]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - drivers/media/rc/rc-main.c
media: staging: atomisp: Add videobuf2 switch to TODO
[mirror_ubuntu-jammy-kernel.git] / drivers / media / rc / rc-main.c
... / ...
CommitLineData
1/* rc-main.c - Remote Controller core module
2 *
3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <media/rc-core.h>
18#include <linux/bsearch.h>
19#include <linux/spinlock.h>
20#include <linux/delay.h>
21#include <linux/input.h>
22#include <linux/leds.h>
23#include <linux/slab.h>
24#include <linux/idr.h>
25#include <linux/device.h>
26#include <linux/module.h>
27#include "rc-core-priv.h"
28
29/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
30#define IR_TAB_MIN_SIZE 256
31#define IR_TAB_MAX_SIZE 8192
32#define RC_DEV_MAX 256
33
34static const struct {
35 const char *name;
36 unsigned int repeat_period;
37 unsigned int scancode_bits;
38} protocols[] = {
39 [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 250 },
40 [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 250 },
41 [RC_PROTO_RC5] = { .name = "rc-5",
42 .scancode_bits = 0x1f7f, .repeat_period = 164 },
43 [RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
44 .scancode_bits = 0x1f7f3f, .repeat_period = 164 },
45 [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
46 .scancode_bits = 0x2fff, .repeat_period = 164 },
47 [RC_PROTO_JVC] = { .name = "jvc",
48 .scancode_bits = 0xffff, .repeat_period = 250 },
49 [RC_PROTO_SONY12] = { .name = "sony-12",
50 .scancode_bits = 0x1f007f, .repeat_period = 100 },
51 [RC_PROTO_SONY15] = { .name = "sony-15",
52 .scancode_bits = 0xff007f, .repeat_period = 100 },
53 [RC_PROTO_SONY20] = { .name = "sony-20",
54 .scancode_bits = 0x1fff7f, .repeat_period = 100 },
55 [RC_PROTO_NEC] = { .name = "nec",
56 .scancode_bits = 0xffff, .repeat_period = 160 },
57 [RC_PROTO_NECX] = { .name = "nec-x",
58 .scancode_bits = 0xffffff, .repeat_period = 160 },
59 [RC_PROTO_NEC32] = { .name = "nec-32",
60 .scancode_bits = 0xffffffff, .repeat_period = 160 },
61 [RC_PROTO_SANYO] = { .name = "sanyo",
62 .scancode_bits = 0x1fffff, .repeat_period = 250 },
63 [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
64 .scancode_bits = 0xffff, .repeat_period = 150 },
65 [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
66 .scancode_bits = 0x1fffff, .repeat_period = 150 },
67 [RC_PROTO_RC6_0] = { .name = "rc-6-0",
68 .scancode_bits = 0xffff, .repeat_period = 164 },
69 [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
70 .scancode_bits = 0xfffff, .repeat_period = 164 },
71 [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
72 .scancode_bits = 0xffffff, .repeat_period = 164 },
73 [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
74 .scancode_bits = 0xffffffff, .repeat_period = 164 },
75 [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
76 .scancode_bits = 0xffff7fff, .repeat_period = 164 },
77 [RC_PROTO_SHARP] = { .name = "sharp",
78 .scancode_bits = 0x1fff, .repeat_period = 250 },
79 [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 250 },
80 [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 550 },
81};
82
83/* Used to keep track of known keymaps */
84static LIST_HEAD(rc_map_list);
85static DEFINE_SPINLOCK(rc_map_lock);
86static struct led_trigger *led_feedback;
87
88/* Used to keep track of rc devices */
89static DEFINE_IDA(rc_ida);
90
91static struct rc_map_list *seek_rc_map(const char *name)
92{
93 struct rc_map_list *map = NULL;
94
95 spin_lock(&rc_map_lock);
96 list_for_each_entry(map, &rc_map_list, list) {
97 if (!strcmp(name, map->map.name)) {
98 spin_unlock(&rc_map_lock);
99 return map;
100 }
101 }
102 spin_unlock(&rc_map_lock);
103
104 return NULL;
105}
106
107struct rc_map *rc_map_get(const char *name)
108{
109
110 struct rc_map_list *map;
111
112 map = seek_rc_map(name);
113#ifdef CONFIG_MODULES
114 if (!map) {
115 int rc = request_module("%s", name);
116 if (rc < 0) {
117 pr_err("Couldn't load IR keymap %s\n", name);
118 return NULL;
119 }
120 msleep(20); /* Give some time for IR to register */
121
122 map = seek_rc_map(name);
123 }
124#endif
125 if (!map) {
126 pr_err("IR keymap %s not found\n", name);
127 return NULL;
128 }
129
130 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
131
132 return &map->map;
133}
134EXPORT_SYMBOL_GPL(rc_map_get);
135
136int rc_map_register(struct rc_map_list *map)
137{
138 spin_lock(&rc_map_lock);
139 list_add_tail(&map->list, &rc_map_list);
140 spin_unlock(&rc_map_lock);
141 return 0;
142}
143EXPORT_SYMBOL_GPL(rc_map_register);
144
145void rc_map_unregister(struct rc_map_list *map)
146{
147 spin_lock(&rc_map_lock);
148 list_del(&map->list);
149 spin_unlock(&rc_map_lock);
150}
151EXPORT_SYMBOL_GPL(rc_map_unregister);
152
153
154static struct rc_map_table empty[] = {
155 { 0x2a, KEY_COFFEE },
156};
157
158static struct rc_map_list empty_map = {
159 .map = {
160 .scan = empty,
161 .size = ARRAY_SIZE(empty),
162 .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */
163 .name = RC_MAP_EMPTY,
164 }
165};
166
167/**
168 * ir_create_table() - initializes a scancode table
169 * @rc_map: the rc_map to initialize
170 * @name: name to assign to the table
171 * @rc_proto: ir type to assign to the new table
172 * @size: initial size of the table
173 * @return: zero on success or a negative error code
174 *
175 * This routine will initialize the rc_map and will allocate
176 * memory to hold at least the specified number of elements.
177 */
178static int ir_create_table(struct rc_map *rc_map,
179 const char *name, u64 rc_proto, size_t size)
180{
181 rc_map->name = kstrdup(name, GFP_KERNEL);
182 if (!rc_map->name)
183 return -ENOMEM;
184 rc_map->rc_proto = rc_proto;
185 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
186 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
187 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
188 if (!rc_map->scan) {
189 kfree(rc_map->name);
190 rc_map->name = NULL;
191 return -ENOMEM;
192 }
193
194 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
195 rc_map->size, rc_map->alloc);
196 return 0;
197}
198
199/**
200 * ir_free_table() - frees memory allocated by a scancode table
201 * @rc_map: the table whose mappings need to be freed
202 *
203 * This routine will free memory alloctaed for key mappings used by given
204 * scancode table.
205 */
206static void ir_free_table(struct rc_map *rc_map)
207{
208 rc_map->size = 0;
209 kfree(rc_map->name);
210 rc_map->name = NULL;
211 kfree(rc_map->scan);
212 rc_map->scan = NULL;
213}
214
215/**
216 * ir_resize_table() - resizes a scancode table if necessary
217 * @rc_map: the rc_map to resize
218 * @gfp_flags: gfp flags to use when allocating memory
219 * @return: zero on success or a negative error code
220 *
221 * This routine will shrink the rc_map if it has lots of
222 * unused entries and grow it if it is full.
223 */
224static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
225{
226 unsigned int oldalloc = rc_map->alloc;
227 unsigned int newalloc = oldalloc;
228 struct rc_map_table *oldscan = rc_map->scan;
229 struct rc_map_table *newscan;
230
231 if (rc_map->size == rc_map->len) {
232 /* All entries in use -> grow keytable */
233 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
234 return -ENOMEM;
235
236 newalloc *= 2;
237 IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
238 }
239
240 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
241 /* Less than 1/3 of entries in use -> shrink keytable */
242 newalloc /= 2;
243 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
244 }
245
246 if (newalloc == oldalloc)
247 return 0;
248
249 newscan = kmalloc(newalloc, gfp_flags);
250 if (!newscan) {
251 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
252 return -ENOMEM;
253 }
254
255 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
256 rc_map->scan = newscan;
257 rc_map->alloc = newalloc;
258 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
259 kfree(oldscan);
260 return 0;
261}
262
263/**
264 * ir_update_mapping() - set a keycode in the scancode->keycode table
265 * @dev: the struct rc_dev device descriptor
266 * @rc_map: scancode table to be adjusted
267 * @index: index of the mapping that needs to be updated
268 * @keycode: the desired keycode
269 * @return: previous keycode assigned to the mapping
270 *
271 * This routine is used to update scancode->keycode mapping at given
272 * position.
273 */
274static unsigned int ir_update_mapping(struct rc_dev *dev,
275 struct rc_map *rc_map,
276 unsigned int index,
277 unsigned int new_keycode)
278{
279 int old_keycode = rc_map->scan[index].keycode;
280 int i;
281
282 /* Did the user wish to remove the mapping? */
283 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
284 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
285 index, rc_map->scan[index].scancode);
286 rc_map->len--;
287 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
288 (rc_map->len - index) * sizeof(struct rc_map_table));
289 } else {
290 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
291 index,
292 old_keycode == KEY_RESERVED ? "New" : "Replacing",
293 rc_map->scan[index].scancode, new_keycode);
294 rc_map->scan[index].keycode = new_keycode;
295 __set_bit(new_keycode, dev->input_dev->keybit);
296 }
297
298 if (old_keycode != KEY_RESERVED) {
299 /* A previous mapping was updated... */
300 __clear_bit(old_keycode, dev->input_dev->keybit);
301 /* ... but another scancode might use the same keycode */
302 for (i = 0; i < rc_map->len; i++) {
303 if (rc_map->scan[i].keycode == old_keycode) {
304 __set_bit(old_keycode, dev->input_dev->keybit);
305 break;
306 }
307 }
308
309 /* Possibly shrink the keytable, failure is not a problem */
310 ir_resize_table(rc_map, GFP_ATOMIC);
311 }
312
313 return old_keycode;
314}
315
316/**
317 * ir_establish_scancode() - set a keycode in the scancode->keycode table
318 * @dev: the struct rc_dev device descriptor
319 * @rc_map: scancode table to be searched
320 * @scancode: the desired scancode
321 * @resize: controls whether we allowed to resize the table to
322 * accommodate not yet present scancodes
323 * @return: index of the mapping containing scancode in question
324 * or -1U in case of failure.
325 *
326 * This routine is used to locate given scancode in rc_map.
327 * If scancode is not yet present the routine will allocate a new slot
328 * for it.
329 */
330static unsigned int ir_establish_scancode(struct rc_dev *dev,
331 struct rc_map *rc_map,
332 unsigned int scancode,
333 bool resize)
334{
335 unsigned int i;
336
337 /*
338 * Unfortunately, some hardware-based IR decoders don't provide
339 * all bits for the complete IR code. In general, they provide only
340 * the command part of the IR code. Yet, as it is possible to replace
341 * the provided IR with another one, it is needed to allow loading
342 * IR tables from other remotes. So, we support specifying a mask to
343 * indicate the valid bits of the scancodes.
344 */
345 if (dev->scancode_mask)
346 scancode &= dev->scancode_mask;
347
348 /* First check if we already have a mapping for this ir command */
349 for (i = 0; i < rc_map->len; i++) {
350 if (rc_map->scan[i].scancode == scancode)
351 return i;
352
353 /* Keytable is sorted from lowest to highest scancode */
354 if (rc_map->scan[i].scancode >= scancode)
355 break;
356 }
357
358 /* No previous mapping found, we might need to grow the table */
359 if (rc_map->size == rc_map->len) {
360 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
361 return -1U;
362 }
363
364 /* i is the proper index to insert our new keycode */
365 if (i < rc_map->len)
366 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
367 (rc_map->len - i) * sizeof(struct rc_map_table));
368 rc_map->scan[i].scancode = scancode;
369 rc_map->scan[i].keycode = KEY_RESERVED;
370 rc_map->len++;
371
372 return i;
373}
374
375/**
376 * ir_setkeycode() - set a keycode in the scancode->keycode table
377 * @idev: the struct input_dev device descriptor
378 * @scancode: the desired scancode
379 * @keycode: result
380 * @return: -EINVAL if the keycode could not be inserted, otherwise zero.
381 *
382 * This routine is used to handle evdev EVIOCSKEY ioctl.
383 */
384static int ir_setkeycode(struct input_dev *idev,
385 const struct input_keymap_entry *ke,
386 unsigned int *old_keycode)
387{
388 struct rc_dev *rdev = input_get_drvdata(idev);
389 struct rc_map *rc_map = &rdev->rc_map;
390 unsigned int index;
391 unsigned int scancode;
392 int retval = 0;
393 unsigned long flags;
394
395 spin_lock_irqsave(&rc_map->lock, flags);
396
397 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
398 index = ke->index;
399 if (index >= rc_map->len) {
400 retval = -EINVAL;
401 goto out;
402 }
403 } else {
404 retval = input_scancode_to_scalar(ke, &scancode);
405 if (retval)
406 goto out;
407
408 index = ir_establish_scancode(rdev, rc_map, scancode, true);
409 if (index >= rc_map->len) {
410 retval = -ENOMEM;
411 goto out;
412 }
413 }
414
415 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
416
417out:
418 spin_unlock_irqrestore(&rc_map->lock, flags);
419 return retval;
420}
421
422/**
423 * ir_setkeytable() - sets several entries in the scancode->keycode table
424 * @dev: the struct rc_dev device descriptor
425 * @to: the struct rc_map to copy entries to
426 * @from: the struct rc_map to copy entries from
427 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
428 *
429 * This routine is used to handle table initialization.
430 */
431static int ir_setkeytable(struct rc_dev *dev,
432 const struct rc_map *from)
433{
434 struct rc_map *rc_map = &dev->rc_map;
435 unsigned int i, index;
436 int rc;
437
438 rc = ir_create_table(rc_map, from->name,
439 from->rc_proto, from->size);
440 if (rc)
441 return rc;
442
443 for (i = 0; i < from->size; i++) {
444 index = ir_establish_scancode(dev, rc_map,
445 from->scan[i].scancode, false);
446 if (index >= rc_map->len) {
447 rc = -ENOMEM;
448 break;
449 }
450
451 ir_update_mapping(dev, rc_map, index,
452 from->scan[i].keycode);
453 }
454
455 if (rc)
456 ir_free_table(rc_map);
457
458 return rc;
459}
460
461static int rc_map_cmp(const void *key, const void *elt)
462{
463 const unsigned int *scancode = key;
464 const struct rc_map_table *e = elt;
465
466 if (*scancode < e->scancode)
467 return -1;
468 else if (*scancode > e->scancode)
469 return 1;
470 return 0;
471}
472
473/**
474 * ir_lookup_by_scancode() - locate mapping by scancode
475 * @rc_map: the struct rc_map to search
476 * @scancode: scancode to look for in the table
477 * @return: index in the table, -1U if not found
478 *
479 * This routine performs binary search in RC keykeymap table for
480 * given scancode.
481 */
482static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
483 unsigned int scancode)
484{
485 struct rc_map_table *res;
486
487 res = bsearch(&scancode, rc_map->scan, rc_map->len,
488 sizeof(struct rc_map_table), rc_map_cmp);
489 if (!res)
490 return -1U;
491 else
492 return res - rc_map->scan;
493}
494
495/**
496 * ir_getkeycode() - get a keycode from the scancode->keycode table
497 * @idev: the struct input_dev device descriptor
498 * @scancode: the desired scancode
499 * @keycode: used to return the keycode, if found, or KEY_RESERVED
500 * @return: always returns zero.
501 *
502 * This routine is used to handle evdev EVIOCGKEY ioctl.
503 */
504static int ir_getkeycode(struct input_dev *idev,
505 struct input_keymap_entry *ke)
506{
507 struct rc_dev *rdev = input_get_drvdata(idev);
508 struct rc_map *rc_map = &rdev->rc_map;
509 struct rc_map_table *entry;
510 unsigned long flags;
511 unsigned int index;
512 unsigned int scancode;
513 int retval;
514
515 spin_lock_irqsave(&rc_map->lock, flags);
516
517 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
518 index = ke->index;
519 } else {
520 retval = input_scancode_to_scalar(ke, &scancode);
521 if (retval)
522 goto out;
523
524 index = ir_lookup_by_scancode(rc_map, scancode);
525 }
526
527 if (index < rc_map->len) {
528 entry = &rc_map->scan[index];
529
530 ke->index = index;
531 ke->keycode = entry->keycode;
532 ke->len = sizeof(entry->scancode);
533 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
534
535 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
536 /*
537 * We do not really know the valid range of scancodes
538 * so let's respond with KEY_RESERVED to anything we
539 * do not have mapping for [yet].
540 */
541 ke->index = index;
542 ke->keycode = KEY_RESERVED;
543 } else {
544 retval = -EINVAL;
545 goto out;
546 }
547
548 retval = 0;
549
550out:
551 spin_unlock_irqrestore(&rc_map->lock, flags);
552 return retval;
553}
554
555/**
556 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
557 * @dev: the struct rc_dev descriptor of the device
558 * @scancode: the scancode to look for
559 * @return: the corresponding keycode, or KEY_RESERVED
560 *
561 * This routine is used by drivers which need to convert a scancode to a
562 * keycode. Normally it should not be used since drivers should have no
563 * interest in keycodes.
564 */
565u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
566{
567 struct rc_map *rc_map = &dev->rc_map;
568 unsigned int keycode;
569 unsigned int index;
570 unsigned long flags;
571
572 spin_lock_irqsave(&rc_map->lock, flags);
573
574 index = ir_lookup_by_scancode(rc_map, scancode);
575 keycode = index < rc_map->len ?
576 rc_map->scan[index].keycode : KEY_RESERVED;
577
578 spin_unlock_irqrestore(&rc_map->lock, flags);
579
580 if (keycode != KEY_RESERVED)
581 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
582 dev->device_name, scancode, keycode);
583
584 return keycode;
585}
586EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
587
588/**
589 * ir_do_keyup() - internal function to signal the release of a keypress
590 * @dev: the struct rc_dev descriptor of the device
591 * @sync: whether or not to call input_sync
592 *
593 * This function is used internally to release a keypress, it must be
594 * called with keylock held.
595 */
596static void ir_do_keyup(struct rc_dev *dev, bool sync)
597{
598 if (!dev->keypressed)
599 return;
600
601 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
602 input_report_key(dev->input_dev, dev->last_keycode, 0);
603 led_trigger_event(led_feedback, LED_OFF);
604 if (sync)
605 input_sync(dev->input_dev);
606 dev->keypressed = false;
607}
608
609/**
610 * rc_keyup() - signals the release of a keypress
611 * @dev: the struct rc_dev descriptor of the device
612 *
613 * This routine is used to signal that a key has been released on the
614 * remote control.
615 */
616void rc_keyup(struct rc_dev *dev)
617{
618 unsigned long flags;
619
620 spin_lock_irqsave(&dev->keylock, flags);
621 ir_do_keyup(dev, true);
622 spin_unlock_irqrestore(&dev->keylock, flags);
623}
624EXPORT_SYMBOL_GPL(rc_keyup);
625
626/**
627 * ir_timer_keyup() - generates a keyup event after a timeout
628 * @cookie: a pointer to the struct rc_dev for the device
629 *
630 * This routine will generate a keyup event some time after a keydown event
631 * is generated when no further activity has been detected.
632 */
633static void ir_timer_keyup(unsigned long cookie)
634{
635 struct rc_dev *dev = (struct rc_dev *)cookie;
636 unsigned long flags;
637
638 /*
639 * ir->keyup_jiffies is used to prevent a race condition if a
640 * hardware interrupt occurs at this point and the keyup timer
641 * event is moved further into the future as a result.
642 *
643 * The timer will then be reactivated and this function called
644 * again in the future. We need to exit gracefully in that case
645 * to allow the input subsystem to do its auto-repeat magic or
646 * a keyup event might follow immediately after the keydown.
647 */
648 spin_lock_irqsave(&dev->keylock, flags);
649 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
650 ir_do_keyup(dev, true);
651 spin_unlock_irqrestore(&dev->keylock, flags);
652}
653
654/**
655 * rc_repeat() - signals that a key is still pressed
656 * @dev: the struct rc_dev descriptor of the device
657 *
658 * This routine is used by IR decoders when a repeat message which does
659 * not include the necessary bits to reproduce the scancode has been
660 * received.
661 */
662void rc_repeat(struct rc_dev *dev)
663{
664 unsigned long flags;
665 unsigned int timeout = protocols[dev->last_protocol].repeat_period;
666
667 spin_lock_irqsave(&dev->keylock, flags);
668
669 if (!dev->keypressed)
670 goto out;
671
672 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
673 input_sync(dev->input_dev);
674
675 dev->keyup_jiffies = jiffies + msecs_to_jiffies(timeout);
676 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
677
678out:
679 spin_unlock_irqrestore(&dev->keylock, flags);
680}
681EXPORT_SYMBOL_GPL(rc_repeat);
682
683/**
684 * ir_do_keydown() - internal function to process a keypress
685 * @dev: the struct rc_dev descriptor of the device
686 * @protocol: the protocol of the keypress
687 * @scancode: the scancode of the keypress
688 * @keycode: the keycode of the keypress
689 * @toggle: the toggle value of the keypress
690 *
691 * This function is used internally to register a keypress, it must be
692 * called with keylock held.
693 */
694static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
695 u32 scancode, u32 keycode, u8 toggle)
696{
697 bool new_event = (!dev->keypressed ||
698 dev->last_protocol != protocol ||
699 dev->last_scancode != scancode ||
700 dev->last_toggle != toggle);
701
702 if (new_event && dev->keypressed)
703 ir_do_keyup(dev, false);
704
705 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
706
707 if (new_event && keycode != KEY_RESERVED) {
708 /* Register a keypress */
709 dev->keypressed = true;
710 dev->last_protocol = protocol;
711 dev->last_scancode = scancode;
712 dev->last_toggle = toggle;
713 dev->last_keycode = keycode;
714
715 IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
716 dev->device_name, keycode, protocol, scancode);
717 input_report_key(dev->input_dev, keycode, 1);
718
719 led_trigger_event(led_feedback, LED_FULL);
720 }
721
722 input_sync(dev->input_dev);
723}
724
725/**
726 * rc_keydown() - generates input event for a key press
727 * @dev: the struct rc_dev descriptor of the device
728 * @protocol: the protocol for the keypress
729 * @scancode: the scancode for the keypress
730 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
731 * support toggle values, this should be set to zero)
732 *
733 * This routine is used to signal that a key has been pressed on the
734 * remote control.
735 */
736void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
737 u8 toggle)
738{
739 unsigned long flags;
740 u32 keycode = rc_g_keycode_from_table(dev, scancode);
741
742 spin_lock_irqsave(&dev->keylock, flags);
743 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
744
745 if (dev->keypressed) {
746 dev->keyup_jiffies = jiffies +
747 msecs_to_jiffies(protocols[protocol].repeat_period);
748 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
749 }
750 spin_unlock_irqrestore(&dev->keylock, flags);
751}
752EXPORT_SYMBOL_GPL(rc_keydown);
753
754/**
755 * rc_keydown_notimeout() - generates input event for a key press without
756 * an automatic keyup event at a later time
757 * @dev: the struct rc_dev descriptor of the device
758 * @protocol: the protocol for the keypress
759 * @scancode: the scancode for the keypress
760 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
761 * support toggle values, this should be set to zero)
762 *
763 * This routine is used to signal that a key has been pressed on the
764 * remote control. The driver must manually call rc_keyup() at a later stage.
765 */
766void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
767 u32 scancode, u8 toggle)
768{
769 unsigned long flags;
770 u32 keycode = rc_g_keycode_from_table(dev, scancode);
771
772 spin_lock_irqsave(&dev->keylock, flags);
773 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
774 spin_unlock_irqrestore(&dev->keylock, flags);
775}
776EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
777
778/**
779 * rc_validate_filter() - checks that the scancode and mask are valid and
780 * provides sensible defaults
781 * @dev: the struct rc_dev descriptor of the device
782 * @filter: the scancode and mask
783 * @return: 0 or -EINVAL if the filter is not valid
784 */
785static int rc_validate_filter(struct rc_dev *dev,
786 struct rc_scancode_filter *filter)
787{
788 u32 mask, s = filter->data;
789 enum rc_proto protocol = dev->wakeup_protocol;
790
791 if (protocol >= ARRAY_SIZE(protocols))
792 return -EINVAL;
793
794 mask = protocols[protocol].scancode_bits;
795
796 switch (protocol) {
797 case RC_PROTO_NECX:
798 if ((((s >> 16) ^ ~(s >> 8)) & 0xff) == 0)
799 return -EINVAL;
800 break;
801 case RC_PROTO_NEC32:
802 if ((((s >> 24) ^ ~(s >> 16)) & 0xff) == 0)
803 return -EINVAL;
804 break;
805 case RC_PROTO_RC6_MCE:
806 if ((s & 0xffff0000) != 0x800f0000)
807 return -EINVAL;
808 break;
809 case RC_PROTO_RC6_6A_32:
810 if ((s & 0xffff0000) == 0x800f0000)
811 return -EINVAL;
812 break;
813 default:
814 break;
815 }
816
817 filter->data &= mask;
818 filter->mask &= mask;
819
820 /*
821 * If we have to raw encode the IR for wakeup, we cannot have a mask
822 */
823 if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
824 return -EINVAL;
825
826 return 0;
827}
828
829int rc_open(struct rc_dev *rdev)
830{
831 int rval = 0;
832
833 if (!rdev)
834 return -EINVAL;
835
836 mutex_lock(&rdev->lock);
837
838 if (!rdev->users++ && rdev->open != NULL)
839 rval = rdev->open(rdev);
840
841 if (rval)
842 rdev->users--;
843
844 mutex_unlock(&rdev->lock);
845
846 return rval;
847}
848EXPORT_SYMBOL_GPL(rc_open);
849
850static int ir_open(struct input_dev *idev)
851{
852 struct rc_dev *rdev = input_get_drvdata(idev);
853
854 return rc_open(rdev);
855}
856
857void rc_close(struct rc_dev *rdev)
858{
859 if (rdev) {
860 mutex_lock(&rdev->lock);
861
862 if (!--rdev->users && rdev->close != NULL)
863 rdev->close(rdev);
864
865 mutex_unlock(&rdev->lock);
866 }
867}
868EXPORT_SYMBOL_GPL(rc_close);
869
870static void ir_close(struct input_dev *idev)
871{
872 struct rc_dev *rdev = input_get_drvdata(idev);
873 rc_close(rdev);
874}
875
876/* class for /sys/class/rc */
877static char *rc_devnode(struct device *dev, umode_t *mode)
878{
879 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
880}
881
882static struct class rc_class = {
883 .name = "rc",
884 .devnode = rc_devnode,
885};
886
887/*
888 * These are the protocol textual descriptions that are
889 * used by the sysfs protocols file. Note that the order
890 * of the entries is relevant.
891 */
892static const struct {
893 u64 type;
894 const char *name;
895 const char *module_name;
896} proto_names[] = {
897 { RC_PROTO_BIT_NONE, "none", NULL },
898 { RC_PROTO_BIT_OTHER, "other", NULL },
899 { RC_PROTO_BIT_UNKNOWN, "unknown", NULL },
900 { RC_PROTO_BIT_RC5 |
901 RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" },
902 { RC_PROTO_BIT_NEC |
903 RC_PROTO_BIT_NECX |
904 RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" },
905 { RC_PROTO_BIT_RC6_0 |
906 RC_PROTO_BIT_RC6_6A_20 |
907 RC_PROTO_BIT_RC6_6A_24 |
908 RC_PROTO_BIT_RC6_6A_32 |
909 RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
910 { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" },
911 { RC_PROTO_BIT_SONY12 |
912 RC_PROTO_BIT_SONY15 |
913 RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" },
914 { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
915 { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
916 { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" },
917 { RC_PROTO_BIT_MCIR2_KBD |
918 RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" },
919 { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" },
920 { RC_PROTO_BIT_CEC, "cec", NULL },
921};
922
923/**
924 * struct rc_filter_attribute - Device attribute relating to a filter type.
925 * @attr: Device attribute.
926 * @type: Filter type.
927 * @mask: false for filter value, true for filter mask.
928 */
929struct rc_filter_attribute {
930 struct device_attribute attr;
931 enum rc_filter_type type;
932 bool mask;
933};
934#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
935
936#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
937 struct rc_filter_attribute dev_attr_##_name = { \
938 .attr = __ATTR(_name, _mode, _show, _store), \
939 .type = (_type), \
940 .mask = (_mask), \
941 }
942
943static bool lirc_is_present(void)
944{
945#if defined(CONFIG_LIRC_MODULE)
946 struct module *lirc;
947
948 mutex_lock(&module_mutex);
949 lirc = find_module("lirc_dev");
950 mutex_unlock(&module_mutex);
951
952 return lirc ? true : false;
953#elif defined(CONFIG_LIRC)
954 return true;
955#else
956 return false;
957#endif
958}
959
960/**
961 * show_protocols() - shows the current IR protocol(s)
962 * @device: the device descriptor
963 * @mattr: the device attribute struct
964 * @buf: a pointer to the output buffer
965 *
966 * This routine is a callback routine for input read the IR protocol type(s).
967 * it is trigged by reading /sys/class/rc/rc?/protocols.
968 * It returns the protocol names of supported protocols.
969 * Enabled protocols are printed in brackets.
970 *
971 * dev->lock is taken to guard against races between
972 * store_protocols and show_protocols.
973 */
974static ssize_t show_protocols(struct device *device,
975 struct device_attribute *mattr, char *buf)
976{
977 struct rc_dev *dev = to_rc_dev(device);
978 u64 allowed, enabled;
979 char *tmp = buf;
980 int i;
981
982 mutex_lock(&dev->lock);
983
984 enabled = dev->enabled_protocols;
985 allowed = dev->allowed_protocols;
986 if (dev->raw && !allowed)
987 allowed = ir_raw_get_allowed_protocols();
988
989 mutex_unlock(&dev->lock);
990
991 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
992 __func__, (long long)allowed, (long long)enabled);
993
994 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
995 if (allowed & enabled & proto_names[i].type)
996 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
997 else if (allowed & proto_names[i].type)
998 tmp += sprintf(tmp, "%s ", proto_names[i].name);
999
1000 if (allowed & proto_names[i].type)
1001 allowed &= ~proto_names[i].type;
1002 }
1003
1004 if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
1005 tmp += sprintf(tmp, "[lirc] ");
1006
1007 if (tmp != buf)
1008 tmp--;
1009 *tmp = '\n';
1010
1011 return tmp + 1 - buf;
1012}
1013
1014/**
1015 * parse_protocol_change() - parses a protocol change request
1016 * @protocols: pointer to the bitmask of current protocols
1017 * @buf: pointer to the buffer with a list of changes
1018 *
1019 * Writing "+proto" will add a protocol to the protocol mask.
1020 * Writing "-proto" will remove a protocol from protocol mask.
1021 * Writing "proto" will enable only "proto".
1022 * Writing "none" will disable all protocols.
1023 * Returns the number of changes performed or a negative error code.
1024 */
1025static int parse_protocol_change(u64 *protocols, const char *buf)
1026{
1027 const char *tmp;
1028 unsigned count = 0;
1029 bool enable, disable;
1030 u64 mask;
1031 int i;
1032
1033 while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1034 if (!*tmp)
1035 break;
1036
1037 if (*tmp == '+') {
1038 enable = true;
1039 disable = false;
1040 tmp++;
1041 } else if (*tmp == '-') {
1042 enable = false;
1043 disable = true;
1044 tmp++;
1045 } else {
1046 enable = false;
1047 disable = false;
1048 }
1049
1050 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1051 if (!strcasecmp(tmp, proto_names[i].name)) {
1052 mask = proto_names[i].type;
1053 break;
1054 }
1055 }
1056
1057 if (i == ARRAY_SIZE(proto_names)) {
1058 if (!strcasecmp(tmp, "lirc"))
1059 mask = 0;
1060 else {
1061 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
1062 return -EINVAL;
1063 }
1064 }
1065
1066 count++;
1067
1068 if (enable)
1069 *protocols |= mask;
1070 else if (disable)
1071 *protocols &= ~mask;
1072 else
1073 *protocols = mask;
1074 }
1075
1076 if (!count) {
1077 IR_dprintk(1, "Protocol not specified\n");
1078 return -EINVAL;
1079 }
1080
1081 return count;
1082}
1083
1084static void ir_raw_load_modules(u64 *protocols)
1085{
1086 u64 available;
1087 int i, ret;
1088
1089 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1090 if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1091 proto_names[i].type & (RC_PROTO_BIT_OTHER |
1092 RC_PROTO_BIT_UNKNOWN))
1093 continue;
1094
1095 available = ir_raw_get_allowed_protocols();
1096 if (!(*protocols & proto_names[i].type & ~available))
1097 continue;
1098
1099 if (!proto_names[i].module_name) {
1100 pr_err("Can't enable IR protocol %s\n",
1101 proto_names[i].name);
1102 *protocols &= ~proto_names[i].type;
1103 continue;
1104 }
1105
1106 ret = request_module("%s", proto_names[i].module_name);
1107 if (ret < 0) {
1108 pr_err("Couldn't load IR protocol module %s\n",
1109 proto_names[i].module_name);
1110 *protocols &= ~proto_names[i].type;
1111 continue;
1112 }
1113 msleep(20);
1114 available = ir_raw_get_allowed_protocols();
1115 if (!(*protocols & proto_names[i].type & ~available))
1116 continue;
1117
1118 pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1119 proto_names[i].module_name,
1120 proto_names[i].name);
1121 *protocols &= ~proto_names[i].type;
1122 }
1123}
1124
1125/**
1126 * store_protocols() - changes the current/wakeup IR protocol(s)
1127 * @device: the device descriptor
1128 * @mattr: the device attribute struct
1129 * @buf: a pointer to the input buffer
1130 * @len: length of the input buffer
1131 *
1132 * This routine is for changing the IR protocol type.
1133 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1134 * See parse_protocol_change() for the valid commands.
1135 * Returns @len on success or a negative error code.
1136 *
1137 * dev->lock is taken to guard against races between
1138 * store_protocols and show_protocols.
1139 */
1140static ssize_t store_protocols(struct device *device,
1141 struct device_attribute *mattr,
1142 const char *buf, size_t len)
1143{
1144 struct rc_dev *dev = to_rc_dev(device);
1145 u64 *current_protocols;
1146 struct rc_scancode_filter *filter;
1147 u64 old_protocols, new_protocols;
1148 ssize_t rc;
1149
1150 IR_dprintk(1, "Normal protocol change requested\n");
1151 current_protocols = &dev->enabled_protocols;
1152 filter = &dev->scancode_filter;
1153
1154 if (!dev->change_protocol) {
1155 IR_dprintk(1, "Protocol switching not supported\n");
1156 return -EINVAL;
1157 }
1158
1159 mutex_lock(&dev->lock);
1160
1161 old_protocols = *current_protocols;
1162 new_protocols = old_protocols;
1163 rc = parse_protocol_change(&new_protocols, buf);
1164 if (rc < 0)
1165 goto out;
1166
1167 rc = dev->change_protocol(dev, &new_protocols);
1168 if (rc < 0) {
1169 IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1170 (long long)new_protocols);
1171 goto out;
1172 }
1173
1174 if (dev->driver_type == RC_DRIVER_IR_RAW)
1175 ir_raw_load_modules(&new_protocols);
1176
1177 if (new_protocols != old_protocols) {
1178 *current_protocols = new_protocols;
1179 IR_dprintk(1, "Protocols changed to 0x%llx\n",
1180 (long long)new_protocols);
1181 }
1182
1183 /*
1184 * If a protocol change was attempted the filter may need updating, even
1185 * if the actual protocol mask hasn't changed (since the driver may have
1186 * cleared the filter).
1187 * Try setting the same filter with the new protocol (if any).
1188 * Fall back to clearing the filter.
1189 */
1190 if (dev->s_filter && filter->mask) {
1191 if (new_protocols)
1192 rc = dev->s_filter(dev, filter);
1193 else
1194 rc = -1;
1195
1196 if (rc < 0) {
1197 filter->data = 0;
1198 filter->mask = 0;
1199 dev->s_filter(dev, filter);
1200 }
1201 }
1202
1203 rc = len;
1204
1205out:
1206 mutex_unlock(&dev->lock);
1207 return rc;
1208}
1209
1210/**
1211 * show_filter() - shows the current scancode filter value or mask
1212 * @device: the device descriptor
1213 * @attr: the device attribute struct
1214 * @buf: a pointer to the output buffer
1215 *
1216 * This routine is a callback routine to read a scancode filter value or mask.
1217 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1218 * It prints the current scancode filter value or mask of the appropriate filter
1219 * type in hexadecimal into @buf and returns the size of the buffer.
1220 *
1221 * Bits of the filter value corresponding to set bits in the filter mask are
1222 * compared against input scancodes and non-matching scancodes are discarded.
1223 *
1224 * dev->lock is taken to guard against races between
1225 * store_filter and show_filter.
1226 */
1227static ssize_t show_filter(struct device *device,
1228 struct device_attribute *attr,
1229 char *buf)
1230{
1231 struct rc_dev *dev = to_rc_dev(device);
1232 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1233 struct rc_scancode_filter *filter;
1234 u32 val;
1235
1236 mutex_lock(&dev->lock);
1237
1238 if (fattr->type == RC_FILTER_NORMAL)
1239 filter = &dev->scancode_filter;
1240 else
1241 filter = &dev->scancode_wakeup_filter;
1242
1243 if (fattr->mask)
1244 val = filter->mask;
1245 else
1246 val = filter->data;
1247 mutex_unlock(&dev->lock);
1248
1249 return sprintf(buf, "%#x\n", val);
1250}
1251
1252/**
1253 * store_filter() - changes the scancode filter value
1254 * @device: the device descriptor
1255 * @attr: the device attribute struct
1256 * @buf: a pointer to the input buffer
1257 * @len: length of the input buffer
1258 *
1259 * This routine is for changing a scancode filter value or mask.
1260 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1261 * Returns -EINVAL if an invalid filter value for the current protocol was
1262 * specified or if scancode filtering is not supported by the driver, otherwise
1263 * returns @len.
1264 *
1265 * Bits of the filter value corresponding to set bits in the filter mask are
1266 * compared against input scancodes and non-matching scancodes are discarded.
1267 *
1268 * dev->lock is taken to guard against races between
1269 * store_filter and show_filter.
1270 */
1271static ssize_t store_filter(struct device *device,
1272 struct device_attribute *attr,
1273 const char *buf, size_t len)
1274{
1275 struct rc_dev *dev = to_rc_dev(device);
1276 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1277 struct rc_scancode_filter new_filter, *filter;
1278 int ret;
1279 unsigned long val;
1280 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1281
1282 ret = kstrtoul(buf, 0, &val);
1283 if (ret < 0)
1284 return ret;
1285
1286 if (fattr->type == RC_FILTER_NORMAL) {
1287 set_filter = dev->s_filter;
1288 filter = &dev->scancode_filter;
1289 } else {
1290 set_filter = dev->s_wakeup_filter;
1291 filter = &dev->scancode_wakeup_filter;
1292 }
1293
1294 if (!set_filter)
1295 return -EINVAL;
1296
1297 mutex_lock(&dev->lock);
1298
1299 new_filter = *filter;
1300 if (fattr->mask)
1301 new_filter.mask = val;
1302 else
1303 new_filter.data = val;
1304
1305 if (fattr->type == RC_FILTER_WAKEUP) {
1306 /*
1307 * Refuse to set a filter unless a protocol is enabled
1308 * and the filter is valid for that protocol
1309 */
1310 if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1311 ret = rc_validate_filter(dev, &new_filter);
1312 else
1313 ret = -EINVAL;
1314
1315 if (ret != 0)
1316 goto unlock;
1317 }
1318
1319 if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1320 val) {
1321 /* refuse to set a filter unless a protocol is enabled */
1322 ret = -EINVAL;
1323 goto unlock;
1324 }
1325
1326 ret = set_filter(dev, &new_filter);
1327 if (ret < 0)
1328 goto unlock;
1329
1330 *filter = new_filter;
1331
1332unlock:
1333 mutex_unlock(&dev->lock);
1334 return (ret < 0) ? ret : len;
1335}
1336
1337/**
1338 * show_wakeup_protocols() - shows the wakeup IR protocol
1339 * @device: the device descriptor
1340 * @mattr: the device attribute struct
1341 * @buf: a pointer to the output buffer
1342 *
1343 * This routine is a callback routine for input read the IR protocol type(s).
1344 * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols.
1345 * It returns the protocol names of supported protocols.
1346 * The enabled protocols are printed in brackets.
1347 *
1348 * dev->lock is taken to guard against races between
1349 * store_wakeup_protocols and show_wakeup_protocols.
1350 */
1351static ssize_t show_wakeup_protocols(struct device *device,
1352 struct device_attribute *mattr,
1353 char *buf)
1354{
1355 struct rc_dev *dev = to_rc_dev(device);
1356 u64 allowed;
1357 enum rc_proto enabled;
1358 char *tmp = buf;
1359 int i;
1360
1361 mutex_lock(&dev->lock);
1362
1363 allowed = dev->allowed_wakeup_protocols;
1364 enabled = dev->wakeup_protocol;
1365
1366 mutex_unlock(&dev->lock);
1367
1368 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n",
1369 __func__, (long long)allowed, enabled);
1370
1371 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1372 if (allowed & (1ULL << i)) {
1373 if (i == enabled)
1374 tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1375 else
1376 tmp += sprintf(tmp, "%s ", protocols[i].name);
1377 }
1378 }
1379
1380 if (tmp != buf)
1381 tmp--;
1382 *tmp = '\n';
1383
1384 return tmp + 1 - buf;
1385}
1386
1387/**
1388 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1389 * @device: the device descriptor
1390 * @mattr: the device attribute struct
1391 * @buf: a pointer to the input buffer
1392 * @len: length of the input buffer
1393 *
1394 * This routine is for changing the IR protocol type.
1395 * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols.
1396 * Returns @len on success or a negative error code.
1397 *
1398 * dev->lock is taken to guard against races between
1399 * store_wakeup_protocols and show_wakeup_protocols.
1400 */
1401static ssize_t store_wakeup_protocols(struct device *device,
1402 struct device_attribute *mattr,
1403 const char *buf, size_t len)
1404{
1405 struct rc_dev *dev = to_rc_dev(device);
1406 enum rc_proto protocol;
1407 ssize_t rc;
1408 u64 allowed;
1409 int i;
1410
1411 mutex_lock(&dev->lock);
1412
1413 allowed = dev->allowed_wakeup_protocols;
1414
1415 if (sysfs_streq(buf, "none")) {
1416 protocol = RC_PROTO_UNKNOWN;
1417 } else {
1418 for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1419 if ((allowed & (1ULL << i)) &&
1420 sysfs_streq(buf, protocols[i].name)) {
1421 protocol = i;
1422 break;
1423 }
1424 }
1425
1426 if (i == ARRAY_SIZE(protocols)) {
1427 rc = -EINVAL;
1428 goto out;
1429 }
1430
1431 if (dev->encode_wakeup) {
1432 u64 mask = 1ULL << protocol;
1433
1434 ir_raw_load_modules(&mask);
1435 if (!mask) {
1436 rc = -EINVAL;
1437 goto out;
1438 }
1439 }
1440 }
1441
1442 if (dev->wakeup_protocol != protocol) {
1443 dev->wakeup_protocol = protocol;
1444 IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol);
1445
1446 if (protocol == RC_PROTO_RC6_MCE)
1447 dev->scancode_wakeup_filter.data = 0x800f0000;
1448 else
1449 dev->scancode_wakeup_filter.data = 0;
1450 dev->scancode_wakeup_filter.mask = 0;
1451
1452 rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1453 if (rc == 0)
1454 rc = len;
1455 } else {
1456 rc = len;
1457 }
1458
1459out:
1460 mutex_unlock(&dev->lock);
1461 return rc;
1462}
1463
1464static void rc_dev_release(struct device *device)
1465{
1466 struct rc_dev *dev = to_rc_dev(device);
1467
1468 kfree(dev);
1469}
1470
1471#define ADD_HOTPLUG_VAR(fmt, val...) \
1472 do { \
1473 int err = add_uevent_var(env, fmt, val); \
1474 if (err) \
1475 return err; \
1476 } while (0)
1477
1478static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1479{
1480 struct rc_dev *dev = to_rc_dev(device);
1481
1482 if (dev->rc_map.name)
1483 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1484 if (dev->driver_name)
1485 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1486 if (dev->device_name)
1487 ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
1488
1489 return 0;
1490}
1491
1492/*
1493 * Static device attribute struct with the sysfs attributes for IR's
1494 */
1495static struct device_attribute dev_attr_ro_protocols =
1496__ATTR(protocols, 0444, show_protocols, NULL);
1497static struct device_attribute dev_attr_rw_protocols =
1498__ATTR(protocols, 0644, show_protocols, store_protocols);
1499static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1500 store_wakeup_protocols);
1501static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1502 show_filter, store_filter, RC_FILTER_NORMAL, false);
1503static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1504 show_filter, store_filter, RC_FILTER_NORMAL, true);
1505static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1506 show_filter, store_filter, RC_FILTER_WAKEUP, false);
1507static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1508 show_filter, store_filter, RC_FILTER_WAKEUP, true);
1509
1510static struct attribute *rc_dev_rw_protocol_attrs[] = {
1511 &dev_attr_rw_protocols.attr,
1512 NULL,
1513};
1514
1515static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1516 .attrs = rc_dev_rw_protocol_attrs,
1517};
1518
1519static struct attribute *rc_dev_ro_protocol_attrs[] = {
1520 &dev_attr_ro_protocols.attr,
1521 NULL,
1522};
1523
1524static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1525 .attrs = rc_dev_ro_protocol_attrs,
1526};
1527
1528static struct attribute *rc_dev_filter_attrs[] = {
1529 &dev_attr_filter.attr.attr,
1530 &dev_attr_filter_mask.attr.attr,
1531 NULL,
1532};
1533
1534static const struct attribute_group rc_dev_filter_attr_grp = {
1535 .attrs = rc_dev_filter_attrs,
1536};
1537
1538static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1539 &dev_attr_wakeup_filter.attr.attr,
1540 &dev_attr_wakeup_filter_mask.attr.attr,
1541 &dev_attr_wakeup_protocols.attr,
1542 NULL,
1543};
1544
1545static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1546 .attrs = rc_dev_wakeup_filter_attrs,
1547};
1548
1549static const struct device_type rc_dev_type = {
1550 .release = rc_dev_release,
1551 .uevent = rc_dev_uevent,
1552};
1553
1554struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1555{
1556 struct rc_dev *dev;
1557
1558 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1559 if (!dev)
1560 return NULL;
1561
1562 if (type != RC_DRIVER_IR_RAW_TX) {
1563 dev->input_dev = input_allocate_device();
1564 if (!dev->input_dev) {
1565 kfree(dev);
1566 return NULL;
1567 }
1568
1569 dev->input_dev->getkeycode = ir_getkeycode;
1570 dev->input_dev->setkeycode = ir_setkeycode;
1571 input_set_drvdata(dev->input_dev, dev);
1572
1573 setup_timer(&dev->timer_keyup, ir_timer_keyup,
1574 (unsigned long)dev);
1575
1576 spin_lock_init(&dev->rc_map.lock);
1577 spin_lock_init(&dev->keylock);
1578 }
1579 mutex_init(&dev->lock);
1580
1581 dev->dev.type = &rc_dev_type;
1582 dev->dev.class = &rc_class;
1583 device_initialize(&dev->dev);
1584
1585 dev->driver_type = type;
1586
1587 __module_get(THIS_MODULE);
1588 return dev;
1589}
1590EXPORT_SYMBOL_GPL(rc_allocate_device);
1591
1592void rc_free_device(struct rc_dev *dev)
1593{
1594 if (!dev)
1595 return;
1596
1597 input_free_device(dev->input_dev);
1598
1599 put_device(&dev->dev);
1600
1601 /* kfree(dev) will be called by the callback function
1602 rc_dev_release() */
1603
1604 module_put(THIS_MODULE);
1605}
1606EXPORT_SYMBOL_GPL(rc_free_device);
1607
1608static void devm_rc_alloc_release(struct device *dev, void *res)
1609{
1610 rc_free_device(*(struct rc_dev **)res);
1611}
1612
1613struct rc_dev *devm_rc_allocate_device(struct device *dev,
1614 enum rc_driver_type type)
1615{
1616 struct rc_dev **dr, *rc;
1617
1618 dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1619 if (!dr)
1620 return NULL;
1621
1622 rc = rc_allocate_device(type);
1623 if (!rc) {
1624 devres_free(dr);
1625 return NULL;
1626 }
1627
1628 rc->dev.parent = dev;
1629 rc->managed_alloc = true;
1630 *dr = rc;
1631 devres_add(dev, dr);
1632
1633 return rc;
1634}
1635EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1636
1637static int rc_prepare_rx_device(struct rc_dev *dev)
1638{
1639 int rc;
1640 struct rc_map *rc_map;
1641 u64 rc_proto;
1642
1643 if (!dev->map_name)
1644 return -EINVAL;
1645
1646 rc_map = rc_map_get(dev->map_name);
1647 if (!rc_map)
1648 rc_map = rc_map_get(RC_MAP_EMPTY);
1649 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1650 return -EINVAL;
1651
1652 rc = ir_setkeytable(dev, rc_map);
1653 if (rc)
1654 return rc;
1655
1656 rc_proto = BIT_ULL(rc_map->rc_proto);
1657
1658 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1659 dev->enabled_protocols = dev->allowed_protocols;
1660
1661 if (dev->change_protocol) {
1662 rc = dev->change_protocol(dev, &rc_proto);
1663 if (rc < 0)
1664 goto out_table;
1665 dev->enabled_protocols = rc_proto;
1666 }
1667
1668 if (dev->driver_type == RC_DRIVER_IR_RAW)
1669 ir_raw_load_modules(&rc_proto);
1670
1671 set_bit(EV_KEY, dev->input_dev->evbit);
1672 set_bit(EV_REP, dev->input_dev->evbit);
1673 set_bit(EV_MSC, dev->input_dev->evbit);
1674 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1675 if (dev->open)
1676 dev->input_dev->open = ir_open;
1677 if (dev->close)
1678 dev->input_dev->close = ir_close;
1679
1680 dev->input_dev->dev.parent = &dev->dev;
1681 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1682 dev->input_dev->phys = dev->input_phys;
1683 dev->input_dev->name = dev->device_name;
1684
1685 return 0;
1686
1687out_table:
1688 ir_free_table(&dev->rc_map);
1689
1690 return rc;
1691}
1692
1693static int rc_setup_rx_device(struct rc_dev *dev)
1694{
1695 int rc;
1696
1697 /* rc_open will be called here */
1698 rc = input_register_device(dev->input_dev);
1699 if (rc)
1700 return rc;
1701
1702 /*
1703 * Default delay of 250ms is too short for some protocols, especially
1704 * since the timeout is currently set to 250ms. Increase it to 500ms,
1705 * to avoid wrong repetition of the keycodes. Note that this must be
1706 * set after the call to input_register_device().
1707 */
1708 dev->input_dev->rep[REP_DELAY] = 500;
1709
1710 /*
1711 * As a repeat event on protocols like RC-5 and NEC take as long as
1712 * 110/114ms, using 33ms as a repeat period is not the right thing
1713 * to do.
1714 */
1715 dev->input_dev->rep[REP_PERIOD] = 125;
1716
1717 return 0;
1718}
1719
1720static void rc_free_rx_device(struct rc_dev *dev)
1721{
1722 if (!dev)
1723 return;
1724
1725 if (dev->input_dev) {
1726 input_unregister_device(dev->input_dev);
1727 dev->input_dev = NULL;
1728 }
1729
1730 ir_free_table(&dev->rc_map);
1731}
1732
1733int rc_register_device(struct rc_dev *dev)
1734{
1735 const char *path;
1736 int attr = 0;
1737 int minor;
1738 int rc;
1739
1740 if (!dev)
1741 return -EINVAL;
1742
1743 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1744 if (minor < 0)
1745 return minor;
1746
1747 dev->minor = minor;
1748 dev_set_name(&dev->dev, "rc%u", dev->minor);
1749 dev_set_drvdata(&dev->dev, dev);
1750
1751 dev->dev.groups = dev->sysfs_groups;
1752 if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1753 dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1754 else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1755 dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1756 if (dev->s_filter)
1757 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1758 if (dev->s_wakeup_filter)
1759 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1760 dev->sysfs_groups[attr++] = NULL;
1761
1762 if (dev->driver_type == RC_DRIVER_IR_RAW ||
1763 dev->driver_type == RC_DRIVER_IR_RAW_TX) {
1764 rc = ir_raw_event_prepare(dev);
1765 if (rc < 0)
1766 goto out_minor;
1767 }
1768
1769 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1770 rc = rc_prepare_rx_device(dev);
1771 if (rc)
1772 goto out_raw;
1773 }
1774
1775 rc = device_add(&dev->dev);
1776 if (rc)
1777 goto out_rx_free;
1778
1779 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1780 dev_info(&dev->dev, "%s as %s\n",
1781 dev->device_name ?: "Unspecified device", path ?: "N/A");
1782 kfree(path);
1783
1784 if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1785 rc = rc_setup_rx_device(dev);
1786 if (rc)
1787 goto out_dev;
1788 }
1789
1790 if (dev->driver_type == RC_DRIVER_IR_RAW ||
1791 dev->driver_type == RC_DRIVER_IR_RAW_TX) {
1792 rc = ir_raw_event_register(dev);
1793 if (rc < 0)
1794 goto out_rx;
1795 }
1796
1797 IR_dprintk(1, "Registered rc%u (driver: %s)\n",
1798 dev->minor,
1799 dev->driver_name ? dev->driver_name : "unknown");
1800
1801 return 0;
1802
1803out_rx:
1804 rc_free_rx_device(dev);
1805out_dev:
1806 device_del(&dev->dev);
1807out_rx_free:
1808 ir_free_table(&dev->rc_map);
1809out_raw:
1810 ir_raw_event_free(dev);
1811out_minor:
1812 ida_simple_remove(&rc_ida, minor);
1813 return rc;
1814}
1815EXPORT_SYMBOL_GPL(rc_register_device);
1816
1817static void devm_rc_release(struct device *dev, void *res)
1818{
1819 rc_unregister_device(*(struct rc_dev **)res);
1820}
1821
1822int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1823{
1824 struct rc_dev **dr;
1825 int ret;
1826
1827 dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1828 if (!dr)
1829 return -ENOMEM;
1830
1831 ret = rc_register_device(dev);
1832 if (ret) {
1833 devres_free(dr);
1834 return ret;
1835 }
1836
1837 *dr = dev;
1838 devres_add(parent, dr);
1839
1840 return 0;
1841}
1842EXPORT_SYMBOL_GPL(devm_rc_register_device);
1843
1844void rc_unregister_device(struct rc_dev *dev)
1845{
1846 if (!dev)
1847 return;
1848
1849 del_timer_sync(&dev->timer_keyup);
1850
1851 if (dev->driver_type == RC_DRIVER_IR_RAW)
1852 ir_raw_event_unregister(dev);
1853
1854 rc_free_rx_device(dev);
1855
1856 device_del(&dev->dev);
1857
1858 ida_simple_remove(&rc_ida, dev->minor);
1859
1860 if (!dev->managed_alloc)
1861 rc_free_device(dev);
1862}
1863
1864EXPORT_SYMBOL_GPL(rc_unregister_device);
1865
1866/*
1867 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1868 */
1869
1870static int __init rc_core_init(void)
1871{
1872 int rc = class_register(&rc_class);
1873 if (rc) {
1874 pr_err("rc_core: unable to register rc class\n");
1875 return rc;
1876 }
1877
1878 led_trigger_register_simple("rc-feedback", &led_feedback);
1879 rc_map_register(&empty_map);
1880
1881 return 0;
1882}
1883
1884static void __exit rc_core_exit(void)
1885{
1886 class_unregister(&rc_class);
1887 led_trigger_unregister_simple(led_feedback);
1888 rc_map_unregister(&empty_map);
1889}
1890
1891subsys_initcall(rc_core_init);
1892module_exit(rc_core_exit);
1893
1894int rc_core_debug; /* ir_debug level (0,1,2) */
1895EXPORT_SYMBOL_GPL(rc_core_debug);
1896module_param_named(debug, rc_core_debug, int, 0644);
1897
1898MODULE_AUTHOR("Mauro Carvalho Chehab");
1899MODULE_LICENSE("GPL");