]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - drivers/net/ethernet/freescale/fec_main.c
xen-netfront: use napi_complete() correctly to prevent Rx stalling
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / freescale / fec_main.c
... / ...
CommitLineData
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/string.h>
27#include <linux/ptrace.h>
28#include <linux/errno.h>
29#include <linux/ioport.h>
30#include <linux/slab.h>
31#include <linux/interrupt.h>
32#include <linux/delay.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/skbuff.h>
36#include <linux/in.h>
37#include <linux/ip.h>
38#include <net/ip.h>
39#include <net/tso.h>
40#include <linux/tcp.h>
41#include <linux/udp.h>
42#include <linux/icmp.h>
43#include <linux/spinlock.h>
44#include <linux/workqueue.h>
45#include <linux/bitops.h>
46#include <linux/io.h>
47#include <linux/irq.h>
48#include <linux/clk.h>
49#include <linux/platform_device.h>
50#include <linux/phy.h>
51#include <linux/fec.h>
52#include <linux/of.h>
53#include <linux/of_device.h>
54#include <linux/of_gpio.h>
55#include <linux/of_mdio.h>
56#include <linux/of_net.h>
57#include <linux/regulator/consumer.h>
58#include <linux/if_vlan.h>
59#include <linux/pinctrl/consumer.h>
60#include <linux/prefetch.h>
61
62#include <asm/cacheflush.h>
63
64#include "fec.h"
65
66static void set_multicast_list(struct net_device *ndev);
67static void fec_enet_itr_coal_init(struct net_device *ndev);
68
69#define DRIVER_NAME "fec"
70
71#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
72
73/* Pause frame feild and FIFO threshold */
74#define FEC_ENET_FCE (1 << 5)
75#define FEC_ENET_RSEM_V 0x84
76#define FEC_ENET_RSFL_V 16
77#define FEC_ENET_RAEM_V 0x8
78#define FEC_ENET_RAFL_V 0x8
79#define FEC_ENET_OPD_V 0xFFF0
80
81static struct platform_device_id fec_devtype[] = {
82 {
83 /* keep it for coldfire */
84 .name = DRIVER_NAME,
85 .driver_data = 0,
86 }, {
87 .name = "imx25-fec",
88 .driver_data = FEC_QUIRK_USE_GASKET,
89 }, {
90 .name = "imx27-fec",
91 .driver_data = 0,
92 }, {
93 .name = "imx28-fec",
94 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
95 }, {
96 .name = "imx6q-fec",
97 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
98 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
99 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
100 }, {
101 .name = "mvf600-fec",
102 .driver_data = FEC_QUIRK_ENET_MAC,
103 }, {
104 .name = "imx6sx-fec",
105 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
106 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
107 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
108 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
109 }, {
110 /* sentinel */
111 }
112};
113MODULE_DEVICE_TABLE(platform, fec_devtype);
114
115enum imx_fec_type {
116 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
117 IMX27_FEC, /* runs on i.mx27/35/51 */
118 IMX28_FEC,
119 IMX6Q_FEC,
120 MVF600_FEC,
121 IMX6SX_FEC,
122};
123
124static const struct of_device_id fec_dt_ids[] = {
125 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
126 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
127 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
128 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
129 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
130 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
131 { /* sentinel */ }
132};
133MODULE_DEVICE_TABLE(of, fec_dt_ids);
134
135static unsigned char macaddr[ETH_ALEN];
136module_param_array(macaddr, byte, NULL, 0);
137MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
138
139#if defined(CONFIG_M5272)
140/*
141 * Some hardware gets it MAC address out of local flash memory.
142 * if this is non-zero then assume it is the address to get MAC from.
143 */
144#if defined(CONFIG_NETtel)
145#define FEC_FLASHMAC 0xf0006006
146#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
147#define FEC_FLASHMAC 0xf0006000
148#elif defined(CONFIG_CANCam)
149#define FEC_FLASHMAC 0xf0020000
150#elif defined (CONFIG_M5272C3)
151#define FEC_FLASHMAC (0xffe04000 + 4)
152#elif defined(CONFIG_MOD5272)
153#define FEC_FLASHMAC 0xffc0406b
154#else
155#define FEC_FLASHMAC 0
156#endif
157#endif /* CONFIG_M5272 */
158
159/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
160 */
161#define PKT_MAXBUF_SIZE 1522
162#define PKT_MINBUF_SIZE 64
163#define PKT_MAXBLR_SIZE 1536
164
165/* FEC receive acceleration */
166#define FEC_RACC_IPDIS (1 << 1)
167#define FEC_RACC_PRODIS (1 << 2)
168#define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
169
170/*
171 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
172 * size bits. Other FEC hardware does not, so we need to take that into
173 * account when setting it.
174 */
175#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
176 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
177#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
178#else
179#define OPT_FRAME_SIZE 0
180#endif
181
182/* FEC MII MMFR bits definition */
183#define FEC_MMFR_ST (1 << 30)
184#define FEC_MMFR_OP_READ (2 << 28)
185#define FEC_MMFR_OP_WRITE (1 << 28)
186#define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
187#define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
188#define FEC_MMFR_TA (2 << 16)
189#define FEC_MMFR_DATA(v) (v & 0xffff)
190
191#define FEC_MII_TIMEOUT 30000 /* us */
192
193/* Transmitter timeout */
194#define TX_TIMEOUT (2 * HZ)
195
196#define FEC_PAUSE_FLAG_AUTONEG 0x1
197#define FEC_PAUSE_FLAG_ENABLE 0x2
198
199#define COPYBREAK_DEFAULT 256
200
201#define TSO_HEADER_SIZE 128
202/* Max number of allowed TCP segments for software TSO */
203#define FEC_MAX_TSO_SEGS 100
204#define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
205
206#define IS_TSO_HEADER(txq, addr) \
207 ((addr >= txq->tso_hdrs_dma) && \
208 (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
209
210static int mii_cnt;
211
212static inline
213struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
214 struct fec_enet_private *fep,
215 int queue_id)
216{
217 struct bufdesc *new_bd = bdp + 1;
218 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
219 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
220 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
221 struct bufdesc_ex *ex_base;
222 struct bufdesc *base;
223 int ring_size;
224
225 if (bdp >= txq->tx_bd_base) {
226 base = txq->tx_bd_base;
227 ring_size = txq->tx_ring_size;
228 ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
229 } else {
230 base = rxq->rx_bd_base;
231 ring_size = rxq->rx_ring_size;
232 ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
233 }
234
235 if (fep->bufdesc_ex)
236 return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
237 ex_base : ex_new_bd);
238 else
239 return (new_bd >= (base + ring_size)) ?
240 base : new_bd;
241}
242
243static inline
244struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
245 struct fec_enet_private *fep,
246 int queue_id)
247{
248 struct bufdesc *new_bd = bdp - 1;
249 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
250 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
251 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
252 struct bufdesc_ex *ex_base;
253 struct bufdesc *base;
254 int ring_size;
255
256 if (bdp >= txq->tx_bd_base) {
257 base = txq->tx_bd_base;
258 ring_size = txq->tx_ring_size;
259 ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
260 } else {
261 base = rxq->rx_bd_base;
262 ring_size = rxq->rx_ring_size;
263 ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
264 }
265
266 if (fep->bufdesc_ex)
267 return (struct bufdesc *)((ex_new_bd < ex_base) ?
268 (ex_new_bd + ring_size) : ex_new_bd);
269 else
270 return (new_bd < base) ? (new_bd + ring_size) : new_bd;
271}
272
273static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
274 struct fec_enet_private *fep)
275{
276 return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
277}
278
279static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
280 struct fec_enet_priv_tx_q *txq)
281{
282 int entries;
283
284 entries = ((const char *)txq->dirty_tx -
285 (const char *)txq->cur_tx) / fep->bufdesc_size - 1;
286
287 return entries > 0 ? entries : entries + txq->tx_ring_size;
288}
289
290static void swap_buffer(void *bufaddr, int len)
291{
292 int i;
293 unsigned int *buf = bufaddr;
294
295 for (i = 0; i < len; i += 4, buf++)
296 swab32s(buf);
297}
298
299static void swap_buffer2(void *dst_buf, void *src_buf, int len)
300{
301 int i;
302 unsigned int *src = src_buf;
303 unsigned int *dst = dst_buf;
304
305 for (i = 0; i < len; i += 4, src++, dst++)
306 *dst = swab32p(src);
307}
308
309static void fec_dump(struct net_device *ndev)
310{
311 struct fec_enet_private *fep = netdev_priv(ndev);
312 struct bufdesc *bdp;
313 struct fec_enet_priv_tx_q *txq;
314 int index = 0;
315
316 netdev_info(ndev, "TX ring dump\n");
317 pr_info("Nr SC addr len SKB\n");
318
319 txq = fep->tx_queue[0];
320 bdp = txq->tx_bd_base;
321
322 do {
323 pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
324 index,
325 bdp == txq->cur_tx ? 'S' : ' ',
326 bdp == txq->dirty_tx ? 'H' : ' ',
327 bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
328 txq->tx_skbuff[index]);
329 bdp = fec_enet_get_nextdesc(bdp, fep, 0);
330 index++;
331 } while (bdp != txq->tx_bd_base);
332}
333
334static inline bool is_ipv4_pkt(struct sk_buff *skb)
335{
336 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
337}
338
339static int
340fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
341{
342 /* Only run for packets requiring a checksum. */
343 if (skb->ip_summed != CHECKSUM_PARTIAL)
344 return 0;
345
346 if (unlikely(skb_cow_head(skb, 0)))
347 return -1;
348
349 if (is_ipv4_pkt(skb))
350 ip_hdr(skb)->check = 0;
351 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
352
353 return 0;
354}
355
356static int
357fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
358 struct sk_buff *skb,
359 struct net_device *ndev)
360{
361 struct fec_enet_private *fep = netdev_priv(ndev);
362 struct bufdesc *bdp = txq->cur_tx;
363 struct bufdesc_ex *ebdp;
364 int nr_frags = skb_shinfo(skb)->nr_frags;
365 unsigned short queue = skb_get_queue_mapping(skb);
366 int frag, frag_len;
367 unsigned short status;
368 unsigned int estatus = 0;
369 skb_frag_t *this_frag;
370 unsigned int index;
371 void *bufaddr;
372 dma_addr_t addr;
373 int i;
374
375 for (frag = 0; frag < nr_frags; frag++) {
376 this_frag = &skb_shinfo(skb)->frags[frag];
377 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
378 ebdp = (struct bufdesc_ex *)bdp;
379
380 status = bdp->cbd_sc;
381 status &= ~BD_ENET_TX_STATS;
382 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
383 frag_len = skb_shinfo(skb)->frags[frag].size;
384
385 /* Handle the last BD specially */
386 if (frag == nr_frags - 1) {
387 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
388 if (fep->bufdesc_ex) {
389 estatus |= BD_ENET_TX_INT;
390 if (unlikely(skb_shinfo(skb)->tx_flags &
391 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
392 estatus |= BD_ENET_TX_TS;
393 }
394 }
395
396 if (fep->bufdesc_ex) {
397 if (fep->quirks & FEC_QUIRK_HAS_AVB)
398 estatus |= FEC_TX_BD_FTYPE(queue);
399 if (skb->ip_summed == CHECKSUM_PARTIAL)
400 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
401 ebdp->cbd_bdu = 0;
402 ebdp->cbd_esc = estatus;
403 }
404
405 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
406
407 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
408 if (((unsigned long) bufaddr) & fep->tx_align ||
409 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
410 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
411 bufaddr = txq->tx_bounce[index];
412
413 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
414 swap_buffer(bufaddr, frag_len);
415 }
416
417 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
418 DMA_TO_DEVICE);
419 if (dma_mapping_error(&fep->pdev->dev, addr)) {
420 dev_kfree_skb_any(skb);
421 if (net_ratelimit())
422 netdev_err(ndev, "Tx DMA memory map failed\n");
423 goto dma_mapping_error;
424 }
425
426 bdp->cbd_bufaddr = addr;
427 bdp->cbd_datlen = frag_len;
428 bdp->cbd_sc = status;
429 }
430
431 txq->cur_tx = bdp;
432
433 return 0;
434
435dma_mapping_error:
436 bdp = txq->cur_tx;
437 for (i = 0; i < frag; i++) {
438 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
439 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
440 bdp->cbd_datlen, DMA_TO_DEVICE);
441 }
442 return NETDEV_TX_OK;
443}
444
445static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
446 struct sk_buff *skb, struct net_device *ndev)
447{
448 struct fec_enet_private *fep = netdev_priv(ndev);
449 int nr_frags = skb_shinfo(skb)->nr_frags;
450 struct bufdesc *bdp, *last_bdp;
451 void *bufaddr;
452 dma_addr_t addr;
453 unsigned short status;
454 unsigned short buflen;
455 unsigned short queue;
456 unsigned int estatus = 0;
457 unsigned int index;
458 int entries_free;
459 int ret;
460
461 entries_free = fec_enet_get_free_txdesc_num(fep, txq);
462 if (entries_free < MAX_SKB_FRAGS + 1) {
463 dev_kfree_skb_any(skb);
464 if (net_ratelimit())
465 netdev_err(ndev, "NOT enough BD for SG!\n");
466 return NETDEV_TX_OK;
467 }
468
469 /* Protocol checksum off-load for TCP and UDP. */
470 if (fec_enet_clear_csum(skb, ndev)) {
471 dev_kfree_skb_any(skb);
472 return NETDEV_TX_OK;
473 }
474
475 /* Fill in a Tx ring entry */
476 bdp = txq->cur_tx;
477 status = bdp->cbd_sc;
478 status &= ~BD_ENET_TX_STATS;
479
480 /* Set buffer length and buffer pointer */
481 bufaddr = skb->data;
482 buflen = skb_headlen(skb);
483
484 queue = skb_get_queue_mapping(skb);
485 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
486 if (((unsigned long) bufaddr) & fep->tx_align ||
487 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
488 memcpy(txq->tx_bounce[index], skb->data, buflen);
489 bufaddr = txq->tx_bounce[index];
490
491 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
492 swap_buffer(bufaddr, buflen);
493 }
494
495 /* Push the data cache so the CPM does not get stale memory data. */
496 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
497 if (dma_mapping_error(&fep->pdev->dev, addr)) {
498 dev_kfree_skb_any(skb);
499 if (net_ratelimit())
500 netdev_err(ndev, "Tx DMA memory map failed\n");
501 return NETDEV_TX_OK;
502 }
503
504 if (nr_frags) {
505 ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
506 if (ret)
507 return ret;
508 } else {
509 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
510 if (fep->bufdesc_ex) {
511 estatus = BD_ENET_TX_INT;
512 if (unlikely(skb_shinfo(skb)->tx_flags &
513 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
514 estatus |= BD_ENET_TX_TS;
515 }
516 }
517
518 if (fep->bufdesc_ex) {
519
520 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
521
522 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
523 fep->hwts_tx_en))
524 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
525
526 if (fep->quirks & FEC_QUIRK_HAS_AVB)
527 estatus |= FEC_TX_BD_FTYPE(queue);
528
529 if (skb->ip_summed == CHECKSUM_PARTIAL)
530 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
531
532 ebdp->cbd_bdu = 0;
533 ebdp->cbd_esc = estatus;
534 }
535
536 last_bdp = txq->cur_tx;
537 index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
538 /* Save skb pointer */
539 txq->tx_skbuff[index] = skb;
540
541 bdp->cbd_datlen = buflen;
542 bdp->cbd_bufaddr = addr;
543
544 /* Send it on its way. Tell FEC it's ready, interrupt when done,
545 * it's the last BD of the frame, and to put the CRC on the end.
546 */
547 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
548 bdp->cbd_sc = status;
549
550 /* If this was the last BD in the ring, start at the beginning again. */
551 bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
552
553 skb_tx_timestamp(skb);
554
555 txq->cur_tx = bdp;
556
557 /* Trigger transmission start */
558 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
559
560 return 0;
561}
562
563static int
564fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
565 struct net_device *ndev,
566 struct bufdesc *bdp, int index, char *data,
567 int size, bool last_tcp, bool is_last)
568{
569 struct fec_enet_private *fep = netdev_priv(ndev);
570 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
571 unsigned short queue = skb_get_queue_mapping(skb);
572 unsigned short status;
573 unsigned int estatus = 0;
574 dma_addr_t addr;
575
576 status = bdp->cbd_sc;
577 status &= ~BD_ENET_TX_STATS;
578
579 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
580
581 if (((unsigned long) data) & fep->tx_align ||
582 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
583 memcpy(txq->tx_bounce[index], data, size);
584 data = txq->tx_bounce[index];
585
586 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
587 swap_buffer(data, size);
588 }
589
590 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
591 if (dma_mapping_error(&fep->pdev->dev, addr)) {
592 dev_kfree_skb_any(skb);
593 if (net_ratelimit())
594 netdev_err(ndev, "Tx DMA memory map failed\n");
595 return NETDEV_TX_BUSY;
596 }
597
598 bdp->cbd_datlen = size;
599 bdp->cbd_bufaddr = addr;
600
601 if (fep->bufdesc_ex) {
602 if (fep->quirks & FEC_QUIRK_HAS_AVB)
603 estatus |= FEC_TX_BD_FTYPE(queue);
604 if (skb->ip_summed == CHECKSUM_PARTIAL)
605 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
606 ebdp->cbd_bdu = 0;
607 ebdp->cbd_esc = estatus;
608 }
609
610 /* Handle the last BD specially */
611 if (last_tcp)
612 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
613 if (is_last) {
614 status |= BD_ENET_TX_INTR;
615 if (fep->bufdesc_ex)
616 ebdp->cbd_esc |= BD_ENET_TX_INT;
617 }
618
619 bdp->cbd_sc = status;
620
621 return 0;
622}
623
624static int
625fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
626 struct sk_buff *skb, struct net_device *ndev,
627 struct bufdesc *bdp, int index)
628{
629 struct fec_enet_private *fep = netdev_priv(ndev);
630 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
631 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
632 unsigned short queue = skb_get_queue_mapping(skb);
633 void *bufaddr;
634 unsigned long dmabuf;
635 unsigned short status;
636 unsigned int estatus = 0;
637
638 status = bdp->cbd_sc;
639 status &= ~BD_ENET_TX_STATS;
640 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
641
642 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
643 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
644 if (((unsigned long)bufaddr) & fep->tx_align ||
645 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
646 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
647 bufaddr = txq->tx_bounce[index];
648
649 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
650 swap_buffer(bufaddr, hdr_len);
651
652 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
653 hdr_len, DMA_TO_DEVICE);
654 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
655 dev_kfree_skb_any(skb);
656 if (net_ratelimit())
657 netdev_err(ndev, "Tx DMA memory map failed\n");
658 return NETDEV_TX_BUSY;
659 }
660 }
661
662 bdp->cbd_bufaddr = dmabuf;
663 bdp->cbd_datlen = hdr_len;
664
665 if (fep->bufdesc_ex) {
666 if (fep->quirks & FEC_QUIRK_HAS_AVB)
667 estatus |= FEC_TX_BD_FTYPE(queue);
668 if (skb->ip_summed == CHECKSUM_PARTIAL)
669 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
670 ebdp->cbd_bdu = 0;
671 ebdp->cbd_esc = estatus;
672 }
673
674 bdp->cbd_sc = status;
675
676 return 0;
677}
678
679static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
680 struct sk_buff *skb,
681 struct net_device *ndev)
682{
683 struct fec_enet_private *fep = netdev_priv(ndev);
684 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
685 int total_len, data_left;
686 struct bufdesc *bdp = txq->cur_tx;
687 unsigned short queue = skb_get_queue_mapping(skb);
688 struct tso_t tso;
689 unsigned int index = 0;
690 int ret;
691
692 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
693 dev_kfree_skb_any(skb);
694 if (net_ratelimit())
695 netdev_err(ndev, "NOT enough BD for TSO!\n");
696 return NETDEV_TX_OK;
697 }
698
699 /* Protocol checksum off-load for TCP and UDP. */
700 if (fec_enet_clear_csum(skb, ndev)) {
701 dev_kfree_skb_any(skb);
702 return NETDEV_TX_OK;
703 }
704
705 /* Initialize the TSO handler, and prepare the first payload */
706 tso_start(skb, &tso);
707
708 total_len = skb->len - hdr_len;
709 while (total_len > 0) {
710 char *hdr;
711
712 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
713 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
714 total_len -= data_left;
715
716 /* prepare packet headers: MAC + IP + TCP */
717 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
718 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
719 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
720 if (ret)
721 goto err_release;
722
723 while (data_left > 0) {
724 int size;
725
726 size = min_t(int, tso.size, data_left);
727 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
728 index = fec_enet_get_bd_index(txq->tx_bd_base,
729 bdp, fep);
730 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
731 bdp, index,
732 tso.data, size,
733 size == data_left,
734 total_len == 0);
735 if (ret)
736 goto err_release;
737
738 data_left -= size;
739 tso_build_data(skb, &tso, size);
740 }
741
742 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
743 }
744
745 /* Save skb pointer */
746 txq->tx_skbuff[index] = skb;
747
748 skb_tx_timestamp(skb);
749 txq->cur_tx = bdp;
750
751 /* Trigger transmission start */
752 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
753 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
754 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
755 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
756 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
757 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
758
759 return 0;
760
761err_release:
762 /* TODO: Release all used data descriptors for TSO */
763 return ret;
764}
765
766static netdev_tx_t
767fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
768{
769 struct fec_enet_private *fep = netdev_priv(ndev);
770 int entries_free;
771 unsigned short queue;
772 struct fec_enet_priv_tx_q *txq;
773 struct netdev_queue *nq;
774 int ret;
775
776 queue = skb_get_queue_mapping(skb);
777 txq = fep->tx_queue[queue];
778 nq = netdev_get_tx_queue(ndev, queue);
779
780 if (skb_is_gso(skb))
781 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
782 else
783 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
784 if (ret)
785 return ret;
786
787 entries_free = fec_enet_get_free_txdesc_num(fep, txq);
788 if (entries_free <= txq->tx_stop_threshold)
789 netif_tx_stop_queue(nq);
790
791 return NETDEV_TX_OK;
792}
793
794/* Init RX & TX buffer descriptors
795 */
796static void fec_enet_bd_init(struct net_device *dev)
797{
798 struct fec_enet_private *fep = netdev_priv(dev);
799 struct fec_enet_priv_tx_q *txq;
800 struct fec_enet_priv_rx_q *rxq;
801 struct bufdesc *bdp;
802 unsigned int i;
803 unsigned int q;
804
805 for (q = 0; q < fep->num_rx_queues; q++) {
806 /* Initialize the receive buffer descriptors. */
807 rxq = fep->rx_queue[q];
808 bdp = rxq->rx_bd_base;
809
810 for (i = 0; i < rxq->rx_ring_size; i++) {
811
812 /* Initialize the BD for every fragment in the page. */
813 if (bdp->cbd_bufaddr)
814 bdp->cbd_sc = BD_ENET_RX_EMPTY;
815 else
816 bdp->cbd_sc = 0;
817 bdp = fec_enet_get_nextdesc(bdp, fep, q);
818 }
819
820 /* Set the last buffer to wrap */
821 bdp = fec_enet_get_prevdesc(bdp, fep, q);
822 bdp->cbd_sc |= BD_SC_WRAP;
823
824 rxq->cur_rx = rxq->rx_bd_base;
825 }
826
827 for (q = 0; q < fep->num_tx_queues; q++) {
828 /* ...and the same for transmit */
829 txq = fep->tx_queue[q];
830 bdp = txq->tx_bd_base;
831 txq->cur_tx = bdp;
832
833 for (i = 0; i < txq->tx_ring_size; i++) {
834 /* Initialize the BD for every fragment in the page. */
835 bdp->cbd_sc = 0;
836 if (txq->tx_skbuff[i]) {
837 dev_kfree_skb_any(txq->tx_skbuff[i]);
838 txq->tx_skbuff[i] = NULL;
839 }
840 bdp->cbd_bufaddr = 0;
841 bdp = fec_enet_get_nextdesc(bdp, fep, q);
842 }
843
844 /* Set the last buffer to wrap */
845 bdp = fec_enet_get_prevdesc(bdp, fep, q);
846 bdp->cbd_sc |= BD_SC_WRAP;
847 txq->dirty_tx = bdp;
848 }
849}
850
851static void fec_enet_active_rxring(struct net_device *ndev)
852{
853 struct fec_enet_private *fep = netdev_priv(ndev);
854 int i;
855
856 for (i = 0; i < fep->num_rx_queues; i++)
857 writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
858}
859
860static void fec_enet_enable_ring(struct net_device *ndev)
861{
862 struct fec_enet_private *fep = netdev_priv(ndev);
863 struct fec_enet_priv_tx_q *txq;
864 struct fec_enet_priv_rx_q *rxq;
865 int i;
866
867 for (i = 0; i < fep->num_rx_queues; i++) {
868 rxq = fep->rx_queue[i];
869 writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
870 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
871
872 /* enable DMA1/2 */
873 if (i)
874 writel(RCMR_MATCHEN | RCMR_CMP(i),
875 fep->hwp + FEC_RCMR(i));
876 }
877
878 for (i = 0; i < fep->num_tx_queues; i++) {
879 txq = fep->tx_queue[i];
880 writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
881
882 /* enable DMA1/2 */
883 if (i)
884 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
885 fep->hwp + FEC_DMA_CFG(i));
886 }
887}
888
889static void fec_enet_reset_skb(struct net_device *ndev)
890{
891 struct fec_enet_private *fep = netdev_priv(ndev);
892 struct fec_enet_priv_tx_q *txq;
893 int i, j;
894
895 for (i = 0; i < fep->num_tx_queues; i++) {
896 txq = fep->tx_queue[i];
897
898 for (j = 0; j < txq->tx_ring_size; j++) {
899 if (txq->tx_skbuff[j]) {
900 dev_kfree_skb_any(txq->tx_skbuff[j]);
901 txq->tx_skbuff[j] = NULL;
902 }
903 }
904 }
905}
906
907/*
908 * This function is called to start or restart the FEC during a link
909 * change, transmit timeout, or to reconfigure the FEC. The network
910 * packet processing for this device must be stopped before this call.
911 */
912static void
913fec_restart(struct net_device *ndev)
914{
915 struct fec_enet_private *fep = netdev_priv(ndev);
916 u32 val;
917 u32 temp_mac[2];
918 u32 rcntl = OPT_FRAME_SIZE | 0x04;
919 u32 ecntl = 0x2; /* ETHEREN */
920
921 /* Whack a reset. We should wait for this.
922 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
923 * instead of reset MAC itself.
924 */
925 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
926 writel(0, fep->hwp + FEC_ECNTRL);
927 } else {
928 writel(1, fep->hwp + FEC_ECNTRL);
929 udelay(10);
930 }
931
932 /*
933 * enet-mac reset will reset mac address registers too,
934 * so need to reconfigure it.
935 */
936 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
937 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
938 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
939 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
940 }
941
942 /* Clear any outstanding interrupt. */
943 writel(0xffffffff, fep->hwp + FEC_IEVENT);
944
945 fec_enet_bd_init(ndev);
946
947 fec_enet_enable_ring(ndev);
948
949 /* Reset tx SKB buffers. */
950 fec_enet_reset_skb(ndev);
951
952 /* Enable MII mode */
953 if (fep->full_duplex == DUPLEX_FULL) {
954 /* FD enable */
955 writel(0x04, fep->hwp + FEC_X_CNTRL);
956 } else {
957 /* No Rcv on Xmit */
958 rcntl |= 0x02;
959 writel(0x0, fep->hwp + FEC_X_CNTRL);
960 }
961
962 /* Set MII speed */
963 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
964
965#if !defined(CONFIG_M5272)
966 /* set RX checksum */
967 val = readl(fep->hwp + FEC_RACC);
968 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
969 val |= FEC_RACC_OPTIONS;
970 else
971 val &= ~FEC_RACC_OPTIONS;
972 writel(val, fep->hwp + FEC_RACC);
973#endif
974
975 /*
976 * The phy interface and speed need to get configured
977 * differently on enet-mac.
978 */
979 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
980 /* Enable flow control and length check */
981 rcntl |= 0x40000000 | 0x00000020;
982
983 /* RGMII, RMII or MII */
984 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
985 rcntl |= (1 << 6);
986 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
987 rcntl |= (1 << 8);
988 else
989 rcntl &= ~(1 << 8);
990
991 /* 1G, 100M or 10M */
992 if (fep->phy_dev) {
993 if (fep->phy_dev->speed == SPEED_1000)
994 ecntl |= (1 << 5);
995 else if (fep->phy_dev->speed == SPEED_100)
996 rcntl &= ~(1 << 9);
997 else
998 rcntl |= (1 << 9);
999 }
1000 } else {
1001#ifdef FEC_MIIGSK_ENR
1002 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1003 u32 cfgr;
1004 /* disable the gasket and wait */
1005 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1006 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1007 udelay(1);
1008
1009 /*
1010 * configure the gasket:
1011 * RMII, 50 MHz, no loopback, no echo
1012 * MII, 25 MHz, no loopback, no echo
1013 */
1014 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1015 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1016 if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1017 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1018 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1019
1020 /* re-enable the gasket */
1021 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1022 }
1023#endif
1024 }
1025
1026#if !defined(CONFIG_M5272)
1027 /* enable pause frame*/
1028 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1029 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1030 fep->phy_dev && fep->phy_dev->pause)) {
1031 rcntl |= FEC_ENET_FCE;
1032
1033 /* set FIFO threshold parameter to reduce overrun */
1034 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1035 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1036 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1037 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1038
1039 /* OPD */
1040 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1041 } else {
1042 rcntl &= ~FEC_ENET_FCE;
1043 }
1044#endif /* !defined(CONFIG_M5272) */
1045
1046 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1047
1048 /* Setup multicast filter. */
1049 set_multicast_list(ndev);
1050#ifndef CONFIG_M5272
1051 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1052 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1053#endif
1054
1055 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1056 /* enable ENET endian swap */
1057 ecntl |= (1 << 8);
1058 /* enable ENET store and forward mode */
1059 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1060 }
1061
1062 if (fep->bufdesc_ex)
1063 ecntl |= (1 << 4);
1064
1065#ifndef CONFIG_M5272
1066 /* Enable the MIB statistic event counters */
1067 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1068#endif
1069
1070 /* And last, enable the transmit and receive processing */
1071 writel(ecntl, fep->hwp + FEC_ECNTRL);
1072 fec_enet_active_rxring(ndev);
1073
1074 if (fep->bufdesc_ex)
1075 fec_ptp_start_cyclecounter(ndev);
1076
1077 /* Enable interrupts we wish to service */
1078 if (fep->link)
1079 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1080 else
1081 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1082
1083 /* Init the interrupt coalescing */
1084 fec_enet_itr_coal_init(ndev);
1085
1086}
1087
1088static void
1089fec_stop(struct net_device *ndev)
1090{
1091 struct fec_enet_private *fep = netdev_priv(ndev);
1092 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1093
1094 /* We cannot expect a graceful transmit stop without link !!! */
1095 if (fep->link) {
1096 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1097 udelay(10);
1098 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1099 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1100 }
1101
1102 /* Whack a reset. We should wait for this.
1103 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1104 * instead of reset MAC itself.
1105 */
1106 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1107 writel(0, fep->hwp + FEC_ECNTRL);
1108 } else {
1109 writel(1, fep->hwp + FEC_ECNTRL);
1110 udelay(10);
1111 }
1112 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1113 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1114
1115 /* We have to keep ENET enabled to have MII interrupt stay working */
1116 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1117 writel(2, fep->hwp + FEC_ECNTRL);
1118 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1119 }
1120}
1121
1122
1123static void
1124fec_timeout(struct net_device *ndev)
1125{
1126 struct fec_enet_private *fep = netdev_priv(ndev);
1127
1128 fec_dump(ndev);
1129
1130 ndev->stats.tx_errors++;
1131
1132 schedule_work(&fep->tx_timeout_work);
1133}
1134
1135static void fec_enet_timeout_work(struct work_struct *work)
1136{
1137 struct fec_enet_private *fep =
1138 container_of(work, struct fec_enet_private, tx_timeout_work);
1139 struct net_device *ndev = fep->netdev;
1140
1141 rtnl_lock();
1142 if (netif_device_present(ndev) || netif_running(ndev)) {
1143 napi_disable(&fep->napi);
1144 netif_tx_lock_bh(ndev);
1145 fec_restart(ndev);
1146 netif_wake_queue(ndev);
1147 netif_tx_unlock_bh(ndev);
1148 napi_enable(&fep->napi);
1149 }
1150 rtnl_unlock();
1151}
1152
1153static void
1154fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1155 struct skb_shared_hwtstamps *hwtstamps)
1156{
1157 unsigned long flags;
1158 u64 ns;
1159
1160 spin_lock_irqsave(&fep->tmreg_lock, flags);
1161 ns = timecounter_cyc2time(&fep->tc, ts);
1162 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1163
1164 memset(hwtstamps, 0, sizeof(*hwtstamps));
1165 hwtstamps->hwtstamp = ns_to_ktime(ns);
1166}
1167
1168static void
1169fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1170{
1171 struct fec_enet_private *fep;
1172 struct bufdesc *bdp;
1173 unsigned short status;
1174 struct sk_buff *skb;
1175 struct fec_enet_priv_tx_q *txq;
1176 struct netdev_queue *nq;
1177 int index = 0;
1178 int entries_free;
1179
1180 fep = netdev_priv(ndev);
1181
1182 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1183
1184 txq = fep->tx_queue[queue_id];
1185 /* get next bdp of dirty_tx */
1186 nq = netdev_get_tx_queue(ndev, queue_id);
1187 bdp = txq->dirty_tx;
1188
1189 /* get next bdp of dirty_tx */
1190 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1191
1192 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1193
1194 /* current queue is empty */
1195 if (bdp == txq->cur_tx)
1196 break;
1197
1198 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1199
1200 skb = txq->tx_skbuff[index];
1201 txq->tx_skbuff[index] = NULL;
1202 if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1203 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1204 bdp->cbd_datlen, DMA_TO_DEVICE);
1205 bdp->cbd_bufaddr = 0;
1206 if (!skb) {
1207 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1208 continue;
1209 }
1210
1211 /* Check for errors. */
1212 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1213 BD_ENET_TX_RL | BD_ENET_TX_UN |
1214 BD_ENET_TX_CSL)) {
1215 ndev->stats.tx_errors++;
1216 if (status & BD_ENET_TX_HB) /* No heartbeat */
1217 ndev->stats.tx_heartbeat_errors++;
1218 if (status & BD_ENET_TX_LC) /* Late collision */
1219 ndev->stats.tx_window_errors++;
1220 if (status & BD_ENET_TX_RL) /* Retrans limit */
1221 ndev->stats.tx_aborted_errors++;
1222 if (status & BD_ENET_TX_UN) /* Underrun */
1223 ndev->stats.tx_fifo_errors++;
1224 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1225 ndev->stats.tx_carrier_errors++;
1226 } else {
1227 ndev->stats.tx_packets++;
1228 ndev->stats.tx_bytes += skb->len;
1229 }
1230
1231 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1232 fep->bufdesc_ex) {
1233 struct skb_shared_hwtstamps shhwtstamps;
1234 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1235
1236 fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1237 skb_tstamp_tx(skb, &shhwtstamps);
1238 }
1239
1240 /* Deferred means some collisions occurred during transmit,
1241 * but we eventually sent the packet OK.
1242 */
1243 if (status & BD_ENET_TX_DEF)
1244 ndev->stats.collisions++;
1245
1246 /* Free the sk buffer associated with this last transmit */
1247 dev_kfree_skb_any(skb);
1248
1249 txq->dirty_tx = bdp;
1250
1251 /* Update pointer to next buffer descriptor to be transmitted */
1252 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1253
1254 /* Since we have freed up a buffer, the ring is no longer full
1255 */
1256 if (netif_queue_stopped(ndev)) {
1257 entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1258 if (entries_free >= txq->tx_wake_threshold)
1259 netif_tx_wake_queue(nq);
1260 }
1261 }
1262
1263 /* ERR006538: Keep the transmitter going */
1264 if (bdp != txq->cur_tx &&
1265 readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1266 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1267}
1268
1269static void
1270fec_enet_tx(struct net_device *ndev)
1271{
1272 struct fec_enet_private *fep = netdev_priv(ndev);
1273 u16 queue_id;
1274 /* First process class A queue, then Class B and Best Effort queue */
1275 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1276 clear_bit(queue_id, &fep->work_tx);
1277 fec_enet_tx_queue(ndev, queue_id);
1278 }
1279 return;
1280}
1281
1282static int
1283fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1284{
1285 struct fec_enet_private *fep = netdev_priv(ndev);
1286 int off;
1287
1288 off = ((unsigned long)skb->data) & fep->rx_align;
1289 if (off)
1290 skb_reserve(skb, fep->rx_align + 1 - off);
1291
1292 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1293 FEC_ENET_RX_FRSIZE - fep->rx_align,
1294 DMA_FROM_DEVICE);
1295 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1296 if (net_ratelimit())
1297 netdev_err(ndev, "Rx DMA memory map failed\n");
1298 return -ENOMEM;
1299 }
1300
1301 return 0;
1302}
1303
1304static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1305 struct bufdesc *bdp, u32 length, bool swap)
1306{
1307 struct fec_enet_private *fep = netdev_priv(ndev);
1308 struct sk_buff *new_skb;
1309
1310 if (length > fep->rx_copybreak)
1311 return false;
1312
1313 new_skb = netdev_alloc_skb(ndev, length);
1314 if (!new_skb)
1315 return false;
1316
1317 dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1318 FEC_ENET_RX_FRSIZE - fep->rx_align,
1319 DMA_FROM_DEVICE);
1320 if (!swap)
1321 memcpy(new_skb->data, (*skb)->data, length);
1322 else
1323 swap_buffer2(new_skb->data, (*skb)->data, length);
1324 *skb = new_skb;
1325
1326 return true;
1327}
1328
1329/* During a receive, the cur_rx points to the current incoming buffer.
1330 * When we update through the ring, if the next incoming buffer has
1331 * not been given to the system, we just set the empty indicator,
1332 * effectively tossing the packet.
1333 */
1334static int
1335fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1336{
1337 struct fec_enet_private *fep = netdev_priv(ndev);
1338 struct fec_enet_priv_rx_q *rxq;
1339 struct bufdesc *bdp;
1340 unsigned short status;
1341 struct sk_buff *skb_new = NULL;
1342 struct sk_buff *skb;
1343 ushort pkt_len;
1344 __u8 *data;
1345 int pkt_received = 0;
1346 struct bufdesc_ex *ebdp = NULL;
1347 bool vlan_packet_rcvd = false;
1348 u16 vlan_tag;
1349 int index = 0;
1350 bool is_copybreak;
1351 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1352
1353#ifdef CONFIG_M532x
1354 flush_cache_all();
1355#endif
1356 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1357 rxq = fep->rx_queue[queue_id];
1358
1359 /* First, grab all of the stats for the incoming packet.
1360 * These get messed up if we get called due to a busy condition.
1361 */
1362 bdp = rxq->cur_rx;
1363
1364 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1365
1366 if (pkt_received >= budget)
1367 break;
1368 pkt_received++;
1369
1370 /* Since we have allocated space to hold a complete frame,
1371 * the last indicator should be set.
1372 */
1373 if ((status & BD_ENET_RX_LAST) == 0)
1374 netdev_err(ndev, "rcv is not +last\n");
1375
1376
1377 /* Check for errors. */
1378 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1379 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1380 ndev->stats.rx_errors++;
1381 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1382 /* Frame too long or too short. */
1383 ndev->stats.rx_length_errors++;
1384 }
1385 if (status & BD_ENET_RX_NO) /* Frame alignment */
1386 ndev->stats.rx_frame_errors++;
1387 if (status & BD_ENET_RX_CR) /* CRC Error */
1388 ndev->stats.rx_crc_errors++;
1389 if (status & BD_ENET_RX_OV) /* FIFO overrun */
1390 ndev->stats.rx_fifo_errors++;
1391 }
1392
1393 /* Report late collisions as a frame error.
1394 * On this error, the BD is closed, but we don't know what we
1395 * have in the buffer. So, just drop this frame on the floor.
1396 */
1397 if (status & BD_ENET_RX_CL) {
1398 ndev->stats.rx_errors++;
1399 ndev->stats.rx_frame_errors++;
1400 goto rx_processing_done;
1401 }
1402
1403 /* Process the incoming frame. */
1404 ndev->stats.rx_packets++;
1405 pkt_len = bdp->cbd_datlen;
1406 ndev->stats.rx_bytes += pkt_len;
1407
1408 index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1409 skb = rxq->rx_skbuff[index];
1410
1411 /* The packet length includes FCS, but we don't want to
1412 * include that when passing upstream as it messes up
1413 * bridging applications.
1414 */
1415 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1416 need_swap);
1417 if (!is_copybreak) {
1418 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1419 if (unlikely(!skb_new)) {
1420 ndev->stats.rx_dropped++;
1421 goto rx_processing_done;
1422 }
1423 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1424 FEC_ENET_RX_FRSIZE - fep->rx_align,
1425 DMA_FROM_DEVICE);
1426 }
1427
1428 prefetch(skb->data - NET_IP_ALIGN);
1429 skb_put(skb, pkt_len - 4);
1430 data = skb->data;
1431 if (!is_copybreak && need_swap)
1432 swap_buffer(data, pkt_len);
1433
1434 /* Extract the enhanced buffer descriptor */
1435 ebdp = NULL;
1436 if (fep->bufdesc_ex)
1437 ebdp = (struct bufdesc_ex *)bdp;
1438
1439 /* If this is a VLAN packet remove the VLAN Tag */
1440 vlan_packet_rcvd = false;
1441 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1442 fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1443 /* Push and remove the vlan tag */
1444 struct vlan_hdr *vlan_header =
1445 (struct vlan_hdr *) (data + ETH_HLEN);
1446 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1447
1448 vlan_packet_rcvd = true;
1449
1450 skb_copy_to_linear_data_offset(skb, VLAN_HLEN,
1451 data, (2 * ETH_ALEN));
1452 skb_pull(skb, VLAN_HLEN);
1453 }
1454
1455 skb->protocol = eth_type_trans(skb, ndev);
1456
1457 /* Get receive timestamp from the skb */
1458 if (fep->hwts_rx_en && fep->bufdesc_ex)
1459 fec_enet_hwtstamp(fep, ebdp->ts,
1460 skb_hwtstamps(skb));
1461
1462 if (fep->bufdesc_ex &&
1463 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1464 if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1465 /* don't check it */
1466 skb->ip_summed = CHECKSUM_UNNECESSARY;
1467 } else {
1468 skb_checksum_none_assert(skb);
1469 }
1470 }
1471
1472 /* Handle received VLAN packets */
1473 if (vlan_packet_rcvd)
1474 __vlan_hwaccel_put_tag(skb,
1475 htons(ETH_P_8021Q),
1476 vlan_tag);
1477
1478 napi_gro_receive(&fep->napi, skb);
1479
1480 if (is_copybreak) {
1481 dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1482 FEC_ENET_RX_FRSIZE - fep->rx_align,
1483 DMA_FROM_DEVICE);
1484 } else {
1485 rxq->rx_skbuff[index] = skb_new;
1486 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1487 }
1488
1489rx_processing_done:
1490 /* Clear the status flags for this buffer */
1491 status &= ~BD_ENET_RX_STATS;
1492
1493 /* Mark the buffer empty */
1494 status |= BD_ENET_RX_EMPTY;
1495 bdp->cbd_sc = status;
1496
1497 if (fep->bufdesc_ex) {
1498 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1499
1500 ebdp->cbd_esc = BD_ENET_RX_INT;
1501 ebdp->cbd_prot = 0;
1502 ebdp->cbd_bdu = 0;
1503 }
1504
1505 /* Update BD pointer to next entry */
1506 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1507
1508 /* Doing this here will keep the FEC running while we process
1509 * incoming frames. On a heavily loaded network, we should be
1510 * able to keep up at the expense of system resources.
1511 */
1512 writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1513 }
1514 rxq->cur_rx = bdp;
1515 return pkt_received;
1516}
1517
1518static int
1519fec_enet_rx(struct net_device *ndev, int budget)
1520{
1521 int pkt_received = 0;
1522 u16 queue_id;
1523 struct fec_enet_private *fep = netdev_priv(ndev);
1524
1525 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1526 clear_bit(queue_id, &fep->work_rx);
1527 pkt_received += fec_enet_rx_queue(ndev,
1528 budget - pkt_received, queue_id);
1529 }
1530 return pkt_received;
1531}
1532
1533static bool
1534fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1535{
1536 if (int_events == 0)
1537 return false;
1538
1539 if (int_events & FEC_ENET_RXF)
1540 fep->work_rx |= (1 << 2);
1541 if (int_events & FEC_ENET_RXF_1)
1542 fep->work_rx |= (1 << 0);
1543 if (int_events & FEC_ENET_RXF_2)
1544 fep->work_rx |= (1 << 1);
1545
1546 if (int_events & FEC_ENET_TXF)
1547 fep->work_tx |= (1 << 2);
1548 if (int_events & FEC_ENET_TXF_1)
1549 fep->work_tx |= (1 << 0);
1550 if (int_events & FEC_ENET_TXF_2)
1551 fep->work_tx |= (1 << 1);
1552
1553 return true;
1554}
1555
1556static irqreturn_t
1557fec_enet_interrupt(int irq, void *dev_id)
1558{
1559 struct net_device *ndev = dev_id;
1560 struct fec_enet_private *fep = netdev_priv(ndev);
1561 const unsigned napi_mask = FEC_ENET_RXF | FEC_ENET_TXF;
1562 uint int_events;
1563 irqreturn_t ret = IRQ_NONE;
1564
1565 int_events = readl(fep->hwp + FEC_IEVENT);
1566 writel(int_events & ~napi_mask, fep->hwp + FEC_IEVENT);
1567 fec_enet_collect_events(fep, int_events);
1568
1569 if (int_events & napi_mask) {
1570 ret = IRQ_HANDLED;
1571
1572 /* Disable the NAPI interrupts */
1573 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1574 napi_schedule(&fep->napi);
1575 }
1576
1577 if (int_events & FEC_ENET_MII) {
1578 ret = IRQ_HANDLED;
1579 complete(&fep->mdio_done);
1580 }
1581
1582 if (fep->ptp_clock)
1583 fec_ptp_check_pps_event(fep);
1584
1585 return ret;
1586}
1587
1588static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1589{
1590 struct net_device *ndev = napi->dev;
1591 struct fec_enet_private *fep = netdev_priv(ndev);
1592 int pkts;
1593
1594 /*
1595 * Clear any pending transmit or receive interrupts before
1596 * processing the rings to avoid racing with the hardware.
1597 */
1598 writel(FEC_ENET_RXF | FEC_ENET_TXF, fep->hwp + FEC_IEVENT);
1599
1600 pkts = fec_enet_rx(ndev, budget);
1601
1602 fec_enet_tx(ndev);
1603
1604 if (pkts < budget) {
1605 napi_complete(napi);
1606 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1607 }
1608 return pkts;
1609}
1610
1611/* ------------------------------------------------------------------------- */
1612static void fec_get_mac(struct net_device *ndev)
1613{
1614 struct fec_enet_private *fep = netdev_priv(ndev);
1615 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1616 unsigned char *iap, tmpaddr[ETH_ALEN];
1617
1618 /*
1619 * try to get mac address in following order:
1620 *
1621 * 1) module parameter via kernel command line in form
1622 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1623 */
1624 iap = macaddr;
1625
1626 /*
1627 * 2) from device tree data
1628 */
1629 if (!is_valid_ether_addr(iap)) {
1630 struct device_node *np = fep->pdev->dev.of_node;
1631 if (np) {
1632 const char *mac = of_get_mac_address(np);
1633 if (mac)
1634 iap = (unsigned char *) mac;
1635 }
1636 }
1637
1638 /*
1639 * 3) from flash or fuse (via platform data)
1640 */
1641 if (!is_valid_ether_addr(iap)) {
1642#ifdef CONFIG_M5272
1643 if (FEC_FLASHMAC)
1644 iap = (unsigned char *)FEC_FLASHMAC;
1645#else
1646 if (pdata)
1647 iap = (unsigned char *)&pdata->mac;
1648#endif
1649 }
1650
1651 /*
1652 * 4) FEC mac registers set by bootloader
1653 */
1654 if (!is_valid_ether_addr(iap)) {
1655 *((__be32 *) &tmpaddr[0]) =
1656 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1657 *((__be16 *) &tmpaddr[4]) =
1658 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1659 iap = &tmpaddr[0];
1660 }
1661
1662 /*
1663 * 5) random mac address
1664 */
1665 if (!is_valid_ether_addr(iap)) {
1666 /* Report it and use a random ethernet address instead */
1667 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1668 eth_hw_addr_random(ndev);
1669 netdev_info(ndev, "Using random MAC address: %pM\n",
1670 ndev->dev_addr);
1671 return;
1672 }
1673
1674 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1675
1676 /* Adjust MAC if using macaddr */
1677 if (iap == macaddr)
1678 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1679}
1680
1681/* ------------------------------------------------------------------------- */
1682
1683/*
1684 * Phy section
1685 */
1686static void fec_enet_adjust_link(struct net_device *ndev)
1687{
1688 struct fec_enet_private *fep = netdev_priv(ndev);
1689 struct phy_device *phy_dev = fep->phy_dev;
1690 int status_change = 0;
1691
1692 /* Prevent a state halted on mii error */
1693 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1694 phy_dev->state = PHY_RESUMING;
1695 return;
1696 }
1697
1698 /*
1699 * If the netdev is down, or is going down, we're not interested
1700 * in link state events, so just mark our idea of the link as down
1701 * and ignore the event.
1702 */
1703 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1704 fep->link = 0;
1705 } else if (phy_dev->link) {
1706 if (!fep->link) {
1707 fep->link = phy_dev->link;
1708 status_change = 1;
1709 }
1710
1711 if (fep->full_duplex != phy_dev->duplex) {
1712 fep->full_duplex = phy_dev->duplex;
1713 status_change = 1;
1714 }
1715
1716 if (phy_dev->speed != fep->speed) {
1717 fep->speed = phy_dev->speed;
1718 status_change = 1;
1719 }
1720
1721 /* if any of the above changed restart the FEC */
1722 if (status_change) {
1723 napi_disable(&fep->napi);
1724 netif_tx_lock_bh(ndev);
1725 fec_restart(ndev);
1726 netif_wake_queue(ndev);
1727 netif_tx_unlock_bh(ndev);
1728 napi_enable(&fep->napi);
1729 }
1730 } else {
1731 if (fep->link) {
1732 napi_disable(&fep->napi);
1733 netif_tx_lock_bh(ndev);
1734 fec_stop(ndev);
1735 netif_tx_unlock_bh(ndev);
1736 napi_enable(&fep->napi);
1737 fep->link = phy_dev->link;
1738 status_change = 1;
1739 }
1740 }
1741
1742 if (status_change)
1743 phy_print_status(phy_dev);
1744}
1745
1746static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1747{
1748 struct fec_enet_private *fep = bus->priv;
1749 unsigned long time_left;
1750
1751 fep->mii_timeout = 0;
1752 init_completion(&fep->mdio_done);
1753
1754 /* start a read op */
1755 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1756 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1757 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1758
1759 /* wait for end of transfer */
1760 time_left = wait_for_completion_timeout(&fep->mdio_done,
1761 usecs_to_jiffies(FEC_MII_TIMEOUT));
1762 if (time_left == 0) {
1763 fep->mii_timeout = 1;
1764 netdev_err(fep->netdev, "MDIO read timeout\n");
1765 return -ETIMEDOUT;
1766 }
1767
1768 /* return value */
1769 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1770}
1771
1772static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1773 u16 value)
1774{
1775 struct fec_enet_private *fep = bus->priv;
1776 unsigned long time_left;
1777
1778 fep->mii_timeout = 0;
1779 init_completion(&fep->mdio_done);
1780
1781 /* start a write op */
1782 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1783 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1784 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1785 fep->hwp + FEC_MII_DATA);
1786
1787 /* wait for end of transfer */
1788 time_left = wait_for_completion_timeout(&fep->mdio_done,
1789 usecs_to_jiffies(FEC_MII_TIMEOUT));
1790 if (time_left == 0) {
1791 fep->mii_timeout = 1;
1792 netdev_err(fep->netdev, "MDIO write timeout\n");
1793 return -ETIMEDOUT;
1794 }
1795
1796 return 0;
1797}
1798
1799static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1800{
1801 struct fec_enet_private *fep = netdev_priv(ndev);
1802 int ret;
1803
1804 if (enable) {
1805 ret = clk_prepare_enable(fep->clk_ahb);
1806 if (ret)
1807 return ret;
1808 ret = clk_prepare_enable(fep->clk_ipg);
1809 if (ret)
1810 goto failed_clk_ipg;
1811 if (fep->clk_enet_out) {
1812 ret = clk_prepare_enable(fep->clk_enet_out);
1813 if (ret)
1814 goto failed_clk_enet_out;
1815 }
1816 if (fep->clk_ptp) {
1817 mutex_lock(&fep->ptp_clk_mutex);
1818 ret = clk_prepare_enable(fep->clk_ptp);
1819 if (ret) {
1820 mutex_unlock(&fep->ptp_clk_mutex);
1821 goto failed_clk_ptp;
1822 } else {
1823 fep->ptp_clk_on = true;
1824 }
1825 mutex_unlock(&fep->ptp_clk_mutex);
1826 }
1827 if (fep->clk_ref) {
1828 ret = clk_prepare_enable(fep->clk_ref);
1829 if (ret)
1830 goto failed_clk_ref;
1831 }
1832 } else {
1833 clk_disable_unprepare(fep->clk_ahb);
1834 clk_disable_unprepare(fep->clk_ipg);
1835 if (fep->clk_enet_out)
1836 clk_disable_unprepare(fep->clk_enet_out);
1837 if (fep->clk_ptp) {
1838 mutex_lock(&fep->ptp_clk_mutex);
1839 clk_disable_unprepare(fep->clk_ptp);
1840 fep->ptp_clk_on = false;
1841 mutex_unlock(&fep->ptp_clk_mutex);
1842 }
1843 if (fep->clk_ref)
1844 clk_disable_unprepare(fep->clk_ref);
1845 }
1846
1847 return 0;
1848
1849failed_clk_ref:
1850 if (fep->clk_ref)
1851 clk_disable_unprepare(fep->clk_ref);
1852failed_clk_ptp:
1853 if (fep->clk_enet_out)
1854 clk_disable_unprepare(fep->clk_enet_out);
1855failed_clk_enet_out:
1856 clk_disable_unprepare(fep->clk_ipg);
1857failed_clk_ipg:
1858 clk_disable_unprepare(fep->clk_ahb);
1859
1860 return ret;
1861}
1862
1863static int fec_enet_mii_probe(struct net_device *ndev)
1864{
1865 struct fec_enet_private *fep = netdev_priv(ndev);
1866 struct phy_device *phy_dev = NULL;
1867 char mdio_bus_id[MII_BUS_ID_SIZE];
1868 char phy_name[MII_BUS_ID_SIZE + 3];
1869 int phy_id;
1870 int dev_id = fep->dev_id;
1871
1872 fep->phy_dev = NULL;
1873
1874 if (fep->phy_node) {
1875 phy_dev = of_phy_connect(ndev, fep->phy_node,
1876 &fec_enet_adjust_link, 0,
1877 fep->phy_interface);
1878 if (!phy_dev)
1879 return -ENODEV;
1880 } else {
1881 /* check for attached phy */
1882 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1883 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1884 continue;
1885 if (fep->mii_bus->phy_map[phy_id] == NULL)
1886 continue;
1887 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1888 continue;
1889 if (dev_id--)
1890 continue;
1891 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1892 break;
1893 }
1894
1895 if (phy_id >= PHY_MAX_ADDR) {
1896 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1897 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1898 phy_id = 0;
1899 }
1900
1901 snprintf(phy_name, sizeof(phy_name),
1902 PHY_ID_FMT, mdio_bus_id, phy_id);
1903 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1904 fep->phy_interface);
1905 }
1906
1907 if (IS_ERR(phy_dev)) {
1908 netdev_err(ndev, "could not attach to PHY\n");
1909 return PTR_ERR(phy_dev);
1910 }
1911
1912 /* mask with MAC supported features */
1913 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1914 phy_dev->supported &= PHY_GBIT_FEATURES;
1915 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1916#if !defined(CONFIG_M5272)
1917 phy_dev->supported |= SUPPORTED_Pause;
1918#endif
1919 }
1920 else
1921 phy_dev->supported &= PHY_BASIC_FEATURES;
1922
1923 phy_dev->advertising = phy_dev->supported;
1924
1925 fep->phy_dev = phy_dev;
1926 fep->link = 0;
1927 fep->full_duplex = 0;
1928
1929 netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1930 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1931 fep->phy_dev->irq);
1932
1933 return 0;
1934}
1935
1936static int fec_enet_mii_init(struct platform_device *pdev)
1937{
1938 static struct mii_bus *fec0_mii_bus;
1939 struct net_device *ndev = platform_get_drvdata(pdev);
1940 struct fec_enet_private *fep = netdev_priv(ndev);
1941 struct device_node *node;
1942 int err = -ENXIO, i;
1943
1944 /*
1945 * The dual fec interfaces are not equivalent with enet-mac.
1946 * Here are the differences:
1947 *
1948 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1949 * - fec0 acts as the 1588 time master while fec1 is slave
1950 * - external phys can only be configured by fec0
1951 *
1952 * That is to say fec1 can not work independently. It only works
1953 * when fec0 is working. The reason behind this design is that the
1954 * second interface is added primarily for Switch mode.
1955 *
1956 * Because of the last point above, both phys are attached on fec0
1957 * mdio interface in board design, and need to be configured by
1958 * fec0 mii_bus.
1959 */
1960 if ((fep->quirks & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1961 /* fec1 uses fec0 mii_bus */
1962 if (mii_cnt && fec0_mii_bus) {
1963 fep->mii_bus = fec0_mii_bus;
1964 mii_cnt++;
1965 return 0;
1966 }
1967 return -ENOENT;
1968 }
1969
1970 fep->mii_timeout = 0;
1971
1972 /*
1973 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1974 *
1975 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1976 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1977 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1978 * document.
1979 */
1980 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1981 if (fep->quirks & FEC_QUIRK_ENET_MAC)
1982 fep->phy_speed--;
1983 fep->phy_speed <<= 1;
1984 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1985
1986 fep->mii_bus = mdiobus_alloc();
1987 if (fep->mii_bus == NULL) {
1988 err = -ENOMEM;
1989 goto err_out;
1990 }
1991
1992 fep->mii_bus->name = "fec_enet_mii_bus";
1993 fep->mii_bus->read = fec_enet_mdio_read;
1994 fep->mii_bus->write = fec_enet_mdio_write;
1995 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1996 pdev->name, fep->dev_id + 1);
1997 fep->mii_bus->priv = fep;
1998 fep->mii_bus->parent = &pdev->dev;
1999
2000 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2001 if (!fep->mii_bus->irq) {
2002 err = -ENOMEM;
2003 goto err_out_free_mdiobus;
2004 }
2005
2006 for (i = 0; i < PHY_MAX_ADDR; i++)
2007 fep->mii_bus->irq[i] = PHY_POLL;
2008
2009 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2010 if (node) {
2011 err = of_mdiobus_register(fep->mii_bus, node);
2012 of_node_put(node);
2013 } else {
2014 err = mdiobus_register(fep->mii_bus);
2015 }
2016
2017 if (err)
2018 goto err_out_free_mdio_irq;
2019
2020 mii_cnt++;
2021
2022 /* save fec0 mii_bus */
2023 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2024 fec0_mii_bus = fep->mii_bus;
2025
2026 return 0;
2027
2028err_out_free_mdio_irq:
2029 kfree(fep->mii_bus->irq);
2030err_out_free_mdiobus:
2031 mdiobus_free(fep->mii_bus);
2032err_out:
2033 return err;
2034}
2035
2036static void fec_enet_mii_remove(struct fec_enet_private *fep)
2037{
2038 if (--mii_cnt == 0) {
2039 mdiobus_unregister(fep->mii_bus);
2040 kfree(fep->mii_bus->irq);
2041 mdiobus_free(fep->mii_bus);
2042 }
2043}
2044
2045static int fec_enet_get_settings(struct net_device *ndev,
2046 struct ethtool_cmd *cmd)
2047{
2048 struct fec_enet_private *fep = netdev_priv(ndev);
2049 struct phy_device *phydev = fep->phy_dev;
2050
2051 if (!phydev)
2052 return -ENODEV;
2053
2054 return phy_ethtool_gset(phydev, cmd);
2055}
2056
2057static int fec_enet_set_settings(struct net_device *ndev,
2058 struct ethtool_cmd *cmd)
2059{
2060 struct fec_enet_private *fep = netdev_priv(ndev);
2061 struct phy_device *phydev = fep->phy_dev;
2062
2063 if (!phydev)
2064 return -ENODEV;
2065
2066 return phy_ethtool_sset(phydev, cmd);
2067}
2068
2069static void fec_enet_get_drvinfo(struct net_device *ndev,
2070 struct ethtool_drvinfo *info)
2071{
2072 struct fec_enet_private *fep = netdev_priv(ndev);
2073
2074 strlcpy(info->driver, fep->pdev->dev.driver->name,
2075 sizeof(info->driver));
2076 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2077 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2078}
2079
2080static int fec_enet_get_ts_info(struct net_device *ndev,
2081 struct ethtool_ts_info *info)
2082{
2083 struct fec_enet_private *fep = netdev_priv(ndev);
2084
2085 if (fep->bufdesc_ex) {
2086
2087 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2088 SOF_TIMESTAMPING_RX_SOFTWARE |
2089 SOF_TIMESTAMPING_SOFTWARE |
2090 SOF_TIMESTAMPING_TX_HARDWARE |
2091 SOF_TIMESTAMPING_RX_HARDWARE |
2092 SOF_TIMESTAMPING_RAW_HARDWARE;
2093 if (fep->ptp_clock)
2094 info->phc_index = ptp_clock_index(fep->ptp_clock);
2095 else
2096 info->phc_index = -1;
2097
2098 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2099 (1 << HWTSTAMP_TX_ON);
2100
2101 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2102 (1 << HWTSTAMP_FILTER_ALL);
2103 return 0;
2104 } else {
2105 return ethtool_op_get_ts_info(ndev, info);
2106 }
2107}
2108
2109#if !defined(CONFIG_M5272)
2110
2111static void fec_enet_get_pauseparam(struct net_device *ndev,
2112 struct ethtool_pauseparam *pause)
2113{
2114 struct fec_enet_private *fep = netdev_priv(ndev);
2115
2116 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2117 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2118 pause->rx_pause = pause->tx_pause;
2119}
2120
2121static int fec_enet_set_pauseparam(struct net_device *ndev,
2122 struct ethtool_pauseparam *pause)
2123{
2124 struct fec_enet_private *fep = netdev_priv(ndev);
2125
2126 if (!fep->phy_dev)
2127 return -ENODEV;
2128
2129 if (pause->tx_pause != pause->rx_pause) {
2130 netdev_info(ndev,
2131 "hardware only support enable/disable both tx and rx");
2132 return -EINVAL;
2133 }
2134
2135 fep->pause_flag = 0;
2136
2137 /* tx pause must be same as rx pause */
2138 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2139 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2140
2141 if (pause->rx_pause || pause->autoneg) {
2142 fep->phy_dev->supported |= ADVERTISED_Pause;
2143 fep->phy_dev->advertising |= ADVERTISED_Pause;
2144 } else {
2145 fep->phy_dev->supported &= ~ADVERTISED_Pause;
2146 fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2147 }
2148
2149 if (pause->autoneg) {
2150 if (netif_running(ndev))
2151 fec_stop(ndev);
2152 phy_start_aneg(fep->phy_dev);
2153 }
2154 if (netif_running(ndev)) {
2155 napi_disable(&fep->napi);
2156 netif_tx_lock_bh(ndev);
2157 fec_restart(ndev);
2158 netif_wake_queue(ndev);
2159 netif_tx_unlock_bh(ndev);
2160 napi_enable(&fep->napi);
2161 }
2162
2163 return 0;
2164}
2165
2166static const struct fec_stat {
2167 char name[ETH_GSTRING_LEN];
2168 u16 offset;
2169} fec_stats[] = {
2170 /* RMON TX */
2171 { "tx_dropped", RMON_T_DROP },
2172 { "tx_packets", RMON_T_PACKETS },
2173 { "tx_broadcast", RMON_T_BC_PKT },
2174 { "tx_multicast", RMON_T_MC_PKT },
2175 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2176 { "tx_undersize", RMON_T_UNDERSIZE },
2177 { "tx_oversize", RMON_T_OVERSIZE },
2178 { "tx_fragment", RMON_T_FRAG },
2179 { "tx_jabber", RMON_T_JAB },
2180 { "tx_collision", RMON_T_COL },
2181 { "tx_64byte", RMON_T_P64 },
2182 { "tx_65to127byte", RMON_T_P65TO127 },
2183 { "tx_128to255byte", RMON_T_P128TO255 },
2184 { "tx_256to511byte", RMON_T_P256TO511 },
2185 { "tx_512to1023byte", RMON_T_P512TO1023 },
2186 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2187 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2188 { "tx_octets", RMON_T_OCTETS },
2189
2190 /* IEEE TX */
2191 { "IEEE_tx_drop", IEEE_T_DROP },
2192 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2193 { "IEEE_tx_1col", IEEE_T_1COL },
2194 { "IEEE_tx_mcol", IEEE_T_MCOL },
2195 { "IEEE_tx_def", IEEE_T_DEF },
2196 { "IEEE_tx_lcol", IEEE_T_LCOL },
2197 { "IEEE_tx_excol", IEEE_T_EXCOL },
2198 { "IEEE_tx_macerr", IEEE_T_MACERR },
2199 { "IEEE_tx_cserr", IEEE_T_CSERR },
2200 { "IEEE_tx_sqe", IEEE_T_SQE },
2201 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2202 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2203
2204 /* RMON RX */
2205 { "rx_packets", RMON_R_PACKETS },
2206 { "rx_broadcast", RMON_R_BC_PKT },
2207 { "rx_multicast", RMON_R_MC_PKT },
2208 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2209 { "rx_undersize", RMON_R_UNDERSIZE },
2210 { "rx_oversize", RMON_R_OVERSIZE },
2211 { "rx_fragment", RMON_R_FRAG },
2212 { "rx_jabber", RMON_R_JAB },
2213 { "rx_64byte", RMON_R_P64 },
2214 { "rx_65to127byte", RMON_R_P65TO127 },
2215 { "rx_128to255byte", RMON_R_P128TO255 },
2216 { "rx_256to511byte", RMON_R_P256TO511 },
2217 { "rx_512to1023byte", RMON_R_P512TO1023 },
2218 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2219 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2220 { "rx_octets", RMON_R_OCTETS },
2221
2222 /* IEEE RX */
2223 { "IEEE_rx_drop", IEEE_R_DROP },
2224 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2225 { "IEEE_rx_crc", IEEE_R_CRC },
2226 { "IEEE_rx_align", IEEE_R_ALIGN },
2227 { "IEEE_rx_macerr", IEEE_R_MACERR },
2228 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2229 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2230};
2231
2232static void fec_enet_get_ethtool_stats(struct net_device *dev,
2233 struct ethtool_stats *stats, u64 *data)
2234{
2235 struct fec_enet_private *fep = netdev_priv(dev);
2236 int i;
2237
2238 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2239 data[i] = readl(fep->hwp + fec_stats[i].offset);
2240}
2241
2242static void fec_enet_get_strings(struct net_device *netdev,
2243 u32 stringset, u8 *data)
2244{
2245 int i;
2246 switch (stringset) {
2247 case ETH_SS_STATS:
2248 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2249 memcpy(data + i * ETH_GSTRING_LEN,
2250 fec_stats[i].name, ETH_GSTRING_LEN);
2251 break;
2252 }
2253}
2254
2255static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2256{
2257 switch (sset) {
2258 case ETH_SS_STATS:
2259 return ARRAY_SIZE(fec_stats);
2260 default:
2261 return -EOPNOTSUPP;
2262 }
2263}
2264#endif /* !defined(CONFIG_M5272) */
2265
2266static int fec_enet_nway_reset(struct net_device *dev)
2267{
2268 struct fec_enet_private *fep = netdev_priv(dev);
2269 struct phy_device *phydev = fep->phy_dev;
2270
2271 if (!phydev)
2272 return -ENODEV;
2273
2274 return genphy_restart_aneg(phydev);
2275}
2276
2277/* ITR clock source is enet system clock (clk_ahb).
2278 * TCTT unit is cycle_ns * 64 cycle
2279 * So, the ICTT value = X us / (cycle_ns * 64)
2280 */
2281static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2282{
2283 struct fec_enet_private *fep = netdev_priv(ndev);
2284
2285 return us * (fep->itr_clk_rate / 64000) / 1000;
2286}
2287
2288/* Set threshold for interrupt coalescing */
2289static void fec_enet_itr_coal_set(struct net_device *ndev)
2290{
2291 struct fec_enet_private *fep = netdev_priv(ndev);
2292 int rx_itr, tx_itr;
2293
2294 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2295 return;
2296
2297 /* Must be greater than zero to avoid unpredictable behavior */
2298 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2299 !fep->tx_time_itr || !fep->tx_pkts_itr)
2300 return;
2301
2302 /* Select enet system clock as Interrupt Coalescing
2303 * timer Clock Source
2304 */
2305 rx_itr = FEC_ITR_CLK_SEL;
2306 tx_itr = FEC_ITR_CLK_SEL;
2307
2308 /* set ICFT and ICTT */
2309 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2310 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2311 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2312 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2313
2314 rx_itr |= FEC_ITR_EN;
2315 tx_itr |= FEC_ITR_EN;
2316
2317 writel(tx_itr, fep->hwp + FEC_TXIC0);
2318 writel(rx_itr, fep->hwp + FEC_RXIC0);
2319 writel(tx_itr, fep->hwp + FEC_TXIC1);
2320 writel(rx_itr, fep->hwp + FEC_RXIC1);
2321 writel(tx_itr, fep->hwp + FEC_TXIC2);
2322 writel(rx_itr, fep->hwp + FEC_RXIC2);
2323}
2324
2325static int
2326fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2327{
2328 struct fec_enet_private *fep = netdev_priv(ndev);
2329
2330 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2331 return -EOPNOTSUPP;
2332
2333 ec->rx_coalesce_usecs = fep->rx_time_itr;
2334 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2335
2336 ec->tx_coalesce_usecs = fep->tx_time_itr;
2337 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2338
2339 return 0;
2340}
2341
2342static int
2343fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2344{
2345 struct fec_enet_private *fep = netdev_priv(ndev);
2346 unsigned int cycle;
2347
2348 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2349 return -EOPNOTSUPP;
2350
2351 if (ec->rx_max_coalesced_frames > 255) {
2352 pr_err("Rx coalesced frames exceed hardware limiation");
2353 return -EINVAL;
2354 }
2355
2356 if (ec->tx_max_coalesced_frames > 255) {
2357 pr_err("Tx coalesced frame exceed hardware limiation");
2358 return -EINVAL;
2359 }
2360
2361 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2362 if (cycle > 0xFFFF) {
2363 pr_err("Rx coalesed usec exceeed hardware limiation");
2364 return -EINVAL;
2365 }
2366
2367 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2368 if (cycle > 0xFFFF) {
2369 pr_err("Rx coalesed usec exceeed hardware limiation");
2370 return -EINVAL;
2371 }
2372
2373 fep->rx_time_itr = ec->rx_coalesce_usecs;
2374 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2375
2376 fep->tx_time_itr = ec->tx_coalesce_usecs;
2377 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2378
2379 fec_enet_itr_coal_set(ndev);
2380
2381 return 0;
2382}
2383
2384static void fec_enet_itr_coal_init(struct net_device *ndev)
2385{
2386 struct ethtool_coalesce ec;
2387
2388 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2389 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2390
2391 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2392 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2393
2394 fec_enet_set_coalesce(ndev, &ec);
2395}
2396
2397static int fec_enet_get_tunable(struct net_device *netdev,
2398 const struct ethtool_tunable *tuna,
2399 void *data)
2400{
2401 struct fec_enet_private *fep = netdev_priv(netdev);
2402 int ret = 0;
2403
2404 switch (tuna->id) {
2405 case ETHTOOL_RX_COPYBREAK:
2406 *(u32 *)data = fep->rx_copybreak;
2407 break;
2408 default:
2409 ret = -EINVAL;
2410 break;
2411 }
2412
2413 return ret;
2414}
2415
2416static int fec_enet_set_tunable(struct net_device *netdev,
2417 const struct ethtool_tunable *tuna,
2418 const void *data)
2419{
2420 struct fec_enet_private *fep = netdev_priv(netdev);
2421 int ret = 0;
2422
2423 switch (tuna->id) {
2424 case ETHTOOL_RX_COPYBREAK:
2425 fep->rx_copybreak = *(u32 *)data;
2426 break;
2427 default:
2428 ret = -EINVAL;
2429 break;
2430 }
2431
2432 return ret;
2433}
2434
2435static const struct ethtool_ops fec_enet_ethtool_ops = {
2436 .get_settings = fec_enet_get_settings,
2437 .set_settings = fec_enet_set_settings,
2438 .get_drvinfo = fec_enet_get_drvinfo,
2439 .nway_reset = fec_enet_nway_reset,
2440 .get_link = ethtool_op_get_link,
2441 .get_coalesce = fec_enet_get_coalesce,
2442 .set_coalesce = fec_enet_set_coalesce,
2443#ifndef CONFIG_M5272
2444 .get_pauseparam = fec_enet_get_pauseparam,
2445 .set_pauseparam = fec_enet_set_pauseparam,
2446 .get_strings = fec_enet_get_strings,
2447 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2448 .get_sset_count = fec_enet_get_sset_count,
2449#endif
2450 .get_ts_info = fec_enet_get_ts_info,
2451 .get_tunable = fec_enet_get_tunable,
2452 .set_tunable = fec_enet_set_tunable,
2453};
2454
2455static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2456{
2457 struct fec_enet_private *fep = netdev_priv(ndev);
2458 struct phy_device *phydev = fep->phy_dev;
2459
2460 if (!netif_running(ndev))
2461 return -EINVAL;
2462
2463 if (!phydev)
2464 return -ENODEV;
2465
2466 if (fep->bufdesc_ex) {
2467 if (cmd == SIOCSHWTSTAMP)
2468 return fec_ptp_set(ndev, rq);
2469 if (cmd == SIOCGHWTSTAMP)
2470 return fec_ptp_get(ndev, rq);
2471 }
2472
2473 return phy_mii_ioctl(phydev, rq, cmd);
2474}
2475
2476static void fec_enet_free_buffers(struct net_device *ndev)
2477{
2478 struct fec_enet_private *fep = netdev_priv(ndev);
2479 unsigned int i;
2480 struct sk_buff *skb;
2481 struct bufdesc *bdp;
2482 struct fec_enet_priv_tx_q *txq;
2483 struct fec_enet_priv_rx_q *rxq;
2484 unsigned int q;
2485
2486 for (q = 0; q < fep->num_rx_queues; q++) {
2487 rxq = fep->rx_queue[q];
2488 bdp = rxq->rx_bd_base;
2489 for (i = 0; i < rxq->rx_ring_size; i++) {
2490 skb = rxq->rx_skbuff[i];
2491 rxq->rx_skbuff[i] = NULL;
2492 if (skb) {
2493 dma_unmap_single(&fep->pdev->dev,
2494 bdp->cbd_bufaddr,
2495 FEC_ENET_RX_FRSIZE - fep->rx_align,
2496 DMA_FROM_DEVICE);
2497 dev_kfree_skb(skb);
2498 }
2499 bdp = fec_enet_get_nextdesc(bdp, fep, q);
2500 }
2501 }
2502
2503 for (q = 0; q < fep->num_tx_queues; q++) {
2504 txq = fep->tx_queue[q];
2505 bdp = txq->tx_bd_base;
2506 for (i = 0; i < txq->tx_ring_size; i++) {
2507 kfree(txq->tx_bounce[i]);
2508 txq->tx_bounce[i] = NULL;
2509 skb = txq->tx_skbuff[i];
2510 txq->tx_skbuff[i] = NULL;
2511 dev_kfree_skb(skb);
2512 }
2513 }
2514}
2515
2516static void fec_enet_free_queue(struct net_device *ndev)
2517{
2518 struct fec_enet_private *fep = netdev_priv(ndev);
2519 int i;
2520 struct fec_enet_priv_tx_q *txq;
2521
2522 for (i = 0; i < fep->num_tx_queues; i++)
2523 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2524 txq = fep->tx_queue[i];
2525 dma_free_coherent(NULL,
2526 txq->tx_ring_size * TSO_HEADER_SIZE,
2527 txq->tso_hdrs,
2528 txq->tso_hdrs_dma);
2529 }
2530
2531 for (i = 0; i < fep->num_rx_queues; i++)
2532 if (fep->rx_queue[i])
2533 kfree(fep->rx_queue[i]);
2534
2535 for (i = 0; i < fep->num_tx_queues; i++)
2536 if (fep->tx_queue[i])
2537 kfree(fep->tx_queue[i]);
2538}
2539
2540static int fec_enet_alloc_queue(struct net_device *ndev)
2541{
2542 struct fec_enet_private *fep = netdev_priv(ndev);
2543 int i;
2544 int ret = 0;
2545 struct fec_enet_priv_tx_q *txq;
2546
2547 for (i = 0; i < fep->num_tx_queues; i++) {
2548 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2549 if (!txq) {
2550 ret = -ENOMEM;
2551 goto alloc_failed;
2552 }
2553
2554 fep->tx_queue[i] = txq;
2555 txq->tx_ring_size = TX_RING_SIZE;
2556 fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2557
2558 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2559 txq->tx_wake_threshold =
2560 (txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2561
2562 txq->tso_hdrs = dma_alloc_coherent(NULL,
2563 txq->tx_ring_size * TSO_HEADER_SIZE,
2564 &txq->tso_hdrs_dma,
2565 GFP_KERNEL);
2566 if (!txq->tso_hdrs) {
2567 ret = -ENOMEM;
2568 goto alloc_failed;
2569 }
2570 }
2571
2572 for (i = 0; i < fep->num_rx_queues; i++) {
2573 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2574 GFP_KERNEL);
2575 if (!fep->rx_queue[i]) {
2576 ret = -ENOMEM;
2577 goto alloc_failed;
2578 }
2579
2580 fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2581 fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2582 }
2583 return ret;
2584
2585alloc_failed:
2586 fec_enet_free_queue(ndev);
2587 return ret;
2588}
2589
2590static int
2591fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2592{
2593 struct fec_enet_private *fep = netdev_priv(ndev);
2594 unsigned int i;
2595 struct sk_buff *skb;
2596 struct bufdesc *bdp;
2597 struct fec_enet_priv_rx_q *rxq;
2598
2599 rxq = fep->rx_queue[queue];
2600 bdp = rxq->rx_bd_base;
2601 for (i = 0; i < rxq->rx_ring_size; i++) {
2602 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2603 if (!skb)
2604 goto err_alloc;
2605
2606 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2607 dev_kfree_skb(skb);
2608 goto err_alloc;
2609 }
2610
2611 rxq->rx_skbuff[i] = skb;
2612 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2613
2614 if (fep->bufdesc_ex) {
2615 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2616 ebdp->cbd_esc = BD_ENET_RX_INT;
2617 }
2618
2619 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2620 }
2621
2622 /* Set the last buffer to wrap. */
2623 bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2624 bdp->cbd_sc |= BD_SC_WRAP;
2625 return 0;
2626
2627 err_alloc:
2628 fec_enet_free_buffers(ndev);
2629 return -ENOMEM;
2630}
2631
2632static int
2633fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2634{
2635 struct fec_enet_private *fep = netdev_priv(ndev);
2636 unsigned int i;
2637 struct bufdesc *bdp;
2638 struct fec_enet_priv_tx_q *txq;
2639
2640 txq = fep->tx_queue[queue];
2641 bdp = txq->tx_bd_base;
2642 for (i = 0; i < txq->tx_ring_size; i++) {
2643 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2644 if (!txq->tx_bounce[i])
2645 goto err_alloc;
2646
2647 bdp->cbd_sc = 0;
2648 bdp->cbd_bufaddr = 0;
2649
2650 if (fep->bufdesc_ex) {
2651 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2652 ebdp->cbd_esc = BD_ENET_TX_INT;
2653 }
2654
2655 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2656 }
2657
2658 /* Set the last buffer to wrap. */
2659 bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2660 bdp->cbd_sc |= BD_SC_WRAP;
2661
2662 return 0;
2663
2664 err_alloc:
2665 fec_enet_free_buffers(ndev);
2666 return -ENOMEM;
2667}
2668
2669static int fec_enet_alloc_buffers(struct net_device *ndev)
2670{
2671 struct fec_enet_private *fep = netdev_priv(ndev);
2672 unsigned int i;
2673
2674 for (i = 0; i < fep->num_rx_queues; i++)
2675 if (fec_enet_alloc_rxq_buffers(ndev, i))
2676 return -ENOMEM;
2677
2678 for (i = 0; i < fep->num_tx_queues; i++)
2679 if (fec_enet_alloc_txq_buffers(ndev, i))
2680 return -ENOMEM;
2681 return 0;
2682}
2683
2684static int
2685fec_enet_open(struct net_device *ndev)
2686{
2687 struct fec_enet_private *fep = netdev_priv(ndev);
2688 int ret;
2689
2690 pinctrl_pm_select_default_state(&fep->pdev->dev);
2691 ret = fec_enet_clk_enable(ndev, true);
2692 if (ret)
2693 return ret;
2694
2695 /* I should reset the ring buffers here, but I don't yet know
2696 * a simple way to do that.
2697 */
2698
2699 ret = fec_enet_alloc_buffers(ndev);
2700 if (ret)
2701 goto err_enet_alloc;
2702
2703 /* Probe and connect to PHY when open the interface */
2704 ret = fec_enet_mii_probe(ndev);
2705 if (ret)
2706 goto err_enet_mii_probe;
2707
2708 fec_restart(ndev);
2709 napi_enable(&fep->napi);
2710 phy_start(fep->phy_dev);
2711 netif_tx_start_all_queues(ndev);
2712
2713 return 0;
2714
2715err_enet_mii_probe:
2716 fec_enet_free_buffers(ndev);
2717err_enet_alloc:
2718 fec_enet_clk_enable(ndev, false);
2719 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2720 return ret;
2721}
2722
2723static int
2724fec_enet_close(struct net_device *ndev)
2725{
2726 struct fec_enet_private *fep = netdev_priv(ndev);
2727
2728 phy_stop(fep->phy_dev);
2729
2730 if (netif_device_present(ndev)) {
2731 napi_disable(&fep->napi);
2732 netif_tx_disable(ndev);
2733 fec_stop(ndev);
2734 }
2735
2736 phy_disconnect(fep->phy_dev);
2737 fep->phy_dev = NULL;
2738
2739 fec_enet_clk_enable(ndev, false);
2740 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2741 fec_enet_free_buffers(ndev);
2742
2743 return 0;
2744}
2745
2746/* Set or clear the multicast filter for this adaptor.
2747 * Skeleton taken from sunlance driver.
2748 * The CPM Ethernet implementation allows Multicast as well as individual
2749 * MAC address filtering. Some of the drivers check to make sure it is
2750 * a group multicast address, and discard those that are not. I guess I
2751 * will do the same for now, but just remove the test if you want
2752 * individual filtering as well (do the upper net layers want or support
2753 * this kind of feature?).
2754 */
2755
2756#define HASH_BITS 6 /* #bits in hash */
2757#define CRC32_POLY 0xEDB88320
2758
2759static void set_multicast_list(struct net_device *ndev)
2760{
2761 struct fec_enet_private *fep = netdev_priv(ndev);
2762 struct netdev_hw_addr *ha;
2763 unsigned int i, bit, data, crc, tmp;
2764 unsigned char hash;
2765
2766 if (ndev->flags & IFF_PROMISC) {
2767 tmp = readl(fep->hwp + FEC_R_CNTRL);
2768 tmp |= 0x8;
2769 writel(tmp, fep->hwp + FEC_R_CNTRL);
2770 return;
2771 }
2772
2773 tmp = readl(fep->hwp + FEC_R_CNTRL);
2774 tmp &= ~0x8;
2775 writel(tmp, fep->hwp + FEC_R_CNTRL);
2776
2777 if (ndev->flags & IFF_ALLMULTI) {
2778 /* Catch all multicast addresses, so set the
2779 * filter to all 1's
2780 */
2781 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2782 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2783
2784 return;
2785 }
2786
2787 /* Clear filter and add the addresses in hash register
2788 */
2789 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2790 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2791
2792 netdev_for_each_mc_addr(ha, ndev) {
2793 /* calculate crc32 value of mac address */
2794 crc = 0xffffffff;
2795
2796 for (i = 0; i < ndev->addr_len; i++) {
2797 data = ha->addr[i];
2798 for (bit = 0; bit < 8; bit++, data >>= 1) {
2799 crc = (crc >> 1) ^
2800 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2801 }
2802 }
2803
2804 /* only upper 6 bits (HASH_BITS) are used
2805 * which point to specific bit in he hash registers
2806 */
2807 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2808
2809 if (hash > 31) {
2810 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2811 tmp |= 1 << (hash - 32);
2812 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2813 } else {
2814 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2815 tmp |= 1 << hash;
2816 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2817 }
2818 }
2819}
2820
2821/* Set a MAC change in hardware. */
2822static int
2823fec_set_mac_address(struct net_device *ndev, void *p)
2824{
2825 struct fec_enet_private *fep = netdev_priv(ndev);
2826 struct sockaddr *addr = p;
2827
2828 if (addr) {
2829 if (!is_valid_ether_addr(addr->sa_data))
2830 return -EADDRNOTAVAIL;
2831 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2832 }
2833
2834 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2835 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2836 fep->hwp + FEC_ADDR_LOW);
2837 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2838 fep->hwp + FEC_ADDR_HIGH);
2839 return 0;
2840}
2841
2842#ifdef CONFIG_NET_POLL_CONTROLLER
2843/**
2844 * fec_poll_controller - FEC Poll controller function
2845 * @dev: The FEC network adapter
2846 *
2847 * Polled functionality used by netconsole and others in non interrupt mode
2848 *
2849 */
2850static void fec_poll_controller(struct net_device *dev)
2851{
2852 int i;
2853 struct fec_enet_private *fep = netdev_priv(dev);
2854
2855 for (i = 0; i < FEC_IRQ_NUM; i++) {
2856 if (fep->irq[i] > 0) {
2857 disable_irq(fep->irq[i]);
2858 fec_enet_interrupt(fep->irq[i], dev);
2859 enable_irq(fep->irq[i]);
2860 }
2861 }
2862}
2863#endif
2864
2865#define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2866static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2867 netdev_features_t features)
2868{
2869 struct fec_enet_private *fep = netdev_priv(netdev);
2870 netdev_features_t changed = features ^ netdev->features;
2871
2872 netdev->features = features;
2873
2874 /* Receive checksum has been changed */
2875 if (changed & NETIF_F_RXCSUM) {
2876 if (features & NETIF_F_RXCSUM)
2877 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2878 else
2879 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2880 }
2881}
2882
2883static int fec_set_features(struct net_device *netdev,
2884 netdev_features_t features)
2885{
2886 struct fec_enet_private *fep = netdev_priv(netdev);
2887 netdev_features_t changed = features ^ netdev->features;
2888
2889 if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2890 napi_disable(&fep->napi);
2891 netif_tx_lock_bh(netdev);
2892 fec_stop(netdev);
2893 fec_enet_set_netdev_features(netdev, features);
2894 fec_restart(netdev);
2895 netif_tx_wake_all_queues(netdev);
2896 netif_tx_unlock_bh(netdev);
2897 napi_enable(&fep->napi);
2898 } else {
2899 fec_enet_set_netdev_features(netdev, features);
2900 }
2901
2902 return 0;
2903}
2904
2905static const struct net_device_ops fec_netdev_ops = {
2906 .ndo_open = fec_enet_open,
2907 .ndo_stop = fec_enet_close,
2908 .ndo_start_xmit = fec_enet_start_xmit,
2909 .ndo_set_rx_mode = set_multicast_list,
2910 .ndo_change_mtu = eth_change_mtu,
2911 .ndo_validate_addr = eth_validate_addr,
2912 .ndo_tx_timeout = fec_timeout,
2913 .ndo_set_mac_address = fec_set_mac_address,
2914 .ndo_do_ioctl = fec_enet_ioctl,
2915#ifdef CONFIG_NET_POLL_CONTROLLER
2916 .ndo_poll_controller = fec_poll_controller,
2917#endif
2918 .ndo_set_features = fec_set_features,
2919};
2920
2921 /*
2922 * XXX: We need to clean up on failure exits here.
2923 *
2924 */
2925static int fec_enet_init(struct net_device *ndev)
2926{
2927 struct fec_enet_private *fep = netdev_priv(ndev);
2928 struct fec_enet_priv_tx_q *txq;
2929 struct fec_enet_priv_rx_q *rxq;
2930 struct bufdesc *cbd_base;
2931 dma_addr_t bd_dma;
2932 int bd_size;
2933 unsigned int i;
2934
2935#if defined(CONFIG_ARM)
2936 fep->rx_align = 0xf;
2937 fep->tx_align = 0xf;
2938#else
2939 fep->rx_align = 0x3;
2940 fep->tx_align = 0x3;
2941#endif
2942
2943 fec_enet_alloc_queue(ndev);
2944
2945 if (fep->bufdesc_ex)
2946 fep->bufdesc_size = sizeof(struct bufdesc_ex);
2947 else
2948 fep->bufdesc_size = sizeof(struct bufdesc);
2949 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
2950 fep->bufdesc_size;
2951
2952 /* Allocate memory for buffer descriptors. */
2953 cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
2954 GFP_KERNEL);
2955 if (!cbd_base) {
2956 return -ENOMEM;
2957 }
2958
2959 memset(cbd_base, 0, bd_size);
2960
2961 /* Get the Ethernet address */
2962 fec_get_mac(ndev);
2963 /* make sure MAC we just acquired is programmed into the hw */
2964 fec_set_mac_address(ndev, NULL);
2965
2966 /* Set receive and transmit descriptor base. */
2967 for (i = 0; i < fep->num_rx_queues; i++) {
2968 rxq = fep->rx_queue[i];
2969 rxq->index = i;
2970 rxq->rx_bd_base = (struct bufdesc *)cbd_base;
2971 rxq->bd_dma = bd_dma;
2972 if (fep->bufdesc_ex) {
2973 bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
2974 cbd_base = (struct bufdesc *)
2975 (((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
2976 } else {
2977 bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
2978 cbd_base += rxq->rx_ring_size;
2979 }
2980 }
2981
2982 for (i = 0; i < fep->num_tx_queues; i++) {
2983 txq = fep->tx_queue[i];
2984 txq->index = i;
2985 txq->tx_bd_base = (struct bufdesc *)cbd_base;
2986 txq->bd_dma = bd_dma;
2987 if (fep->bufdesc_ex) {
2988 bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
2989 cbd_base = (struct bufdesc *)
2990 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
2991 } else {
2992 bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
2993 cbd_base += txq->tx_ring_size;
2994 }
2995 }
2996
2997
2998 /* The FEC Ethernet specific entries in the device structure */
2999 ndev->watchdog_timeo = TX_TIMEOUT;
3000 ndev->netdev_ops = &fec_netdev_ops;
3001 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3002
3003 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3004 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3005
3006 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3007 /* enable hw VLAN support */
3008 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3009
3010 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3011 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3012
3013 /* enable hw accelerator */
3014 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3015 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3016 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3017 }
3018
3019 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3020 fep->tx_align = 0;
3021 fep->rx_align = 0x3f;
3022 }
3023
3024 ndev->hw_features = ndev->features;
3025
3026 fec_restart(ndev);
3027
3028 return 0;
3029}
3030
3031#ifdef CONFIG_OF
3032static void fec_reset_phy(struct platform_device *pdev)
3033{
3034 int err, phy_reset;
3035 int msec = 1;
3036 struct device_node *np = pdev->dev.of_node;
3037
3038 if (!np)
3039 return;
3040
3041 of_property_read_u32(np, "phy-reset-duration", &msec);
3042 /* A sane reset duration should not be longer than 1s */
3043 if (msec > 1000)
3044 msec = 1;
3045
3046 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3047 if (!gpio_is_valid(phy_reset))
3048 return;
3049
3050 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3051 GPIOF_OUT_INIT_LOW, "phy-reset");
3052 if (err) {
3053 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3054 return;
3055 }
3056 msleep(msec);
3057 gpio_set_value(phy_reset, 1);
3058}
3059#else /* CONFIG_OF */
3060static void fec_reset_phy(struct platform_device *pdev)
3061{
3062 /*
3063 * In case of platform probe, the reset has been done
3064 * by machine code.
3065 */
3066}
3067#endif /* CONFIG_OF */
3068
3069static void
3070fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3071{
3072 struct device_node *np = pdev->dev.of_node;
3073 int err;
3074
3075 *num_tx = *num_rx = 1;
3076
3077 if (!np || !of_device_is_available(np))
3078 return;
3079
3080 /* parse the num of tx and rx queues */
3081 err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3082 if (err)
3083 *num_tx = 1;
3084
3085 err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3086 if (err)
3087 *num_rx = 1;
3088
3089 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3090 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3091 *num_tx);
3092 *num_tx = 1;
3093 return;
3094 }
3095
3096 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3097 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3098 *num_rx);
3099 *num_rx = 1;
3100 return;
3101 }
3102
3103}
3104
3105static int
3106fec_probe(struct platform_device *pdev)
3107{
3108 struct fec_enet_private *fep;
3109 struct fec_platform_data *pdata;
3110 struct net_device *ndev;
3111 int i, irq, ret = 0;
3112 struct resource *r;
3113 const struct of_device_id *of_id;
3114 static int dev_id;
3115 struct device_node *np = pdev->dev.of_node, *phy_node;
3116 int num_tx_qs;
3117 int num_rx_qs;
3118
3119 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3120
3121 /* Init network device */
3122 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3123 num_tx_qs, num_rx_qs);
3124 if (!ndev)
3125 return -ENOMEM;
3126
3127 SET_NETDEV_DEV(ndev, &pdev->dev);
3128
3129 /* setup board info structure */
3130 fep = netdev_priv(ndev);
3131
3132 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3133 if (of_id)
3134 pdev->id_entry = of_id->data;
3135 fep->quirks = pdev->id_entry->driver_data;
3136
3137 fep->num_rx_queues = num_rx_qs;
3138 fep->num_tx_queues = num_tx_qs;
3139
3140#if !defined(CONFIG_M5272)
3141 /* default enable pause frame auto negotiation */
3142 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3143 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3144#endif
3145
3146 /* Select default pin state */
3147 pinctrl_pm_select_default_state(&pdev->dev);
3148
3149 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3150 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3151 if (IS_ERR(fep->hwp)) {
3152 ret = PTR_ERR(fep->hwp);
3153 goto failed_ioremap;
3154 }
3155
3156 fep->pdev = pdev;
3157 fep->dev_id = dev_id++;
3158
3159 platform_set_drvdata(pdev, ndev);
3160
3161 phy_node = of_parse_phandle(np, "phy-handle", 0);
3162 if (!phy_node && of_phy_is_fixed_link(np)) {
3163 ret = of_phy_register_fixed_link(np);
3164 if (ret < 0) {
3165 dev_err(&pdev->dev,
3166 "broken fixed-link specification\n");
3167 goto failed_phy;
3168 }
3169 phy_node = of_node_get(np);
3170 }
3171 fep->phy_node = phy_node;
3172
3173 ret = of_get_phy_mode(pdev->dev.of_node);
3174 if (ret < 0) {
3175 pdata = dev_get_platdata(&pdev->dev);
3176 if (pdata)
3177 fep->phy_interface = pdata->phy;
3178 else
3179 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3180 } else {
3181 fep->phy_interface = ret;
3182 }
3183
3184 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3185 if (IS_ERR(fep->clk_ipg)) {
3186 ret = PTR_ERR(fep->clk_ipg);
3187 goto failed_clk;
3188 }
3189
3190 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3191 if (IS_ERR(fep->clk_ahb)) {
3192 ret = PTR_ERR(fep->clk_ahb);
3193 goto failed_clk;
3194 }
3195
3196 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3197
3198 /* enet_out is optional, depends on board */
3199 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3200 if (IS_ERR(fep->clk_enet_out))
3201 fep->clk_enet_out = NULL;
3202
3203 fep->ptp_clk_on = false;
3204 mutex_init(&fep->ptp_clk_mutex);
3205
3206 /* clk_ref is optional, depends on board */
3207 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3208 if (IS_ERR(fep->clk_ref))
3209 fep->clk_ref = NULL;
3210
3211 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3212 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3213 if (IS_ERR(fep->clk_ptp)) {
3214 fep->clk_ptp = NULL;
3215 fep->bufdesc_ex = false;
3216 }
3217
3218 ret = fec_enet_clk_enable(ndev, true);
3219 if (ret)
3220 goto failed_clk;
3221
3222 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3223 if (!IS_ERR(fep->reg_phy)) {
3224 ret = regulator_enable(fep->reg_phy);
3225 if (ret) {
3226 dev_err(&pdev->dev,
3227 "Failed to enable phy regulator: %d\n", ret);
3228 goto failed_regulator;
3229 }
3230 } else {
3231 fep->reg_phy = NULL;
3232 }
3233
3234 fec_reset_phy(pdev);
3235
3236 if (fep->bufdesc_ex)
3237 fec_ptp_init(pdev);
3238
3239 ret = fec_enet_init(ndev);
3240 if (ret)
3241 goto failed_init;
3242
3243 for (i = 0; i < FEC_IRQ_NUM; i++) {
3244 irq = platform_get_irq(pdev, i);
3245 if (irq < 0) {
3246 if (i)
3247 break;
3248 ret = irq;
3249 goto failed_irq;
3250 }
3251 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3252 0, pdev->name, ndev);
3253 if (ret)
3254 goto failed_irq;
3255 }
3256
3257 init_completion(&fep->mdio_done);
3258 ret = fec_enet_mii_init(pdev);
3259 if (ret)
3260 goto failed_mii_init;
3261
3262 /* Carrier starts down, phylib will bring it up */
3263 netif_carrier_off(ndev);
3264 fec_enet_clk_enable(ndev, false);
3265 pinctrl_pm_select_sleep_state(&pdev->dev);
3266
3267 ret = register_netdev(ndev);
3268 if (ret)
3269 goto failed_register;
3270
3271 if (fep->bufdesc_ex && fep->ptp_clock)
3272 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3273
3274 fep->rx_copybreak = COPYBREAK_DEFAULT;
3275 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3276 return 0;
3277
3278failed_register:
3279 fec_enet_mii_remove(fep);
3280failed_mii_init:
3281failed_irq:
3282failed_init:
3283 if (fep->reg_phy)
3284 regulator_disable(fep->reg_phy);
3285failed_regulator:
3286 fec_enet_clk_enable(ndev, false);
3287failed_clk:
3288failed_phy:
3289 of_node_put(phy_node);
3290failed_ioremap:
3291 free_netdev(ndev);
3292
3293 return ret;
3294}
3295
3296static int
3297fec_drv_remove(struct platform_device *pdev)
3298{
3299 struct net_device *ndev = platform_get_drvdata(pdev);
3300 struct fec_enet_private *fep = netdev_priv(ndev);
3301
3302 cancel_delayed_work_sync(&fep->time_keep);
3303 cancel_work_sync(&fep->tx_timeout_work);
3304 unregister_netdev(ndev);
3305 fec_enet_mii_remove(fep);
3306 if (fep->reg_phy)
3307 regulator_disable(fep->reg_phy);
3308 if (fep->ptp_clock)
3309 ptp_clock_unregister(fep->ptp_clock);
3310 fec_enet_clk_enable(ndev, false);
3311 of_node_put(fep->phy_node);
3312 free_netdev(ndev);
3313
3314 return 0;
3315}
3316
3317static int __maybe_unused fec_suspend(struct device *dev)
3318{
3319 struct net_device *ndev = dev_get_drvdata(dev);
3320 struct fec_enet_private *fep = netdev_priv(ndev);
3321
3322 rtnl_lock();
3323 if (netif_running(ndev)) {
3324 phy_stop(fep->phy_dev);
3325 napi_disable(&fep->napi);
3326 netif_tx_lock_bh(ndev);
3327 netif_device_detach(ndev);
3328 netif_tx_unlock_bh(ndev);
3329 fec_stop(ndev);
3330 fec_enet_clk_enable(ndev, false);
3331 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3332 }
3333 rtnl_unlock();
3334
3335 if (fep->reg_phy)
3336 regulator_disable(fep->reg_phy);
3337
3338 /* SOC supply clock to phy, when clock is disabled, phy link down
3339 * SOC control phy regulator, when regulator is disabled, phy link down
3340 */
3341 if (fep->clk_enet_out || fep->reg_phy)
3342 fep->link = 0;
3343
3344 return 0;
3345}
3346
3347static int __maybe_unused fec_resume(struct device *dev)
3348{
3349 struct net_device *ndev = dev_get_drvdata(dev);
3350 struct fec_enet_private *fep = netdev_priv(ndev);
3351 int ret;
3352
3353 if (fep->reg_phy) {
3354 ret = regulator_enable(fep->reg_phy);
3355 if (ret)
3356 return ret;
3357 }
3358
3359 rtnl_lock();
3360 if (netif_running(ndev)) {
3361 pinctrl_pm_select_default_state(&fep->pdev->dev);
3362 ret = fec_enet_clk_enable(ndev, true);
3363 if (ret) {
3364 rtnl_unlock();
3365 goto failed_clk;
3366 }
3367 fec_restart(ndev);
3368 netif_tx_lock_bh(ndev);
3369 netif_device_attach(ndev);
3370 netif_tx_unlock_bh(ndev);
3371 napi_enable(&fep->napi);
3372 phy_start(fep->phy_dev);
3373 }
3374 rtnl_unlock();
3375
3376 return 0;
3377
3378failed_clk:
3379 if (fep->reg_phy)
3380 regulator_disable(fep->reg_phy);
3381 return ret;
3382}
3383
3384static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3385
3386static struct platform_driver fec_driver = {
3387 .driver = {
3388 .name = DRIVER_NAME,
3389 .pm = &fec_pm_ops,
3390 .of_match_table = fec_dt_ids,
3391 },
3392 .id_table = fec_devtype,
3393 .probe = fec_probe,
3394 .remove = fec_drv_remove,
3395};
3396
3397module_platform_driver(fec_driver);
3398
3399MODULE_ALIAS("platform:"DRIVER_NAME);
3400MODULE_LICENSE("GPL");