]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - drivers/net/e1000/e1000_main.c
e1000e: fix unmap bug
[mirror_ubuntu-artful-kernel.git] / drivers / net / e1000 / e1000_main.c
... / ...
CommitLineData
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30#include <net/ip6_checksum.h>
31
32char e1000_driver_name[] = "e1000";
33static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34#define DRV_VERSION "7.3.21-k3-NAPI"
35const char e1000_driver_version[] = DRV_VERSION;
36static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38/* e1000_pci_tbl - PCI Device ID Table
39 *
40 * Last entry must be all 0s
41 *
42 * Macro expands to...
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44 */
45static struct pci_device_id e1000_pci_tbl[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
83 {0,}
84};
85
86MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88int e1000_up(struct e1000_adapter *adapter);
89void e1000_down(struct e1000_adapter *adapter);
90void e1000_reinit_locked(struct e1000_adapter *adapter);
91void e1000_reset(struct e1000_adapter *adapter);
92int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105void e1000_update_stats(struct e1000_adapter *adapter);
106
107static int e1000_init_module(void);
108static void e1000_exit_module(void);
109static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110static void __devexit e1000_remove(struct pci_dev *pdev);
111static int e1000_alloc_queues(struct e1000_adapter *adapter);
112static int e1000_sw_init(struct e1000_adapter *adapter);
113static int e1000_open(struct net_device *netdev);
114static int e1000_close(struct net_device *netdev);
115static void e1000_configure_tx(struct e1000_adapter *adapter);
116static void e1000_configure_rx(struct e1000_adapter *adapter);
117static void e1000_setup_rctl(struct e1000_adapter *adapter);
118static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124static void e1000_set_rx_mode(struct net_device *netdev);
125static void e1000_update_phy_info(unsigned long data);
126static void e1000_watchdog(unsigned long data);
127static void e1000_82547_tx_fifo_stall(unsigned long data);
128static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131static int e1000_set_mac(struct net_device *netdev, void *p);
132static irqreturn_t e1000_intr(int irq, void *data);
133static irqreturn_t e1000_intr_msi(int irq, void *data);
134static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135 struct e1000_tx_ring *tx_ring);
136static int e1000_clean(struct napi_struct *napi, int budget);
137static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138 struct e1000_rx_ring *rx_ring,
139 int *work_done, int work_to_do);
140static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141 struct e1000_rx_ring *rx_ring,
142 int cleaned_count);
143static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145 int cmd);
146static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148static void e1000_tx_timeout(struct net_device *dev);
149static void e1000_reset_task(struct work_struct *work);
150static void e1000_smartspeed(struct e1000_adapter *adapter);
151static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152 struct sk_buff *skb);
153
154static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157static void e1000_restore_vlan(struct e1000_adapter *adapter);
158
159static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
160#ifdef CONFIG_PM
161static int e1000_resume(struct pci_dev *pdev);
162#endif
163static void e1000_shutdown(struct pci_dev *pdev);
164
165#ifdef CONFIG_NET_POLL_CONTROLLER
166/* for netdump / net console */
167static void e1000_netpoll (struct net_device *netdev);
168#endif
169
170#define COPYBREAK_DEFAULT 256
171static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172module_param(copybreak, uint, 0644);
173MODULE_PARM_DESC(copybreak,
174 "Maximum size of packet that is copied to a new buffer on receive");
175
176static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177 pci_channel_state_t state);
178static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179static void e1000_io_resume(struct pci_dev *pdev);
180
181static struct pci_error_handlers e1000_err_handler = {
182 .error_detected = e1000_io_error_detected,
183 .slot_reset = e1000_io_slot_reset,
184 .resume = e1000_io_resume,
185};
186
187static struct pci_driver e1000_driver = {
188 .name = e1000_driver_name,
189 .id_table = e1000_pci_tbl,
190 .probe = e1000_probe,
191 .remove = __devexit_p(e1000_remove),
192#ifdef CONFIG_PM
193 /* Power Managment Hooks */
194 .suspend = e1000_suspend,
195 .resume = e1000_resume,
196#endif
197 .shutdown = e1000_shutdown,
198 .err_handler = &e1000_err_handler
199};
200
201MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203MODULE_LICENSE("GPL");
204MODULE_VERSION(DRV_VERSION);
205
206static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207module_param(debug, int, 0);
208MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
209
210/**
211 * e1000_init_module - Driver Registration Routine
212 *
213 * e1000_init_module is the first routine called when the driver is
214 * loaded. All it does is register with the PCI subsystem.
215 **/
216
217static int __init e1000_init_module(void)
218{
219 int ret;
220 printk(KERN_INFO "%s - version %s\n",
221 e1000_driver_string, e1000_driver_version);
222
223 printk(KERN_INFO "%s\n", e1000_copyright);
224
225 ret = pci_register_driver(&e1000_driver);
226 if (copybreak != COPYBREAK_DEFAULT) {
227 if (copybreak == 0)
228 printk(KERN_INFO "e1000: copybreak disabled\n");
229 else
230 printk(KERN_INFO "e1000: copybreak enabled for "
231 "packets <= %u bytes\n", copybreak);
232 }
233 return ret;
234}
235
236module_init(e1000_init_module);
237
238/**
239 * e1000_exit_module - Driver Exit Cleanup Routine
240 *
241 * e1000_exit_module is called just before the driver is removed
242 * from memory.
243 **/
244
245static void __exit e1000_exit_module(void)
246{
247 pci_unregister_driver(&e1000_driver);
248}
249
250module_exit(e1000_exit_module);
251
252static int e1000_request_irq(struct e1000_adapter *adapter)
253{
254 struct e1000_hw *hw = &adapter->hw;
255 struct net_device *netdev = adapter->netdev;
256 irq_handler_t handler = e1000_intr;
257 int irq_flags = IRQF_SHARED;
258 int err;
259
260 if (hw->mac_type >= e1000_82571) {
261 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262 if (adapter->have_msi) {
263 handler = e1000_intr_msi;
264 irq_flags = 0;
265 }
266 }
267
268 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
269 netdev);
270 if (err) {
271 if (adapter->have_msi)
272 pci_disable_msi(adapter->pdev);
273 DPRINTK(PROBE, ERR,
274 "Unable to allocate interrupt Error: %d\n", err);
275 }
276
277 return err;
278}
279
280static void e1000_free_irq(struct e1000_adapter *adapter)
281{
282 struct net_device *netdev = adapter->netdev;
283
284 free_irq(adapter->pdev->irq, netdev);
285
286 if (adapter->have_msi)
287 pci_disable_msi(adapter->pdev);
288}
289
290/**
291 * e1000_irq_disable - Mask off interrupt generation on the NIC
292 * @adapter: board private structure
293 **/
294
295static void e1000_irq_disable(struct e1000_adapter *adapter)
296{
297 struct e1000_hw *hw = &adapter->hw;
298
299 ew32(IMC, ~0);
300 E1000_WRITE_FLUSH();
301 synchronize_irq(adapter->pdev->irq);
302}
303
304/**
305 * e1000_irq_enable - Enable default interrupt generation settings
306 * @adapter: board private structure
307 **/
308
309static void e1000_irq_enable(struct e1000_adapter *adapter)
310{
311 struct e1000_hw *hw = &adapter->hw;
312
313 ew32(IMS, IMS_ENABLE_MASK);
314 E1000_WRITE_FLUSH();
315}
316
317static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
318{
319 struct e1000_hw *hw = &adapter->hw;
320 struct net_device *netdev = adapter->netdev;
321 u16 vid = hw->mng_cookie.vlan_id;
322 u16 old_vid = adapter->mng_vlan_id;
323 if (adapter->vlgrp) {
324 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325 if (hw->mng_cookie.status &
326 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327 e1000_vlan_rx_add_vid(netdev, vid);
328 adapter->mng_vlan_id = vid;
329 } else
330 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
331
332 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
333 (vid != old_vid) &&
334 !vlan_group_get_device(adapter->vlgrp, old_vid))
335 e1000_vlan_rx_kill_vid(netdev, old_vid);
336 } else
337 adapter->mng_vlan_id = vid;
338 }
339}
340
341/**
342 * e1000_release_hw_control - release control of the h/w to f/w
343 * @adapter: address of board private structure
344 *
345 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346 * For ASF and Pass Through versions of f/w this means that the
347 * driver is no longer loaded. For AMT version (only with 82573) i
348 * of the f/w this means that the network i/f is closed.
349 *
350 **/
351
352static void e1000_release_hw_control(struct e1000_adapter *adapter)
353{
354 u32 ctrl_ext;
355 u32 swsm;
356 struct e1000_hw *hw = &adapter->hw;
357
358 /* Let firmware taken over control of h/w */
359 switch (hw->mac_type) {
360 case e1000_82573:
361 swsm = er32(SWSM);
362 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
363 break;
364 case e1000_82571:
365 case e1000_82572:
366 case e1000_80003es2lan:
367 case e1000_ich8lan:
368 ctrl_ext = er32(CTRL_EXT);
369 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
370 break;
371 default:
372 break;
373 }
374}
375
376/**
377 * e1000_get_hw_control - get control of the h/w from f/w
378 * @adapter: address of board private structure
379 *
380 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381 * For ASF and Pass Through versions of f/w this means that
382 * the driver is loaded. For AMT version (only with 82573)
383 * of the f/w this means that the network i/f is open.
384 *
385 **/
386
387static void e1000_get_hw_control(struct e1000_adapter *adapter)
388{
389 u32 ctrl_ext;
390 u32 swsm;
391 struct e1000_hw *hw = &adapter->hw;
392
393 /* Let firmware know the driver has taken over */
394 switch (hw->mac_type) {
395 case e1000_82573:
396 swsm = er32(SWSM);
397 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
398 break;
399 case e1000_82571:
400 case e1000_82572:
401 case e1000_80003es2lan:
402 case e1000_ich8lan:
403 ctrl_ext = er32(CTRL_EXT);
404 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
405 break;
406 default:
407 break;
408 }
409}
410
411static void e1000_init_manageability(struct e1000_adapter *adapter)
412{
413 struct e1000_hw *hw = &adapter->hw;
414
415 if (adapter->en_mng_pt) {
416 u32 manc = er32(MANC);
417
418 /* disable hardware interception of ARP */
419 manc &= ~(E1000_MANC_ARP_EN);
420
421 /* enable receiving management packets to the host */
422 /* this will probably generate destination unreachable messages
423 * from the host OS, but the packets will be handled on SMBUS */
424 if (hw->has_manc2h) {
425 u32 manc2h = er32(MANC2H);
426
427 manc |= E1000_MANC_EN_MNG2HOST;
428#define E1000_MNG2HOST_PORT_623 (1 << 5)
429#define E1000_MNG2HOST_PORT_664 (1 << 6)
430 manc2h |= E1000_MNG2HOST_PORT_623;
431 manc2h |= E1000_MNG2HOST_PORT_664;
432 ew32(MANC2H, manc2h);
433 }
434
435 ew32(MANC, manc);
436 }
437}
438
439static void e1000_release_manageability(struct e1000_adapter *adapter)
440{
441 struct e1000_hw *hw = &adapter->hw;
442
443 if (adapter->en_mng_pt) {
444 u32 manc = er32(MANC);
445
446 /* re-enable hardware interception of ARP */
447 manc |= E1000_MANC_ARP_EN;
448
449 if (hw->has_manc2h)
450 manc &= ~E1000_MANC_EN_MNG2HOST;
451
452 /* don't explicitly have to mess with MANC2H since
453 * MANC has an enable disable that gates MANC2H */
454
455 ew32(MANC, manc);
456 }
457}
458
459/**
460 * e1000_configure - configure the hardware for RX and TX
461 * @adapter = private board structure
462 **/
463static void e1000_configure(struct e1000_adapter *adapter)
464{
465 struct net_device *netdev = adapter->netdev;
466 int i;
467
468 e1000_set_rx_mode(netdev);
469
470 e1000_restore_vlan(adapter);
471 e1000_init_manageability(adapter);
472
473 e1000_configure_tx(adapter);
474 e1000_setup_rctl(adapter);
475 e1000_configure_rx(adapter);
476 /* call E1000_DESC_UNUSED which always leaves
477 * at least 1 descriptor unused to make sure
478 * next_to_use != next_to_clean */
479 for (i = 0; i < adapter->num_rx_queues; i++) {
480 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481 adapter->alloc_rx_buf(adapter, ring,
482 E1000_DESC_UNUSED(ring));
483 }
484
485 adapter->tx_queue_len = netdev->tx_queue_len;
486}
487
488int e1000_up(struct e1000_adapter *adapter)
489{
490 struct e1000_hw *hw = &adapter->hw;
491
492 /* hardware has been reset, we need to reload some things */
493 e1000_configure(adapter);
494
495 clear_bit(__E1000_DOWN, &adapter->flags);
496
497 napi_enable(&adapter->napi);
498
499 e1000_irq_enable(adapter);
500
501 /* fire a link change interrupt to start the watchdog */
502 ew32(ICS, E1000_ICS_LSC);
503 return 0;
504}
505
506/**
507 * e1000_power_up_phy - restore link in case the phy was powered down
508 * @adapter: address of board private structure
509 *
510 * The phy may be powered down to save power and turn off link when the
511 * driver is unloaded and wake on lan is not enabled (among others)
512 * *** this routine MUST be followed by a call to e1000_reset ***
513 *
514 **/
515
516void e1000_power_up_phy(struct e1000_adapter *adapter)
517{
518 struct e1000_hw *hw = &adapter->hw;
519 u16 mii_reg = 0;
520
521 /* Just clear the power down bit to wake the phy back up */
522 if (hw->media_type == e1000_media_type_copper) {
523 /* according to the manual, the phy will retain its
524 * settings across a power-down/up cycle */
525 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526 mii_reg &= ~MII_CR_POWER_DOWN;
527 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
528 }
529}
530
531static void e1000_power_down_phy(struct e1000_adapter *adapter)
532{
533 struct e1000_hw *hw = &adapter->hw;
534
535 /* Power down the PHY so no link is implied when interface is down *
536 * The PHY cannot be powered down if any of the following is true *
537 * (a) WoL is enabled
538 * (b) AMT is active
539 * (c) SoL/IDER session is active */
540 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541 hw->media_type == e1000_media_type_copper) {
542 u16 mii_reg = 0;
543
544 switch (hw->mac_type) {
545 case e1000_82540:
546 case e1000_82545:
547 case e1000_82545_rev_3:
548 case e1000_82546:
549 case e1000_82546_rev_3:
550 case e1000_82541:
551 case e1000_82541_rev_2:
552 case e1000_82547:
553 case e1000_82547_rev_2:
554 if (er32(MANC) & E1000_MANC_SMBUS_EN)
555 goto out;
556 break;
557 case e1000_82571:
558 case e1000_82572:
559 case e1000_82573:
560 case e1000_80003es2lan:
561 case e1000_ich8lan:
562 if (e1000_check_mng_mode(hw) ||
563 e1000_check_phy_reset_block(hw))
564 goto out;
565 break;
566 default:
567 goto out;
568 }
569 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570 mii_reg |= MII_CR_POWER_DOWN;
571 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
572 mdelay(1);
573 }
574out:
575 return;
576}
577
578void e1000_down(struct e1000_adapter *adapter)
579{
580 struct net_device *netdev = adapter->netdev;
581
582 /* signal that we're down so the interrupt handler does not
583 * reschedule our watchdog timer */
584 set_bit(__E1000_DOWN, &adapter->flags);
585
586 napi_disable(&adapter->napi);
587
588 e1000_irq_disable(adapter);
589
590 del_timer_sync(&adapter->tx_fifo_stall_timer);
591 del_timer_sync(&adapter->watchdog_timer);
592 del_timer_sync(&adapter->phy_info_timer);
593
594 netdev->tx_queue_len = adapter->tx_queue_len;
595 adapter->link_speed = 0;
596 adapter->link_duplex = 0;
597 netif_carrier_off(netdev);
598 netif_stop_queue(netdev);
599
600 e1000_reset(adapter);
601 e1000_clean_all_tx_rings(adapter);
602 e1000_clean_all_rx_rings(adapter);
603}
604
605void e1000_reinit_locked(struct e1000_adapter *adapter)
606{
607 WARN_ON(in_interrupt());
608 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
609 msleep(1);
610 e1000_down(adapter);
611 e1000_up(adapter);
612 clear_bit(__E1000_RESETTING, &adapter->flags);
613}
614
615void e1000_reset(struct e1000_adapter *adapter)
616{
617 struct e1000_hw *hw = &adapter->hw;
618 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
619 u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
620 bool legacy_pba_adjust = false;
621
622 /* Repartition Pba for greater than 9k mtu
623 * To take effect CTRL.RST is required.
624 */
625
626 switch (hw->mac_type) {
627 case e1000_82542_rev2_0:
628 case e1000_82542_rev2_1:
629 case e1000_82543:
630 case e1000_82544:
631 case e1000_82540:
632 case e1000_82541:
633 case e1000_82541_rev_2:
634 legacy_pba_adjust = true;
635 pba = E1000_PBA_48K;
636 break;
637 case e1000_82545:
638 case e1000_82545_rev_3:
639 case e1000_82546:
640 case e1000_82546_rev_3:
641 pba = E1000_PBA_48K;
642 break;
643 case e1000_82547:
644 case e1000_82547_rev_2:
645 legacy_pba_adjust = true;
646 pba = E1000_PBA_30K;
647 break;
648 case e1000_82571:
649 case e1000_82572:
650 case e1000_80003es2lan:
651 pba = E1000_PBA_38K;
652 break;
653 case e1000_82573:
654 pba = E1000_PBA_20K;
655 break;
656 case e1000_ich8lan:
657 pba = E1000_PBA_8K;
658 case e1000_undefined:
659 case e1000_num_macs:
660 break;
661 }
662
663 if (legacy_pba_adjust) {
664 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
665 pba -= 8; /* allocate more FIFO for Tx */
666
667 if (hw->mac_type == e1000_82547) {
668 adapter->tx_fifo_head = 0;
669 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
670 adapter->tx_fifo_size =
671 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
672 atomic_set(&adapter->tx_fifo_stall, 0);
673 }
674 } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
675 /* adjust PBA for jumbo frames */
676 ew32(PBA, pba);
677
678 /* To maintain wire speed transmits, the Tx FIFO should be
679 * large enough to accomodate two full transmit packets,
680 * rounded up to the next 1KB and expressed in KB. Likewise,
681 * the Rx FIFO should be large enough to accomodate at least
682 * one full receive packet and is similarly rounded up and
683 * expressed in KB. */
684 pba = er32(PBA);
685 /* upper 16 bits has Tx packet buffer allocation size in KB */
686 tx_space = pba >> 16;
687 /* lower 16 bits has Rx packet buffer allocation size in KB */
688 pba &= 0xffff;
689 /* don't include ethernet FCS because hardware appends/strips */
690 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
691 VLAN_TAG_SIZE;
692 min_tx_space = min_rx_space;
693 min_tx_space *= 2;
694 min_tx_space = ALIGN(min_tx_space, 1024);
695 min_tx_space >>= 10;
696 min_rx_space = ALIGN(min_rx_space, 1024);
697 min_rx_space >>= 10;
698
699 /* If current Tx allocation is less than the min Tx FIFO size,
700 * and the min Tx FIFO size is less than the current Rx FIFO
701 * allocation, take space away from current Rx allocation */
702 if (tx_space < min_tx_space &&
703 ((min_tx_space - tx_space) < pba)) {
704 pba = pba - (min_tx_space - tx_space);
705
706 /* PCI/PCIx hardware has PBA alignment constraints */
707 switch (hw->mac_type) {
708 case e1000_82545 ... e1000_82546_rev_3:
709 pba &= ~(E1000_PBA_8K - 1);
710 break;
711 default:
712 break;
713 }
714
715 /* if short on rx space, rx wins and must trump tx
716 * adjustment or use Early Receive if available */
717 if (pba < min_rx_space) {
718 switch (hw->mac_type) {
719 case e1000_82573:
720 /* ERT enabled in e1000_configure_rx */
721 break;
722 default:
723 pba = min_rx_space;
724 break;
725 }
726 }
727 }
728 }
729
730 ew32(PBA, pba);
731
732 /* flow control settings */
733 /* Set the FC high water mark to 90% of the FIFO size.
734 * Required to clear last 3 LSB */
735 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
736 /* We can't use 90% on small FIFOs because the remainder
737 * would be less than 1 full frame. In this case, we size
738 * it to allow at least a full frame above the high water
739 * mark. */
740 if (pba < E1000_PBA_16K)
741 fc_high_water_mark = (pba * 1024) - 1600;
742
743 hw->fc_high_water = fc_high_water_mark;
744 hw->fc_low_water = fc_high_water_mark - 8;
745 if (hw->mac_type == e1000_80003es2lan)
746 hw->fc_pause_time = 0xFFFF;
747 else
748 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
749 hw->fc_send_xon = 1;
750 hw->fc = hw->original_fc;
751
752 /* Allow time for pending master requests to run */
753 e1000_reset_hw(hw);
754 if (hw->mac_type >= e1000_82544)
755 ew32(WUC, 0);
756
757 if (e1000_init_hw(hw))
758 DPRINTK(PROBE, ERR, "Hardware Error\n");
759 e1000_update_mng_vlan(adapter);
760
761 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
762 if (hw->mac_type >= e1000_82544 &&
763 hw->mac_type <= e1000_82547_rev_2 &&
764 hw->autoneg == 1 &&
765 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
766 u32 ctrl = er32(CTRL);
767 /* clear phy power management bit if we are in gig only mode,
768 * which if enabled will attempt negotiation to 100Mb, which
769 * can cause a loss of link at power off or driver unload */
770 ctrl &= ~E1000_CTRL_SWDPIN3;
771 ew32(CTRL, ctrl);
772 }
773
774 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
775 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
776
777 e1000_reset_adaptive(hw);
778 e1000_phy_get_info(hw, &adapter->phy_info);
779
780 if (!adapter->smart_power_down &&
781 (hw->mac_type == e1000_82571 ||
782 hw->mac_type == e1000_82572)) {
783 u16 phy_data = 0;
784 /* speed up time to link by disabling smart power down, ignore
785 * the return value of this function because there is nothing
786 * different we would do if it failed */
787 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
788 &phy_data);
789 phy_data &= ~IGP02E1000_PM_SPD;
790 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
791 phy_data);
792 }
793
794 e1000_release_manageability(adapter);
795}
796
797/**
798 * Dump the eeprom for users having checksum issues
799 **/
800static void e1000_dump_eeprom(struct e1000_adapter *adapter)
801{
802 struct net_device *netdev = adapter->netdev;
803 struct ethtool_eeprom eeprom;
804 const struct ethtool_ops *ops = netdev->ethtool_ops;
805 u8 *data;
806 int i;
807 u16 csum_old, csum_new = 0;
808
809 eeprom.len = ops->get_eeprom_len(netdev);
810 eeprom.offset = 0;
811
812 data = kmalloc(eeprom.len, GFP_KERNEL);
813 if (!data) {
814 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
815 " data\n");
816 return;
817 }
818
819 ops->get_eeprom(netdev, &eeprom, data);
820
821 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
822 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
823 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
824 csum_new += data[i] + (data[i + 1] << 8);
825 csum_new = EEPROM_SUM - csum_new;
826
827 printk(KERN_ERR "/*********************/\n");
828 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
829 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new);
830
831 printk(KERN_ERR "Offset Values\n");
832 printk(KERN_ERR "======== ======\n");
833 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
834
835 printk(KERN_ERR "Include this output when contacting your support "
836 "provider.\n");
837 printk(KERN_ERR "This is not a software error! Something bad "
838 "happened to your hardware or\n");
839 printk(KERN_ERR "EEPROM image. Ignoring this "
840 "problem could result in further problems,\n");
841 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
842 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
843 "which is invalid\n");
844 printk(KERN_ERR "and requires you to set the proper MAC "
845 "address manually before continuing\n");
846 printk(KERN_ERR "to enable this network device.\n");
847 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
848 "to your hardware vendor\n");
849 printk(KERN_ERR "or Intel Customer Support.\n");
850 printk(KERN_ERR "/*********************/\n");
851
852 kfree(data);
853}
854
855/**
856 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
857 * @pdev: PCI device information struct
858 *
859 * Return true if an adapter needs ioport resources
860 **/
861static int e1000_is_need_ioport(struct pci_dev *pdev)
862{
863 switch (pdev->device) {
864 case E1000_DEV_ID_82540EM:
865 case E1000_DEV_ID_82540EM_LOM:
866 case E1000_DEV_ID_82540EP:
867 case E1000_DEV_ID_82540EP_LOM:
868 case E1000_DEV_ID_82540EP_LP:
869 case E1000_DEV_ID_82541EI:
870 case E1000_DEV_ID_82541EI_MOBILE:
871 case E1000_DEV_ID_82541ER:
872 case E1000_DEV_ID_82541ER_LOM:
873 case E1000_DEV_ID_82541GI:
874 case E1000_DEV_ID_82541GI_LF:
875 case E1000_DEV_ID_82541GI_MOBILE:
876 case E1000_DEV_ID_82544EI_COPPER:
877 case E1000_DEV_ID_82544EI_FIBER:
878 case E1000_DEV_ID_82544GC_COPPER:
879 case E1000_DEV_ID_82544GC_LOM:
880 case E1000_DEV_ID_82545EM_COPPER:
881 case E1000_DEV_ID_82545EM_FIBER:
882 case E1000_DEV_ID_82546EB_COPPER:
883 case E1000_DEV_ID_82546EB_FIBER:
884 case E1000_DEV_ID_82546EB_QUAD_COPPER:
885 return true;
886 default:
887 return false;
888 }
889}
890
891static const struct net_device_ops e1000_netdev_ops = {
892 .ndo_open = e1000_open,
893 .ndo_stop = e1000_close,
894 .ndo_start_xmit = e1000_xmit_frame,
895 .ndo_get_stats = e1000_get_stats,
896 .ndo_set_rx_mode = e1000_set_rx_mode,
897 .ndo_set_mac_address = e1000_set_mac,
898 .ndo_tx_timeout = e1000_tx_timeout,
899 .ndo_change_mtu = e1000_change_mtu,
900 .ndo_do_ioctl = e1000_ioctl,
901 .ndo_validate_addr = eth_validate_addr,
902
903 .ndo_vlan_rx_register = e1000_vlan_rx_register,
904 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
905 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
906#ifdef CONFIG_NET_POLL_CONTROLLER
907 .ndo_poll_controller = e1000_netpoll,
908#endif
909};
910
911/**
912 * e1000_probe - Device Initialization Routine
913 * @pdev: PCI device information struct
914 * @ent: entry in e1000_pci_tbl
915 *
916 * Returns 0 on success, negative on failure
917 *
918 * e1000_probe initializes an adapter identified by a pci_dev structure.
919 * The OS initialization, configuring of the adapter private structure,
920 * and a hardware reset occur.
921 **/
922static int __devinit e1000_probe(struct pci_dev *pdev,
923 const struct pci_device_id *ent)
924{
925 struct net_device *netdev;
926 struct e1000_adapter *adapter;
927 struct e1000_hw *hw;
928
929 static int cards_found = 0;
930 static int global_quad_port_a = 0; /* global ksp3 port a indication */
931 int i, err, pci_using_dac;
932 u16 eeprom_data = 0;
933 u16 eeprom_apme_mask = E1000_EEPROM_APME;
934 int bars, need_ioport;
935
936 /* do not allocate ioport bars when not needed */
937 need_ioport = e1000_is_need_ioport(pdev);
938 if (need_ioport) {
939 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
940 err = pci_enable_device(pdev);
941 } else {
942 bars = pci_select_bars(pdev, IORESOURCE_MEM);
943 err = pci_enable_device_mem(pdev);
944 }
945 if (err)
946 return err;
947
948 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
949 !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
950 pci_using_dac = 1;
951 } else {
952 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
953 if (err) {
954 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
955 if (err) {
956 E1000_ERR("No usable DMA configuration, "
957 "aborting\n");
958 goto err_dma;
959 }
960 }
961 pci_using_dac = 0;
962 }
963
964 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
965 if (err)
966 goto err_pci_reg;
967
968 pci_set_master(pdev);
969
970 err = -ENOMEM;
971 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
972 if (!netdev)
973 goto err_alloc_etherdev;
974
975 SET_NETDEV_DEV(netdev, &pdev->dev);
976
977 pci_set_drvdata(pdev, netdev);
978 adapter = netdev_priv(netdev);
979 adapter->netdev = netdev;
980 adapter->pdev = pdev;
981 adapter->msg_enable = (1 << debug) - 1;
982 adapter->bars = bars;
983 adapter->need_ioport = need_ioport;
984
985 hw = &adapter->hw;
986 hw->back = adapter;
987
988 err = -EIO;
989 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
990 if (!hw->hw_addr)
991 goto err_ioremap;
992
993 if (adapter->need_ioport) {
994 for (i = BAR_1; i <= BAR_5; i++) {
995 if (pci_resource_len(pdev, i) == 0)
996 continue;
997 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998 hw->io_base = pci_resource_start(pdev, i);
999 break;
1000 }
1001 }
1002 }
1003
1004 netdev->netdev_ops = &e1000_netdev_ops;
1005 e1000_set_ethtool_ops(netdev);
1006 netdev->watchdog_timeo = 5 * HZ;
1007 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1008
1009 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1010
1011 adapter->bd_number = cards_found;
1012
1013 /* setup the private structure */
1014
1015 err = e1000_sw_init(adapter);
1016 if (err)
1017 goto err_sw_init;
1018
1019 err = -EIO;
1020 /* Flash BAR mapping must happen after e1000_sw_init
1021 * because it depends on mac_type */
1022 if ((hw->mac_type == e1000_ich8lan) &&
1023 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1024 hw->flash_address = pci_ioremap_bar(pdev, 1);
1025 if (!hw->flash_address)
1026 goto err_flashmap;
1027 }
1028
1029 if (e1000_check_phy_reset_block(hw))
1030 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1031
1032 if (hw->mac_type >= e1000_82543) {
1033 netdev->features = NETIF_F_SG |
1034 NETIF_F_HW_CSUM |
1035 NETIF_F_HW_VLAN_TX |
1036 NETIF_F_HW_VLAN_RX |
1037 NETIF_F_HW_VLAN_FILTER;
1038 if (hw->mac_type == e1000_ich8lan)
1039 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1040 }
1041
1042 if ((hw->mac_type >= e1000_82544) &&
1043 (hw->mac_type != e1000_82547))
1044 netdev->features |= NETIF_F_TSO;
1045
1046 if (hw->mac_type > e1000_82547_rev_2)
1047 netdev->features |= NETIF_F_TSO6;
1048 if (pci_using_dac)
1049 netdev->features |= NETIF_F_HIGHDMA;
1050
1051 netdev->vlan_features |= NETIF_F_TSO;
1052 netdev->vlan_features |= NETIF_F_TSO6;
1053 netdev->vlan_features |= NETIF_F_HW_CSUM;
1054 netdev->vlan_features |= NETIF_F_SG;
1055
1056 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1057
1058 /* initialize eeprom parameters */
1059 if (e1000_init_eeprom_params(hw)) {
1060 E1000_ERR("EEPROM initialization failed\n");
1061 goto err_eeprom;
1062 }
1063
1064 /* before reading the EEPROM, reset the controller to
1065 * put the device in a known good starting state */
1066
1067 e1000_reset_hw(hw);
1068
1069 /* make sure the EEPROM is good */
1070 if (e1000_validate_eeprom_checksum(hw) < 0) {
1071 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1072 e1000_dump_eeprom(adapter);
1073 /*
1074 * set MAC address to all zeroes to invalidate and temporary
1075 * disable this device for the user. This blocks regular
1076 * traffic while still permitting ethtool ioctls from reaching
1077 * the hardware as well as allowing the user to run the
1078 * interface after manually setting a hw addr using
1079 * `ip set address`
1080 */
1081 memset(hw->mac_addr, 0, netdev->addr_len);
1082 } else {
1083 /* copy the MAC address out of the EEPROM */
1084 if (e1000_read_mac_addr(hw))
1085 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1086 }
1087 /* don't block initalization here due to bad MAC address */
1088 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1089 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1090
1091 if (!is_valid_ether_addr(netdev->perm_addr))
1092 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1093
1094 e1000_get_bus_info(hw);
1095
1096 init_timer(&adapter->tx_fifo_stall_timer);
1097 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1098 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1099
1100 init_timer(&adapter->watchdog_timer);
1101 adapter->watchdog_timer.function = &e1000_watchdog;
1102 adapter->watchdog_timer.data = (unsigned long) adapter;
1103
1104 init_timer(&adapter->phy_info_timer);
1105 adapter->phy_info_timer.function = &e1000_update_phy_info;
1106 adapter->phy_info_timer.data = (unsigned long)adapter;
1107
1108 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1109
1110 e1000_check_options(adapter);
1111
1112 /* Initial Wake on LAN setting
1113 * If APM wake is enabled in the EEPROM,
1114 * enable the ACPI Magic Packet filter
1115 */
1116
1117 switch (hw->mac_type) {
1118 case e1000_82542_rev2_0:
1119 case e1000_82542_rev2_1:
1120 case e1000_82543:
1121 break;
1122 case e1000_82544:
1123 e1000_read_eeprom(hw,
1124 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1125 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1126 break;
1127 case e1000_ich8lan:
1128 e1000_read_eeprom(hw,
1129 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1130 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1131 break;
1132 case e1000_82546:
1133 case e1000_82546_rev_3:
1134 case e1000_82571:
1135 case e1000_80003es2lan:
1136 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1137 e1000_read_eeprom(hw,
1138 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139 break;
1140 }
1141 /* Fall Through */
1142 default:
1143 e1000_read_eeprom(hw,
1144 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145 break;
1146 }
1147 if (eeprom_data & eeprom_apme_mask)
1148 adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150 /* now that we have the eeprom settings, apply the special cases
1151 * where the eeprom may be wrong or the board simply won't support
1152 * wake on lan on a particular port */
1153 switch (pdev->device) {
1154 case E1000_DEV_ID_82546GB_PCIE:
1155 adapter->eeprom_wol = 0;
1156 break;
1157 case E1000_DEV_ID_82546EB_FIBER:
1158 case E1000_DEV_ID_82546GB_FIBER:
1159 case E1000_DEV_ID_82571EB_FIBER:
1160 /* Wake events only supported on port A for dual fiber
1161 * regardless of eeprom setting */
1162 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1163 adapter->eeprom_wol = 0;
1164 break;
1165 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1166 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1167 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1168 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1169 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1170 /* if quad port adapter, disable WoL on all but port A */
1171 if (global_quad_port_a != 0)
1172 adapter->eeprom_wol = 0;
1173 else
1174 adapter->quad_port_a = 1;
1175 /* Reset for multiple quad port adapters */
1176 if (++global_quad_port_a == 4)
1177 global_quad_port_a = 0;
1178 break;
1179 }
1180
1181 /* initialize the wol settings based on the eeprom settings */
1182 adapter->wol = adapter->eeprom_wol;
1183 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1184
1185 /* print bus type/speed/width info */
1186 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1187 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1188 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1189 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1190 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1191 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1192 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1193 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1194 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1195 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1196 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1197 "32-bit"));
1198
1199 printk("%pM\n", netdev->dev_addr);
1200
1201 if (hw->bus_type == e1000_bus_type_pci_express) {
1202 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1203 "longer be supported by this driver in the future.\n",
1204 pdev->vendor, pdev->device);
1205 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1206 "driver instead.\n");
1207 }
1208
1209 /* reset the hardware with the new settings */
1210 e1000_reset(adapter);
1211
1212 /* If the controller is 82573 and f/w is AMT, do not set
1213 * DRV_LOAD until the interface is up. For all other cases,
1214 * let the f/w know that the h/w is now under the control
1215 * of the driver. */
1216 if (hw->mac_type != e1000_82573 ||
1217 !e1000_check_mng_mode(hw))
1218 e1000_get_hw_control(adapter);
1219
1220 /* tell the stack to leave us alone until e1000_open() is called */
1221 netif_carrier_off(netdev);
1222 netif_stop_queue(netdev);
1223
1224 strcpy(netdev->name, "eth%d");
1225 err = register_netdev(netdev);
1226 if (err)
1227 goto err_register;
1228
1229 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1230
1231 cards_found++;
1232 return 0;
1233
1234err_register:
1235 e1000_release_hw_control(adapter);
1236err_eeprom:
1237 if (!e1000_check_phy_reset_block(hw))
1238 e1000_phy_hw_reset(hw);
1239
1240 if (hw->flash_address)
1241 iounmap(hw->flash_address);
1242err_flashmap:
1243 kfree(adapter->tx_ring);
1244 kfree(adapter->rx_ring);
1245err_sw_init:
1246 iounmap(hw->hw_addr);
1247err_ioremap:
1248 free_netdev(netdev);
1249err_alloc_etherdev:
1250 pci_release_selected_regions(pdev, bars);
1251err_pci_reg:
1252err_dma:
1253 pci_disable_device(pdev);
1254 return err;
1255}
1256
1257/**
1258 * e1000_remove - Device Removal Routine
1259 * @pdev: PCI device information struct
1260 *
1261 * e1000_remove is called by the PCI subsystem to alert the driver
1262 * that it should release a PCI device. The could be caused by a
1263 * Hot-Plug event, or because the driver is going to be removed from
1264 * memory.
1265 **/
1266
1267static void __devexit e1000_remove(struct pci_dev *pdev)
1268{
1269 struct net_device *netdev = pci_get_drvdata(pdev);
1270 struct e1000_adapter *adapter = netdev_priv(netdev);
1271 struct e1000_hw *hw = &adapter->hw;
1272
1273 cancel_work_sync(&adapter->reset_task);
1274
1275 e1000_release_manageability(adapter);
1276
1277 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1278 * would have already happened in close and is redundant. */
1279 e1000_release_hw_control(adapter);
1280
1281 unregister_netdev(netdev);
1282
1283 if (!e1000_check_phy_reset_block(hw))
1284 e1000_phy_hw_reset(hw);
1285
1286 kfree(adapter->tx_ring);
1287 kfree(adapter->rx_ring);
1288
1289 iounmap(hw->hw_addr);
1290 if (hw->flash_address)
1291 iounmap(hw->flash_address);
1292 pci_release_selected_regions(pdev, adapter->bars);
1293
1294 free_netdev(netdev);
1295
1296 pci_disable_device(pdev);
1297}
1298
1299/**
1300 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1301 * @adapter: board private structure to initialize
1302 *
1303 * e1000_sw_init initializes the Adapter private data structure.
1304 * Fields are initialized based on PCI device information and
1305 * OS network device settings (MTU size).
1306 **/
1307
1308static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1309{
1310 struct e1000_hw *hw = &adapter->hw;
1311 struct net_device *netdev = adapter->netdev;
1312 struct pci_dev *pdev = adapter->pdev;
1313
1314 /* PCI config space info */
1315
1316 hw->vendor_id = pdev->vendor;
1317 hw->device_id = pdev->device;
1318 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1319 hw->subsystem_id = pdev->subsystem_device;
1320 hw->revision_id = pdev->revision;
1321
1322 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1323
1324 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1325 hw->max_frame_size = netdev->mtu +
1326 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1327 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1328
1329 /* identify the MAC */
1330
1331 if (e1000_set_mac_type(hw)) {
1332 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1333 return -EIO;
1334 }
1335
1336 switch (hw->mac_type) {
1337 default:
1338 break;
1339 case e1000_82541:
1340 case e1000_82547:
1341 case e1000_82541_rev_2:
1342 case e1000_82547_rev_2:
1343 hw->phy_init_script = 1;
1344 break;
1345 }
1346
1347 e1000_set_media_type(hw);
1348
1349 hw->wait_autoneg_complete = false;
1350 hw->tbi_compatibility_en = true;
1351 hw->adaptive_ifs = true;
1352
1353 /* Copper options */
1354
1355 if (hw->media_type == e1000_media_type_copper) {
1356 hw->mdix = AUTO_ALL_MODES;
1357 hw->disable_polarity_correction = false;
1358 hw->master_slave = E1000_MASTER_SLAVE;
1359 }
1360
1361 adapter->num_tx_queues = 1;
1362 adapter->num_rx_queues = 1;
1363
1364 if (e1000_alloc_queues(adapter)) {
1365 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1366 return -ENOMEM;
1367 }
1368
1369 /* Explicitly disable IRQ since the NIC can be in any state. */
1370 e1000_irq_disable(adapter);
1371
1372 spin_lock_init(&adapter->stats_lock);
1373
1374 set_bit(__E1000_DOWN, &adapter->flags);
1375
1376 return 0;
1377}
1378
1379/**
1380 * e1000_alloc_queues - Allocate memory for all rings
1381 * @adapter: board private structure to initialize
1382 *
1383 * We allocate one ring per queue at run-time since we don't know the
1384 * number of queues at compile-time.
1385 **/
1386
1387static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1388{
1389 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1390 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1391 if (!adapter->tx_ring)
1392 return -ENOMEM;
1393
1394 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1395 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1396 if (!adapter->rx_ring) {
1397 kfree(adapter->tx_ring);
1398 return -ENOMEM;
1399 }
1400
1401 return E1000_SUCCESS;
1402}
1403
1404/**
1405 * e1000_open - Called when a network interface is made active
1406 * @netdev: network interface device structure
1407 *
1408 * Returns 0 on success, negative value on failure
1409 *
1410 * The open entry point is called when a network interface is made
1411 * active by the system (IFF_UP). At this point all resources needed
1412 * for transmit and receive operations are allocated, the interrupt
1413 * handler is registered with the OS, the watchdog timer is started,
1414 * and the stack is notified that the interface is ready.
1415 **/
1416
1417static int e1000_open(struct net_device *netdev)
1418{
1419 struct e1000_adapter *adapter = netdev_priv(netdev);
1420 struct e1000_hw *hw = &adapter->hw;
1421 int err;
1422
1423 /* disallow open during test */
1424 if (test_bit(__E1000_TESTING, &adapter->flags))
1425 return -EBUSY;
1426
1427 /* allocate transmit descriptors */
1428 err = e1000_setup_all_tx_resources(adapter);
1429 if (err)
1430 goto err_setup_tx;
1431
1432 /* allocate receive descriptors */
1433 err = e1000_setup_all_rx_resources(adapter);
1434 if (err)
1435 goto err_setup_rx;
1436
1437 e1000_power_up_phy(adapter);
1438
1439 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1440 if ((hw->mng_cookie.status &
1441 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1442 e1000_update_mng_vlan(adapter);
1443 }
1444
1445 /* If AMT is enabled, let the firmware know that the network
1446 * interface is now open */
1447 if (hw->mac_type == e1000_82573 &&
1448 e1000_check_mng_mode(hw))
1449 e1000_get_hw_control(adapter);
1450
1451 /* before we allocate an interrupt, we must be ready to handle it.
1452 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1453 * as soon as we call pci_request_irq, so we have to setup our
1454 * clean_rx handler before we do so. */
1455 e1000_configure(adapter);
1456
1457 err = e1000_request_irq(adapter);
1458 if (err)
1459 goto err_req_irq;
1460
1461 /* From here on the code is the same as e1000_up() */
1462 clear_bit(__E1000_DOWN, &adapter->flags);
1463
1464 napi_enable(&adapter->napi);
1465
1466 e1000_irq_enable(adapter);
1467
1468 netif_start_queue(netdev);
1469
1470 /* fire a link status change interrupt to start the watchdog */
1471 ew32(ICS, E1000_ICS_LSC);
1472
1473 return E1000_SUCCESS;
1474
1475err_req_irq:
1476 e1000_release_hw_control(adapter);
1477 e1000_power_down_phy(adapter);
1478 e1000_free_all_rx_resources(adapter);
1479err_setup_rx:
1480 e1000_free_all_tx_resources(adapter);
1481err_setup_tx:
1482 e1000_reset(adapter);
1483
1484 return err;
1485}
1486
1487/**
1488 * e1000_close - Disables a network interface
1489 * @netdev: network interface device structure
1490 *
1491 * Returns 0, this is not allowed to fail
1492 *
1493 * The close entry point is called when an interface is de-activated
1494 * by the OS. The hardware is still under the drivers control, but
1495 * needs to be disabled. A global MAC reset is issued to stop the
1496 * hardware, and all transmit and receive resources are freed.
1497 **/
1498
1499static int e1000_close(struct net_device *netdev)
1500{
1501 struct e1000_adapter *adapter = netdev_priv(netdev);
1502 struct e1000_hw *hw = &adapter->hw;
1503
1504 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1505 e1000_down(adapter);
1506 e1000_power_down_phy(adapter);
1507 e1000_free_irq(adapter);
1508
1509 e1000_free_all_tx_resources(adapter);
1510 e1000_free_all_rx_resources(adapter);
1511
1512 /* kill manageability vlan ID if supported, but not if a vlan with
1513 * the same ID is registered on the host OS (let 8021q kill it) */
1514 if ((hw->mng_cookie.status &
1515 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1516 !(adapter->vlgrp &&
1517 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1518 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1519 }
1520
1521 /* If AMT is enabled, let the firmware know that the network
1522 * interface is now closed */
1523 if (hw->mac_type == e1000_82573 &&
1524 e1000_check_mng_mode(hw))
1525 e1000_release_hw_control(adapter);
1526
1527 return 0;
1528}
1529
1530/**
1531 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1532 * @adapter: address of board private structure
1533 * @start: address of beginning of memory
1534 * @len: length of memory
1535 **/
1536static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1537 unsigned long len)
1538{
1539 struct e1000_hw *hw = &adapter->hw;
1540 unsigned long begin = (unsigned long)start;
1541 unsigned long end = begin + len;
1542
1543 /* First rev 82545 and 82546 need to not allow any memory
1544 * write location to cross 64k boundary due to errata 23 */
1545 if (hw->mac_type == e1000_82545 ||
1546 hw->mac_type == e1000_82546) {
1547 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1548 }
1549
1550 return true;
1551}
1552
1553/**
1554 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1555 * @adapter: board private structure
1556 * @txdr: tx descriptor ring (for a specific queue) to setup
1557 *
1558 * Return 0 on success, negative on failure
1559 **/
1560
1561static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1562 struct e1000_tx_ring *txdr)
1563{
1564 struct pci_dev *pdev = adapter->pdev;
1565 int size;
1566
1567 size = sizeof(struct e1000_buffer) * txdr->count;
1568 txdr->buffer_info = vmalloc(size);
1569 if (!txdr->buffer_info) {
1570 DPRINTK(PROBE, ERR,
1571 "Unable to allocate memory for the transmit descriptor ring\n");
1572 return -ENOMEM;
1573 }
1574 memset(txdr->buffer_info, 0, size);
1575
1576 /* round up to nearest 4K */
1577
1578 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1579 txdr->size = ALIGN(txdr->size, 4096);
1580
1581 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1582 if (!txdr->desc) {
1583setup_tx_desc_die:
1584 vfree(txdr->buffer_info);
1585 DPRINTK(PROBE, ERR,
1586 "Unable to allocate memory for the transmit descriptor ring\n");
1587 return -ENOMEM;
1588 }
1589
1590 /* Fix for errata 23, can't cross 64kB boundary */
1591 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1592 void *olddesc = txdr->desc;
1593 dma_addr_t olddma = txdr->dma;
1594 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1595 "at %p\n", txdr->size, txdr->desc);
1596 /* Try again, without freeing the previous */
1597 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1598 /* Failed allocation, critical failure */
1599 if (!txdr->desc) {
1600 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1601 goto setup_tx_desc_die;
1602 }
1603
1604 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1605 /* give up */
1606 pci_free_consistent(pdev, txdr->size, txdr->desc,
1607 txdr->dma);
1608 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1609 DPRINTK(PROBE, ERR,
1610 "Unable to allocate aligned memory "
1611 "for the transmit descriptor ring\n");
1612 vfree(txdr->buffer_info);
1613 return -ENOMEM;
1614 } else {
1615 /* Free old allocation, new allocation was successful */
1616 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1617 }
1618 }
1619 memset(txdr->desc, 0, txdr->size);
1620
1621 txdr->next_to_use = 0;
1622 txdr->next_to_clean = 0;
1623
1624 return 0;
1625}
1626
1627/**
1628 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1629 * (Descriptors) for all queues
1630 * @adapter: board private structure
1631 *
1632 * Return 0 on success, negative on failure
1633 **/
1634
1635int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1636{
1637 int i, err = 0;
1638
1639 for (i = 0; i < adapter->num_tx_queues; i++) {
1640 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1641 if (err) {
1642 DPRINTK(PROBE, ERR,
1643 "Allocation for Tx Queue %u failed\n", i);
1644 for (i-- ; i >= 0; i--)
1645 e1000_free_tx_resources(adapter,
1646 &adapter->tx_ring[i]);
1647 break;
1648 }
1649 }
1650
1651 return err;
1652}
1653
1654/**
1655 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1656 * @adapter: board private structure
1657 *
1658 * Configure the Tx unit of the MAC after a reset.
1659 **/
1660
1661static void e1000_configure_tx(struct e1000_adapter *adapter)
1662{
1663 u64 tdba;
1664 struct e1000_hw *hw = &adapter->hw;
1665 u32 tdlen, tctl, tipg, tarc;
1666 u32 ipgr1, ipgr2;
1667
1668 /* Setup the HW Tx Head and Tail descriptor pointers */
1669
1670 switch (adapter->num_tx_queues) {
1671 case 1:
1672 default:
1673 tdba = adapter->tx_ring[0].dma;
1674 tdlen = adapter->tx_ring[0].count *
1675 sizeof(struct e1000_tx_desc);
1676 ew32(TDLEN, tdlen);
1677 ew32(TDBAH, (tdba >> 32));
1678 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1679 ew32(TDT, 0);
1680 ew32(TDH, 0);
1681 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1682 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1683 break;
1684 }
1685
1686 /* Set the default values for the Tx Inter Packet Gap timer */
1687 if (hw->mac_type <= e1000_82547_rev_2 &&
1688 (hw->media_type == e1000_media_type_fiber ||
1689 hw->media_type == e1000_media_type_internal_serdes))
1690 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1691 else
1692 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1693
1694 switch (hw->mac_type) {
1695 case e1000_82542_rev2_0:
1696 case e1000_82542_rev2_1:
1697 tipg = DEFAULT_82542_TIPG_IPGT;
1698 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1699 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1700 break;
1701 case e1000_80003es2lan:
1702 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1703 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1704 break;
1705 default:
1706 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1707 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1708 break;
1709 }
1710 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1711 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1712 ew32(TIPG, tipg);
1713
1714 /* Set the Tx Interrupt Delay register */
1715
1716 ew32(TIDV, adapter->tx_int_delay);
1717 if (hw->mac_type >= e1000_82540)
1718 ew32(TADV, adapter->tx_abs_int_delay);
1719
1720 /* Program the Transmit Control Register */
1721
1722 tctl = er32(TCTL);
1723 tctl &= ~E1000_TCTL_CT;
1724 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1725 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1726
1727 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1728 tarc = er32(TARC0);
1729 /* set the speed mode bit, we'll clear it if we're not at
1730 * gigabit link later */
1731 tarc |= (1 << 21);
1732 ew32(TARC0, tarc);
1733 } else if (hw->mac_type == e1000_80003es2lan) {
1734 tarc = er32(TARC0);
1735 tarc |= 1;
1736 ew32(TARC0, tarc);
1737 tarc = er32(TARC1);
1738 tarc |= 1;
1739 ew32(TARC1, tarc);
1740 }
1741
1742 e1000_config_collision_dist(hw);
1743
1744 /* Setup Transmit Descriptor Settings for eop descriptor */
1745 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1746
1747 /* only set IDE if we are delaying interrupts using the timers */
1748 if (adapter->tx_int_delay)
1749 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1750
1751 if (hw->mac_type < e1000_82543)
1752 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1753 else
1754 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1755
1756 /* Cache if we're 82544 running in PCI-X because we'll
1757 * need this to apply a workaround later in the send path. */
1758 if (hw->mac_type == e1000_82544 &&
1759 hw->bus_type == e1000_bus_type_pcix)
1760 adapter->pcix_82544 = 1;
1761
1762 ew32(TCTL, tctl);
1763
1764}
1765
1766/**
1767 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1768 * @adapter: board private structure
1769 * @rxdr: rx descriptor ring (for a specific queue) to setup
1770 *
1771 * Returns 0 on success, negative on failure
1772 **/
1773
1774static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1775 struct e1000_rx_ring *rxdr)
1776{
1777 struct e1000_hw *hw = &adapter->hw;
1778 struct pci_dev *pdev = adapter->pdev;
1779 int size, desc_len;
1780
1781 size = sizeof(struct e1000_buffer) * rxdr->count;
1782 rxdr->buffer_info = vmalloc(size);
1783 if (!rxdr->buffer_info) {
1784 DPRINTK(PROBE, ERR,
1785 "Unable to allocate memory for the receive descriptor ring\n");
1786 return -ENOMEM;
1787 }
1788 memset(rxdr->buffer_info, 0, size);
1789
1790 if (hw->mac_type <= e1000_82547_rev_2)
1791 desc_len = sizeof(struct e1000_rx_desc);
1792 else
1793 desc_len = sizeof(union e1000_rx_desc_packet_split);
1794
1795 /* Round up to nearest 4K */
1796
1797 rxdr->size = rxdr->count * desc_len;
1798 rxdr->size = ALIGN(rxdr->size, 4096);
1799
1800 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1801
1802 if (!rxdr->desc) {
1803 DPRINTK(PROBE, ERR,
1804 "Unable to allocate memory for the receive descriptor ring\n");
1805setup_rx_desc_die:
1806 vfree(rxdr->buffer_info);
1807 return -ENOMEM;
1808 }
1809
1810 /* Fix for errata 23, can't cross 64kB boundary */
1811 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1812 void *olddesc = rxdr->desc;
1813 dma_addr_t olddma = rxdr->dma;
1814 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1815 "at %p\n", rxdr->size, rxdr->desc);
1816 /* Try again, without freeing the previous */
1817 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1818 /* Failed allocation, critical failure */
1819 if (!rxdr->desc) {
1820 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1821 DPRINTK(PROBE, ERR,
1822 "Unable to allocate memory "
1823 "for the receive descriptor ring\n");
1824 goto setup_rx_desc_die;
1825 }
1826
1827 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1828 /* give up */
1829 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1830 rxdr->dma);
1831 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1832 DPRINTK(PROBE, ERR,
1833 "Unable to allocate aligned memory "
1834 "for the receive descriptor ring\n");
1835 goto setup_rx_desc_die;
1836 } else {
1837 /* Free old allocation, new allocation was successful */
1838 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1839 }
1840 }
1841 memset(rxdr->desc, 0, rxdr->size);
1842
1843 rxdr->next_to_clean = 0;
1844 rxdr->next_to_use = 0;
1845
1846 return 0;
1847}
1848
1849/**
1850 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1851 * (Descriptors) for all queues
1852 * @adapter: board private structure
1853 *
1854 * Return 0 on success, negative on failure
1855 **/
1856
1857int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1858{
1859 int i, err = 0;
1860
1861 for (i = 0; i < adapter->num_rx_queues; i++) {
1862 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1863 if (err) {
1864 DPRINTK(PROBE, ERR,
1865 "Allocation for Rx Queue %u failed\n", i);
1866 for (i-- ; i >= 0; i--)
1867 e1000_free_rx_resources(adapter,
1868 &adapter->rx_ring[i]);
1869 break;
1870 }
1871 }
1872
1873 return err;
1874}
1875
1876/**
1877 * e1000_setup_rctl - configure the receive control registers
1878 * @adapter: Board private structure
1879 **/
1880static void e1000_setup_rctl(struct e1000_adapter *adapter)
1881{
1882 struct e1000_hw *hw = &adapter->hw;
1883 u32 rctl;
1884
1885 rctl = er32(RCTL);
1886
1887 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1888
1889 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1890 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1891 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1892
1893 if (hw->tbi_compatibility_on == 1)
1894 rctl |= E1000_RCTL_SBP;
1895 else
1896 rctl &= ~E1000_RCTL_SBP;
1897
1898 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1899 rctl &= ~E1000_RCTL_LPE;
1900 else
1901 rctl |= E1000_RCTL_LPE;
1902
1903 /* Setup buffer sizes */
1904 rctl &= ~E1000_RCTL_SZ_4096;
1905 rctl |= E1000_RCTL_BSEX;
1906 switch (adapter->rx_buffer_len) {
1907 case E1000_RXBUFFER_256:
1908 rctl |= E1000_RCTL_SZ_256;
1909 rctl &= ~E1000_RCTL_BSEX;
1910 break;
1911 case E1000_RXBUFFER_512:
1912 rctl |= E1000_RCTL_SZ_512;
1913 rctl &= ~E1000_RCTL_BSEX;
1914 break;
1915 case E1000_RXBUFFER_1024:
1916 rctl |= E1000_RCTL_SZ_1024;
1917 rctl &= ~E1000_RCTL_BSEX;
1918 break;
1919 case E1000_RXBUFFER_2048:
1920 default:
1921 rctl |= E1000_RCTL_SZ_2048;
1922 rctl &= ~E1000_RCTL_BSEX;
1923 break;
1924 case E1000_RXBUFFER_4096:
1925 rctl |= E1000_RCTL_SZ_4096;
1926 break;
1927 case E1000_RXBUFFER_8192:
1928 rctl |= E1000_RCTL_SZ_8192;
1929 break;
1930 case E1000_RXBUFFER_16384:
1931 rctl |= E1000_RCTL_SZ_16384;
1932 break;
1933 }
1934
1935 ew32(RCTL, rctl);
1936}
1937
1938/**
1939 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1940 * @adapter: board private structure
1941 *
1942 * Configure the Rx unit of the MAC after a reset.
1943 **/
1944
1945static void e1000_configure_rx(struct e1000_adapter *adapter)
1946{
1947 u64 rdba;
1948 struct e1000_hw *hw = &adapter->hw;
1949 u32 rdlen, rctl, rxcsum, ctrl_ext;
1950
1951 rdlen = adapter->rx_ring[0].count *
1952 sizeof(struct e1000_rx_desc);
1953 adapter->clean_rx = e1000_clean_rx_irq;
1954 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1955
1956 /* disable receives while setting up the descriptors */
1957 rctl = er32(RCTL);
1958 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1959
1960 /* set the Receive Delay Timer Register */
1961 ew32(RDTR, adapter->rx_int_delay);
1962
1963 if (hw->mac_type >= e1000_82540) {
1964 ew32(RADV, adapter->rx_abs_int_delay);
1965 if (adapter->itr_setting != 0)
1966 ew32(ITR, 1000000000 / (adapter->itr * 256));
1967 }
1968
1969 if (hw->mac_type >= e1000_82571) {
1970 ctrl_ext = er32(CTRL_EXT);
1971 /* Reset delay timers after every interrupt */
1972 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1973 /* Auto-Mask interrupts upon ICR access */
1974 ctrl_ext |= E1000_CTRL_EXT_IAME;
1975 ew32(IAM, 0xffffffff);
1976 ew32(CTRL_EXT, ctrl_ext);
1977 E1000_WRITE_FLUSH();
1978 }
1979
1980 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1981 * the Base and Length of the Rx Descriptor Ring */
1982 switch (adapter->num_rx_queues) {
1983 case 1:
1984 default:
1985 rdba = adapter->rx_ring[0].dma;
1986 ew32(RDLEN, rdlen);
1987 ew32(RDBAH, (rdba >> 32));
1988 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1989 ew32(RDT, 0);
1990 ew32(RDH, 0);
1991 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1992 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1993 break;
1994 }
1995
1996 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1997 if (hw->mac_type >= e1000_82543) {
1998 rxcsum = er32(RXCSUM);
1999 if (adapter->rx_csum)
2000 rxcsum |= E1000_RXCSUM_TUOFL;
2001 else
2002 /* don't need to clear IPPCSE as it defaults to 0 */
2003 rxcsum &= ~E1000_RXCSUM_TUOFL;
2004 ew32(RXCSUM, rxcsum);
2005 }
2006
2007 /* Enable Receives */
2008 ew32(RCTL, rctl);
2009}
2010
2011/**
2012 * e1000_free_tx_resources - Free Tx Resources per Queue
2013 * @adapter: board private structure
2014 * @tx_ring: Tx descriptor ring for a specific queue
2015 *
2016 * Free all transmit software resources
2017 **/
2018
2019static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2020 struct e1000_tx_ring *tx_ring)
2021{
2022 struct pci_dev *pdev = adapter->pdev;
2023
2024 e1000_clean_tx_ring(adapter, tx_ring);
2025
2026 vfree(tx_ring->buffer_info);
2027 tx_ring->buffer_info = NULL;
2028
2029 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2030
2031 tx_ring->desc = NULL;
2032}
2033
2034/**
2035 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2036 * @adapter: board private structure
2037 *
2038 * Free all transmit software resources
2039 **/
2040
2041void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2042{
2043 int i;
2044
2045 for (i = 0; i < adapter->num_tx_queues; i++)
2046 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2047}
2048
2049static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2050 struct e1000_buffer *buffer_info)
2051{
2052 if (buffer_info->dma) {
2053 pci_unmap_page(adapter->pdev,
2054 buffer_info->dma,
2055 buffer_info->length,
2056 PCI_DMA_TODEVICE);
2057 buffer_info->dma = 0;
2058 }
2059 if (buffer_info->skb) {
2060 dev_kfree_skb_any(buffer_info->skb);
2061 buffer_info->skb = NULL;
2062 }
2063 /* buffer_info must be completely set up in the transmit path */
2064}
2065
2066/**
2067 * e1000_clean_tx_ring - Free Tx Buffers
2068 * @adapter: board private structure
2069 * @tx_ring: ring to be cleaned
2070 **/
2071
2072static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2073 struct e1000_tx_ring *tx_ring)
2074{
2075 struct e1000_hw *hw = &adapter->hw;
2076 struct e1000_buffer *buffer_info;
2077 unsigned long size;
2078 unsigned int i;
2079
2080 /* Free all the Tx ring sk_buffs */
2081
2082 for (i = 0; i < tx_ring->count; i++) {
2083 buffer_info = &tx_ring->buffer_info[i];
2084 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2085 }
2086
2087 size = sizeof(struct e1000_buffer) * tx_ring->count;
2088 memset(tx_ring->buffer_info, 0, size);
2089
2090 /* Zero out the descriptor ring */
2091
2092 memset(tx_ring->desc, 0, tx_ring->size);
2093
2094 tx_ring->next_to_use = 0;
2095 tx_ring->next_to_clean = 0;
2096 tx_ring->last_tx_tso = 0;
2097
2098 writel(0, hw->hw_addr + tx_ring->tdh);
2099 writel(0, hw->hw_addr + tx_ring->tdt);
2100}
2101
2102/**
2103 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2104 * @adapter: board private structure
2105 **/
2106
2107static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2108{
2109 int i;
2110
2111 for (i = 0; i < adapter->num_tx_queues; i++)
2112 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2113}
2114
2115/**
2116 * e1000_free_rx_resources - Free Rx Resources
2117 * @adapter: board private structure
2118 * @rx_ring: ring to clean the resources from
2119 *
2120 * Free all receive software resources
2121 **/
2122
2123static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2124 struct e1000_rx_ring *rx_ring)
2125{
2126 struct pci_dev *pdev = adapter->pdev;
2127
2128 e1000_clean_rx_ring(adapter, rx_ring);
2129
2130 vfree(rx_ring->buffer_info);
2131 rx_ring->buffer_info = NULL;
2132
2133 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2134
2135 rx_ring->desc = NULL;
2136}
2137
2138/**
2139 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2140 * @adapter: board private structure
2141 *
2142 * Free all receive software resources
2143 **/
2144
2145void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2146{
2147 int i;
2148
2149 for (i = 0; i < adapter->num_rx_queues; i++)
2150 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2151}
2152
2153/**
2154 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2155 * @adapter: board private structure
2156 * @rx_ring: ring to free buffers from
2157 **/
2158
2159static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2160 struct e1000_rx_ring *rx_ring)
2161{
2162 struct e1000_hw *hw = &adapter->hw;
2163 struct e1000_buffer *buffer_info;
2164 struct pci_dev *pdev = adapter->pdev;
2165 unsigned long size;
2166 unsigned int i;
2167
2168 /* Free all the Rx ring sk_buffs */
2169 for (i = 0; i < rx_ring->count; i++) {
2170 buffer_info = &rx_ring->buffer_info[i];
2171 if (buffer_info->skb) {
2172 pci_unmap_single(pdev,
2173 buffer_info->dma,
2174 buffer_info->length,
2175 PCI_DMA_FROMDEVICE);
2176
2177 dev_kfree_skb(buffer_info->skb);
2178 buffer_info->skb = NULL;
2179 }
2180 }
2181
2182 size = sizeof(struct e1000_buffer) * rx_ring->count;
2183 memset(rx_ring->buffer_info, 0, size);
2184
2185 /* Zero out the descriptor ring */
2186
2187 memset(rx_ring->desc, 0, rx_ring->size);
2188
2189 rx_ring->next_to_clean = 0;
2190 rx_ring->next_to_use = 0;
2191
2192 writel(0, hw->hw_addr + rx_ring->rdh);
2193 writel(0, hw->hw_addr + rx_ring->rdt);
2194}
2195
2196/**
2197 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2198 * @adapter: board private structure
2199 **/
2200
2201static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2202{
2203 int i;
2204
2205 for (i = 0; i < adapter->num_rx_queues; i++)
2206 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2207}
2208
2209/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2210 * and memory write and invalidate disabled for certain operations
2211 */
2212static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2213{
2214 struct e1000_hw *hw = &adapter->hw;
2215 struct net_device *netdev = adapter->netdev;
2216 u32 rctl;
2217
2218 e1000_pci_clear_mwi(hw);
2219
2220 rctl = er32(RCTL);
2221 rctl |= E1000_RCTL_RST;
2222 ew32(RCTL, rctl);
2223 E1000_WRITE_FLUSH();
2224 mdelay(5);
2225
2226 if (netif_running(netdev))
2227 e1000_clean_all_rx_rings(adapter);
2228}
2229
2230static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2231{
2232 struct e1000_hw *hw = &adapter->hw;
2233 struct net_device *netdev = adapter->netdev;
2234 u32 rctl;
2235
2236 rctl = er32(RCTL);
2237 rctl &= ~E1000_RCTL_RST;
2238 ew32(RCTL, rctl);
2239 E1000_WRITE_FLUSH();
2240 mdelay(5);
2241
2242 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2243 e1000_pci_set_mwi(hw);
2244
2245 if (netif_running(netdev)) {
2246 /* No need to loop, because 82542 supports only 1 queue */
2247 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2248 e1000_configure_rx(adapter);
2249 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2250 }
2251}
2252
2253/**
2254 * e1000_set_mac - Change the Ethernet Address of the NIC
2255 * @netdev: network interface device structure
2256 * @p: pointer to an address structure
2257 *
2258 * Returns 0 on success, negative on failure
2259 **/
2260
2261static int e1000_set_mac(struct net_device *netdev, void *p)
2262{
2263 struct e1000_adapter *adapter = netdev_priv(netdev);
2264 struct e1000_hw *hw = &adapter->hw;
2265 struct sockaddr *addr = p;
2266
2267 if (!is_valid_ether_addr(addr->sa_data))
2268 return -EADDRNOTAVAIL;
2269
2270 /* 82542 2.0 needs to be in reset to write receive address registers */
2271
2272 if (hw->mac_type == e1000_82542_rev2_0)
2273 e1000_enter_82542_rst(adapter);
2274
2275 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2276 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2277
2278 e1000_rar_set(hw, hw->mac_addr, 0);
2279
2280 /* With 82571 controllers, LAA may be overwritten (with the default)
2281 * due to controller reset from the other port. */
2282 if (hw->mac_type == e1000_82571) {
2283 /* activate the work around */
2284 hw->laa_is_present = 1;
2285
2286 /* Hold a copy of the LAA in RAR[14] This is done so that
2287 * between the time RAR[0] gets clobbered and the time it
2288 * gets fixed (in e1000_watchdog), the actual LAA is in one
2289 * of the RARs and no incoming packets directed to this port
2290 * are dropped. Eventaully the LAA will be in RAR[0] and
2291 * RAR[14] */
2292 e1000_rar_set(hw, hw->mac_addr,
2293 E1000_RAR_ENTRIES - 1);
2294 }
2295
2296 if (hw->mac_type == e1000_82542_rev2_0)
2297 e1000_leave_82542_rst(adapter);
2298
2299 return 0;
2300}
2301
2302/**
2303 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2304 * @netdev: network interface device structure
2305 *
2306 * The set_rx_mode entry point is called whenever the unicast or multicast
2307 * address lists or the network interface flags are updated. This routine is
2308 * responsible for configuring the hardware for proper unicast, multicast,
2309 * promiscuous mode, and all-multi behavior.
2310 **/
2311
2312static void e1000_set_rx_mode(struct net_device *netdev)
2313{
2314 struct e1000_adapter *adapter = netdev_priv(netdev);
2315 struct e1000_hw *hw = &adapter->hw;
2316 struct dev_addr_list *uc_ptr;
2317 struct dev_addr_list *mc_ptr;
2318 u32 rctl;
2319 u32 hash_value;
2320 int i, rar_entries = E1000_RAR_ENTRIES;
2321 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2322 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2323 E1000_NUM_MTA_REGISTERS;
2324
2325 if (hw->mac_type == e1000_ich8lan)
2326 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2327
2328 /* reserve RAR[14] for LAA over-write work-around */
2329 if (hw->mac_type == e1000_82571)
2330 rar_entries--;
2331
2332 /* Check for Promiscuous and All Multicast modes */
2333
2334 rctl = er32(RCTL);
2335
2336 if (netdev->flags & IFF_PROMISC) {
2337 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2338 rctl &= ~E1000_RCTL_VFE;
2339 } else {
2340 if (netdev->flags & IFF_ALLMULTI) {
2341 rctl |= E1000_RCTL_MPE;
2342 } else {
2343 rctl &= ~E1000_RCTL_MPE;
2344 }
2345 if (adapter->hw.mac_type != e1000_ich8lan)
2346 rctl |= E1000_RCTL_VFE;
2347 }
2348
2349 uc_ptr = NULL;
2350 if (netdev->uc_count > rar_entries - 1) {
2351 rctl |= E1000_RCTL_UPE;
2352 } else if (!(netdev->flags & IFF_PROMISC)) {
2353 rctl &= ~E1000_RCTL_UPE;
2354 uc_ptr = netdev->uc_list;
2355 }
2356
2357 ew32(RCTL, rctl);
2358
2359 /* 82542 2.0 needs to be in reset to write receive address registers */
2360
2361 if (hw->mac_type == e1000_82542_rev2_0)
2362 e1000_enter_82542_rst(adapter);
2363
2364 /* load the first 14 addresses into the exact filters 1-14. Unicast
2365 * addresses take precedence to avoid disabling unicast filtering
2366 * when possible.
2367 *
2368 * RAR 0 is used for the station MAC adddress
2369 * if there are not 14 addresses, go ahead and clear the filters
2370 * -- with 82571 controllers only 0-13 entries are filled here
2371 */
2372 mc_ptr = netdev->mc_list;
2373
2374 for (i = 1; i < rar_entries; i++) {
2375 if (uc_ptr) {
2376 e1000_rar_set(hw, uc_ptr->da_addr, i);
2377 uc_ptr = uc_ptr->next;
2378 } else if (mc_ptr) {
2379 e1000_rar_set(hw, mc_ptr->da_addr, i);
2380 mc_ptr = mc_ptr->next;
2381 } else {
2382 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2383 E1000_WRITE_FLUSH();
2384 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2385 E1000_WRITE_FLUSH();
2386 }
2387 }
2388 WARN_ON(uc_ptr != NULL);
2389
2390 /* clear the old settings from the multicast hash table */
2391
2392 for (i = 0; i < mta_reg_count; i++) {
2393 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2394 E1000_WRITE_FLUSH();
2395 }
2396
2397 /* load any remaining addresses into the hash table */
2398
2399 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2400 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2401 e1000_mta_set(hw, hash_value);
2402 }
2403
2404 if (hw->mac_type == e1000_82542_rev2_0)
2405 e1000_leave_82542_rst(adapter);
2406}
2407
2408/* Need to wait a few seconds after link up to get diagnostic information from
2409 * the phy */
2410
2411static void e1000_update_phy_info(unsigned long data)
2412{
2413 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2414 struct e1000_hw *hw = &adapter->hw;
2415 e1000_phy_get_info(hw, &adapter->phy_info);
2416}
2417
2418/**
2419 * e1000_82547_tx_fifo_stall - Timer Call-back
2420 * @data: pointer to adapter cast into an unsigned long
2421 **/
2422
2423static void e1000_82547_tx_fifo_stall(unsigned long data)
2424{
2425 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2426 struct e1000_hw *hw = &adapter->hw;
2427 struct net_device *netdev = adapter->netdev;
2428 u32 tctl;
2429
2430 if (atomic_read(&adapter->tx_fifo_stall)) {
2431 if ((er32(TDT) == er32(TDH)) &&
2432 (er32(TDFT) == er32(TDFH)) &&
2433 (er32(TDFTS) == er32(TDFHS))) {
2434 tctl = er32(TCTL);
2435 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2436 ew32(TDFT, adapter->tx_head_addr);
2437 ew32(TDFH, adapter->tx_head_addr);
2438 ew32(TDFTS, adapter->tx_head_addr);
2439 ew32(TDFHS, adapter->tx_head_addr);
2440 ew32(TCTL, tctl);
2441 E1000_WRITE_FLUSH();
2442
2443 adapter->tx_fifo_head = 0;
2444 atomic_set(&adapter->tx_fifo_stall, 0);
2445 netif_wake_queue(netdev);
2446 } else {
2447 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2448 }
2449 }
2450}
2451
2452/**
2453 * e1000_watchdog - Timer Call-back
2454 * @data: pointer to adapter cast into an unsigned long
2455 **/
2456static void e1000_watchdog(unsigned long data)
2457{
2458 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2459 struct e1000_hw *hw = &adapter->hw;
2460 struct net_device *netdev = adapter->netdev;
2461 struct e1000_tx_ring *txdr = adapter->tx_ring;
2462 u32 link, tctl;
2463 s32 ret_val;
2464
2465 ret_val = e1000_check_for_link(hw);
2466 if ((ret_val == E1000_ERR_PHY) &&
2467 (hw->phy_type == e1000_phy_igp_3) &&
2468 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2469 /* See e1000_kumeran_lock_loss_workaround() */
2470 DPRINTK(LINK, INFO,
2471 "Gigabit has been disabled, downgrading speed\n");
2472 }
2473
2474 if (hw->mac_type == e1000_82573) {
2475 e1000_enable_tx_pkt_filtering(hw);
2476 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2477 e1000_update_mng_vlan(adapter);
2478 }
2479
2480 if ((hw->media_type == e1000_media_type_internal_serdes) &&
2481 !(er32(TXCW) & E1000_TXCW_ANE))
2482 link = !hw->serdes_link_down;
2483 else
2484 link = er32(STATUS) & E1000_STATUS_LU;
2485
2486 if (link) {
2487 if (!netif_carrier_ok(netdev)) {
2488 u32 ctrl;
2489 bool txb2b = true;
2490 e1000_get_speed_and_duplex(hw,
2491 &adapter->link_speed,
2492 &adapter->link_duplex);
2493
2494 ctrl = er32(CTRL);
2495 printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2496 "Flow Control: %s\n",
2497 netdev->name,
2498 adapter->link_speed,
2499 adapter->link_duplex == FULL_DUPLEX ?
2500 "Full Duplex" : "Half Duplex",
2501 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2502 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2503 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2504 E1000_CTRL_TFCE) ? "TX" : "None" )));
2505
2506 /* tweak tx_queue_len according to speed/duplex
2507 * and adjust the timeout factor */
2508 netdev->tx_queue_len = adapter->tx_queue_len;
2509 adapter->tx_timeout_factor = 1;
2510 switch (adapter->link_speed) {
2511 case SPEED_10:
2512 txb2b = false;
2513 netdev->tx_queue_len = 10;
2514 adapter->tx_timeout_factor = 8;
2515 break;
2516 case SPEED_100:
2517 txb2b = false;
2518 netdev->tx_queue_len = 100;
2519 /* maybe add some timeout factor ? */
2520 break;
2521 }
2522
2523 if ((hw->mac_type == e1000_82571 ||
2524 hw->mac_type == e1000_82572) &&
2525 !txb2b) {
2526 u32 tarc0;
2527 tarc0 = er32(TARC0);
2528 tarc0 &= ~(1 << 21);
2529 ew32(TARC0, tarc0);
2530 }
2531
2532 /* disable TSO for pcie and 10/100 speeds, to avoid
2533 * some hardware issues */
2534 if (!adapter->tso_force &&
2535 hw->bus_type == e1000_bus_type_pci_express){
2536 switch (adapter->link_speed) {
2537 case SPEED_10:
2538 case SPEED_100:
2539 DPRINTK(PROBE,INFO,
2540 "10/100 speed: disabling TSO\n");
2541 netdev->features &= ~NETIF_F_TSO;
2542 netdev->features &= ~NETIF_F_TSO6;
2543 break;
2544 case SPEED_1000:
2545 netdev->features |= NETIF_F_TSO;
2546 netdev->features |= NETIF_F_TSO6;
2547 break;
2548 default:
2549 /* oops */
2550 break;
2551 }
2552 }
2553
2554 /* enable transmits in the hardware, need to do this
2555 * after setting TARC0 */
2556 tctl = er32(TCTL);
2557 tctl |= E1000_TCTL_EN;
2558 ew32(TCTL, tctl);
2559
2560 netif_carrier_on(netdev);
2561 netif_wake_queue(netdev);
2562 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2563 adapter->smartspeed = 0;
2564 } else {
2565 /* make sure the receive unit is started */
2566 if (hw->rx_needs_kicking) {
2567 u32 rctl = er32(RCTL);
2568 ew32(RCTL, rctl | E1000_RCTL_EN);
2569 }
2570 }
2571 } else {
2572 if (netif_carrier_ok(netdev)) {
2573 adapter->link_speed = 0;
2574 adapter->link_duplex = 0;
2575 printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2576 netdev->name);
2577 netif_carrier_off(netdev);
2578 netif_stop_queue(netdev);
2579 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2580
2581 /* 80003ES2LAN workaround--
2582 * For packet buffer work-around on link down event;
2583 * disable receives in the ISR and
2584 * reset device here in the watchdog
2585 */
2586 if (hw->mac_type == e1000_80003es2lan)
2587 /* reset device */
2588 schedule_work(&adapter->reset_task);
2589 }
2590
2591 e1000_smartspeed(adapter);
2592 }
2593
2594 e1000_update_stats(adapter);
2595
2596 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2597 adapter->tpt_old = adapter->stats.tpt;
2598 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2599 adapter->colc_old = adapter->stats.colc;
2600
2601 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2602 adapter->gorcl_old = adapter->stats.gorcl;
2603 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2604 adapter->gotcl_old = adapter->stats.gotcl;
2605
2606 e1000_update_adaptive(hw);
2607
2608 if (!netif_carrier_ok(netdev)) {
2609 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2610 /* We've lost link, so the controller stops DMA,
2611 * but we've got queued Tx work that's never going
2612 * to get done, so reset controller to flush Tx.
2613 * (Do the reset outside of interrupt context). */
2614 adapter->tx_timeout_count++;
2615 schedule_work(&adapter->reset_task);
2616 }
2617 }
2618
2619 /* Cause software interrupt to ensure rx ring is cleaned */
2620 ew32(ICS, E1000_ICS_RXDMT0);
2621
2622 /* Force detection of hung controller every watchdog period */
2623 adapter->detect_tx_hung = true;
2624
2625 /* With 82571 controllers, LAA may be overwritten due to controller
2626 * reset from the other port. Set the appropriate LAA in RAR[0] */
2627 if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2628 e1000_rar_set(hw, hw->mac_addr, 0);
2629
2630 /* Reset the timer */
2631 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2632}
2633
2634enum latency_range {
2635 lowest_latency = 0,
2636 low_latency = 1,
2637 bulk_latency = 2,
2638 latency_invalid = 255
2639};
2640
2641/**
2642 * e1000_update_itr - update the dynamic ITR value based on statistics
2643 * Stores a new ITR value based on packets and byte
2644 * counts during the last interrupt. The advantage of per interrupt
2645 * computation is faster updates and more accurate ITR for the current
2646 * traffic pattern. Constants in this function were computed
2647 * based on theoretical maximum wire speed and thresholds were set based
2648 * on testing data as well as attempting to minimize response time
2649 * while increasing bulk throughput.
2650 * this functionality is controlled by the InterruptThrottleRate module
2651 * parameter (see e1000_param.c)
2652 * @adapter: pointer to adapter
2653 * @itr_setting: current adapter->itr
2654 * @packets: the number of packets during this measurement interval
2655 * @bytes: the number of bytes during this measurement interval
2656 **/
2657static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2658 u16 itr_setting, int packets, int bytes)
2659{
2660 unsigned int retval = itr_setting;
2661 struct e1000_hw *hw = &adapter->hw;
2662
2663 if (unlikely(hw->mac_type < e1000_82540))
2664 goto update_itr_done;
2665
2666 if (packets == 0)
2667 goto update_itr_done;
2668
2669 switch (itr_setting) {
2670 case lowest_latency:
2671 /* jumbo frames get bulk treatment*/
2672 if (bytes/packets > 8000)
2673 retval = bulk_latency;
2674 else if ((packets < 5) && (bytes > 512))
2675 retval = low_latency;
2676 break;
2677 case low_latency: /* 50 usec aka 20000 ints/s */
2678 if (bytes > 10000) {
2679 /* jumbo frames need bulk latency setting */
2680 if (bytes/packets > 8000)
2681 retval = bulk_latency;
2682 else if ((packets < 10) || ((bytes/packets) > 1200))
2683 retval = bulk_latency;
2684 else if ((packets > 35))
2685 retval = lowest_latency;
2686 } else if (bytes/packets > 2000)
2687 retval = bulk_latency;
2688 else if (packets <= 2 && bytes < 512)
2689 retval = lowest_latency;
2690 break;
2691 case bulk_latency: /* 250 usec aka 4000 ints/s */
2692 if (bytes > 25000) {
2693 if (packets > 35)
2694 retval = low_latency;
2695 } else if (bytes < 6000) {
2696 retval = low_latency;
2697 }
2698 break;
2699 }
2700
2701update_itr_done:
2702 return retval;
2703}
2704
2705static void e1000_set_itr(struct e1000_adapter *adapter)
2706{
2707 struct e1000_hw *hw = &adapter->hw;
2708 u16 current_itr;
2709 u32 new_itr = adapter->itr;
2710
2711 if (unlikely(hw->mac_type < e1000_82540))
2712 return;
2713
2714 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2715 if (unlikely(adapter->link_speed != SPEED_1000)) {
2716 current_itr = 0;
2717 new_itr = 4000;
2718 goto set_itr_now;
2719 }
2720
2721 adapter->tx_itr = e1000_update_itr(adapter,
2722 adapter->tx_itr,
2723 adapter->total_tx_packets,
2724 adapter->total_tx_bytes);
2725 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2726 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2727 adapter->tx_itr = low_latency;
2728
2729 adapter->rx_itr = e1000_update_itr(adapter,
2730 adapter->rx_itr,
2731 adapter->total_rx_packets,
2732 adapter->total_rx_bytes);
2733 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2734 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2735 adapter->rx_itr = low_latency;
2736
2737 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2738
2739 switch (current_itr) {
2740 /* counts and packets in update_itr are dependent on these numbers */
2741 case lowest_latency:
2742 new_itr = 70000;
2743 break;
2744 case low_latency:
2745 new_itr = 20000; /* aka hwitr = ~200 */
2746 break;
2747 case bulk_latency:
2748 new_itr = 4000;
2749 break;
2750 default:
2751 break;
2752 }
2753
2754set_itr_now:
2755 if (new_itr != adapter->itr) {
2756 /* this attempts to bias the interrupt rate towards Bulk
2757 * by adding intermediate steps when interrupt rate is
2758 * increasing */
2759 new_itr = new_itr > adapter->itr ?
2760 min(adapter->itr + (new_itr >> 2), new_itr) :
2761 new_itr;
2762 adapter->itr = new_itr;
2763 ew32(ITR, 1000000000 / (new_itr * 256));
2764 }
2765
2766 return;
2767}
2768
2769#define E1000_TX_FLAGS_CSUM 0x00000001
2770#define E1000_TX_FLAGS_VLAN 0x00000002
2771#define E1000_TX_FLAGS_TSO 0x00000004
2772#define E1000_TX_FLAGS_IPV4 0x00000008
2773#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2774#define E1000_TX_FLAGS_VLAN_SHIFT 16
2775
2776static int e1000_tso(struct e1000_adapter *adapter,
2777 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2778{
2779 struct e1000_context_desc *context_desc;
2780 struct e1000_buffer *buffer_info;
2781 unsigned int i;
2782 u32 cmd_length = 0;
2783 u16 ipcse = 0, tucse, mss;
2784 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2785 int err;
2786
2787 if (skb_is_gso(skb)) {
2788 if (skb_header_cloned(skb)) {
2789 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2790 if (err)
2791 return err;
2792 }
2793
2794 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2795 mss = skb_shinfo(skb)->gso_size;
2796 if (skb->protocol == htons(ETH_P_IP)) {
2797 struct iphdr *iph = ip_hdr(skb);
2798 iph->tot_len = 0;
2799 iph->check = 0;
2800 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2801 iph->daddr, 0,
2802 IPPROTO_TCP,
2803 0);
2804 cmd_length = E1000_TXD_CMD_IP;
2805 ipcse = skb_transport_offset(skb) - 1;
2806 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2807 ipv6_hdr(skb)->payload_len = 0;
2808 tcp_hdr(skb)->check =
2809 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2810 &ipv6_hdr(skb)->daddr,
2811 0, IPPROTO_TCP, 0);
2812 ipcse = 0;
2813 }
2814 ipcss = skb_network_offset(skb);
2815 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2816 tucss = skb_transport_offset(skb);
2817 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2818 tucse = 0;
2819
2820 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2821 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2822
2823 i = tx_ring->next_to_use;
2824 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2825 buffer_info = &tx_ring->buffer_info[i];
2826
2827 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2828 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2829 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2830 context_desc->upper_setup.tcp_fields.tucss = tucss;
2831 context_desc->upper_setup.tcp_fields.tucso = tucso;
2832 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2833 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2834 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2835 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2836
2837 buffer_info->time_stamp = jiffies;
2838 buffer_info->next_to_watch = i;
2839
2840 if (++i == tx_ring->count) i = 0;
2841 tx_ring->next_to_use = i;
2842
2843 return true;
2844 }
2845 return false;
2846}
2847
2848static bool e1000_tx_csum(struct e1000_adapter *adapter,
2849 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2850{
2851 struct e1000_context_desc *context_desc;
2852 struct e1000_buffer *buffer_info;
2853 unsigned int i;
2854 u8 css;
2855 u32 cmd_len = E1000_TXD_CMD_DEXT;
2856
2857 if (skb->ip_summed != CHECKSUM_PARTIAL)
2858 return false;
2859
2860 switch (skb->protocol) {
2861 case cpu_to_be16(ETH_P_IP):
2862 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2863 cmd_len |= E1000_TXD_CMD_TCP;
2864 break;
2865 case cpu_to_be16(ETH_P_IPV6):
2866 /* XXX not handling all IPV6 headers */
2867 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2868 cmd_len |= E1000_TXD_CMD_TCP;
2869 break;
2870 default:
2871 if (unlikely(net_ratelimit()))
2872 DPRINTK(DRV, WARNING,
2873 "checksum_partial proto=%x!\n", skb->protocol);
2874 break;
2875 }
2876
2877 css = skb_transport_offset(skb);
2878
2879 i = tx_ring->next_to_use;
2880 buffer_info = &tx_ring->buffer_info[i];
2881 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2882
2883 context_desc->lower_setup.ip_config = 0;
2884 context_desc->upper_setup.tcp_fields.tucss = css;
2885 context_desc->upper_setup.tcp_fields.tucso =
2886 css + skb->csum_offset;
2887 context_desc->upper_setup.tcp_fields.tucse = 0;
2888 context_desc->tcp_seg_setup.data = 0;
2889 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2890
2891 buffer_info->time_stamp = jiffies;
2892 buffer_info->next_to_watch = i;
2893
2894 if (unlikely(++i == tx_ring->count)) i = 0;
2895 tx_ring->next_to_use = i;
2896
2897 return true;
2898}
2899
2900#define E1000_MAX_TXD_PWR 12
2901#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2902
2903static int e1000_tx_map(struct e1000_adapter *adapter,
2904 struct e1000_tx_ring *tx_ring,
2905 struct sk_buff *skb, unsigned int first,
2906 unsigned int max_per_txd, unsigned int nr_frags,
2907 unsigned int mss)
2908{
2909 struct e1000_hw *hw = &adapter->hw;
2910 struct e1000_buffer *buffer_info;
2911 unsigned int len = skb->len;
2912 unsigned int offset = 0, size, count = 0, i;
2913 unsigned int f;
2914 len -= skb->data_len;
2915
2916 i = tx_ring->next_to_use;
2917
2918 while (len) {
2919 buffer_info = &tx_ring->buffer_info[i];
2920 size = min(len, max_per_txd);
2921 /* Workaround for Controller erratum --
2922 * descriptor for non-tso packet in a linear SKB that follows a
2923 * tso gets written back prematurely before the data is fully
2924 * DMA'd to the controller */
2925 if (!skb->data_len && tx_ring->last_tx_tso &&
2926 !skb_is_gso(skb)) {
2927 tx_ring->last_tx_tso = 0;
2928 size -= 4;
2929 }
2930
2931 /* Workaround for premature desc write-backs
2932 * in TSO mode. Append 4-byte sentinel desc */
2933 if (unlikely(mss && !nr_frags && size == len && size > 8))
2934 size -= 4;
2935 /* work-around for errata 10 and it applies
2936 * to all controllers in PCI-X mode
2937 * The fix is to make sure that the first descriptor of a
2938 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2939 */
2940 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2941 (size > 2015) && count == 0))
2942 size = 2015;
2943
2944 /* Workaround for potential 82544 hang in PCI-X. Avoid
2945 * terminating buffers within evenly-aligned dwords. */
2946 if (unlikely(adapter->pcix_82544 &&
2947 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2948 size > 4))
2949 size -= 4;
2950
2951 buffer_info->length = size;
2952 buffer_info->dma =
2953 pci_map_single(adapter->pdev,
2954 skb->data + offset,
2955 size,
2956 PCI_DMA_TODEVICE);
2957 buffer_info->time_stamp = jiffies;
2958 buffer_info->next_to_watch = i;
2959
2960 len -= size;
2961 offset += size;
2962 count++;
2963 if (unlikely(++i == tx_ring->count)) i = 0;
2964 }
2965
2966 for (f = 0; f < nr_frags; f++) {
2967 struct skb_frag_struct *frag;
2968
2969 frag = &skb_shinfo(skb)->frags[f];
2970 len = frag->size;
2971 offset = frag->page_offset;
2972
2973 while (len) {
2974 buffer_info = &tx_ring->buffer_info[i];
2975 size = min(len, max_per_txd);
2976 /* Workaround for premature desc write-backs
2977 * in TSO mode. Append 4-byte sentinel desc */
2978 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2979 size -= 4;
2980 /* Workaround for potential 82544 hang in PCI-X.
2981 * Avoid terminating buffers within evenly-aligned
2982 * dwords. */
2983 if (unlikely(adapter->pcix_82544 &&
2984 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2985 size > 4))
2986 size -= 4;
2987
2988 buffer_info->length = size;
2989 buffer_info->dma =
2990 pci_map_page(adapter->pdev,
2991 frag->page,
2992 offset,
2993 size,
2994 PCI_DMA_TODEVICE);
2995 buffer_info->time_stamp = jiffies;
2996 buffer_info->next_to_watch = i;
2997
2998 len -= size;
2999 offset += size;
3000 count++;
3001 if (unlikely(++i == tx_ring->count)) i = 0;
3002 }
3003 }
3004
3005 i = (i == 0) ? tx_ring->count - 1 : i - 1;
3006 tx_ring->buffer_info[i].skb = skb;
3007 tx_ring->buffer_info[first].next_to_watch = i;
3008
3009 return count;
3010}
3011
3012static void e1000_tx_queue(struct e1000_adapter *adapter,
3013 struct e1000_tx_ring *tx_ring, int tx_flags,
3014 int count)
3015{
3016 struct e1000_hw *hw = &adapter->hw;
3017 struct e1000_tx_desc *tx_desc = NULL;
3018 struct e1000_buffer *buffer_info;
3019 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3020 unsigned int i;
3021
3022 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3023 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3024 E1000_TXD_CMD_TSE;
3025 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3026
3027 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3028 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3029 }
3030
3031 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3032 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3033 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3034 }
3035
3036 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3037 txd_lower |= E1000_TXD_CMD_VLE;
3038 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3039 }
3040
3041 i = tx_ring->next_to_use;
3042
3043 while (count--) {
3044 buffer_info = &tx_ring->buffer_info[i];
3045 tx_desc = E1000_TX_DESC(*tx_ring, i);
3046 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3047 tx_desc->lower.data =
3048 cpu_to_le32(txd_lower | buffer_info->length);
3049 tx_desc->upper.data = cpu_to_le32(txd_upper);
3050 if (unlikely(++i == tx_ring->count)) i = 0;
3051 }
3052
3053 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3054
3055 /* Force memory writes to complete before letting h/w
3056 * know there are new descriptors to fetch. (Only
3057 * applicable for weak-ordered memory model archs,
3058 * such as IA-64). */
3059 wmb();
3060
3061 tx_ring->next_to_use = i;
3062 writel(i, hw->hw_addr + tx_ring->tdt);
3063 /* we need this if more than one processor can write to our tail
3064 * at a time, it syncronizes IO on IA64/Altix systems */
3065 mmiowb();
3066}
3067
3068/**
3069 * 82547 workaround to avoid controller hang in half-duplex environment.
3070 * The workaround is to avoid queuing a large packet that would span
3071 * the internal Tx FIFO ring boundary by notifying the stack to resend
3072 * the packet at a later time. This gives the Tx FIFO an opportunity to
3073 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3074 * to the beginning of the Tx FIFO.
3075 **/
3076
3077#define E1000_FIFO_HDR 0x10
3078#define E1000_82547_PAD_LEN 0x3E0
3079
3080static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3081 struct sk_buff *skb)
3082{
3083 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3084 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3085
3086 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3087
3088 if (adapter->link_duplex != HALF_DUPLEX)
3089 goto no_fifo_stall_required;
3090
3091 if (atomic_read(&adapter->tx_fifo_stall))
3092 return 1;
3093
3094 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3095 atomic_set(&adapter->tx_fifo_stall, 1);
3096 return 1;
3097 }
3098
3099no_fifo_stall_required:
3100 adapter->tx_fifo_head += skb_fifo_len;
3101 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3102 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3103 return 0;
3104}
3105
3106#define MINIMUM_DHCP_PACKET_SIZE 282
3107static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3108 struct sk_buff *skb)
3109{
3110 struct e1000_hw *hw = &adapter->hw;
3111 u16 length, offset;
3112 if (vlan_tx_tag_present(skb)) {
3113 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3114 ( hw->mng_cookie.status &
3115 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3116 return 0;
3117 }
3118 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3119 struct ethhdr *eth = (struct ethhdr *)skb->data;
3120 if ((htons(ETH_P_IP) == eth->h_proto)) {
3121 const struct iphdr *ip =
3122 (struct iphdr *)((u8 *)skb->data+14);
3123 if (IPPROTO_UDP == ip->protocol) {
3124 struct udphdr *udp =
3125 (struct udphdr *)((u8 *)ip +
3126 (ip->ihl << 2));
3127 if (ntohs(udp->dest) == 67) {
3128 offset = (u8 *)udp + 8 - skb->data;
3129 length = skb->len - offset;
3130
3131 return e1000_mng_write_dhcp_info(hw,
3132 (u8 *)udp + 8,
3133 length);
3134 }
3135 }
3136 }
3137 }
3138 return 0;
3139}
3140
3141static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3142{
3143 struct e1000_adapter *adapter = netdev_priv(netdev);
3144 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3145
3146 netif_stop_queue(netdev);
3147 /* Herbert's original patch had:
3148 * smp_mb__after_netif_stop_queue();
3149 * but since that doesn't exist yet, just open code it. */
3150 smp_mb();
3151
3152 /* We need to check again in a case another CPU has just
3153 * made room available. */
3154 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3155 return -EBUSY;
3156
3157 /* A reprieve! */
3158 netif_start_queue(netdev);
3159 ++adapter->restart_queue;
3160 return 0;
3161}
3162
3163static int e1000_maybe_stop_tx(struct net_device *netdev,
3164 struct e1000_tx_ring *tx_ring, int size)
3165{
3166 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3167 return 0;
3168 return __e1000_maybe_stop_tx(netdev, size);
3169}
3170
3171#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3172static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3173{
3174 struct e1000_adapter *adapter = netdev_priv(netdev);
3175 struct e1000_hw *hw = &adapter->hw;
3176 struct e1000_tx_ring *tx_ring;
3177 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3178 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3179 unsigned int tx_flags = 0;
3180 unsigned int len = skb->len - skb->data_len;
3181 unsigned int nr_frags;
3182 unsigned int mss;
3183 int count = 0;
3184 int tso;
3185 unsigned int f;
3186
3187 /* This goes back to the question of how to logically map a tx queue
3188 * to a flow. Right now, performance is impacted slightly negatively
3189 * if using multiple tx queues. If the stack breaks away from a
3190 * single qdisc implementation, we can look at this again. */
3191 tx_ring = adapter->tx_ring;
3192
3193 if (unlikely(skb->len <= 0)) {
3194 dev_kfree_skb_any(skb);
3195 return NETDEV_TX_OK;
3196 }
3197
3198 /* 82571 and newer doesn't need the workaround that limited descriptor
3199 * length to 4kB */
3200 if (hw->mac_type >= e1000_82571)
3201 max_per_txd = 8192;
3202
3203 mss = skb_shinfo(skb)->gso_size;
3204 /* The controller does a simple calculation to
3205 * make sure there is enough room in the FIFO before
3206 * initiating the DMA for each buffer. The calc is:
3207 * 4 = ceil(buffer len/mss). To make sure we don't
3208 * overrun the FIFO, adjust the max buffer len if mss
3209 * drops. */
3210 if (mss) {
3211 u8 hdr_len;
3212 max_per_txd = min(mss << 2, max_per_txd);
3213 max_txd_pwr = fls(max_per_txd) - 1;
3214
3215 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3216 * points to just header, pull a few bytes of payload from
3217 * frags into skb->data */
3218 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3219 if (skb->data_len && hdr_len == len) {
3220 switch (hw->mac_type) {
3221 unsigned int pull_size;
3222 case e1000_82544:
3223 /* Make sure we have room to chop off 4 bytes,
3224 * and that the end alignment will work out to
3225 * this hardware's requirements
3226 * NOTE: this is a TSO only workaround
3227 * if end byte alignment not correct move us
3228 * into the next dword */
3229 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3230 break;
3231 /* fall through */
3232 case e1000_82571:
3233 case e1000_82572:
3234 case e1000_82573:
3235 case e1000_ich8lan:
3236 pull_size = min((unsigned int)4, skb->data_len);
3237 if (!__pskb_pull_tail(skb, pull_size)) {
3238 DPRINTK(DRV, ERR,
3239 "__pskb_pull_tail failed.\n");
3240 dev_kfree_skb_any(skb);
3241 return NETDEV_TX_OK;
3242 }
3243 len = skb->len - skb->data_len;
3244 break;
3245 default:
3246 /* do nothing */
3247 break;
3248 }
3249 }
3250 }
3251
3252 /* reserve a descriptor for the offload context */
3253 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3254 count++;
3255 count++;
3256
3257 /* Controller Erratum workaround */
3258 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3259 count++;
3260
3261 count += TXD_USE_COUNT(len, max_txd_pwr);
3262
3263 if (adapter->pcix_82544)
3264 count++;
3265
3266 /* work-around for errata 10 and it applies to all controllers
3267 * in PCI-X mode, so add one more descriptor to the count
3268 */
3269 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3270 (len > 2015)))
3271 count++;
3272
3273 nr_frags = skb_shinfo(skb)->nr_frags;
3274 for (f = 0; f < nr_frags; f++)
3275 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3276 max_txd_pwr);
3277 if (adapter->pcix_82544)
3278 count += nr_frags;
3279
3280
3281 if (hw->tx_pkt_filtering &&
3282 (hw->mac_type == e1000_82573))
3283 e1000_transfer_dhcp_info(adapter, skb);
3284
3285 /* need: count + 2 desc gap to keep tail from touching
3286 * head, otherwise try next time */
3287 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3288 return NETDEV_TX_BUSY;
3289
3290 if (unlikely(hw->mac_type == e1000_82547)) {
3291 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3292 netif_stop_queue(netdev);
3293 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3294 return NETDEV_TX_BUSY;
3295 }
3296 }
3297
3298 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3299 tx_flags |= E1000_TX_FLAGS_VLAN;
3300 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3301 }
3302
3303 first = tx_ring->next_to_use;
3304
3305 tso = e1000_tso(adapter, tx_ring, skb);
3306 if (tso < 0) {
3307 dev_kfree_skb_any(skb);
3308 return NETDEV_TX_OK;
3309 }
3310
3311 if (likely(tso)) {
3312 tx_ring->last_tx_tso = 1;
3313 tx_flags |= E1000_TX_FLAGS_TSO;
3314 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3315 tx_flags |= E1000_TX_FLAGS_CSUM;
3316
3317 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3318 * 82571 hardware supports TSO capabilities for IPv6 as well...
3319 * no longer assume, we must. */
3320 if (likely(skb->protocol == htons(ETH_P_IP)))
3321 tx_flags |= E1000_TX_FLAGS_IPV4;
3322
3323 e1000_tx_queue(adapter, tx_ring, tx_flags,
3324 e1000_tx_map(adapter, tx_ring, skb, first,
3325 max_per_txd, nr_frags, mss));
3326
3327 netdev->trans_start = jiffies;
3328
3329 /* Make sure there is space in the ring for the next send. */
3330 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3331
3332 return NETDEV_TX_OK;
3333}
3334
3335/**
3336 * e1000_tx_timeout - Respond to a Tx Hang
3337 * @netdev: network interface device structure
3338 **/
3339
3340static void e1000_tx_timeout(struct net_device *netdev)
3341{
3342 struct e1000_adapter *adapter = netdev_priv(netdev);
3343
3344 /* Do the reset outside of interrupt context */
3345 adapter->tx_timeout_count++;
3346 schedule_work(&adapter->reset_task);
3347}
3348
3349static void e1000_reset_task(struct work_struct *work)
3350{
3351 struct e1000_adapter *adapter =
3352 container_of(work, struct e1000_adapter, reset_task);
3353
3354 e1000_reinit_locked(adapter);
3355}
3356
3357/**
3358 * e1000_get_stats - Get System Network Statistics
3359 * @netdev: network interface device structure
3360 *
3361 * Returns the address of the device statistics structure.
3362 * The statistics are actually updated from the timer callback.
3363 **/
3364
3365static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3366{
3367 struct e1000_adapter *adapter = netdev_priv(netdev);
3368
3369 /* only return the current stats */
3370 return &adapter->net_stats;
3371}
3372
3373/**
3374 * e1000_change_mtu - Change the Maximum Transfer Unit
3375 * @netdev: network interface device structure
3376 * @new_mtu: new value for maximum frame size
3377 *
3378 * Returns 0 on success, negative on failure
3379 **/
3380
3381static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3382{
3383 struct e1000_adapter *adapter = netdev_priv(netdev);
3384 struct e1000_hw *hw = &adapter->hw;
3385 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3386 u16 eeprom_data = 0;
3387
3388 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3389 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3390 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3391 return -EINVAL;
3392 }
3393
3394 /* Adapter-specific max frame size limits. */
3395 switch (hw->mac_type) {
3396 case e1000_undefined ... e1000_82542_rev2_1:
3397 case e1000_ich8lan:
3398 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3399 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3400 return -EINVAL;
3401 }
3402 break;
3403 case e1000_82573:
3404 /* Jumbo Frames not supported if:
3405 * - this is not an 82573L device
3406 * - ASPM is enabled in any way (0x1A bits 3:2) */
3407 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3408 &eeprom_data);
3409 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3410 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3411 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3412 DPRINTK(PROBE, ERR,
3413 "Jumbo Frames not supported.\n");
3414 return -EINVAL;
3415 }
3416 break;
3417 }
3418 /* ERT will be enabled later to enable wire speed receives */
3419
3420 /* fall through to get support */
3421 case e1000_82571:
3422 case e1000_82572:
3423 case e1000_80003es2lan:
3424#define MAX_STD_JUMBO_FRAME_SIZE 9234
3425 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3426 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3427 return -EINVAL;
3428 }
3429 break;
3430 default:
3431 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3432 break;
3433 }
3434
3435 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3436 * means we reserve 2 more, this pushes us to allocate from the next
3437 * larger slab size
3438 * i.e. RXBUFFER_2048 --> size-4096 slab */
3439
3440 if (max_frame <= E1000_RXBUFFER_256)
3441 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3442 else if (max_frame <= E1000_RXBUFFER_512)
3443 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3444 else if (max_frame <= E1000_RXBUFFER_1024)
3445 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3446 else if (max_frame <= E1000_RXBUFFER_2048)
3447 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3448 else if (max_frame <= E1000_RXBUFFER_4096)
3449 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3450 else if (max_frame <= E1000_RXBUFFER_8192)
3451 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3452 else if (max_frame <= E1000_RXBUFFER_16384)
3453 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3454
3455 /* adjust allocation if LPE protects us, and we aren't using SBP */
3456 if (!hw->tbi_compatibility_on &&
3457 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3458 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3459 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3460
3461 netdev->mtu = new_mtu;
3462 hw->max_frame_size = max_frame;
3463
3464 if (netif_running(netdev))
3465 e1000_reinit_locked(adapter);
3466
3467 return 0;
3468}
3469
3470/**
3471 * e1000_update_stats - Update the board statistics counters
3472 * @adapter: board private structure
3473 **/
3474
3475void e1000_update_stats(struct e1000_adapter *adapter)
3476{
3477 struct e1000_hw *hw = &adapter->hw;
3478 struct pci_dev *pdev = adapter->pdev;
3479 unsigned long flags;
3480 u16 phy_tmp;
3481
3482#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3483
3484 /*
3485 * Prevent stats update while adapter is being reset, or if the pci
3486 * connection is down.
3487 */
3488 if (adapter->link_speed == 0)
3489 return;
3490 if (pci_channel_offline(pdev))
3491 return;
3492
3493 spin_lock_irqsave(&adapter->stats_lock, flags);
3494
3495 /* these counters are modified from e1000_tbi_adjust_stats,
3496 * called from the interrupt context, so they must only
3497 * be written while holding adapter->stats_lock
3498 */
3499
3500 adapter->stats.crcerrs += er32(CRCERRS);
3501 adapter->stats.gprc += er32(GPRC);
3502 adapter->stats.gorcl += er32(GORCL);
3503 adapter->stats.gorch += er32(GORCH);
3504 adapter->stats.bprc += er32(BPRC);
3505 adapter->stats.mprc += er32(MPRC);
3506 adapter->stats.roc += er32(ROC);
3507
3508 if (hw->mac_type != e1000_ich8lan) {
3509 adapter->stats.prc64 += er32(PRC64);
3510 adapter->stats.prc127 += er32(PRC127);
3511 adapter->stats.prc255 += er32(PRC255);
3512 adapter->stats.prc511 += er32(PRC511);
3513 adapter->stats.prc1023 += er32(PRC1023);
3514 adapter->stats.prc1522 += er32(PRC1522);
3515 }
3516
3517 adapter->stats.symerrs += er32(SYMERRS);
3518 adapter->stats.mpc += er32(MPC);
3519 adapter->stats.scc += er32(SCC);
3520 adapter->stats.ecol += er32(ECOL);
3521 adapter->stats.mcc += er32(MCC);
3522 adapter->stats.latecol += er32(LATECOL);
3523 adapter->stats.dc += er32(DC);
3524 adapter->stats.sec += er32(SEC);
3525 adapter->stats.rlec += er32(RLEC);
3526 adapter->stats.xonrxc += er32(XONRXC);
3527 adapter->stats.xontxc += er32(XONTXC);
3528 adapter->stats.xoffrxc += er32(XOFFRXC);
3529 adapter->stats.xofftxc += er32(XOFFTXC);
3530 adapter->stats.fcruc += er32(FCRUC);
3531 adapter->stats.gptc += er32(GPTC);
3532 adapter->stats.gotcl += er32(GOTCL);
3533 adapter->stats.gotch += er32(GOTCH);
3534 adapter->stats.rnbc += er32(RNBC);
3535 adapter->stats.ruc += er32(RUC);
3536 adapter->stats.rfc += er32(RFC);
3537 adapter->stats.rjc += er32(RJC);
3538 adapter->stats.torl += er32(TORL);
3539 adapter->stats.torh += er32(TORH);
3540 adapter->stats.totl += er32(TOTL);
3541 adapter->stats.toth += er32(TOTH);
3542 adapter->stats.tpr += er32(TPR);
3543
3544 if (hw->mac_type != e1000_ich8lan) {
3545 adapter->stats.ptc64 += er32(PTC64);
3546 adapter->stats.ptc127 += er32(PTC127);
3547 adapter->stats.ptc255 += er32(PTC255);
3548 adapter->stats.ptc511 += er32(PTC511);
3549 adapter->stats.ptc1023 += er32(PTC1023);
3550 adapter->stats.ptc1522 += er32(PTC1522);
3551 }
3552
3553 adapter->stats.mptc += er32(MPTC);
3554 adapter->stats.bptc += er32(BPTC);
3555
3556 /* used for adaptive IFS */
3557
3558 hw->tx_packet_delta = er32(TPT);
3559 adapter->stats.tpt += hw->tx_packet_delta;
3560 hw->collision_delta = er32(COLC);
3561 adapter->stats.colc += hw->collision_delta;
3562
3563 if (hw->mac_type >= e1000_82543) {
3564 adapter->stats.algnerrc += er32(ALGNERRC);
3565 adapter->stats.rxerrc += er32(RXERRC);
3566 adapter->stats.tncrs += er32(TNCRS);
3567 adapter->stats.cexterr += er32(CEXTERR);
3568 adapter->stats.tsctc += er32(TSCTC);
3569 adapter->stats.tsctfc += er32(TSCTFC);
3570 }
3571 if (hw->mac_type > e1000_82547_rev_2) {
3572 adapter->stats.iac += er32(IAC);
3573 adapter->stats.icrxoc += er32(ICRXOC);
3574
3575 if (hw->mac_type != e1000_ich8lan) {
3576 adapter->stats.icrxptc += er32(ICRXPTC);
3577 adapter->stats.icrxatc += er32(ICRXATC);
3578 adapter->stats.ictxptc += er32(ICTXPTC);
3579 adapter->stats.ictxatc += er32(ICTXATC);
3580 adapter->stats.ictxqec += er32(ICTXQEC);
3581 adapter->stats.ictxqmtc += er32(ICTXQMTC);
3582 adapter->stats.icrxdmtc += er32(ICRXDMTC);
3583 }
3584 }
3585
3586 /* Fill out the OS statistics structure */
3587 adapter->net_stats.multicast = adapter->stats.mprc;
3588 adapter->net_stats.collisions = adapter->stats.colc;
3589
3590 /* Rx Errors */
3591
3592 /* RLEC on some newer hardware can be incorrect so build
3593 * our own version based on RUC and ROC */
3594 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3595 adapter->stats.crcerrs + adapter->stats.algnerrc +
3596 adapter->stats.ruc + adapter->stats.roc +
3597 adapter->stats.cexterr;
3598 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3599 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3600 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3601 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3602 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3603
3604 /* Tx Errors */
3605 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3606 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3607 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3608 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3609 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3610 if (hw->bad_tx_carr_stats_fd &&
3611 adapter->link_duplex == FULL_DUPLEX) {
3612 adapter->net_stats.tx_carrier_errors = 0;
3613 adapter->stats.tncrs = 0;
3614 }
3615
3616 /* Tx Dropped needs to be maintained elsewhere */
3617
3618 /* Phy Stats */
3619 if (hw->media_type == e1000_media_type_copper) {
3620 if ((adapter->link_speed == SPEED_1000) &&
3621 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3622 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3623 adapter->phy_stats.idle_errors += phy_tmp;
3624 }
3625
3626 if ((hw->mac_type <= e1000_82546) &&
3627 (hw->phy_type == e1000_phy_m88) &&
3628 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3629 adapter->phy_stats.receive_errors += phy_tmp;
3630 }
3631
3632 /* Management Stats */
3633 if (hw->has_smbus) {
3634 adapter->stats.mgptc += er32(MGTPTC);
3635 adapter->stats.mgprc += er32(MGTPRC);
3636 adapter->stats.mgpdc += er32(MGTPDC);
3637 }
3638
3639 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3640}
3641
3642/**
3643 * e1000_intr_msi - Interrupt Handler
3644 * @irq: interrupt number
3645 * @data: pointer to a network interface device structure
3646 **/
3647
3648static irqreturn_t e1000_intr_msi(int irq, void *data)
3649{
3650 struct net_device *netdev = data;
3651 struct e1000_adapter *adapter = netdev_priv(netdev);
3652 struct e1000_hw *hw = &adapter->hw;
3653 u32 icr = er32(ICR);
3654
3655 /* in NAPI mode read ICR disables interrupts using IAM */
3656
3657 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3658 hw->get_link_status = 1;
3659 /* 80003ES2LAN workaround-- For packet buffer work-around on
3660 * link down event; disable receives here in the ISR and reset
3661 * adapter in watchdog */
3662 if (netif_carrier_ok(netdev) &&
3663 (hw->mac_type == e1000_80003es2lan)) {
3664 /* disable receives */
3665 u32 rctl = er32(RCTL);
3666 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3667 }
3668 /* guard against interrupt when we're going down */
3669 if (!test_bit(__E1000_DOWN, &adapter->flags))
3670 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3671 }
3672
3673 if (likely(napi_schedule_prep(&adapter->napi))) {
3674 adapter->total_tx_bytes = 0;
3675 adapter->total_tx_packets = 0;
3676 adapter->total_rx_bytes = 0;
3677 adapter->total_rx_packets = 0;
3678 __napi_schedule(&adapter->napi);
3679 } else
3680 e1000_irq_enable(adapter);
3681
3682 return IRQ_HANDLED;
3683}
3684
3685/**
3686 * e1000_intr - Interrupt Handler
3687 * @irq: interrupt number
3688 * @data: pointer to a network interface device structure
3689 **/
3690
3691static irqreturn_t e1000_intr(int irq, void *data)
3692{
3693 struct net_device *netdev = data;
3694 struct e1000_adapter *adapter = netdev_priv(netdev);
3695 struct e1000_hw *hw = &adapter->hw;
3696 u32 rctl, icr = er32(ICR);
3697
3698 if (unlikely((!icr) || test_bit(__E1000_RESETTING, &adapter->flags)))
3699 return IRQ_NONE; /* Not our interrupt */
3700
3701 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3702 * not set, then the adapter didn't send an interrupt */
3703 if (unlikely(hw->mac_type >= e1000_82571 &&
3704 !(icr & E1000_ICR_INT_ASSERTED)))
3705 return IRQ_NONE;
3706
3707 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3708 * need for the IMC write */
3709
3710 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3711 hw->get_link_status = 1;
3712 /* 80003ES2LAN workaround--
3713 * For packet buffer work-around on link down event;
3714 * disable receives here in the ISR and
3715 * reset adapter in watchdog
3716 */
3717 if (netif_carrier_ok(netdev) &&
3718 (hw->mac_type == e1000_80003es2lan)) {
3719 /* disable receives */
3720 rctl = er32(RCTL);
3721 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3722 }
3723 /* guard against interrupt when we're going down */
3724 if (!test_bit(__E1000_DOWN, &adapter->flags))
3725 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3726 }
3727
3728 if (unlikely(hw->mac_type < e1000_82571)) {
3729 /* disable interrupts, without the synchronize_irq bit */
3730 ew32(IMC, ~0);
3731 E1000_WRITE_FLUSH();
3732 }
3733 if (likely(napi_schedule_prep(&adapter->napi))) {
3734 adapter->total_tx_bytes = 0;
3735 adapter->total_tx_packets = 0;
3736 adapter->total_rx_bytes = 0;
3737 adapter->total_rx_packets = 0;
3738 __napi_schedule(&adapter->napi);
3739 } else
3740 /* this really should not happen! if it does it is basically a
3741 * bug, but not a hard error, so enable ints and continue */
3742 e1000_irq_enable(adapter);
3743
3744 return IRQ_HANDLED;
3745}
3746
3747/**
3748 * e1000_clean - NAPI Rx polling callback
3749 * @adapter: board private structure
3750 **/
3751static int e1000_clean(struct napi_struct *napi, int budget)
3752{
3753 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3754 struct net_device *poll_dev = adapter->netdev;
3755 int tx_cleaned = 0, work_done = 0;
3756
3757 adapter = netdev_priv(poll_dev);
3758
3759 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3760
3761 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3762 &work_done, budget);
3763
3764 if (tx_cleaned)
3765 work_done = budget;
3766
3767 /* If budget not fully consumed, exit the polling mode */
3768 if (work_done < budget) {
3769 if (likely(adapter->itr_setting & 3))
3770 e1000_set_itr(adapter);
3771 napi_complete(napi);
3772 e1000_irq_enable(adapter);
3773 }
3774
3775 return work_done;
3776}
3777
3778/**
3779 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3780 * @adapter: board private structure
3781 **/
3782static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3783 struct e1000_tx_ring *tx_ring)
3784{
3785 struct e1000_hw *hw = &adapter->hw;
3786 struct net_device *netdev = adapter->netdev;
3787 struct e1000_tx_desc *tx_desc, *eop_desc;
3788 struct e1000_buffer *buffer_info;
3789 unsigned int i, eop;
3790 unsigned int count = 0;
3791 bool cleaned = false;
3792 unsigned int total_tx_bytes=0, total_tx_packets=0;
3793
3794 i = tx_ring->next_to_clean;
3795 eop = tx_ring->buffer_info[i].next_to_watch;
3796 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3797
3798 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3799 for (cleaned = false; !cleaned; ) {
3800 tx_desc = E1000_TX_DESC(*tx_ring, i);
3801 buffer_info = &tx_ring->buffer_info[i];
3802 cleaned = (i == eop);
3803
3804 if (cleaned) {
3805 struct sk_buff *skb = buffer_info->skb;
3806 unsigned int segs, bytecount;
3807 segs = skb_shinfo(skb)->gso_segs ?: 1;
3808 /* multiply data chunks by size of headers */
3809 bytecount = ((segs - 1) * skb_headlen(skb)) +
3810 skb->len;
3811 total_tx_packets += segs;
3812 total_tx_bytes += bytecount;
3813 }
3814 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3815 tx_desc->upper.data = 0;
3816
3817 if (unlikely(++i == tx_ring->count)) i = 0;
3818 }
3819
3820 eop = tx_ring->buffer_info[i].next_to_watch;
3821 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3822#define E1000_TX_WEIGHT 64
3823 /* weight of a sort for tx, to avoid endless transmit cleanup */
3824 if (count++ == E1000_TX_WEIGHT)
3825 break;
3826 }
3827
3828 tx_ring->next_to_clean = i;
3829
3830#define TX_WAKE_THRESHOLD 32
3831 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3832 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3833 /* Make sure that anybody stopping the queue after this
3834 * sees the new next_to_clean.
3835 */
3836 smp_mb();
3837 if (netif_queue_stopped(netdev)) {
3838 netif_wake_queue(netdev);
3839 ++adapter->restart_queue;
3840 }
3841 }
3842
3843 if (adapter->detect_tx_hung) {
3844 /* Detect a transmit hang in hardware, this serializes the
3845 * check with the clearing of time_stamp and movement of i */
3846 adapter->detect_tx_hung = false;
3847 if (tx_ring->buffer_info[eop].dma &&
3848 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3849 (adapter->tx_timeout_factor * HZ))
3850 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3851
3852 /* detected Tx unit hang */
3853 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3854 " Tx Queue <%lu>\n"
3855 " TDH <%x>\n"
3856 " TDT <%x>\n"
3857 " next_to_use <%x>\n"
3858 " next_to_clean <%x>\n"
3859 "buffer_info[next_to_clean]\n"
3860 " time_stamp <%lx>\n"
3861 " next_to_watch <%x>\n"
3862 " jiffies <%lx>\n"
3863 " next_to_watch.status <%x>\n",
3864 (unsigned long)((tx_ring - adapter->tx_ring) /
3865 sizeof(struct e1000_tx_ring)),
3866 readl(hw->hw_addr + tx_ring->tdh),
3867 readl(hw->hw_addr + tx_ring->tdt),
3868 tx_ring->next_to_use,
3869 tx_ring->next_to_clean,
3870 tx_ring->buffer_info[eop].time_stamp,
3871 eop,
3872 jiffies,
3873 eop_desc->upper.fields.status);
3874 netif_stop_queue(netdev);
3875 }
3876 }
3877 adapter->total_tx_bytes += total_tx_bytes;
3878 adapter->total_tx_packets += total_tx_packets;
3879 adapter->net_stats.tx_bytes += total_tx_bytes;
3880 adapter->net_stats.tx_packets += total_tx_packets;
3881 return cleaned;
3882}
3883
3884/**
3885 * e1000_rx_checksum - Receive Checksum Offload for 82543
3886 * @adapter: board private structure
3887 * @status_err: receive descriptor status and error fields
3888 * @csum: receive descriptor csum field
3889 * @sk_buff: socket buffer with received data
3890 **/
3891
3892static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3893 u32 csum, struct sk_buff *skb)
3894{
3895 struct e1000_hw *hw = &adapter->hw;
3896 u16 status = (u16)status_err;
3897 u8 errors = (u8)(status_err >> 24);
3898 skb->ip_summed = CHECKSUM_NONE;
3899
3900 /* 82543 or newer only */
3901 if (unlikely(hw->mac_type < e1000_82543)) return;
3902 /* Ignore Checksum bit is set */
3903 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3904 /* TCP/UDP checksum error bit is set */
3905 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3906 /* let the stack verify checksum errors */
3907 adapter->hw_csum_err++;
3908 return;
3909 }
3910 /* TCP/UDP Checksum has not been calculated */
3911 if (hw->mac_type <= e1000_82547_rev_2) {
3912 if (!(status & E1000_RXD_STAT_TCPCS))
3913 return;
3914 } else {
3915 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3916 return;
3917 }
3918 /* It must be a TCP or UDP packet with a valid checksum */
3919 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3920 /* TCP checksum is good */
3921 skb->ip_summed = CHECKSUM_UNNECESSARY;
3922 } else if (hw->mac_type > e1000_82547_rev_2) {
3923 /* IP fragment with UDP payload */
3924 /* Hardware complements the payload checksum, so we undo it
3925 * and then put the value in host order for further stack use.
3926 */
3927 __sum16 sum = (__force __sum16)htons(csum);
3928 skb->csum = csum_unfold(~sum);
3929 skb->ip_summed = CHECKSUM_COMPLETE;
3930 }
3931 adapter->hw_csum_good++;
3932}
3933
3934/**
3935 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3936 * @adapter: board private structure
3937 **/
3938static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3939 struct e1000_rx_ring *rx_ring,
3940 int *work_done, int work_to_do)
3941{
3942 struct e1000_hw *hw = &adapter->hw;
3943 struct net_device *netdev = adapter->netdev;
3944 struct pci_dev *pdev = adapter->pdev;
3945 struct e1000_rx_desc *rx_desc, *next_rxd;
3946 struct e1000_buffer *buffer_info, *next_buffer;
3947 unsigned long flags;
3948 u32 length;
3949 u8 last_byte;
3950 unsigned int i;
3951 int cleaned_count = 0;
3952 bool cleaned = false;
3953 unsigned int total_rx_bytes=0, total_rx_packets=0;
3954
3955 i = rx_ring->next_to_clean;
3956 rx_desc = E1000_RX_DESC(*rx_ring, i);
3957 buffer_info = &rx_ring->buffer_info[i];
3958
3959 while (rx_desc->status & E1000_RXD_STAT_DD) {
3960 struct sk_buff *skb;
3961 u8 status;
3962
3963 if (*work_done >= work_to_do)
3964 break;
3965 (*work_done)++;
3966
3967 status = rx_desc->status;
3968 skb = buffer_info->skb;
3969 buffer_info->skb = NULL;
3970
3971 prefetch(skb->data - NET_IP_ALIGN);
3972
3973 if (++i == rx_ring->count) i = 0;
3974 next_rxd = E1000_RX_DESC(*rx_ring, i);
3975 prefetch(next_rxd);
3976
3977 next_buffer = &rx_ring->buffer_info[i];
3978
3979 cleaned = true;
3980 cleaned_count++;
3981 pci_unmap_single(pdev,
3982 buffer_info->dma,
3983 buffer_info->length,
3984 PCI_DMA_FROMDEVICE);
3985
3986 length = le16_to_cpu(rx_desc->length);
3987
3988 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3989 /* All receives must fit into a single buffer */
3990 E1000_DBG("%s: Receive packet consumed multiple"
3991 " buffers\n", netdev->name);
3992 /* recycle */
3993 buffer_info->skb = skb;
3994 goto next_desc;
3995 }
3996
3997 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3998 last_byte = *(skb->data + length - 1);
3999 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4000 last_byte)) {
4001 spin_lock_irqsave(&adapter->stats_lock, flags);
4002 e1000_tbi_adjust_stats(hw, &adapter->stats,
4003 length, skb->data);
4004 spin_unlock_irqrestore(&adapter->stats_lock,
4005 flags);
4006 length--;
4007 } else {
4008 /* recycle */
4009 buffer_info->skb = skb;
4010 goto next_desc;
4011 }
4012 }
4013
4014 /* adjust length to remove Ethernet CRC, this must be
4015 * done after the TBI_ACCEPT workaround above */
4016 length -= 4;
4017
4018 /* probably a little skewed due to removing CRC */
4019 total_rx_bytes += length;
4020 total_rx_packets++;
4021
4022 /* code added for copybreak, this should improve
4023 * performance for small packets with large amounts
4024 * of reassembly being done in the stack */
4025 if (length < copybreak) {
4026 struct sk_buff *new_skb =
4027 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4028 if (new_skb) {
4029 skb_reserve(new_skb, NET_IP_ALIGN);
4030 skb_copy_to_linear_data_offset(new_skb,
4031 -NET_IP_ALIGN,
4032 (skb->data -
4033 NET_IP_ALIGN),
4034 (length +
4035 NET_IP_ALIGN));
4036 /* save the skb in buffer_info as good */
4037 buffer_info->skb = skb;
4038 skb = new_skb;
4039 }
4040 /* else just continue with the old one */
4041 }
4042 /* end copybreak code */
4043 skb_put(skb, length);
4044
4045 /* Receive Checksum Offload */
4046 e1000_rx_checksum(adapter,
4047 (u32)(status) |
4048 ((u32)(rx_desc->errors) << 24),
4049 le16_to_cpu(rx_desc->csum), skb);
4050
4051 skb->protocol = eth_type_trans(skb, netdev);
4052
4053 if (unlikely(adapter->vlgrp &&
4054 (status & E1000_RXD_STAT_VP))) {
4055 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4056 le16_to_cpu(rx_desc->special));
4057 } else {
4058 netif_receive_skb(skb);
4059 }
4060
4061next_desc:
4062 rx_desc->status = 0;
4063
4064 /* return some buffers to hardware, one at a time is too slow */
4065 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4066 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4067 cleaned_count = 0;
4068 }
4069
4070 /* use prefetched values */
4071 rx_desc = next_rxd;
4072 buffer_info = next_buffer;
4073 }
4074 rx_ring->next_to_clean = i;
4075
4076 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4077 if (cleaned_count)
4078 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4079
4080 adapter->total_rx_packets += total_rx_packets;
4081 adapter->total_rx_bytes += total_rx_bytes;
4082 adapter->net_stats.rx_bytes += total_rx_bytes;
4083 adapter->net_stats.rx_packets += total_rx_packets;
4084 return cleaned;
4085}
4086
4087/**
4088 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4089 * @adapter: address of board private structure
4090 **/
4091
4092static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4093 struct e1000_rx_ring *rx_ring,
4094 int cleaned_count)
4095{
4096 struct e1000_hw *hw = &adapter->hw;
4097 struct net_device *netdev = adapter->netdev;
4098 struct pci_dev *pdev = adapter->pdev;
4099 struct e1000_rx_desc *rx_desc;
4100 struct e1000_buffer *buffer_info;
4101 struct sk_buff *skb;
4102 unsigned int i;
4103 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4104
4105 i = rx_ring->next_to_use;
4106 buffer_info = &rx_ring->buffer_info[i];
4107
4108 while (cleaned_count--) {
4109 skb = buffer_info->skb;
4110 if (skb) {
4111 skb_trim(skb, 0);
4112 goto map_skb;
4113 }
4114
4115 skb = netdev_alloc_skb(netdev, bufsz);
4116 if (unlikely(!skb)) {
4117 /* Better luck next round */
4118 adapter->alloc_rx_buff_failed++;
4119 break;
4120 }
4121
4122 /* Fix for errata 23, can't cross 64kB boundary */
4123 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4124 struct sk_buff *oldskb = skb;
4125 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4126 "at %p\n", bufsz, skb->data);
4127 /* Try again, without freeing the previous */
4128 skb = netdev_alloc_skb(netdev, bufsz);
4129 /* Failed allocation, critical failure */
4130 if (!skb) {
4131 dev_kfree_skb(oldskb);
4132 break;
4133 }
4134
4135 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4136 /* give up */
4137 dev_kfree_skb(skb);
4138 dev_kfree_skb(oldskb);
4139 break; /* while !buffer_info->skb */
4140 }
4141
4142 /* Use new allocation */
4143 dev_kfree_skb(oldskb);
4144 }
4145 /* Make buffer alignment 2 beyond a 16 byte boundary
4146 * this will result in a 16 byte aligned IP header after
4147 * the 14 byte MAC header is removed
4148 */
4149 skb_reserve(skb, NET_IP_ALIGN);
4150
4151 buffer_info->skb = skb;
4152 buffer_info->length = adapter->rx_buffer_len;
4153map_skb:
4154 buffer_info->dma = pci_map_single(pdev,
4155 skb->data,
4156 adapter->rx_buffer_len,
4157 PCI_DMA_FROMDEVICE);
4158
4159 /* Fix for errata 23, can't cross 64kB boundary */
4160 if (!e1000_check_64k_bound(adapter,
4161 (void *)(unsigned long)buffer_info->dma,
4162 adapter->rx_buffer_len)) {
4163 DPRINTK(RX_ERR, ERR,
4164 "dma align check failed: %u bytes at %p\n",
4165 adapter->rx_buffer_len,
4166 (void *)(unsigned long)buffer_info->dma);
4167 dev_kfree_skb(skb);
4168 buffer_info->skb = NULL;
4169
4170 pci_unmap_single(pdev, buffer_info->dma,
4171 adapter->rx_buffer_len,
4172 PCI_DMA_FROMDEVICE);
4173
4174 break; /* while !buffer_info->skb */
4175 }
4176 rx_desc = E1000_RX_DESC(*rx_ring, i);
4177 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4178
4179 if (unlikely(++i == rx_ring->count))
4180 i = 0;
4181 buffer_info = &rx_ring->buffer_info[i];
4182 }
4183
4184 if (likely(rx_ring->next_to_use != i)) {
4185 rx_ring->next_to_use = i;
4186 if (unlikely(i-- == 0))
4187 i = (rx_ring->count - 1);
4188
4189 /* Force memory writes to complete before letting h/w
4190 * know there are new descriptors to fetch. (Only
4191 * applicable for weak-ordered memory model archs,
4192 * such as IA-64). */
4193 wmb();
4194 writel(i, hw->hw_addr + rx_ring->rdt);
4195 }
4196}
4197
4198/**
4199 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4200 * @adapter:
4201 **/
4202
4203static void e1000_smartspeed(struct e1000_adapter *adapter)
4204{
4205 struct e1000_hw *hw = &adapter->hw;
4206 u16 phy_status;
4207 u16 phy_ctrl;
4208
4209 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4210 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4211 return;
4212
4213 if (adapter->smartspeed == 0) {
4214 /* If Master/Slave config fault is asserted twice,
4215 * we assume back-to-back */
4216 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4217 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4218 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4219 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4220 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4221 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4222 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4223 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4224 phy_ctrl);
4225 adapter->smartspeed++;
4226 if (!e1000_phy_setup_autoneg(hw) &&
4227 !e1000_read_phy_reg(hw, PHY_CTRL,
4228 &phy_ctrl)) {
4229 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4230 MII_CR_RESTART_AUTO_NEG);
4231 e1000_write_phy_reg(hw, PHY_CTRL,
4232 phy_ctrl);
4233 }
4234 }
4235 return;
4236 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4237 /* If still no link, perhaps using 2/3 pair cable */
4238 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4239 phy_ctrl |= CR_1000T_MS_ENABLE;
4240 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4241 if (!e1000_phy_setup_autoneg(hw) &&
4242 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4243 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4244 MII_CR_RESTART_AUTO_NEG);
4245 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4246 }
4247 }
4248 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4249 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4250 adapter->smartspeed = 0;
4251}
4252
4253/**
4254 * e1000_ioctl -
4255 * @netdev:
4256 * @ifreq:
4257 * @cmd:
4258 **/
4259
4260static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4261{
4262 switch (cmd) {
4263 case SIOCGMIIPHY:
4264 case SIOCGMIIREG:
4265 case SIOCSMIIREG:
4266 return e1000_mii_ioctl(netdev, ifr, cmd);
4267 default:
4268 return -EOPNOTSUPP;
4269 }
4270}
4271
4272/**
4273 * e1000_mii_ioctl -
4274 * @netdev:
4275 * @ifreq:
4276 * @cmd:
4277 **/
4278
4279static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4280 int cmd)
4281{
4282 struct e1000_adapter *adapter = netdev_priv(netdev);
4283 struct e1000_hw *hw = &adapter->hw;
4284 struct mii_ioctl_data *data = if_mii(ifr);
4285 int retval;
4286 u16 mii_reg;
4287 u16 spddplx;
4288 unsigned long flags;
4289
4290 if (hw->media_type != e1000_media_type_copper)
4291 return -EOPNOTSUPP;
4292
4293 switch (cmd) {
4294 case SIOCGMIIPHY:
4295 data->phy_id = hw->phy_addr;
4296 break;
4297 case SIOCGMIIREG:
4298 if (!capable(CAP_NET_ADMIN))
4299 return -EPERM;
4300 spin_lock_irqsave(&adapter->stats_lock, flags);
4301 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4302 &data->val_out)) {
4303 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4304 return -EIO;
4305 }
4306 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4307 break;
4308 case SIOCSMIIREG:
4309 if (!capable(CAP_NET_ADMIN))
4310 return -EPERM;
4311 if (data->reg_num & ~(0x1F))
4312 return -EFAULT;
4313 mii_reg = data->val_in;
4314 spin_lock_irqsave(&adapter->stats_lock, flags);
4315 if (e1000_write_phy_reg(hw, data->reg_num,
4316 mii_reg)) {
4317 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4318 return -EIO;
4319 }
4320 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4321 if (hw->media_type == e1000_media_type_copper) {
4322 switch (data->reg_num) {
4323 case PHY_CTRL:
4324 if (mii_reg & MII_CR_POWER_DOWN)
4325 break;
4326 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4327 hw->autoneg = 1;
4328 hw->autoneg_advertised = 0x2F;
4329 } else {
4330 if (mii_reg & 0x40)
4331 spddplx = SPEED_1000;
4332 else if (mii_reg & 0x2000)
4333 spddplx = SPEED_100;
4334 else
4335 spddplx = SPEED_10;
4336 spddplx += (mii_reg & 0x100)
4337 ? DUPLEX_FULL :
4338 DUPLEX_HALF;
4339 retval = e1000_set_spd_dplx(adapter,
4340 spddplx);
4341 if (retval)
4342 return retval;
4343 }
4344 if (netif_running(adapter->netdev))
4345 e1000_reinit_locked(adapter);
4346 else
4347 e1000_reset(adapter);
4348 break;
4349 case M88E1000_PHY_SPEC_CTRL:
4350 case M88E1000_EXT_PHY_SPEC_CTRL:
4351 if (e1000_phy_reset(hw))
4352 return -EIO;
4353 break;
4354 }
4355 } else {
4356 switch (data->reg_num) {
4357 case PHY_CTRL:
4358 if (mii_reg & MII_CR_POWER_DOWN)
4359 break;
4360 if (netif_running(adapter->netdev))
4361 e1000_reinit_locked(adapter);
4362 else
4363 e1000_reset(adapter);
4364 break;
4365 }
4366 }
4367 break;
4368 default:
4369 return -EOPNOTSUPP;
4370 }
4371 return E1000_SUCCESS;
4372}
4373
4374void e1000_pci_set_mwi(struct e1000_hw *hw)
4375{
4376 struct e1000_adapter *adapter = hw->back;
4377 int ret_val = pci_set_mwi(adapter->pdev);
4378
4379 if (ret_val)
4380 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4381}
4382
4383void e1000_pci_clear_mwi(struct e1000_hw *hw)
4384{
4385 struct e1000_adapter *adapter = hw->back;
4386
4387 pci_clear_mwi(adapter->pdev);
4388}
4389
4390int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4391{
4392 struct e1000_adapter *adapter = hw->back;
4393 return pcix_get_mmrbc(adapter->pdev);
4394}
4395
4396void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4397{
4398 struct e1000_adapter *adapter = hw->back;
4399 pcix_set_mmrbc(adapter->pdev, mmrbc);
4400}
4401
4402s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4403{
4404 struct e1000_adapter *adapter = hw->back;
4405 u16 cap_offset;
4406
4407 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4408 if (!cap_offset)
4409 return -E1000_ERR_CONFIG;
4410
4411 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4412
4413 return E1000_SUCCESS;
4414}
4415
4416void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4417{
4418 outl(value, port);
4419}
4420
4421static void e1000_vlan_rx_register(struct net_device *netdev,
4422 struct vlan_group *grp)
4423{
4424 struct e1000_adapter *adapter = netdev_priv(netdev);
4425 struct e1000_hw *hw = &adapter->hw;
4426 u32 ctrl, rctl;
4427
4428 if (!test_bit(__E1000_DOWN, &adapter->flags))
4429 e1000_irq_disable(adapter);
4430 adapter->vlgrp = grp;
4431
4432 if (grp) {
4433 /* enable VLAN tag insert/strip */
4434 ctrl = er32(CTRL);
4435 ctrl |= E1000_CTRL_VME;
4436 ew32(CTRL, ctrl);
4437
4438 if (adapter->hw.mac_type != e1000_ich8lan) {
4439 /* enable VLAN receive filtering */
4440 rctl = er32(RCTL);
4441 rctl &= ~E1000_RCTL_CFIEN;
4442 ew32(RCTL, rctl);
4443 e1000_update_mng_vlan(adapter);
4444 }
4445 } else {
4446 /* disable VLAN tag insert/strip */
4447 ctrl = er32(CTRL);
4448 ctrl &= ~E1000_CTRL_VME;
4449 ew32(CTRL, ctrl);
4450
4451 if (adapter->hw.mac_type != e1000_ich8lan) {
4452 if (adapter->mng_vlan_id !=
4453 (u16)E1000_MNG_VLAN_NONE) {
4454 e1000_vlan_rx_kill_vid(netdev,
4455 adapter->mng_vlan_id);
4456 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4457 }
4458 }
4459 }
4460
4461 if (!test_bit(__E1000_DOWN, &adapter->flags))
4462 e1000_irq_enable(adapter);
4463}
4464
4465static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4466{
4467 struct e1000_adapter *adapter = netdev_priv(netdev);
4468 struct e1000_hw *hw = &adapter->hw;
4469 u32 vfta, index;
4470
4471 if ((hw->mng_cookie.status &
4472 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4473 (vid == adapter->mng_vlan_id))
4474 return;
4475 /* add VID to filter table */
4476 index = (vid >> 5) & 0x7F;
4477 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4478 vfta |= (1 << (vid & 0x1F));
4479 e1000_write_vfta(hw, index, vfta);
4480}
4481
4482static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4483{
4484 struct e1000_adapter *adapter = netdev_priv(netdev);
4485 struct e1000_hw *hw = &adapter->hw;
4486 u32 vfta, index;
4487
4488 if (!test_bit(__E1000_DOWN, &adapter->flags))
4489 e1000_irq_disable(adapter);
4490 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4491 if (!test_bit(__E1000_DOWN, &adapter->flags))
4492 e1000_irq_enable(adapter);
4493
4494 if ((hw->mng_cookie.status &
4495 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4496 (vid == adapter->mng_vlan_id)) {
4497 /* release control to f/w */
4498 e1000_release_hw_control(adapter);
4499 return;
4500 }
4501
4502 /* remove VID from filter table */
4503 index = (vid >> 5) & 0x7F;
4504 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4505 vfta &= ~(1 << (vid & 0x1F));
4506 e1000_write_vfta(hw, index, vfta);
4507}
4508
4509static void e1000_restore_vlan(struct e1000_adapter *adapter)
4510{
4511 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4512
4513 if (adapter->vlgrp) {
4514 u16 vid;
4515 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4516 if (!vlan_group_get_device(adapter->vlgrp, vid))
4517 continue;
4518 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4519 }
4520 }
4521}
4522
4523int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4524{
4525 struct e1000_hw *hw = &adapter->hw;
4526
4527 hw->autoneg = 0;
4528
4529 /* Fiber NICs only allow 1000 gbps Full duplex */
4530 if ((hw->media_type == e1000_media_type_fiber) &&
4531 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4532 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4533 return -EINVAL;
4534 }
4535
4536 switch (spddplx) {
4537 case SPEED_10 + DUPLEX_HALF:
4538 hw->forced_speed_duplex = e1000_10_half;
4539 break;
4540 case SPEED_10 + DUPLEX_FULL:
4541 hw->forced_speed_duplex = e1000_10_full;
4542 break;
4543 case SPEED_100 + DUPLEX_HALF:
4544 hw->forced_speed_duplex = e1000_100_half;
4545 break;
4546 case SPEED_100 + DUPLEX_FULL:
4547 hw->forced_speed_duplex = e1000_100_full;
4548 break;
4549 case SPEED_1000 + DUPLEX_FULL:
4550 hw->autoneg = 1;
4551 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4552 break;
4553 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4554 default:
4555 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4556 return -EINVAL;
4557 }
4558 return 0;
4559}
4560
4561static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4562{
4563 struct net_device *netdev = pci_get_drvdata(pdev);
4564 struct e1000_adapter *adapter = netdev_priv(netdev);
4565 struct e1000_hw *hw = &adapter->hw;
4566 u32 ctrl, ctrl_ext, rctl, status;
4567 u32 wufc = adapter->wol;
4568#ifdef CONFIG_PM
4569 int retval = 0;
4570#endif
4571
4572 netif_device_detach(netdev);
4573
4574 if (netif_running(netdev)) {
4575 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4576 e1000_down(adapter);
4577 }
4578
4579#ifdef CONFIG_PM
4580 retval = pci_save_state(pdev);
4581 if (retval)
4582 return retval;
4583#endif
4584
4585 status = er32(STATUS);
4586 if (status & E1000_STATUS_LU)
4587 wufc &= ~E1000_WUFC_LNKC;
4588
4589 if (wufc) {
4590 e1000_setup_rctl(adapter);
4591 e1000_set_rx_mode(netdev);
4592
4593 /* turn on all-multi mode if wake on multicast is enabled */
4594 if (wufc & E1000_WUFC_MC) {
4595 rctl = er32(RCTL);
4596 rctl |= E1000_RCTL_MPE;
4597 ew32(RCTL, rctl);
4598 }
4599
4600 if (hw->mac_type >= e1000_82540) {
4601 ctrl = er32(CTRL);
4602 /* advertise wake from D3Cold */
4603 #define E1000_CTRL_ADVD3WUC 0x00100000
4604 /* phy power management enable */
4605 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4606 ctrl |= E1000_CTRL_ADVD3WUC |
4607 E1000_CTRL_EN_PHY_PWR_MGMT;
4608 ew32(CTRL, ctrl);
4609 }
4610
4611 if (hw->media_type == e1000_media_type_fiber ||
4612 hw->media_type == e1000_media_type_internal_serdes) {
4613 /* keep the laser running in D3 */
4614 ctrl_ext = er32(CTRL_EXT);
4615 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4616 ew32(CTRL_EXT, ctrl_ext);
4617 }
4618
4619 /* Allow time for pending master requests to run */
4620 e1000_disable_pciex_master(hw);
4621
4622 ew32(WUC, E1000_WUC_PME_EN);
4623 ew32(WUFC, wufc);
4624 pci_enable_wake(pdev, PCI_D3hot, 1);
4625 pci_enable_wake(pdev, PCI_D3cold, 1);
4626 } else {
4627 ew32(WUC, 0);
4628 ew32(WUFC, 0);
4629 pci_enable_wake(pdev, PCI_D3hot, 0);
4630 pci_enable_wake(pdev, PCI_D3cold, 0);
4631 }
4632
4633 e1000_release_manageability(adapter);
4634
4635 /* make sure adapter isn't asleep if manageability is enabled */
4636 if (adapter->en_mng_pt) {
4637 pci_enable_wake(pdev, PCI_D3hot, 1);
4638 pci_enable_wake(pdev, PCI_D3cold, 1);
4639 }
4640
4641 if (hw->phy_type == e1000_phy_igp_3)
4642 e1000_phy_powerdown_workaround(hw);
4643
4644 if (netif_running(netdev))
4645 e1000_free_irq(adapter);
4646
4647 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4648 * would have already happened in close and is redundant. */
4649 e1000_release_hw_control(adapter);
4650
4651 pci_disable_device(pdev);
4652
4653 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4654
4655 return 0;
4656}
4657
4658#ifdef CONFIG_PM
4659static int e1000_resume(struct pci_dev *pdev)
4660{
4661 struct net_device *netdev = pci_get_drvdata(pdev);
4662 struct e1000_adapter *adapter = netdev_priv(netdev);
4663 struct e1000_hw *hw = &adapter->hw;
4664 u32 err;
4665
4666 pci_set_power_state(pdev, PCI_D0);
4667 pci_restore_state(pdev);
4668
4669 if (adapter->need_ioport)
4670 err = pci_enable_device(pdev);
4671 else
4672 err = pci_enable_device_mem(pdev);
4673 if (err) {
4674 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4675 return err;
4676 }
4677 pci_set_master(pdev);
4678
4679 pci_enable_wake(pdev, PCI_D3hot, 0);
4680 pci_enable_wake(pdev, PCI_D3cold, 0);
4681
4682 if (netif_running(netdev)) {
4683 err = e1000_request_irq(adapter);
4684 if (err)
4685 return err;
4686 }
4687
4688 e1000_power_up_phy(adapter);
4689 e1000_reset(adapter);
4690 ew32(WUS, ~0);
4691
4692 e1000_init_manageability(adapter);
4693
4694 if (netif_running(netdev))
4695 e1000_up(adapter);
4696
4697 netif_device_attach(netdev);
4698
4699 /* If the controller is 82573 and f/w is AMT, do not set
4700 * DRV_LOAD until the interface is up. For all other cases,
4701 * let the f/w know that the h/w is now under the control
4702 * of the driver. */
4703 if (hw->mac_type != e1000_82573 ||
4704 !e1000_check_mng_mode(hw))
4705 e1000_get_hw_control(adapter);
4706
4707 return 0;
4708}
4709#endif
4710
4711static void e1000_shutdown(struct pci_dev *pdev)
4712{
4713 e1000_suspend(pdev, PMSG_SUSPEND);
4714}
4715
4716#ifdef CONFIG_NET_POLL_CONTROLLER
4717/*
4718 * Polling 'interrupt' - used by things like netconsole to send skbs
4719 * without having to re-enable interrupts. It's not called while
4720 * the interrupt routine is executing.
4721 */
4722static void e1000_netpoll(struct net_device *netdev)
4723{
4724 struct e1000_adapter *adapter = netdev_priv(netdev);
4725
4726 disable_irq(adapter->pdev->irq);
4727 e1000_intr(adapter->pdev->irq, netdev);
4728 enable_irq(adapter->pdev->irq);
4729}
4730#endif
4731
4732/**
4733 * e1000_io_error_detected - called when PCI error is detected
4734 * @pdev: Pointer to PCI device
4735 * @state: The current pci conneection state
4736 *
4737 * This function is called after a PCI bus error affecting
4738 * this device has been detected.
4739 */
4740static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4741 pci_channel_state_t state)
4742{
4743 struct net_device *netdev = pci_get_drvdata(pdev);
4744 struct e1000_adapter *adapter = netdev_priv(netdev);
4745
4746 netif_device_detach(netdev);
4747
4748 if (netif_running(netdev))
4749 e1000_down(adapter);
4750 pci_disable_device(pdev);
4751
4752 /* Request a slot slot reset. */
4753 return PCI_ERS_RESULT_NEED_RESET;
4754}
4755
4756/**
4757 * e1000_io_slot_reset - called after the pci bus has been reset.
4758 * @pdev: Pointer to PCI device
4759 *
4760 * Restart the card from scratch, as if from a cold-boot. Implementation
4761 * resembles the first-half of the e1000_resume routine.
4762 */
4763static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4764{
4765 struct net_device *netdev = pci_get_drvdata(pdev);
4766 struct e1000_adapter *adapter = netdev_priv(netdev);
4767 struct e1000_hw *hw = &adapter->hw;
4768 int err;
4769
4770 if (adapter->need_ioport)
4771 err = pci_enable_device(pdev);
4772 else
4773 err = pci_enable_device_mem(pdev);
4774 if (err) {
4775 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4776 return PCI_ERS_RESULT_DISCONNECT;
4777 }
4778 pci_set_master(pdev);
4779
4780 pci_enable_wake(pdev, PCI_D3hot, 0);
4781 pci_enable_wake(pdev, PCI_D3cold, 0);
4782
4783 e1000_reset(adapter);
4784 ew32(WUS, ~0);
4785
4786 return PCI_ERS_RESULT_RECOVERED;
4787}
4788
4789/**
4790 * e1000_io_resume - called when traffic can start flowing again.
4791 * @pdev: Pointer to PCI device
4792 *
4793 * This callback is called when the error recovery driver tells us that
4794 * its OK to resume normal operation. Implementation resembles the
4795 * second-half of the e1000_resume routine.
4796 */
4797static void e1000_io_resume(struct pci_dev *pdev)
4798{
4799 struct net_device *netdev = pci_get_drvdata(pdev);
4800 struct e1000_adapter *adapter = netdev_priv(netdev);
4801 struct e1000_hw *hw = &adapter->hw;
4802
4803 e1000_init_manageability(adapter);
4804
4805 if (netif_running(netdev)) {
4806 if (e1000_up(adapter)) {
4807 printk("e1000: can't bring device back up after reset\n");
4808 return;
4809 }
4810 }
4811
4812 netif_device_attach(netdev);
4813
4814 /* If the controller is 82573 and f/w is AMT, do not set
4815 * DRV_LOAD until the interface is up. For all other cases,
4816 * let the f/w know that the h/w is now under the control
4817 * of the driver. */
4818 if (hw->mac_type != e1000_82573 ||
4819 !e1000_check_mng_mode(hw))
4820 e1000_get_hw_control(adapter);
4821
4822}
4823
4824/* e1000_main.c */