]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * drivers/mtd/nand/fsmc_nand.c | |
3 | * | |
4 | * ST Microelectronics | |
5 | * Flexible Static Memory Controller (FSMC) | |
6 | * Driver for NAND portions | |
7 | * | |
8 | * Copyright © 2010 ST Microelectronics | |
9 | * Vipin Kumar <vipin.kumar@st.com> | |
10 | * Ashish Priyadarshi | |
11 | * | |
12 | * Based on drivers/mtd/nand/nomadik_nand.c | |
13 | * | |
14 | * This file is licensed under the terms of the GNU General Public | |
15 | * License version 2. This program is licensed "as is" without any | |
16 | * warranty of any kind, whether express or implied. | |
17 | */ | |
18 | ||
19 | #include <linux/clk.h> | |
20 | #include <linux/completion.h> | |
21 | #include <linux/dmaengine.h> | |
22 | #include <linux/dma-direction.h> | |
23 | #include <linux/dma-mapping.h> | |
24 | #include <linux/err.h> | |
25 | #include <linux/init.h> | |
26 | #include <linux/module.h> | |
27 | #include <linux/resource.h> | |
28 | #include <linux/sched.h> | |
29 | #include <linux/types.h> | |
30 | #include <linux/mtd/mtd.h> | |
31 | #include <linux/mtd/nand.h> | |
32 | #include <linux/mtd/nand_ecc.h> | |
33 | #include <linux/platform_device.h> | |
34 | #include <linux/of.h> | |
35 | #include <linux/mtd/partitions.h> | |
36 | #include <linux/io.h> | |
37 | #include <linux/slab.h> | |
38 | #include <linux/mtd/fsmc.h> | |
39 | #include <linux/amba/bus.h> | |
40 | #include <mtd/mtd-abi.h> | |
41 | ||
42 | static struct nand_ecclayout fsmc_ecc1_128_layout = { | |
43 | .eccbytes = 24, | |
44 | .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52, | |
45 | 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116}, | |
46 | .oobfree = { | |
47 | {.offset = 8, .length = 8}, | |
48 | {.offset = 24, .length = 8}, | |
49 | {.offset = 40, .length = 8}, | |
50 | {.offset = 56, .length = 8}, | |
51 | {.offset = 72, .length = 8}, | |
52 | {.offset = 88, .length = 8}, | |
53 | {.offset = 104, .length = 8}, | |
54 | {.offset = 120, .length = 8} | |
55 | } | |
56 | }; | |
57 | ||
58 | static struct nand_ecclayout fsmc_ecc1_64_layout = { | |
59 | .eccbytes = 12, | |
60 | .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52}, | |
61 | .oobfree = { | |
62 | {.offset = 8, .length = 8}, | |
63 | {.offset = 24, .length = 8}, | |
64 | {.offset = 40, .length = 8}, | |
65 | {.offset = 56, .length = 8}, | |
66 | } | |
67 | }; | |
68 | ||
69 | static struct nand_ecclayout fsmc_ecc1_16_layout = { | |
70 | .eccbytes = 3, | |
71 | .eccpos = {2, 3, 4}, | |
72 | .oobfree = { | |
73 | {.offset = 8, .length = 8}, | |
74 | } | |
75 | }; | |
76 | ||
77 | /* | |
78 | * ECC4 layout for NAND of pagesize 8192 bytes & OOBsize 256 bytes. 13*16 bytes | |
79 | * of OB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 46 | |
80 | * bytes are free for use. | |
81 | */ | |
82 | static struct nand_ecclayout fsmc_ecc4_256_layout = { | |
83 | .eccbytes = 208, | |
84 | .eccpos = { 2, 3, 4, 5, 6, 7, 8, | |
85 | 9, 10, 11, 12, 13, 14, | |
86 | 18, 19, 20, 21, 22, 23, 24, | |
87 | 25, 26, 27, 28, 29, 30, | |
88 | 34, 35, 36, 37, 38, 39, 40, | |
89 | 41, 42, 43, 44, 45, 46, | |
90 | 50, 51, 52, 53, 54, 55, 56, | |
91 | 57, 58, 59, 60, 61, 62, | |
92 | 66, 67, 68, 69, 70, 71, 72, | |
93 | 73, 74, 75, 76, 77, 78, | |
94 | 82, 83, 84, 85, 86, 87, 88, | |
95 | 89, 90, 91, 92, 93, 94, | |
96 | 98, 99, 100, 101, 102, 103, 104, | |
97 | 105, 106, 107, 108, 109, 110, | |
98 | 114, 115, 116, 117, 118, 119, 120, | |
99 | 121, 122, 123, 124, 125, 126, | |
100 | 130, 131, 132, 133, 134, 135, 136, | |
101 | 137, 138, 139, 140, 141, 142, | |
102 | 146, 147, 148, 149, 150, 151, 152, | |
103 | 153, 154, 155, 156, 157, 158, | |
104 | 162, 163, 164, 165, 166, 167, 168, | |
105 | 169, 170, 171, 172, 173, 174, | |
106 | 178, 179, 180, 181, 182, 183, 184, | |
107 | 185, 186, 187, 188, 189, 190, | |
108 | 194, 195, 196, 197, 198, 199, 200, | |
109 | 201, 202, 203, 204, 205, 206, | |
110 | 210, 211, 212, 213, 214, 215, 216, | |
111 | 217, 218, 219, 220, 221, 222, | |
112 | 226, 227, 228, 229, 230, 231, 232, | |
113 | 233, 234, 235, 236, 237, 238, | |
114 | 242, 243, 244, 245, 246, 247, 248, | |
115 | 249, 250, 251, 252, 253, 254 | |
116 | }, | |
117 | .oobfree = { | |
118 | {.offset = 15, .length = 3}, | |
119 | {.offset = 31, .length = 3}, | |
120 | {.offset = 47, .length = 3}, | |
121 | {.offset = 63, .length = 3}, | |
122 | {.offset = 79, .length = 3}, | |
123 | {.offset = 95, .length = 3}, | |
124 | {.offset = 111, .length = 3}, | |
125 | {.offset = 127, .length = 3}, | |
126 | {.offset = 143, .length = 3}, | |
127 | {.offset = 159, .length = 3}, | |
128 | {.offset = 175, .length = 3}, | |
129 | {.offset = 191, .length = 3}, | |
130 | {.offset = 207, .length = 3}, | |
131 | {.offset = 223, .length = 3}, | |
132 | {.offset = 239, .length = 3}, | |
133 | {.offset = 255, .length = 1} | |
134 | } | |
135 | }; | |
136 | ||
137 | /* | |
138 | * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes | |
139 | * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118 | |
140 | * bytes are free for use. | |
141 | */ | |
142 | static struct nand_ecclayout fsmc_ecc4_224_layout = { | |
143 | .eccbytes = 104, | |
144 | .eccpos = { 2, 3, 4, 5, 6, 7, 8, | |
145 | 9, 10, 11, 12, 13, 14, | |
146 | 18, 19, 20, 21, 22, 23, 24, | |
147 | 25, 26, 27, 28, 29, 30, | |
148 | 34, 35, 36, 37, 38, 39, 40, | |
149 | 41, 42, 43, 44, 45, 46, | |
150 | 50, 51, 52, 53, 54, 55, 56, | |
151 | 57, 58, 59, 60, 61, 62, | |
152 | 66, 67, 68, 69, 70, 71, 72, | |
153 | 73, 74, 75, 76, 77, 78, | |
154 | 82, 83, 84, 85, 86, 87, 88, | |
155 | 89, 90, 91, 92, 93, 94, | |
156 | 98, 99, 100, 101, 102, 103, 104, | |
157 | 105, 106, 107, 108, 109, 110, | |
158 | 114, 115, 116, 117, 118, 119, 120, | |
159 | 121, 122, 123, 124, 125, 126 | |
160 | }, | |
161 | .oobfree = { | |
162 | {.offset = 15, .length = 3}, | |
163 | {.offset = 31, .length = 3}, | |
164 | {.offset = 47, .length = 3}, | |
165 | {.offset = 63, .length = 3}, | |
166 | {.offset = 79, .length = 3}, | |
167 | {.offset = 95, .length = 3}, | |
168 | {.offset = 111, .length = 3}, | |
169 | {.offset = 127, .length = 97} | |
170 | } | |
171 | }; | |
172 | ||
173 | /* | |
174 | * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 128 bytes. 13*8 bytes | |
175 | * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 22 | |
176 | * bytes are free for use. | |
177 | */ | |
178 | static struct nand_ecclayout fsmc_ecc4_128_layout = { | |
179 | .eccbytes = 104, | |
180 | .eccpos = { 2, 3, 4, 5, 6, 7, 8, | |
181 | 9, 10, 11, 12, 13, 14, | |
182 | 18, 19, 20, 21, 22, 23, 24, | |
183 | 25, 26, 27, 28, 29, 30, | |
184 | 34, 35, 36, 37, 38, 39, 40, | |
185 | 41, 42, 43, 44, 45, 46, | |
186 | 50, 51, 52, 53, 54, 55, 56, | |
187 | 57, 58, 59, 60, 61, 62, | |
188 | 66, 67, 68, 69, 70, 71, 72, | |
189 | 73, 74, 75, 76, 77, 78, | |
190 | 82, 83, 84, 85, 86, 87, 88, | |
191 | 89, 90, 91, 92, 93, 94, | |
192 | 98, 99, 100, 101, 102, 103, 104, | |
193 | 105, 106, 107, 108, 109, 110, | |
194 | 114, 115, 116, 117, 118, 119, 120, | |
195 | 121, 122, 123, 124, 125, 126 | |
196 | }, | |
197 | .oobfree = { | |
198 | {.offset = 15, .length = 3}, | |
199 | {.offset = 31, .length = 3}, | |
200 | {.offset = 47, .length = 3}, | |
201 | {.offset = 63, .length = 3}, | |
202 | {.offset = 79, .length = 3}, | |
203 | {.offset = 95, .length = 3}, | |
204 | {.offset = 111, .length = 3}, | |
205 | {.offset = 127, .length = 1} | |
206 | } | |
207 | }; | |
208 | ||
209 | /* | |
210 | * ECC4 layout for NAND of pagesize 2048 bytes & OOBsize 64 bytes. 13*4 bytes of | |
211 | * OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 10 | |
212 | * bytes are free for use. | |
213 | */ | |
214 | static struct nand_ecclayout fsmc_ecc4_64_layout = { | |
215 | .eccbytes = 52, | |
216 | .eccpos = { 2, 3, 4, 5, 6, 7, 8, | |
217 | 9, 10, 11, 12, 13, 14, | |
218 | 18, 19, 20, 21, 22, 23, 24, | |
219 | 25, 26, 27, 28, 29, 30, | |
220 | 34, 35, 36, 37, 38, 39, 40, | |
221 | 41, 42, 43, 44, 45, 46, | |
222 | 50, 51, 52, 53, 54, 55, 56, | |
223 | 57, 58, 59, 60, 61, 62, | |
224 | }, | |
225 | .oobfree = { | |
226 | {.offset = 15, .length = 3}, | |
227 | {.offset = 31, .length = 3}, | |
228 | {.offset = 47, .length = 3}, | |
229 | {.offset = 63, .length = 1}, | |
230 | } | |
231 | }; | |
232 | ||
233 | /* | |
234 | * ECC4 layout for NAND of pagesize 512 bytes & OOBsize 16 bytes. 13 bytes of | |
235 | * OOB size is reserved for ECC, Byte no. 4 & 5 reserved for bad block and One | |
236 | * byte is free for use. | |
237 | */ | |
238 | static struct nand_ecclayout fsmc_ecc4_16_layout = { | |
239 | .eccbytes = 13, | |
240 | .eccpos = { 0, 1, 2, 3, 6, 7, 8, | |
241 | 9, 10, 11, 12, 13, 14 | |
242 | }, | |
243 | .oobfree = { | |
244 | {.offset = 15, .length = 1}, | |
245 | } | |
246 | }; | |
247 | ||
248 | /* | |
249 | * ECC placement definitions in oobfree type format. | |
250 | * There are 13 bytes of ecc for every 512 byte block and it has to be read | |
251 | * consecutively and immediately after the 512 byte data block for hardware to | |
252 | * generate the error bit offsets in 512 byte data. | |
253 | * Managing the ecc bytes in the following way makes it easier for software to | |
254 | * read ecc bytes consecutive to data bytes. This way is similar to | |
255 | * oobfree structure maintained already in generic nand driver | |
256 | */ | |
257 | static struct fsmc_eccplace fsmc_ecc4_lp_place = { | |
258 | .eccplace = { | |
259 | {.offset = 2, .length = 13}, | |
260 | {.offset = 18, .length = 13}, | |
261 | {.offset = 34, .length = 13}, | |
262 | {.offset = 50, .length = 13}, | |
263 | {.offset = 66, .length = 13}, | |
264 | {.offset = 82, .length = 13}, | |
265 | {.offset = 98, .length = 13}, | |
266 | {.offset = 114, .length = 13} | |
267 | } | |
268 | }; | |
269 | ||
270 | static struct fsmc_eccplace fsmc_ecc4_sp_place = { | |
271 | .eccplace = { | |
272 | {.offset = 0, .length = 4}, | |
273 | {.offset = 6, .length = 9} | |
274 | } | |
275 | }; | |
276 | ||
277 | /** | |
278 | * struct fsmc_nand_data - structure for FSMC NAND device state | |
279 | * | |
280 | * @pid: Part ID on the AMBA PrimeCell format | |
281 | * @mtd: MTD info for a NAND flash. | |
282 | * @nand: Chip related info for a NAND flash. | |
283 | * @partitions: Partition info for a NAND Flash. | |
284 | * @nr_partitions: Total number of partition of a NAND flash. | |
285 | * | |
286 | * @ecc_place: ECC placing locations in oobfree type format. | |
287 | * @bank: Bank number for probed device. | |
288 | * @clk: Clock structure for FSMC. | |
289 | * | |
290 | * @read_dma_chan: DMA channel for read access | |
291 | * @write_dma_chan: DMA channel for write access to NAND | |
292 | * @dma_access_complete: Completion structure | |
293 | * | |
294 | * @data_pa: NAND Physical port for Data. | |
295 | * @data_va: NAND port for Data. | |
296 | * @cmd_va: NAND port for Command. | |
297 | * @addr_va: NAND port for Address. | |
298 | * @regs_va: FSMC regs base address. | |
299 | */ | |
300 | struct fsmc_nand_data { | |
301 | u32 pid; | |
302 | struct mtd_info mtd; | |
303 | struct nand_chip nand; | |
304 | struct mtd_partition *partitions; | |
305 | unsigned int nr_partitions; | |
306 | ||
307 | struct fsmc_eccplace *ecc_place; | |
308 | unsigned int bank; | |
309 | struct device *dev; | |
310 | enum access_mode mode; | |
311 | struct clk *clk; | |
312 | ||
313 | /* DMA related objects */ | |
314 | struct dma_chan *read_dma_chan; | |
315 | struct dma_chan *write_dma_chan; | |
316 | struct completion dma_access_complete; | |
317 | ||
318 | struct fsmc_nand_timings *dev_timings; | |
319 | ||
320 | dma_addr_t data_pa; | |
321 | void __iomem *data_va; | |
322 | void __iomem *cmd_va; | |
323 | void __iomem *addr_va; | |
324 | void __iomem *regs_va; | |
325 | ||
326 | void (*select_chip)(uint32_t bank, uint32_t busw); | |
327 | }; | |
328 | ||
329 | /* Assert CS signal based on chipnr */ | |
330 | static void fsmc_select_chip(struct mtd_info *mtd, int chipnr) | |
331 | { | |
332 | struct nand_chip *chip = mtd->priv; | |
333 | struct fsmc_nand_data *host; | |
334 | ||
335 | host = container_of(mtd, struct fsmc_nand_data, mtd); | |
336 | ||
337 | switch (chipnr) { | |
338 | case -1: | |
339 | chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); | |
340 | break; | |
341 | case 0: | |
342 | case 1: | |
343 | case 2: | |
344 | case 3: | |
345 | if (host->select_chip) | |
346 | host->select_chip(chipnr, | |
347 | chip->options & NAND_BUSWIDTH_16); | |
348 | break; | |
349 | ||
350 | default: | |
351 | BUG(); | |
352 | } | |
353 | } | |
354 | ||
355 | /* | |
356 | * fsmc_cmd_ctrl - For facilitaing Hardware access | |
357 | * This routine allows hardware specific access to control-lines(ALE,CLE) | |
358 | */ | |
359 | static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) | |
360 | { | |
361 | struct nand_chip *this = mtd->priv; | |
362 | struct fsmc_nand_data *host = container_of(mtd, | |
363 | struct fsmc_nand_data, mtd); | |
364 | void __iomem *regs = host->regs_va; | |
365 | unsigned int bank = host->bank; | |
366 | ||
367 | if (ctrl & NAND_CTRL_CHANGE) { | |
368 | u32 pc; | |
369 | ||
370 | if (ctrl & NAND_CLE) { | |
371 | this->IO_ADDR_R = host->cmd_va; | |
372 | this->IO_ADDR_W = host->cmd_va; | |
373 | } else if (ctrl & NAND_ALE) { | |
374 | this->IO_ADDR_R = host->addr_va; | |
375 | this->IO_ADDR_W = host->addr_va; | |
376 | } else { | |
377 | this->IO_ADDR_R = host->data_va; | |
378 | this->IO_ADDR_W = host->data_va; | |
379 | } | |
380 | ||
381 | pc = readl(FSMC_NAND_REG(regs, bank, PC)); | |
382 | if (ctrl & NAND_NCE) | |
383 | pc |= FSMC_ENABLE; | |
384 | else | |
385 | pc &= ~FSMC_ENABLE; | |
386 | writel(pc, FSMC_NAND_REG(regs, bank, PC)); | |
387 | } | |
388 | ||
389 | mb(); | |
390 | ||
391 | if (cmd != NAND_CMD_NONE) | |
392 | writeb(cmd, this->IO_ADDR_W); | |
393 | } | |
394 | ||
395 | /* | |
396 | * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine | |
397 | * | |
398 | * This routine initializes timing parameters related to NAND memory access in | |
399 | * FSMC registers | |
400 | */ | |
401 | static void fsmc_nand_setup(void __iomem *regs, uint32_t bank, | |
402 | uint32_t busw, struct fsmc_nand_timings *timings) | |
403 | { | |
404 | uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; | |
405 | uint32_t tclr, tar, thiz, thold, twait, tset; | |
406 | struct fsmc_nand_timings *tims; | |
407 | struct fsmc_nand_timings default_timings = { | |
408 | .tclr = FSMC_TCLR_1, | |
409 | .tar = FSMC_TAR_1, | |
410 | .thiz = FSMC_THIZ_1, | |
411 | .thold = FSMC_THOLD_4, | |
412 | .twait = FSMC_TWAIT_6, | |
413 | .tset = FSMC_TSET_0, | |
414 | }; | |
415 | ||
416 | if (timings) | |
417 | tims = timings; | |
418 | else | |
419 | tims = &default_timings; | |
420 | ||
421 | tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; | |
422 | tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; | |
423 | thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT; | |
424 | thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT; | |
425 | twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT; | |
426 | tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; | |
427 | ||
428 | if (busw) | |
429 | writel(value | FSMC_DEVWID_16, FSMC_NAND_REG(regs, bank, PC)); | |
430 | else | |
431 | writel(value | FSMC_DEVWID_8, FSMC_NAND_REG(regs, bank, PC)); | |
432 | ||
433 | writel(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar, | |
434 | FSMC_NAND_REG(regs, bank, PC)); | |
435 | writel(thiz | thold | twait | tset, FSMC_NAND_REG(regs, bank, COMM)); | |
436 | writel(thiz | thold | twait | tset, FSMC_NAND_REG(regs, bank, ATTRIB)); | |
437 | } | |
438 | ||
439 | /* | |
440 | * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers | |
441 | */ | |
442 | static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) | |
443 | { | |
444 | struct fsmc_nand_data *host = container_of(mtd, | |
445 | struct fsmc_nand_data, mtd); | |
446 | void __iomem *regs = host->regs_va; | |
447 | uint32_t bank = host->bank; | |
448 | ||
449 | writel(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256, | |
450 | FSMC_NAND_REG(regs, bank, PC)); | |
451 | writel(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN, | |
452 | FSMC_NAND_REG(regs, bank, PC)); | |
453 | writel(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN, | |
454 | FSMC_NAND_REG(regs, bank, PC)); | |
455 | } | |
456 | ||
457 | /* | |
458 | * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by | |
459 | * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to | |
460 | * max of 8-bits) | |
461 | */ | |
462 | static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, | |
463 | uint8_t *ecc) | |
464 | { | |
465 | struct fsmc_nand_data *host = container_of(mtd, | |
466 | struct fsmc_nand_data, mtd); | |
467 | void __iomem *regs = host->regs_va; | |
468 | uint32_t bank = host->bank; | |
469 | uint32_t ecc_tmp; | |
470 | unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; | |
471 | ||
472 | do { | |
473 | if (readl(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY) | |
474 | break; | |
475 | else | |
476 | cond_resched(); | |
477 | } while (!time_after_eq(jiffies, deadline)); | |
478 | ||
479 | if (time_after_eq(jiffies, deadline)) { | |
480 | dev_err(host->dev, "calculate ecc timed out\n"); | |
481 | return -ETIMEDOUT; | |
482 | } | |
483 | ||
484 | ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC1)); | |
485 | ecc[0] = (uint8_t) (ecc_tmp >> 0); | |
486 | ecc[1] = (uint8_t) (ecc_tmp >> 8); | |
487 | ecc[2] = (uint8_t) (ecc_tmp >> 16); | |
488 | ecc[3] = (uint8_t) (ecc_tmp >> 24); | |
489 | ||
490 | ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC2)); | |
491 | ecc[4] = (uint8_t) (ecc_tmp >> 0); | |
492 | ecc[5] = (uint8_t) (ecc_tmp >> 8); | |
493 | ecc[6] = (uint8_t) (ecc_tmp >> 16); | |
494 | ecc[7] = (uint8_t) (ecc_tmp >> 24); | |
495 | ||
496 | ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC3)); | |
497 | ecc[8] = (uint8_t) (ecc_tmp >> 0); | |
498 | ecc[9] = (uint8_t) (ecc_tmp >> 8); | |
499 | ecc[10] = (uint8_t) (ecc_tmp >> 16); | |
500 | ecc[11] = (uint8_t) (ecc_tmp >> 24); | |
501 | ||
502 | ecc_tmp = readl(FSMC_NAND_REG(regs, bank, STS)); | |
503 | ecc[12] = (uint8_t) (ecc_tmp >> 16); | |
504 | ||
505 | return 0; | |
506 | } | |
507 | ||
508 | /* | |
509 | * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by | |
510 | * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to | |
511 | * max of 1-bit) | |
512 | */ | |
513 | static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data, | |
514 | uint8_t *ecc) | |
515 | { | |
516 | struct fsmc_nand_data *host = container_of(mtd, | |
517 | struct fsmc_nand_data, mtd); | |
518 | void __iomem *regs = host->regs_va; | |
519 | uint32_t bank = host->bank; | |
520 | uint32_t ecc_tmp; | |
521 | ||
522 | ecc_tmp = readl(FSMC_NAND_REG(regs, bank, ECC1)); | |
523 | ecc[0] = (uint8_t) (ecc_tmp >> 0); | |
524 | ecc[1] = (uint8_t) (ecc_tmp >> 8); | |
525 | ecc[2] = (uint8_t) (ecc_tmp >> 16); | |
526 | ||
527 | return 0; | |
528 | } | |
529 | ||
530 | /* Count the number of 0's in buff upto a max of max_bits */ | |
531 | static int count_written_bits(uint8_t *buff, int size, int max_bits) | |
532 | { | |
533 | int k, written_bits = 0; | |
534 | ||
535 | for (k = 0; k < size; k++) { | |
536 | written_bits += hweight8(~buff[k]); | |
537 | if (written_bits > max_bits) | |
538 | break; | |
539 | } | |
540 | ||
541 | return written_bits; | |
542 | } | |
543 | ||
544 | static void dma_complete(void *param) | |
545 | { | |
546 | struct fsmc_nand_data *host = param; | |
547 | ||
548 | complete(&host->dma_access_complete); | |
549 | } | |
550 | ||
551 | static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, | |
552 | enum dma_data_direction direction) | |
553 | { | |
554 | struct dma_chan *chan; | |
555 | struct dma_device *dma_dev; | |
556 | struct dma_async_tx_descriptor *tx; | |
557 | dma_addr_t dma_dst, dma_src, dma_addr; | |
558 | dma_cookie_t cookie; | |
559 | unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; | |
560 | int ret; | |
561 | ||
562 | if (direction == DMA_TO_DEVICE) | |
563 | chan = host->write_dma_chan; | |
564 | else if (direction == DMA_FROM_DEVICE) | |
565 | chan = host->read_dma_chan; | |
566 | else | |
567 | return -EINVAL; | |
568 | ||
569 | dma_dev = chan->device; | |
570 | dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction); | |
571 | ||
572 | if (direction == DMA_TO_DEVICE) { | |
573 | dma_src = dma_addr; | |
574 | dma_dst = host->data_pa; | |
575 | flags |= DMA_COMPL_SRC_UNMAP_SINGLE | DMA_COMPL_SKIP_DEST_UNMAP; | |
576 | } else { | |
577 | dma_src = host->data_pa; | |
578 | dma_dst = dma_addr; | |
579 | flags |= DMA_COMPL_DEST_UNMAP_SINGLE | DMA_COMPL_SKIP_SRC_UNMAP; | |
580 | } | |
581 | ||
582 | tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src, | |
583 | len, flags); | |
584 | ||
585 | if (!tx) { | |
586 | dev_err(host->dev, "device_prep_dma_memcpy error\n"); | |
587 | dma_unmap_single(dma_dev->dev, dma_addr, len, direction); | |
588 | return -EIO; | |
589 | } | |
590 | ||
591 | tx->callback = dma_complete; | |
592 | tx->callback_param = host; | |
593 | cookie = tx->tx_submit(tx); | |
594 | ||
595 | ret = dma_submit_error(cookie); | |
596 | if (ret) { | |
597 | dev_err(host->dev, "dma_submit_error %d\n", cookie); | |
598 | return ret; | |
599 | } | |
600 | ||
601 | dma_async_issue_pending(chan); | |
602 | ||
603 | ret = | |
604 | wait_for_completion_interruptible_timeout(&host->dma_access_complete, | |
605 | msecs_to_jiffies(3000)); | |
606 | if (ret <= 0) { | |
607 | chan->device->device_control(chan, DMA_TERMINATE_ALL, 0); | |
608 | dev_err(host->dev, "wait_for_completion_timeout\n"); | |
609 | return ret ? ret : -ETIMEDOUT; | |
610 | } | |
611 | ||
612 | return 0; | |
613 | } | |
614 | ||
615 | /* | |
616 | * fsmc_write_buf - write buffer to chip | |
617 | * @mtd: MTD device structure | |
618 | * @buf: data buffer | |
619 | * @len: number of bytes to write | |
620 | */ | |
621 | static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | |
622 | { | |
623 | int i; | |
624 | struct nand_chip *chip = mtd->priv; | |
625 | ||
626 | if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && | |
627 | IS_ALIGNED(len, sizeof(uint32_t))) { | |
628 | uint32_t *p = (uint32_t *)buf; | |
629 | len = len >> 2; | |
630 | for (i = 0; i < len; i++) | |
631 | writel(p[i], chip->IO_ADDR_W); | |
632 | } else { | |
633 | for (i = 0; i < len; i++) | |
634 | writeb(buf[i], chip->IO_ADDR_W); | |
635 | } | |
636 | } | |
637 | ||
638 | /* | |
639 | * fsmc_read_buf - read chip data into buffer | |
640 | * @mtd: MTD device structure | |
641 | * @buf: buffer to store date | |
642 | * @len: number of bytes to read | |
643 | */ | |
644 | static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) | |
645 | { | |
646 | int i; | |
647 | struct nand_chip *chip = mtd->priv; | |
648 | ||
649 | if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && | |
650 | IS_ALIGNED(len, sizeof(uint32_t))) { | |
651 | uint32_t *p = (uint32_t *)buf; | |
652 | len = len >> 2; | |
653 | for (i = 0; i < len; i++) | |
654 | p[i] = readl(chip->IO_ADDR_R); | |
655 | } else { | |
656 | for (i = 0; i < len; i++) | |
657 | buf[i] = readb(chip->IO_ADDR_R); | |
658 | } | |
659 | } | |
660 | ||
661 | /* | |
662 | * fsmc_read_buf_dma - read chip data into buffer | |
663 | * @mtd: MTD device structure | |
664 | * @buf: buffer to store date | |
665 | * @len: number of bytes to read | |
666 | */ | |
667 | static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len) | |
668 | { | |
669 | struct fsmc_nand_data *host; | |
670 | ||
671 | host = container_of(mtd, struct fsmc_nand_data, mtd); | |
672 | dma_xfer(host, buf, len, DMA_FROM_DEVICE); | |
673 | } | |
674 | ||
675 | /* | |
676 | * fsmc_write_buf_dma - write buffer to chip | |
677 | * @mtd: MTD device structure | |
678 | * @buf: data buffer | |
679 | * @len: number of bytes to write | |
680 | */ | |
681 | static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf, | |
682 | int len) | |
683 | { | |
684 | struct fsmc_nand_data *host; | |
685 | ||
686 | host = container_of(mtd, struct fsmc_nand_data, mtd); | |
687 | dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); | |
688 | } | |
689 | ||
690 | /* | |
691 | * fsmc_read_page_hwecc | |
692 | * @mtd: mtd info structure | |
693 | * @chip: nand chip info structure | |
694 | * @buf: buffer to store read data | |
695 | * @oob_required: caller expects OOB data read to chip->oob_poi | |
696 | * @page: page number to read | |
697 | * | |
698 | * This routine is needed for fsmc version 8 as reading from NAND chip has to be | |
699 | * performed in a strict sequence as follows: | |
700 | * data(512 byte) -> ecc(13 byte) | |
701 | * After this read, fsmc hardware generates and reports error data bits(up to a | |
702 | * max of 8 bits) | |
703 | */ | |
704 | static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | |
705 | uint8_t *buf, int oob_required, int page) | |
706 | { | |
707 | struct fsmc_nand_data *host = container_of(mtd, | |
708 | struct fsmc_nand_data, mtd); | |
709 | struct fsmc_eccplace *ecc_place = host->ecc_place; | |
710 | int i, j, s, stat, eccsize = chip->ecc.size; | |
711 | int eccbytes = chip->ecc.bytes; | |
712 | int eccsteps = chip->ecc.steps; | |
713 | uint8_t *p = buf; | |
714 | uint8_t *ecc_calc = chip->buffers->ecccalc; | |
715 | uint8_t *ecc_code = chip->buffers->ecccode; | |
716 | int off, len, group = 0; | |
717 | /* | |
718 | * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we | |
719 | * end up reading 14 bytes (7 words) from oob. The local array is | |
720 | * to maintain word alignment | |
721 | */ | |
722 | uint16_t ecc_oob[7]; | |
723 | uint8_t *oob = (uint8_t *)&ecc_oob[0]; | |
724 | unsigned int max_bitflips = 0; | |
725 | ||
726 | for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { | |
727 | chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page); | |
728 | chip->ecc.hwctl(mtd, NAND_ECC_READ); | |
729 | chip->read_buf(mtd, p, eccsize); | |
730 | ||
731 | for (j = 0; j < eccbytes;) { | |
732 | off = ecc_place->eccplace[group].offset; | |
733 | len = ecc_place->eccplace[group].length; | |
734 | group++; | |
735 | ||
736 | /* | |
737 | * length is intentionally kept a higher multiple of 2 | |
738 | * to read at least 13 bytes even in case of 16 bit NAND | |
739 | * devices | |
740 | */ | |
741 | if (chip->options & NAND_BUSWIDTH_16) | |
742 | len = roundup(len, 2); | |
743 | ||
744 | chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page); | |
745 | chip->read_buf(mtd, oob + j, len); | |
746 | j += len; | |
747 | } | |
748 | ||
749 | memcpy(&ecc_code[i], oob, chip->ecc.bytes); | |
750 | chip->ecc.calculate(mtd, p, &ecc_calc[i]); | |
751 | ||
752 | stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); | |
753 | if (stat < 0) { | |
754 | mtd->ecc_stats.failed++; | |
755 | } else { | |
756 | mtd->ecc_stats.corrected += stat; | |
757 | max_bitflips = max_t(unsigned int, max_bitflips, stat); | |
758 | } | |
759 | } | |
760 | ||
761 | return max_bitflips; | |
762 | } | |
763 | ||
764 | /* | |
765 | * fsmc_bch8_correct_data | |
766 | * @mtd: mtd info structure | |
767 | * @dat: buffer of read data | |
768 | * @read_ecc: ecc read from device spare area | |
769 | * @calc_ecc: ecc calculated from read data | |
770 | * | |
771 | * calc_ecc is a 104 bit information containing maximum of 8 error | |
772 | * offset informations of 13 bits each in 512 bytes of read data. | |
773 | */ | |
774 | static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat, | |
775 | uint8_t *read_ecc, uint8_t *calc_ecc) | |
776 | { | |
777 | struct fsmc_nand_data *host = container_of(mtd, | |
778 | struct fsmc_nand_data, mtd); | |
779 | struct nand_chip *chip = mtd->priv; | |
780 | void __iomem *regs = host->regs_va; | |
781 | unsigned int bank = host->bank; | |
782 | uint32_t err_idx[8]; | |
783 | uint32_t num_err, i; | |
784 | uint32_t ecc1, ecc2, ecc3, ecc4; | |
785 | ||
786 | num_err = (readl(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF; | |
787 | ||
788 | /* no bit flipping */ | |
789 | if (likely(num_err == 0)) | |
790 | return 0; | |
791 | ||
792 | /* too many errors */ | |
793 | if (unlikely(num_err > 8)) { | |
794 | /* | |
795 | * This is a temporary erase check. A newly erased page read | |
796 | * would result in an ecc error because the oob data is also | |
797 | * erased to FF and the calculated ecc for an FF data is not | |
798 | * FF..FF. | |
799 | * This is a workaround to skip performing correction in case | |
800 | * data is FF..FF | |
801 | * | |
802 | * Logic: | |
803 | * For every page, each bit written as 0 is counted until these | |
804 | * number of bits are greater than 8 (the maximum correction | |
805 | * capability of FSMC for each 512 + 13 bytes) | |
806 | */ | |
807 | ||
808 | int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); | |
809 | int bits_data = count_written_bits(dat, chip->ecc.size, 8); | |
810 | ||
811 | if ((bits_ecc + bits_data) <= 8) { | |
812 | if (bits_data) | |
813 | memset(dat, 0xff, chip->ecc.size); | |
814 | return bits_data; | |
815 | } | |
816 | ||
817 | return -EBADMSG; | |
818 | } | |
819 | ||
820 | /* | |
821 | * ------------------- calc_ecc[] bit wise -----------|--13 bits--| | |
822 | * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| | |
823 | * | |
824 | * calc_ecc is a 104 bit information containing maximum of 8 error | |
825 | * offset informations of 13 bits each. calc_ecc is copied into a | |
826 | * uint64_t array and error offset indexes are populated in err_idx | |
827 | * array | |
828 | */ | |
829 | ecc1 = readl(FSMC_NAND_REG(regs, bank, ECC1)); | |
830 | ecc2 = readl(FSMC_NAND_REG(regs, bank, ECC2)); | |
831 | ecc3 = readl(FSMC_NAND_REG(regs, bank, ECC3)); | |
832 | ecc4 = readl(FSMC_NAND_REG(regs, bank, STS)); | |
833 | ||
834 | err_idx[0] = (ecc1 >> 0) & 0x1FFF; | |
835 | err_idx[1] = (ecc1 >> 13) & 0x1FFF; | |
836 | err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); | |
837 | err_idx[3] = (ecc2 >> 7) & 0x1FFF; | |
838 | err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); | |
839 | err_idx[5] = (ecc3 >> 1) & 0x1FFF; | |
840 | err_idx[6] = (ecc3 >> 14) & 0x1FFF; | |
841 | err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); | |
842 | ||
843 | i = 0; | |
844 | while (num_err--) { | |
845 | change_bit(0, (unsigned long *)&err_idx[i]); | |
846 | change_bit(1, (unsigned long *)&err_idx[i]); | |
847 | ||
848 | if (err_idx[i] < chip->ecc.size * 8) { | |
849 | change_bit(err_idx[i], (unsigned long *)dat); | |
850 | i++; | |
851 | } | |
852 | } | |
853 | return i; | |
854 | } | |
855 | ||
856 | static bool filter(struct dma_chan *chan, void *slave) | |
857 | { | |
858 | chan->private = slave; | |
859 | return true; | |
860 | } | |
861 | ||
862 | #ifdef CONFIG_OF | |
863 | static int __devinit fsmc_nand_probe_config_dt(struct platform_device *pdev, | |
864 | struct device_node *np) | |
865 | { | |
866 | struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); | |
867 | u32 val; | |
868 | ||
869 | /* Set default NAND width to 8 bits */ | |
870 | pdata->width = 8; | |
871 | if (!of_property_read_u32(np, "bank-width", &val)) { | |
872 | if (val == 2) { | |
873 | pdata->width = 16; | |
874 | } else if (val != 1) { | |
875 | dev_err(&pdev->dev, "invalid bank-width %u\n", val); | |
876 | return -EINVAL; | |
877 | } | |
878 | } | |
879 | if (of_get_property(np, "nand-skip-bbtscan", NULL)) | |
880 | pdata->options = NAND_SKIP_BBTSCAN; | |
881 | ||
882 | return 0; | |
883 | } | |
884 | #else | |
885 | static int __devinit fsmc_nand_probe_config_dt(struct platform_device *pdev, | |
886 | struct device_node *np) | |
887 | { | |
888 | return -ENOSYS; | |
889 | } | |
890 | #endif | |
891 | ||
892 | /* | |
893 | * fsmc_nand_probe - Probe function | |
894 | * @pdev: platform device structure | |
895 | */ | |
896 | static int __init fsmc_nand_probe(struct platform_device *pdev) | |
897 | { | |
898 | struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); | |
899 | struct device_node __maybe_unused *np = pdev->dev.of_node; | |
900 | struct mtd_part_parser_data ppdata = {}; | |
901 | struct fsmc_nand_data *host; | |
902 | struct mtd_info *mtd; | |
903 | struct nand_chip *nand; | |
904 | struct resource *res; | |
905 | dma_cap_mask_t mask; | |
906 | int ret = 0; | |
907 | u32 pid; | |
908 | int i; | |
909 | ||
910 | if (np) { | |
911 | pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); | |
912 | pdev->dev.platform_data = pdata; | |
913 | ret = fsmc_nand_probe_config_dt(pdev, np); | |
914 | if (ret) { | |
915 | dev_err(&pdev->dev, "no platform data\n"); | |
916 | return -ENODEV; | |
917 | } | |
918 | } | |
919 | ||
920 | if (!pdata) { | |
921 | dev_err(&pdev->dev, "platform data is NULL\n"); | |
922 | return -EINVAL; | |
923 | } | |
924 | ||
925 | /* Allocate memory for the device structure (and zero it) */ | |
926 | host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); | |
927 | if (!host) { | |
928 | dev_err(&pdev->dev, "failed to allocate device structure\n"); | |
929 | return -ENOMEM; | |
930 | } | |
931 | ||
932 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); | |
933 | if (!res) | |
934 | return -EINVAL; | |
935 | ||
936 | host->data_va = devm_request_and_ioremap(&pdev->dev, res); | |
937 | if (!host->data_va) { | |
938 | dev_err(&pdev->dev, "data ioremap failed\n"); | |
939 | return -ENOMEM; | |
940 | } | |
941 | host->data_pa = (dma_addr_t)res->start; | |
942 | ||
943 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); | |
944 | if (!res) | |
945 | return -EINVAL; | |
946 | ||
947 | host->addr_va = devm_request_and_ioremap(&pdev->dev, res); | |
948 | if (!host->addr_va) { | |
949 | dev_err(&pdev->dev, "ale ioremap failed\n"); | |
950 | return -ENOMEM; | |
951 | } | |
952 | ||
953 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); | |
954 | if (!res) | |
955 | return -EINVAL; | |
956 | ||
957 | host->cmd_va = devm_request_and_ioremap(&pdev->dev, res); | |
958 | if (!host->cmd_va) { | |
959 | dev_err(&pdev->dev, "ale ioremap failed\n"); | |
960 | return -ENOMEM; | |
961 | } | |
962 | ||
963 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); | |
964 | if (!res) | |
965 | return -EINVAL; | |
966 | ||
967 | host->regs_va = devm_request_and_ioremap(&pdev->dev, res); | |
968 | if (!host->regs_va) { | |
969 | dev_err(&pdev->dev, "regs ioremap failed\n"); | |
970 | return -ENOMEM; | |
971 | } | |
972 | ||
973 | host->clk = clk_get(&pdev->dev, NULL); | |
974 | if (IS_ERR(host->clk)) { | |
975 | dev_err(&pdev->dev, "failed to fetch block clock\n"); | |
976 | return PTR_ERR(host->clk); | |
977 | } | |
978 | ||
979 | ret = clk_prepare_enable(host->clk); | |
980 | if (ret) | |
981 | goto err_clk_prepare_enable; | |
982 | ||
983 | /* | |
984 | * This device ID is actually a common AMBA ID as used on the | |
985 | * AMBA PrimeCell bus. However it is not a PrimeCell. | |
986 | */ | |
987 | for (pid = 0, i = 0; i < 4; i++) | |
988 | pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); | |
989 | host->pid = pid; | |
990 | dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, " | |
991 | "revision %02x, config %02x\n", | |
992 | AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), | |
993 | AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); | |
994 | ||
995 | host->bank = pdata->bank; | |
996 | host->select_chip = pdata->select_bank; | |
997 | host->partitions = pdata->partitions; | |
998 | host->nr_partitions = pdata->nr_partitions; | |
999 | host->dev = &pdev->dev; | |
1000 | host->dev_timings = pdata->nand_timings; | |
1001 | host->mode = pdata->mode; | |
1002 | ||
1003 | if (host->mode == USE_DMA_ACCESS) | |
1004 | init_completion(&host->dma_access_complete); | |
1005 | ||
1006 | /* Link all private pointers */ | |
1007 | mtd = &host->mtd; | |
1008 | nand = &host->nand; | |
1009 | mtd->priv = nand; | |
1010 | nand->priv = host; | |
1011 | ||
1012 | host->mtd.owner = THIS_MODULE; | |
1013 | nand->IO_ADDR_R = host->data_va; | |
1014 | nand->IO_ADDR_W = host->data_va; | |
1015 | nand->cmd_ctrl = fsmc_cmd_ctrl; | |
1016 | nand->chip_delay = 30; | |
1017 | ||
1018 | nand->ecc.mode = NAND_ECC_HW; | |
1019 | nand->ecc.hwctl = fsmc_enable_hwecc; | |
1020 | nand->ecc.size = 512; | |
1021 | nand->options = pdata->options; | |
1022 | nand->select_chip = fsmc_select_chip; | |
1023 | nand->badblockbits = 7; | |
1024 | ||
1025 | if (pdata->width == FSMC_NAND_BW16) | |
1026 | nand->options |= NAND_BUSWIDTH_16; | |
1027 | ||
1028 | switch (host->mode) { | |
1029 | case USE_DMA_ACCESS: | |
1030 | dma_cap_zero(mask); | |
1031 | dma_cap_set(DMA_MEMCPY, mask); | |
1032 | host->read_dma_chan = dma_request_channel(mask, filter, | |
1033 | pdata->read_dma_priv); | |
1034 | if (!host->read_dma_chan) { | |
1035 | dev_err(&pdev->dev, "Unable to get read dma channel\n"); | |
1036 | goto err_req_read_chnl; | |
1037 | } | |
1038 | host->write_dma_chan = dma_request_channel(mask, filter, | |
1039 | pdata->write_dma_priv); | |
1040 | if (!host->write_dma_chan) { | |
1041 | dev_err(&pdev->dev, "Unable to get write dma channel\n"); | |
1042 | goto err_req_write_chnl; | |
1043 | } | |
1044 | nand->read_buf = fsmc_read_buf_dma; | |
1045 | nand->write_buf = fsmc_write_buf_dma; | |
1046 | break; | |
1047 | ||
1048 | default: | |
1049 | case USE_WORD_ACCESS: | |
1050 | nand->read_buf = fsmc_read_buf; | |
1051 | nand->write_buf = fsmc_write_buf; | |
1052 | break; | |
1053 | } | |
1054 | ||
1055 | fsmc_nand_setup(host->regs_va, host->bank, | |
1056 | nand->options & NAND_BUSWIDTH_16, | |
1057 | host->dev_timings); | |
1058 | ||
1059 | if (AMBA_REV_BITS(host->pid) >= 8) { | |
1060 | nand->ecc.read_page = fsmc_read_page_hwecc; | |
1061 | nand->ecc.calculate = fsmc_read_hwecc_ecc4; | |
1062 | nand->ecc.correct = fsmc_bch8_correct_data; | |
1063 | nand->ecc.bytes = 13; | |
1064 | nand->ecc.strength = 8; | |
1065 | } else { | |
1066 | nand->ecc.calculate = fsmc_read_hwecc_ecc1; | |
1067 | nand->ecc.correct = nand_correct_data; | |
1068 | nand->ecc.bytes = 3; | |
1069 | nand->ecc.strength = 1; | |
1070 | } | |
1071 | ||
1072 | /* | |
1073 | * Scan to find existence of the device | |
1074 | */ | |
1075 | if (nand_scan_ident(&host->mtd, 1, NULL)) { | |
1076 | ret = -ENXIO; | |
1077 | dev_err(&pdev->dev, "No NAND Device found!\n"); | |
1078 | goto err_scan_ident; | |
1079 | } | |
1080 | ||
1081 | if (AMBA_REV_BITS(host->pid) >= 8) { | |
1082 | switch (host->mtd.oobsize) { | |
1083 | case 16: | |
1084 | nand->ecc.layout = &fsmc_ecc4_16_layout; | |
1085 | host->ecc_place = &fsmc_ecc4_sp_place; | |
1086 | break; | |
1087 | case 64: | |
1088 | nand->ecc.layout = &fsmc_ecc4_64_layout; | |
1089 | host->ecc_place = &fsmc_ecc4_lp_place; | |
1090 | break; | |
1091 | case 128: | |
1092 | nand->ecc.layout = &fsmc_ecc4_128_layout; | |
1093 | host->ecc_place = &fsmc_ecc4_lp_place; | |
1094 | break; | |
1095 | case 224: | |
1096 | nand->ecc.layout = &fsmc_ecc4_224_layout; | |
1097 | host->ecc_place = &fsmc_ecc4_lp_place; | |
1098 | break; | |
1099 | case 256: | |
1100 | nand->ecc.layout = &fsmc_ecc4_256_layout; | |
1101 | host->ecc_place = &fsmc_ecc4_lp_place; | |
1102 | break; | |
1103 | default: | |
1104 | printk(KERN_WARNING "No oob scheme defined for " | |
1105 | "oobsize %d\n", mtd->oobsize); | |
1106 | BUG(); | |
1107 | } | |
1108 | } else { | |
1109 | switch (host->mtd.oobsize) { | |
1110 | case 16: | |
1111 | nand->ecc.layout = &fsmc_ecc1_16_layout; | |
1112 | break; | |
1113 | case 64: | |
1114 | nand->ecc.layout = &fsmc_ecc1_64_layout; | |
1115 | break; | |
1116 | case 128: | |
1117 | nand->ecc.layout = &fsmc_ecc1_128_layout; | |
1118 | break; | |
1119 | default: | |
1120 | printk(KERN_WARNING "No oob scheme defined for " | |
1121 | "oobsize %d\n", mtd->oobsize); | |
1122 | BUG(); | |
1123 | } | |
1124 | } | |
1125 | ||
1126 | /* Second stage of scan to fill MTD data-structures */ | |
1127 | if (nand_scan_tail(&host->mtd)) { | |
1128 | ret = -ENXIO; | |
1129 | goto err_probe; | |
1130 | } | |
1131 | ||
1132 | /* | |
1133 | * The partition information can is accessed by (in the same precedence) | |
1134 | * | |
1135 | * command line through Bootloader, | |
1136 | * platform data, | |
1137 | * default partition information present in driver. | |
1138 | */ | |
1139 | /* | |
1140 | * Check for partition info passed | |
1141 | */ | |
1142 | host->mtd.name = "nand"; | |
1143 | ppdata.of_node = np; | |
1144 | ret = mtd_device_parse_register(&host->mtd, NULL, &ppdata, | |
1145 | host->partitions, host->nr_partitions); | |
1146 | if (ret) | |
1147 | goto err_probe; | |
1148 | ||
1149 | platform_set_drvdata(pdev, host); | |
1150 | dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); | |
1151 | return 0; | |
1152 | ||
1153 | err_probe: | |
1154 | err_scan_ident: | |
1155 | if (host->mode == USE_DMA_ACCESS) | |
1156 | dma_release_channel(host->write_dma_chan); | |
1157 | err_req_write_chnl: | |
1158 | if (host->mode == USE_DMA_ACCESS) | |
1159 | dma_release_channel(host->read_dma_chan); | |
1160 | err_req_read_chnl: | |
1161 | clk_disable_unprepare(host->clk); | |
1162 | err_clk_prepare_enable: | |
1163 | clk_put(host->clk); | |
1164 | return ret; | |
1165 | } | |
1166 | ||
1167 | /* | |
1168 | * Clean up routine | |
1169 | */ | |
1170 | static int fsmc_nand_remove(struct platform_device *pdev) | |
1171 | { | |
1172 | struct fsmc_nand_data *host = platform_get_drvdata(pdev); | |
1173 | ||
1174 | platform_set_drvdata(pdev, NULL); | |
1175 | ||
1176 | if (host) { | |
1177 | nand_release(&host->mtd); | |
1178 | ||
1179 | if (host->mode == USE_DMA_ACCESS) { | |
1180 | dma_release_channel(host->write_dma_chan); | |
1181 | dma_release_channel(host->read_dma_chan); | |
1182 | } | |
1183 | clk_disable_unprepare(host->clk); | |
1184 | clk_put(host->clk); | |
1185 | } | |
1186 | ||
1187 | return 0; | |
1188 | } | |
1189 | ||
1190 | #ifdef CONFIG_PM | |
1191 | static int fsmc_nand_suspend(struct device *dev) | |
1192 | { | |
1193 | struct fsmc_nand_data *host = dev_get_drvdata(dev); | |
1194 | if (host) | |
1195 | clk_disable_unprepare(host->clk); | |
1196 | return 0; | |
1197 | } | |
1198 | ||
1199 | static int fsmc_nand_resume(struct device *dev) | |
1200 | { | |
1201 | struct fsmc_nand_data *host = dev_get_drvdata(dev); | |
1202 | if (host) { | |
1203 | clk_prepare_enable(host->clk); | |
1204 | fsmc_nand_setup(host->regs_va, host->bank, | |
1205 | host->nand.options & NAND_BUSWIDTH_16, | |
1206 | host->dev_timings); | |
1207 | } | |
1208 | return 0; | |
1209 | } | |
1210 | ||
1211 | static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); | |
1212 | #endif | |
1213 | ||
1214 | #ifdef CONFIG_OF | |
1215 | static const struct of_device_id fsmc_nand_id_table[] = { | |
1216 | { .compatible = "st,spear600-fsmc-nand" }, | |
1217 | {} | |
1218 | }; | |
1219 | MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); | |
1220 | #endif | |
1221 | ||
1222 | static struct platform_driver fsmc_nand_driver = { | |
1223 | .remove = fsmc_nand_remove, | |
1224 | .driver = { | |
1225 | .owner = THIS_MODULE, | |
1226 | .name = "fsmc-nand", | |
1227 | .of_match_table = of_match_ptr(fsmc_nand_id_table), | |
1228 | #ifdef CONFIG_PM | |
1229 | .pm = &fsmc_nand_pm_ops, | |
1230 | #endif | |
1231 | }, | |
1232 | }; | |
1233 | ||
1234 | static int __init fsmc_nand_init(void) | |
1235 | { | |
1236 | return platform_driver_probe(&fsmc_nand_driver, | |
1237 | fsmc_nand_probe); | |
1238 | } | |
1239 | module_init(fsmc_nand_init); | |
1240 | ||
1241 | static void __exit fsmc_nand_exit(void) | |
1242 | { | |
1243 | platform_driver_unregister(&fsmc_nand_driver); | |
1244 | } | |
1245 | module_exit(fsmc_nand_exit); | |
1246 | ||
1247 | MODULE_LICENSE("GPL"); | |
1248 | MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi"); | |
1249 | MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); |