmar_domain *domain,
2587 unsigned long long start,
2588 unsigned long long end)
2589{
2590 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2591 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2592
2593 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2594 dma_to_mm_pfn(last_vpfn))) {
2595 pr_err("Reserving iova failed\n");
2596 return -ENOMEM;
2597 }
2598
2599 pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2600 /*
2601 * RMRR range might have overlap with physical memory range,
2602 * clear it first
2603 */
2604 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2605
2606 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2607 last_vpfn - first_vpfn + 1,
2608 DMA_PTE_READ|DMA_PTE_WRITE);
2609}
2610
2611static int domain_prepare_identity_map(struct device *dev,
2612 struct dmar_domain *domain,
2613 unsigned long long start,
2614 unsigned long long end)
2615{
2616 /* For _hardware_ passthrough, don't bother. But for software
2617 passthrough, we do it anyway -- it may indicate a memory
2618 range which is reserved in E820, so which didn't get set
2619 up to start with in si_domain */
2620 if (domain == si_domain && hw_pass_through) {
2621 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2622 dev_name(dev), start, end);
2623 return 0;
2624 }
2625
2626 pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2627 dev_name(dev), start, end);
2628
2629 if (end < start) {
2630 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2631 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2632 dmi_get_system_info(DMI_BIOS_VENDOR),
2633 dmi_get_system_info(DMI_BIOS_VERSION),
2634 dmi_get_system_info(DMI_PRODUCT_VERSION));
2635 return -EIO;
2636 }
2637
2638 if (end >> agaw_to_width(domain->agaw)) {
2639 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2640 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2641 agaw_to_width(domain->agaw),
2642 dmi_get_system_info(DMI_BIOS_VENDOR),
2643 dmi_get_system_info(DMI_BIOS_VERSION),
2644 dmi_get_system_info(DMI_PRODUCT_VERSION));
2645 return -EIO;
2646 }
2647
2648 return iommu_domain_identity_map(domain, start, end);
2649}
2650
2651static int iommu_prepare_identity_map(struct device *dev,
2652 unsigned long long start,
2653 unsigned long long end)
2654{
2655 struct dmar_domain *domain;
2656 int ret;
2657
2658 domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2659 if (!domain)
2660 return -ENOMEM;
2661
2662 ret = domain_prepare_identity_map(dev, domain, start, end);
2663 if (ret)
2664 domain_exit(domain);
2665
2666 return ret;
2667}
2668
2669static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2670 struct device *dev)
2671{
2672 if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2673 return 0;
2674 return iommu_prepare_identity_map(dev, rmrr->base_address,
2675 rmrr->end_address);
2676}
2677
2678#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2679static inline void iommu_prepare_isa(void)
2680{
2681 struct pci_dev *pdev;
2682 int ret;
2683
2684 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2685 if (!pdev)
2686 return;
2687
2688 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2689 ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2690
2691 if (ret)
2692 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2693
2694 pci_dev_put(pdev);
2695}
2696#else
2697static inline void iommu_prepare_isa(void)
2698{
2699 return;
2700}
2701#endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2702
2703static int md_domain_init(struct dmar_domain *domain, int guest_width);
2704
2705static int __init si_domain_init(int hw)
2706{
2707 int nid, ret = 0;
2708
2709 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2710 if (!si_domain)
2711 return -EFAULT;
2712
2713 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2714 domain_exit(si_domain);
2715 return -EFAULT;
2716 }
2717
2718 pr_debug("Identity mapping domain allocated\n");
2719
2720 if (hw)
2721 return 0;
2722
2723 for_each_online_node(nid) {
2724 unsigned long start_pfn, end_pfn;
2725 int i;
2726
2727 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2728 ret = iommu_domain_identity_map(si_domain,
2729 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2730 if (ret)
2731 return ret;
2732 }
2733 }
2734
2735 return 0;
2736}
2737
2738static int identity_mapping(struct device *dev)
2739{
2740 struct device_domain_info *info;
2741
2742 if (likely(!iommu_identity_mapping))
2743 return 0;
2744
2745 info = dev->archdata.iommu;
2746 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2747 return (info->domain == si_domain);
2748
2749 return 0;
2750}
2751
2752static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2753{
2754 struct dmar_domain *ndomain;
2755 struct intel_iommu *iommu;
2756 u8 bus, devfn;
2757
2758 iommu = device_to_iommu(dev, &bus, &devfn);
2759 if (!iommu)
2760 return -ENODEV;
2761
2762 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2763 if (ndomain != domain)
2764 return -EBUSY;
2765
2766 return 0;
2767}
2768
2769static bool device_has_rmrr(struct device *dev)
2770{
2771 struct dmar_rmrr_unit *rmrr;
2772 struct device *tmp;
2773 int i;
2774
2775 rcu_read_lock();
2776 for_each_rmrr_units(rmrr) {
2777 /*
2778 * Return TRUE if this RMRR contains the device that
2779 * is passed in.
2780 */
2781 for_each_active_dev_scope(rmrr->devices,
2782 rmrr->devices_cnt, i, tmp)
2783 if (tmp == dev) {
2784 rcu_read_unlock();
2785 return true;
2786 }
2787 }
2788 rcu_read_unlock();
2789 return false;
2790}
2791
2792/*
2793 * There are a couple cases where we need to restrict the functionality of
2794 * devices associated with RMRRs. The first is when evaluating a device for
2795 * identity mapping because problems exist when devices are moved in and out
2796 * of domains and their respective RMRR information is lost. This means that
2797 * a device with associated RMRRs will never be in a "passthrough" domain.
2798 * The second is use of the device through the IOMMU API. This interface
2799 * expects to have full control of the IOVA space for the device. We cannot
2800 * satisfy both the requirement that RMRR access is maintained and have an
2801 * unencumbered IOVA space. We also have no ability to quiesce the device's
2802 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2803 * We therefore prevent devices associated with an RMRR from participating in
2804 * the IOMMU API, which eliminates them from device assignment.
2805 *
2806 * In both cases we assume that PCI USB devices with RMRRs have them largely
2807 * for historical reasons and that the RMRR space is not actively used post
2808 * boot. This exclusion may change if vendors begin to abuse it.
2809 *
2810 * The same exception is made for graphics devices, with the requirement that
2811 * any use of the RMRR regions will be torn down before assigning the device
2812 * to a guest.
2813 */
2814static bool device_is_rmrr_locked(struct device *dev)
2815{
2816 if (!device_has_rmrr(dev))
2817 return false;
2818
2819 if (dev_is_pci(dev)) {
2820 struct pci_dev *pdev = to_pci_dev(dev);
2821
2822 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2823 return false;
2824 }
2825
2826 return true;
2827}
2828
2829static int iommu_should_identity_map(struct device *dev, int startup)
2830{
2831
2832 if (dev_is_pci(dev)) {
2833 struct pci_dev *pdev = to_pci_dev(dev);
2834
2835 if (device_is_rmrr_locked(dev))
2836 return 0;
2837
2838 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2839 return 1;
2840
2841 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2842 return 1;
2843
2844 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2845 return 0;
2846
2847 /*
2848 * We want to start off with all devices in the 1:1 domain, and
2849 * take them out later if we find they can't access all of memory.
2850 *
2851 * However, we can't do this for PCI devices behind bridges,
2852 * because all PCI devices behind the same bridge will end up
2853 * with the same source-id on their transactions.
2854 *
2855 * Practically speaking, we can't change things around for these
2856 * devices at run-time, because we can't be sure there'll be no
2857 * DMA transactions in flight for any of their siblings.
2858 *
2859 * So PCI devices (unless they're on the root bus) as well as
2860 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2861 * the 1:1 domain, just in _case_ one of their siblings turns out
2862 * not to be able to map all of memory.
2863 */
2864 if (!pci_is_pcie(pdev)) {
2865 if (!pci_is_root_bus(pdev->bus))
2866 return 0;
2867 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2868 return 0;
2869 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2870 return 0;
2871 } else {
2872 if (device_has_rmrr(dev))
2873 return 0;
2874 }
2875
2876 /*
2877 * At boot time, we don't yet know if devices will be 64-bit capable.
2878 * Assume that they will — if they turn out not to be, then we can
2879 * take them out of the 1:1 domain later.
2880 */
2881 if (!startup) {
2882 /*
2883 * If the device's dma_mask is less than the system's memory
2884 * size then this is not a candidate for identity mapping.
2885 */
2886 u64 dma_mask = *dev->dma_mask;
2887
2888 if (dev->coherent_dma_mask &&
2889 dev->coherent_dma_mask < dma_mask)
2890 dma_mask = dev->coherent_dma_mask;
2891
2892 return dma_mask >= dma_get_required_mask(dev);
2893 }
2894
2895 return 1;
2896}
2897
2898static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2899{
2900 int ret;
2901
2902 if (!iommu_should_identity_map(dev, 1))
2903 return 0;
2904
2905 ret = domain_add_dev_info(si_domain, dev);
2906 if (!ret)
2907 pr_info("%s identity mapping for device %s\n",
2908 hw ? "Hardware" : "Software", dev_name(dev));
2909 else if (ret == -ENODEV)
2910 /* device not associated with an iommu */
2911 ret = 0;
2912
2913 return ret;
2914}
2915
2916
2917static int __init iommu_prepare_static_identity_mapping(int hw)
2918{
2919 struct pci_dev *pdev = NULL;
2920 struct dmar_drhd_unit *drhd;
2921 struct intel_iommu *iommu;
2922 struct device *dev;
2923 int i;
2924 int ret = 0;
2925
2926 for_each_pci_dev(pdev) {
2927 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2928 if (ret)
2929 return ret;
2930 }
2931
2932 for_each_active_iommu(iommu, drhd)
2933 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2934 struct acpi_device_physical_node *pn;
2935 struct acpi_device *adev;
2936
2937 if (dev->bus != &acpi_bus_type)
2938 continue;
2939
2940 adev= to_acpi_device(dev);
2941 mutex_lock(&adev->physical_node_lock);
2942 list_for_each_entry(pn, &adev->physical_node_list, node) {
2943 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2944 if (ret)
2945 break;
2946 }
2947 mutex_unlock(&adev->physical_node_lock);
2948 if (ret)
2949 return ret;
2950 }
2951
2952 return 0;
2953}
2954
2955static void intel_iommu_init_qi(struct intel_iommu *iommu)
2956{
2957 /*
2958 * Start from the sane iommu hardware state.
2959 * If the queued invalidation is already initialized by us
2960 * (for example, while enabling interrupt-remapping) then
2961 * we got the things already rolling from a sane state.
2962 */
2963 if (!iommu->qi) {
2964 /*
2965 * Clear any previous faults.
2966 */
2967 dmar_fault(-1, iommu);
2968 /*
2969 * Disable queued invalidation if supported and already enabled
2970 * before OS handover.
2971 */
2972 dmar_disable_qi(iommu);
2973 }
2974
2975 if (dmar_enable_qi(iommu)) {
2976 /*
2977 * Queued Invalidate not enabled, use Register Based Invalidate
2978 */
2979 iommu->flush.flush_context = __iommu_flush_context;
2980 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2981 pr_info("%s: Using Register based invalidation\n",
2982 iommu->name);
2983 } else {
2984 iommu->flush.flush_context = qi_flush_context;
2985 iommu->flush.flush_iotlb = qi_flush_iotlb;
2986 pr_info("%s: Using Queued invalidation\n", iommu->name);
2987 }
2988}
2989
2990static int copy_context_table(struct intel_iommu *iommu,
2991 struct root_entry *old_re,
2992 struct context_entry **tbl,
2993 int bus, bool ext)
2994{
2995 int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2996 struct context_entry *new_ce = NULL, ce;
2997 struct context_entry *old_ce = NULL;
2998 struct root_entry re;
2999 phys_addr_t old_ce_phys;
3000
3001 tbl_idx = ext ? bus * 2 : bus;
3002 memcpy(&re, old_re, sizeof(re));
3003
3004 for (devfn = 0; devfn < 256; devfn++) {
3005 /* First calculate the correct index */
3006 idx = (ext ? devfn * 2 : devfn) % 256;
3007
3008 if (idx == 0) {
3009 /* First save what we may have and clean up */
3010 if (new_ce) {
3011 tbl[tbl_idx] = new_ce;
3012 __iommu_flush_cache(iommu, new_ce,
3013 VTD_PAGE_SIZE);
3014 pos = 1;
3015 }
3016
3017 if (old_ce)
3018 iounmap(old_ce);
3019
3020 ret = 0;
3021 if (devfn < 0x80)
3022 old_ce_phys = root_entry_lctp(&re);
3023 else
3024 old_ce_phys = root_entry_uctp(&re);
3025
3026 if (!old_ce_phys) {
3027 if (ext && devfn == 0) {
3028 /* No LCTP, try UCTP */
3029 devfn = 0x7f;
3030 continue;
3031 } else {
3032 goto out;
3033 }
3034 }
3035
3036 ret = -ENOMEM;
3037 old_ce = memremap(old_ce_phys, PAGE_SIZE,
3038 MEMREMAP_WB);
3039 if (!old_ce)
3040 goto out;
3041
3042 new_ce = alloc_pgtable_page(iommu->node);
3043 if (!new_ce)
3044 goto out_unmap;
3045
3046 ret = 0;
3047 }
3048
3049 /* Now copy the context entry */
3050 memcpy(&ce, old_ce + idx, sizeof(ce));
3051
3052 if (!__context_present(&ce))
3053 continue;
3054
3055 did = context_domain_id(&ce);
3056 if (did >= 0 && did < cap_ndoms(iommu->cap))
3057 set_bit(did, iommu->domain_ids);
3058
3059 /*
3060 * We need a marker for copied context entries. This
3061 * marker needs to work for the old format as well as
3062 * for extended context entries.
3063 *
3064 * Bit 67 of the context entry is used. In the old
3065 * format this bit is available to software, in the
3066 * extended format it is the PGE bit, but PGE is ignored
3067 * by HW if PASIDs are disabled (and thus still
3068 * available).
3069 *
3070 * So disable PASIDs first and then mark the entry
3071 * copied. This means that we don't copy PASID
3072 * translations from the old kernel, but this is fine as
3073 * faults there are not fatal.
3074 */
3075 context_clear_pasid_enable(&ce);
3076 context_set_copied(&ce);
3077
3078 new_ce[idx] = ce;
3079 }
3080
3081 tbl[tbl_idx + pos] = new_ce;
3082
3083 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3084
3085out_unmap:
3086 memunmap(old_ce);
3087
3088out:
3089 return ret;
3090}
3091
3092static int copy_translation_tables(struct intel_iommu *iommu)
3093{
3094 struct context_entry **ctxt_tbls;
3095 struct root_entry *old_rt;
3096 phys_addr_t old_rt_phys;
3097 int ctxt_table_entries;
3098 unsigned long flags;
3099 u64 rtaddr_reg;
3100 int bus, ret;
3101 bool new_ext, ext;
3102
3103 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3104 ext = !!(rtaddr_reg & DMA_RTADDR_RTT);
3105 new_ext = !!ecap_ecs(iommu->ecap);
3106
3107 /*
3108 * The RTT bit can only be changed when translation is disabled,
3109 * but disabling translation means to open a window for data
3110 * corruption. So bail out and don't copy anything if we would
3111 * have to change the bit.
3112 */
3113 if (new_ext != ext)
3114 return -EINVAL;
3115
3116 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3117 if (!old_rt_phys)
3118 return -EINVAL;
3119
3120 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3121 if (!old_rt)
3122 return -ENOMEM;
3123
3124 /* This is too big for the stack - allocate it from slab */
3125 ctxt_table_entries = ext ? 512 : 256;
3126 ret = -ENOMEM;
3127 ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
3128 if (!ctxt_tbls)
3129 goto out_unmap;
3130
3131 for (bus = 0; bus < 256; bus++) {
3132 ret = copy_context_table(iommu, &old_rt[bus],
3133 ctxt_tbls, bus, ext);
3134 if (ret) {
3135 pr_err("%s: Failed to copy context table for bus %d\n",
3136 iommu->name, bus);
3137 continue;
3138 }
3139 }
3140
3141 spin_lock_irqsave(&iommu->lock, flags);
3142
3143 /* Context tables are copied, now write them to the root_entry table */
3144 for (bus = 0; bus < 256; bus++) {
3145 int idx = ext ? bus * 2 : bus;
3146 u64 val;
3147
3148 if (ctxt_tbls[idx]) {
3149 val = virt_to_phys(ctxt_tbls[idx]) | 1;
3150 iommu->root_entry[bus].lo = val;
3151 }
3152
3153 if (!ext || !ctxt_tbls[idx + 1])
3154 continue;
3155
3156 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3157 iommu->root_entry[bus].hi = val;
3158 }
3159
3160 spin_unlock_irqrestore(&iommu->lock, flags);
3161
3162 kfree(ctxt_tbls);
3163
3164 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3165
3166 ret = 0;
3167
3168out_unmap:
3169 memunmap(old_rt);
3170
3171 return ret;
3172}
3173
3174static int __init init_dmars(void)
3175{
3176 struct dmar_drhd_unit *drhd;
3177 struct dmar_rmrr_unit *rmrr;
3178 bool copied_tables = false;
3179 struct device *dev;
3180 struct intel_iommu *iommu;
3181 int i, ret, cpu;
3182
3183 /*
3184 * for each drhd
3185 * allocate root
3186 * initialize and program root entry to not present
3187 * endfor
3188 */
3189 for_each_drhd_unit(drhd) {
3190 /*
3191 * lock not needed as this is only incremented in the single
3192 * threaded kernel __init code path all other access are read
3193 * only
3194 */
3195 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3196 g_num_of_iommus++;
3197 continue;
3198 }
3199 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3200 }
3201
3202 /* Preallocate enough resources for IOMMU hot-addition */
3203 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3204 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3205
3206 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3207 GFP_KERNEL);
3208 if (!g_iommus) {
3209 pr_err("Allocating global iommu array failed\n");
3210 ret = -ENOMEM;
3211 goto error;
3212 }
3213
3214 for_each_possible_cpu(cpu) {
3215 struct deferred_flush_data *dfd = per_cpu_ptr(&deferred_flush,
3216 cpu);
3217
3218 dfd->tables = kzalloc(g_num_of_iommus *
3219 sizeof(struct deferred_flush_table),
3220 GFP_KERNEL);
3221 if (!dfd->tables) {
3222 ret = -ENOMEM;
3223 goto free_g_iommus;
3224 }
3225
3226 spin_lock_init(&dfd->lock);
3227 setup_timer(&dfd->timer, flush_unmaps_timeout, cpu);
3228 }
3229
3230 for_each_active_iommu(iommu, drhd) {
3231 g_iommus[iommu->seq_id] = iommu;
3232
3233 intel_iommu_init_qi(iommu);
3234
3235 ret = iommu_init_domains(iommu);
3236 if (ret)
3237 goto free_iommu;
3238
3239 init_translation_status(iommu);
3240
3241 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3242 iommu_disable_translation(iommu);
3243 clear_translation_pre_enabled(iommu);
3244 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3245 iommu->name);
3246 }
3247
3248 /*
3249 * TBD:
3250 * we could share the same root & context tables
3251 * among all IOMMU's. Need to Split it later.
3252 */
3253 ret = iommu_alloc_root_entry(iommu);
3254 if (ret)
3255 goto free_iommu;
3256
3257 if (translation_pre_enabled(iommu)) {
3258 pr_info("Translation already enabled - trying to copy translation structures\n");
3259
3260 ret = copy_translation_tables(iommu);
3261 if (ret) {
3262 /*
3263 * We found the IOMMU with translation
3264 * enabled - but failed to copy over the
3265 * old root-entry table. Try to proceed
3266 * by disabling translation now and
3267 * allocating a clean root-entry table.
3268 * This might cause DMAR faults, but
3269 * probably the dump will still succeed.
3270 */
3271 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3272 iommu->name);
3273 iommu_disable_translation(iommu);
3274 clear_translation_pre_enabled(iommu);
3275 } else {
3276 pr_info("Copied translation tables from previous kernel for %s\n",
3277 iommu->name);
3278 copied_tables = true;
3279 }
3280 }
3281
3282 if (!ecap_pass_through(iommu->ecap))
3283 hw_pass_through = 0;
3284#ifdef CONFIG_INTEL_IOMMU_SVM
3285 if (pasid_enabled(iommu))
3286 intel_svm_alloc_pasid_tables(iommu);
3287#endif
3288 }
3289
3290 /*
3291 * Now that qi is enabled on all iommus, set the root entry and flush
3292 * caches. This is required on some Intel X58 chipsets, otherwise the
3293 * flush_context function will loop forever and the boot hangs.
3294 */
3295 for_each_active_iommu(iommu, drhd) {
3296 iommu_flush_write_buffer(iommu);
3297 iommu_set_root_entry(iommu);
3298 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3299 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3300 }
3301
3302 if (iommu_pass_through)
3303 iommu_identity_mapping |= IDENTMAP_ALL;
3304
3305#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3306 iommu_identity_mapping |= IDENTMAP_GFX;
3307#endif
3308
3309 if (iommu_identity_mapping) {
3310 ret = si_domain_init(hw_pass_through);
3311 if (ret)
3312 goto free_iommu;
3313 }
3314
3315 check_tylersburg_isoch();
3316
3317 /*
3318 * If we copied translations from a previous kernel in the kdump
3319 * case, we can not assign the devices to domains now, as that
3320 * would eliminate the old mappings. So skip this part and defer
3321 * the assignment to device driver initialization time.
3322 */
3323 if (copied_tables)
3324 goto domains_done;
3325
3326 /*
3327 * If pass through is not set or not enabled, setup context entries for
3328 * identity mappings for rmrr, gfx, and isa and may fall back to static
3329 * identity mapping if iommu_identity_mapping is set.
3330 */
3331 if (iommu_identity_mapping) {
3332 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3333 if (ret) {
3334 pr_crit("Failed to setup IOMMU pass-through\n");
3335 goto free_iommu;
3336 }
3337 }
3338 /*
3339 * For each rmrr
3340 * for each dev attached to rmrr
3341 * do
3342 * locate drhd for dev, alloc domain for dev
3343 * allocate free domain
3344 * allocate page table entries for rmrr
3345 * if context not allocated for bus
3346 * allocate and init context
3347 * set present in root table for this bus
3348 * init context with domain, translation etc
3349 * endfor
3350 * endfor
3351 */
3352 pr_info("Setting RMRR:\n");
3353 for_each_rmrr_units(rmrr) {
3354 /* some BIOS lists non-exist devices in DMAR table. */
3355 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3356 i, dev) {
3357 ret = iommu_prepare_rmrr_dev(rmrr, dev);
3358 if (ret)
3359 pr_err("Mapping reserved region failed\n");
3360 }
3361 }
3362
3363 iommu_prepare_isa();
3364
3365domains_done:
3366
3367 /*
3368 * for each drhd
3369 * enable fault log
3370 * global invalidate context cache
3371 * global invalidate iotlb
3372 * enable translation
3373 */
3374 for_each_iommu(iommu, drhd) {
3375 if (drhd->ignored) {
3376 /*
3377 * we always have to disable PMRs or DMA may fail on
3378 * this device
3379 */
3380 if (force_on)
3381 iommu_disable_protect_mem_regions(iommu);
3382 continue;
3383 }
3384
3385 iommu_flush_write_buffer(iommu);
3386
3387#ifdef CONFIG_INTEL_IOMMU_SVM
3388 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3389 ret = intel_svm_enable_prq(iommu);
3390 if (ret)
3391 goto free_iommu;
3392 }
3393#endif
3394 ret = dmar_set_interrupt(iommu);
3395 if (ret)
3396 goto free_iommu;
3397
3398 if (!translation_pre_enabled(iommu))
3399 iommu_enable_translation(iommu);
3400
3401 iommu_disable_protect_mem_regions(iommu);
3402 }
3403
3404 return 0;
3405
3406free_iommu:
3407 for_each_active_iommu(iommu, drhd) {
3408 disable_dmar_iommu(iommu);
3409 free_dmar_iommu(iommu);
3410 }
3411free_g_iommus:
3412 for_each_possible_cpu(cpu)
3413 kfree(per_cpu_ptr(&deferred_flush, cpu)->tables);
3414 kfree(g_iommus);
3415error:
3416 return ret;
3417}
3418
3419/* This takes a number of _MM_ pages, not VTD pages */
3420static unsigned long intel_alloc_iova(struct device *dev,
3421 struct dmar_domain *domain,
3422 unsigned long nrpages, uint64_t dma_mask)
3423{
3424 unsigned long iova_pfn = 0;
3425
3426 /* Restrict dma_mask to the width that the iommu can handle */
3427 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3428 /* Ensure we reserve the whole size-aligned region */
3429 nrpages = __roundup_pow_of_two(nrpages);
3430
3431 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3432 /*
3433 * First try to allocate an io virtual address in
3434 * DMA_BIT_MASK(32) and if that fails then try allocating
3435 * from higher range
3436 */
3437 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3438 IOVA_PFN(DMA_BIT_MASK(32)));
3439 if (iova_pfn)
3440 return iova_pfn;
3441 }
3442 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, IOVA_PFN(dma_mask));
3443 if (unlikely(!iova_pfn)) {
3444 pr_err("Allocating %ld-page iova for %s failed",
3445 nrpages, dev_name(dev));
3446 return 0;
3447 }
3448
3449 return iova_pfn;
3450}
3451
3452static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
3453{
3454 struct dmar_domain *domain, *tmp;
3455 struct dmar_rmrr_unit *rmrr;
3456 struct device *i_dev;
3457 int i, ret;
3458
3459 domain = find_domain(dev);
3460 if (domain)
3461 goto out;
3462
3463 domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3464 if (!domain)
3465 goto out;
3466
3467 /* We have a new domain - setup possible RMRRs for the device */
3468 rcu_read_lock();
3469 for_each_rmrr_units(rmrr) {
3470 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3471 i, i_dev) {
3472 if (i_dev != dev)
3473 continue;
3474
3475 ret = domain_prepare_identity_map(dev, domain,
3476 rmrr->base_address,
3477 rmrr->end_address);
3478 if (ret)
3479 dev_err(dev, "Mapping reserved region failed\n");
3480 }
3481 }
3482 rcu_read_unlock();
3483
3484 tmp = set_domain_for_dev(dev, domain);
3485 if (!tmp || domain != tmp) {
3486 domain_exit(domain);
3487 domain = tmp;
3488 }
3489
3490out:
3491
3492 if (!domain)
3493 pr_err("Allocating domain for %s failed\n", dev_name(dev));
3494
3495
3496 return domain;
3497}
3498
3499static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3500{
3501 struct device_domain_info *info;
3502
3503 /* No lock here, assumes no domain exit in normal case */
3504 info = dev->archdata.iommu;
3505 if (likely(info))
3506 return info->domain;
3507
3508 return __get_valid_domain_for_dev(dev);
3509}
3510
3511/* Check if the dev needs to go through non-identity map and unmap process.*/
3512static int iommu_no_mapping(struct device *dev)
3513{
3514 int found;
3515
3516 if (iommu_dummy(dev))
3517 return 1;
3518
3519 if (!iommu_identity_mapping)
3520 return 0;
3521
3522 found = identity_mapping(dev);
3523 if (found) {
3524 if (iommu_should_identity_map(dev, 0))
3525 return 1;
3526 else {
3527 /*
3528 * 32 bit DMA is removed from si_domain and fall back
3529 * to non-identity mapping.
3530 */
3531 dmar_remove_one_dev_info(si_domain, dev);
3532 pr_info("32bit %s uses non-identity mapping\n",
3533 dev_name(dev));
3534 return 0;
3535 }
3536 } else {
3537 /*
3538 * In case of a detached 64 bit DMA device from vm, the device
3539 * is put into si_domain for identity mapping.
3540 */
3541 if (iommu_should_identity_map(dev, 0)) {
3542 int ret;
3543 ret = domain_add_dev_info(si_domain, dev);
3544 if (!ret) {
3545 pr_info("64bit %s uses identity mapping\n",
3546 dev_name(dev));
3547 return 1;
3548 }
3549 }
3550 }
3551
3552 return 0;
3553}
3554
3555static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3556 size_t size, int dir, u64 dma_mask)
3557{
3558 struct dmar_domain *domain;
3559 phys_addr_t start_paddr;
3560 unsigned long iova_pfn;
3561 int prot = 0;
3562 int ret;
3563 struct intel_iommu *iommu;
3564 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3565
3566 BUG_ON(dir == DMA_NONE);
3567
3568 if (iommu_no_mapping(dev))
3569 return paddr;
3570
3571 domain = get_valid_domain_for_dev(dev);
3572 if (!domain)
3573 return 0;
3574
3575 iommu = domain_get_iommu(domain);
3576 size = aligned_nrpages(paddr, size);
3577
3578 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3579 if (!iova_pfn)
3580 goto error;
3581
3582 /*
3583 * Check if DMAR supports zero-length reads on write only
3584 * mappings..
3585 */
3586 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3587 !cap_zlr(iommu->cap))
3588 prot |= DMA_PTE_READ;
3589 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3590 prot |= DMA_PTE_WRITE;
3591 /*
3592 * paddr - (paddr + size) might be partial page, we should map the whole
3593 * page. Note: if two part of one page are separately mapped, we
3594 * might have two guest_addr mapping to the same host paddr, but this
3595 * is not a big problem
3596 */
3597 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3598 mm_to_dma_pfn(paddr_pfn), size, prot);
3599 if (ret)
3600 goto error;
3601
3602 /* it's a non-present to present mapping. Only flush if caching mode */
3603 if (cap_caching_mode(iommu->cap))
3604 iommu_flush_iotlb_psi(iommu, domain,
3605 mm_to_dma_pfn(iova_pfn),
3606 size, 0, 1);
3607 else
3608 iommu_flush_write_buffer(iommu);
3609
3610 start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3611 start_paddr += paddr & ~PAGE_MASK;
3612 return start_paddr;
3613
3614error:
3615 if (iova_pfn)
3616 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3617 pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3618 dev_name(dev), size, (unsigned long long)paddr, dir);
3619 return 0;
3620}
3621
3622static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3623 unsigned long offset, size_t size,
3624 enum dma_data_direction dir,
3625 unsigned long attrs)
3626{
3627 return __intel_map_single(dev, page_to_phys(page) + offset, size,
3628 dir, *dev->dma_mask);
3629}
3630
3631static void flush_unmaps(struct deferred_flush_data *flush_data)
3632{
3633 int i, j;
3634
3635 flush_data->timer_on = 0;
3636
3637 /* just flush them all */
3638 for (i = 0; i < g_num_of_iommus; i++) {
3639 struct intel_iommu *iommu = g_iommus[i];
3640 struct deferred_flush_table *flush_table =
3641 &flush_data->tables[i];
3642 if (!iommu)
3643 continue;
3644
3645 if (!flush_table->next)
3646 continue;
3647
3648 /* In caching mode, global flushes turn emulation expensive */
3649 if (!cap_caching_mode(iommu->cap))
3650 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3651 DMA_TLB_GLOBAL_FLUSH);
3652 for (j = 0; j < flush_table->next; j++) {
3653 unsigned long mask;
3654 struct deferred_flush_entry *entry =
3655 &flush_table->entries[j];
3656 unsigned long iova_pfn = entry->iova_pfn;
3657 unsigned long nrpages = entry->nrpages;
3658 struct dmar_domain *domain = entry->domain;
3659 struct page *freelist = entry->freelist;
3660
3661 /* On real hardware multiple invalidations are expensive */
3662 if (cap_caching_mode(iommu->cap))
3663 iommu_flush_iotlb_psi(iommu, domain,
3664 mm_to_dma_pfn(iova_pfn),
3665 nrpages, !freelist, 0);
3666 else {
3667 mask = ilog2(nrpages);
3668 iommu_flush_dev_iotlb(domain,
3669 (uint64_t)iova_pfn << PAGE_SHIFT, mask);
3670 }
3671 free_iova_fast(&domain->iovad, iova_pfn, nrpages);
3672 if (freelist)
3673 dma_free_pagelist(freelist);
3674 }
3675 flush_table->next = 0;
3676 }
3677
3678 flush_data->size = 0;
3679}
3680
3681static void flush_unmaps_timeout(unsigned long cpuid)
3682{
3683 struct deferred_flush_data *flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3684 unsigned long flags;
3685
3686 spin_lock_irqsave(&flush_data->lock, flags);
3687 flush_unmaps(flush_data);
3688 spin_unlock_irqrestore(&flush_data->lock, flags);
3689}
3690
3691static void add_unmap(struct dmar_domain *dom, unsigned long iova_pfn,
3692 unsigned long nrpages, struct page *freelist)
3693{
3694 unsigned long flags;
3695 int entry_id, iommu_id;
3696 struct intel_iommu *iommu;
3697 struct deferred_flush_entry *entry;
3698 struct deferred_flush_data *flush_data;
3699 unsigned int cpuid;
3700
3701 cpuid = get_cpu();
3702 flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3703
3704 /* Flush all CPUs' entries to avoid deferring too much. If
3705 * this becomes a bottleneck, can just flush us, and rely on
3706 * flush timer for the rest.
3707 */
3708 if (flush_data->size == HIGH_WATER_MARK) {
3709 int cpu;
3710
3711 for_each_online_cpu(cpu)
3712 flush_unmaps_timeout(cpu);
3713 }
3714
3715 spin_lock_irqsave(&flush_data->lock, flags);
3716
3717 iommu = domain_get_iommu(dom);
3718 iommu_id = iommu->seq_id;
3719
3720 entry_id = flush_data->tables[iommu_id].next;
3721 ++(flush_data->tables[iommu_id].next);
3722
3723 entry = &flush_data->tables[iommu_id].entries[entry_id];
3724 entry->domain = dom;
3725 entry->iova_pfn = iova_pfn;
3726 entry->nrpages = nrpages;
3727 entry->freelist = freelist;
3728
3729 if (!flush_data->timer_on) {
3730 mod_timer(&flush_data->timer, jiffies + msecs_to_jiffies(10));
3731 flush_data->timer_on = 1;
3732 }
3733 flush_data->size++;
3734 spin_unlock_irqrestore(&flush_data->lock, flags);
3735
3736 put_cpu();
3737}
3738
3739static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3740{
3741 struct dmar_domain *domain;
3742 unsigned long start_pfn, last_pfn;
3743 unsigned long nrpages;
3744 unsigned long iova_pfn;
3745 struct intel_iommu *iommu;
3746 struct page *freelist;
3747
3748 if (iommu_no_mapping(dev))
3749 return;
3750
3751 domain = find_domain(dev);
3752 BUG_ON(!domain);
3753
3754 iommu = domain_get_iommu(domain);
3755
3756 iova_pfn = IOVA_PFN(dev_addr);
3757
3758 nrpages = aligned_nrpages(dev_addr, size);
3759 start_pfn = mm_to_dma_pfn(iova_pfn);
3760 last_pfn = start_pfn + nrpages - 1;
3761
3762 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3763 dev_name(dev), start_pfn, last_pfn);
3764
3765 freelist = domain_unmap(domain, start_pfn, last_pfn);
3766
3767 if (intel_iommu_strict) {
3768 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3769 nrpages, !freelist, 0);
3770 /* free iova */
3771 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3772 dma_free_pagelist(freelist);
3773 } else {
3774 add_unmap(domain, iova_pfn, nrpages, freelist);
3775 /*
3776 * queue up the release of the unmap to save the 1/6th of the
3777 * cpu used up by the iotlb flush operation...
3778 */
3779 }
3780}
3781
3782static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3783 size_t size, enum dma_data_direction dir,
3784 unsigned long attrs)
3785{
3786 intel_unmap(dev, dev_addr, size);
3787}
3788
3789static void *intel_alloc_coherent(struct device *dev, size_t size,
3790 dma_addr_t *dma_handle, gfp_t flags,
3791 unsigned long attrs)
3792{
3793 struct page *page = NULL;
3794 int order;
3795
3796 size = PAGE_ALIGN(size);
3797 order = get_order(size);
3798
3799 if (!iommu_no_mapping(dev))
3800 flags &= ~(GFP_DMA | GFP_DMA32);
3801 else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3802 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3803 flags |= GFP_DMA;
3804 else
3805 flags |= GFP_DMA32;
3806 }
3807
3808 if (gfpflags_allow_blocking(flags)) {
3809 unsigned int count = size >> PAGE_SHIFT;
3810
3811 page = dma_alloc_from_contiguous(dev, count, order);
3812 if (page && iommu_no_mapping(dev) &&
3813 page_to_phys(page) + size > dev->coherent_dma_mask) {
3814 dma_release_from_contiguous(dev, page, count);
3815 page = NULL;
3816 }
3817 }
3818
3819 if (!page)
3820 page = alloc_pages(flags, order);
3821 if (!page)
3822 return NULL;
3823 memset(page_address(page), 0, size);
3824
3825 *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3826 DMA_BIDIRECTIONAL,
3827 dev->coherent_dma_mask);
3828 if (*dma_handle)
3829 return page_address(page);
3830 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3831 __free_pages(page, order);
3832
3833 return NULL;
3834}
3835
3836static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3837 dma_addr_t dma_handle, unsigned long attrs)
3838{
3839 int order;
3840 struct page *page = virt_to_page(vaddr);
3841
3842 size = PAGE_ALIGN(size);
3843 order = get_order(size);
3844
3845 intel_unmap(dev, dma_handle, size);
3846 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3847 __free_pages(page, order);
3848}
3849
3850static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3851 int nelems, enum dma_data_direction dir,
3852 unsigned long attrs)
3853{
3854 dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3855 unsigned long nrpages = 0;
3856 struct scatterlist *sg;
3857 int i;
3858
3859 for_each_sg(sglist, sg, nelems, i) {
3860 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3861 }
3862
3863 intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3864}
3865
3866static int intel_nontranslate_map_sg(struct device *hddev,
3867 struct scatterlist *sglist, int nelems, int dir)
3868{
3869 int i;
3870 struct scatterlist *sg;
3871
3872 for_each_sg(sglist, sg, nelems, i) {
3873 BUG_ON(!sg_page(sg));
3874 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3875 sg->dma_length = sg->length;
3876 }
3877 return nelems;
3878}
3879
3880static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3881 enum dma_data_direction dir, unsigned long attrs)
3882{
3883 int i;
3884 struct dmar_domain *domain;
3885 size_t size = 0;
3886 int prot = 0;
3887 unsigned long iova_pfn;
3888 int ret;
3889 struct scatterlist *sg;
3890 unsigned long start_vpfn;
3891 struct intel_iommu *iommu;
3892
3893 BUG_ON(dir == DMA_NONE);
3894 if (iommu_no_mapping(dev))
3895 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3896
3897 domain = get_valid_domain_for_dev(dev);
3898 if (!domain)
3899 return 0;
3900
3901 iommu = domain_get_iommu(domain);
3902
3903 for_each_sg(sglist, sg, nelems, i)
3904 size += aligned_nrpages(sg->offset, sg->length);
3905
3906 iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3907 *dev->dma_mask);
3908 if (!iova_pfn) {
3909 sglist->dma_length = 0;
3910 return 0;
3911 }
3912
3913 /*
3914 * Check if DMAR supports zero-length reads on write only
3915 * mappings..
3916 */
3917 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3918 !cap_zlr(iommu->cap))
3919 prot |= DMA_PTE_READ;
3920 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3921 prot |= DMA_PTE_WRITE;
3922
3923 start_vpfn = mm_to_dma_pfn(iova_pfn);
3924
3925 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3926 if (unlikely(ret)) {
3927 dma_pte_free_pagetable(domain, start_vpfn,
3928 start_vpfn + size - 1);
3929 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3930 return 0;
3931 }
3932
3933 /* it's a non-present to present mapping. Only flush if caching mode */
3934 if (cap_caching_mode(iommu->cap))
3935 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3936 else
3937 iommu_flush_write_buffer(iommu);
3938
3939 return nelems;
3940}
3941
3942static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3943{
3944 return !dma_addr;
3945}
3946
3947struct dma_map_ops intel_dma_ops = {
3948 .alloc = intel_alloc_coherent,
3949 .free = intel_free_coherent,
3950 .map_sg = intel_map_sg,
3951 .unmap_sg = intel_unmap_sg,
3952 .map_page = intel_map_page,
3953 .unmap_page = intel_unmap_page,
3954 .mapping_error = intel_mapping_error,
3955};
3956
3957static inline int iommu_domain_cache_init(void)
3958{
3959 int ret = 0;
3960
3961 iommu_domain_cache = kmem_cache_create("iommu_domain",
3962 sizeof(struct dmar_domain),
3963 0,
3964 SLAB_HWCACHE_ALIGN,
3965
3966 NULL);
3967 if (!iommu_domain_cache) {
3968 pr_err("Couldn't create iommu_domain cache\n");
3969 ret = -ENOMEM;
3970 }
3971
3972 return ret;
3973}
3974
3975static inline int iommu_devinfo_cache_init(void)
3976{
3977 int ret = 0;
3978
3979 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3980 sizeof(struct device_domain_info),
3981 0,
3982 SLAB_HWCACHE_ALIGN,
3983 NULL);
3984 if (!iommu_devinfo_cache) {
3985 pr_err("Couldn't create devinfo cache\n");
3986 ret = -ENOMEM;
3987 }
3988
3989 return ret;
3990}
3991
3992static int __init iommu_init_mempool(void)
3993{
3994 int ret;
3995 ret = iova_cache_get();
3996 if (ret)
3997 return ret;
3998
3999 ret = iommu_domain_cache_init();
4000 if (ret)
4001 goto domain_error;
4002
4003 ret = iommu_devinfo_cache_init();
4004 if (!ret)
4005 return ret;
4006
4007 kmem_cache_destroy(iommu_domain_cache);
4008domain_error:
4009 iova_cache_put();
4010
4011 return -ENOMEM;
4012}
4013
4014static void __init iommu_exit_mempool(void)
4015{
4016 kmem_cache_destroy(iommu_devinfo_cache);
4017 kmem_cache_destroy(iommu_domain_cache);
4018 iova_cache_put();
4019}
4020
4021static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
4022{
4023 struct dmar_drhd_unit *drhd;
4024 u32 vtbar;
4025 int rc;
4026
4027 /* We know that this device on this chipset has its own IOMMU.
4028 * If we find it under a different IOMMU, then the BIOS is lying
4029 * to us. Hope that the IOMMU for this device is actually
4030 * disabled, and it needs no translation...
4031 */
4032 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4033 if (rc) {
4034 /* "can't" happen */
4035 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4036 return;
4037 }
4038 vtbar &= 0xffff0000;
4039
4040 /* we know that the this iommu should be at offset 0xa000 from vtbar */
4041 drhd = dmar_find_matched_drhd_unit(pdev);
4042 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4043 TAINT_FIRMWARE_WORKAROUND,
4044 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4045 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4046}
4047DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4048
4049static void __init init_no_remapping_devices(void)
4050{
4051 struct dmar_drhd_unit *drhd;
4052 struct device *dev;
4053 int i;
4054
4055 for_each_drhd_unit(drhd) {
4056 if (!drhd->include_all) {
4057 for_each_active_dev_scope(drhd->devices,
4058 drhd->devices_cnt, i, dev)
4059 break;
4060 /* ignore DMAR unit if no devices exist */
4061 if (i == drhd->devices_cnt)
4062 drhd->ignored = 1;
4063 }
4064 }
4065
4066 for_each_active_drhd_unit(drhd) {
4067 if (drhd->include_all)
4068 continue;
4069
4070 for_each_active_dev_scope(drhd->devices,
4071 drhd->devices_cnt, i, dev)
4072 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4073 break;
4074 if (i < drhd->devices_cnt)
4075 continue;
4076
4077 /* This IOMMU has *only* gfx devices. Either bypass it or
4078 set the gfx_mapped flag, as appropriate */
4079 if (dmar_map_gfx) {
4080 intel_iommu_gfx_mapped = 1;
4081 } else {
4082 drhd->ignored = 1;
4083 for_each_active_dev_scope(drhd->devices,
4084 drhd->devices_cnt, i, dev)
4085 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4086 }
4087 }
4088}
4089
4090#ifdef CONFIG_SUSPEND
4091static int init_iommu_hw(void)
4092{
4093 struct dmar_drhd_unit *drhd;
4094 struct intel_iommu *iommu = NULL;
4095
4096 for_each_active_iommu(iommu, drhd)
4097 if (iommu->qi)
4098 dmar_reenable_qi(iommu);
4099
4100 for_each_iommu(iommu, drhd) {
4101 if (drhd->ignored) {
4102 /*
4103 * we always have to disable PMRs or DMA may fail on
4104 * this device
4105 */
4106 if (force_on)
4107 iommu_disable_protect_mem_regions(iommu);
4108 continue;
4109 }
4110
4111 iommu_flush_write_buffer(iommu);
4112
4113 iommu_set_root_entry(iommu);
4114
4115 iommu->flush.flush_context(iommu, 0, 0, 0,
4116 DMA_CCMD_GLOBAL_INVL);
4117 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4118 iommu_enable_translation(iommu);
4119 iommu_disable_protect_mem_regions(iommu);
4120 }
4121
4122 return 0;
4123}
4124
4125static void iommu_flush_all(void)
4126{
4127 struct dmar_drhd_unit *drhd;
4128 struct intel_iommu *iommu;
4129
4130 for_each_active_iommu(iommu, drhd) {
4131 iommu->flush.flush_context(iommu, 0, 0, 0,
4132 DMA_CCMD_GLOBAL_INVL);
4133 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4134 DMA_TLB_GLOBAL_FLUSH);
4135 }
4136}
4137
4138static int iommu_suspend(void)
4139{
4140 struct dmar_drhd_unit *drhd;
4141 struct intel_iommu *iommu = NULL;
4142 unsigned long flag;
4143
4144 for_each_active_iommu(iommu, drhd) {
4145 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
4146 GFP_ATOMIC);
4147 if (!iommu->iommu_state)
4148 goto nomem;
4149 }
4150
4151 iommu_flush_all();
4152
4153 for_each_active_iommu(iommu, drhd) {
4154 iommu_disable_translation(iommu);
4155
4156 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4157
4158 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4159 readl(iommu->reg + DMAR_FECTL_REG);
4160 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4161 readl(iommu->reg + DMAR_FEDATA_REG);
4162 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4163 readl(iommu->reg + DMAR_FEADDR_REG);
4164 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4165 readl(iommu->reg + DMAR_FEUADDR_REG);
4166
4167 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4168 }
4169 return 0;
4170
4171nomem:
4172 for_each_active_iommu(iommu, drhd)
4173 kfree(iommu->iommu_state);
4174
4175 return -ENOMEM;
4176}
4177
4178static void iommu_resume(void)
4179{
4180 struct dmar_drhd_unit *drhd;
4181 struct intel_iommu *iommu = NULL;
4182 unsigned long flag;
4183
4184 if (init_iommu_hw()) {
4185 if (force_on)
4186 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4187 else
4188 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4189 return;
4190 }
4191
4192 for_each_active_iommu(iommu, drhd) {
4193
4194 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4195
4196 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4197 iommu->reg + DMAR_FECTL_REG);
4198 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4199 iommu->reg + DMAR_FEDATA_REG);
4200 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4201 iommu->reg + DMAR_FEADDR_REG);
4202 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4203 iommu->reg + DMAR_FEUADDR_REG);
4204
4205 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4206 }
4207
4208 for_each_active_iommu(iommu, drhd)
4209 kfree(iommu->iommu_state);
4210}
4211
4212static struct syscore_ops iommu_syscore_ops = {
4213 .resume = iommu_resume,
4214 .suspend = iommu_suspend,
4215};
4216
4217static void __init init_iommu_pm_ops(void)
4218{
4219 register_syscore_ops(&iommu_syscore_ops);
4220}
4221
4222#else
4223static inline void init_iommu_pm_ops(void) {}
4224#endif /* CONFIG_PM */
4225
4226
4227int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4228{
4229 struct acpi_dmar_reserved_memory *rmrr;
4230 struct dmar_rmrr_unit *rmrru;
4231
4232 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4233 if (!rmrru)
4234 return -ENOMEM;
4235
4236 rmrru->hdr = header;
4237 rmrr = (struct acpi_dmar_reserved_memory *)header;
4238 rmrru->base_address = rmrr->base_address;
4239 rmrru->end_address = rmrr->end_address;
4240 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4241 ((void *)rmrr) + rmrr->header.length,
4242 &rmrru->devices_cnt);
4243 if (rmrru->devices_cnt && rmrru->devices == NULL) {
4244 kfree(rmrru);
4245 return -ENOMEM;
4246 }
4247
4248 list_add(&rmrru->list, &dmar_rmrr_units);
4249
4250 return 0;
4251}
4252
4253static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4254{
4255 struct dmar_atsr_unit *atsru;
4256 struct acpi_dmar_atsr *tmp;
4257
4258 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4259 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4260 if (atsr->segment != tmp->segment)
4261 continue;
4262 if (atsr->header.length != tmp->header.length)
4263 continue;
4264 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4265 return atsru;
4266 }
4267
4268 return NULL;
4269}
4270
4271int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4272{
4273 struct acpi_dmar_atsr *atsr;
4274 struct dmar_atsr_unit *atsru;
4275
4276 if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4277 return 0;
4278
4279 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4280 atsru = dmar_find_atsr(atsr);
4281 if (atsru)
4282 return 0;
4283
4284 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4285 if (!atsru)
4286 return -ENOMEM;
4287
4288 /*
4289 * If memory is allocated from slab by ACPI _DSM method, we need to
4290 * copy the memory content because the memory buffer will be freed
4291 * on return.
4292 */
4293 atsru->hdr = (void *)(atsru + 1);
4294 memcpy(atsru->hdr, hdr, hdr->length);
4295 atsru->include_all = atsr->flags & 0x1;
4296 if (!atsru->include_all) {
4297 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4298 (void *)atsr + atsr->header.length,
4299 &atsru->devices_cnt);
4300 if (atsru->devices_cnt && atsru->devices == NULL) {
4301 kfree(atsru);
4302 return -ENOMEM;
4303 }
4304 }
4305
4306 list_add_rcu(&atsru->list, &dmar_atsr_units);
4307
4308 return 0;
4309}
4310
4311static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4312{
4313 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4314 kfree(atsru);
4315}
4316
4317int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4318{
4319 struct acpi_dmar_atsr *atsr;
4320 struct dmar_atsr_unit *atsru;
4321
4322 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4323 atsru = dmar_find_atsr(atsr);
4324 if (atsru) {
4325 list_del_rcu(&atsru->list);
4326 synchronize_rcu();
4327 intel_iommu_free_atsr(atsru);
4328 }
4329
4330 return 0;
4331}
4332
4333int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4334{
4335 int i;
4336 struct device *dev;
4337 struct acpi_dmar_atsr *atsr;
4338 struct dmar_atsr_unit *atsru;
4339
4340 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4341 atsru = dmar_find_atsr(atsr);
4342 if (!atsru)
4343 return 0;
4344
4345 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4346 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4347 i, dev)
4348 return -EBUSY;
4349 }
4350
4351 return 0;
4352}
4353
4354static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4355{
4356 int sp, ret = 0;
4357 struct intel_iommu *iommu = dmaru->iommu;
4358
4359 if (g_iommus[iommu->seq_id])
4360 return 0;
4361
4362 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4363 pr_warn("%s: Doesn't support hardware pass through.\n",
4364 iommu->name);
4365 return -ENXIO;
4366 }
4367 if (!ecap_sc_support(iommu->ecap) &&
4368 domain_update_iommu_snooping(iommu)) {
4369 pr_warn("%s: Doesn't support snooping.\n",
4370 iommu->name);
4371 return -ENXIO;
4372 }
4373 sp = domain_update_iommu_superpage(iommu) - 1;
4374 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4375 pr_warn("%s: Doesn't support large page.\n",
4376 iommu->name);
4377 return -ENXIO;
4378 }
4379
4380 /*
4381 * Disable translation if already enabled prior to OS handover.
4382 */
4383 if (iommu->gcmd & DMA_GCMD_TE)
4384 iommu_disable_translation(iommu);
4385
4386 g_iommus[iommu->seq_id] = iommu;
4387 ret = iommu_init_domains(iommu);
4388 if (ret == 0)
4389 ret = iommu_alloc_root_entry(iommu);
4390 if (ret)
4391 goto out;
4392
4393#ifdef CONFIG_INTEL_IOMMU_SVM
4394 if (pasid_enabled(iommu))
4395 intel_svm_alloc_pasid_tables(iommu);
4396#endif
4397
4398 if (dmaru->ignored) {
4399 /*
4400 * we always have to disable PMRs or DMA may fail on this device
4401 */
4402 if (force_on)
4403 iommu_disable_protect_mem_regions(iommu);
4404 return 0;
4405 }
4406
4407 intel_iommu_init_qi(iommu);
4408 iommu_flush_write_buffer(iommu);
4409
4410#ifdef CONFIG_INTEL_IOMMU_SVM
4411 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4412 ret = intel_svm_enable_prq(iommu);
4413 if (ret)
4414 goto disable_iommu;
4415 }
4416#endif
4417 ret = dmar_set_interrupt(iommu);
4418 if (ret)
4419 goto disable_iommu;
4420
4421 iommu_set_root_entry(iommu);
4422 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4423 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4424 iommu_enable_translation(iommu);
4425
4426 iommu_disable_protect_mem_regions(iommu);
4427 return 0;
4428
4429disable_iommu:
4430 disable_dmar_iommu(iommu);
4431out:
4432 free_dmar_iommu(iommu);
4433 return ret;
4434}
4435
4436int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4437{
4438 int ret = 0;
4439 struct intel_iommu *iommu = dmaru->iommu;
4440
4441 if (!intel_iommu_enabled)
4442 return 0;
4443 if (iommu == NULL)
4444 return -EINVAL;
4445
4446 if (insert) {
4447 ret = intel_iommu_add(dmaru);
4448 } else {
4449 disable_dmar_iommu(iommu);
4450 free_dmar_iommu(iommu);
4451 }
4452
4453 return ret;
4454}
4455
4456static void intel_iommu_free_dmars(void)
4457{
4458 struct dmar_rmrr_unit *rmrru, *rmrr_n;
4459 struct dmar_atsr_unit *atsru, *atsr_n;
4460
4461 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4462 list_del(&rmrru->list);
4463 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4464 kfree(rmrru);
4465 }
4466
4467 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4468 list_del(&atsru->list);
4469 intel_iommu_free_atsr(atsru);
4470 }
4471}
4472
4473int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4474{
4475 int i, ret = 1;
4476 struct pci_bus *bus;
4477 struct pci_dev *bridge = NULL;
4478 struct device *tmp;
4479 struct acpi_dmar_atsr *atsr;
4480 struct dmar_atsr_unit *atsru;
4481
4482 dev = pci_physfn(dev);
4483 for (bus = dev->bus; bus; bus = bus->parent) {
4484 bridge = bus->self;
4485 /* If it's an integrated device, allow ATS */
4486 if (!bridge)
4487 return 1;
4488 /* Connected via non-PCIe: no ATS */
4489 if (!pci_is_pcie(bridge) ||
4490 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4491 return 0;
4492 /* If we found the root port, look it up in the ATSR */
4493 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4494 break;
4495 }
4496
4497 rcu_read_lock();
4498 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4499 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4500 if (atsr->segment != pci_domain_nr(dev->bus))
4501 continue;
4502
4503 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4504 if (tmp == &bridge->dev)
4505 goto out;
4506
4507 if (atsru->include_all)
4508 goto out;
4509 }
4510 ret = 0;
4511out:
4512 rcu_read_unlock();
4513
4514 return ret;
4515}
4516
4517int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4518{
4519 int ret = 0;
4520 struct dmar_rmrr_unit *rmrru;
4521 struct dmar_atsr_unit *atsru;
4522 struct acpi_dmar_atsr *atsr;
4523 struct acpi_dmar_reserved_memory *rmrr;
4524
4525 if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4526 return 0;
4527
4528 list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4529 rmrr = container_of(rmrru->hdr,
4530 struct acpi_dmar_reserved_memory, header);
4531 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4532 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4533 ((void *)rmrr) + rmrr->header.length,
4534 rmrr->segment, rmrru->devices,
4535 rmrru->devices_cnt);
4536 if(ret < 0)
4537 return ret;
4538 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4539 dmar_remove_dev_scope(info, rmrr->segment,
4540 rmrru->devices, rmrru->devices_cnt);
4541 }
4542 }
4543
4544 list_for_each_entry(atsru, &dmar_atsr_units, list) {
4545 if (atsru->include_all)
4546 continue;
4547
4548 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4549 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4550 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4551 (void *)atsr + atsr->header.length,
4552 atsr->segment, atsru->devices,
4553 atsru->devices_cnt);
4554 if (ret > 0)
4555 break;
4556 else if(ret < 0)
4557 return ret;
4558 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4559 if (dmar_remove_dev_scope(info, atsr->segment,
4560 atsru->devices, atsru->devices_cnt))
4561 break;
4562 }
4563 }
4564
4565 return 0;
4566}
4567
4568/*
4569 * Here we only respond to action of unbound device from driver.
4570 *
4571 * Added device is not attached to its DMAR domain here yet. That will happen
4572 * when mapping the device to iova.
4573 */
4574static int device_notifier(struct notifier_block *nb,
4575 unsigned long action, void *data)
4576{
4577 struct device *dev = data;
4578 struct dmar_domain *domain;
4579
4580 if (iommu_dummy(dev))
4581 return 0;
4582
4583 if (action != BUS_NOTIFY_REMOVED_DEVICE)
4584 return 0;
4585
4586 domain = find_domain(dev);
4587 if (!domain)
4588 return 0;
4589
4590 dmar_remove_one_dev_info(domain, dev);
4591 if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4592 domain_exit(domain);
4593
4594 return 0;
4595}
4596
4597static struct notifier_block device_nb = {
4598 .notifier_call = device_notifier,
4599};
4600
4601static int intel_iommu_memory_notifier(struct notifier_block *nb,
4602 unsigned long val, void *v)
4603{
4604 struct memory_notify *mhp = v;
4605 unsigned long long start, end;
4606 unsigned long start_vpfn, last_vpfn;
4607
4608 switch (val) {
4609 case MEM_GOING_ONLINE:
4610 start = mhp->start_pfn << PAGE_SHIFT;
4611 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4612 if (iommu_domain_identity_map(si_domain, start, end)) {
4613 pr_warn("Failed to build identity map for [%llx-%llx]\n",
4614 start, end);
4615 return NOTIFY_BAD;
4616 }
4617 break;
4618
4619 case MEM_OFFLINE:
4620 case MEM_CANCEL_ONLINE:
4621 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4622 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4623 while (start_vpfn <= last_vpfn) {
4624 struct iova *iova;
4625 struct dmar_drhd_unit *drhd;
4626 struct intel_iommu *iommu;
4627 struct page *freelist;
4628
4629 iova = find_iova(&si_domain->iovad, start_vpfn);
4630 if (iova == NULL) {
4631 pr_debug("Failed get IOVA for PFN %lx\n",
4632 start_vpfn);
4633 break;
4634 }
4635
4636 iova = split_and_remove_iova(&si_domain->iovad, iova,
4637 start_vpfn, last_vpfn);
4638 if (iova == NULL) {
4639 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4640 start_vpfn, last_vpfn);
4641 return NOTIFY_BAD;
4642 }
4643
4644 freelist = domain_unmap(si_domain, iova->pfn_lo,
4645 iova->pfn_hi);
4646
4647 rcu_read_lock();
4648 for_each_active_iommu(iommu, drhd)
4649 iommu_flush_iotlb_psi(iommu, si_domain,
4650 iova->pfn_lo, iova_size(iova),
4651 !freelist, 0);
4652 rcu_read_unlock();
4653 dma_free_pagelist(freelist);
4654
4655 start_vpfn = iova->pfn_hi + 1;
4656 free_iova_mem(iova);
4657 }
4658 break;
4659 }
4660
4661 return NOTIFY_OK;
4662}
4663
4664static struct notifier_block intel_iommu_memory_nb = {
4665 .notifier_call = intel_iommu_memory_notifier,
4666 .priority = 0
4667};
4668
4669static void free_all_cpu_cached_iovas(unsigned int cpu)
4670{
4671 int i;
4672
4673 for (i = 0; i < g_num_of_iommus; i++) {
4674 struct intel_iommu *iommu = g_iommus[i];
4675 struct dmar_domain *domain;
4676 int did;
4677
4678 if (!iommu)
4679 continue;
4680
4681 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4682 domain = get_iommu_domain(iommu, (u16)did);
4683
4684 if (!domain)
4685 continue;
4686 free_cpu_cached_iovas(cpu, &domain->iovad);
4687 }
4688 }
4689}
4690
4691static int intel_iommu_cpu_dead(unsigned int cpu)
4692{
4693 free_all_cpu_cached_iovas(cpu);
4694 flush_unmaps_timeout(cpu);
4695 return 0;
4696}
4697
4698static ssize_t intel_iommu_show_version(struct device *dev,
4699 struct device_attribute *attr,
4700 char *buf)
4701{
4702 struct intel_iommu *iommu = dev_get_drvdata(dev);
4703 u32 ver = readl(iommu->reg + DMAR_VER_REG);
4704 return sprintf(buf, "%d:%d\n",
4705 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4706}
4707static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4708
4709static ssize_t intel_iommu_show_address(struct device *dev,
4710 struct device_attribute *attr,
4711 char *buf)
4712{
4713 struct intel_iommu *iommu = dev_get_drvdata(dev);
4714 return sprintf(buf, "%llx\n", iommu->reg_phys);
4715}
4716static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4717
4718static ssize_t intel_iommu_show_cap(struct device *dev,
4719 struct device_attribute *attr,
4720 char *buf)
4721{
4722 struct intel_iommu *iommu = dev_get_drvdata(dev);
4723 return sprintf(buf, "%llx\n", iommu->cap);
4724}
4725static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4726
4727static ssize_t intel_iommu_show_ecap(struct device *dev,
4728 struct device_attribute *attr,
4729 char *buf)
4730{
4731 struct intel_iommu *iommu = dev_get_drvdata(dev);
4732 return sprintf(buf, "%llx\n", iommu->ecap);
4733}
4734static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4735
4736static ssize_t intel_iommu_show_ndoms(struct device *dev,
4737 struct device_attribute *attr,
4738 char *buf)
4739{
4740 struct intel_iommu *iommu = dev_get_drvdata(dev);
4741 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4742}
4743static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4744
4745static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4746 struct device_attribute *attr,
4747 char *buf)
4748{
4749 struct intel_iommu *iommu = dev_get_drvdata(dev);
4750 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4751 cap_ndoms(iommu->cap)));
4752}
4753static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4754
4755static struct attribute *intel_iommu_attrs[] = {
4756 &dev_attr_version.attr,
4757 &dev_attr_address.attr,
4758 &dev_attr_cap.attr,
4759 &dev_attr_ecap.attr,
4760 &dev_attr_domains_supported.attr,
4761 &dev_attr_domains_used.attr,
4762 NULL,
4763};
4764
4765static struct attribute_group intel_iommu_group = {
4766 .name = "intel-iommu",
4767 .attrs = intel_iommu_attrs,
4768};
4769
4770const struct attribute_group *intel_iommu_groups[] = {
4771 &intel_iommu_group,
4772 NULL,
4773};
4774
4775int __init intel_iommu_init(void)
4776{
4777 int ret = -ENODEV;
4778 struct dmar_drhd_unit *drhd;
4779 struct intel_iommu *iommu;
4780
4781 /* VT-d is required for a TXT/tboot launch, so enforce that */
4782 force_on = tboot_force_iommu();
4783
4784 if (iommu_init_mempool()) {
4785 if (force_on)
4786 panic("tboot: Failed to initialize iommu memory\n");
4787 return -ENOMEM;
4788 }
4789
4790 down_write(&dmar_global_lock);
4791 if (dmar_table_init()) {
4792 if (force_on)
4793 panic("tboot: Failed to initialize DMAR table\n");
4794 goto out_free_dmar;
4795 }
4796
4797 if (dmar_dev_scope_init() < 0) {
4798 if (force_on)
4799 panic("tboot: Failed to initialize DMAR device scope\n");
4800 goto out_free_dmar;
4801 }
4802
4803 if (no_iommu || dmar_disabled)
4804 goto out_free_dmar;
4805
4806 if (list_empty(&dmar_rmrr_units))
4807 pr_info("No RMRR found\n");
4808
4809 if (list_empty(&dmar_atsr_units))
4810 pr_info("No ATSR found\n");
4811
4812 if (dmar_init_reserved_ranges()) {
4813 if (force_on)
4814 panic("tboot: Failed to reserve iommu ranges\n");
4815 goto out_free_reserved_range;
4816 }
4817
4818 init_no_remapping_devices();
4819
4820 ret = init_dmars();
4821 if (ret) {
4822 if (force_on)
4823 panic("tboot: Failed to initialize DMARs\n");
4824 pr_err("Initialization failed\n");
4825 goto out_free_reserved_range;
4826 }
4827 up_write(&dmar_global_lock);
4828 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4829
4830#ifdef CONFIG_SWIOTLB
4831 swiotlb = 0;
4832#endif
4833 dma_ops = &intel_dma_ops;
4834
4835 init_iommu_pm_ops();
4836
4837 for_each_active_iommu(iommu, drhd) {
4838 iommu_device_sysfs_add(&iommu->iommu, NULL,
4839 intel_iommu_groups,
4840 "%s", iommu->name);
4841 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
4842 iommu_device_register(&iommu->iommu);
4843 }
4844
4845 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4846 bus_register_notifier(&pci_bus_type, &device_nb);
4847 if (si_domain && !hw_pass_through)
4848 register_memory_notifier(&intel_iommu_memory_nb);
4849 cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4850 intel_iommu_cpu_dead);
4851 intel_iommu_enabled = 1;
4852
4853 return 0;
4854
4855out_free_reserved_range:
4856 put_iova_domain(&reserved_iova_list);
4857out_free_dmar:
4858 intel_iommu_free_dmars();
4859 up_write(&dmar_global_lock);
4860 iommu_exit_mempool();
4861 return ret;
4862}
4863
4864static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4865{
4866 struct intel_iommu *iommu = opaque;
4867
4868 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4869 return 0;
4870}
4871
4872/*
4873 * NB - intel-iommu lacks any sort of reference counting for the users of
4874 * dependent devices. If multiple endpoints have intersecting dependent
4875 * devices, unbinding the driver from any one of them will possibly leave
4876 * the others unable to operate.
4877 */
4878static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4879{
4880 if (!iommu || !dev || !dev_is_pci(dev))
4881 return;
4882
4883 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4884}
4885
4886static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4887{
4888 struct intel_iommu *iommu;
4889 unsigned long flags;
4890
4891 assert_spin_locked(&device_domain_lock);
4892
4893 if (WARN_ON(!info))
4894 return;
4895
4896 iommu = info->iommu;
4897
4898 if (info->dev) {
4899 iommu_disable_dev_iotlb(info);
4900 domain_context_clear(iommu, info->dev);
4901 }
4902
4903 unlink_domain_info(info);
4904
4905 spin_lock_irqsave(&iommu->lock, flags);
4906 domain_detach_iommu(info->domain, iommu);
4907 spin_unlock_irqrestore(&iommu->lock, flags);
4908
4909 free_devinfo_mem(info);
4910}
4911
4912static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4913 struct device *dev)
4914{
4915 struct device_domain_info *info;
4916 unsigned long flags;
4917
4918 spin_lock_irqsave(&device_domain_lock, flags);
4919 info = dev->archdata.iommu;
4920 __dmar_remove_one_dev_info(info);
4921 spin_unlock_irqrestore(&device_domain_lock, flags);
4922}
4923
4924static int md_domain_init(struct dmar_domain *domain, int guest_width)
4925{
4926 int adjust_width;
4927
4928 init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4929 DMA_32BIT_PFN);
4930 domain_reserve_special_ranges(domain);
4931
4932 /* calculate AGAW */
4933 domain->gaw = guest_width;
4934 adjust_width = guestwidth_to_adjustwidth(guest_width);
4935 domain->agaw = width_to_agaw(adjust_width);
4936
4937 domain->iommu_coherency = 0;
4938 domain->iommu_snooping = 0;
4939 domain->iommu_superpage = 0;
4940 domain->max_addr = 0;
4941
4942 /* always allocate the top pgd */
4943 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4944 if (!domain->pgd)
4945 return -ENOMEM;
4946 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4947 return 0;
4948}
4949
4950static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4951{
4952 struct dmar_domain *dmar_domain;
4953 struct iommu_domain *domain;
4954
4955 if (type != IOMMU_DOMAIN_UNMANAGED)
4956 return NULL;
4957
4958 dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4959 if (!dmar_domain) {
4960 pr_err("Can't allocate dmar_domain\n");
4961 return NULL;
4962 }
4963 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4964 pr_err("Domain initialization failed\n");
4965 domain_exit(dmar_domain);
4966 return NULL;
4967 }
4968 domain_update_iommu_cap(dmar_domain);
4969
4970 domain = &dmar_domain->domain;
4971 domain->geometry.aperture_start = 0;
4972 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4973 domain->geometry.force_aperture = true;
4974
4975 return domain;
4976}
4977
4978static void intel_iommu_domain_free(struct iommu_domain *domain)
4979{
4980 domain_exit(to_dmar_domain(domain));
4981}
4982
4983static int intel_iommu_attach_device(struct iommu_domain *domain,
4984 struct device *dev)
4985{
4986 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4987 struct intel_iommu *iommu;
4988 int addr_width;
4989 u8 bus, devfn;
4990
4991 if (device_is_rmrr_locked(dev)) {
4992 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
4993 return -EPERM;
4994 }
4995
4996 /* normally dev is not mapped */
4997 if (unlikely(domain_context_mapped(dev))) {
4998 struct dmar_domain *old_domain;
4999
5000 old_domain = find_domain(dev);
5001 if (old_domain) {
5002 rcu_read_lock();
5003 dmar_remove_one_dev_info(old_domain, dev);
5004 rcu_read_unlock();
5005
5006 if (!domain_type_is_vm_or_si(old_domain) &&
5007 list_empty(&old_domain->devices))
5008 domain_exit(old_domain);
5009 }
5010 }
5011
5012 iommu = device_to_iommu(dev, &bus, &devfn);
5013 if (!iommu)
5014 return -ENODEV;
5015
5016 /* check if this iommu agaw is sufficient for max mapped address */
5017 addr_width = agaw_to_width(iommu->agaw);
5018 if (addr_width > cap_mgaw(iommu->cap))
5019 addr_width = cap_mgaw(iommu->cap);
5020
5021 if (dmar_domain->max_addr > (1LL << addr_width)) {
5022 pr_err("%s: iommu width (%d) is not "
5023 "sufficient for the mapped address (%llx)\n",
5024 __func__, addr_width, dmar_domain->max_addr);
5025 return -EFAULT;
5026 }
5027 dmar_domain->gaw = addr_width;
5028
5029 /*
5030 * Knock out extra levels of page tables if necessary
5031 */
5032 while (iommu->agaw < dmar_domain->agaw) {
5033 struct dma_pte *pte;
5034
5035 pte = dmar_domain->pgd;
5036 if (dma_pte_present(pte)) {
5037 dmar_domain->pgd = (struct dma_pte *)
5038 phys_to_virt(dma_pte_addr(pte));
5039 free_pgtable_page(pte);
5040 }
5041 dmar_domain->agaw--;
5042 }
5043
5044 return domain_add_dev_info(dmar_domain, dev);
5045}
5046
5047static void intel_iommu_detach_device(struct iommu_domain *domain,
5048 struct device *dev)
5049{
5050 dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
5051}
5052
5053static int intel_iommu_map(struct iommu_domain *domain,
5054 unsigned long iova, phys_addr_t hpa,
5055 size_t size, int iommu_prot)
5056{
5057 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5058 u64 max_addr;
5059 int prot = 0;
5060 int ret;
5061
5062 if (iommu_prot & IOMMU_READ)
5063 prot |= DMA_PTE_READ;
5064 if (iommu_prot & IOMMU_WRITE)
5065 prot |= DMA_PTE_WRITE;
5066 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5067 prot |= DMA_PTE_SNP;
5068
5069 max_addr = iova + size;
5070 if (dmar_domain->max_addr < max_addr) {
5071 u64 end;
5072
5073 /* check if minimum agaw is sufficient for mapped address */
5074 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5075 if (end < max_addr) {
5076 pr_err("%s: iommu width (%d) is not "
5077 "sufficient for the mapped address (%llx)\n",
5078 __func__, dmar_domain->gaw, max_addr);
5079 return -EFAULT;
5080 }
5081 dmar_domain->max_addr = max_addr;
5082 }
5083 /* Round up size to next multiple of PAGE_SIZE, if it and
5084 the low bits of hpa would take us onto the next page */
5085 size = aligned_nrpages(hpa, size);
5086 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5087 hpa >> VTD_PAGE_SHIFT, size, prot);
5088 return ret;
5089}
5090
5091static size_t intel_iommu_unmap(struct iommu_domain *domain,
5092 unsigned long iova, size_t size)
5093{
5094 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5095 struct page *freelist = NULL;
5096 struct intel_iommu *iommu;
5097 unsigned long start_pfn, last_pfn;
5098 unsigned int npages;
5099 int iommu_id, level = 0;
5100
5101 /* Cope with horrid API which requires us to unmap more than the
5102 size argument if it happens to be a large-page mapping. */
5103 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5104
5105 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5106 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5107
5108 start_pfn = iova >> VTD_PAGE_SHIFT;
5109 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5110
5111 freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5112
5113 npages = last_pfn - start_pfn + 1;
5114
5115 for_each_domain_iommu(iommu_id, dmar_domain) {
5116 iommu = g_iommus[iommu_id];
5117
5118 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5119 start_pfn, npages, !freelist, 0);
5120 }
5121
5122 dma_free_pagelist(freelist);
5123
5124 if (dmar_domain->max_addr == iova + size)
5125 dmar_domain->max_addr = iova;
5126
5127 return size;
5128}
5129
5130static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5131 dma_addr_t iova)
5132{
5133 struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5134 struct dma_pte *pte;
5135 int level = 0;
5136 u64 phys = 0;
5137
5138 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5139 if (pte)
5140 phys = dma_pte_addr(pte);
5141
5142 return phys;
5143}
5144
5145static bool intel_iommu_capable(enum iommu_cap cap)
5146{
5147 if (cap == IOMMU_CAP_CACHE_COHERENCY)
5148 return domain_update_iommu_snooping(NULL) == 1;
5149 if (cap == IOMMU_CAP_INTR_REMAP)
5150 return irq_remapping_enabled == 1;
5151
5152 return false;
5153}
5154
5155static int intel_iommu_add_device(struct device *dev)
5156{
5157 struct intel_iommu *iommu;
5158 struct iommu_group *group;
5159 u8 bus, devfn;
5160
5161 iommu = device_to_iommu(dev, &bus, &devfn);
5162 if (!iommu)
5163 return -ENODEV;
5164
5165 iommu_device_link(&iommu->iommu.dev, dev);
5166
5167 group = iommu_group_get_for_dev(dev);
5168
5169 if (IS_ERR(group))
5170 return PTR_ERR(group);
5171
5172 iommu_group_put(group);
5173 return 0;
5174}
5175
5176static void intel_iommu_remove_device(struct device *dev)
5177{
5178 struct intel_iommu *iommu;
5179 u8 bus, devfn;
5180
5181 iommu = device_to_iommu(dev, &bus, &devfn);
5182 if (!iommu)
5183 return;
5184
5185 iommu_group_remove_device(dev);
5186
5187 iommu_device_unlink(&iommu->iommu.dev, dev);
5188}
5189
5190#ifdef CONFIG_INTEL_IOMMU_SVM
5191int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5192{
5193 struct device_domain_info *info;
5194 struct context_entry *context;
5195 struct dmar_domain *domain;
5196 unsigned long flags;
5197 u64 ctx_lo;
5198 int ret;
5199
5200 domain = get_valid_domain_for_dev(sdev->dev);
5201 if (!domain)
5202 return -EINVAL;
5203
5204 spin_lock_irqsave(&device_domain_lock, flags);
5205 spin_lock(&iommu->lock);
5206
5207 ret = -EINVAL;
5208 info = sdev->dev->archdata.iommu;
5209 if (!info || !info->pasid_supported)
5210 goto out;
5211
5212 context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5213 if (WARN_ON(!context))
5214 goto out;
5215
5216 ctx_lo = context[0].lo;
5217
5218 sdev->did = domain->iommu_did[iommu->seq_id];
5219 sdev->sid = PCI_DEVID(info->bus, info->devfn);
5220
5221 if (!(ctx_lo & CONTEXT_PASIDE)) {
5222 context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5223 context[1].lo = (u64)virt_to_phys(iommu->pasid_table) | ecap_pss(iommu->ecap);
5224 wmb();
5225 /* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5226 * extended to permit requests-with-PASID if the PASIDE bit
5227 * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5228 * however, the PASIDE bit is ignored and requests-with-PASID
5229 * are unconditionally blocked. Which makes less sense.
5230 * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5231 * "guest mode" translation types depending on whether ATS
5232 * is available or not. Annoyingly, we can't use the new
5233 * modes *unless* PASIDE is set. */
5234 if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5235 ctx_lo &= ~CONTEXT_TT_MASK;
5236 if (info->ats_supported)
5237 ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5238 else
5239 ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5240 }
5241 ctx_lo |= CONTEXT_PASIDE;
5242 if (iommu->pasid_state_table)
5243 ctx_lo |= CONTEXT_DINVE;
5244 if (info->pri_supported)
5245 ctx_lo |= CONTEXT_PRS;
5246 context[0].lo = ctx_lo;
5247 wmb();
5248 iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5249 DMA_CCMD_MASK_NOBIT,
5250 DMA_CCMD_DEVICE_INVL);
5251 }
5252
5253 /* Enable PASID support in the device, if it wasn't already */
5254 if (!info->pasid_enabled)
5255 iommu_enable_dev_iotlb(info);
5256
5257 if (info->ats_enabled) {
5258 sdev->dev_iotlb = 1;
5259 sdev->qdep = info->ats_qdep;
5260 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5261 sdev->qdep = 0;
5262 }
5263 ret = 0;
5264
5265 out:
5266 spin_unlock(&iommu->lock);
5267 spin_unlock_irqrestore(&device_domain_lock, flags);
5268
5269 return ret;
5270}
5271
5272struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5273{
5274 struct intel_iommu *iommu;
5275 u8 bus, devfn;
5276
5277 if (iommu_dummy(dev)) {
5278 dev_warn(dev,
5279 "No IOMMU translation for device; cannot enable SVM\n");
5280 return NULL;
5281 }
5282
5283 iommu = device_to_iommu(dev, &bus, &devfn);
5284 if ((!iommu)) {
5285 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5286 return NULL;
5287 }
5288
5289 if (!iommu->pasid_table) {
5290 dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n");
5291 return NULL;
5292 }
5293
5294 return iommu;
5295}
5296#endif /* CONFIG_INTEL_IOMMU_SVM */
5297
5298const struct iommu_ops intel_iommu_ops = {
5299 .capable = intel_iommu_capable,
5300 .domain_alloc = intel_iommu_domain_alloc,
5301 .domain_free = intel_iommu_domain_free,
5302 .attach_dev = intel_iommu_attach_device,
5303 .detach_dev = intel_iommu_detach_device,
5304 .map = intel_iommu_map,
5305 .unmap = intel_iommu_unmap,
5306 .map_sg = default_iommu_map_sg,
5307 .iova_to_phys = intel_iommu_iova_to_phys,
5308 .add_device = intel_iommu_add_device,
5309 .remove_device = intel_iommu_remove_device,
5310 .device_group = pci_device_group,
5311 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
5312};
5313
5314static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5315{
5316 /* G4x/GM45 integrated gfx dmar support is totally busted. */
5317 pr_info("Disabling IOMMU for graphics on this chipset\n");
5318 dmar_map_gfx = 0;
5319}
5320
5321DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5322DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5323DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5324DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5325DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5326DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5327DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5328
5329static void quirk_iommu_rwbf(struct pci_dev *dev)
5330{
5331 /*
5332 * Mobile 4 Series Chipset neglects to set RWBF capability,
5333 * but needs it. Same seems to hold for the desktop versions.
5334 */
5335 pr_info("Forcing write-buffer flush capability\n");
5336 rwbf_quirk = 1;
5337}
5338
5339DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5340DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5341DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5342DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5343DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5344DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5345DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5346
5347#define GGC 0x52
5348#define GGC_MEMORY_SIZE_MASK (0xf << 8)
5349#define GGC_MEMORY_SIZE_NONE (0x0 << 8)
5350#define GGC_MEMORY_SIZE_1M (0x1 << 8)
5351#define GGC_MEMORY_SIZE_2M (0x3 << 8)
5352#define GGC_MEMORY_VT_ENABLED (0x8 << 8)
5353#define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
5354#define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
5355#define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
5356
5357static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5358{
5359 unsigned short ggc;
5360
5361 if (pci_read_config_word(dev, GGC, &ggc))
5362 return;
5363
5364 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5365 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5366 dmar_map_gfx = 0;
5367 } else if (dmar_map_gfx) {
5368 /* we have to ensure the gfx device is idle before we flush */
5369 pr_info("Disabling batched IOTLB flush on Ironlake\n");
5370 intel_iommu_strict = 1;
5371 }
5372}
5373DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5374DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5375DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5376DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5377
5378/* On Tylersburg chipsets, some BIOSes have been known to enable the
5379 ISOCH DMAR unit for the Azalia sound device, but not give it any
5380 TLB entries, which causes it to deadlock. Check for that. We do
5381 this in a function called from init_dmars(), instead of in a PCI
5382 quirk, because we don't want to print the obnoxious "BIOS broken"
5383 message if VT-d is actually disabled.
5384*/
5385static void __init check_tylersburg_isoch(void)
5386{
5387 struct pci_dev *pdev;
5388 uint32_t vtisochctrl;
5389
5390 /* If there's no Azalia in the system anyway, forget it. */
5391 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5392 if (!pdev)
5393 return;
5394 pci_dev_put(pdev);
5395
5396 /* System Management Registers. Might be hidden, in which case
5397 we can't do the sanity check. But that's OK, because the
5398 known-broken BIOSes _don't_ actually hide it, so far. */
5399 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5400 if (!pdev)
5401 return;
5402
5403 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5404 pci_dev_put(pdev);
5405 return;
5406 }
5407
5408 pci_dev_put(pdev);
5409
5410 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5411 if (vtisochctrl & 1)
5412 return;
5413
5414 /* Drop all bits other than the number of TLB entries */
5415 vtisochctrl &= 0x1c;
5416
5417 /* If we have the recommended number of TLB entries (16), fine. */
5418 if (vtisochctrl == 0x10)
5419 return;
5420
5421 /* Zero TLB entries? You get to ride the short bus to school. */
5422 if (!vtisochctrl) {
5423 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5424 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5425 dmi_get_system_info(DMI_BIOS_VENDOR),
5426 dmi_get_system_info(DMI_BIOS_VERSION),
5427 dmi_get_system_info(DMI_PRODUCT_VERSION));
5428 iommu_identity_mapping |= IDENTMAP_AZALIA;
5429 return;
5430 }
5431
5432 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5433 vtisochctrl);
5434}