]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - drivers/md/dm-crypt.c
crypto: LLVMLinux: Remove VLAIS from crypto/.../qat_algs.c
[mirror_ubuntu-artful-kernel.git] / drivers / md / dm-crypt.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10#include <linux/completion.h>
11#include <linux/err.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/bio.h>
16#include <linux/blkdev.h>
17#include <linux/mempool.h>
18#include <linux/slab.h>
19#include <linux/crypto.h>
20#include <linux/workqueue.h>
21#include <linux/backing-dev.h>
22#include <linux/atomic.h>
23#include <linux/scatterlist.h>
24#include <asm/page.h>
25#include <asm/unaligned.h>
26#include <crypto/hash.h>
27#include <crypto/md5.h>
28#include <crypto/algapi.h>
29
30#include <linux/device-mapper.h>
31
32#define DM_MSG_PREFIX "crypt"
33
34/*
35 * context holding the current state of a multi-part conversion
36 */
37struct convert_context {
38 struct completion restart;
39 struct bio *bio_in;
40 struct bio *bio_out;
41 struct bvec_iter iter_in;
42 struct bvec_iter iter_out;
43 sector_t cc_sector;
44 atomic_t cc_pending;
45 struct ablkcipher_request *req;
46};
47
48/*
49 * per bio private data
50 */
51struct dm_crypt_io {
52 struct crypt_config *cc;
53 struct bio *base_bio;
54 struct work_struct work;
55
56 struct convert_context ctx;
57
58 atomic_t io_pending;
59 int error;
60 sector_t sector;
61 struct dm_crypt_io *base_io;
62} CRYPTO_MINALIGN_ATTR;
63
64struct dm_crypt_request {
65 struct convert_context *ctx;
66 struct scatterlist sg_in;
67 struct scatterlist sg_out;
68 sector_t iv_sector;
69};
70
71struct crypt_config;
72
73struct crypt_iv_operations {
74 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
75 const char *opts);
76 void (*dtr)(struct crypt_config *cc);
77 int (*init)(struct crypt_config *cc);
78 int (*wipe)(struct crypt_config *cc);
79 int (*generator)(struct crypt_config *cc, u8 *iv,
80 struct dm_crypt_request *dmreq);
81 int (*post)(struct crypt_config *cc, u8 *iv,
82 struct dm_crypt_request *dmreq);
83};
84
85struct iv_essiv_private {
86 struct crypto_hash *hash_tfm;
87 u8 *salt;
88};
89
90struct iv_benbi_private {
91 int shift;
92};
93
94#define LMK_SEED_SIZE 64 /* hash + 0 */
95struct iv_lmk_private {
96 struct crypto_shash *hash_tfm;
97 u8 *seed;
98};
99
100#define TCW_WHITENING_SIZE 16
101struct iv_tcw_private {
102 struct crypto_shash *crc32_tfm;
103 u8 *iv_seed;
104 u8 *whitening;
105};
106
107/*
108 * Crypt: maps a linear range of a block device
109 * and encrypts / decrypts at the same time.
110 */
111enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
112
113/*
114 * The fields in here must be read only after initialization.
115 */
116struct crypt_config {
117 struct dm_dev *dev;
118 sector_t start;
119
120 /*
121 * pool for per bio private data, crypto requests and
122 * encryption requeusts/buffer pages
123 */
124 mempool_t *io_pool;
125 mempool_t *req_pool;
126 mempool_t *page_pool;
127 struct bio_set *bs;
128
129 struct workqueue_struct *io_queue;
130 struct workqueue_struct *crypt_queue;
131
132 char *cipher;
133 char *cipher_string;
134
135 struct crypt_iv_operations *iv_gen_ops;
136 union {
137 struct iv_essiv_private essiv;
138 struct iv_benbi_private benbi;
139 struct iv_lmk_private lmk;
140 struct iv_tcw_private tcw;
141 } iv_gen_private;
142 sector_t iv_offset;
143 unsigned int iv_size;
144
145 /* ESSIV: struct crypto_cipher *essiv_tfm */
146 void *iv_private;
147 struct crypto_ablkcipher **tfms;
148 unsigned tfms_count;
149
150 /*
151 * Layout of each crypto request:
152 *
153 * struct ablkcipher_request
154 * context
155 * padding
156 * struct dm_crypt_request
157 * padding
158 * IV
159 *
160 * The padding is added so that dm_crypt_request and the IV are
161 * correctly aligned.
162 */
163 unsigned int dmreq_start;
164
165 unsigned int per_bio_data_size;
166
167 unsigned long flags;
168 unsigned int key_size;
169 unsigned int key_parts; /* independent parts in key buffer */
170 unsigned int key_extra_size; /* additional keys length */
171 u8 key[0];
172};
173
174#define MIN_IOS 16
175#define MIN_POOL_PAGES 32
176
177static struct kmem_cache *_crypt_io_pool;
178
179static void clone_init(struct dm_crypt_io *, struct bio *);
180static void kcryptd_queue_crypt(struct dm_crypt_io *io);
181static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
182
183/*
184 * Use this to access cipher attributes that are the same for each CPU.
185 */
186static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
187{
188 return cc->tfms[0];
189}
190
191/*
192 * Different IV generation algorithms:
193 *
194 * plain: the initial vector is the 32-bit little-endian version of the sector
195 * number, padded with zeros if necessary.
196 *
197 * plain64: the initial vector is the 64-bit little-endian version of the sector
198 * number, padded with zeros if necessary.
199 *
200 * essiv: "encrypted sector|salt initial vector", the sector number is
201 * encrypted with the bulk cipher using a salt as key. The salt
202 * should be derived from the bulk cipher's key via hashing.
203 *
204 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
205 * (needed for LRW-32-AES and possible other narrow block modes)
206 *
207 * null: the initial vector is always zero. Provides compatibility with
208 * obsolete loop_fish2 devices. Do not use for new devices.
209 *
210 * lmk: Compatible implementation of the block chaining mode used
211 * by the Loop-AES block device encryption system
212 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
213 * It operates on full 512 byte sectors and uses CBC
214 * with an IV derived from the sector number, the data and
215 * optionally extra IV seed.
216 * This means that after decryption the first block
217 * of sector must be tweaked according to decrypted data.
218 * Loop-AES can use three encryption schemes:
219 * version 1: is plain aes-cbc mode
220 * version 2: uses 64 multikey scheme with lmk IV generator
221 * version 3: the same as version 2 with additional IV seed
222 * (it uses 65 keys, last key is used as IV seed)
223 *
224 * tcw: Compatible implementation of the block chaining mode used
225 * by the TrueCrypt device encryption system (prior to version 4.1).
226 * For more info see: http://www.truecrypt.org
227 * It operates on full 512 byte sectors and uses CBC
228 * with an IV derived from initial key and the sector number.
229 * In addition, whitening value is applied on every sector, whitening
230 * is calculated from initial key, sector number and mixed using CRC32.
231 * Note that this encryption scheme is vulnerable to watermarking attacks
232 * and should be used for old compatible containers access only.
233 *
234 * plumb: unimplemented, see:
235 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
236 */
237
238static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
239 struct dm_crypt_request *dmreq)
240{
241 memset(iv, 0, cc->iv_size);
242 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
243
244 return 0;
245}
246
247static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
248 struct dm_crypt_request *dmreq)
249{
250 memset(iv, 0, cc->iv_size);
251 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
252
253 return 0;
254}
255
256/* Initialise ESSIV - compute salt but no local memory allocations */
257static int crypt_iv_essiv_init(struct crypt_config *cc)
258{
259 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
260 struct hash_desc desc;
261 struct scatterlist sg;
262 struct crypto_cipher *essiv_tfm;
263 int err;
264
265 sg_init_one(&sg, cc->key, cc->key_size);
266 desc.tfm = essiv->hash_tfm;
267 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
268
269 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
270 if (err)
271 return err;
272
273 essiv_tfm = cc->iv_private;
274
275 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
276 crypto_hash_digestsize(essiv->hash_tfm));
277 if (err)
278 return err;
279
280 return 0;
281}
282
283/* Wipe salt and reset key derived from volume key */
284static int crypt_iv_essiv_wipe(struct crypt_config *cc)
285{
286 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
287 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
288 struct crypto_cipher *essiv_tfm;
289 int r, err = 0;
290
291 memset(essiv->salt, 0, salt_size);
292
293 essiv_tfm = cc->iv_private;
294 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
295 if (r)
296 err = r;
297
298 return err;
299}
300
301/* Set up per cpu cipher state */
302static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
303 struct dm_target *ti,
304 u8 *salt, unsigned saltsize)
305{
306 struct crypto_cipher *essiv_tfm;
307 int err;
308
309 /* Setup the essiv_tfm with the given salt */
310 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
311 if (IS_ERR(essiv_tfm)) {
312 ti->error = "Error allocating crypto tfm for ESSIV";
313 return essiv_tfm;
314 }
315
316 if (crypto_cipher_blocksize(essiv_tfm) !=
317 crypto_ablkcipher_ivsize(any_tfm(cc))) {
318 ti->error = "Block size of ESSIV cipher does "
319 "not match IV size of block cipher";
320 crypto_free_cipher(essiv_tfm);
321 return ERR_PTR(-EINVAL);
322 }
323
324 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
325 if (err) {
326 ti->error = "Failed to set key for ESSIV cipher";
327 crypto_free_cipher(essiv_tfm);
328 return ERR_PTR(err);
329 }
330
331 return essiv_tfm;
332}
333
334static void crypt_iv_essiv_dtr(struct crypt_config *cc)
335{
336 struct crypto_cipher *essiv_tfm;
337 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
338
339 crypto_free_hash(essiv->hash_tfm);
340 essiv->hash_tfm = NULL;
341
342 kzfree(essiv->salt);
343 essiv->salt = NULL;
344
345 essiv_tfm = cc->iv_private;
346
347 if (essiv_tfm)
348 crypto_free_cipher(essiv_tfm);
349
350 cc->iv_private = NULL;
351}
352
353static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
354 const char *opts)
355{
356 struct crypto_cipher *essiv_tfm = NULL;
357 struct crypto_hash *hash_tfm = NULL;
358 u8 *salt = NULL;
359 int err;
360
361 if (!opts) {
362 ti->error = "Digest algorithm missing for ESSIV mode";
363 return -EINVAL;
364 }
365
366 /* Allocate hash algorithm */
367 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
368 if (IS_ERR(hash_tfm)) {
369 ti->error = "Error initializing ESSIV hash";
370 err = PTR_ERR(hash_tfm);
371 goto bad;
372 }
373
374 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
375 if (!salt) {
376 ti->error = "Error kmallocing salt storage in ESSIV";
377 err = -ENOMEM;
378 goto bad;
379 }
380
381 cc->iv_gen_private.essiv.salt = salt;
382 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
383
384 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
385 crypto_hash_digestsize(hash_tfm));
386 if (IS_ERR(essiv_tfm)) {
387 crypt_iv_essiv_dtr(cc);
388 return PTR_ERR(essiv_tfm);
389 }
390 cc->iv_private = essiv_tfm;
391
392 return 0;
393
394bad:
395 if (hash_tfm && !IS_ERR(hash_tfm))
396 crypto_free_hash(hash_tfm);
397 kfree(salt);
398 return err;
399}
400
401static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
402 struct dm_crypt_request *dmreq)
403{
404 struct crypto_cipher *essiv_tfm = cc->iv_private;
405
406 memset(iv, 0, cc->iv_size);
407 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
408 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
409
410 return 0;
411}
412
413static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
414 const char *opts)
415{
416 unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
417 int log = ilog2(bs);
418
419 /* we need to calculate how far we must shift the sector count
420 * to get the cipher block count, we use this shift in _gen */
421
422 if (1 << log != bs) {
423 ti->error = "cypher blocksize is not a power of 2";
424 return -EINVAL;
425 }
426
427 if (log > 9) {
428 ti->error = "cypher blocksize is > 512";
429 return -EINVAL;
430 }
431
432 cc->iv_gen_private.benbi.shift = 9 - log;
433
434 return 0;
435}
436
437static void crypt_iv_benbi_dtr(struct crypt_config *cc)
438{
439}
440
441static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
442 struct dm_crypt_request *dmreq)
443{
444 __be64 val;
445
446 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
447
448 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
449 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
450
451 return 0;
452}
453
454static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
455 struct dm_crypt_request *dmreq)
456{
457 memset(iv, 0, cc->iv_size);
458
459 return 0;
460}
461
462static void crypt_iv_lmk_dtr(struct crypt_config *cc)
463{
464 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
465
466 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
467 crypto_free_shash(lmk->hash_tfm);
468 lmk->hash_tfm = NULL;
469
470 kzfree(lmk->seed);
471 lmk->seed = NULL;
472}
473
474static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
475 const char *opts)
476{
477 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
478
479 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
480 if (IS_ERR(lmk->hash_tfm)) {
481 ti->error = "Error initializing LMK hash";
482 return PTR_ERR(lmk->hash_tfm);
483 }
484
485 /* No seed in LMK version 2 */
486 if (cc->key_parts == cc->tfms_count) {
487 lmk->seed = NULL;
488 return 0;
489 }
490
491 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
492 if (!lmk->seed) {
493 crypt_iv_lmk_dtr(cc);
494 ti->error = "Error kmallocing seed storage in LMK";
495 return -ENOMEM;
496 }
497
498 return 0;
499}
500
501static int crypt_iv_lmk_init(struct crypt_config *cc)
502{
503 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
504 int subkey_size = cc->key_size / cc->key_parts;
505
506 /* LMK seed is on the position of LMK_KEYS + 1 key */
507 if (lmk->seed)
508 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
509 crypto_shash_digestsize(lmk->hash_tfm));
510
511 return 0;
512}
513
514static int crypt_iv_lmk_wipe(struct crypt_config *cc)
515{
516 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
517
518 if (lmk->seed)
519 memset(lmk->seed, 0, LMK_SEED_SIZE);
520
521 return 0;
522}
523
524static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
525 struct dm_crypt_request *dmreq,
526 u8 *data)
527{
528 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
529 struct {
530 struct shash_desc desc;
531 char ctx[crypto_shash_descsize(lmk->hash_tfm)];
532 } sdesc;
533 struct md5_state md5state;
534 __le32 buf[4];
535 int i, r;
536
537 sdesc.desc.tfm = lmk->hash_tfm;
538 sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
539
540 r = crypto_shash_init(&sdesc.desc);
541 if (r)
542 return r;
543
544 if (lmk->seed) {
545 r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
546 if (r)
547 return r;
548 }
549
550 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
551 r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
552 if (r)
553 return r;
554
555 /* Sector is cropped to 56 bits here */
556 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
557 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
558 buf[2] = cpu_to_le32(4024);
559 buf[3] = 0;
560 r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
561 if (r)
562 return r;
563
564 /* No MD5 padding here */
565 r = crypto_shash_export(&sdesc.desc, &md5state);
566 if (r)
567 return r;
568
569 for (i = 0; i < MD5_HASH_WORDS; i++)
570 __cpu_to_le32s(&md5state.hash[i]);
571 memcpy(iv, &md5state.hash, cc->iv_size);
572
573 return 0;
574}
575
576static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
577 struct dm_crypt_request *dmreq)
578{
579 u8 *src;
580 int r = 0;
581
582 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
583 src = kmap_atomic(sg_page(&dmreq->sg_in));
584 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
585 kunmap_atomic(src);
586 } else
587 memset(iv, 0, cc->iv_size);
588
589 return r;
590}
591
592static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
593 struct dm_crypt_request *dmreq)
594{
595 u8 *dst;
596 int r;
597
598 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
599 return 0;
600
601 dst = kmap_atomic(sg_page(&dmreq->sg_out));
602 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
603
604 /* Tweak the first block of plaintext sector */
605 if (!r)
606 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
607
608 kunmap_atomic(dst);
609 return r;
610}
611
612static void crypt_iv_tcw_dtr(struct crypt_config *cc)
613{
614 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
615
616 kzfree(tcw->iv_seed);
617 tcw->iv_seed = NULL;
618 kzfree(tcw->whitening);
619 tcw->whitening = NULL;
620
621 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
622 crypto_free_shash(tcw->crc32_tfm);
623 tcw->crc32_tfm = NULL;
624}
625
626static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
627 const char *opts)
628{
629 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
630
631 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
632 ti->error = "Wrong key size for TCW";
633 return -EINVAL;
634 }
635
636 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
637 if (IS_ERR(tcw->crc32_tfm)) {
638 ti->error = "Error initializing CRC32 in TCW";
639 return PTR_ERR(tcw->crc32_tfm);
640 }
641
642 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
643 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
644 if (!tcw->iv_seed || !tcw->whitening) {
645 crypt_iv_tcw_dtr(cc);
646 ti->error = "Error allocating seed storage in TCW";
647 return -ENOMEM;
648 }
649
650 return 0;
651}
652
653static int crypt_iv_tcw_init(struct crypt_config *cc)
654{
655 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
656 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
657
658 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
659 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
660 TCW_WHITENING_SIZE);
661
662 return 0;
663}
664
665static int crypt_iv_tcw_wipe(struct crypt_config *cc)
666{
667 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
668
669 memset(tcw->iv_seed, 0, cc->iv_size);
670 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
671
672 return 0;
673}
674
675static int crypt_iv_tcw_whitening(struct crypt_config *cc,
676 struct dm_crypt_request *dmreq,
677 u8 *data)
678{
679 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
680 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
681 u8 buf[TCW_WHITENING_SIZE];
682 struct {
683 struct shash_desc desc;
684 char ctx[crypto_shash_descsize(tcw->crc32_tfm)];
685 } sdesc;
686 int i, r;
687
688 /* xor whitening with sector number */
689 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
690 crypto_xor(buf, (u8 *)&sector, 8);
691 crypto_xor(&buf[8], (u8 *)&sector, 8);
692
693 /* calculate crc32 for every 32bit part and xor it */
694 sdesc.desc.tfm = tcw->crc32_tfm;
695 sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
696 for (i = 0; i < 4; i++) {
697 r = crypto_shash_init(&sdesc.desc);
698 if (r)
699 goto out;
700 r = crypto_shash_update(&sdesc.desc, &buf[i * 4], 4);
701 if (r)
702 goto out;
703 r = crypto_shash_final(&sdesc.desc, &buf[i * 4]);
704 if (r)
705 goto out;
706 }
707 crypto_xor(&buf[0], &buf[12], 4);
708 crypto_xor(&buf[4], &buf[8], 4);
709
710 /* apply whitening (8 bytes) to whole sector */
711 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
712 crypto_xor(data + i * 8, buf, 8);
713out:
714 memset(buf, 0, sizeof(buf));
715 return r;
716}
717
718static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
719 struct dm_crypt_request *dmreq)
720{
721 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
722 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
723 u8 *src;
724 int r = 0;
725
726 /* Remove whitening from ciphertext */
727 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
728 src = kmap_atomic(sg_page(&dmreq->sg_in));
729 r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
730 kunmap_atomic(src);
731 }
732
733 /* Calculate IV */
734 memcpy(iv, tcw->iv_seed, cc->iv_size);
735 crypto_xor(iv, (u8 *)&sector, 8);
736 if (cc->iv_size > 8)
737 crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
738
739 return r;
740}
741
742static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
743 struct dm_crypt_request *dmreq)
744{
745 u8 *dst;
746 int r;
747
748 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
749 return 0;
750
751 /* Apply whitening on ciphertext */
752 dst = kmap_atomic(sg_page(&dmreq->sg_out));
753 r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
754 kunmap_atomic(dst);
755
756 return r;
757}
758
759static struct crypt_iv_operations crypt_iv_plain_ops = {
760 .generator = crypt_iv_plain_gen
761};
762
763static struct crypt_iv_operations crypt_iv_plain64_ops = {
764 .generator = crypt_iv_plain64_gen
765};
766
767static struct crypt_iv_operations crypt_iv_essiv_ops = {
768 .ctr = crypt_iv_essiv_ctr,
769 .dtr = crypt_iv_essiv_dtr,
770 .init = crypt_iv_essiv_init,
771 .wipe = crypt_iv_essiv_wipe,
772 .generator = crypt_iv_essiv_gen
773};
774
775static struct crypt_iv_operations crypt_iv_benbi_ops = {
776 .ctr = crypt_iv_benbi_ctr,
777 .dtr = crypt_iv_benbi_dtr,
778 .generator = crypt_iv_benbi_gen
779};
780
781static struct crypt_iv_operations crypt_iv_null_ops = {
782 .generator = crypt_iv_null_gen
783};
784
785static struct crypt_iv_operations crypt_iv_lmk_ops = {
786 .ctr = crypt_iv_lmk_ctr,
787 .dtr = crypt_iv_lmk_dtr,
788 .init = crypt_iv_lmk_init,
789 .wipe = crypt_iv_lmk_wipe,
790 .generator = crypt_iv_lmk_gen,
791 .post = crypt_iv_lmk_post
792};
793
794static struct crypt_iv_operations crypt_iv_tcw_ops = {
795 .ctr = crypt_iv_tcw_ctr,
796 .dtr = crypt_iv_tcw_dtr,
797 .init = crypt_iv_tcw_init,
798 .wipe = crypt_iv_tcw_wipe,
799 .generator = crypt_iv_tcw_gen,
800 .post = crypt_iv_tcw_post
801};
802
803static void crypt_convert_init(struct crypt_config *cc,
804 struct convert_context *ctx,
805 struct bio *bio_out, struct bio *bio_in,
806 sector_t sector)
807{
808 ctx->bio_in = bio_in;
809 ctx->bio_out = bio_out;
810 if (bio_in)
811 ctx->iter_in = bio_in->bi_iter;
812 if (bio_out)
813 ctx->iter_out = bio_out->bi_iter;
814 ctx->cc_sector = sector + cc->iv_offset;
815 init_completion(&ctx->restart);
816}
817
818static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
819 struct ablkcipher_request *req)
820{
821 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
822}
823
824static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
825 struct dm_crypt_request *dmreq)
826{
827 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
828}
829
830static u8 *iv_of_dmreq(struct crypt_config *cc,
831 struct dm_crypt_request *dmreq)
832{
833 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
834 crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
835}
836
837static int crypt_convert_block(struct crypt_config *cc,
838 struct convert_context *ctx,
839 struct ablkcipher_request *req)
840{
841 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
842 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
843 struct dm_crypt_request *dmreq;
844 u8 *iv;
845 int r;
846
847 dmreq = dmreq_of_req(cc, req);
848 iv = iv_of_dmreq(cc, dmreq);
849
850 dmreq->iv_sector = ctx->cc_sector;
851 dmreq->ctx = ctx;
852 sg_init_table(&dmreq->sg_in, 1);
853 sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
854 bv_in.bv_offset);
855
856 sg_init_table(&dmreq->sg_out, 1);
857 sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
858 bv_out.bv_offset);
859
860 bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
861 bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
862
863 if (cc->iv_gen_ops) {
864 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
865 if (r < 0)
866 return r;
867 }
868
869 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
870 1 << SECTOR_SHIFT, iv);
871
872 if (bio_data_dir(ctx->bio_in) == WRITE)
873 r = crypto_ablkcipher_encrypt(req);
874 else
875 r = crypto_ablkcipher_decrypt(req);
876
877 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
878 r = cc->iv_gen_ops->post(cc, iv, dmreq);
879
880 return r;
881}
882
883static void kcryptd_async_done(struct crypto_async_request *async_req,
884 int error);
885
886static void crypt_alloc_req(struct crypt_config *cc,
887 struct convert_context *ctx)
888{
889 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
890
891 if (!ctx->req)
892 ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
893
894 ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
895 ablkcipher_request_set_callback(ctx->req,
896 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
897 kcryptd_async_done, dmreq_of_req(cc, ctx->req));
898}
899
900static void crypt_free_req(struct crypt_config *cc,
901 struct ablkcipher_request *req, struct bio *base_bio)
902{
903 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
904
905 if ((struct ablkcipher_request *)(io + 1) != req)
906 mempool_free(req, cc->req_pool);
907}
908
909/*
910 * Encrypt / decrypt data from one bio to another one (can be the same one)
911 */
912static int crypt_convert(struct crypt_config *cc,
913 struct convert_context *ctx)
914{
915 int r;
916
917 atomic_set(&ctx->cc_pending, 1);
918
919 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
920
921 crypt_alloc_req(cc, ctx);
922
923 atomic_inc(&ctx->cc_pending);
924
925 r = crypt_convert_block(cc, ctx, ctx->req);
926
927 switch (r) {
928 /* async */
929 case -EBUSY:
930 wait_for_completion(&ctx->restart);
931 reinit_completion(&ctx->restart);
932 /* fall through*/
933 case -EINPROGRESS:
934 ctx->req = NULL;
935 ctx->cc_sector++;
936 continue;
937
938 /* sync */
939 case 0:
940 atomic_dec(&ctx->cc_pending);
941 ctx->cc_sector++;
942 cond_resched();
943 continue;
944
945 /* error */
946 default:
947 atomic_dec(&ctx->cc_pending);
948 return r;
949 }
950 }
951
952 return 0;
953}
954
955/*
956 * Generate a new unfragmented bio with the given size
957 * This should never violate the device limitations
958 * May return a smaller bio when running out of pages, indicated by
959 * *out_of_pages set to 1.
960 */
961static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
962 unsigned *out_of_pages)
963{
964 struct crypt_config *cc = io->cc;
965 struct bio *clone;
966 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
967 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
968 unsigned i, len;
969 struct page *page;
970
971 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
972 if (!clone)
973 return NULL;
974
975 clone_init(io, clone);
976 *out_of_pages = 0;
977
978 for (i = 0; i < nr_iovecs; i++) {
979 page = mempool_alloc(cc->page_pool, gfp_mask);
980 if (!page) {
981 *out_of_pages = 1;
982 break;
983 }
984
985 /*
986 * If additional pages cannot be allocated without waiting,
987 * return a partially-allocated bio. The caller will then try
988 * to allocate more bios while submitting this partial bio.
989 */
990 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
991
992 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
993
994 if (!bio_add_page(clone, page, len, 0)) {
995 mempool_free(page, cc->page_pool);
996 break;
997 }
998
999 size -= len;
1000 }
1001
1002 if (!clone->bi_iter.bi_size) {
1003 bio_put(clone);
1004 return NULL;
1005 }
1006
1007 return clone;
1008}
1009
1010static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1011{
1012 unsigned int i;
1013 struct bio_vec *bv;
1014
1015 bio_for_each_segment_all(bv, clone, i) {
1016 BUG_ON(!bv->bv_page);
1017 mempool_free(bv->bv_page, cc->page_pool);
1018 bv->bv_page = NULL;
1019 }
1020}
1021
1022static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1023 struct bio *bio, sector_t sector)
1024{
1025 io->cc = cc;
1026 io->base_bio = bio;
1027 io->sector = sector;
1028 io->error = 0;
1029 io->base_io = NULL;
1030 io->ctx.req = NULL;
1031 atomic_set(&io->io_pending, 0);
1032}
1033
1034static void crypt_inc_pending(struct dm_crypt_io *io)
1035{
1036 atomic_inc(&io->io_pending);
1037}
1038
1039/*
1040 * One of the bios was finished. Check for completion of
1041 * the whole request and correctly clean up the buffer.
1042 * If base_io is set, wait for the last fragment to complete.
1043 */
1044static void crypt_dec_pending(struct dm_crypt_io *io)
1045{
1046 struct crypt_config *cc = io->cc;
1047 struct bio *base_bio = io->base_bio;
1048 struct dm_crypt_io *base_io = io->base_io;
1049 int error = io->error;
1050
1051 if (!atomic_dec_and_test(&io->io_pending))
1052 return;
1053
1054 if (io->ctx.req)
1055 crypt_free_req(cc, io->ctx.req, base_bio);
1056 if (io != dm_per_bio_data(base_bio, cc->per_bio_data_size))
1057 mempool_free(io, cc->io_pool);
1058
1059 if (likely(!base_io))
1060 bio_endio(base_bio, error);
1061 else {
1062 if (error && !base_io->error)
1063 base_io->error = error;
1064 crypt_dec_pending(base_io);
1065 }
1066}
1067
1068/*
1069 * kcryptd/kcryptd_io:
1070 *
1071 * Needed because it would be very unwise to do decryption in an
1072 * interrupt context.
1073 *
1074 * kcryptd performs the actual encryption or decryption.
1075 *
1076 * kcryptd_io performs the IO submission.
1077 *
1078 * They must be separated as otherwise the final stages could be
1079 * starved by new requests which can block in the first stages due
1080 * to memory allocation.
1081 *
1082 * The work is done per CPU global for all dm-crypt instances.
1083 * They should not depend on each other and do not block.
1084 */
1085static void crypt_endio(struct bio *clone, int error)
1086{
1087 struct dm_crypt_io *io = clone->bi_private;
1088 struct crypt_config *cc = io->cc;
1089 unsigned rw = bio_data_dir(clone);
1090
1091 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
1092 error = -EIO;
1093
1094 /*
1095 * free the processed pages
1096 */
1097 if (rw == WRITE)
1098 crypt_free_buffer_pages(cc, clone);
1099
1100 bio_put(clone);
1101
1102 if (rw == READ && !error) {
1103 kcryptd_queue_crypt(io);
1104 return;
1105 }
1106
1107 if (unlikely(error))
1108 io->error = error;
1109
1110 crypt_dec_pending(io);
1111}
1112
1113static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1114{
1115 struct crypt_config *cc = io->cc;
1116
1117 clone->bi_private = io;
1118 clone->bi_end_io = crypt_endio;
1119 clone->bi_bdev = cc->dev->bdev;
1120 clone->bi_rw = io->base_bio->bi_rw;
1121}
1122
1123static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1124{
1125 struct crypt_config *cc = io->cc;
1126 struct bio *base_bio = io->base_bio;
1127 struct bio *clone;
1128
1129 /*
1130 * The block layer might modify the bvec array, so always
1131 * copy the required bvecs because we need the original
1132 * one in order to decrypt the whole bio data *afterwards*.
1133 */
1134 clone = bio_clone_bioset(base_bio, gfp, cc->bs);
1135 if (!clone)
1136 return 1;
1137
1138 crypt_inc_pending(io);
1139
1140 clone_init(io, clone);
1141 clone->bi_iter.bi_sector = cc->start + io->sector;
1142
1143 generic_make_request(clone);
1144 return 0;
1145}
1146
1147static void kcryptd_io_write(struct dm_crypt_io *io)
1148{
1149 struct bio *clone = io->ctx.bio_out;
1150 generic_make_request(clone);
1151}
1152
1153static void kcryptd_io(struct work_struct *work)
1154{
1155 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1156
1157 if (bio_data_dir(io->base_bio) == READ) {
1158 crypt_inc_pending(io);
1159 if (kcryptd_io_read(io, GFP_NOIO))
1160 io->error = -ENOMEM;
1161 crypt_dec_pending(io);
1162 } else
1163 kcryptd_io_write(io);
1164}
1165
1166static void kcryptd_queue_io(struct dm_crypt_io *io)
1167{
1168 struct crypt_config *cc = io->cc;
1169
1170 INIT_WORK(&io->work, kcryptd_io);
1171 queue_work(cc->io_queue, &io->work);
1172}
1173
1174static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1175{
1176 struct bio *clone = io->ctx.bio_out;
1177 struct crypt_config *cc = io->cc;
1178
1179 if (unlikely(io->error < 0)) {
1180 crypt_free_buffer_pages(cc, clone);
1181 bio_put(clone);
1182 crypt_dec_pending(io);
1183 return;
1184 }
1185
1186 /* crypt_convert should have filled the clone bio */
1187 BUG_ON(io->ctx.iter_out.bi_size);
1188
1189 clone->bi_iter.bi_sector = cc->start + io->sector;
1190
1191 if (async)
1192 kcryptd_queue_io(io);
1193 else
1194 generic_make_request(clone);
1195}
1196
1197static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1198{
1199 struct crypt_config *cc = io->cc;
1200 struct bio *clone;
1201 struct dm_crypt_io *new_io;
1202 int crypt_finished;
1203 unsigned out_of_pages = 0;
1204 unsigned remaining = io->base_bio->bi_iter.bi_size;
1205 sector_t sector = io->sector;
1206 int r;
1207
1208 /*
1209 * Prevent io from disappearing until this function completes.
1210 */
1211 crypt_inc_pending(io);
1212 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1213
1214 /*
1215 * The allocated buffers can be smaller than the whole bio,
1216 * so repeat the whole process until all the data can be handled.
1217 */
1218 while (remaining) {
1219 clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1220 if (unlikely(!clone)) {
1221 io->error = -ENOMEM;
1222 break;
1223 }
1224
1225 io->ctx.bio_out = clone;
1226 io->ctx.iter_out = clone->bi_iter;
1227
1228 remaining -= clone->bi_iter.bi_size;
1229 sector += bio_sectors(clone);
1230
1231 crypt_inc_pending(io);
1232
1233 r = crypt_convert(cc, &io->ctx);
1234 if (r < 0)
1235 io->error = -EIO;
1236
1237 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1238
1239 /* Encryption was already finished, submit io now */
1240 if (crypt_finished) {
1241 kcryptd_crypt_write_io_submit(io, 0);
1242
1243 /*
1244 * If there was an error, do not try next fragments.
1245 * For async, error is processed in async handler.
1246 */
1247 if (unlikely(r < 0))
1248 break;
1249
1250 io->sector = sector;
1251 }
1252
1253 /*
1254 * Out of memory -> run queues
1255 * But don't wait if split was due to the io size restriction
1256 */
1257 if (unlikely(out_of_pages))
1258 congestion_wait(BLK_RW_ASYNC, HZ/100);
1259
1260 /*
1261 * With async crypto it is unsafe to share the crypto context
1262 * between fragments, so switch to a new dm_crypt_io structure.
1263 */
1264 if (unlikely(!crypt_finished && remaining)) {
1265 new_io = mempool_alloc(cc->io_pool, GFP_NOIO);
1266 crypt_io_init(new_io, io->cc, io->base_bio, sector);
1267 crypt_inc_pending(new_io);
1268 crypt_convert_init(cc, &new_io->ctx, NULL,
1269 io->base_bio, sector);
1270 new_io->ctx.iter_in = io->ctx.iter_in;
1271
1272 /*
1273 * Fragments after the first use the base_io
1274 * pending count.
1275 */
1276 if (!io->base_io)
1277 new_io->base_io = io;
1278 else {
1279 new_io->base_io = io->base_io;
1280 crypt_inc_pending(io->base_io);
1281 crypt_dec_pending(io);
1282 }
1283
1284 io = new_io;
1285 }
1286 }
1287
1288 crypt_dec_pending(io);
1289}
1290
1291static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1292{
1293 crypt_dec_pending(io);
1294}
1295
1296static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1297{
1298 struct crypt_config *cc = io->cc;
1299 int r = 0;
1300
1301 crypt_inc_pending(io);
1302
1303 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1304 io->sector);
1305
1306 r = crypt_convert(cc, &io->ctx);
1307 if (r < 0)
1308 io->error = -EIO;
1309
1310 if (atomic_dec_and_test(&io->ctx.cc_pending))
1311 kcryptd_crypt_read_done(io);
1312
1313 crypt_dec_pending(io);
1314}
1315
1316static void kcryptd_async_done(struct crypto_async_request *async_req,
1317 int error)
1318{
1319 struct dm_crypt_request *dmreq = async_req->data;
1320 struct convert_context *ctx = dmreq->ctx;
1321 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1322 struct crypt_config *cc = io->cc;
1323
1324 if (error == -EINPROGRESS) {
1325 complete(&ctx->restart);
1326 return;
1327 }
1328
1329 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1330 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1331
1332 if (error < 0)
1333 io->error = -EIO;
1334
1335 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1336
1337 if (!atomic_dec_and_test(&ctx->cc_pending))
1338 return;
1339
1340 if (bio_data_dir(io->base_bio) == READ)
1341 kcryptd_crypt_read_done(io);
1342 else
1343 kcryptd_crypt_write_io_submit(io, 1);
1344}
1345
1346static void kcryptd_crypt(struct work_struct *work)
1347{
1348 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1349
1350 if (bio_data_dir(io->base_bio) == READ)
1351 kcryptd_crypt_read_convert(io);
1352 else
1353 kcryptd_crypt_write_convert(io);
1354}
1355
1356static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1357{
1358 struct crypt_config *cc = io->cc;
1359
1360 INIT_WORK(&io->work, kcryptd_crypt);
1361 queue_work(cc->crypt_queue, &io->work);
1362}
1363
1364/*
1365 * Decode key from its hex representation
1366 */
1367static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1368{
1369 char buffer[3];
1370 unsigned int i;
1371
1372 buffer[2] = '\0';
1373
1374 for (i = 0; i < size; i++) {
1375 buffer[0] = *hex++;
1376 buffer[1] = *hex++;
1377
1378 if (kstrtou8(buffer, 16, &key[i]))
1379 return -EINVAL;
1380 }
1381
1382 if (*hex != '\0')
1383 return -EINVAL;
1384
1385 return 0;
1386}
1387
1388static void crypt_free_tfms(struct crypt_config *cc)
1389{
1390 unsigned i;
1391
1392 if (!cc->tfms)
1393 return;
1394
1395 for (i = 0; i < cc->tfms_count; i++)
1396 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1397 crypto_free_ablkcipher(cc->tfms[i]);
1398 cc->tfms[i] = NULL;
1399 }
1400
1401 kfree(cc->tfms);
1402 cc->tfms = NULL;
1403}
1404
1405static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1406{
1407 unsigned i;
1408 int err;
1409
1410 cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1411 GFP_KERNEL);
1412 if (!cc->tfms)
1413 return -ENOMEM;
1414
1415 for (i = 0; i < cc->tfms_count; i++) {
1416 cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1417 if (IS_ERR(cc->tfms[i])) {
1418 err = PTR_ERR(cc->tfms[i]);
1419 crypt_free_tfms(cc);
1420 return err;
1421 }
1422 }
1423
1424 return 0;
1425}
1426
1427static int crypt_setkey_allcpus(struct crypt_config *cc)
1428{
1429 unsigned subkey_size;
1430 int err = 0, i, r;
1431
1432 /* Ignore extra keys (which are used for IV etc) */
1433 subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1434
1435 for (i = 0; i < cc->tfms_count; i++) {
1436 r = crypto_ablkcipher_setkey(cc->tfms[i],
1437 cc->key + (i * subkey_size),
1438 subkey_size);
1439 if (r)
1440 err = r;
1441 }
1442
1443 return err;
1444}
1445
1446static int crypt_set_key(struct crypt_config *cc, char *key)
1447{
1448 int r = -EINVAL;
1449 int key_string_len = strlen(key);
1450
1451 /* The key size may not be changed. */
1452 if (cc->key_size != (key_string_len >> 1))
1453 goto out;
1454
1455 /* Hyphen (which gives a key_size of zero) means there is no key. */
1456 if (!cc->key_size && strcmp(key, "-"))
1457 goto out;
1458
1459 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1460 goto out;
1461
1462 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1463
1464 r = crypt_setkey_allcpus(cc);
1465
1466out:
1467 /* Hex key string not needed after here, so wipe it. */
1468 memset(key, '0', key_string_len);
1469
1470 return r;
1471}
1472
1473static int crypt_wipe_key(struct crypt_config *cc)
1474{
1475 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1476 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1477
1478 return crypt_setkey_allcpus(cc);
1479}
1480
1481static void crypt_dtr(struct dm_target *ti)
1482{
1483 struct crypt_config *cc = ti->private;
1484
1485 ti->private = NULL;
1486
1487 if (!cc)
1488 return;
1489
1490 if (cc->io_queue)
1491 destroy_workqueue(cc->io_queue);
1492 if (cc->crypt_queue)
1493 destroy_workqueue(cc->crypt_queue);
1494
1495 crypt_free_tfms(cc);
1496
1497 if (cc->bs)
1498 bioset_free(cc->bs);
1499
1500 if (cc->page_pool)
1501 mempool_destroy(cc->page_pool);
1502 if (cc->req_pool)
1503 mempool_destroy(cc->req_pool);
1504 if (cc->io_pool)
1505 mempool_destroy(cc->io_pool);
1506
1507 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1508 cc->iv_gen_ops->dtr(cc);
1509
1510 if (cc->dev)
1511 dm_put_device(ti, cc->dev);
1512
1513 kzfree(cc->cipher);
1514 kzfree(cc->cipher_string);
1515
1516 /* Must zero key material before freeing */
1517 kzfree(cc);
1518}
1519
1520static int crypt_ctr_cipher(struct dm_target *ti,
1521 char *cipher_in, char *key)
1522{
1523 struct crypt_config *cc = ti->private;
1524 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1525 char *cipher_api = NULL;
1526 int ret = -EINVAL;
1527 char dummy;
1528
1529 /* Convert to crypto api definition? */
1530 if (strchr(cipher_in, '(')) {
1531 ti->error = "Bad cipher specification";
1532 return -EINVAL;
1533 }
1534
1535 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1536 if (!cc->cipher_string)
1537 goto bad_mem;
1538
1539 /*
1540 * Legacy dm-crypt cipher specification
1541 * cipher[:keycount]-mode-iv:ivopts
1542 */
1543 tmp = cipher_in;
1544 keycount = strsep(&tmp, "-");
1545 cipher = strsep(&keycount, ":");
1546
1547 if (!keycount)
1548 cc->tfms_count = 1;
1549 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1550 !is_power_of_2(cc->tfms_count)) {
1551 ti->error = "Bad cipher key count specification";
1552 return -EINVAL;
1553 }
1554 cc->key_parts = cc->tfms_count;
1555 cc->key_extra_size = 0;
1556
1557 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1558 if (!cc->cipher)
1559 goto bad_mem;
1560
1561 chainmode = strsep(&tmp, "-");
1562 ivopts = strsep(&tmp, "-");
1563 ivmode = strsep(&ivopts, ":");
1564
1565 if (tmp)
1566 DMWARN("Ignoring unexpected additional cipher options");
1567
1568 /*
1569 * For compatibility with the original dm-crypt mapping format, if
1570 * only the cipher name is supplied, use cbc-plain.
1571 */
1572 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1573 chainmode = "cbc";
1574 ivmode = "plain";
1575 }
1576
1577 if (strcmp(chainmode, "ecb") && !ivmode) {
1578 ti->error = "IV mechanism required";
1579 return -EINVAL;
1580 }
1581
1582 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1583 if (!cipher_api)
1584 goto bad_mem;
1585
1586 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1587 "%s(%s)", chainmode, cipher);
1588 if (ret < 0) {
1589 kfree(cipher_api);
1590 goto bad_mem;
1591 }
1592
1593 /* Allocate cipher */
1594 ret = crypt_alloc_tfms(cc, cipher_api);
1595 if (ret < 0) {
1596 ti->error = "Error allocating crypto tfm";
1597 goto bad;
1598 }
1599
1600 /* Initialize IV */
1601 cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1602 if (cc->iv_size)
1603 /* at least a 64 bit sector number should fit in our buffer */
1604 cc->iv_size = max(cc->iv_size,
1605 (unsigned int)(sizeof(u64) / sizeof(u8)));
1606 else if (ivmode) {
1607 DMWARN("Selected cipher does not support IVs");
1608 ivmode = NULL;
1609 }
1610
1611 /* Choose ivmode, see comments at iv code. */
1612 if (ivmode == NULL)
1613 cc->iv_gen_ops = NULL;
1614 else if (strcmp(ivmode, "plain") == 0)
1615 cc->iv_gen_ops = &crypt_iv_plain_ops;
1616 else if (strcmp(ivmode, "plain64") == 0)
1617 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1618 else if (strcmp(ivmode, "essiv") == 0)
1619 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1620 else if (strcmp(ivmode, "benbi") == 0)
1621 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1622 else if (strcmp(ivmode, "null") == 0)
1623 cc->iv_gen_ops = &crypt_iv_null_ops;
1624 else if (strcmp(ivmode, "lmk") == 0) {
1625 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1626 /*
1627 * Version 2 and 3 is recognised according
1628 * to length of provided multi-key string.
1629 * If present (version 3), last key is used as IV seed.
1630 * All keys (including IV seed) are always the same size.
1631 */
1632 if (cc->key_size % cc->key_parts) {
1633 cc->key_parts++;
1634 cc->key_extra_size = cc->key_size / cc->key_parts;
1635 }
1636 } else if (strcmp(ivmode, "tcw") == 0) {
1637 cc->iv_gen_ops = &crypt_iv_tcw_ops;
1638 cc->key_parts += 2; /* IV + whitening */
1639 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1640 } else {
1641 ret = -EINVAL;
1642 ti->error = "Invalid IV mode";
1643 goto bad;
1644 }
1645
1646 /* Initialize and set key */
1647 ret = crypt_set_key(cc, key);
1648 if (ret < 0) {
1649 ti->error = "Error decoding and setting key";
1650 goto bad;
1651 }
1652
1653 /* Allocate IV */
1654 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1655 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1656 if (ret < 0) {
1657 ti->error = "Error creating IV";
1658 goto bad;
1659 }
1660 }
1661
1662 /* Initialize IV (set keys for ESSIV etc) */
1663 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1664 ret = cc->iv_gen_ops->init(cc);
1665 if (ret < 0) {
1666 ti->error = "Error initialising IV";
1667 goto bad;
1668 }
1669 }
1670
1671 ret = 0;
1672bad:
1673 kfree(cipher_api);
1674 return ret;
1675
1676bad_mem:
1677 ti->error = "Cannot allocate cipher strings";
1678 return -ENOMEM;
1679}
1680
1681/*
1682 * Construct an encryption mapping:
1683 * <cipher> <key> <iv_offset> <dev_path> <start>
1684 */
1685static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1686{
1687 struct crypt_config *cc;
1688 unsigned int key_size, opt_params;
1689 unsigned long long tmpll;
1690 int ret;
1691 size_t iv_size_padding;
1692 struct dm_arg_set as;
1693 const char *opt_string;
1694 char dummy;
1695
1696 static struct dm_arg _args[] = {
1697 {0, 1, "Invalid number of feature args"},
1698 };
1699
1700 if (argc < 5) {
1701 ti->error = "Not enough arguments";
1702 return -EINVAL;
1703 }
1704
1705 key_size = strlen(argv[1]) >> 1;
1706
1707 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1708 if (!cc) {
1709 ti->error = "Cannot allocate encryption context";
1710 return -ENOMEM;
1711 }
1712 cc->key_size = key_size;
1713
1714 ti->private = cc;
1715 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1716 if (ret < 0)
1717 goto bad;
1718
1719 ret = -ENOMEM;
1720 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1721 if (!cc->io_pool) {
1722 ti->error = "Cannot allocate crypt io mempool";
1723 goto bad;
1724 }
1725
1726 cc->dmreq_start = sizeof(struct ablkcipher_request);
1727 cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1728 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1729
1730 if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1731 /* Allocate the padding exactly */
1732 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1733 & crypto_ablkcipher_alignmask(any_tfm(cc));
1734 } else {
1735 /*
1736 * If the cipher requires greater alignment than kmalloc
1737 * alignment, we don't know the exact position of the
1738 * initialization vector. We must assume worst case.
1739 */
1740 iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc));
1741 }
1742
1743 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1744 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1745 if (!cc->req_pool) {
1746 ti->error = "Cannot allocate crypt request mempool";
1747 goto bad;
1748 }
1749
1750 cc->per_bio_data_size = ti->per_bio_data_size =
1751 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1752 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1753 ARCH_KMALLOC_MINALIGN);
1754
1755 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1756 if (!cc->page_pool) {
1757 ti->error = "Cannot allocate page mempool";
1758 goto bad;
1759 }
1760
1761 cc->bs = bioset_create(MIN_IOS, 0);
1762 if (!cc->bs) {
1763 ti->error = "Cannot allocate crypt bioset";
1764 goto bad;
1765 }
1766
1767 ret = -EINVAL;
1768 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1769 ti->error = "Invalid iv_offset sector";
1770 goto bad;
1771 }
1772 cc->iv_offset = tmpll;
1773
1774 if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1775 ti->error = "Device lookup failed";
1776 goto bad;
1777 }
1778
1779 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1780 ti->error = "Invalid device sector";
1781 goto bad;
1782 }
1783 cc->start = tmpll;
1784
1785 argv += 5;
1786 argc -= 5;
1787
1788 /* Optional parameters */
1789 if (argc) {
1790 as.argc = argc;
1791 as.argv = argv;
1792
1793 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1794 if (ret)
1795 goto bad;
1796
1797 opt_string = dm_shift_arg(&as);
1798
1799 if (opt_params == 1 && opt_string &&
1800 !strcasecmp(opt_string, "allow_discards"))
1801 ti->num_discard_bios = 1;
1802 else if (opt_params) {
1803 ret = -EINVAL;
1804 ti->error = "Invalid feature arguments";
1805 goto bad;
1806 }
1807 }
1808
1809 ret = -ENOMEM;
1810 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1811 if (!cc->io_queue) {
1812 ti->error = "Couldn't create kcryptd io queue";
1813 goto bad;
1814 }
1815
1816 cc->crypt_queue = alloc_workqueue("kcryptd",
1817 WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1818 if (!cc->crypt_queue) {
1819 ti->error = "Couldn't create kcryptd queue";
1820 goto bad;
1821 }
1822
1823 ti->num_flush_bios = 1;
1824 ti->discard_zeroes_data_unsupported = true;
1825
1826 return 0;
1827
1828bad:
1829 crypt_dtr(ti);
1830 return ret;
1831}
1832
1833static int crypt_map(struct dm_target *ti, struct bio *bio)
1834{
1835 struct dm_crypt_io *io;
1836 struct crypt_config *cc = ti->private;
1837
1838 /*
1839 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1840 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1841 * - for REQ_DISCARD caller must use flush if IO ordering matters
1842 */
1843 if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1844 bio->bi_bdev = cc->dev->bdev;
1845 if (bio_sectors(bio))
1846 bio->bi_iter.bi_sector = cc->start +
1847 dm_target_offset(ti, bio->bi_iter.bi_sector);
1848 return DM_MAPIO_REMAPPED;
1849 }
1850
1851 io = dm_per_bio_data(bio, cc->per_bio_data_size);
1852 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1853 io->ctx.req = (struct ablkcipher_request *)(io + 1);
1854
1855 if (bio_data_dir(io->base_bio) == READ) {
1856 if (kcryptd_io_read(io, GFP_NOWAIT))
1857 kcryptd_queue_io(io);
1858 } else
1859 kcryptd_queue_crypt(io);
1860
1861 return DM_MAPIO_SUBMITTED;
1862}
1863
1864static void crypt_status(struct dm_target *ti, status_type_t type,
1865 unsigned status_flags, char *result, unsigned maxlen)
1866{
1867 struct crypt_config *cc = ti->private;
1868 unsigned i, sz = 0;
1869
1870 switch (type) {
1871 case STATUSTYPE_INFO:
1872 result[0] = '\0';
1873 break;
1874
1875 case STATUSTYPE_TABLE:
1876 DMEMIT("%s ", cc->cipher_string);
1877
1878 if (cc->key_size > 0)
1879 for (i = 0; i < cc->key_size; i++)
1880 DMEMIT("%02x", cc->key[i]);
1881 else
1882 DMEMIT("-");
1883
1884 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1885 cc->dev->name, (unsigned long long)cc->start);
1886
1887 if (ti->num_discard_bios)
1888 DMEMIT(" 1 allow_discards");
1889
1890 break;
1891 }
1892}
1893
1894static void crypt_postsuspend(struct dm_target *ti)
1895{
1896 struct crypt_config *cc = ti->private;
1897
1898 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1899}
1900
1901static int crypt_preresume(struct dm_target *ti)
1902{
1903 struct crypt_config *cc = ti->private;
1904
1905 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1906 DMERR("aborting resume - crypt key is not set.");
1907 return -EAGAIN;
1908 }
1909
1910 return 0;
1911}
1912
1913static void crypt_resume(struct dm_target *ti)
1914{
1915 struct crypt_config *cc = ti->private;
1916
1917 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1918}
1919
1920/* Message interface
1921 * key set <key>
1922 * key wipe
1923 */
1924static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1925{
1926 struct crypt_config *cc = ti->private;
1927 int ret = -EINVAL;
1928
1929 if (argc < 2)
1930 goto error;
1931
1932 if (!strcasecmp(argv[0], "key")) {
1933 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1934 DMWARN("not suspended during key manipulation.");
1935 return -EINVAL;
1936 }
1937 if (argc == 3 && !strcasecmp(argv[1], "set")) {
1938 ret = crypt_set_key(cc, argv[2]);
1939 if (ret)
1940 return ret;
1941 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1942 ret = cc->iv_gen_ops->init(cc);
1943 return ret;
1944 }
1945 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1946 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1947 ret = cc->iv_gen_ops->wipe(cc);
1948 if (ret)
1949 return ret;
1950 }
1951 return crypt_wipe_key(cc);
1952 }
1953 }
1954
1955error:
1956 DMWARN("unrecognised message received.");
1957 return -EINVAL;
1958}
1959
1960static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1961 struct bio_vec *biovec, int max_size)
1962{
1963 struct crypt_config *cc = ti->private;
1964 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1965
1966 if (!q->merge_bvec_fn)
1967 return max_size;
1968
1969 bvm->bi_bdev = cc->dev->bdev;
1970 bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1971
1972 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1973}
1974
1975static int crypt_iterate_devices(struct dm_target *ti,
1976 iterate_devices_callout_fn fn, void *data)
1977{
1978 struct crypt_config *cc = ti->private;
1979
1980 return fn(ti, cc->dev, cc->start, ti->len, data);
1981}
1982
1983static struct target_type crypt_target = {
1984 .name = "crypt",
1985 .version = {1, 13, 0},
1986 .module = THIS_MODULE,
1987 .ctr = crypt_ctr,
1988 .dtr = crypt_dtr,
1989 .map = crypt_map,
1990 .status = crypt_status,
1991 .postsuspend = crypt_postsuspend,
1992 .preresume = crypt_preresume,
1993 .resume = crypt_resume,
1994 .message = crypt_message,
1995 .merge = crypt_merge,
1996 .iterate_devices = crypt_iterate_devices,
1997};
1998
1999static int __init dm_crypt_init(void)
2000{
2001 int r;
2002
2003 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
2004 if (!_crypt_io_pool)
2005 return -ENOMEM;
2006
2007 r = dm_register_target(&crypt_target);
2008 if (r < 0) {
2009 DMERR("register failed %d", r);
2010 kmem_cache_destroy(_crypt_io_pool);
2011 }
2012
2013 return r;
2014}
2015
2016static void __exit dm_crypt_exit(void)
2017{
2018 dm_unregister_target(&crypt_target);
2019 kmem_cache_destroy(_crypt_io_pool);
2020}
2021
2022module_init(dm_crypt_init);
2023module_exit(dm_crypt_exit);
2024
2025MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2026MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2027MODULE_LICENSE("GPL");