]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - drivers/net/wireless/ipw2200.c
net: convert print_mac to %pM
[mirror_ubuntu-bionic-kernel.git] / drivers / net / wireless / ipw2200.c
... / ...
CommitLineData
1/******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31******************************************************************************/
32
33#include "ipw2200.h"
34
35
36#ifndef KBUILD_EXTMOD
37#define VK "k"
38#else
39#define VK
40#endif
41
42#ifdef CONFIG_IPW2200_DEBUG
43#define VD "d"
44#else
45#define VD
46#endif
47
48#ifdef CONFIG_IPW2200_MONITOR
49#define VM "m"
50#else
51#define VM
52#endif
53
54#ifdef CONFIG_IPW2200_PROMISCUOUS
55#define VP "p"
56#else
57#define VP
58#endif
59
60#ifdef CONFIG_IPW2200_RADIOTAP
61#define VR "r"
62#else
63#define VR
64#endif
65
66#ifdef CONFIG_IPW2200_QOS
67#define VQ "q"
68#else
69#define VQ
70#endif
71
72#define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
73#define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
74#define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
75#define DRV_VERSION IPW2200_VERSION
76
77#define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
78
79MODULE_DESCRIPTION(DRV_DESCRIPTION);
80MODULE_VERSION(DRV_VERSION);
81MODULE_AUTHOR(DRV_COPYRIGHT);
82MODULE_LICENSE("GPL");
83
84static int cmdlog = 0;
85static int debug = 0;
86static int channel = 0;
87static int mode = 0;
88
89static u32 ipw_debug_level;
90static int associate = 1;
91static int auto_create = 1;
92static int led = 0;
93static int disable = 0;
94static int bt_coexist = 0;
95static int hwcrypto = 0;
96static int roaming = 1;
97static const char ipw_modes[] = {
98 'a', 'b', 'g', '?'
99};
100static int antenna = CFG_SYS_ANTENNA_BOTH;
101
102#ifdef CONFIG_IPW2200_PROMISCUOUS
103static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
104#endif
105
106
107#ifdef CONFIG_IPW2200_QOS
108static int qos_enable = 0;
109static int qos_burst_enable = 0;
110static int qos_no_ack_mask = 0;
111static int burst_duration_CCK = 0;
112static int burst_duration_OFDM = 0;
113
114static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
115 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
116 QOS_TX3_CW_MIN_OFDM},
117 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
118 QOS_TX3_CW_MAX_OFDM},
119 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
120 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
121 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
122 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
123};
124
125static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
126 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
127 QOS_TX3_CW_MIN_CCK},
128 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
129 QOS_TX3_CW_MAX_CCK},
130 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
131 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
132 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
133 QOS_TX3_TXOP_LIMIT_CCK}
134};
135
136static struct ieee80211_qos_parameters def_parameters_OFDM = {
137 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
138 DEF_TX3_CW_MIN_OFDM},
139 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
140 DEF_TX3_CW_MAX_OFDM},
141 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
142 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
143 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
144 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
145};
146
147static struct ieee80211_qos_parameters def_parameters_CCK = {
148 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
149 DEF_TX3_CW_MIN_CCK},
150 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
151 DEF_TX3_CW_MAX_CCK},
152 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
153 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
154 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
155 DEF_TX3_TXOP_LIMIT_CCK}
156};
157
158static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
159
160static int from_priority_to_tx_queue[] = {
161 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
162 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
163};
164
165static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
166
167static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
168 *qos_param);
169static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
170 *qos_param);
171#endif /* CONFIG_IPW2200_QOS */
172
173static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
174static void ipw_remove_current_network(struct ipw_priv *priv);
175static void ipw_rx(struct ipw_priv *priv);
176static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
177 struct clx2_tx_queue *txq, int qindex);
178static int ipw_queue_reset(struct ipw_priv *priv);
179
180static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
181 int len, int sync);
182
183static void ipw_tx_queue_free(struct ipw_priv *);
184
185static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
186static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
187static void ipw_rx_queue_replenish(void *);
188static int ipw_up(struct ipw_priv *);
189static void ipw_bg_up(struct work_struct *work);
190static void ipw_down(struct ipw_priv *);
191static void ipw_bg_down(struct work_struct *work);
192static int ipw_config(struct ipw_priv *);
193static int init_supported_rates(struct ipw_priv *priv,
194 struct ipw_supported_rates *prates);
195static void ipw_set_hwcrypto_keys(struct ipw_priv *);
196static void ipw_send_wep_keys(struct ipw_priv *, int);
197
198static int snprint_line(char *buf, size_t count,
199 const u8 * data, u32 len, u32 ofs)
200{
201 int out, i, j, l;
202 char c;
203
204 out = snprintf(buf, count, "%08X", ofs);
205
206 for (l = 0, i = 0; i < 2; i++) {
207 out += snprintf(buf + out, count - out, " ");
208 for (j = 0; j < 8 && l < len; j++, l++)
209 out += snprintf(buf + out, count - out, "%02X ",
210 data[(i * 8 + j)]);
211 for (; j < 8; j++)
212 out += snprintf(buf + out, count - out, " ");
213 }
214
215 out += snprintf(buf + out, count - out, " ");
216 for (l = 0, i = 0; i < 2; i++) {
217 out += snprintf(buf + out, count - out, " ");
218 for (j = 0; j < 8 && l < len; j++, l++) {
219 c = data[(i * 8 + j)];
220 if (!isascii(c) || !isprint(c))
221 c = '.';
222
223 out += snprintf(buf + out, count - out, "%c", c);
224 }
225
226 for (; j < 8; j++)
227 out += snprintf(buf + out, count - out, " ");
228 }
229
230 return out;
231}
232
233static void printk_buf(int level, const u8 * data, u32 len)
234{
235 char line[81];
236 u32 ofs = 0;
237 if (!(ipw_debug_level & level))
238 return;
239
240 while (len) {
241 snprint_line(line, sizeof(line), &data[ofs],
242 min(len, 16U), ofs);
243 printk(KERN_DEBUG "%s\n", line);
244 ofs += 16;
245 len -= min(len, 16U);
246 }
247}
248
249static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
250{
251 size_t out = size;
252 u32 ofs = 0;
253 int total = 0;
254
255 while (size && len) {
256 out = snprint_line(output, size, &data[ofs],
257 min_t(size_t, len, 16U), ofs);
258
259 ofs += 16;
260 output += out;
261 size -= out;
262 len -= min_t(size_t, len, 16U);
263 total += out;
264 }
265 return total;
266}
267
268/* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
269static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
270#define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
271
272/* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
273static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
274#define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
275
276/* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
277static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
278static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
279{
280 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
281 __LINE__, (u32) (b), (u32) (c));
282 _ipw_write_reg8(a, b, c);
283}
284
285/* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
286static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
287static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
288{
289 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
290 __LINE__, (u32) (b), (u32) (c));
291 _ipw_write_reg16(a, b, c);
292}
293
294/* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
295static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
296static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
297{
298 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
299 __LINE__, (u32) (b), (u32) (c));
300 _ipw_write_reg32(a, b, c);
301}
302
303/* 8-bit direct write (low 4K) */
304#define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
305
306/* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
307#define ipw_write8(ipw, ofs, val) do { \
308 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
309 _ipw_write8(ipw, ofs, val); \
310 } while (0)
311
312/* 16-bit direct write (low 4K) */
313#define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
314
315/* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316#define ipw_write16(ipw, ofs, val) \
317 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318 _ipw_write16(ipw, ofs, val)
319
320/* 32-bit direct write (low 4K) */
321#define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
322
323/* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324#define ipw_write32(ipw, ofs, val) \
325 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326 _ipw_write32(ipw, ofs, val)
327
328/* 8-bit direct read (low 4K) */
329#define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
330
331/* 8-bit direct read (low 4K), with debug wrapper */
332static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
333{
334 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335 return _ipw_read8(ipw, ofs);
336}
337
338/* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339#define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
340
341/* 16-bit direct read (low 4K) */
342#define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
343
344/* 16-bit direct read (low 4K), with debug wrapper */
345static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
346{
347 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348 return _ipw_read16(ipw, ofs);
349}
350
351/* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352#define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
353
354/* 32-bit direct read (low 4K) */
355#define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
356
357/* 32-bit direct read (low 4K), with debug wrapper */
358static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
359{
360 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361 return _ipw_read32(ipw, ofs);
362}
363
364/* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365#define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
366
367/* multi-byte read (above 4K), with debug wrapper */
368static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369static inline void __ipw_read_indirect(const char *f, int l,
370 struct ipw_priv *a, u32 b, u8 * c, int d)
371{
372 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
373 d);
374 _ipw_read_indirect(a, b, c, d);
375}
376
377/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378#define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
379
380/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382 int num);
383#define ipw_write_indirect(a, b, c, d) \
384 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385 _ipw_write_indirect(a, b, c, d)
386
387/* 32-bit indirect write (above 4K) */
388static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
389{
390 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
393}
394
395/* 8-bit indirect write (above 4K) */
396static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
397{
398 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
399 u32 dif_len = reg - aligned_addr;
400
401 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
404}
405
406/* 16-bit indirect write (above 4K) */
407static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
408{
409 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
410 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
411
412 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
415}
416
417/* 8-bit indirect read (above 4K) */
418static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
419{
420 u32 word;
421 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424 return (word >> ((reg & 0x3) * 8)) & 0xff;
425}
426
427/* 32-bit indirect read (above 4K) */
428static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
429{
430 u32 value;
431
432 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
433
434 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437 return value;
438}
439
440/* General purpose, no alignment requirement, iterative (multi-byte) read, */
441/* for area above 1st 4K of SRAM/reg space */
442static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443 int num)
444{
445 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = addr - aligned_addr;
447 u32 i;
448
449 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
450
451 if (num <= 0) {
452 return;
453 }
454
455 /* Read the first dword (or portion) byte by byte */
456 if (unlikely(dif_len)) {
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458 /* Start reading at aligned_addr + dif_len */
459 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461 aligned_addr += 4;
462 }
463
464 /* Read all of the middle dwords as dwords, with auto-increment */
465 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
468
469 /* Read the last dword (or portion) byte by byte */
470 if (unlikely(num)) {
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 for (i = 0; num > 0; i++, num--)
473 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
474 }
475}
476
477/* General purpose, no alignment requirement, iterative (multi-byte) write, */
478/* for area above 1st 4K of SRAM/reg space */
479static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480 int num)
481{
482 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
483 u32 dif_len = addr - aligned_addr;
484 u32 i;
485
486 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
487
488 if (num <= 0) {
489 return;
490 }
491
492 /* Write the first dword (or portion) byte by byte */
493 if (unlikely(dif_len)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 /* Start writing at aligned_addr + dif_len */
496 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498 aligned_addr += 4;
499 }
500
501 /* Write all of the middle dwords as dwords, with auto-increment */
502 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
505
506 /* Write the last dword (or portion) byte by byte */
507 if (unlikely(num)) {
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 for (i = 0; num > 0; i++, num--, buf++)
510 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
511 }
512}
513
514/* General purpose, no alignment requirement, iterative (multi-byte) write, */
515/* for 1st 4K of SRAM/regs space */
516static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517 int num)
518{
519 memcpy_toio((priv->hw_base + addr), buf, num);
520}
521
522/* Set bit(s) in low 4K of SRAM/regs */
523static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
524{
525 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
526}
527
528/* Clear bit(s) in low 4K of SRAM/regs */
529static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
530{
531 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
532}
533
534static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
535{
536 if (priv->status & STATUS_INT_ENABLED)
537 return;
538 priv->status |= STATUS_INT_ENABLED;
539 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
540}
541
542static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
543{
544 if (!(priv->status & STATUS_INT_ENABLED))
545 return;
546 priv->status &= ~STATUS_INT_ENABLED;
547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
548}
549
550static inline void ipw_enable_interrupts(struct ipw_priv *priv)
551{
552 unsigned long flags;
553
554 spin_lock_irqsave(&priv->irq_lock, flags);
555 __ipw_enable_interrupts(priv);
556 spin_unlock_irqrestore(&priv->irq_lock, flags);
557}
558
559static inline void ipw_disable_interrupts(struct ipw_priv *priv)
560{
561 unsigned long flags;
562
563 spin_lock_irqsave(&priv->irq_lock, flags);
564 __ipw_disable_interrupts(priv);
565 spin_unlock_irqrestore(&priv->irq_lock, flags);
566}
567
568static char *ipw_error_desc(u32 val)
569{
570 switch (val) {
571 case IPW_FW_ERROR_OK:
572 return "ERROR_OK";
573 case IPW_FW_ERROR_FAIL:
574 return "ERROR_FAIL";
575 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576 return "MEMORY_UNDERFLOW";
577 case IPW_FW_ERROR_MEMORY_OVERFLOW:
578 return "MEMORY_OVERFLOW";
579 case IPW_FW_ERROR_BAD_PARAM:
580 return "BAD_PARAM";
581 case IPW_FW_ERROR_BAD_CHECKSUM:
582 return "BAD_CHECKSUM";
583 case IPW_FW_ERROR_NMI_INTERRUPT:
584 return "NMI_INTERRUPT";
585 case IPW_FW_ERROR_BAD_DATABASE:
586 return "BAD_DATABASE";
587 case IPW_FW_ERROR_ALLOC_FAIL:
588 return "ALLOC_FAIL";
589 case IPW_FW_ERROR_DMA_UNDERRUN:
590 return "DMA_UNDERRUN";
591 case IPW_FW_ERROR_DMA_STATUS:
592 return "DMA_STATUS";
593 case IPW_FW_ERROR_DINO_ERROR:
594 return "DINO_ERROR";
595 case IPW_FW_ERROR_EEPROM_ERROR:
596 return "EEPROM_ERROR";
597 case IPW_FW_ERROR_SYSASSERT:
598 return "SYSASSERT";
599 case IPW_FW_ERROR_FATAL_ERROR:
600 return "FATAL_ERROR";
601 default:
602 return "UNKNOWN_ERROR";
603 }
604}
605
606static void ipw_dump_error_log(struct ipw_priv *priv,
607 struct ipw_fw_error *error)
608{
609 u32 i;
610
611 if (!error) {
612 IPW_ERROR("Error allocating and capturing error log. "
613 "Nothing to dump.\n");
614 return;
615 }
616
617 IPW_ERROR("Start IPW Error Log Dump:\n");
618 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619 error->status, error->config);
620
621 for (i = 0; i < error->elem_len; i++)
622 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
623 ipw_error_desc(error->elem[i].desc),
624 error->elem[i].time,
625 error->elem[i].blink1,
626 error->elem[i].blink2,
627 error->elem[i].link1,
628 error->elem[i].link2, error->elem[i].data);
629 for (i = 0; i < error->log_len; i++)
630 IPW_ERROR("%i\t0x%08x\t%i\n",
631 error->log[i].time,
632 error->log[i].data, error->log[i].event);
633}
634
635static inline int ipw_is_init(struct ipw_priv *priv)
636{
637 return (priv->status & STATUS_INIT) ? 1 : 0;
638}
639
640static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
641{
642 u32 addr, field_info, field_len, field_count, total_len;
643
644 IPW_DEBUG_ORD("ordinal = %i\n", ord);
645
646 if (!priv || !val || !len) {
647 IPW_DEBUG_ORD("Invalid argument\n");
648 return -EINVAL;
649 }
650
651 /* verify device ordinal tables have been initialized */
652 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654 return -EINVAL;
655 }
656
657 switch (IPW_ORD_TABLE_ID_MASK & ord) {
658 case IPW_ORD_TABLE_0_MASK:
659 /*
660 * TABLE 0: Direct access to a table of 32 bit values
661 *
662 * This is a very simple table with the data directly
663 * read from the table
664 */
665
666 /* remove the table id from the ordinal */
667 ord &= IPW_ORD_TABLE_VALUE_MASK;
668
669 /* boundary check */
670 if (ord > priv->table0_len) {
671 IPW_DEBUG_ORD("ordinal value (%i) longer then "
672 "max (%i)\n", ord, priv->table0_len);
673 return -EINVAL;
674 }
675
676 /* verify we have enough room to store the value */
677 if (*len < sizeof(u32)) {
678 IPW_DEBUG_ORD("ordinal buffer length too small, "
679 "need %zd\n", sizeof(u32));
680 return -EINVAL;
681 }
682
683 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684 ord, priv->table0_addr + (ord << 2));
685
686 *len = sizeof(u32);
687 ord <<= 2;
688 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689 break;
690
691 case IPW_ORD_TABLE_1_MASK:
692 /*
693 * TABLE 1: Indirect access to a table of 32 bit values
694 *
695 * This is a fairly large table of u32 values each
696 * representing starting addr for the data (which is
697 * also a u32)
698 */
699
700 /* remove the table id from the ordinal */
701 ord &= IPW_ORD_TABLE_VALUE_MASK;
702
703 /* boundary check */
704 if (ord > priv->table1_len) {
705 IPW_DEBUG_ORD("ordinal value too long\n");
706 return -EINVAL;
707 }
708
709 /* verify we have enough room to store the value */
710 if (*len < sizeof(u32)) {
711 IPW_DEBUG_ORD("ordinal buffer length too small, "
712 "need %zd\n", sizeof(u32));
713 return -EINVAL;
714 }
715
716 *((u32 *) val) =
717 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718 *len = sizeof(u32);
719 break;
720
721 case IPW_ORD_TABLE_2_MASK:
722 /*
723 * TABLE 2: Indirect access to a table of variable sized values
724 *
725 * This table consist of six values, each containing
726 * - dword containing the starting offset of the data
727 * - dword containing the lengh in the first 16bits
728 * and the count in the second 16bits
729 */
730
731 /* remove the table id from the ordinal */
732 ord &= IPW_ORD_TABLE_VALUE_MASK;
733
734 /* boundary check */
735 if (ord > priv->table2_len) {
736 IPW_DEBUG_ORD("ordinal value too long\n");
737 return -EINVAL;
738 }
739
740 /* get the address of statistic */
741 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
742
743 /* get the second DW of statistics ;
744 * two 16-bit words - first is length, second is count */
745 field_info =
746 ipw_read_reg32(priv,
747 priv->table2_addr + (ord << 3) +
748 sizeof(u32));
749
750 /* get each entry length */
751 field_len = *((u16 *) & field_info);
752
753 /* get number of entries */
754 field_count = *(((u16 *) & field_info) + 1);
755
756 /* abort if not enought memory */
757 total_len = field_len * field_count;
758 if (total_len > *len) {
759 *len = total_len;
760 return -EINVAL;
761 }
762
763 *len = total_len;
764 if (!total_len)
765 return 0;
766
767 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768 "field_info = 0x%08x\n",
769 addr, total_len, field_info);
770 ipw_read_indirect(priv, addr, val, total_len);
771 break;
772
773 default:
774 IPW_DEBUG_ORD("Invalid ordinal!\n");
775 return -EINVAL;
776
777 }
778
779 return 0;
780}
781
782static void ipw_init_ordinals(struct ipw_priv *priv)
783{
784 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785 priv->table0_len = ipw_read32(priv, priv->table0_addr);
786
787 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788 priv->table0_addr, priv->table0_len);
789
790 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
792
793 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794 priv->table1_addr, priv->table1_len);
795
796 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798 priv->table2_len &= 0x0000ffff; /* use first two bytes */
799
800 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801 priv->table2_addr, priv->table2_len);
802
803}
804
805static u32 ipw_register_toggle(u32 reg)
806{
807 reg &= ~IPW_START_STANDBY;
808 if (reg & IPW_GATE_ODMA)
809 reg &= ~IPW_GATE_ODMA;
810 if (reg & IPW_GATE_IDMA)
811 reg &= ~IPW_GATE_IDMA;
812 if (reg & IPW_GATE_ADMA)
813 reg &= ~IPW_GATE_ADMA;
814 return reg;
815}
816
817/*
818 * LED behavior:
819 * - On radio ON, turn on any LEDs that require to be on during start
820 * - On initialization, start unassociated blink
821 * - On association, disable unassociated blink
822 * - On disassociation, start unassociated blink
823 * - On radio OFF, turn off any LEDs started during radio on
824 *
825 */
826#define LD_TIME_LINK_ON msecs_to_jiffies(300)
827#define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828#define LD_TIME_ACT_ON msecs_to_jiffies(250)
829
830static void ipw_led_link_on(struct ipw_priv *priv)
831{
832 unsigned long flags;
833 u32 led;
834
835 /* If configured to not use LEDs, or nic_type is 1,
836 * then we don't toggle a LINK led */
837 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838 return;
839
840 spin_lock_irqsave(&priv->lock, flags);
841
842 if (!(priv->status & STATUS_RF_KILL_MASK) &&
843 !(priv->status & STATUS_LED_LINK_ON)) {
844 IPW_DEBUG_LED("Link LED On\n");
845 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846 led |= priv->led_association_on;
847
848 led = ipw_register_toggle(led);
849
850 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851 ipw_write_reg32(priv, IPW_EVENT_REG, led);
852
853 priv->status |= STATUS_LED_LINK_ON;
854
855 /* If we aren't associated, schedule turning the LED off */
856 if (!(priv->status & STATUS_ASSOCIATED))
857 queue_delayed_work(priv->workqueue,
858 &priv->led_link_off,
859 LD_TIME_LINK_ON);
860 }
861
862 spin_unlock_irqrestore(&priv->lock, flags);
863}
864
865static void ipw_bg_led_link_on(struct work_struct *work)
866{
867 struct ipw_priv *priv =
868 container_of(work, struct ipw_priv, led_link_on.work);
869 mutex_lock(&priv->mutex);
870 ipw_led_link_on(priv);
871 mutex_unlock(&priv->mutex);
872}
873
874static void ipw_led_link_off(struct ipw_priv *priv)
875{
876 unsigned long flags;
877 u32 led;
878
879 /* If configured not to use LEDs, or nic type is 1,
880 * then we don't goggle the LINK led. */
881 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882 return;
883
884 spin_lock_irqsave(&priv->lock, flags);
885
886 if (priv->status & STATUS_LED_LINK_ON) {
887 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888 led &= priv->led_association_off;
889 led = ipw_register_toggle(led);
890
891 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892 ipw_write_reg32(priv, IPW_EVENT_REG, led);
893
894 IPW_DEBUG_LED("Link LED Off\n");
895
896 priv->status &= ~STATUS_LED_LINK_ON;
897
898 /* If we aren't associated and the radio is on, schedule
899 * turning the LED on (blink while unassociated) */
900 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901 !(priv->status & STATUS_ASSOCIATED))
902 queue_delayed_work(priv->workqueue, &priv->led_link_on,
903 LD_TIME_LINK_OFF);
904
905 }
906
907 spin_unlock_irqrestore(&priv->lock, flags);
908}
909
910static void ipw_bg_led_link_off(struct work_struct *work)
911{
912 struct ipw_priv *priv =
913 container_of(work, struct ipw_priv, led_link_off.work);
914 mutex_lock(&priv->mutex);
915 ipw_led_link_off(priv);
916 mutex_unlock(&priv->mutex);
917}
918
919static void __ipw_led_activity_on(struct ipw_priv *priv)
920{
921 u32 led;
922
923 if (priv->config & CFG_NO_LED)
924 return;
925
926 if (priv->status & STATUS_RF_KILL_MASK)
927 return;
928
929 if (!(priv->status & STATUS_LED_ACT_ON)) {
930 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931 led |= priv->led_activity_on;
932
933 led = ipw_register_toggle(led);
934
935 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938 IPW_DEBUG_LED("Activity LED On\n");
939
940 priv->status |= STATUS_LED_ACT_ON;
941
942 cancel_delayed_work(&priv->led_act_off);
943 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944 LD_TIME_ACT_ON);
945 } else {
946 /* Reschedule LED off for full time period */
947 cancel_delayed_work(&priv->led_act_off);
948 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949 LD_TIME_ACT_ON);
950 }
951}
952
953#if 0
954void ipw_led_activity_on(struct ipw_priv *priv)
955{
956 unsigned long flags;
957 spin_lock_irqsave(&priv->lock, flags);
958 __ipw_led_activity_on(priv);
959 spin_unlock_irqrestore(&priv->lock, flags);
960}
961#endif /* 0 */
962
963static void ipw_led_activity_off(struct ipw_priv *priv)
964{
965 unsigned long flags;
966 u32 led;
967
968 if (priv->config & CFG_NO_LED)
969 return;
970
971 spin_lock_irqsave(&priv->lock, flags);
972
973 if (priv->status & STATUS_LED_ACT_ON) {
974 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975 led &= priv->led_activity_off;
976
977 led = ipw_register_toggle(led);
978
979 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982 IPW_DEBUG_LED("Activity LED Off\n");
983
984 priv->status &= ~STATUS_LED_ACT_ON;
985 }
986
987 spin_unlock_irqrestore(&priv->lock, flags);
988}
989
990static void ipw_bg_led_activity_off(struct work_struct *work)
991{
992 struct ipw_priv *priv =
993 container_of(work, struct ipw_priv, led_act_off.work);
994 mutex_lock(&priv->mutex);
995 ipw_led_activity_off(priv);
996 mutex_unlock(&priv->mutex);
997}
998
999static void ipw_led_band_on(struct ipw_priv *priv)
1000{
1001 unsigned long flags;
1002 u32 led;
1003
1004 /* Only nic type 1 supports mode LEDs */
1005 if (priv->config & CFG_NO_LED ||
1006 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007 return;
1008
1009 spin_lock_irqsave(&priv->lock, flags);
1010
1011 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012 if (priv->assoc_network->mode == IEEE_A) {
1013 led |= priv->led_ofdm_on;
1014 led &= priv->led_association_off;
1015 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016 } else if (priv->assoc_network->mode == IEEE_G) {
1017 led |= priv->led_ofdm_on;
1018 led |= priv->led_association_on;
1019 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020 } else {
1021 led &= priv->led_ofdm_off;
1022 led |= priv->led_association_on;
1023 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1024 }
1025
1026 led = ipw_register_toggle(led);
1027
1028 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1030
1031 spin_unlock_irqrestore(&priv->lock, flags);
1032}
1033
1034static void ipw_led_band_off(struct ipw_priv *priv)
1035{
1036 unsigned long flags;
1037 u32 led;
1038
1039 /* Only nic type 1 supports mode LEDs */
1040 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041 return;
1042
1043 spin_lock_irqsave(&priv->lock, flags);
1044
1045 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046 led &= priv->led_ofdm_off;
1047 led &= priv->led_association_off;
1048
1049 led = ipw_register_toggle(led);
1050
1051 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1053
1054 spin_unlock_irqrestore(&priv->lock, flags);
1055}
1056
1057static void ipw_led_radio_on(struct ipw_priv *priv)
1058{
1059 ipw_led_link_on(priv);
1060}
1061
1062static void ipw_led_radio_off(struct ipw_priv *priv)
1063{
1064 ipw_led_activity_off(priv);
1065 ipw_led_link_off(priv);
1066}
1067
1068static void ipw_led_link_up(struct ipw_priv *priv)
1069{
1070 /* Set the Link Led on for all nic types */
1071 ipw_led_link_on(priv);
1072}
1073
1074static void ipw_led_link_down(struct ipw_priv *priv)
1075{
1076 ipw_led_activity_off(priv);
1077 ipw_led_link_off(priv);
1078
1079 if (priv->status & STATUS_RF_KILL_MASK)
1080 ipw_led_radio_off(priv);
1081}
1082
1083static void ipw_led_init(struct ipw_priv *priv)
1084{
1085 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1086
1087 /* Set the default PINs for the link and activity leds */
1088 priv->led_activity_on = IPW_ACTIVITY_LED;
1089 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1090
1091 priv->led_association_on = IPW_ASSOCIATED_LED;
1092 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1093
1094 /* Set the default PINs for the OFDM leds */
1095 priv->led_ofdm_on = IPW_OFDM_LED;
1096 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1097
1098 switch (priv->nic_type) {
1099 case EEPROM_NIC_TYPE_1:
1100 /* In this NIC type, the LEDs are reversed.... */
1101 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103 priv->led_association_on = IPW_ACTIVITY_LED;
1104 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1105
1106 if (!(priv->config & CFG_NO_LED))
1107 ipw_led_band_on(priv);
1108
1109 /* And we don't blink link LEDs for this nic, so
1110 * just return here */
1111 return;
1112
1113 case EEPROM_NIC_TYPE_3:
1114 case EEPROM_NIC_TYPE_2:
1115 case EEPROM_NIC_TYPE_4:
1116 case EEPROM_NIC_TYPE_0:
1117 break;
1118
1119 default:
1120 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121 priv->nic_type);
1122 priv->nic_type = EEPROM_NIC_TYPE_0;
1123 break;
1124 }
1125
1126 if (!(priv->config & CFG_NO_LED)) {
1127 if (priv->status & STATUS_ASSOCIATED)
1128 ipw_led_link_on(priv);
1129 else
1130 ipw_led_link_off(priv);
1131 }
1132}
1133
1134static void ipw_led_shutdown(struct ipw_priv *priv)
1135{
1136 ipw_led_activity_off(priv);
1137 ipw_led_link_off(priv);
1138 ipw_led_band_off(priv);
1139 cancel_delayed_work(&priv->led_link_on);
1140 cancel_delayed_work(&priv->led_link_off);
1141 cancel_delayed_work(&priv->led_act_off);
1142}
1143
1144/*
1145 * The following adds a new attribute to the sysfs representation
1146 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147 * used for controling the debug level.
1148 *
1149 * See the level definitions in ipw for details.
1150 */
1151static ssize_t show_debug_level(struct device_driver *d, char *buf)
1152{
1153 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1154}
1155
1156static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157 size_t count)
1158{
1159 char *p = (char *)buf;
1160 u32 val;
1161
1162 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163 p++;
1164 if (p[0] == 'x' || p[0] == 'X')
1165 p++;
1166 val = simple_strtoul(p, &p, 16);
1167 } else
1168 val = simple_strtoul(p, &p, 10);
1169 if (p == buf)
1170 printk(KERN_INFO DRV_NAME
1171 ": %s is not in hex or decimal form.\n", buf);
1172 else
1173 ipw_debug_level = val;
1174
1175 return strnlen(buf, count);
1176}
1177
1178static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179 show_debug_level, store_debug_level);
1180
1181static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1182{
1183 /* length = 1st dword in log */
1184 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1185}
1186
1187static void ipw_capture_event_log(struct ipw_priv *priv,
1188 u32 log_len, struct ipw_event *log)
1189{
1190 u32 base;
1191
1192 if (log_len) {
1193 base = ipw_read32(priv, IPW_EVENT_LOG);
1194 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195 (u8 *) log, sizeof(*log) * log_len);
1196 }
1197}
1198
1199static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1200{
1201 struct ipw_fw_error *error;
1202 u32 log_len = ipw_get_event_log_len(priv);
1203 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204 u32 elem_len = ipw_read_reg32(priv, base);
1205
1206 error = kmalloc(sizeof(*error) +
1207 sizeof(*error->elem) * elem_len +
1208 sizeof(*error->log) * log_len, GFP_ATOMIC);
1209 if (!error) {
1210 IPW_ERROR("Memory allocation for firmware error log "
1211 "failed.\n");
1212 return NULL;
1213 }
1214 error->jiffies = jiffies;
1215 error->status = priv->status;
1216 error->config = priv->config;
1217 error->elem_len = elem_len;
1218 error->log_len = log_len;
1219 error->elem = (struct ipw_error_elem *)error->payload;
1220 error->log = (struct ipw_event *)(error->elem + elem_len);
1221
1222 ipw_capture_event_log(priv, log_len, error->log);
1223
1224 if (elem_len)
1225 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226 sizeof(*error->elem) * elem_len);
1227
1228 return error;
1229}
1230
1231static ssize_t show_event_log(struct device *d,
1232 struct device_attribute *attr, char *buf)
1233{
1234 struct ipw_priv *priv = dev_get_drvdata(d);
1235 u32 log_len = ipw_get_event_log_len(priv);
1236 u32 log_size;
1237 struct ipw_event *log;
1238 u32 len = 0, i;
1239
1240 /* not using min() because of its strict type checking */
1241 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1242 sizeof(*log) * log_len : PAGE_SIZE;
1243 log = kzalloc(log_size, GFP_KERNEL);
1244 if (!log) {
1245 IPW_ERROR("Unable to allocate memory for log\n");
1246 return 0;
1247 }
1248 log_len = log_size / sizeof(*log);
1249 ipw_capture_event_log(priv, log_len, log);
1250
1251 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1252 for (i = 0; i < log_len; i++)
1253 len += snprintf(buf + len, PAGE_SIZE - len,
1254 "\n%08X%08X%08X",
1255 log[i].time, log[i].event, log[i].data);
1256 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1257 kfree(log);
1258 return len;
1259}
1260
1261static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1262
1263static ssize_t show_error(struct device *d,
1264 struct device_attribute *attr, char *buf)
1265{
1266 struct ipw_priv *priv = dev_get_drvdata(d);
1267 u32 len = 0, i;
1268 if (!priv->error)
1269 return 0;
1270 len += snprintf(buf + len, PAGE_SIZE - len,
1271 "%08lX%08X%08X%08X",
1272 priv->error->jiffies,
1273 priv->error->status,
1274 priv->error->config, priv->error->elem_len);
1275 for (i = 0; i < priv->error->elem_len; i++)
1276 len += snprintf(buf + len, PAGE_SIZE - len,
1277 "\n%08X%08X%08X%08X%08X%08X%08X",
1278 priv->error->elem[i].time,
1279 priv->error->elem[i].desc,
1280 priv->error->elem[i].blink1,
1281 priv->error->elem[i].blink2,
1282 priv->error->elem[i].link1,
1283 priv->error->elem[i].link2,
1284 priv->error->elem[i].data);
1285
1286 len += snprintf(buf + len, PAGE_SIZE - len,
1287 "\n%08X", priv->error->log_len);
1288 for (i = 0; i < priv->error->log_len; i++)
1289 len += snprintf(buf + len, PAGE_SIZE - len,
1290 "\n%08X%08X%08X",
1291 priv->error->log[i].time,
1292 priv->error->log[i].event,
1293 priv->error->log[i].data);
1294 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1295 return len;
1296}
1297
1298static ssize_t clear_error(struct device *d,
1299 struct device_attribute *attr,
1300 const char *buf, size_t count)
1301{
1302 struct ipw_priv *priv = dev_get_drvdata(d);
1303
1304 kfree(priv->error);
1305 priv->error = NULL;
1306 return count;
1307}
1308
1309static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1310
1311static ssize_t show_cmd_log(struct device *d,
1312 struct device_attribute *attr, char *buf)
1313{
1314 struct ipw_priv *priv = dev_get_drvdata(d);
1315 u32 len = 0, i;
1316 if (!priv->cmdlog)
1317 return 0;
1318 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1319 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1320 i = (i + 1) % priv->cmdlog_len) {
1321 len +=
1322 snprintf(buf + len, PAGE_SIZE - len,
1323 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1324 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1325 priv->cmdlog[i].cmd.len);
1326 len +=
1327 snprintk_buf(buf + len, PAGE_SIZE - len,
1328 (u8 *) priv->cmdlog[i].cmd.param,
1329 priv->cmdlog[i].cmd.len);
1330 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1331 }
1332 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1333 return len;
1334}
1335
1336static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1337
1338#ifdef CONFIG_IPW2200_PROMISCUOUS
1339static void ipw_prom_free(struct ipw_priv *priv);
1340static int ipw_prom_alloc(struct ipw_priv *priv);
1341static ssize_t store_rtap_iface(struct device *d,
1342 struct device_attribute *attr,
1343 const char *buf, size_t count)
1344{
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1346 int rc = 0;
1347
1348 if (count < 1)
1349 return -EINVAL;
1350
1351 switch (buf[0]) {
1352 case '0':
1353 if (!rtap_iface)
1354 return count;
1355
1356 if (netif_running(priv->prom_net_dev)) {
1357 IPW_WARNING("Interface is up. Cannot unregister.\n");
1358 return count;
1359 }
1360
1361 ipw_prom_free(priv);
1362 rtap_iface = 0;
1363 break;
1364
1365 case '1':
1366 if (rtap_iface)
1367 return count;
1368
1369 rc = ipw_prom_alloc(priv);
1370 if (!rc)
1371 rtap_iface = 1;
1372 break;
1373
1374 default:
1375 return -EINVAL;
1376 }
1377
1378 if (rc) {
1379 IPW_ERROR("Failed to register promiscuous network "
1380 "device (error %d).\n", rc);
1381 }
1382
1383 return count;
1384}
1385
1386static ssize_t show_rtap_iface(struct device *d,
1387 struct device_attribute *attr,
1388 char *buf)
1389{
1390 struct ipw_priv *priv = dev_get_drvdata(d);
1391 if (rtap_iface)
1392 return sprintf(buf, "%s", priv->prom_net_dev->name);
1393 else {
1394 buf[0] = '-';
1395 buf[1] = '1';
1396 buf[2] = '\0';
1397 return 3;
1398 }
1399}
1400
1401static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1402 store_rtap_iface);
1403
1404static ssize_t store_rtap_filter(struct device *d,
1405 struct device_attribute *attr,
1406 const char *buf, size_t count)
1407{
1408 struct ipw_priv *priv = dev_get_drvdata(d);
1409
1410 if (!priv->prom_priv) {
1411 IPW_ERROR("Attempting to set filter without "
1412 "rtap_iface enabled.\n");
1413 return -EPERM;
1414 }
1415
1416 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1417
1418 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1419 BIT_ARG16(priv->prom_priv->filter));
1420
1421 return count;
1422}
1423
1424static ssize_t show_rtap_filter(struct device *d,
1425 struct device_attribute *attr,
1426 char *buf)
1427{
1428 struct ipw_priv *priv = dev_get_drvdata(d);
1429 return sprintf(buf, "0x%04X",
1430 priv->prom_priv ? priv->prom_priv->filter : 0);
1431}
1432
1433static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1434 store_rtap_filter);
1435#endif
1436
1437static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1438 char *buf)
1439{
1440 struct ipw_priv *priv = dev_get_drvdata(d);
1441 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1442}
1443
1444static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1445 const char *buf, size_t count)
1446{
1447 struct ipw_priv *priv = dev_get_drvdata(d);
1448 struct net_device *dev = priv->net_dev;
1449 char buffer[] = "00000000";
1450 unsigned long len =
1451 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1452 unsigned long val;
1453 char *p = buffer;
1454
1455 IPW_DEBUG_INFO("enter\n");
1456
1457 strncpy(buffer, buf, len);
1458 buffer[len] = 0;
1459
1460 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1461 p++;
1462 if (p[0] == 'x' || p[0] == 'X')
1463 p++;
1464 val = simple_strtoul(p, &p, 16);
1465 } else
1466 val = simple_strtoul(p, &p, 10);
1467 if (p == buffer) {
1468 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1469 } else {
1470 priv->ieee->scan_age = val;
1471 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1472 }
1473
1474 IPW_DEBUG_INFO("exit\n");
1475 return len;
1476}
1477
1478static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1479
1480static ssize_t show_led(struct device *d, struct device_attribute *attr,
1481 char *buf)
1482{
1483 struct ipw_priv *priv = dev_get_drvdata(d);
1484 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1485}
1486
1487static ssize_t store_led(struct device *d, struct device_attribute *attr,
1488 const char *buf, size_t count)
1489{
1490 struct ipw_priv *priv = dev_get_drvdata(d);
1491
1492 IPW_DEBUG_INFO("enter\n");
1493
1494 if (count == 0)
1495 return 0;
1496
1497 if (*buf == 0) {
1498 IPW_DEBUG_LED("Disabling LED control.\n");
1499 priv->config |= CFG_NO_LED;
1500 ipw_led_shutdown(priv);
1501 } else {
1502 IPW_DEBUG_LED("Enabling LED control.\n");
1503 priv->config &= ~CFG_NO_LED;
1504 ipw_led_init(priv);
1505 }
1506
1507 IPW_DEBUG_INFO("exit\n");
1508 return count;
1509}
1510
1511static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1512
1513static ssize_t show_status(struct device *d,
1514 struct device_attribute *attr, char *buf)
1515{
1516 struct ipw_priv *p = d->driver_data;
1517 return sprintf(buf, "0x%08x\n", (int)p->status);
1518}
1519
1520static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1521
1522static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1523 char *buf)
1524{
1525 struct ipw_priv *p = d->driver_data;
1526 return sprintf(buf, "0x%08x\n", (int)p->config);
1527}
1528
1529static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1530
1531static ssize_t show_nic_type(struct device *d,
1532 struct device_attribute *attr, char *buf)
1533{
1534 struct ipw_priv *priv = d->driver_data;
1535 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1536}
1537
1538static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1539
1540static ssize_t show_ucode_version(struct device *d,
1541 struct device_attribute *attr, char *buf)
1542{
1543 u32 len = sizeof(u32), tmp = 0;
1544 struct ipw_priv *p = d->driver_data;
1545
1546 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1547 return 0;
1548
1549 return sprintf(buf, "0x%08x\n", tmp);
1550}
1551
1552static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1553
1554static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1555 char *buf)
1556{
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = d->driver_data;
1559
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1561 return 0;
1562
1563 return sprintf(buf, "0x%08x\n", tmp);
1564}
1565
1566static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1567
1568/*
1569 * Add a device attribute to view/control the delay between eeprom
1570 * operations.
1571 */
1572static ssize_t show_eeprom_delay(struct device *d,
1573 struct device_attribute *attr, char *buf)
1574{
1575 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1576 return sprintf(buf, "%i\n", n);
1577}
1578static ssize_t store_eeprom_delay(struct device *d,
1579 struct device_attribute *attr,
1580 const char *buf, size_t count)
1581{
1582 struct ipw_priv *p = d->driver_data;
1583 sscanf(buf, "%i", &p->eeprom_delay);
1584 return strnlen(buf, count);
1585}
1586
1587static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1588 show_eeprom_delay, store_eeprom_delay);
1589
1590static ssize_t show_command_event_reg(struct device *d,
1591 struct device_attribute *attr, char *buf)
1592{
1593 u32 reg = 0;
1594 struct ipw_priv *p = d->driver_data;
1595
1596 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597 return sprintf(buf, "0x%08x\n", reg);
1598}
1599static ssize_t store_command_event_reg(struct device *d,
1600 struct device_attribute *attr,
1601 const char *buf, size_t count)
1602{
1603 u32 reg;
1604 struct ipw_priv *p = d->driver_data;
1605
1606 sscanf(buf, "%x", &reg);
1607 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608 return strnlen(buf, count);
1609}
1610
1611static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1612 show_command_event_reg, store_command_event_reg);
1613
1614static ssize_t show_mem_gpio_reg(struct device *d,
1615 struct device_attribute *attr, char *buf)
1616{
1617 u32 reg = 0;
1618 struct ipw_priv *p = d->driver_data;
1619
1620 reg = ipw_read_reg32(p, 0x301100);
1621 return sprintf(buf, "0x%08x\n", reg);
1622}
1623static ssize_t store_mem_gpio_reg(struct device *d,
1624 struct device_attribute *attr,
1625 const char *buf, size_t count)
1626{
1627 u32 reg;
1628 struct ipw_priv *p = d->driver_data;
1629
1630 sscanf(buf, "%x", &reg);
1631 ipw_write_reg32(p, 0x301100, reg);
1632 return strnlen(buf, count);
1633}
1634
1635static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1636 show_mem_gpio_reg, store_mem_gpio_reg);
1637
1638static ssize_t show_indirect_dword(struct device *d,
1639 struct device_attribute *attr, char *buf)
1640{
1641 u32 reg = 0;
1642 struct ipw_priv *priv = d->driver_data;
1643
1644 if (priv->status & STATUS_INDIRECT_DWORD)
1645 reg = ipw_read_reg32(priv, priv->indirect_dword);
1646 else
1647 reg = 0;
1648
1649 return sprintf(buf, "0x%08x\n", reg);
1650}
1651static ssize_t store_indirect_dword(struct device *d,
1652 struct device_attribute *attr,
1653 const char *buf, size_t count)
1654{
1655 struct ipw_priv *priv = d->driver_data;
1656
1657 sscanf(buf, "%x", &priv->indirect_dword);
1658 priv->status |= STATUS_INDIRECT_DWORD;
1659 return strnlen(buf, count);
1660}
1661
1662static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1663 show_indirect_dword, store_indirect_dword);
1664
1665static ssize_t show_indirect_byte(struct device *d,
1666 struct device_attribute *attr, char *buf)
1667{
1668 u8 reg = 0;
1669 struct ipw_priv *priv = d->driver_data;
1670
1671 if (priv->status & STATUS_INDIRECT_BYTE)
1672 reg = ipw_read_reg8(priv, priv->indirect_byte);
1673 else
1674 reg = 0;
1675
1676 return sprintf(buf, "0x%02x\n", reg);
1677}
1678static ssize_t store_indirect_byte(struct device *d,
1679 struct device_attribute *attr,
1680 const char *buf, size_t count)
1681{
1682 struct ipw_priv *priv = d->driver_data;
1683
1684 sscanf(buf, "%x", &priv->indirect_byte);
1685 priv->status |= STATUS_INDIRECT_BYTE;
1686 return strnlen(buf, count);
1687}
1688
1689static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1690 show_indirect_byte, store_indirect_byte);
1691
1692static ssize_t show_direct_dword(struct device *d,
1693 struct device_attribute *attr, char *buf)
1694{
1695 u32 reg = 0;
1696 struct ipw_priv *priv = d->driver_data;
1697
1698 if (priv->status & STATUS_DIRECT_DWORD)
1699 reg = ipw_read32(priv, priv->direct_dword);
1700 else
1701 reg = 0;
1702
1703 return sprintf(buf, "0x%08x\n", reg);
1704}
1705static ssize_t store_direct_dword(struct device *d,
1706 struct device_attribute *attr,
1707 const char *buf, size_t count)
1708{
1709 struct ipw_priv *priv = d->driver_data;
1710
1711 sscanf(buf, "%x", &priv->direct_dword);
1712 priv->status |= STATUS_DIRECT_DWORD;
1713 return strnlen(buf, count);
1714}
1715
1716static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1717 show_direct_dword, store_direct_dword);
1718
1719static int rf_kill_active(struct ipw_priv *priv)
1720{
1721 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1722 priv->status |= STATUS_RF_KILL_HW;
1723 else
1724 priv->status &= ~STATUS_RF_KILL_HW;
1725
1726 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1727}
1728
1729static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1730 char *buf)
1731{
1732 /* 0 - RF kill not enabled
1733 1 - SW based RF kill active (sysfs)
1734 2 - HW based RF kill active
1735 3 - Both HW and SW baed RF kill active */
1736 struct ipw_priv *priv = d->driver_data;
1737 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1738 (rf_kill_active(priv) ? 0x2 : 0x0);
1739 return sprintf(buf, "%i\n", val);
1740}
1741
1742static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1743{
1744 if ((disable_radio ? 1 : 0) ==
1745 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1746 return 0;
1747
1748 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1749 disable_radio ? "OFF" : "ON");
1750
1751 if (disable_radio) {
1752 priv->status |= STATUS_RF_KILL_SW;
1753
1754 if (priv->workqueue) {
1755 cancel_delayed_work(&priv->request_scan);
1756 cancel_delayed_work(&priv->request_direct_scan);
1757 cancel_delayed_work(&priv->request_passive_scan);
1758 cancel_delayed_work(&priv->scan_event);
1759 }
1760 queue_work(priv->workqueue, &priv->down);
1761 } else {
1762 priv->status &= ~STATUS_RF_KILL_SW;
1763 if (rf_kill_active(priv)) {
1764 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1765 "disabled by HW switch\n");
1766 /* Make sure the RF_KILL check timer is running */
1767 cancel_delayed_work(&priv->rf_kill);
1768 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1769 round_jiffies_relative(2 * HZ));
1770 } else
1771 queue_work(priv->workqueue, &priv->up);
1772 }
1773
1774 return 1;
1775}
1776
1777static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1778 const char *buf, size_t count)
1779{
1780 struct ipw_priv *priv = d->driver_data;
1781
1782 ipw_radio_kill_sw(priv, buf[0] == '1');
1783
1784 return count;
1785}
1786
1787static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1788
1789static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1790 char *buf)
1791{
1792 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1793 int pos = 0, len = 0;
1794 if (priv->config & CFG_SPEED_SCAN) {
1795 while (priv->speed_scan[pos] != 0)
1796 len += sprintf(&buf[len], "%d ",
1797 priv->speed_scan[pos++]);
1798 return len + sprintf(&buf[len], "\n");
1799 }
1800
1801 return sprintf(buf, "0\n");
1802}
1803
1804static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1805 const char *buf, size_t count)
1806{
1807 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1808 int channel, pos = 0;
1809 const char *p = buf;
1810
1811 /* list of space separated channels to scan, optionally ending with 0 */
1812 while ((channel = simple_strtol(p, NULL, 0))) {
1813 if (pos == MAX_SPEED_SCAN - 1) {
1814 priv->speed_scan[pos] = 0;
1815 break;
1816 }
1817
1818 if (ieee80211_is_valid_channel(priv->ieee, channel))
1819 priv->speed_scan[pos++] = channel;
1820 else
1821 IPW_WARNING("Skipping invalid channel request: %d\n",
1822 channel);
1823 p = strchr(p, ' ');
1824 if (!p)
1825 break;
1826 while (*p == ' ' || *p == '\t')
1827 p++;
1828 }
1829
1830 if (pos == 0)
1831 priv->config &= ~CFG_SPEED_SCAN;
1832 else {
1833 priv->speed_scan_pos = 0;
1834 priv->config |= CFG_SPEED_SCAN;
1835 }
1836
1837 return count;
1838}
1839
1840static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1841 store_speed_scan);
1842
1843static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1844 char *buf)
1845{
1846 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1847 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1848}
1849
1850static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1851 const char *buf, size_t count)
1852{
1853 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1854 if (buf[0] == '1')
1855 priv->config |= CFG_NET_STATS;
1856 else
1857 priv->config &= ~CFG_NET_STATS;
1858
1859 return count;
1860}
1861
1862static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1863 show_net_stats, store_net_stats);
1864
1865static ssize_t show_channels(struct device *d,
1866 struct device_attribute *attr,
1867 char *buf)
1868{
1869 struct ipw_priv *priv = dev_get_drvdata(d);
1870 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1871 int len = 0, i;
1872
1873 len = sprintf(&buf[len],
1874 "Displaying %d channels in 2.4Ghz band "
1875 "(802.11bg):\n", geo->bg_channels);
1876
1877 for (i = 0; i < geo->bg_channels; i++) {
1878 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1879 geo->bg[i].channel,
1880 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1881 " (radar spectrum)" : "",
1882 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1883 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1884 ? "" : ", IBSS",
1885 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1886 "passive only" : "active/passive",
1887 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1888 "B" : "B/G");
1889 }
1890
1891 len += sprintf(&buf[len],
1892 "Displaying %d channels in 5.2Ghz band "
1893 "(802.11a):\n", geo->a_channels);
1894 for (i = 0; i < geo->a_channels; i++) {
1895 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1896 geo->a[i].channel,
1897 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1898 " (radar spectrum)" : "",
1899 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1900 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1901 ? "" : ", IBSS",
1902 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1903 "passive only" : "active/passive");
1904 }
1905
1906 return len;
1907}
1908
1909static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1910
1911static void notify_wx_assoc_event(struct ipw_priv *priv)
1912{
1913 union iwreq_data wrqu;
1914 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1915 if (priv->status & STATUS_ASSOCIATED)
1916 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1917 else
1918 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1919 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1920}
1921
1922static void ipw_irq_tasklet(struct ipw_priv *priv)
1923{
1924 u32 inta, inta_mask, handled = 0;
1925 unsigned long flags;
1926 int rc = 0;
1927
1928 spin_lock_irqsave(&priv->irq_lock, flags);
1929
1930 inta = ipw_read32(priv, IPW_INTA_RW);
1931 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1932 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1933
1934 /* Add any cached INTA values that need to be handled */
1935 inta |= priv->isr_inta;
1936
1937 spin_unlock_irqrestore(&priv->irq_lock, flags);
1938
1939 spin_lock_irqsave(&priv->lock, flags);
1940
1941 /* handle all the justifications for the interrupt */
1942 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1943 ipw_rx(priv);
1944 handled |= IPW_INTA_BIT_RX_TRANSFER;
1945 }
1946
1947 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1948 IPW_DEBUG_HC("Command completed.\n");
1949 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1950 priv->status &= ~STATUS_HCMD_ACTIVE;
1951 wake_up_interruptible(&priv->wait_command_queue);
1952 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1953 }
1954
1955 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1956 IPW_DEBUG_TX("TX_QUEUE_1\n");
1957 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1958 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1959 }
1960
1961 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1962 IPW_DEBUG_TX("TX_QUEUE_2\n");
1963 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1964 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1965 }
1966
1967 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1968 IPW_DEBUG_TX("TX_QUEUE_3\n");
1969 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1970 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1971 }
1972
1973 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1974 IPW_DEBUG_TX("TX_QUEUE_4\n");
1975 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1976 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1977 }
1978
1979 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1980 IPW_WARNING("STATUS_CHANGE\n");
1981 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1982 }
1983
1984 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1985 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1986 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1987 }
1988
1989 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1990 IPW_WARNING("HOST_CMD_DONE\n");
1991 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1992 }
1993
1994 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1995 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1996 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1997 }
1998
1999 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2000 IPW_WARNING("PHY_OFF_DONE\n");
2001 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2002 }
2003
2004 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2005 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2006 priv->status |= STATUS_RF_KILL_HW;
2007 wake_up_interruptible(&priv->wait_command_queue);
2008 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2009 cancel_delayed_work(&priv->request_scan);
2010 cancel_delayed_work(&priv->request_direct_scan);
2011 cancel_delayed_work(&priv->request_passive_scan);
2012 cancel_delayed_work(&priv->scan_event);
2013 schedule_work(&priv->link_down);
2014 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2015 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2016 }
2017
2018 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2019 IPW_WARNING("Firmware error detected. Restarting.\n");
2020 if (priv->error) {
2021 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2022 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2023 struct ipw_fw_error *error =
2024 ipw_alloc_error_log(priv);
2025 ipw_dump_error_log(priv, error);
2026 kfree(error);
2027 }
2028 } else {
2029 priv->error = ipw_alloc_error_log(priv);
2030 if (priv->error)
2031 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2032 else
2033 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2034 "log.\n");
2035 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2036 ipw_dump_error_log(priv, priv->error);
2037 }
2038
2039 /* XXX: If hardware encryption is for WPA/WPA2,
2040 * we have to notify the supplicant. */
2041 if (priv->ieee->sec.encrypt) {
2042 priv->status &= ~STATUS_ASSOCIATED;
2043 notify_wx_assoc_event(priv);
2044 }
2045
2046 /* Keep the restart process from trying to send host
2047 * commands by clearing the INIT status bit */
2048 priv->status &= ~STATUS_INIT;
2049
2050 /* Cancel currently queued command. */
2051 priv->status &= ~STATUS_HCMD_ACTIVE;
2052 wake_up_interruptible(&priv->wait_command_queue);
2053
2054 queue_work(priv->workqueue, &priv->adapter_restart);
2055 handled |= IPW_INTA_BIT_FATAL_ERROR;
2056 }
2057
2058 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2059 IPW_ERROR("Parity error\n");
2060 handled |= IPW_INTA_BIT_PARITY_ERROR;
2061 }
2062
2063 if (handled != inta) {
2064 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2065 }
2066
2067 spin_unlock_irqrestore(&priv->lock, flags);
2068
2069 /* enable all interrupts */
2070 ipw_enable_interrupts(priv);
2071}
2072
2073#define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2074static char *get_cmd_string(u8 cmd)
2075{
2076 switch (cmd) {
2077 IPW_CMD(HOST_COMPLETE);
2078 IPW_CMD(POWER_DOWN);
2079 IPW_CMD(SYSTEM_CONFIG);
2080 IPW_CMD(MULTICAST_ADDRESS);
2081 IPW_CMD(SSID);
2082 IPW_CMD(ADAPTER_ADDRESS);
2083 IPW_CMD(PORT_TYPE);
2084 IPW_CMD(RTS_THRESHOLD);
2085 IPW_CMD(FRAG_THRESHOLD);
2086 IPW_CMD(POWER_MODE);
2087 IPW_CMD(WEP_KEY);
2088 IPW_CMD(TGI_TX_KEY);
2089 IPW_CMD(SCAN_REQUEST);
2090 IPW_CMD(SCAN_REQUEST_EXT);
2091 IPW_CMD(ASSOCIATE);
2092 IPW_CMD(SUPPORTED_RATES);
2093 IPW_CMD(SCAN_ABORT);
2094 IPW_CMD(TX_FLUSH);
2095 IPW_CMD(QOS_PARAMETERS);
2096 IPW_CMD(DINO_CONFIG);
2097 IPW_CMD(RSN_CAPABILITIES);
2098 IPW_CMD(RX_KEY);
2099 IPW_CMD(CARD_DISABLE);
2100 IPW_CMD(SEED_NUMBER);
2101 IPW_CMD(TX_POWER);
2102 IPW_CMD(COUNTRY_INFO);
2103 IPW_CMD(AIRONET_INFO);
2104 IPW_CMD(AP_TX_POWER);
2105 IPW_CMD(CCKM_INFO);
2106 IPW_CMD(CCX_VER_INFO);
2107 IPW_CMD(SET_CALIBRATION);
2108 IPW_CMD(SENSITIVITY_CALIB);
2109 IPW_CMD(RETRY_LIMIT);
2110 IPW_CMD(IPW_PRE_POWER_DOWN);
2111 IPW_CMD(VAP_BEACON_TEMPLATE);
2112 IPW_CMD(VAP_DTIM_PERIOD);
2113 IPW_CMD(EXT_SUPPORTED_RATES);
2114 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2115 IPW_CMD(VAP_QUIET_INTERVALS);
2116 IPW_CMD(VAP_CHANNEL_SWITCH);
2117 IPW_CMD(VAP_MANDATORY_CHANNELS);
2118 IPW_CMD(VAP_CELL_PWR_LIMIT);
2119 IPW_CMD(VAP_CF_PARAM_SET);
2120 IPW_CMD(VAP_SET_BEACONING_STATE);
2121 IPW_CMD(MEASUREMENT);
2122 IPW_CMD(POWER_CAPABILITY);
2123 IPW_CMD(SUPPORTED_CHANNELS);
2124 IPW_CMD(TPC_REPORT);
2125 IPW_CMD(WME_INFO);
2126 IPW_CMD(PRODUCTION_COMMAND);
2127 default:
2128 return "UNKNOWN";
2129 }
2130}
2131
2132#define HOST_COMPLETE_TIMEOUT HZ
2133
2134static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2135{
2136 int rc = 0;
2137 unsigned long flags;
2138
2139 spin_lock_irqsave(&priv->lock, flags);
2140 if (priv->status & STATUS_HCMD_ACTIVE) {
2141 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2142 get_cmd_string(cmd->cmd));
2143 spin_unlock_irqrestore(&priv->lock, flags);
2144 return -EAGAIN;
2145 }
2146
2147 priv->status |= STATUS_HCMD_ACTIVE;
2148
2149 if (priv->cmdlog) {
2150 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2151 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2152 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2153 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2154 cmd->len);
2155 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2156 }
2157
2158 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2159 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2160 priv->status);
2161
2162#ifndef DEBUG_CMD_WEP_KEY
2163 if (cmd->cmd == IPW_CMD_WEP_KEY)
2164 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2165 else
2166#endif
2167 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2168
2169 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2170 if (rc) {
2171 priv->status &= ~STATUS_HCMD_ACTIVE;
2172 IPW_ERROR("Failed to send %s: Reason %d\n",
2173 get_cmd_string(cmd->cmd), rc);
2174 spin_unlock_irqrestore(&priv->lock, flags);
2175 goto exit;
2176 }
2177 spin_unlock_irqrestore(&priv->lock, flags);
2178
2179 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2180 !(priv->
2181 status & STATUS_HCMD_ACTIVE),
2182 HOST_COMPLETE_TIMEOUT);
2183 if (rc == 0) {
2184 spin_lock_irqsave(&priv->lock, flags);
2185 if (priv->status & STATUS_HCMD_ACTIVE) {
2186 IPW_ERROR("Failed to send %s: Command timed out.\n",
2187 get_cmd_string(cmd->cmd));
2188 priv->status &= ~STATUS_HCMD_ACTIVE;
2189 spin_unlock_irqrestore(&priv->lock, flags);
2190 rc = -EIO;
2191 goto exit;
2192 }
2193 spin_unlock_irqrestore(&priv->lock, flags);
2194 } else
2195 rc = 0;
2196
2197 if (priv->status & STATUS_RF_KILL_HW) {
2198 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2199 get_cmd_string(cmd->cmd));
2200 rc = -EIO;
2201 goto exit;
2202 }
2203
2204 exit:
2205 if (priv->cmdlog) {
2206 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2207 priv->cmdlog_pos %= priv->cmdlog_len;
2208 }
2209 return rc;
2210}
2211
2212static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2213{
2214 struct host_cmd cmd = {
2215 .cmd = command,
2216 };
2217
2218 return __ipw_send_cmd(priv, &cmd);
2219}
2220
2221static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2222 void *data)
2223{
2224 struct host_cmd cmd = {
2225 .cmd = command,
2226 .len = len,
2227 .param = data,
2228 };
2229
2230 return __ipw_send_cmd(priv, &cmd);
2231}
2232
2233static int ipw_send_host_complete(struct ipw_priv *priv)
2234{
2235 if (!priv) {
2236 IPW_ERROR("Invalid args\n");
2237 return -1;
2238 }
2239
2240 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2241}
2242
2243static int ipw_send_system_config(struct ipw_priv *priv)
2244{
2245 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2246 sizeof(priv->sys_config),
2247 &priv->sys_config);
2248}
2249
2250static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2251{
2252 if (!priv || !ssid) {
2253 IPW_ERROR("Invalid args\n");
2254 return -1;
2255 }
2256
2257 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2258 ssid);
2259}
2260
2261static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2262{
2263 if (!priv || !mac) {
2264 IPW_ERROR("Invalid args\n");
2265 return -1;
2266 }
2267
2268 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2269 priv->net_dev->name, mac);
2270
2271 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2272}
2273
2274/*
2275 * NOTE: This must be executed from our workqueue as it results in udelay
2276 * being called which may corrupt the keyboard if executed on default
2277 * workqueue
2278 */
2279static void ipw_adapter_restart(void *adapter)
2280{
2281 struct ipw_priv *priv = adapter;
2282
2283 if (priv->status & STATUS_RF_KILL_MASK)
2284 return;
2285
2286 ipw_down(priv);
2287
2288 if (priv->assoc_network &&
2289 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2290 ipw_remove_current_network(priv);
2291
2292 if (ipw_up(priv)) {
2293 IPW_ERROR("Failed to up device\n");
2294 return;
2295 }
2296}
2297
2298static void ipw_bg_adapter_restart(struct work_struct *work)
2299{
2300 struct ipw_priv *priv =
2301 container_of(work, struct ipw_priv, adapter_restart);
2302 mutex_lock(&priv->mutex);
2303 ipw_adapter_restart(priv);
2304 mutex_unlock(&priv->mutex);
2305}
2306
2307#define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2308
2309static void ipw_scan_check(void *data)
2310{
2311 struct ipw_priv *priv = data;
2312 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2313 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2314 "adapter after (%dms).\n",
2315 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2316 queue_work(priv->workqueue, &priv->adapter_restart);
2317 }
2318}
2319
2320static void ipw_bg_scan_check(struct work_struct *work)
2321{
2322 struct ipw_priv *priv =
2323 container_of(work, struct ipw_priv, scan_check.work);
2324 mutex_lock(&priv->mutex);
2325 ipw_scan_check(priv);
2326 mutex_unlock(&priv->mutex);
2327}
2328
2329static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2330 struct ipw_scan_request_ext *request)
2331{
2332 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2333 sizeof(*request), request);
2334}
2335
2336static int ipw_send_scan_abort(struct ipw_priv *priv)
2337{
2338 if (!priv) {
2339 IPW_ERROR("Invalid args\n");
2340 return -1;
2341 }
2342
2343 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2344}
2345
2346static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2347{
2348 struct ipw_sensitivity_calib calib = {
2349 .beacon_rssi_raw = cpu_to_le16(sens),
2350 };
2351
2352 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2353 &calib);
2354}
2355
2356static int ipw_send_associate(struct ipw_priv *priv,
2357 struct ipw_associate *associate)
2358{
2359 if (!priv || !associate) {
2360 IPW_ERROR("Invalid args\n");
2361 return -1;
2362 }
2363
2364 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2365 associate);
2366}
2367
2368static int ipw_send_supported_rates(struct ipw_priv *priv,
2369 struct ipw_supported_rates *rates)
2370{
2371 if (!priv || !rates) {
2372 IPW_ERROR("Invalid args\n");
2373 return -1;
2374 }
2375
2376 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2377 rates);
2378}
2379
2380static int ipw_set_random_seed(struct ipw_priv *priv)
2381{
2382 u32 val;
2383
2384 if (!priv) {
2385 IPW_ERROR("Invalid args\n");
2386 return -1;
2387 }
2388
2389 get_random_bytes(&val, sizeof(val));
2390
2391 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2392}
2393
2394static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2395{
2396 __le32 v = cpu_to_le32(phy_off);
2397 if (!priv) {
2398 IPW_ERROR("Invalid args\n");
2399 return -1;
2400 }
2401
2402 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2403}
2404
2405static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2406{
2407 if (!priv || !power) {
2408 IPW_ERROR("Invalid args\n");
2409 return -1;
2410 }
2411
2412 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2413}
2414
2415static int ipw_set_tx_power(struct ipw_priv *priv)
2416{
2417 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2418 struct ipw_tx_power tx_power;
2419 s8 max_power;
2420 int i;
2421
2422 memset(&tx_power, 0, sizeof(tx_power));
2423
2424 /* configure device for 'G' band */
2425 tx_power.ieee_mode = IPW_G_MODE;
2426 tx_power.num_channels = geo->bg_channels;
2427 for (i = 0; i < geo->bg_channels; i++) {
2428 max_power = geo->bg[i].max_power;
2429 tx_power.channels_tx_power[i].channel_number =
2430 geo->bg[i].channel;
2431 tx_power.channels_tx_power[i].tx_power = max_power ?
2432 min(max_power, priv->tx_power) : priv->tx_power;
2433 }
2434 if (ipw_send_tx_power(priv, &tx_power))
2435 return -EIO;
2436
2437 /* configure device to also handle 'B' band */
2438 tx_power.ieee_mode = IPW_B_MODE;
2439 if (ipw_send_tx_power(priv, &tx_power))
2440 return -EIO;
2441
2442 /* configure device to also handle 'A' band */
2443 if (priv->ieee->abg_true) {
2444 tx_power.ieee_mode = IPW_A_MODE;
2445 tx_power.num_channels = geo->a_channels;
2446 for (i = 0; i < tx_power.num_channels; i++) {
2447 max_power = geo->a[i].max_power;
2448 tx_power.channels_tx_power[i].channel_number =
2449 geo->a[i].channel;
2450 tx_power.channels_tx_power[i].tx_power = max_power ?
2451 min(max_power, priv->tx_power) : priv->tx_power;
2452 }
2453 if (ipw_send_tx_power(priv, &tx_power))
2454 return -EIO;
2455 }
2456 return 0;
2457}
2458
2459static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2460{
2461 struct ipw_rts_threshold rts_threshold = {
2462 .rts_threshold = cpu_to_le16(rts),
2463 };
2464
2465 if (!priv) {
2466 IPW_ERROR("Invalid args\n");
2467 return -1;
2468 }
2469
2470 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2471 sizeof(rts_threshold), &rts_threshold);
2472}
2473
2474static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2475{
2476 struct ipw_frag_threshold frag_threshold = {
2477 .frag_threshold = cpu_to_le16(frag),
2478 };
2479
2480 if (!priv) {
2481 IPW_ERROR("Invalid args\n");
2482 return -1;
2483 }
2484
2485 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2486 sizeof(frag_threshold), &frag_threshold);
2487}
2488
2489static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2490{
2491 __le32 param;
2492
2493 if (!priv) {
2494 IPW_ERROR("Invalid args\n");
2495 return -1;
2496 }
2497
2498 /* If on battery, set to 3, if AC set to CAM, else user
2499 * level */
2500 switch (mode) {
2501 case IPW_POWER_BATTERY:
2502 param = cpu_to_le32(IPW_POWER_INDEX_3);
2503 break;
2504 case IPW_POWER_AC:
2505 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2506 break;
2507 default:
2508 param = cpu_to_le32(mode);
2509 break;
2510 }
2511
2512 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2513 &param);
2514}
2515
2516static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2517{
2518 struct ipw_retry_limit retry_limit = {
2519 .short_retry_limit = slimit,
2520 .long_retry_limit = llimit
2521 };
2522
2523 if (!priv) {
2524 IPW_ERROR("Invalid args\n");
2525 return -1;
2526 }
2527
2528 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2529 &retry_limit);
2530}
2531
2532/*
2533 * The IPW device contains a Microwire compatible EEPROM that stores
2534 * various data like the MAC address. Usually the firmware has exclusive
2535 * access to the eeprom, but during device initialization (before the
2536 * device driver has sent the HostComplete command to the firmware) the
2537 * device driver has read access to the EEPROM by way of indirect addressing
2538 * through a couple of memory mapped registers.
2539 *
2540 * The following is a simplified implementation for pulling data out of the
2541 * the eeprom, along with some helper functions to find information in
2542 * the per device private data's copy of the eeprom.
2543 *
2544 * NOTE: To better understand how these functions work (i.e what is a chip
2545 * select and why do have to keep driving the eeprom clock?), read
2546 * just about any data sheet for a Microwire compatible EEPROM.
2547 */
2548
2549/* write a 32 bit value into the indirect accessor register */
2550static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2551{
2552 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2553
2554 /* the eeprom requires some time to complete the operation */
2555 udelay(p->eeprom_delay);
2556
2557 return;
2558}
2559
2560/* perform a chip select operation */
2561static void eeprom_cs(struct ipw_priv *priv)
2562{
2563 eeprom_write_reg(priv, 0);
2564 eeprom_write_reg(priv, EEPROM_BIT_CS);
2565 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2566 eeprom_write_reg(priv, EEPROM_BIT_CS);
2567}
2568
2569/* perform a chip select operation */
2570static void eeprom_disable_cs(struct ipw_priv *priv)
2571{
2572 eeprom_write_reg(priv, EEPROM_BIT_CS);
2573 eeprom_write_reg(priv, 0);
2574 eeprom_write_reg(priv, EEPROM_BIT_SK);
2575}
2576
2577/* push a single bit down to the eeprom */
2578static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2579{
2580 int d = (bit ? EEPROM_BIT_DI : 0);
2581 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2582 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2583}
2584
2585/* push an opcode followed by an address down to the eeprom */
2586static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2587{
2588 int i;
2589
2590 eeprom_cs(priv);
2591 eeprom_write_bit(priv, 1);
2592 eeprom_write_bit(priv, op & 2);
2593 eeprom_write_bit(priv, op & 1);
2594 for (i = 7; i >= 0; i--) {
2595 eeprom_write_bit(priv, addr & (1 << i));
2596 }
2597}
2598
2599/* pull 16 bits off the eeprom, one bit at a time */
2600static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2601{
2602 int i;
2603 u16 r = 0;
2604
2605 /* Send READ Opcode */
2606 eeprom_op(priv, EEPROM_CMD_READ, addr);
2607
2608 /* Send dummy bit */
2609 eeprom_write_reg(priv, EEPROM_BIT_CS);
2610
2611 /* Read the byte off the eeprom one bit at a time */
2612 for (i = 0; i < 16; i++) {
2613 u32 data = 0;
2614 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2615 eeprom_write_reg(priv, EEPROM_BIT_CS);
2616 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2617 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2618 }
2619
2620 /* Send another dummy bit */
2621 eeprom_write_reg(priv, 0);
2622 eeprom_disable_cs(priv);
2623
2624 return r;
2625}
2626
2627/* helper function for pulling the mac address out of the private */
2628/* data's copy of the eeprom data */
2629static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2630{
2631 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2632}
2633
2634/*
2635 * Either the device driver (i.e. the host) or the firmware can
2636 * load eeprom data into the designated region in SRAM. If neither
2637 * happens then the FW will shutdown with a fatal error.
2638 *
2639 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2640 * bit needs region of shared SRAM needs to be non-zero.
2641 */
2642static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2643{
2644 int i;
2645 __le16 *eeprom = (__le16 *) priv->eeprom;
2646
2647 IPW_DEBUG_TRACE(">>\n");
2648
2649 /* read entire contents of eeprom into private buffer */
2650 for (i = 0; i < 128; i++)
2651 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2652
2653 /*
2654 If the data looks correct, then copy it to our private
2655 copy. Otherwise let the firmware know to perform the operation
2656 on its own.
2657 */
2658 if (priv->eeprom[EEPROM_VERSION] != 0) {
2659 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2660
2661 /* write the eeprom data to sram */
2662 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2663 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2664
2665 /* Do not load eeprom data on fatal error or suspend */
2666 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2667 } else {
2668 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2669
2670 /* Load eeprom data on fatal error or suspend */
2671 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2672 }
2673
2674 IPW_DEBUG_TRACE("<<\n");
2675}
2676
2677static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2678{
2679 count >>= 2;
2680 if (!count)
2681 return;
2682 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2683 while (count--)
2684 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2685}
2686
2687static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2688{
2689 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2690 CB_NUMBER_OF_ELEMENTS_SMALL *
2691 sizeof(struct command_block));
2692}
2693
2694static int ipw_fw_dma_enable(struct ipw_priv *priv)
2695{ /* start dma engine but no transfers yet */
2696
2697 IPW_DEBUG_FW(">> : \n");
2698
2699 /* Start the dma */
2700 ipw_fw_dma_reset_command_blocks(priv);
2701
2702 /* Write CB base address */
2703 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2704
2705 IPW_DEBUG_FW("<< : \n");
2706 return 0;
2707}
2708
2709static void ipw_fw_dma_abort(struct ipw_priv *priv)
2710{
2711 u32 control = 0;
2712
2713 IPW_DEBUG_FW(">> :\n");
2714
2715 /* set the Stop and Abort bit */
2716 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2717 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2718 priv->sram_desc.last_cb_index = 0;
2719
2720 IPW_DEBUG_FW("<< \n");
2721}
2722
2723static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2724 struct command_block *cb)
2725{
2726 u32 address =
2727 IPW_SHARED_SRAM_DMA_CONTROL +
2728 (sizeof(struct command_block) * index);
2729 IPW_DEBUG_FW(">> :\n");
2730
2731 ipw_write_indirect(priv, address, (u8 *) cb,
2732 (int)sizeof(struct command_block));
2733
2734 IPW_DEBUG_FW("<< :\n");
2735 return 0;
2736
2737}
2738
2739static int ipw_fw_dma_kick(struct ipw_priv *priv)
2740{
2741 u32 control = 0;
2742 u32 index = 0;
2743
2744 IPW_DEBUG_FW(">> :\n");
2745
2746 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2747 ipw_fw_dma_write_command_block(priv, index,
2748 &priv->sram_desc.cb_list[index]);
2749
2750 /* Enable the DMA in the CSR register */
2751 ipw_clear_bit(priv, IPW_RESET_REG,
2752 IPW_RESET_REG_MASTER_DISABLED |
2753 IPW_RESET_REG_STOP_MASTER);
2754
2755 /* Set the Start bit. */
2756 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2757 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2758
2759 IPW_DEBUG_FW("<< :\n");
2760 return 0;
2761}
2762
2763static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2764{
2765 u32 address;
2766 u32 register_value = 0;
2767 u32 cb_fields_address = 0;
2768
2769 IPW_DEBUG_FW(">> :\n");
2770 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2771 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2772
2773 /* Read the DMA Controlor register */
2774 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2775 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2776
2777 /* Print the CB values */
2778 cb_fields_address = address;
2779 register_value = ipw_read_reg32(priv, cb_fields_address);
2780 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2781
2782 cb_fields_address += sizeof(u32);
2783 register_value = ipw_read_reg32(priv, cb_fields_address);
2784 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2785
2786 cb_fields_address += sizeof(u32);
2787 register_value = ipw_read_reg32(priv, cb_fields_address);
2788 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2789 register_value);
2790
2791 cb_fields_address += sizeof(u32);
2792 register_value = ipw_read_reg32(priv, cb_fields_address);
2793 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2794
2795 IPW_DEBUG_FW(">> :\n");
2796}
2797
2798static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2799{
2800 u32 current_cb_address = 0;
2801 u32 current_cb_index = 0;
2802
2803 IPW_DEBUG_FW("<< :\n");
2804 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2805
2806 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2807 sizeof(struct command_block);
2808
2809 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2810 current_cb_index, current_cb_address);
2811
2812 IPW_DEBUG_FW(">> :\n");
2813 return current_cb_index;
2814
2815}
2816
2817static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2818 u32 src_address,
2819 u32 dest_address,
2820 u32 length,
2821 int interrupt_enabled, int is_last)
2822{
2823
2824 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2825 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2826 CB_DEST_SIZE_LONG;
2827 struct command_block *cb;
2828 u32 last_cb_element = 0;
2829
2830 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2831 src_address, dest_address, length);
2832
2833 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2834 return -1;
2835
2836 last_cb_element = priv->sram_desc.last_cb_index;
2837 cb = &priv->sram_desc.cb_list[last_cb_element];
2838 priv->sram_desc.last_cb_index++;
2839
2840 /* Calculate the new CB control word */
2841 if (interrupt_enabled)
2842 control |= CB_INT_ENABLED;
2843
2844 if (is_last)
2845 control |= CB_LAST_VALID;
2846
2847 control |= length;
2848
2849 /* Calculate the CB Element's checksum value */
2850 cb->status = control ^ src_address ^ dest_address;
2851
2852 /* Copy the Source and Destination addresses */
2853 cb->dest_addr = dest_address;
2854 cb->source_addr = src_address;
2855
2856 /* Copy the Control Word last */
2857 cb->control = control;
2858
2859 return 0;
2860}
2861
2862static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2863 u32 src_phys, u32 dest_address, u32 length)
2864{
2865 u32 bytes_left = length;
2866 u32 src_offset = 0;
2867 u32 dest_offset = 0;
2868 int status = 0;
2869 IPW_DEBUG_FW(">> \n");
2870 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2871 src_phys, dest_address, length);
2872 while (bytes_left > CB_MAX_LENGTH) {
2873 status = ipw_fw_dma_add_command_block(priv,
2874 src_phys + src_offset,
2875 dest_address +
2876 dest_offset,
2877 CB_MAX_LENGTH, 0, 0);
2878 if (status) {
2879 IPW_DEBUG_FW_INFO(": Failed\n");
2880 return -1;
2881 } else
2882 IPW_DEBUG_FW_INFO(": Added new cb\n");
2883
2884 src_offset += CB_MAX_LENGTH;
2885 dest_offset += CB_MAX_LENGTH;
2886 bytes_left -= CB_MAX_LENGTH;
2887 }
2888
2889 /* add the buffer tail */
2890 if (bytes_left > 0) {
2891 status =
2892 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2893 dest_address + dest_offset,
2894 bytes_left, 0, 0);
2895 if (status) {
2896 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2897 return -1;
2898 } else
2899 IPW_DEBUG_FW_INFO
2900 (": Adding new cb - the buffer tail\n");
2901 }
2902
2903 IPW_DEBUG_FW("<< \n");
2904 return 0;
2905}
2906
2907static int ipw_fw_dma_wait(struct ipw_priv *priv)
2908{
2909 u32 current_index = 0, previous_index;
2910 u32 watchdog = 0;
2911
2912 IPW_DEBUG_FW(">> : \n");
2913
2914 current_index = ipw_fw_dma_command_block_index(priv);
2915 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2916 (int)priv->sram_desc.last_cb_index);
2917
2918 while (current_index < priv->sram_desc.last_cb_index) {
2919 udelay(50);
2920 previous_index = current_index;
2921 current_index = ipw_fw_dma_command_block_index(priv);
2922
2923 if (previous_index < current_index) {
2924 watchdog = 0;
2925 continue;
2926 }
2927 if (++watchdog > 400) {
2928 IPW_DEBUG_FW_INFO("Timeout\n");
2929 ipw_fw_dma_dump_command_block(priv);
2930 ipw_fw_dma_abort(priv);
2931 return -1;
2932 }
2933 }
2934
2935 ipw_fw_dma_abort(priv);
2936
2937 /*Disable the DMA in the CSR register */
2938 ipw_set_bit(priv, IPW_RESET_REG,
2939 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2940
2941 IPW_DEBUG_FW("<< dmaWaitSync \n");
2942 return 0;
2943}
2944
2945static void ipw_remove_current_network(struct ipw_priv *priv)
2946{
2947 struct list_head *element, *safe;
2948 struct ieee80211_network *network = NULL;
2949 unsigned long flags;
2950
2951 spin_lock_irqsave(&priv->ieee->lock, flags);
2952 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2953 network = list_entry(element, struct ieee80211_network, list);
2954 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2955 list_del(element);
2956 list_add_tail(&network->list,
2957 &priv->ieee->network_free_list);
2958 }
2959 }
2960 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2961}
2962
2963/**
2964 * Check that card is still alive.
2965 * Reads debug register from domain0.
2966 * If card is present, pre-defined value should
2967 * be found there.
2968 *
2969 * @param priv
2970 * @return 1 if card is present, 0 otherwise
2971 */
2972static inline int ipw_alive(struct ipw_priv *priv)
2973{
2974 return ipw_read32(priv, 0x90) == 0xd55555d5;
2975}
2976
2977/* timeout in msec, attempted in 10-msec quanta */
2978static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2979 int timeout)
2980{
2981 int i = 0;
2982
2983 do {
2984 if ((ipw_read32(priv, addr) & mask) == mask)
2985 return i;
2986 mdelay(10);
2987 i += 10;
2988 } while (i < timeout);
2989
2990 return -ETIME;
2991}
2992
2993/* These functions load the firmware and micro code for the operation of
2994 * the ipw hardware. It assumes the buffer has all the bits for the
2995 * image and the caller is handling the memory allocation and clean up.
2996 */
2997
2998static int ipw_stop_master(struct ipw_priv *priv)
2999{
3000 int rc;
3001
3002 IPW_DEBUG_TRACE(">> \n");
3003 /* stop master. typical delay - 0 */
3004 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3005
3006 /* timeout is in msec, polled in 10-msec quanta */
3007 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3008 IPW_RESET_REG_MASTER_DISABLED, 100);
3009 if (rc < 0) {
3010 IPW_ERROR("wait for stop master failed after 100ms\n");
3011 return -1;
3012 }
3013
3014 IPW_DEBUG_INFO("stop master %dms\n", rc);
3015
3016 return rc;
3017}
3018
3019static void ipw_arc_release(struct ipw_priv *priv)
3020{
3021 IPW_DEBUG_TRACE(">> \n");
3022 mdelay(5);
3023
3024 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3025
3026 /* no one knows timing, for safety add some delay */
3027 mdelay(5);
3028}
3029
3030struct fw_chunk {
3031 __le32 address;
3032 __le32 length;
3033};
3034
3035static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3036{
3037 int rc = 0, i, addr;
3038 u8 cr = 0;
3039 __le16 *image;
3040
3041 image = (__le16 *) data;
3042
3043 IPW_DEBUG_TRACE(">> \n");
3044
3045 rc = ipw_stop_master(priv);
3046
3047 if (rc < 0)
3048 return rc;
3049
3050 for (addr = IPW_SHARED_LOWER_BOUND;
3051 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3052 ipw_write32(priv, addr, 0);
3053 }
3054
3055 /* no ucode (yet) */
3056 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3057 /* destroy DMA queues */
3058 /* reset sequence */
3059
3060 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3061 ipw_arc_release(priv);
3062 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3063 mdelay(1);
3064
3065 /* reset PHY */
3066 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3067 mdelay(1);
3068
3069 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3070 mdelay(1);
3071
3072 /* enable ucode store */
3073 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3074 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3075 mdelay(1);
3076
3077 /* write ucode */
3078 /**
3079 * @bug
3080 * Do NOT set indirect address register once and then
3081 * store data to indirect data register in the loop.
3082 * It seems very reasonable, but in this case DINO do not
3083 * accept ucode. It is essential to set address each time.
3084 */
3085 /* load new ipw uCode */
3086 for (i = 0; i < len / 2; i++)
3087 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3088 le16_to_cpu(image[i]));
3089
3090 /* enable DINO */
3091 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3092 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3093
3094 /* this is where the igx / win driver deveates from the VAP driver. */
3095
3096 /* wait for alive response */
3097 for (i = 0; i < 100; i++) {
3098 /* poll for incoming data */
3099 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3100 if (cr & DINO_RXFIFO_DATA)
3101 break;
3102 mdelay(1);
3103 }
3104
3105 if (cr & DINO_RXFIFO_DATA) {
3106 /* alive_command_responce size is NOT multiple of 4 */
3107 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3108
3109 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3110 response_buffer[i] =
3111 cpu_to_le32(ipw_read_reg32(priv,
3112 IPW_BASEBAND_RX_FIFO_READ));
3113 memcpy(&priv->dino_alive, response_buffer,
3114 sizeof(priv->dino_alive));
3115 if (priv->dino_alive.alive_command == 1
3116 && priv->dino_alive.ucode_valid == 1) {
3117 rc = 0;
3118 IPW_DEBUG_INFO
3119 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3120 "of %02d/%02d/%02d %02d:%02d\n",
3121 priv->dino_alive.software_revision,
3122 priv->dino_alive.software_revision,
3123 priv->dino_alive.device_identifier,
3124 priv->dino_alive.device_identifier,
3125 priv->dino_alive.time_stamp[0],
3126 priv->dino_alive.time_stamp[1],
3127 priv->dino_alive.time_stamp[2],
3128 priv->dino_alive.time_stamp[3],
3129 priv->dino_alive.time_stamp[4]);
3130 } else {
3131 IPW_DEBUG_INFO("Microcode is not alive\n");
3132 rc = -EINVAL;
3133 }
3134 } else {
3135 IPW_DEBUG_INFO("No alive response from DINO\n");
3136 rc = -ETIME;
3137 }
3138
3139 /* disable DINO, otherwise for some reason
3140 firmware have problem getting alive resp. */
3141 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3142
3143 return rc;
3144}
3145
3146static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3147{
3148 int rc = -1;
3149 int offset = 0;
3150 struct fw_chunk *chunk;
3151 dma_addr_t shared_phys;
3152 u8 *shared_virt;
3153
3154 IPW_DEBUG_TRACE("<< : \n");
3155 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3156
3157 if (!shared_virt)
3158 return -ENOMEM;
3159
3160 memmove(shared_virt, data, len);
3161
3162 /* Start the Dma */
3163 rc = ipw_fw_dma_enable(priv);
3164
3165 if (priv->sram_desc.last_cb_index > 0) {
3166 /* the DMA is already ready this would be a bug. */
3167 BUG();
3168 goto out;
3169 }
3170
3171 do {
3172 chunk = (struct fw_chunk *)(data + offset);
3173 offset += sizeof(struct fw_chunk);
3174 /* build DMA packet and queue up for sending */
3175 /* dma to chunk->address, the chunk->length bytes from data +
3176 * offeset*/
3177 /* Dma loading */
3178 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3179 le32_to_cpu(chunk->address),
3180 le32_to_cpu(chunk->length));
3181 if (rc) {
3182 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3183 goto out;
3184 }
3185
3186 offset += le32_to_cpu(chunk->length);
3187 } while (offset < len);
3188
3189 /* Run the DMA and wait for the answer */
3190 rc = ipw_fw_dma_kick(priv);
3191 if (rc) {
3192 IPW_ERROR("dmaKick Failed\n");
3193 goto out;
3194 }
3195
3196 rc = ipw_fw_dma_wait(priv);
3197 if (rc) {
3198 IPW_ERROR("dmaWaitSync Failed\n");
3199 goto out;
3200 }
3201 out:
3202 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3203 return rc;
3204}
3205
3206/* stop nic */
3207static int ipw_stop_nic(struct ipw_priv *priv)
3208{
3209 int rc = 0;
3210
3211 /* stop */
3212 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3213
3214 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3215 IPW_RESET_REG_MASTER_DISABLED, 500);
3216 if (rc < 0) {
3217 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3218 return rc;
3219 }
3220
3221 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3222
3223 return rc;
3224}
3225
3226static void ipw_start_nic(struct ipw_priv *priv)
3227{
3228 IPW_DEBUG_TRACE(">>\n");
3229
3230 /* prvHwStartNic release ARC */
3231 ipw_clear_bit(priv, IPW_RESET_REG,
3232 IPW_RESET_REG_MASTER_DISABLED |
3233 IPW_RESET_REG_STOP_MASTER |
3234 CBD_RESET_REG_PRINCETON_RESET);
3235
3236 /* enable power management */
3237 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3238 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3239
3240 IPW_DEBUG_TRACE("<<\n");
3241}
3242
3243static int ipw_init_nic(struct ipw_priv *priv)
3244{
3245 int rc;
3246
3247 IPW_DEBUG_TRACE(">>\n");
3248 /* reset */
3249 /*prvHwInitNic */
3250 /* set "initialization complete" bit to move adapter to D0 state */
3251 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3252
3253 /* low-level PLL activation */
3254 ipw_write32(priv, IPW_READ_INT_REGISTER,
3255 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3256
3257 /* wait for clock stabilization */
3258 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3259 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3260 if (rc < 0)
3261 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3262
3263 /* assert SW reset */
3264 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3265
3266 udelay(10);
3267
3268 /* set "initialization complete" bit to move adapter to D0 state */
3269 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3270
3271 IPW_DEBUG_TRACE(">>\n");
3272 return 0;
3273}
3274
3275/* Call this function from process context, it will sleep in request_firmware.
3276 * Probe is an ok place to call this from.
3277 */
3278static int ipw_reset_nic(struct ipw_priv *priv)
3279{
3280 int rc = 0;
3281 unsigned long flags;
3282
3283 IPW_DEBUG_TRACE(">>\n");
3284
3285 rc = ipw_init_nic(priv);
3286
3287 spin_lock_irqsave(&priv->lock, flags);
3288 /* Clear the 'host command active' bit... */
3289 priv->status &= ~STATUS_HCMD_ACTIVE;
3290 wake_up_interruptible(&priv->wait_command_queue);
3291 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3292 wake_up_interruptible(&priv->wait_state);
3293 spin_unlock_irqrestore(&priv->lock, flags);
3294
3295 IPW_DEBUG_TRACE("<<\n");
3296 return rc;
3297}
3298
3299
3300struct ipw_fw {
3301 __le32 ver;
3302 __le32 boot_size;
3303 __le32 ucode_size;
3304 __le32 fw_size;
3305 u8 data[0];
3306};
3307
3308static int ipw_get_fw(struct ipw_priv *priv,
3309 const struct firmware **raw, const char *name)
3310{
3311 struct ipw_fw *fw;
3312 int rc;
3313
3314 /* ask firmware_class module to get the boot firmware off disk */
3315 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3316 if (rc < 0) {
3317 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3318 return rc;
3319 }
3320
3321 if ((*raw)->size < sizeof(*fw)) {
3322 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3323 return -EINVAL;
3324 }
3325
3326 fw = (void *)(*raw)->data;
3327
3328 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3329 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3330 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3331 name, (*raw)->size);
3332 return -EINVAL;
3333 }
3334
3335 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3336 name,
3337 le32_to_cpu(fw->ver) >> 16,
3338 le32_to_cpu(fw->ver) & 0xff,
3339 (*raw)->size - sizeof(*fw));
3340 return 0;
3341}
3342
3343#define IPW_RX_BUF_SIZE (3000)
3344
3345static void ipw_rx_queue_reset(struct ipw_priv *priv,
3346 struct ipw_rx_queue *rxq)
3347{
3348 unsigned long flags;
3349 int i;
3350
3351 spin_lock_irqsave(&rxq->lock, flags);
3352
3353 INIT_LIST_HEAD(&rxq->rx_free);
3354 INIT_LIST_HEAD(&rxq->rx_used);
3355
3356 /* Fill the rx_used queue with _all_ of the Rx buffers */
3357 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3358 /* In the reset function, these buffers may have been allocated
3359 * to an SKB, so we need to unmap and free potential storage */
3360 if (rxq->pool[i].skb != NULL) {
3361 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3362 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3363 dev_kfree_skb(rxq->pool[i].skb);
3364 rxq->pool[i].skb = NULL;
3365 }
3366 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3367 }
3368
3369 /* Set us so that we have processed and used all buffers, but have
3370 * not restocked the Rx queue with fresh buffers */
3371 rxq->read = rxq->write = 0;
3372 rxq->free_count = 0;
3373 spin_unlock_irqrestore(&rxq->lock, flags);
3374}
3375
3376#ifdef CONFIG_PM
3377static int fw_loaded = 0;
3378static const struct firmware *raw = NULL;
3379
3380static void free_firmware(void)
3381{
3382 if (fw_loaded) {
3383 release_firmware(raw);
3384 raw = NULL;
3385 fw_loaded = 0;
3386 }
3387}
3388#else
3389#define free_firmware() do {} while (0)
3390#endif
3391
3392static int ipw_load(struct ipw_priv *priv)
3393{
3394#ifndef CONFIG_PM
3395 const struct firmware *raw = NULL;
3396#endif
3397 struct ipw_fw *fw;
3398 u8 *boot_img, *ucode_img, *fw_img;
3399 u8 *name = NULL;
3400 int rc = 0, retries = 3;
3401
3402 switch (priv->ieee->iw_mode) {
3403 case IW_MODE_ADHOC:
3404 name = "ipw2200-ibss.fw";
3405 break;
3406#ifdef CONFIG_IPW2200_MONITOR
3407 case IW_MODE_MONITOR:
3408 name = "ipw2200-sniffer.fw";
3409 break;
3410#endif
3411 case IW_MODE_INFRA:
3412 name = "ipw2200-bss.fw";
3413 break;
3414 }
3415
3416 if (!name) {
3417 rc = -EINVAL;
3418 goto error;
3419 }
3420
3421#ifdef CONFIG_PM
3422 if (!fw_loaded) {
3423#endif
3424 rc = ipw_get_fw(priv, &raw, name);
3425 if (rc < 0)
3426 goto error;
3427#ifdef CONFIG_PM
3428 }
3429#endif
3430
3431 fw = (void *)raw->data;
3432 boot_img = &fw->data[0];
3433 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3434 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3435 le32_to_cpu(fw->ucode_size)];
3436
3437 if (rc < 0)
3438 goto error;
3439
3440 if (!priv->rxq)
3441 priv->rxq = ipw_rx_queue_alloc(priv);
3442 else
3443 ipw_rx_queue_reset(priv, priv->rxq);
3444 if (!priv->rxq) {
3445 IPW_ERROR("Unable to initialize Rx queue\n");
3446 goto error;
3447 }
3448
3449 retry:
3450 /* Ensure interrupts are disabled */
3451 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3452 priv->status &= ~STATUS_INT_ENABLED;
3453
3454 /* ack pending interrupts */
3455 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3456
3457 ipw_stop_nic(priv);
3458
3459 rc = ipw_reset_nic(priv);
3460 if (rc < 0) {
3461 IPW_ERROR("Unable to reset NIC\n");
3462 goto error;
3463 }
3464
3465 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3466 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3467
3468 /* DMA the initial boot firmware into the device */
3469 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3470 if (rc < 0) {
3471 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3472 goto error;
3473 }
3474
3475 /* kick start the device */
3476 ipw_start_nic(priv);
3477
3478 /* wait for the device to finish its initial startup sequence */
3479 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3480 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3481 if (rc < 0) {
3482 IPW_ERROR("device failed to boot initial fw image\n");
3483 goto error;
3484 }
3485 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3486
3487 /* ack fw init done interrupt */
3488 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3489
3490 /* DMA the ucode into the device */
3491 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3492 if (rc < 0) {
3493 IPW_ERROR("Unable to load ucode: %d\n", rc);
3494 goto error;
3495 }
3496
3497 /* stop nic */
3498 ipw_stop_nic(priv);
3499
3500 /* DMA bss firmware into the device */
3501 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3502 if (rc < 0) {
3503 IPW_ERROR("Unable to load firmware: %d\n", rc);
3504 goto error;
3505 }
3506#ifdef CONFIG_PM
3507 fw_loaded = 1;
3508#endif
3509
3510 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3511
3512 rc = ipw_queue_reset(priv);
3513 if (rc < 0) {
3514 IPW_ERROR("Unable to initialize queues\n");
3515 goto error;
3516 }
3517
3518 /* Ensure interrupts are disabled */
3519 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3520 /* ack pending interrupts */
3521 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3522
3523 /* kick start the device */
3524 ipw_start_nic(priv);
3525
3526 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3527 if (retries > 0) {
3528 IPW_WARNING("Parity error. Retrying init.\n");
3529 retries--;
3530 goto retry;
3531 }
3532
3533 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3534 rc = -EIO;
3535 goto error;
3536 }
3537
3538 /* wait for the device */
3539 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3540 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3541 if (rc < 0) {
3542 IPW_ERROR("device failed to start within 500ms\n");
3543 goto error;
3544 }
3545 IPW_DEBUG_INFO("device response after %dms\n", rc);
3546
3547 /* ack fw init done interrupt */
3548 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3549
3550 /* read eeprom data and initialize the eeprom region of sram */
3551 priv->eeprom_delay = 1;
3552 ipw_eeprom_init_sram(priv);
3553
3554 /* enable interrupts */
3555 ipw_enable_interrupts(priv);
3556
3557 /* Ensure our queue has valid packets */
3558 ipw_rx_queue_replenish(priv);
3559
3560 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3561
3562 /* ack pending interrupts */
3563 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3564
3565#ifndef CONFIG_PM
3566 release_firmware(raw);
3567#endif
3568 return 0;
3569
3570 error:
3571 if (priv->rxq) {
3572 ipw_rx_queue_free(priv, priv->rxq);
3573 priv->rxq = NULL;
3574 }
3575 ipw_tx_queue_free(priv);
3576 if (raw)
3577 release_firmware(raw);
3578#ifdef CONFIG_PM
3579 fw_loaded = 0;
3580 raw = NULL;
3581#endif
3582
3583 return rc;
3584}
3585
3586/**
3587 * DMA services
3588 *
3589 * Theory of operation
3590 *
3591 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3592 * 2 empty entries always kept in the buffer to protect from overflow.
3593 *
3594 * For Tx queue, there are low mark and high mark limits. If, after queuing
3595 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3596 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3597 * Tx queue resumed.
3598 *
3599 * The IPW operates with six queues, one receive queue in the device's
3600 * sram, one transmit queue for sending commands to the device firmware,
3601 * and four transmit queues for data.
3602 *
3603 * The four transmit queues allow for performing quality of service (qos)
3604 * transmissions as per the 802.11 protocol. Currently Linux does not
3605 * provide a mechanism to the user for utilizing prioritized queues, so
3606 * we only utilize the first data transmit queue (queue1).
3607 */
3608
3609/**
3610 * Driver allocates buffers of this size for Rx
3611 */
3612
3613/**
3614 * ipw_rx_queue_space - Return number of free slots available in queue.
3615 */
3616static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3617{
3618 int s = q->read - q->write;
3619 if (s <= 0)
3620 s += RX_QUEUE_SIZE;
3621 /* keep some buffer to not confuse full and empty queue */
3622 s -= 2;
3623 if (s < 0)
3624 s = 0;
3625 return s;
3626}
3627
3628static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3629{
3630 int s = q->last_used - q->first_empty;
3631 if (s <= 0)
3632 s += q->n_bd;
3633 s -= 2; /* keep some reserve to not confuse empty and full situations */
3634 if (s < 0)
3635 s = 0;
3636 return s;
3637}
3638
3639static inline int ipw_queue_inc_wrap(int index, int n_bd)
3640{
3641 return (++index == n_bd) ? 0 : index;
3642}
3643
3644/**
3645 * Initialize common DMA queue structure
3646 *
3647 * @param q queue to init
3648 * @param count Number of BD's to allocate. Should be power of 2
3649 * @param read_register Address for 'read' register
3650 * (not offset within BAR, full address)
3651 * @param write_register Address for 'write' register
3652 * (not offset within BAR, full address)
3653 * @param base_register Address for 'base' register
3654 * (not offset within BAR, full address)
3655 * @param size Address for 'size' register
3656 * (not offset within BAR, full address)
3657 */
3658static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3659 int count, u32 read, u32 write, u32 base, u32 size)
3660{
3661 q->n_bd = count;
3662
3663 q->low_mark = q->n_bd / 4;
3664 if (q->low_mark < 4)
3665 q->low_mark = 4;
3666
3667 q->high_mark = q->n_bd / 8;
3668 if (q->high_mark < 2)
3669 q->high_mark = 2;
3670
3671 q->first_empty = q->last_used = 0;
3672 q->reg_r = read;
3673 q->reg_w = write;
3674
3675 ipw_write32(priv, base, q->dma_addr);
3676 ipw_write32(priv, size, count);
3677 ipw_write32(priv, read, 0);
3678 ipw_write32(priv, write, 0);
3679
3680 _ipw_read32(priv, 0x90);
3681}
3682
3683static int ipw_queue_tx_init(struct ipw_priv *priv,
3684 struct clx2_tx_queue *q,
3685 int count, u32 read, u32 write, u32 base, u32 size)
3686{
3687 struct pci_dev *dev = priv->pci_dev;
3688
3689 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3690 if (!q->txb) {
3691 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3692 return -ENOMEM;
3693 }
3694
3695 q->bd =
3696 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3697 if (!q->bd) {
3698 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3699 sizeof(q->bd[0]) * count);
3700 kfree(q->txb);
3701 q->txb = NULL;
3702 return -ENOMEM;
3703 }
3704
3705 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3706 return 0;
3707}
3708
3709/**
3710 * Free one TFD, those at index [txq->q.last_used].
3711 * Do NOT advance any indexes
3712 *
3713 * @param dev
3714 * @param txq
3715 */
3716static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3717 struct clx2_tx_queue *txq)
3718{
3719 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3720 struct pci_dev *dev = priv->pci_dev;
3721 int i;
3722
3723 /* classify bd */
3724 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3725 /* nothing to cleanup after for host commands */
3726 return;
3727
3728 /* sanity check */
3729 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3730 IPW_ERROR("Too many chunks: %i\n",
3731 le32_to_cpu(bd->u.data.num_chunks));
3732 /** @todo issue fatal error, it is quite serious situation */
3733 return;
3734 }
3735
3736 /* unmap chunks if any */
3737 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3738 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3739 le16_to_cpu(bd->u.data.chunk_len[i]),
3740 PCI_DMA_TODEVICE);
3741 if (txq->txb[txq->q.last_used]) {
3742 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3743 txq->txb[txq->q.last_used] = NULL;
3744 }
3745 }
3746}
3747
3748/**
3749 * Deallocate DMA queue.
3750 *
3751 * Empty queue by removing and destroying all BD's.
3752 * Free all buffers.
3753 *
3754 * @param dev
3755 * @param q
3756 */
3757static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3758{
3759 struct clx2_queue *q = &txq->q;
3760 struct pci_dev *dev = priv->pci_dev;
3761
3762 if (q->n_bd == 0)
3763 return;
3764
3765 /* first, empty all BD's */
3766 for (; q->first_empty != q->last_used;
3767 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3768 ipw_queue_tx_free_tfd(priv, txq);
3769 }
3770
3771 /* free buffers belonging to queue itself */
3772 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3773 q->dma_addr);
3774 kfree(txq->txb);
3775
3776 /* 0 fill whole structure */
3777 memset(txq, 0, sizeof(*txq));
3778}
3779
3780/**
3781 * Destroy all DMA queues and structures
3782 *
3783 * @param priv
3784 */
3785static void ipw_tx_queue_free(struct ipw_priv *priv)
3786{
3787 /* Tx CMD queue */
3788 ipw_queue_tx_free(priv, &priv->txq_cmd);
3789
3790 /* Tx queues */
3791 ipw_queue_tx_free(priv, &priv->txq[0]);
3792 ipw_queue_tx_free(priv, &priv->txq[1]);
3793 ipw_queue_tx_free(priv, &priv->txq[2]);
3794 ipw_queue_tx_free(priv, &priv->txq[3]);
3795}
3796
3797static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3798{
3799 /* First 3 bytes are manufacturer */
3800 bssid[0] = priv->mac_addr[0];
3801 bssid[1] = priv->mac_addr[1];
3802 bssid[2] = priv->mac_addr[2];
3803
3804 /* Last bytes are random */
3805 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3806
3807 bssid[0] &= 0xfe; /* clear multicast bit */
3808 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3809}
3810
3811static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3812{
3813 struct ipw_station_entry entry;
3814 int i;
3815
3816 for (i = 0; i < priv->num_stations; i++) {
3817 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3818 /* Another node is active in network */
3819 priv->missed_adhoc_beacons = 0;
3820 if (!(priv->config & CFG_STATIC_CHANNEL))
3821 /* when other nodes drop out, we drop out */
3822 priv->config &= ~CFG_ADHOC_PERSIST;
3823
3824 return i;
3825 }
3826 }
3827
3828 if (i == MAX_STATIONS)
3829 return IPW_INVALID_STATION;
3830
3831 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3832
3833 entry.reserved = 0;
3834 entry.support_mode = 0;
3835 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3836 memcpy(priv->stations[i], bssid, ETH_ALEN);
3837 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3838 &entry, sizeof(entry));
3839 priv->num_stations++;
3840
3841 return i;
3842}
3843
3844static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3845{
3846 int i;
3847
3848 for (i = 0; i < priv->num_stations; i++)
3849 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3850 return i;
3851
3852 return IPW_INVALID_STATION;
3853}
3854
3855static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3856{
3857 int err;
3858
3859 if (priv->status & STATUS_ASSOCIATING) {
3860 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3861 queue_work(priv->workqueue, &priv->disassociate);
3862 return;
3863 }
3864
3865 if (!(priv->status & STATUS_ASSOCIATED)) {
3866 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3867 return;
3868 }
3869
3870 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3871 "on channel %d.\n",
3872 priv->assoc_request.bssid,
3873 priv->assoc_request.channel);
3874
3875 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3876 priv->status |= STATUS_DISASSOCIATING;
3877
3878 if (quiet)
3879 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3880 else
3881 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3882
3883 err = ipw_send_associate(priv, &priv->assoc_request);
3884 if (err) {
3885 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3886 "failed.\n");
3887 return;
3888 }
3889
3890}
3891
3892static int ipw_disassociate(void *data)
3893{
3894 struct ipw_priv *priv = data;
3895 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3896 return 0;
3897 ipw_send_disassociate(data, 0);
3898 return 1;
3899}
3900
3901static void ipw_bg_disassociate(struct work_struct *work)
3902{
3903 struct ipw_priv *priv =
3904 container_of(work, struct ipw_priv, disassociate);
3905 mutex_lock(&priv->mutex);
3906 ipw_disassociate(priv);
3907 mutex_unlock(&priv->mutex);
3908}
3909
3910static void ipw_system_config(struct work_struct *work)
3911{
3912 struct ipw_priv *priv =
3913 container_of(work, struct ipw_priv, system_config);
3914
3915#ifdef CONFIG_IPW2200_PROMISCUOUS
3916 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3917 priv->sys_config.accept_all_data_frames = 1;
3918 priv->sys_config.accept_non_directed_frames = 1;
3919 priv->sys_config.accept_all_mgmt_bcpr = 1;
3920 priv->sys_config.accept_all_mgmt_frames = 1;
3921 }
3922#endif
3923
3924 ipw_send_system_config(priv);
3925}
3926
3927struct ipw_status_code {
3928 u16 status;
3929 const char *reason;
3930};
3931
3932static const struct ipw_status_code ipw_status_codes[] = {
3933 {0x00, "Successful"},
3934 {0x01, "Unspecified failure"},
3935 {0x0A, "Cannot support all requested capabilities in the "
3936 "Capability information field"},
3937 {0x0B, "Reassociation denied due to inability to confirm that "
3938 "association exists"},
3939 {0x0C, "Association denied due to reason outside the scope of this "
3940 "standard"},
3941 {0x0D,
3942 "Responding station does not support the specified authentication "
3943 "algorithm"},
3944 {0x0E,
3945 "Received an Authentication frame with authentication sequence "
3946 "transaction sequence number out of expected sequence"},
3947 {0x0F, "Authentication rejected because of challenge failure"},
3948 {0x10, "Authentication rejected due to timeout waiting for next "
3949 "frame in sequence"},
3950 {0x11, "Association denied because AP is unable to handle additional "
3951 "associated stations"},
3952 {0x12,
3953 "Association denied due to requesting station not supporting all "
3954 "of the datarates in the BSSBasicServiceSet Parameter"},
3955 {0x13,
3956 "Association denied due to requesting station not supporting "
3957 "short preamble operation"},
3958 {0x14,
3959 "Association denied due to requesting station not supporting "
3960 "PBCC encoding"},
3961 {0x15,
3962 "Association denied due to requesting station not supporting "
3963 "channel agility"},
3964 {0x19,
3965 "Association denied due to requesting station not supporting "
3966 "short slot operation"},
3967 {0x1A,
3968 "Association denied due to requesting station not supporting "
3969 "DSSS-OFDM operation"},
3970 {0x28, "Invalid Information Element"},
3971 {0x29, "Group Cipher is not valid"},
3972 {0x2A, "Pairwise Cipher is not valid"},
3973 {0x2B, "AKMP is not valid"},
3974 {0x2C, "Unsupported RSN IE version"},
3975 {0x2D, "Invalid RSN IE Capabilities"},
3976 {0x2E, "Cipher suite is rejected per security policy"},
3977};
3978
3979static const char *ipw_get_status_code(u16 status)
3980{
3981 int i;
3982 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3983 if (ipw_status_codes[i].status == (status & 0xff))
3984 return ipw_status_codes[i].reason;
3985 return "Unknown status value.";
3986}
3987
3988static void inline average_init(struct average *avg)
3989{
3990 memset(avg, 0, sizeof(*avg));
3991}
3992
3993#define DEPTH_RSSI 8
3994#define DEPTH_NOISE 16
3995static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3996{
3997 return ((depth-1)*prev_avg + val)/depth;
3998}
3999
4000static void average_add(struct average *avg, s16 val)
4001{
4002 avg->sum -= avg->entries[avg->pos];
4003 avg->sum += val;
4004 avg->entries[avg->pos++] = val;
4005 if (unlikely(avg->pos == AVG_ENTRIES)) {
4006 avg->init = 1;
4007 avg->pos = 0;
4008 }
4009}
4010
4011static s16 average_value(struct average *avg)
4012{
4013 if (!unlikely(avg->init)) {
4014 if (avg->pos)
4015 return avg->sum / avg->pos;
4016 return 0;
4017 }
4018
4019 return avg->sum / AVG_ENTRIES;
4020}
4021
4022static void ipw_reset_stats(struct ipw_priv *priv)
4023{
4024 u32 len = sizeof(u32);
4025
4026 priv->quality = 0;
4027
4028 average_init(&priv->average_missed_beacons);
4029 priv->exp_avg_rssi = -60;
4030 priv->exp_avg_noise = -85 + 0x100;
4031
4032 priv->last_rate = 0;
4033 priv->last_missed_beacons = 0;
4034 priv->last_rx_packets = 0;
4035 priv->last_tx_packets = 0;
4036 priv->last_tx_failures = 0;
4037
4038 /* Firmware managed, reset only when NIC is restarted, so we have to
4039 * normalize on the current value */
4040 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4041 &priv->last_rx_err, &len);
4042 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4043 &priv->last_tx_failures, &len);
4044
4045 /* Driver managed, reset with each association */
4046 priv->missed_adhoc_beacons = 0;
4047 priv->missed_beacons = 0;
4048 priv->tx_packets = 0;
4049 priv->rx_packets = 0;
4050
4051}
4052
4053static u32 ipw_get_max_rate(struct ipw_priv *priv)
4054{
4055 u32 i = 0x80000000;
4056 u32 mask = priv->rates_mask;
4057 /* If currently associated in B mode, restrict the maximum
4058 * rate match to B rates */
4059 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4060 mask &= IEEE80211_CCK_RATES_MASK;
4061
4062 /* TODO: Verify that the rate is supported by the current rates
4063 * list. */
4064
4065 while (i && !(mask & i))
4066 i >>= 1;
4067 switch (i) {
4068 case IEEE80211_CCK_RATE_1MB_MASK:
4069 return 1000000;
4070 case IEEE80211_CCK_RATE_2MB_MASK:
4071 return 2000000;
4072 case IEEE80211_CCK_RATE_5MB_MASK:
4073 return 5500000;
4074 case IEEE80211_OFDM_RATE_6MB_MASK:
4075 return 6000000;
4076 case IEEE80211_OFDM_RATE_9MB_MASK:
4077 return 9000000;
4078 case IEEE80211_CCK_RATE_11MB_MASK:
4079 return 11000000;
4080 case IEEE80211_OFDM_RATE_12MB_MASK:
4081 return 12000000;
4082 case IEEE80211_OFDM_RATE_18MB_MASK:
4083 return 18000000;
4084 case IEEE80211_OFDM_RATE_24MB_MASK:
4085 return 24000000;
4086 case IEEE80211_OFDM_RATE_36MB_MASK:
4087 return 36000000;
4088 case IEEE80211_OFDM_RATE_48MB_MASK:
4089 return 48000000;
4090 case IEEE80211_OFDM_RATE_54MB_MASK:
4091 return 54000000;
4092 }
4093
4094 if (priv->ieee->mode == IEEE_B)
4095 return 11000000;
4096 else
4097 return 54000000;
4098}
4099
4100static u32 ipw_get_current_rate(struct ipw_priv *priv)
4101{
4102 u32 rate, len = sizeof(rate);
4103 int err;
4104
4105 if (!(priv->status & STATUS_ASSOCIATED))
4106 return 0;
4107
4108 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4109 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4110 &len);
4111 if (err) {
4112 IPW_DEBUG_INFO("failed querying ordinals.\n");
4113 return 0;
4114 }
4115 } else
4116 return ipw_get_max_rate(priv);
4117
4118 switch (rate) {
4119 case IPW_TX_RATE_1MB:
4120 return 1000000;
4121 case IPW_TX_RATE_2MB:
4122 return 2000000;
4123 case IPW_TX_RATE_5MB:
4124 return 5500000;
4125 case IPW_TX_RATE_6MB:
4126 return 6000000;
4127 case IPW_TX_RATE_9MB:
4128 return 9000000;
4129 case IPW_TX_RATE_11MB:
4130 return 11000000;
4131 case IPW_TX_RATE_12MB:
4132 return 12000000;
4133 case IPW_TX_RATE_18MB:
4134 return 18000000;
4135 case IPW_TX_RATE_24MB:
4136 return 24000000;
4137 case IPW_TX_RATE_36MB:
4138 return 36000000;
4139 case IPW_TX_RATE_48MB:
4140 return 48000000;
4141 case IPW_TX_RATE_54MB:
4142 return 54000000;
4143 }
4144
4145 return 0;
4146}
4147
4148#define IPW_STATS_INTERVAL (2 * HZ)
4149static void ipw_gather_stats(struct ipw_priv *priv)
4150{
4151 u32 rx_err, rx_err_delta, rx_packets_delta;
4152 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4153 u32 missed_beacons_percent, missed_beacons_delta;
4154 u32 quality = 0;
4155 u32 len = sizeof(u32);
4156 s16 rssi;
4157 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4158 rate_quality;
4159 u32 max_rate;
4160
4161 if (!(priv->status & STATUS_ASSOCIATED)) {
4162 priv->quality = 0;
4163 return;
4164 }
4165
4166 /* Update the statistics */
4167 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4168 &priv->missed_beacons, &len);
4169 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4170 priv->last_missed_beacons = priv->missed_beacons;
4171 if (priv->assoc_request.beacon_interval) {
4172 missed_beacons_percent = missed_beacons_delta *
4173 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4174 (IPW_STATS_INTERVAL * 10);
4175 } else {
4176 missed_beacons_percent = 0;
4177 }
4178 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4179
4180 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4181 rx_err_delta = rx_err - priv->last_rx_err;
4182 priv->last_rx_err = rx_err;
4183
4184 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4185 tx_failures_delta = tx_failures - priv->last_tx_failures;
4186 priv->last_tx_failures = tx_failures;
4187
4188 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4189 priv->last_rx_packets = priv->rx_packets;
4190
4191 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4192 priv->last_tx_packets = priv->tx_packets;
4193
4194 /* Calculate quality based on the following:
4195 *
4196 * Missed beacon: 100% = 0, 0% = 70% missed
4197 * Rate: 60% = 1Mbs, 100% = Max
4198 * Rx and Tx errors represent a straight % of total Rx/Tx
4199 * RSSI: 100% = > -50, 0% = < -80
4200 * Rx errors: 100% = 0, 0% = 50% missed
4201 *
4202 * The lowest computed quality is used.
4203 *
4204 */
4205#define BEACON_THRESHOLD 5
4206 beacon_quality = 100 - missed_beacons_percent;
4207 if (beacon_quality < BEACON_THRESHOLD)
4208 beacon_quality = 0;
4209 else
4210 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4211 (100 - BEACON_THRESHOLD);
4212 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4213 beacon_quality, missed_beacons_percent);
4214
4215 priv->last_rate = ipw_get_current_rate(priv);
4216 max_rate = ipw_get_max_rate(priv);
4217 rate_quality = priv->last_rate * 40 / max_rate + 60;
4218 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4219 rate_quality, priv->last_rate / 1000000);
4220
4221 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4222 rx_quality = 100 - (rx_err_delta * 100) /
4223 (rx_packets_delta + rx_err_delta);
4224 else
4225 rx_quality = 100;
4226 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4227 rx_quality, rx_err_delta, rx_packets_delta);
4228
4229 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4230 tx_quality = 100 - (tx_failures_delta * 100) /
4231 (tx_packets_delta + tx_failures_delta);
4232 else
4233 tx_quality = 100;
4234 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4235 tx_quality, tx_failures_delta, tx_packets_delta);
4236
4237 rssi = priv->exp_avg_rssi;
4238 signal_quality =
4239 (100 *
4240 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4241 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4242 (priv->ieee->perfect_rssi - rssi) *
4243 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4244 62 * (priv->ieee->perfect_rssi - rssi))) /
4245 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4246 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4247 if (signal_quality > 100)
4248 signal_quality = 100;
4249 else if (signal_quality < 1)
4250 signal_quality = 0;
4251
4252 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4253 signal_quality, rssi);
4254
4255 quality = min(beacon_quality,
4256 min(rate_quality,
4257 min(tx_quality, min(rx_quality, signal_quality))));
4258 if (quality == beacon_quality)
4259 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4260 quality);
4261 if (quality == rate_quality)
4262 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4263 quality);
4264 if (quality == tx_quality)
4265 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4266 quality);
4267 if (quality == rx_quality)
4268 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4269 quality);
4270 if (quality == signal_quality)
4271 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4272 quality);
4273
4274 priv->quality = quality;
4275
4276 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4277 IPW_STATS_INTERVAL);
4278}
4279
4280static void ipw_bg_gather_stats(struct work_struct *work)
4281{
4282 struct ipw_priv *priv =
4283 container_of(work, struct ipw_priv, gather_stats.work);
4284 mutex_lock(&priv->mutex);
4285 ipw_gather_stats(priv);
4286 mutex_unlock(&priv->mutex);
4287}
4288
4289/* Missed beacon behavior:
4290 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4291 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4292 * Above disassociate threshold, give up and stop scanning.
4293 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4294static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4295 int missed_count)
4296{
4297 priv->notif_missed_beacons = missed_count;
4298
4299 if (missed_count > priv->disassociate_threshold &&
4300 priv->status & STATUS_ASSOCIATED) {
4301 /* If associated and we've hit the missed
4302 * beacon threshold, disassociate, turn
4303 * off roaming, and abort any active scans */
4304 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4305 IPW_DL_STATE | IPW_DL_ASSOC,
4306 "Missed beacon: %d - disassociate\n", missed_count);
4307 priv->status &= ~STATUS_ROAMING;
4308 if (priv->status & STATUS_SCANNING) {
4309 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4310 IPW_DL_STATE,
4311 "Aborting scan with missed beacon.\n");
4312 queue_work(priv->workqueue, &priv->abort_scan);
4313 }
4314
4315 queue_work(priv->workqueue, &priv->disassociate);
4316 return;
4317 }
4318
4319 if (priv->status & STATUS_ROAMING) {
4320 /* If we are currently roaming, then just
4321 * print a debug statement... */
4322 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4323 "Missed beacon: %d - roam in progress\n",
4324 missed_count);
4325 return;
4326 }
4327
4328 if (roaming &&
4329 (missed_count > priv->roaming_threshold &&
4330 missed_count <= priv->disassociate_threshold)) {
4331 /* If we are not already roaming, set the ROAM
4332 * bit in the status and kick off a scan.
4333 * This can happen several times before we reach
4334 * disassociate_threshold. */
4335 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4336 "Missed beacon: %d - initiate "
4337 "roaming\n", missed_count);
4338 if (!(priv->status & STATUS_ROAMING)) {
4339 priv->status |= STATUS_ROAMING;
4340 if (!(priv->status & STATUS_SCANNING))
4341 queue_delayed_work(priv->workqueue,
4342 &priv->request_scan, 0);
4343 }
4344 return;
4345 }
4346
4347 if (priv->status & STATUS_SCANNING) {
4348 /* Stop scan to keep fw from getting
4349 * stuck (only if we aren't roaming --
4350 * otherwise we'll never scan more than 2 or 3
4351 * channels..) */
4352 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4353 "Aborting scan with missed beacon.\n");
4354 queue_work(priv->workqueue, &priv->abort_scan);
4355 }
4356
4357 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4358}
4359
4360static void ipw_scan_event(struct work_struct *work)
4361{
4362 union iwreq_data wrqu;
4363
4364 struct ipw_priv *priv =
4365 container_of(work, struct ipw_priv, scan_event.work);
4366
4367 wrqu.data.length = 0;
4368 wrqu.data.flags = 0;
4369 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4370}
4371
4372static void handle_scan_event(struct ipw_priv *priv)
4373{
4374 /* Only userspace-requested scan completion events go out immediately */
4375 if (!priv->user_requested_scan) {
4376 if (!delayed_work_pending(&priv->scan_event))
4377 queue_delayed_work(priv->workqueue, &priv->scan_event,
4378 round_jiffies_relative(msecs_to_jiffies(4000)));
4379 } else {
4380 union iwreq_data wrqu;
4381
4382 priv->user_requested_scan = 0;
4383 cancel_delayed_work(&priv->scan_event);
4384
4385 wrqu.data.length = 0;
4386 wrqu.data.flags = 0;
4387 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4388 }
4389}
4390
4391/**
4392 * Handle host notification packet.
4393 * Called from interrupt routine
4394 */
4395static void ipw_rx_notification(struct ipw_priv *priv,
4396 struct ipw_rx_notification *notif)
4397{
4398 u16 size = le16_to_cpu(notif->size);
4399 notif->size = le16_to_cpu(notif->size);
4400
4401 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4402
4403 switch (notif->subtype) {
4404 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4405 struct notif_association *assoc = &notif->u.assoc;
4406
4407 switch (assoc->state) {
4408 case CMAS_ASSOCIATED:{
4409 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4410 IPW_DL_ASSOC,
4411 "associated: '%s' %pM \n",
4412 escape_essid(priv->essid,
4413 priv->essid_len),
4414 priv->bssid);
4415
4416 switch (priv->ieee->iw_mode) {
4417 case IW_MODE_INFRA:
4418 memcpy(priv->ieee->bssid,
4419 priv->bssid, ETH_ALEN);
4420 break;
4421
4422 case IW_MODE_ADHOC:
4423 memcpy(priv->ieee->bssid,
4424 priv->bssid, ETH_ALEN);
4425
4426 /* clear out the station table */
4427 priv->num_stations = 0;
4428
4429 IPW_DEBUG_ASSOC
4430 ("queueing adhoc check\n");
4431 queue_delayed_work(priv->
4432 workqueue,
4433 &priv->
4434 adhoc_check,
4435 le16_to_cpu(priv->
4436 assoc_request.
4437 beacon_interval));
4438 break;
4439 }
4440
4441 priv->status &= ~STATUS_ASSOCIATING;
4442 priv->status |= STATUS_ASSOCIATED;
4443 queue_work(priv->workqueue,
4444 &priv->system_config);
4445
4446#ifdef CONFIG_IPW2200_QOS
4447#define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4448 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4449 if ((priv->status & STATUS_AUTH) &&
4450 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4451 == IEEE80211_STYPE_ASSOC_RESP)) {
4452 if ((sizeof
4453 (struct
4454 ieee80211_assoc_response)
4455 <= size)
4456 && (size <= 2314)) {
4457 struct
4458 ieee80211_rx_stats
4459 stats = {
4460 .len = size - 1,
4461 };
4462
4463 IPW_DEBUG_QOS
4464 ("QoS Associate "
4465 "size %d\n", size);
4466 ieee80211_rx_mgt(priv->
4467 ieee,
4468 (struct
4469 ieee80211_hdr_4addr
4470 *)
4471 &notif->u.raw, &stats);
4472 }
4473 }
4474#endif
4475
4476 schedule_work(&priv->link_up);
4477
4478 break;
4479 }
4480
4481 case CMAS_AUTHENTICATED:{
4482 if (priv->
4483 status & (STATUS_ASSOCIATED |
4484 STATUS_AUTH)) {
4485 struct notif_authenticate *auth
4486 = &notif->u.auth;
4487 IPW_DEBUG(IPW_DL_NOTIF |
4488 IPW_DL_STATE |
4489 IPW_DL_ASSOC,
4490 "deauthenticated: '%s' "
4491 "%pM"
4492 ": (0x%04X) - %s \n",
4493 escape_essid(priv->
4494 essid,
4495 priv->
4496 essid_len),
4497 priv->bssid,
4498 le16_to_cpu(auth->status),
4499 ipw_get_status_code
4500 (le16_to_cpu
4501 (auth->status)));
4502
4503 priv->status &=
4504 ~(STATUS_ASSOCIATING |
4505 STATUS_AUTH |
4506 STATUS_ASSOCIATED);
4507
4508 schedule_work(&priv->link_down);
4509 break;
4510 }
4511
4512 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4513 IPW_DL_ASSOC,
4514 "authenticated: '%s' %pM\n",
4515 escape_essid(priv->essid,
4516 priv->essid_len),
4517 priv->bssid);
4518 break;
4519 }
4520
4521 case CMAS_INIT:{
4522 if (priv->status & STATUS_AUTH) {
4523 struct
4524 ieee80211_assoc_response
4525 *resp;
4526 resp =
4527 (struct
4528 ieee80211_assoc_response
4529 *)&notif->u.raw;
4530 IPW_DEBUG(IPW_DL_NOTIF |
4531 IPW_DL_STATE |
4532 IPW_DL_ASSOC,
4533 "association failed (0x%04X): %s\n",
4534 le16_to_cpu(resp->status),
4535 ipw_get_status_code
4536 (le16_to_cpu
4537 (resp->status)));
4538 }
4539
4540 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4541 IPW_DL_ASSOC,
4542 "disassociated: '%s' %pM \n",
4543 escape_essid(priv->essid,
4544 priv->essid_len),
4545 priv->bssid);
4546
4547 priv->status &=
4548 ~(STATUS_DISASSOCIATING |
4549 STATUS_ASSOCIATING |
4550 STATUS_ASSOCIATED | STATUS_AUTH);
4551 if (priv->assoc_network
4552 && (priv->assoc_network->
4553 capability &
4554 WLAN_CAPABILITY_IBSS))
4555 ipw_remove_current_network
4556 (priv);
4557
4558 schedule_work(&priv->link_down);
4559
4560 break;
4561 }
4562
4563 case CMAS_RX_ASSOC_RESP:
4564 break;
4565
4566 default:
4567 IPW_ERROR("assoc: unknown (%d)\n",
4568 assoc->state);
4569 break;
4570 }
4571
4572 break;
4573 }
4574
4575 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4576 struct notif_authenticate *auth = &notif->u.auth;
4577 switch (auth->state) {
4578 case CMAS_AUTHENTICATED:
4579 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4580 "authenticated: '%s' %pM \n",
4581 escape_essid(priv->essid,
4582 priv->essid_len),
4583 priv->bssid);
4584 priv->status |= STATUS_AUTH;
4585 break;
4586
4587 case CMAS_INIT:
4588 if (priv->status & STATUS_AUTH) {
4589 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4590 IPW_DL_ASSOC,
4591 "authentication failed (0x%04X): %s\n",
4592 le16_to_cpu(auth->status),
4593 ipw_get_status_code(le16_to_cpu
4594 (auth->
4595 status)));
4596 }
4597 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4598 IPW_DL_ASSOC,
4599 "deauthenticated: '%s' %pM\n",
4600 escape_essid(priv->essid,
4601 priv->essid_len),
4602 priv->bssid);
4603
4604 priv->status &= ~(STATUS_ASSOCIATING |
4605 STATUS_AUTH |
4606 STATUS_ASSOCIATED);
4607
4608 schedule_work(&priv->link_down);
4609 break;
4610
4611 case CMAS_TX_AUTH_SEQ_1:
4612 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4613 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4614 break;
4615 case CMAS_RX_AUTH_SEQ_2:
4616 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4617 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4618 break;
4619 case CMAS_AUTH_SEQ_1_PASS:
4620 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4621 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4622 break;
4623 case CMAS_AUTH_SEQ_1_FAIL:
4624 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4625 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4626 break;
4627 case CMAS_TX_AUTH_SEQ_3:
4628 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4629 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4630 break;
4631 case CMAS_RX_AUTH_SEQ_4:
4632 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4633 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4634 break;
4635 case CMAS_AUTH_SEQ_2_PASS:
4636 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4637 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4638 break;
4639 case CMAS_AUTH_SEQ_2_FAIL:
4640 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4641 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4642 break;
4643 case CMAS_TX_ASSOC:
4644 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4645 IPW_DL_ASSOC, "TX_ASSOC\n");
4646 break;
4647 case CMAS_RX_ASSOC_RESP:
4648 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4649 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4650
4651 break;
4652 case CMAS_ASSOCIATED:
4653 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4654 IPW_DL_ASSOC, "ASSOCIATED\n");
4655 break;
4656 default:
4657 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4658 auth->state);
4659 break;
4660 }
4661 break;
4662 }
4663
4664 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4665 struct notif_channel_result *x =
4666 &notif->u.channel_result;
4667
4668 if (size == sizeof(*x)) {
4669 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4670 x->channel_num);
4671 } else {
4672 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4673 "(should be %zd)\n",
4674 size, sizeof(*x));
4675 }
4676 break;
4677 }
4678
4679 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4680 struct notif_scan_complete *x = &notif->u.scan_complete;
4681 if (size == sizeof(*x)) {
4682 IPW_DEBUG_SCAN
4683 ("Scan completed: type %d, %d channels, "
4684 "%d status\n", x->scan_type,
4685 x->num_channels, x->status);
4686 } else {
4687 IPW_ERROR("Scan completed of wrong size %d "
4688 "(should be %zd)\n",
4689 size, sizeof(*x));
4690 }
4691
4692 priv->status &=
4693 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4694
4695 wake_up_interruptible(&priv->wait_state);
4696 cancel_delayed_work(&priv->scan_check);
4697
4698 if (priv->status & STATUS_EXIT_PENDING)
4699 break;
4700
4701 priv->ieee->scans++;
4702
4703#ifdef CONFIG_IPW2200_MONITOR
4704 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4705 priv->status |= STATUS_SCAN_FORCED;
4706 queue_delayed_work(priv->workqueue,
4707 &priv->request_scan, 0);
4708 break;
4709 }
4710 priv->status &= ~STATUS_SCAN_FORCED;
4711#endif /* CONFIG_IPW2200_MONITOR */
4712
4713 /* Do queued direct scans first */
4714 if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4715 queue_delayed_work(priv->workqueue,
4716 &priv->request_direct_scan, 0);
4717 }
4718
4719 if (!(priv->status & (STATUS_ASSOCIATED |
4720 STATUS_ASSOCIATING |
4721 STATUS_ROAMING |
4722 STATUS_DISASSOCIATING)))
4723 queue_work(priv->workqueue, &priv->associate);
4724 else if (priv->status & STATUS_ROAMING) {
4725 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4726 /* If a scan completed and we are in roam mode, then
4727 * the scan that completed was the one requested as a
4728 * result of entering roam... so, schedule the
4729 * roam work */
4730 queue_work(priv->workqueue,
4731 &priv->roam);
4732 else
4733 /* Don't schedule if we aborted the scan */
4734 priv->status &= ~STATUS_ROAMING;
4735 } else if (priv->status & STATUS_SCAN_PENDING)
4736 queue_delayed_work(priv->workqueue,
4737 &priv->request_scan, 0);
4738 else if (priv->config & CFG_BACKGROUND_SCAN
4739 && priv->status & STATUS_ASSOCIATED)
4740 queue_delayed_work(priv->workqueue,
4741 &priv->request_scan,
4742 round_jiffies_relative(HZ));
4743
4744 /* Send an empty event to user space.
4745 * We don't send the received data on the event because
4746 * it would require us to do complex transcoding, and
4747 * we want to minimise the work done in the irq handler
4748 * Use a request to extract the data.
4749 * Also, we generate this even for any scan, regardless
4750 * on how the scan was initiated. User space can just
4751 * sync on periodic scan to get fresh data...
4752 * Jean II */
4753 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4754 handle_scan_event(priv);
4755 break;
4756 }
4757
4758 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4759 struct notif_frag_length *x = &notif->u.frag_len;
4760
4761 if (size == sizeof(*x))
4762 IPW_ERROR("Frag length: %d\n",
4763 le16_to_cpu(x->frag_length));
4764 else
4765 IPW_ERROR("Frag length of wrong size %d "
4766 "(should be %zd)\n",
4767 size, sizeof(*x));
4768 break;
4769 }
4770
4771 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4772 struct notif_link_deterioration *x =
4773 &notif->u.link_deterioration;
4774
4775 if (size == sizeof(*x)) {
4776 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4777 "link deterioration: type %d, cnt %d\n",
4778 x->silence_notification_type,
4779 x->silence_count);
4780 memcpy(&priv->last_link_deterioration, x,
4781 sizeof(*x));
4782 } else {
4783 IPW_ERROR("Link Deterioration of wrong size %d "
4784 "(should be %zd)\n",
4785 size, sizeof(*x));
4786 }
4787 break;
4788 }
4789
4790 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4791 IPW_ERROR("Dino config\n");
4792 if (priv->hcmd
4793 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4794 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4795
4796 break;
4797 }
4798
4799 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4800 struct notif_beacon_state *x = &notif->u.beacon_state;
4801 if (size != sizeof(*x)) {
4802 IPW_ERROR
4803 ("Beacon state of wrong size %d (should "
4804 "be %zd)\n", size, sizeof(*x));
4805 break;
4806 }
4807
4808 if (le32_to_cpu(x->state) ==
4809 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4810 ipw_handle_missed_beacon(priv,
4811 le32_to_cpu(x->
4812 number));
4813
4814 break;
4815 }
4816
4817 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4818 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4819 if (size == sizeof(*x)) {
4820 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4821 "0x%02x station %d\n",
4822 x->key_state, x->security_type,
4823 x->station_index);
4824 break;
4825 }
4826
4827 IPW_ERROR
4828 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4829 size, sizeof(*x));
4830 break;
4831 }
4832
4833 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4834 struct notif_calibration *x = &notif->u.calibration;
4835
4836 if (size == sizeof(*x)) {
4837 memcpy(&priv->calib, x, sizeof(*x));
4838 IPW_DEBUG_INFO("TODO: Calibration\n");
4839 break;
4840 }
4841
4842 IPW_ERROR
4843 ("Calibration of wrong size %d (should be %zd)\n",
4844 size, sizeof(*x));
4845 break;
4846 }
4847
4848 case HOST_NOTIFICATION_NOISE_STATS:{
4849 if (size == sizeof(u32)) {
4850 priv->exp_avg_noise =
4851 exponential_average(priv->exp_avg_noise,
4852 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4853 DEPTH_NOISE);
4854 break;
4855 }
4856
4857 IPW_ERROR
4858 ("Noise stat is wrong size %d (should be %zd)\n",
4859 size, sizeof(u32));
4860 break;
4861 }
4862
4863 default:
4864 IPW_DEBUG_NOTIF("Unknown notification: "
4865 "subtype=%d,flags=0x%2x,size=%d\n",
4866 notif->subtype, notif->flags, size);
4867 }
4868}
4869
4870/**
4871 * Destroys all DMA structures and initialise them again
4872 *
4873 * @param priv
4874 * @return error code
4875 */
4876static int ipw_queue_reset(struct ipw_priv *priv)
4877{
4878 int rc = 0;
4879 /** @todo customize queue sizes */
4880 int nTx = 64, nTxCmd = 8;
4881 ipw_tx_queue_free(priv);
4882 /* Tx CMD queue */
4883 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4884 IPW_TX_CMD_QUEUE_READ_INDEX,
4885 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4886 IPW_TX_CMD_QUEUE_BD_BASE,
4887 IPW_TX_CMD_QUEUE_BD_SIZE);
4888 if (rc) {
4889 IPW_ERROR("Tx Cmd queue init failed\n");
4890 goto error;
4891 }
4892 /* Tx queue(s) */
4893 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4894 IPW_TX_QUEUE_0_READ_INDEX,
4895 IPW_TX_QUEUE_0_WRITE_INDEX,
4896 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4897 if (rc) {
4898 IPW_ERROR("Tx 0 queue init failed\n");
4899 goto error;
4900 }
4901 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4902 IPW_TX_QUEUE_1_READ_INDEX,
4903 IPW_TX_QUEUE_1_WRITE_INDEX,
4904 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4905 if (rc) {
4906 IPW_ERROR("Tx 1 queue init failed\n");
4907 goto error;
4908 }
4909 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4910 IPW_TX_QUEUE_2_READ_INDEX,
4911 IPW_TX_QUEUE_2_WRITE_INDEX,
4912 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4913 if (rc) {
4914 IPW_ERROR("Tx 2 queue init failed\n");
4915 goto error;
4916 }
4917 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4918 IPW_TX_QUEUE_3_READ_INDEX,
4919 IPW_TX_QUEUE_3_WRITE_INDEX,
4920 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4921 if (rc) {
4922 IPW_ERROR("Tx 3 queue init failed\n");
4923 goto error;
4924 }
4925 /* statistics */
4926 priv->rx_bufs_min = 0;
4927 priv->rx_pend_max = 0;
4928 return rc;
4929
4930 error:
4931 ipw_tx_queue_free(priv);
4932 return rc;
4933}
4934
4935/**
4936 * Reclaim Tx queue entries no more used by NIC.
4937 *
4938 * When FW advances 'R' index, all entries between old and
4939 * new 'R' index need to be reclaimed. As result, some free space
4940 * forms. If there is enough free space (> low mark), wake Tx queue.
4941 *
4942 * @note Need to protect against garbage in 'R' index
4943 * @param priv
4944 * @param txq
4945 * @param qindex
4946 * @return Number of used entries remains in the queue
4947 */
4948static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4949 struct clx2_tx_queue *txq, int qindex)
4950{
4951 u32 hw_tail;
4952 int used;
4953 struct clx2_queue *q = &txq->q;
4954
4955 hw_tail = ipw_read32(priv, q->reg_r);
4956 if (hw_tail >= q->n_bd) {
4957 IPW_ERROR
4958 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4959 hw_tail, q->n_bd);
4960 goto done;
4961 }
4962 for (; q->last_used != hw_tail;
4963 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4964 ipw_queue_tx_free_tfd(priv, txq);
4965 priv->tx_packets++;
4966 }
4967 done:
4968 if ((ipw_tx_queue_space(q) > q->low_mark) &&
4969 (qindex >= 0))
4970 netif_wake_queue(priv->net_dev);
4971 used = q->first_empty - q->last_used;
4972 if (used < 0)
4973 used += q->n_bd;
4974
4975 return used;
4976}
4977
4978static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4979 int len, int sync)
4980{
4981 struct clx2_tx_queue *txq = &priv->txq_cmd;
4982 struct clx2_queue *q = &txq->q;
4983 struct tfd_frame *tfd;
4984
4985 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
4986 IPW_ERROR("No space for Tx\n");
4987 return -EBUSY;
4988 }
4989
4990 tfd = &txq->bd[q->first_empty];
4991 txq->txb[q->first_empty] = NULL;
4992
4993 memset(tfd, 0, sizeof(*tfd));
4994 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4995 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4996 priv->hcmd_seq++;
4997 tfd->u.cmd.index = hcmd;
4998 tfd->u.cmd.length = len;
4999 memcpy(tfd->u.cmd.payload, buf, len);
5000 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5001 ipw_write32(priv, q->reg_w, q->first_empty);
5002 _ipw_read32(priv, 0x90);
5003
5004 return 0;
5005}
5006
5007/*
5008 * Rx theory of operation
5009 *
5010 * The host allocates 32 DMA target addresses and passes the host address
5011 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5012 * 0 to 31
5013 *
5014 * Rx Queue Indexes
5015 * The host/firmware share two index registers for managing the Rx buffers.
5016 *
5017 * The READ index maps to the first position that the firmware may be writing
5018 * to -- the driver can read up to (but not including) this position and get
5019 * good data.
5020 * The READ index is managed by the firmware once the card is enabled.
5021 *
5022 * The WRITE index maps to the last position the driver has read from -- the
5023 * position preceding WRITE is the last slot the firmware can place a packet.
5024 *
5025 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5026 * WRITE = READ.
5027 *
5028 * During initialization the host sets up the READ queue position to the first
5029 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5030 *
5031 * When the firmware places a packet in a buffer it will advance the READ index
5032 * and fire the RX interrupt. The driver can then query the READ index and
5033 * process as many packets as possible, moving the WRITE index forward as it
5034 * resets the Rx queue buffers with new memory.
5035 *
5036 * The management in the driver is as follows:
5037 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5038 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5039 * to replensish the ipw->rxq->rx_free.
5040 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5041 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5042 * 'processed' and 'read' driver indexes as well)
5043 * + A received packet is processed and handed to the kernel network stack,
5044 * detached from the ipw->rxq. The driver 'processed' index is updated.
5045 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5046 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5047 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5048 * were enough free buffers and RX_STALLED is set it is cleared.
5049 *
5050 *
5051 * Driver sequence:
5052 *
5053 * ipw_rx_queue_alloc() Allocates rx_free
5054 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5055 * ipw_rx_queue_restock
5056 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5057 * queue, updates firmware pointers, and updates
5058 * the WRITE index. If insufficient rx_free buffers
5059 * are available, schedules ipw_rx_queue_replenish
5060 *
5061 * -- enable interrupts --
5062 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5063 * READ INDEX, detaching the SKB from the pool.
5064 * Moves the packet buffer from queue to rx_used.
5065 * Calls ipw_rx_queue_restock to refill any empty
5066 * slots.
5067 * ...
5068 *
5069 */
5070
5071/*
5072 * If there are slots in the RX queue that need to be restocked,
5073 * and we have free pre-allocated buffers, fill the ranks as much
5074 * as we can pulling from rx_free.
5075 *
5076 * This moves the 'write' index forward to catch up with 'processed', and
5077 * also updates the memory address in the firmware to reference the new
5078 * target buffer.
5079 */
5080static void ipw_rx_queue_restock(struct ipw_priv *priv)
5081{
5082 struct ipw_rx_queue *rxq = priv->rxq;
5083 struct list_head *element;
5084 struct ipw_rx_mem_buffer *rxb;
5085 unsigned long flags;
5086 int write;
5087
5088 spin_lock_irqsave(&rxq->lock, flags);
5089 write = rxq->write;
5090 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5091 element = rxq->rx_free.next;
5092 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5093 list_del(element);
5094
5095 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5096 rxb->dma_addr);
5097 rxq->queue[rxq->write] = rxb;
5098 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5099 rxq->free_count--;
5100 }
5101 spin_unlock_irqrestore(&rxq->lock, flags);
5102
5103 /* If the pre-allocated buffer pool is dropping low, schedule to
5104 * refill it */
5105 if (rxq->free_count <= RX_LOW_WATERMARK)
5106 queue_work(priv->workqueue, &priv->rx_replenish);
5107
5108 /* If we've added more space for the firmware to place data, tell it */
5109 if (write != rxq->write)
5110 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5111}
5112
5113/*
5114 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5115 * Also restock the Rx queue via ipw_rx_queue_restock.
5116 *
5117 * This is called as a scheduled work item (except for during intialization)
5118 */
5119static void ipw_rx_queue_replenish(void *data)
5120{
5121 struct ipw_priv *priv = data;
5122 struct ipw_rx_queue *rxq = priv->rxq;
5123 struct list_head *element;
5124 struct ipw_rx_mem_buffer *rxb;
5125 unsigned long flags;
5126
5127 spin_lock_irqsave(&rxq->lock, flags);
5128 while (!list_empty(&rxq->rx_used)) {
5129 element = rxq->rx_used.next;
5130 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5131 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5132 if (!rxb->skb) {
5133 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5134 priv->net_dev->name);
5135 /* We don't reschedule replenish work here -- we will
5136 * call the restock method and if it still needs
5137 * more buffers it will schedule replenish */
5138 break;
5139 }
5140 list_del(element);
5141
5142 rxb->dma_addr =
5143 pci_map_single(priv->pci_dev, rxb->skb->data,
5144 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5145
5146 list_add_tail(&rxb->list, &rxq->rx_free);
5147 rxq->free_count++;
5148 }
5149 spin_unlock_irqrestore(&rxq->lock, flags);
5150
5151 ipw_rx_queue_restock(priv);
5152}
5153
5154static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5155{
5156 struct ipw_priv *priv =
5157 container_of(work, struct ipw_priv, rx_replenish);
5158 mutex_lock(&priv->mutex);
5159 ipw_rx_queue_replenish(priv);
5160 mutex_unlock(&priv->mutex);
5161}
5162
5163/* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5164 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5165 * This free routine walks the list of POOL entries and if SKB is set to
5166 * non NULL it is unmapped and freed
5167 */
5168static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5169{
5170 int i;
5171
5172 if (!rxq)
5173 return;
5174
5175 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5176 if (rxq->pool[i].skb != NULL) {
5177 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5178 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5179 dev_kfree_skb(rxq->pool[i].skb);
5180 }
5181 }
5182
5183 kfree(rxq);
5184}
5185
5186static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5187{
5188 struct ipw_rx_queue *rxq;
5189 int i;
5190
5191 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5192 if (unlikely(!rxq)) {
5193 IPW_ERROR("memory allocation failed\n");
5194 return NULL;
5195 }
5196 spin_lock_init(&rxq->lock);
5197 INIT_LIST_HEAD(&rxq->rx_free);
5198 INIT_LIST_HEAD(&rxq->rx_used);
5199
5200 /* Fill the rx_used queue with _all_ of the Rx buffers */
5201 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5202 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5203
5204 /* Set us so that we have processed and used all buffers, but have
5205 * not restocked the Rx queue with fresh buffers */
5206 rxq->read = rxq->write = 0;
5207 rxq->free_count = 0;
5208
5209 return rxq;
5210}
5211
5212static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5213{
5214 rate &= ~IEEE80211_BASIC_RATE_MASK;
5215 if (ieee_mode == IEEE_A) {
5216 switch (rate) {
5217 case IEEE80211_OFDM_RATE_6MB:
5218 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5219 1 : 0;
5220 case IEEE80211_OFDM_RATE_9MB:
5221 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5222 1 : 0;
5223 case IEEE80211_OFDM_RATE_12MB:
5224 return priv->
5225 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5226 case IEEE80211_OFDM_RATE_18MB:
5227 return priv->
5228 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5229 case IEEE80211_OFDM_RATE_24MB:
5230 return priv->
5231 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5232 case IEEE80211_OFDM_RATE_36MB:
5233 return priv->
5234 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5235 case IEEE80211_OFDM_RATE_48MB:
5236 return priv->
5237 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5238 case IEEE80211_OFDM_RATE_54MB:
5239 return priv->
5240 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5241 default:
5242 return 0;
5243 }
5244 }
5245
5246 /* B and G mixed */
5247 switch (rate) {
5248 case IEEE80211_CCK_RATE_1MB:
5249 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5250 case IEEE80211_CCK_RATE_2MB:
5251 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5252 case IEEE80211_CCK_RATE_5MB:
5253 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5254 case IEEE80211_CCK_RATE_11MB:
5255 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5256 }
5257
5258 /* If we are limited to B modulations, bail at this point */
5259 if (ieee_mode == IEEE_B)
5260 return 0;
5261
5262 /* G */
5263 switch (rate) {
5264 case IEEE80211_OFDM_RATE_6MB:
5265 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5266 case IEEE80211_OFDM_RATE_9MB:
5267 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5268 case IEEE80211_OFDM_RATE_12MB:
5269 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5270 case IEEE80211_OFDM_RATE_18MB:
5271 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5272 case IEEE80211_OFDM_RATE_24MB:
5273 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5274 case IEEE80211_OFDM_RATE_36MB:
5275 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5276 case IEEE80211_OFDM_RATE_48MB:
5277 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5278 case IEEE80211_OFDM_RATE_54MB:
5279 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5280 }
5281
5282 return 0;
5283}
5284
5285static int ipw_compatible_rates(struct ipw_priv *priv,
5286 const struct ieee80211_network *network,
5287 struct ipw_supported_rates *rates)
5288{
5289 int num_rates, i;
5290
5291 memset(rates, 0, sizeof(*rates));
5292 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5293 rates->num_rates = 0;
5294 for (i = 0; i < num_rates; i++) {
5295 if (!ipw_is_rate_in_mask(priv, network->mode,
5296 network->rates[i])) {
5297
5298 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5299 IPW_DEBUG_SCAN("Adding masked mandatory "
5300 "rate %02X\n",
5301 network->rates[i]);
5302 rates->supported_rates[rates->num_rates++] =
5303 network->rates[i];
5304 continue;
5305 }
5306
5307 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5308 network->rates[i], priv->rates_mask);
5309 continue;
5310 }
5311
5312 rates->supported_rates[rates->num_rates++] = network->rates[i];
5313 }
5314
5315 num_rates = min(network->rates_ex_len,
5316 (u8) (IPW_MAX_RATES - num_rates));
5317 for (i = 0; i < num_rates; i++) {
5318 if (!ipw_is_rate_in_mask(priv, network->mode,
5319 network->rates_ex[i])) {
5320 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5321 IPW_DEBUG_SCAN("Adding masked mandatory "
5322 "rate %02X\n",
5323 network->rates_ex[i]);
5324 rates->supported_rates[rates->num_rates++] =
5325 network->rates[i];
5326 continue;
5327 }
5328
5329 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5330 network->rates_ex[i], priv->rates_mask);
5331 continue;
5332 }
5333
5334 rates->supported_rates[rates->num_rates++] =
5335 network->rates_ex[i];
5336 }
5337
5338 return 1;
5339}
5340
5341static void ipw_copy_rates(struct ipw_supported_rates *dest,
5342 const struct ipw_supported_rates *src)
5343{
5344 u8 i;
5345 for (i = 0; i < src->num_rates; i++)
5346 dest->supported_rates[i] = src->supported_rates[i];
5347 dest->num_rates = src->num_rates;
5348}
5349
5350/* TODO: Look at sniffed packets in the air to determine if the basic rate
5351 * mask should ever be used -- right now all callers to add the scan rates are
5352 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5353static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5354 u8 modulation, u32 rate_mask)
5355{
5356 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5357 IEEE80211_BASIC_RATE_MASK : 0;
5358
5359 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5360 rates->supported_rates[rates->num_rates++] =
5361 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5362
5363 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5364 rates->supported_rates[rates->num_rates++] =
5365 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5366
5367 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5368 rates->supported_rates[rates->num_rates++] = basic_mask |
5369 IEEE80211_CCK_RATE_5MB;
5370
5371 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5372 rates->supported_rates[rates->num_rates++] = basic_mask |
5373 IEEE80211_CCK_RATE_11MB;
5374}
5375
5376static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5377 u8 modulation, u32 rate_mask)
5378{
5379 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5380 IEEE80211_BASIC_RATE_MASK : 0;
5381
5382 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5383 rates->supported_rates[rates->num_rates++] = basic_mask |
5384 IEEE80211_OFDM_RATE_6MB;
5385
5386 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5387 rates->supported_rates[rates->num_rates++] =
5388 IEEE80211_OFDM_RATE_9MB;
5389
5390 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5391 rates->supported_rates[rates->num_rates++] = basic_mask |
5392 IEEE80211_OFDM_RATE_12MB;
5393
5394 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5395 rates->supported_rates[rates->num_rates++] =
5396 IEEE80211_OFDM_RATE_18MB;
5397
5398 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5399 rates->supported_rates[rates->num_rates++] = basic_mask |
5400 IEEE80211_OFDM_RATE_24MB;
5401
5402 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5403 rates->supported_rates[rates->num_rates++] =
5404 IEEE80211_OFDM_RATE_36MB;
5405
5406 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5407 rates->supported_rates[rates->num_rates++] =
5408 IEEE80211_OFDM_RATE_48MB;
5409
5410 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5411 rates->supported_rates[rates->num_rates++] =
5412 IEEE80211_OFDM_RATE_54MB;
5413}
5414
5415struct ipw_network_match {
5416 struct ieee80211_network *network;
5417 struct ipw_supported_rates rates;
5418};
5419
5420static int ipw_find_adhoc_network(struct ipw_priv *priv,
5421 struct ipw_network_match *match,
5422 struct ieee80211_network *network,
5423 int roaming)
5424{
5425 struct ipw_supported_rates rates;
5426
5427 /* Verify that this network's capability is compatible with the
5428 * current mode (AdHoc or Infrastructure) */
5429 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5430 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5431 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5432 "capability mismatch.\n",
5433 escape_essid(network->ssid, network->ssid_len),
5434 network->bssid);
5435 return 0;
5436 }
5437
5438 /* If we do not have an ESSID for this AP, we can not associate with
5439 * it */
5440 if (network->flags & NETWORK_EMPTY_ESSID) {
5441 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5442 "because of hidden ESSID.\n",
5443 escape_essid(network->ssid, network->ssid_len),
5444 network->bssid);
5445 return 0;
5446 }
5447
5448 if (unlikely(roaming)) {
5449 /* If we are roaming, then ensure check if this is a valid
5450 * network to try and roam to */
5451 if ((network->ssid_len != match->network->ssid_len) ||
5452 memcmp(network->ssid, match->network->ssid,
5453 network->ssid_len)) {
5454 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5455 "because of non-network ESSID.\n",
5456 escape_essid(network->ssid,
5457 network->ssid_len),
5458 network->bssid);
5459 return 0;
5460 }
5461 } else {
5462 /* If an ESSID has been configured then compare the broadcast
5463 * ESSID to ours */
5464 if ((priv->config & CFG_STATIC_ESSID) &&
5465 ((network->ssid_len != priv->essid_len) ||
5466 memcmp(network->ssid, priv->essid,
5467 min(network->ssid_len, priv->essid_len)))) {
5468 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5469
5470 strncpy(escaped,
5471 escape_essid(network->ssid, network->ssid_len),
5472 sizeof(escaped));
5473 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5474 "because of ESSID mismatch: '%s'.\n",
5475 escaped, network->bssid,
5476 escape_essid(priv->essid,
5477 priv->essid_len));
5478 return 0;
5479 }
5480 }
5481
5482 /* If the old network rate is better than this one, don't bother
5483 * testing everything else. */
5484
5485 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5486 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5487 "current network.\n",
5488 escape_essid(match->network->ssid,
5489 match->network->ssid_len));
5490 return 0;
5491 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5492 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5493 "current network.\n",
5494 escape_essid(match->network->ssid,
5495 match->network->ssid_len));
5496 return 0;
5497 }
5498
5499 /* Now go through and see if the requested network is valid... */
5500 if (priv->ieee->scan_age != 0 &&
5501 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5502 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5503 "because of age: %ums.\n",
5504 escape_essid(network->ssid, network->ssid_len),
5505 network->bssid,
5506 jiffies_to_msecs(jiffies -
5507 network->last_scanned));
5508 return 0;
5509 }
5510
5511 if ((priv->config & CFG_STATIC_CHANNEL) &&
5512 (network->channel != priv->channel)) {
5513 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5514 "because of channel mismatch: %d != %d.\n",
5515 escape_essid(network->ssid, network->ssid_len),
5516 network->bssid,
5517 network->channel, priv->channel);
5518 return 0;
5519 }
5520
5521 /* Verify privacy compatability */
5522 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5523 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5524 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5525 "because of privacy mismatch: %s != %s.\n",
5526 escape_essid(network->ssid, network->ssid_len),
5527 network->bssid,
5528 priv->
5529 capability & CAP_PRIVACY_ON ? "on" : "off",
5530 network->
5531 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5532 "off");
5533 return 0;
5534 }
5535
5536 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5537 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5538 "because of the same BSSID match: %pM"
5539 ".\n", escape_essid(network->ssid,
5540 network->ssid_len),
5541 network->bssid,
5542 priv->bssid);
5543 return 0;
5544 }
5545
5546 /* Filter out any incompatible freq / mode combinations */
5547 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5548 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5549 "because of invalid frequency/mode "
5550 "combination.\n",
5551 escape_essid(network->ssid, network->ssid_len),
5552 network->bssid);
5553 return 0;
5554 }
5555
5556 /* Ensure that the rates supported by the driver are compatible with
5557 * this AP, including verification of basic rates (mandatory) */
5558 if (!ipw_compatible_rates(priv, network, &rates)) {
5559 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5560 "because configured rate mask excludes "
5561 "AP mandatory rate.\n",
5562 escape_essid(network->ssid, network->ssid_len),
5563 network->bssid);
5564 return 0;
5565 }
5566
5567 if (rates.num_rates == 0) {
5568 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5569 "because of no compatible rates.\n",
5570 escape_essid(network->ssid, network->ssid_len),
5571 network->bssid);
5572 return 0;
5573 }
5574
5575 /* TODO: Perform any further minimal comparititive tests. We do not
5576 * want to put too much policy logic here; intelligent scan selection
5577 * should occur within a generic IEEE 802.11 user space tool. */
5578
5579 /* Set up 'new' AP to this network */
5580 ipw_copy_rates(&match->rates, &rates);
5581 match->network = network;
5582 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5583 escape_essid(network->ssid, network->ssid_len),
5584 network->bssid);
5585
5586 return 1;
5587}
5588
5589static void ipw_merge_adhoc_network(struct work_struct *work)
5590{
5591 struct ipw_priv *priv =
5592 container_of(work, struct ipw_priv, merge_networks);
5593 struct ieee80211_network *network = NULL;
5594 struct ipw_network_match match = {
5595 .network = priv->assoc_network
5596 };
5597
5598 if ((priv->status & STATUS_ASSOCIATED) &&
5599 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5600 /* First pass through ROAM process -- look for a better
5601 * network */
5602 unsigned long flags;
5603
5604 spin_lock_irqsave(&priv->ieee->lock, flags);
5605 list_for_each_entry(network, &priv->ieee->network_list, list) {
5606 if (network != priv->assoc_network)
5607 ipw_find_adhoc_network(priv, &match, network,
5608 1);
5609 }
5610 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5611
5612 if (match.network == priv->assoc_network) {
5613 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5614 "merge to.\n");
5615 return;
5616 }
5617
5618 mutex_lock(&priv->mutex);
5619 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5620 IPW_DEBUG_MERGE("remove network %s\n",
5621 escape_essid(priv->essid,
5622 priv->essid_len));
5623 ipw_remove_current_network(priv);
5624 }
5625
5626 ipw_disassociate(priv);
5627 priv->assoc_network = match.network;
5628 mutex_unlock(&priv->mutex);
5629 return;
5630 }
5631}
5632
5633static int ipw_best_network(struct ipw_priv *priv,
5634 struct ipw_network_match *match,
5635 struct ieee80211_network *network, int roaming)
5636{
5637 struct ipw_supported_rates rates;
5638
5639 /* Verify that this network's capability is compatible with the
5640 * current mode (AdHoc or Infrastructure) */
5641 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5642 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5643 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5644 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5645 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5646 "capability mismatch.\n",
5647 escape_essid(network->ssid, network->ssid_len),
5648 network->bssid);
5649 return 0;
5650 }
5651
5652 /* If we do not have an ESSID for this AP, we can not associate with
5653 * it */
5654 if (network->flags & NETWORK_EMPTY_ESSID) {
5655 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5656 "because of hidden ESSID.\n",
5657 escape_essid(network->ssid, network->ssid_len),
5658 network->bssid);
5659 return 0;
5660 }
5661
5662 if (unlikely(roaming)) {
5663 /* If we are roaming, then ensure check if this is a valid
5664 * network to try and roam to */
5665 if ((network->ssid_len != match->network->ssid_len) ||
5666 memcmp(network->ssid, match->network->ssid,
5667 network->ssid_len)) {
5668 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5669 "because of non-network ESSID.\n",
5670 escape_essid(network->ssid,
5671 network->ssid_len),
5672 network->bssid);
5673 return 0;
5674 }
5675 } else {
5676 /* If an ESSID has been configured then compare the broadcast
5677 * ESSID to ours */
5678 if ((priv->config & CFG_STATIC_ESSID) &&
5679 ((network->ssid_len != priv->essid_len) ||
5680 memcmp(network->ssid, priv->essid,
5681 min(network->ssid_len, priv->essid_len)))) {
5682 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5683 strncpy(escaped,
5684 escape_essid(network->ssid, network->ssid_len),
5685 sizeof(escaped));
5686 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5687 "because of ESSID mismatch: '%s'.\n",
5688 escaped, network->bssid,
5689 escape_essid(priv->essid,
5690 priv->essid_len));
5691 return 0;
5692 }
5693 }
5694
5695 /* If the old network rate is better than this one, don't bother
5696 * testing everything else. */
5697 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5698 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5699 strncpy(escaped,
5700 escape_essid(network->ssid, network->ssid_len),
5701 sizeof(escaped));
5702 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5703 "'%s (%pM)' has a stronger signal.\n",
5704 escaped, network->bssid,
5705 escape_essid(match->network->ssid,
5706 match->network->ssid_len),
5707 match->network->bssid);
5708 return 0;
5709 }
5710
5711 /* If this network has already had an association attempt within the
5712 * last 3 seconds, do not try and associate again... */
5713 if (network->last_associate &&
5714 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5715 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5716 "because of storming (%ums since last "
5717 "assoc attempt).\n",
5718 escape_essid(network->ssid, network->ssid_len),
5719 network->bssid,
5720 jiffies_to_msecs(jiffies -
5721 network->last_associate));
5722 return 0;
5723 }
5724
5725 /* Now go through and see if the requested network is valid... */
5726 if (priv->ieee->scan_age != 0 &&
5727 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5728 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5729 "because of age: %ums.\n",
5730 escape_essid(network->ssid, network->ssid_len),
5731 network->bssid,
5732 jiffies_to_msecs(jiffies -
5733 network->last_scanned));
5734 return 0;
5735 }
5736
5737 if ((priv->config & CFG_STATIC_CHANNEL) &&
5738 (network->channel != priv->channel)) {
5739 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5740 "because of channel mismatch: %d != %d.\n",
5741 escape_essid(network->ssid, network->ssid_len),
5742 network->bssid,
5743 network->channel, priv->channel);
5744 return 0;
5745 }
5746
5747 /* Verify privacy compatability */
5748 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5749 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5750 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5751 "because of privacy mismatch: %s != %s.\n",
5752 escape_essid(network->ssid, network->ssid_len),
5753 network->bssid,
5754 priv->capability & CAP_PRIVACY_ON ? "on" :
5755 "off",
5756 network->capability &
5757 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5758 return 0;
5759 }
5760
5761 if ((priv->config & CFG_STATIC_BSSID) &&
5762 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5763 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5764 "because of BSSID mismatch: %pM.\n",
5765 escape_essid(network->ssid, network->ssid_len),
5766 network->bssid, priv->bssid);
5767 return 0;
5768 }
5769
5770 /* Filter out any incompatible freq / mode combinations */
5771 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5772 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5773 "because of invalid frequency/mode "
5774 "combination.\n",
5775 escape_essid(network->ssid, network->ssid_len),
5776 network->bssid);
5777 return 0;
5778 }
5779
5780 /* Filter out invalid channel in current GEO */
5781 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5782 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5783 "because of invalid channel in current GEO\n",
5784 escape_essid(network->ssid, network->ssid_len),
5785 network->bssid);
5786 return 0;
5787 }
5788
5789 /* Ensure that the rates supported by the driver are compatible with
5790 * this AP, including verification of basic rates (mandatory) */
5791 if (!ipw_compatible_rates(priv, network, &rates)) {
5792 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5793 "because configured rate mask excludes "
5794 "AP mandatory rate.\n",
5795 escape_essid(network->ssid, network->ssid_len),
5796 network->bssid);
5797 return 0;
5798 }
5799
5800 if (rates.num_rates == 0) {
5801 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5802 "because of no compatible rates.\n",
5803 escape_essid(network->ssid, network->ssid_len),
5804 network->bssid);
5805 return 0;
5806 }
5807
5808 /* TODO: Perform any further minimal comparititive tests. We do not
5809 * want to put too much policy logic here; intelligent scan selection
5810 * should occur within a generic IEEE 802.11 user space tool. */
5811
5812 /* Set up 'new' AP to this network */
5813 ipw_copy_rates(&match->rates, &rates);
5814 match->network = network;
5815
5816 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5817 escape_essid(network->ssid, network->ssid_len),
5818 network->bssid);
5819
5820 return 1;
5821}
5822
5823static void ipw_adhoc_create(struct ipw_priv *priv,
5824 struct ieee80211_network *network)
5825{
5826 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5827 int i;
5828
5829 /*
5830 * For the purposes of scanning, we can set our wireless mode
5831 * to trigger scans across combinations of bands, but when it
5832 * comes to creating a new ad-hoc network, we have tell the FW
5833 * exactly which band to use.
5834 *
5835 * We also have the possibility of an invalid channel for the
5836 * chossen band. Attempting to create a new ad-hoc network
5837 * with an invalid channel for wireless mode will trigger a
5838 * FW fatal error.
5839 *
5840 */
5841 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5842 case IEEE80211_52GHZ_BAND:
5843 network->mode = IEEE_A;
5844 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5845 BUG_ON(i == -1);
5846 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5847 IPW_WARNING("Overriding invalid channel\n");
5848 priv->channel = geo->a[0].channel;
5849 }
5850 break;
5851
5852 case IEEE80211_24GHZ_BAND:
5853 if (priv->ieee->mode & IEEE_G)
5854 network->mode = IEEE_G;
5855 else
5856 network->mode = IEEE_B;
5857 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5858 BUG_ON(i == -1);
5859 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5860 IPW_WARNING("Overriding invalid channel\n");
5861 priv->channel = geo->bg[0].channel;
5862 }
5863 break;
5864
5865 default:
5866 IPW_WARNING("Overriding invalid channel\n");
5867 if (priv->ieee->mode & IEEE_A) {
5868 network->mode = IEEE_A;
5869 priv->channel = geo->a[0].channel;
5870 } else if (priv->ieee->mode & IEEE_G) {
5871 network->mode = IEEE_G;
5872 priv->channel = geo->bg[0].channel;
5873 } else {
5874 network->mode = IEEE_B;
5875 priv->channel = geo->bg[0].channel;
5876 }
5877 break;
5878 }
5879
5880 network->channel = priv->channel;
5881 priv->config |= CFG_ADHOC_PERSIST;
5882 ipw_create_bssid(priv, network->bssid);
5883 network->ssid_len = priv->essid_len;
5884 memcpy(network->ssid, priv->essid, priv->essid_len);
5885 memset(&network->stats, 0, sizeof(network->stats));
5886 network->capability = WLAN_CAPABILITY_IBSS;
5887 if (!(priv->config & CFG_PREAMBLE_LONG))
5888 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5889 if (priv->capability & CAP_PRIVACY_ON)
5890 network->capability |= WLAN_CAPABILITY_PRIVACY;
5891 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5892 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5893 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5894 memcpy(network->rates_ex,
5895 &priv->rates.supported_rates[network->rates_len],
5896 network->rates_ex_len);
5897 network->last_scanned = 0;
5898 network->flags = 0;
5899 network->last_associate = 0;
5900 network->time_stamp[0] = 0;
5901 network->time_stamp[1] = 0;
5902 network->beacon_interval = 100; /* Default */
5903 network->listen_interval = 10; /* Default */
5904 network->atim_window = 0; /* Default */
5905 network->wpa_ie_len = 0;
5906 network->rsn_ie_len = 0;
5907}
5908
5909static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5910{
5911 struct ipw_tgi_tx_key key;
5912
5913 if (!(priv->ieee->sec.flags & (1 << index)))
5914 return;
5915
5916 key.key_id = index;
5917 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5918 key.security_type = type;
5919 key.station_index = 0; /* always 0 for BSS */
5920 key.flags = 0;
5921 /* 0 for new key; previous value of counter (after fatal error) */
5922 key.tx_counter[0] = cpu_to_le32(0);
5923 key.tx_counter[1] = cpu_to_le32(0);
5924
5925 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5926}
5927
5928static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5929{
5930 struct ipw_wep_key key;
5931 int i;
5932
5933 key.cmd_id = DINO_CMD_WEP_KEY;
5934 key.seq_num = 0;
5935
5936 /* Note: AES keys cannot be set for multiple times.
5937 * Only set it at the first time. */
5938 for (i = 0; i < 4; i++) {
5939 key.key_index = i | type;
5940 if (!(priv->ieee->sec.flags & (1 << i))) {
5941 key.key_size = 0;
5942 continue;
5943 }
5944
5945 key.key_size = priv->ieee->sec.key_sizes[i];
5946 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5947
5948 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5949 }
5950}
5951
5952static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5953{
5954 if (priv->ieee->host_encrypt)
5955 return;
5956
5957 switch (level) {
5958 case SEC_LEVEL_3:
5959 priv->sys_config.disable_unicast_decryption = 0;
5960 priv->ieee->host_decrypt = 0;
5961 break;
5962 case SEC_LEVEL_2:
5963 priv->sys_config.disable_unicast_decryption = 1;
5964 priv->ieee->host_decrypt = 1;
5965 break;
5966 case SEC_LEVEL_1:
5967 priv->sys_config.disable_unicast_decryption = 0;
5968 priv->ieee->host_decrypt = 0;
5969 break;
5970 case SEC_LEVEL_0:
5971 priv->sys_config.disable_unicast_decryption = 1;
5972 break;
5973 default:
5974 break;
5975 }
5976}
5977
5978static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5979{
5980 if (priv->ieee->host_encrypt)
5981 return;
5982
5983 switch (level) {
5984 case SEC_LEVEL_3:
5985 priv->sys_config.disable_multicast_decryption = 0;
5986 break;
5987 case SEC_LEVEL_2:
5988 priv->sys_config.disable_multicast_decryption = 1;
5989 break;
5990 case SEC_LEVEL_1:
5991 priv->sys_config.disable_multicast_decryption = 0;
5992 break;
5993 case SEC_LEVEL_0:
5994 priv->sys_config.disable_multicast_decryption = 1;
5995 break;
5996 default:
5997 break;
5998 }
5999}
6000
6001static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6002{
6003 switch (priv->ieee->sec.level) {
6004 case SEC_LEVEL_3:
6005 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6006 ipw_send_tgi_tx_key(priv,
6007 DCT_FLAG_EXT_SECURITY_CCM,
6008 priv->ieee->sec.active_key);
6009
6010 if (!priv->ieee->host_mc_decrypt)
6011 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6012 break;
6013 case SEC_LEVEL_2:
6014 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6015 ipw_send_tgi_tx_key(priv,
6016 DCT_FLAG_EXT_SECURITY_TKIP,
6017 priv->ieee->sec.active_key);
6018 break;
6019 case SEC_LEVEL_1:
6020 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6021 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6022 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6023 break;
6024 case SEC_LEVEL_0:
6025 default:
6026 break;
6027 }
6028}
6029
6030static void ipw_adhoc_check(void *data)
6031{
6032 struct ipw_priv *priv = data;
6033
6034 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6035 !(priv->config & CFG_ADHOC_PERSIST)) {
6036 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6037 IPW_DL_STATE | IPW_DL_ASSOC,
6038 "Missed beacon: %d - disassociate\n",
6039 priv->missed_adhoc_beacons);
6040 ipw_remove_current_network(priv);
6041 ipw_disassociate(priv);
6042 return;
6043 }
6044
6045 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6046 le16_to_cpu(priv->assoc_request.beacon_interval));
6047}
6048
6049static void ipw_bg_adhoc_check(struct work_struct *work)
6050{
6051 struct ipw_priv *priv =
6052 container_of(work, struct ipw_priv, adhoc_check.work);
6053 mutex_lock(&priv->mutex);
6054 ipw_adhoc_check(priv);
6055 mutex_unlock(&priv->mutex);
6056}
6057
6058static void ipw_debug_config(struct ipw_priv *priv)
6059{
6060 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6061 "[CFG 0x%08X]\n", priv->config);
6062 if (priv->config & CFG_STATIC_CHANNEL)
6063 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6064 else
6065 IPW_DEBUG_INFO("Channel unlocked.\n");
6066 if (priv->config & CFG_STATIC_ESSID)
6067 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6068 escape_essid(priv->essid, priv->essid_len));
6069 else
6070 IPW_DEBUG_INFO("ESSID unlocked.\n");
6071 if (priv->config & CFG_STATIC_BSSID)
6072 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6073 else
6074 IPW_DEBUG_INFO("BSSID unlocked.\n");
6075 if (priv->capability & CAP_PRIVACY_ON)
6076 IPW_DEBUG_INFO("PRIVACY on\n");
6077 else
6078 IPW_DEBUG_INFO("PRIVACY off\n");
6079 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6080}
6081
6082static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6083{
6084 /* TODO: Verify that this works... */
6085 struct ipw_fixed_rate fr = {
6086 .tx_rates = priv->rates_mask
6087 };
6088 u32 reg;
6089 u16 mask = 0;
6090
6091 /* Identify 'current FW band' and match it with the fixed
6092 * Tx rates */
6093
6094 switch (priv->ieee->freq_band) {
6095 case IEEE80211_52GHZ_BAND: /* A only */
6096 /* IEEE_A */
6097 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6098 /* Invalid fixed rate mask */
6099 IPW_DEBUG_WX
6100 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6101 fr.tx_rates = 0;
6102 break;
6103 }
6104
6105 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6106 break;
6107
6108 default: /* 2.4Ghz or Mixed */
6109 /* IEEE_B */
6110 if (mode == IEEE_B) {
6111 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6112 /* Invalid fixed rate mask */
6113 IPW_DEBUG_WX
6114 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6115 fr.tx_rates = 0;
6116 }
6117 break;
6118 }
6119
6120 /* IEEE_G */
6121 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6122 IEEE80211_OFDM_RATES_MASK)) {
6123 /* Invalid fixed rate mask */
6124 IPW_DEBUG_WX
6125 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6126 fr.tx_rates = 0;
6127 break;
6128 }
6129
6130 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6131 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6132 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6133 }
6134
6135 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6136 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6137 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6138 }
6139
6140 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6141 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6142 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6143 }
6144
6145 fr.tx_rates |= mask;
6146 break;
6147 }
6148
6149 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6150 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6151}
6152
6153static void ipw_abort_scan(struct ipw_priv *priv)
6154{
6155 int err;
6156
6157 if (priv->status & STATUS_SCAN_ABORTING) {
6158 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6159 return;
6160 }
6161 priv->status |= STATUS_SCAN_ABORTING;
6162
6163 err = ipw_send_scan_abort(priv);
6164 if (err)
6165 IPW_DEBUG_HC("Request to abort scan failed.\n");
6166}
6167
6168static void ipw_add_scan_channels(struct ipw_priv *priv,
6169 struct ipw_scan_request_ext *scan,
6170 int scan_type)
6171{
6172 int channel_index = 0;
6173 const struct ieee80211_geo *geo;
6174 int i;
6175
6176 geo = ieee80211_get_geo(priv->ieee);
6177
6178 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6179 int start = channel_index;
6180 for (i = 0; i < geo->a_channels; i++) {
6181 if ((priv->status & STATUS_ASSOCIATED) &&
6182 geo->a[i].channel == priv->channel)
6183 continue;
6184 channel_index++;
6185 scan->channels_list[channel_index] = geo->a[i].channel;
6186 ipw_set_scan_type(scan, channel_index,
6187 geo->a[i].
6188 flags & IEEE80211_CH_PASSIVE_ONLY ?
6189 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6190 scan_type);
6191 }
6192
6193 if (start != channel_index) {
6194 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6195 (channel_index - start);
6196 channel_index++;
6197 }
6198 }
6199
6200 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6201 int start = channel_index;
6202 if (priv->config & CFG_SPEED_SCAN) {
6203 int index;
6204 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6205 /* nop out the list */
6206 [0] = 0
6207 };
6208
6209 u8 channel;
6210 while (channel_index < IPW_SCAN_CHANNELS) {
6211 channel =
6212 priv->speed_scan[priv->speed_scan_pos];
6213 if (channel == 0) {
6214 priv->speed_scan_pos = 0;
6215 channel = priv->speed_scan[0];
6216 }
6217 if ((priv->status & STATUS_ASSOCIATED) &&
6218 channel == priv->channel) {
6219 priv->speed_scan_pos++;
6220 continue;
6221 }
6222
6223 /* If this channel has already been
6224 * added in scan, break from loop
6225 * and this will be the first channel
6226 * in the next scan.
6227 */
6228 if (channels[channel - 1] != 0)
6229 break;
6230
6231 channels[channel - 1] = 1;
6232 priv->speed_scan_pos++;
6233 channel_index++;
6234 scan->channels_list[channel_index] = channel;
6235 index =
6236 ieee80211_channel_to_index(priv->ieee, channel);
6237 ipw_set_scan_type(scan, channel_index,
6238 geo->bg[index].
6239 flags &
6240 IEEE80211_CH_PASSIVE_ONLY ?
6241 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6242 : scan_type);
6243 }
6244 } else {
6245 for (i = 0; i < geo->bg_channels; i++) {
6246 if ((priv->status & STATUS_ASSOCIATED) &&
6247 geo->bg[i].channel == priv->channel)
6248 continue;
6249 channel_index++;
6250 scan->channels_list[channel_index] =
6251 geo->bg[i].channel;
6252 ipw_set_scan_type(scan, channel_index,
6253 geo->bg[i].
6254 flags &
6255 IEEE80211_CH_PASSIVE_ONLY ?
6256 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6257 : scan_type);
6258 }
6259 }
6260
6261 if (start != channel_index) {
6262 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6263 (channel_index - start);
6264 }
6265 }
6266}
6267
6268static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6269{
6270 struct ipw_scan_request_ext scan;
6271 int err = 0, scan_type;
6272
6273 if (!(priv->status & STATUS_INIT) ||
6274 (priv->status & STATUS_EXIT_PENDING))
6275 return 0;
6276
6277 mutex_lock(&priv->mutex);
6278
6279 if (direct && (priv->direct_scan_ssid_len == 0)) {
6280 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6281 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6282 goto done;
6283 }
6284
6285 if (priv->status & STATUS_SCANNING) {
6286 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6287 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6288 STATUS_SCAN_PENDING;
6289 goto done;
6290 }
6291
6292 if (!(priv->status & STATUS_SCAN_FORCED) &&
6293 priv->status & STATUS_SCAN_ABORTING) {
6294 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6295 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6296 STATUS_SCAN_PENDING;
6297 goto done;
6298 }
6299
6300 if (priv->status & STATUS_RF_KILL_MASK) {
6301 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6302 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6303 STATUS_SCAN_PENDING;
6304 goto done;
6305 }
6306
6307 memset(&scan, 0, sizeof(scan));
6308 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6309
6310 if (type == IW_SCAN_TYPE_PASSIVE) {
6311 IPW_DEBUG_WX("use passive scanning\n");
6312 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6313 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6314 cpu_to_le16(120);
6315 ipw_add_scan_channels(priv, &scan, scan_type);
6316 goto send_request;
6317 }
6318
6319 /* Use active scan by default. */
6320 if (priv->config & CFG_SPEED_SCAN)
6321 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6322 cpu_to_le16(30);
6323 else
6324 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6325 cpu_to_le16(20);
6326
6327 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6328 cpu_to_le16(20);
6329
6330 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6331 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6332
6333#ifdef CONFIG_IPW2200_MONITOR
6334 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6335 u8 channel;
6336 u8 band = 0;
6337
6338 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6339 case IEEE80211_52GHZ_BAND:
6340 band = (u8) (IPW_A_MODE << 6) | 1;
6341 channel = priv->channel;
6342 break;
6343
6344 case IEEE80211_24GHZ_BAND:
6345 band = (u8) (IPW_B_MODE << 6) | 1;
6346 channel = priv->channel;
6347 break;
6348
6349 default:
6350 band = (u8) (IPW_B_MODE << 6) | 1;
6351 channel = 9;
6352 break;
6353 }
6354
6355 scan.channels_list[0] = band;
6356 scan.channels_list[1] = channel;
6357 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6358
6359 /* NOTE: The card will sit on this channel for this time
6360 * period. Scan aborts are timing sensitive and frequently
6361 * result in firmware restarts. As such, it is best to
6362 * set a small dwell_time here and just keep re-issuing
6363 * scans. Otherwise fast channel hopping will not actually
6364 * hop channels.
6365 *
6366 * TODO: Move SPEED SCAN support to all modes and bands */
6367 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6368 cpu_to_le16(2000);
6369 } else {
6370#endif /* CONFIG_IPW2200_MONITOR */
6371 /* Honor direct scans first, otherwise if we are roaming make
6372 * this a direct scan for the current network. Finally,
6373 * ensure that every other scan is a fast channel hop scan */
6374 if (direct) {
6375 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6376 priv->direct_scan_ssid_len);
6377 if (err) {
6378 IPW_DEBUG_HC("Attempt to send SSID command "
6379 "failed\n");
6380 goto done;
6381 }
6382
6383 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6384 } else if ((priv->status & STATUS_ROAMING)
6385 || (!(priv->status & STATUS_ASSOCIATED)
6386 && (priv->config & CFG_STATIC_ESSID)
6387 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6388 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6389 if (err) {
6390 IPW_DEBUG_HC("Attempt to send SSID command "
6391 "failed.\n");
6392 goto done;
6393 }
6394
6395 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6396 } else
6397 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6398
6399 ipw_add_scan_channels(priv, &scan, scan_type);
6400#ifdef CONFIG_IPW2200_MONITOR
6401 }
6402#endif
6403
6404send_request:
6405 err = ipw_send_scan_request_ext(priv, &scan);
6406 if (err) {
6407 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6408 goto done;
6409 }
6410
6411 priv->status |= STATUS_SCANNING;
6412 if (direct) {
6413 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6414 priv->direct_scan_ssid_len = 0;
6415 } else
6416 priv->status &= ~STATUS_SCAN_PENDING;
6417
6418 queue_delayed_work(priv->workqueue, &priv->scan_check,
6419 IPW_SCAN_CHECK_WATCHDOG);
6420done:
6421 mutex_unlock(&priv->mutex);
6422 return err;
6423}
6424
6425static void ipw_request_passive_scan(struct work_struct *work)
6426{
6427 struct ipw_priv *priv =
6428 container_of(work, struct ipw_priv, request_passive_scan.work);
6429 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6430}
6431
6432static void ipw_request_scan(struct work_struct *work)
6433{
6434 struct ipw_priv *priv =
6435 container_of(work, struct ipw_priv, request_scan.work);
6436 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6437}
6438
6439static void ipw_request_direct_scan(struct work_struct *work)
6440{
6441 struct ipw_priv *priv =
6442 container_of(work, struct ipw_priv, request_direct_scan.work);
6443 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6444}
6445
6446static void ipw_bg_abort_scan(struct work_struct *work)
6447{
6448 struct ipw_priv *priv =
6449 container_of(work, struct ipw_priv, abort_scan);
6450 mutex_lock(&priv->mutex);
6451 ipw_abort_scan(priv);
6452 mutex_unlock(&priv->mutex);
6453}
6454
6455static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6456{
6457 /* This is called when wpa_supplicant loads and closes the driver
6458 * interface. */
6459 priv->ieee->wpa_enabled = value;
6460 return 0;
6461}
6462
6463static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6464{
6465 struct ieee80211_device *ieee = priv->ieee;
6466 struct ieee80211_security sec = {
6467 .flags = SEC_AUTH_MODE,
6468 };
6469 int ret = 0;
6470
6471 if (value & IW_AUTH_ALG_SHARED_KEY) {
6472 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6473 ieee->open_wep = 0;
6474 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6475 sec.auth_mode = WLAN_AUTH_OPEN;
6476 ieee->open_wep = 1;
6477 } else if (value & IW_AUTH_ALG_LEAP) {
6478 sec.auth_mode = WLAN_AUTH_LEAP;
6479 ieee->open_wep = 1;
6480 } else
6481 return -EINVAL;
6482
6483 if (ieee->set_security)
6484 ieee->set_security(ieee->dev, &sec);
6485 else
6486 ret = -EOPNOTSUPP;
6487
6488 return ret;
6489}
6490
6491static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6492 int wpa_ie_len)
6493{
6494 /* make sure WPA is enabled */
6495 ipw_wpa_enable(priv, 1);
6496}
6497
6498static int ipw_set_rsn_capa(struct ipw_priv *priv,
6499 char *capabilities, int length)
6500{
6501 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6502
6503 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6504 capabilities);
6505}
6506
6507/*
6508 * WE-18 support
6509 */
6510
6511/* SIOCSIWGENIE */
6512static int ipw_wx_set_genie(struct net_device *dev,
6513 struct iw_request_info *info,
6514 union iwreq_data *wrqu, char *extra)
6515{
6516 struct ipw_priv *priv = ieee80211_priv(dev);
6517 struct ieee80211_device *ieee = priv->ieee;
6518 u8 *buf;
6519 int err = 0;
6520
6521 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6522 (wrqu->data.length && extra == NULL))
6523 return -EINVAL;
6524
6525 if (wrqu->data.length) {
6526 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6527 if (buf == NULL) {
6528 err = -ENOMEM;
6529 goto out;
6530 }
6531
6532 memcpy(buf, extra, wrqu->data.length);
6533 kfree(ieee->wpa_ie);
6534 ieee->wpa_ie = buf;
6535 ieee->wpa_ie_len = wrqu->data.length;
6536 } else {
6537 kfree(ieee->wpa_ie);
6538 ieee->wpa_ie = NULL;
6539 ieee->wpa_ie_len = 0;
6540 }
6541
6542 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6543 out:
6544 return err;
6545}
6546
6547/* SIOCGIWGENIE */
6548static int ipw_wx_get_genie(struct net_device *dev,
6549 struct iw_request_info *info,
6550 union iwreq_data *wrqu, char *extra)
6551{
6552 struct ipw_priv *priv = ieee80211_priv(dev);
6553 struct ieee80211_device *ieee = priv->ieee;
6554 int err = 0;
6555
6556 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6557 wrqu->data.length = 0;
6558 goto out;
6559 }
6560
6561 if (wrqu->data.length < ieee->wpa_ie_len) {
6562 err = -E2BIG;
6563 goto out;
6564 }
6565
6566 wrqu->data.length = ieee->wpa_ie_len;
6567 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6568
6569 out:
6570 return err;
6571}
6572
6573static int wext_cipher2level(int cipher)
6574{
6575 switch (cipher) {
6576 case IW_AUTH_CIPHER_NONE:
6577 return SEC_LEVEL_0;
6578 case IW_AUTH_CIPHER_WEP40:
6579 case IW_AUTH_CIPHER_WEP104:
6580 return SEC_LEVEL_1;
6581 case IW_AUTH_CIPHER_TKIP:
6582 return SEC_LEVEL_2;
6583 case IW_AUTH_CIPHER_CCMP:
6584 return SEC_LEVEL_3;
6585 default:
6586 return -1;
6587 }
6588}
6589
6590/* SIOCSIWAUTH */
6591static int ipw_wx_set_auth(struct net_device *dev,
6592 struct iw_request_info *info,
6593 union iwreq_data *wrqu, char *extra)
6594{
6595 struct ipw_priv *priv = ieee80211_priv(dev);
6596 struct ieee80211_device *ieee = priv->ieee;
6597 struct iw_param *param = &wrqu->param;
6598 struct ieee80211_crypt_data *crypt;
6599 unsigned long flags;
6600 int ret = 0;
6601
6602 switch (param->flags & IW_AUTH_INDEX) {
6603 case IW_AUTH_WPA_VERSION:
6604 break;
6605 case IW_AUTH_CIPHER_PAIRWISE:
6606 ipw_set_hw_decrypt_unicast(priv,
6607 wext_cipher2level(param->value));
6608 break;
6609 case IW_AUTH_CIPHER_GROUP:
6610 ipw_set_hw_decrypt_multicast(priv,
6611 wext_cipher2level(param->value));
6612 break;
6613 case IW_AUTH_KEY_MGMT:
6614 /*
6615 * ipw2200 does not use these parameters
6616 */
6617 break;
6618
6619 case IW_AUTH_TKIP_COUNTERMEASURES:
6620 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6621 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6622 break;
6623
6624 flags = crypt->ops->get_flags(crypt->priv);
6625
6626 if (param->value)
6627 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6628 else
6629 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6630
6631 crypt->ops->set_flags(flags, crypt->priv);
6632
6633 break;
6634
6635 case IW_AUTH_DROP_UNENCRYPTED:{
6636 /* HACK:
6637 *
6638 * wpa_supplicant calls set_wpa_enabled when the driver
6639 * is loaded and unloaded, regardless of if WPA is being
6640 * used. No other calls are made which can be used to
6641 * determine if encryption will be used or not prior to
6642 * association being expected. If encryption is not being
6643 * used, drop_unencrypted is set to false, else true -- we
6644 * can use this to determine if the CAP_PRIVACY_ON bit should
6645 * be set.
6646 */
6647 struct ieee80211_security sec = {
6648 .flags = SEC_ENABLED,
6649 .enabled = param->value,
6650 };
6651 priv->ieee->drop_unencrypted = param->value;
6652 /* We only change SEC_LEVEL for open mode. Others
6653 * are set by ipw_wpa_set_encryption.
6654 */
6655 if (!param->value) {
6656 sec.flags |= SEC_LEVEL;
6657 sec.level = SEC_LEVEL_0;
6658 } else {
6659 sec.flags |= SEC_LEVEL;
6660 sec.level = SEC_LEVEL_1;
6661 }
6662 if (priv->ieee->set_security)
6663 priv->ieee->set_security(priv->ieee->dev, &sec);
6664 break;
6665 }
6666
6667 case IW_AUTH_80211_AUTH_ALG:
6668 ret = ipw_wpa_set_auth_algs(priv, param->value);
6669 break;
6670
6671 case IW_AUTH_WPA_ENABLED:
6672 ret = ipw_wpa_enable(priv, param->value);
6673 ipw_disassociate(priv);
6674 break;
6675
6676 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6677 ieee->ieee802_1x = param->value;
6678 break;
6679
6680 case IW_AUTH_PRIVACY_INVOKED:
6681 ieee->privacy_invoked = param->value;
6682 break;
6683
6684 default:
6685 return -EOPNOTSUPP;
6686 }
6687 return ret;
6688}
6689
6690/* SIOCGIWAUTH */
6691static int ipw_wx_get_auth(struct net_device *dev,
6692 struct iw_request_info *info,
6693 union iwreq_data *wrqu, char *extra)
6694{
6695 struct ipw_priv *priv = ieee80211_priv(dev);
6696 struct ieee80211_device *ieee = priv->ieee;
6697 struct ieee80211_crypt_data *crypt;
6698 struct iw_param *param = &wrqu->param;
6699 int ret = 0;
6700
6701 switch (param->flags & IW_AUTH_INDEX) {
6702 case IW_AUTH_WPA_VERSION:
6703 case IW_AUTH_CIPHER_PAIRWISE:
6704 case IW_AUTH_CIPHER_GROUP:
6705 case IW_AUTH_KEY_MGMT:
6706 /*
6707 * wpa_supplicant will control these internally
6708 */
6709 ret = -EOPNOTSUPP;
6710 break;
6711
6712 case IW_AUTH_TKIP_COUNTERMEASURES:
6713 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6714 if (!crypt || !crypt->ops->get_flags)
6715 break;
6716
6717 param->value = (crypt->ops->get_flags(crypt->priv) &
6718 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6719
6720 break;
6721
6722 case IW_AUTH_DROP_UNENCRYPTED:
6723 param->value = ieee->drop_unencrypted;
6724 break;
6725
6726 case IW_AUTH_80211_AUTH_ALG:
6727 param->value = ieee->sec.auth_mode;
6728 break;
6729
6730 case IW_AUTH_WPA_ENABLED:
6731 param->value = ieee->wpa_enabled;
6732 break;
6733
6734 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6735 param->value = ieee->ieee802_1x;
6736 break;
6737
6738 case IW_AUTH_ROAMING_CONTROL:
6739 case IW_AUTH_PRIVACY_INVOKED:
6740 param->value = ieee->privacy_invoked;
6741 break;
6742
6743 default:
6744 return -EOPNOTSUPP;
6745 }
6746 return 0;
6747}
6748
6749/* SIOCSIWENCODEEXT */
6750static int ipw_wx_set_encodeext(struct net_device *dev,
6751 struct iw_request_info *info,
6752 union iwreq_data *wrqu, char *extra)
6753{
6754 struct ipw_priv *priv = ieee80211_priv(dev);
6755 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6756
6757 if (hwcrypto) {
6758 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6759 /* IPW HW can't build TKIP MIC,
6760 host decryption still needed */
6761 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6762 priv->ieee->host_mc_decrypt = 1;
6763 else {
6764 priv->ieee->host_encrypt = 0;
6765 priv->ieee->host_encrypt_msdu = 1;
6766 priv->ieee->host_decrypt = 1;
6767 }
6768 } else {
6769 priv->ieee->host_encrypt = 0;
6770 priv->ieee->host_encrypt_msdu = 0;
6771 priv->ieee->host_decrypt = 0;
6772 priv->ieee->host_mc_decrypt = 0;
6773 }
6774 }
6775
6776 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6777}
6778
6779/* SIOCGIWENCODEEXT */
6780static int ipw_wx_get_encodeext(struct net_device *dev,
6781 struct iw_request_info *info,
6782 union iwreq_data *wrqu, char *extra)
6783{
6784 struct ipw_priv *priv = ieee80211_priv(dev);
6785 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6786}
6787
6788/* SIOCSIWMLME */
6789static int ipw_wx_set_mlme(struct net_device *dev,
6790 struct iw_request_info *info,
6791 union iwreq_data *wrqu, char *extra)
6792{
6793 struct ipw_priv *priv = ieee80211_priv(dev);
6794 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6795 __le16 reason;
6796
6797 reason = cpu_to_le16(mlme->reason_code);
6798
6799 switch (mlme->cmd) {
6800 case IW_MLME_DEAUTH:
6801 /* silently ignore */
6802 break;
6803
6804 case IW_MLME_DISASSOC:
6805 ipw_disassociate(priv);
6806 break;
6807
6808 default:
6809 return -EOPNOTSUPP;
6810 }
6811 return 0;
6812}
6813
6814#ifdef CONFIG_IPW2200_QOS
6815
6816/* QoS */
6817/*
6818* get the modulation type of the current network or
6819* the card current mode
6820*/
6821static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6822{
6823 u8 mode = 0;
6824
6825 if (priv->status & STATUS_ASSOCIATED) {
6826 unsigned long flags;
6827
6828 spin_lock_irqsave(&priv->ieee->lock, flags);
6829 mode = priv->assoc_network->mode;
6830 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6831 } else {
6832 mode = priv->ieee->mode;
6833 }
6834 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6835 return mode;
6836}
6837
6838/*
6839* Handle management frame beacon and probe response
6840*/
6841static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6842 int active_network,
6843 struct ieee80211_network *network)
6844{
6845 u32 size = sizeof(struct ieee80211_qos_parameters);
6846
6847 if (network->capability & WLAN_CAPABILITY_IBSS)
6848 network->qos_data.active = network->qos_data.supported;
6849
6850 if (network->flags & NETWORK_HAS_QOS_MASK) {
6851 if (active_network &&
6852 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6853 network->qos_data.active = network->qos_data.supported;
6854
6855 if ((network->qos_data.active == 1) && (active_network == 1) &&
6856 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6857 (network->qos_data.old_param_count !=
6858 network->qos_data.param_count)) {
6859 network->qos_data.old_param_count =
6860 network->qos_data.param_count;
6861 schedule_work(&priv->qos_activate);
6862 IPW_DEBUG_QOS("QoS parameters change call "
6863 "qos_activate\n");
6864 }
6865 } else {
6866 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6867 memcpy(&network->qos_data.parameters,
6868 &def_parameters_CCK, size);
6869 else
6870 memcpy(&network->qos_data.parameters,
6871 &def_parameters_OFDM, size);
6872
6873 if ((network->qos_data.active == 1) && (active_network == 1)) {
6874 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6875 schedule_work(&priv->qos_activate);
6876 }
6877
6878 network->qos_data.active = 0;
6879 network->qos_data.supported = 0;
6880 }
6881 if ((priv->status & STATUS_ASSOCIATED) &&
6882 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6883 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6884 if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6885 !(network->flags & NETWORK_EMPTY_ESSID))
6886 if ((network->ssid_len ==
6887 priv->assoc_network->ssid_len) &&
6888 !memcmp(network->ssid,
6889 priv->assoc_network->ssid,
6890 network->ssid_len)) {
6891 queue_work(priv->workqueue,
6892 &priv->merge_networks);
6893 }
6894 }
6895
6896 return 0;
6897}
6898
6899/*
6900* This function set up the firmware to support QoS. It sends
6901* IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6902*/
6903static int ipw_qos_activate(struct ipw_priv *priv,
6904 struct ieee80211_qos_data *qos_network_data)
6905{
6906 int err;
6907 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6908 struct ieee80211_qos_parameters *active_one = NULL;
6909 u32 size = sizeof(struct ieee80211_qos_parameters);
6910 u32 burst_duration;
6911 int i;
6912 u8 type;
6913
6914 type = ipw_qos_current_mode(priv);
6915
6916 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6917 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6918 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6919 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6920
6921 if (qos_network_data == NULL) {
6922 if (type == IEEE_B) {
6923 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6924 active_one = &def_parameters_CCK;
6925 } else
6926 active_one = &def_parameters_OFDM;
6927
6928 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6929 burst_duration = ipw_qos_get_burst_duration(priv);
6930 for (i = 0; i < QOS_QUEUE_NUM; i++)
6931 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6932 cpu_to_le16(burst_duration);
6933 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6934 if (type == IEEE_B) {
6935 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6936 type);
6937 if (priv->qos_data.qos_enable == 0)
6938 active_one = &def_parameters_CCK;
6939 else
6940 active_one = priv->qos_data.def_qos_parm_CCK;
6941 } else {
6942 if (priv->qos_data.qos_enable == 0)
6943 active_one = &def_parameters_OFDM;
6944 else
6945 active_one = priv->qos_data.def_qos_parm_OFDM;
6946 }
6947 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6948 } else {
6949 unsigned long flags;
6950 int active;
6951
6952 spin_lock_irqsave(&priv->ieee->lock, flags);
6953 active_one = &(qos_network_data->parameters);
6954 qos_network_data->old_param_count =
6955 qos_network_data->param_count;
6956 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6957 active = qos_network_data->supported;
6958 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6959
6960 if (active == 0) {
6961 burst_duration = ipw_qos_get_burst_duration(priv);
6962 for (i = 0; i < QOS_QUEUE_NUM; i++)
6963 qos_parameters[QOS_PARAM_SET_ACTIVE].
6964 tx_op_limit[i] = cpu_to_le16(burst_duration);
6965 }
6966 }
6967
6968 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6969 err = ipw_send_qos_params_command(priv,
6970 (struct ieee80211_qos_parameters *)
6971 &(qos_parameters[0]));
6972 if (err)
6973 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6974
6975 return err;
6976}
6977
6978/*
6979* send IPW_CMD_WME_INFO to the firmware
6980*/
6981static int ipw_qos_set_info_element(struct ipw_priv *priv)
6982{
6983 int ret = 0;
6984 struct ieee80211_qos_information_element qos_info;
6985
6986 if (priv == NULL)
6987 return -1;
6988
6989 qos_info.elementID = QOS_ELEMENT_ID;
6990 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6991
6992 qos_info.version = QOS_VERSION_1;
6993 qos_info.ac_info = 0;
6994
6995 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6996 qos_info.qui_type = QOS_OUI_TYPE;
6997 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6998
6999 ret = ipw_send_qos_info_command(priv, &qos_info);
7000 if (ret != 0) {
7001 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7002 }
7003 return ret;
7004}
7005
7006/*
7007* Set the QoS parameter with the association request structure
7008*/
7009static int ipw_qos_association(struct ipw_priv *priv,
7010 struct ieee80211_network *network)
7011{
7012 int err = 0;
7013 struct ieee80211_qos_data *qos_data = NULL;
7014 struct ieee80211_qos_data ibss_data = {
7015 .supported = 1,
7016 .active = 1,
7017 };
7018
7019 switch (priv->ieee->iw_mode) {
7020 case IW_MODE_ADHOC:
7021 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7022
7023 qos_data = &ibss_data;
7024 break;
7025
7026 case IW_MODE_INFRA:
7027 qos_data = &network->qos_data;
7028 break;
7029
7030 default:
7031 BUG();
7032 break;
7033 }
7034
7035 err = ipw_qos_activate(priv, qos_data);
7036 if (err) {
7037 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7038 return err;
7039 }
7040
7041 if (priv->qos_data.qos_enable && qos_data->supported) {
7042 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7043 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7044 return ipw_qos_set_info_element(priv);
7045 }
7046
7047 return 0;
7048}
7049
7050/*
7051* handling the beaconing responses. if we get different QoS setting
7052* off the network from the associated setting, adjust the QoS
7053* setting
7054*/
7055static int ipw_qos_association_resp(struct ipw_priv *priv,
7056 struct ieee80211_network *network)
7057{
7058 int ret = 0;
7059 unsigned long flags;
7060 u32 size = sizeof(struct ieee80211_qos_parameters);
7061 int set_qos_param = 0;
7062
7063 if ((priv == NULL) || (network == NULL) ||
7064 (priv->assoc_network == NULL))
7065 return ret;
7066
7067 if (!(priv->status & STATUS_ASSOCIATED))
7068 return ret;
7069
7070 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7071 return ret;
7072
7073 spin_lock_irqsave(&priv->ieee->lock, flags);
7074 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7075 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7076 sizeof(struct ieee80211_qos_data));
7077 priv->assoc_network->qos_data.active = 1;
7078 if ((network->qos_data.old_param_count !=
7079 network->qos_data.param_count)) {
7080 set_qos_param = 1;
7081 network->qos_data.old_param_count =
7082 network->qos_data.param_count;
7083 }
7084
7085 } else {
7086 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7087 memcpy(&priv->assoc_network->qos_data.parameters,
7088 &def_parameters_CCK, size);
7089 else
7090 memcpy(&priv->assoc_network->qos_data.parameters,
7091 &def_parameters_OFDM, size);
7092 priv->assoc_network->qos_data.active = 0;
7093 priv->assoc_network->qos_data.supported = 0;
7094 set_qos_param = 1;
7095 }
7096
7097 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7098
7099 if (set_qos_param == 1)
7100 schedule_work(&priv->qos_activate);
7101
7102 return ret;
7103}
7104
7105static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7106{
7107 u32 ret = 0;
7108
7109 if ((priv == NULL))
7110 return 0;
7111
7112 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7113 ret = priv->qos_data.burst_duration_CCK;
7114 else
7115 ret = priv->qos_data.burst_duration_OFDM;
7116
7117 return ret;
7118}
7119
7120/*
7121* Initialize the setting of QoS global
7122*/
7123static void ipw_qos_init(struct ipw_priv *priv, int enable,
7124 int burst_enable, u32 burst_duration_CCK,
7125 u32 burst_duration_OFDM)
7126{
7127 priv->qos_data.qos_enable = enable;
7128
7129 if (priv->qos_data.qos_enable) {
7130 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7131 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7132 IPW_DEBUG_QOS("QoS is enabled\n");
7133 } else {
7134 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7135 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7136 IPW_DEBUG_QOS("QoS is not enabled\n");
7137 }
7138
7139 priv->qos_data.burst_enable = burst_enable;
7140
7141 if (burst_enable) {
7142 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7143 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7144 } else {
7145 priv->qos_data.burst_duration_CCK = 0;
7146 priv->qos_data.burst_duration_OFDM = 0;
7147 }
7148}
7149
7150/*
7151* map the packet priority to the right TX Queue
7152*/
7153static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7154{
7155 if (priority > 7 || !priv->qos_data.qos_enable)
7156 priority = 0;
7157
7158 return from_priority_to_tx_queue[priority] - 1;
7159}
7160
7161static int ipw_is_qos_active(struct net_device *dev,
7162 struct sk_buff *skb)
7163{
7164 struct ipw_priv *priv = ieee80211_priv(dev);
7165 struct ieee80211_qos_data *qos_data = NULL;
7166 int active, supported;
7167 u8 *daddr = skb->data + ETH_ALEN;
7168 int unicast = !is_multicast_ether_addr(daddr);
7169
7170 if (!(priv->status & STATUS_ASSOCIATED))
7171 return 0;
7172
7173 qos_data = &priv->assoc_network->qos_data;
7174
7175 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7176 if (unicast == 0)
7177 qos_data->active = 0;
7178 else
7179 qos_data->active = qos_data->supported;
7180 }
7181 active = qos_data->active;
7182 supported = qos_data->supported;
7183 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7184 "unicast %d\n",
7185 priv->qos_data.qos_enable, active, supported, unicast);
7186 if (active && priv->qos_data.qos_enable)
7187 return 1;
7188
7189 return 0;
7190
7191}
7192/*
7193* add QoS parameter to the TX command
7194*/
7195static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7196 u16 priority,
7197 struct tfd_data *tfd)
7198{
7199 int tx_queue_id = 0;
7200
7201
7202 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7203 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7204
7205 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7206 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7207 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7208 }
7209 return 0;
7210}
7211
7212/*
7213* background support to run QoS activate functionality
7214*/
7215static void ipw_bg_qos_activate(struct work_struct *work)
7216{
7217 struct ipw_priv *priv =
7218 container_of(work, struct ipw_priv, qos_activate);
7219
7220 if (priv == NULL)
7221 return;
7222
7223 mutex_lock(&priv->mutex);
7224
7225 if (priv->status & STATUS_ASSOCIATED)
7226 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7227
7228 mutex_unlock(&priv->mutex);
7229}
7230
7231static int ipw_handle_probe_response(struct net_device *dev,
7232 struct ieee80211_probe_response *resp,
7233 struct ieee80211_network *network)
7234{
7235 struct ipw_priv *priv = ieee80211_priv(dev);
7236 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7237 (network == priv->assoc_network));
7238
7239 ipw_qos_handle_probe_response(priv, active_network, network);
7240
7241 return 0;
7242}
7243
7244static int ipw_handle_beacon(struct net_device *dev,
7245 struct ieee80211_beacon *resp,
7246 struct ieee80211_network *network)
7247{
7248 struct ipw_priv *priv = ieee80211_priv(dev);
7249 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7250 (network == priv->assoc_network));
7251
7252 ipw_qos_handle_probe_response(priv, active_network, network);
7253
7254 return 0;
7255}
7256
7257static int ipw_handle_assoc_response(struct net_device *dev,
7258 struct ieee80211_assoc_response *resp,
7259 struct ieee80211_network *network)
7260{
7261 struct ipw_priv *priv = ieee80211_priv(dev);
7262 ipw_qos_association_resp(priv, network);
7263 return 0;
7264}
7265
7266static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7267 *qos_param)
7268{
7269 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7270 sizeof(*qos_param) * 3, qos_param);
7271}
7272
7273static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7274 *qos_param)
7275{
7276 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7277 qos_param);
7278}
7279
7280#endif /* CONFIG_IPW2200_QOS */
7281
7282static int ipw_associate_network(struct ipw_priv *priv,
7283 struct ieee80211_network *network,
7284 struct ipw_supported_rates *rates, int roaming)
7285{
7286 int err;
7287
7288 if (priv->config & CFG_FIXED_RATE)
7289 ipw_set_fixed_rate(priv, network->mode);
7290
7291 if (!(priv->config & CFG_STATIC_ESSID)) {
7292 priv->essid_len = min(network->ssid_len,
7293 (u8) IW_ESSID_MAX_SIZE);
7294 memcpy(priv->essid, network->ssid, priv->essid_len);
7295 }
7296
7297 network->last_associate = jiffies;
7298
7299 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7300 priv->assoc_request.channel = network->channel;
7301 priv->assoc_request.auth_key = 0;
7302
7303 if ((priv->capability & CAP_PRIVACY_ON) &&
7304 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7305 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7306 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7307
7308 if (priv->ieee->sec.level == SEC_LEVEL_1)
7309 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7310
7311 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7312 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7313 priv->assoc_request.auth_type = AUTH_LEAP;
7314 else
7315 priv->assoc_request.auth_type = AUTH_OPEN;
7316
7317 if (priv->ieee->wpa_ie_len) {
7318 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7319 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7320 priv->ieee->wpa_ie_len);
7321 }
7322
7323 /*
7324 * It is valid for our ieee device to support multiple modes, but
7325 * when it comes to associating to a given network we have to choose
7326 * just one mode.
7327 */
7328 if (network->mode & priv->ieee->mode & IEEE_A)
7329 priv->assoc_request.ieee_mode = IPW_A_MODE;
7330 else if (network->mode & priv->ieee->mode & IEEE_G)
7331 priv->assoc_request.ieee_mode = IPW_G_MODE;
7332 else if (network->mode & priv->ieee->mode & IEEE_B)
7333 priv->assoc_request.ieee_mode = IPW_B_MODE;
7334
7335 priv->assoc_request.capability = cpu_to_le16(network->capability);
7336 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7337 && !(priv->config & CFG_PREAMBLE_LONG)) {
7338 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7339 } else {
7340 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7341
7342 /* Clear the short preamble if we won't be supporting it */
7343 priv->assoc_request.capability &=
7344 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7345 }
7346
7347 /* Clear capability bits that aren't used in Ad Hoc */
7348 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7349 priv->assoc_request.capability &=
7350 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7351
7352 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7353 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7354 roaming ? "Rea" : "A",
7355 escape_essid(priv->essid, priv->essid_len),
7356 network->channel,
7357 ipw_modes[priv->assoc_request.ieee_mode],
7358 rates->num_rates,
7359 (priv->assoc_request.preamble_length ==
7360 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7361 network->capability &
7362 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7363 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7364 priv->capability & CAP_PRIVACY_ON ?
7365 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7366 "(open)") : "",
7367 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7368 priv->capability & CAP_PRIVACY_ON ?
7369 '1' + priv->ieee->sec.active_key : '.',
7370 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7371
7372 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7373 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7374 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7375 priv->assoc_request.assoc_type = HC_IBSS_START;
7376 priv->assoc_request.assoc_tsf_msw = 0;
7377 priv->assoc_request.assoc_tsf_lsw = 0;
7378 } else {
7379 if (unlikely(roaming))
7380 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7381 else
7382 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7383 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7384 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7385 }
7386
7387 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7388
7389 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7390 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7391 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7392 } else {
7393 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7394 priv->assoc_request.atim_window = 0;
7395 }
7396
7397 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7398
7399 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7400 if (err) {
7401 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7402 return err;
7403 }
7404
7405 rates->ieee_mode = priv->assoc_request.ieee_mode;
7406 rates->purpose = IPW_RATE_CONNECT;
7407 ipw_send_supported_rates(priv, rates);
7408
7409 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7410 priv->sys_config.dot11g_auto_detection = 1;
7411 else
7412 priv->sys_config.dot11g_auto_detection = 0;
7413
7414 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7415 priv->sys_config.answer_broadcast_ssid_probe = 1;
7416 else
7417 priv->sys_config.answer_broadcast_ssid_probe = 0;
7418
7419 err = ipw_send_system_config(priv);
7420 if (err) {
7421 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7422 return err;
7423 }
7424
7425 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7426 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7427 if (err) {
7428 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7429 return err;
7430 }
7431
7432 /*
7433 * If preemption is enabled, it is possible for the association
7434 * to complete before we return from ipw_send_associate. Therefore
7435 * we have to be sure and update our priviate data first.
7436 */
7437 priv->channel = network->channel;
7438 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7439 priv->status |= STATUS_ASSOCIATING;
7440 priv->status &= ~STATUS_SECURITY_UPDATED;
7441
7442 priv->assoc_network = network;
7443
7444#ifdef CONFIG_IPW2200_QOS
7445 ipw_qos_association(priv, network);
7446#endif
7447
7448 err = ipw_send_associate(priv, &priv->assoc_request);
7449 if (err) {
7450 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7451 return err;
7452 }
7453
7454 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7455 escape_essid(priv->essid, priv->essid_len),
7456 priv->bssid);
7457
7458 return 0;
7459}
7460
7461static void ipw_roam(void *data)
7462{
7463 struct ipw_priv *priv = data;
7464 struct ieee80211_network *network = NULL;
7465 struct ipw_network_match match = {
7466 .network = priv->assoc_network
7467 };
7468
7469 /* The roaming process is as follows:
7470 *
7471 * 1. Missed beacon threshold triggers the roaming process by
7472 * setting the status ROAM bit and requesting a scan.
7473 * 2. When the scan completes, it schedules the ROAM work
7474 * 3. The ROAM work looks at all of the known networks for one that
7475 * is a better network than the currently associated. If none
7476 * found, the ROAM process is over (ROAM bit cleared)
7477 * 4. If a better network is found, a disassociation request is
7478 * sent.
7479 * 5. When the disassociation completes, the roam work is again
7480 * scheduled. The second time through, the driver is no longer
7481 * associated, and the newly selected network is sent an
7482 * association request.
7483 * 6. At this point ,the roaming process is complete and the ROAM
7484 * status bit is cleared.
7485 */
7486
7487 /* If we are no longer associated, and the roaming bit is no longer
7488 * set, then we are not actively roaming, so just return */
7489 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7490 return;
7491
7492 if (priv->status & STATUS_ASSOCIATED) {
7493 /* First pass through ROAM process -- look for a better
7494 * network */
7495 unsigned long flags;
7496 u8 rssi = priv->assoc_network->stats.rssi;
7497 priv->assoc_network->stats.rssi = -128;
7498 spin_lock_irqsave(&priv->ieee->lock, flags);
7499 list_for_each_entry(network, &priv->ieee->network_list, list) {
7500 if (network != priv->assoc_network)
7501 ipw_best_network(priv, &match, network, 1);
7502 }
7503 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7504 priv->assoc_network->stats.rssi = rssi;
7505
7506 if (match.network == priv->assoc_network) {
7507 IPW_DEBUG_ASSOC("No better APs in this network to "
7508 "roam to.\n");
7509 priv->status &= ~STATUS_ROAMING;
7510 ipw_debug_config(priv);
7511 return;
7512 }
7513
7514 ipw_send_disassociate(priv, 1);
7515 priv->assoc_network = match.network;
7516
7517 return;
7518 }
7519
7520 /* Second pass through ROAM process -- request association */
7521 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7522 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7523 priv->status &= ~STATUS_ROAMING;
7524}
7525
7526static void ipw_bg_roam(struct work_struct *work)
7527{
7528 struct ipw_priv *priv =
7529 container_of(work, struct ipw_priv, roam);
7530 mutex_lock(&priv->mutex);
7531 ipw_roam(priv);
7532 mutex_unlock(&priv->mutex);
7533}
7534
7535static int ipw_associate(void *data)
7536{
7537 struct ipw_priv *priv = data;
7538
7539 struct ieee80211_network *network = NULL;
7540 struct ipw_network_match match = {
7541 .network = NULL
7542 };
7543 struct ipw_supported_rates *rates;
7544 struct list_head *element;
7545 unsigned long flags;
7546
7547 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7548 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7549 return 0;
7550 }
7551
7552 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7553 IPW_DEBUG_ASSOC("Not attempting association (already in "
7554 "progress)\n");
7555 return 0;
7556 }
7557
7558 if (priv->status & STATUS_DISASSOCIATING) {
7559 IPW_DEBUG_ASSOC("Not attempting association (in "
7560 "disassociating)\n ");
7561 queue_work(priv->workqueue, &priv->associate);
7562 return 0;
7563 }
7564
7565 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7566 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7567 "initialized)\n");
7568 return 0;
7569 }
7570
7571 if (!(priv->config & CFG_ASSOCIATE) &&
7572 !(priv->config & (CFG_STATIC_ESSID |
7573 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7574 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7575 return 0;
7576 }
7577
7578 /* Protect our use of the network_list */
7579 spin_lock_irqsave(&priv->ieee->lock, flags);
7580 list_for_each_entry(network, &priv->ieee->network_list, list)
7581 ipw_best_network(priv, &match, network, 0);
7582
7583 network = match.network;
7584 rates = &match.rates;
7585
7586 if (network == NULL &&
7587 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7588 priv->config & CFG_ADHOC_CREATE &&
7589 priv->config & CFG_STATIC_ESSID &&
7590 priv->config & CFG_STATIC_CHANNEL) {
7591 /* Use oldest network if the free list is empty */
7592 if (list_empty(&priv->ieee->network_free_list)) {
7593 struct ieee80211_network *oldest = NULL;
7594 struct ieee80211_network *target;
7595
7596 list_for_each_entry(target, &priv->ieee->network_list, list) {
7597 if ((oldest == NULL) ||
7598 (target->last_scanned < oldest->last_scanned))
7599 oldest = target;
7600 }
7601
7602 /* If there are no more slots, expire the oldest */
7603 list_del(&oldest->list);
7604 target = oldest;
7605 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7606 "network list.\n",
7607 escape_essid(target->ssid,
7608 target->ssid_len),
7609 target->bssid);
7610 list_add_tail(&target->list,
7611 &priv->ieee->network_free_list);
7612 }
7613
7614 element = priv->ieee->network_free_list.next;
7615 network = list_entry(element, struct ieee80211_network, list);
7616 ipw_adhoc_create(priv, network);
7617 rates = &priv->rates;
7618 list_del(element);
7619 list_add_tail(&network->list, &priv->ieee->network_list);
7620 }
7621 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7622
7623 /* If we reached the end of the list, then we don't have any valid
7624 * matching APs */
7625 if (!network) {
7626 ipw_debug_config(priv);
7627
7628 if (!(priv->status & STATUS_SCANNING)) {
7629 if (!(priv->config & CFG_SPEED_SCAN))
7630 queue_delayed_work(priv->workqueue,
7631 &priv->request_scan,
7632 SCAN_INTERVAL);
7633 else
7634 queue_delayed_work(priv->workqueue,
7635 &priv->request_scan, 0);
7636 }
7637
7638 return 0;
7639 }
7640
7641 ipw_associate_network(priv, network, rates, 0);
7642
7643 return 1;
7644}
7645
7646static void ipw_bg_associate(struct work_struct *work)
7647{
7648 struct ipw_priv *priv =
7649 container_of(work, struct ipw_priv, associate);
7650 mutex_lock(&priv->mutex);
7651 ipw_associate(priv);
7652 mutex_unlock(&priv->mutex);
7653}
7654
7655static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7656 struct sk_buff *skb)
7657{
7658 struct ieee80211_hdr *hdr;
7659 u16 fc;
7660
7661 hdr = (struct ieee80211_hdr *)skb->data;
7662 fc = le16_to_cpu(hdr->frame_ctl);
7663 if (!(fc & IEEE80211_FCTL_PROTECTED))
7664 return;
7665
7666 fc &= ~IEEE80211_FCTL_PROTECTED;
7667 hdr->frame_ctl = cpu_to_le16(fc);
7668 switch (priv->ieee->sec.level) {
7669 case SEC_LEVEL_3:
7670 /* Remove CCMP HDR */
7671 memmove(skb->data + IEEE80211_3ADDR_LEN,
7672 skb->data + IEEE80211_3ADDR_LEN + 8,
7673 skb->len - IEEE80211_3ADDR_LEN - 8);
7674 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7675 break;
7676 case SEC_LEVEL_2:
7677 break;
7678 case SEC_LEVEL_1:
7679 /* Remove IV */
7680 memmove(skb->data + IEEE80211_3ADDR_LEN,
7681 skb->data + IEEE80211_3ADDR_LEN + 4,
7682 skb->len - IEEE80211_3ADDR_LEN - 4);
7683 skb_trim(skb, skb->len - 8); /* IV + ICV */
7684 break;
7685 case SEC_LEVEL_0:
7686 break;
7687 default:
7688 printk(KERN_ERR "Unknow security level %d\n",
7689 priv->ieee->sec.level);
7690 break;
7691 }
7692}
7693
7694static void ipw_handle_data_packet(struct ipw_priv *priv,
7695 struct ipw_rx_mem_buffer *rxb,
7696 struct ieee80211_rx_stats *stats)
7697{
7698 struct ieee80211_hdr_4addr *hdr;
7699 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7700
7701 /* We received data from the HW, so stop the watchdog */
7702 priv->net_dev->trans_start = jiffies;
7703
7704 /* We only process data packets if the
7705 * interface is open */
7706 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7707 skb_tailroom(rxb->skb))) {
7708 priv->ieee->stats.rx_errors++;
7709 priv->wstats.discard.misc++;
7710 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7711 return;
7712 } else if (unlikely(!netif_running(priv->net_dev))) {
7713 priv->ieee->stats.rx_dropped++;
7714 priv->wstats.discard.misc++;
7715 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7716 return;
7717 }
7718
7719 /* Advance skb->data to the start of the actual payload */
7720 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7721
7722 /* Set the size of the skb to the size of the frame */
7723 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7724
7725 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7726
7727 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7728 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7729 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7730 (is_multicast_ether_addr(hdr->addr1) ?
7731 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7732 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7733
7734 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7735 priv->ieee->stats.rx_errors++;
7736 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7737 rxb->skb = NULL;
7738 __ipw_led_activity_on(priv);
7739 }
7740}
7741
7742#ifdef CONFIG_IPW2200_RADIOTAP
7743static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7744 struct ipw_rx_mem_buffer *rxb,
7745 struct ieee80211_rx_stats *stats)
7746{
7747 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7748 struct ipw_rx_frame *frame = &pkt->u.frame;
7749
7750 /* initial pull of some data */
7751 u16 received_channel = frame->received_channel;
7752 u8 antennaAndPhy = frame->antennaAndPhy;
7753 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7754 u16 pktrate = frame->rate;
7755
7756 /* Magic struct that slots into the radiotap header -- no reason
7757 * to build this manually element by element, we can write it much
7758 * more efficiently than we can parse it. ORDER MATTERS HERE */
7759 struct ipw_rt_hdr *ipw_rt;
7760
7761 short len = le16_to_cpu(pkt->u.frame.length);
7762
7763 /* We received data from the HW, so stop the watchdog */
7764 priv->net_dev->trans_start = jiffies;
7765
7766 /* We only process data packets if the
7767 * interface is open */
7768 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7769 skb_tailroom(rxb->skb))) {
7770 priv->ieee->stats.rx_errors++;
7771 priv->wstats.discard.misc++;
7772 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7773 return;
7774 } else if (unlikely(!netif_running(priv->net_dev))) {
7775 priv->ieee->stats.rx_dropped++;
7776 priv->wstats.discard.misc++;
7777 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7778 return;
7779 }
7780
7781 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7782 * that now */
7783 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7784 /* FIXME: Should alloc bigger skb instead */
7785 priv->ieee->stats.rx_dropped++;
7786 priv->wstats.discard.misc++;
7787 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7788 return;
7789 }
7790
7791 /* copy the frame itself */
7792 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7793 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7794
7795 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7796 * part of our real header, saves a little time.
7797 *
7798 * No longer necessary since we fill in all our data. Purge before merging
7799 * patch officially.
7800 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7801 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7802 */
7803
7804 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7805
7806 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7807 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7808 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7809
7810 /* Big bitfield of all the fields we provide in radiotap */
7811 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7812 (1 << IEEE80211_RADIOTAP_TSFT) |
7813 (1 << IEEE80211_RADIOTAP_FLAGS) |
7814 (1 << IEEE80211_RADIOTAP_RATE) |
7815 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7816 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7817 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7818 (1 << IEEE80211_RADIOTAP_ANTENNA));
7819
7820 /* Zero the flags, we'll add to them as we go */
7821 ipw_rt->rt_flags = 0;
7822 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7823 frame->parent_tsf[2] << 16 |
7824 frame->parent_tsf[1] << 8 |
7825 frame->parent_tsf[0]);
7826
7827 /* Convert signal to DBM */
7828 ipw_rt->rt_dbmsignal = antsignal;
7829 ipw_rt->rt_dbmnoise = frame->noise;
7830
7831 /* Convert the channel data and set the flags */
7832 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7833 if (received_channel > 14) { /* 802.11a */
7834 ipw_rt->rt_chbitmask =
7835 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7836 } else if (antennaAndPhy & 32) { /* 802.11b */
7837 ipw_rt->rt_chbitmask =
7838 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7839 } else { /* 802.11g */
7840 ipw_rt->rt_chbitmask =
7841 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7842 }
7843
7844 /* set the rate in multiples of 500k/s */
7845 switch (pktrate) {
7846 case IPW_TX_RATE_1MB:
7847 ipw_rt->rt_rate = 2;
7848 break;
7849 case IPW_TX_RATE_2MB:
7850 ipw_rt->rt_rate = 4;
7851 break;
7852 case IPW_TX_RATE_5MB:
7853 ipw_rt->rt_rate = 10;
7854 break;
7855 case IPW_TX_RATE_6MB:
7856 ipw_rt->rt_rate = 12;
7857 break;
7858 case IPW_TX_RATE_9MB:
7859 ipw_rt->rt_rate = 18;
7860 break;
7861 case IPW_TX_RATE_11MB:
7862 ipw_rt->rt_rate = 22;
7863 break;
7864 case IPW_TX_RATE_12MB:
7865 ipw_rt->rt_rate = 24;
7866 break;
7867 case IPW_TX_RATE_18MB:
7868 ipw_rt->rt_rate = 36;
7869 break;
7870 case IPW_TX_RATE_24MB:
7871 ipw_rt->rt_rate = 48;
7872 break;
7873 case IPW_TX_RATE_36MB:
7874 ipw_rt->rt_rate = 72;
7875 break;
7876 case IPW_TX_RATE_48MB:
7877 ipw_rt->rt_rate = 96;
7878 break;
7879 case IPW_TX_RATE_54MB:
7880 ipw_rt->rt_rate = 108;
7881 break;
7882 default:
7883 ipw_rt->rt_rate = 0;
7884 break;
7885 }
7886
7887 /* antenna number */
7888 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7889
7890 /* set the preamble flag if we have it */
7891 if ((antennaAndPhy & 64))
7892 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7893
7894 /* Set the size of the skb to the size of the frame */
7895 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7896
7897 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7898
7899 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7900 priv->ieee->stats.rx_errors++;
7901 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7902 rxb->skb = NULL;
7903 /* no LED during capture */
7904 }
7905}
7906#endif
7907
7908#ifdef CONFIG_IPW2200_PROMISCUOUS
7909#define ieee80211_is_probe_response(fc) \
7910 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7911 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7912
7913#define ieee80211_is_management(fc) \
7914 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7915
7916#define ieee80211_is_control(fc) \
7917 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7918
7919#define ieee80211_is_data(fc) \
7920 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7921
7922#define ieee80211_is_assoc_request(fc) \
7923 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7924
7925#define ieee80211_is_reassoc_request(fc) \
7926 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7927
7928static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7929 struct ipw_rx_mem_buffer *rxb,
7930 struct ieee80211_rx_stats *stats)
7931{
7932 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7933 struct ipw_rx_frame *frame = &pkt->u.frame;
7934 struct ipw_rt_hdr *ipw_rt;
7935
7936 /* First cache any information we need before we overwrite
7937 * the information provided in the skb from the hardware */
7938 struct ieee80211_hdr *hdr;
7939 u16 channel = frame->received_channel;
7940 u8 phy_flags = frame->antennaAndPhy;
7941 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7942 s8 noise = frame->noise;
7943 u8 rate = frame->rate;
7944 short len = le16_to_cpu(pkt->u.frame.length);
7945 struct sk_buff *skb;
7946 int hdr_only = 0;
7947 u16 filter = priv->prom_priv->filter;
7948
7949 /* If the filter is set to not include Rx frames then return */
7950 if (filter & IPW_PROM_NO_RX)
7951 return;
7952
7953 /* We received data from the HW, so stop the watchdog */
7954 priv->prom_net_dev->trans_start = jiffies;
7955
7956 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7957 priv->prom_priv->ieee->stats.rx_errors++;
7958 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7959 return;
7960 }
7961
7962 /* We only process data packets if the interface is open */
7963 if (unlikely(!netif_running(priv->prom_net_dev))) {
7964 priv->prom_priv->ieee->stats.rx_dropped++;
7965 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7966 return;
7967 }
7968
7969 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7970 * that now */
7971 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7972 /* FIXME: Should alloc bigger skb instead */
7973 priv->prom_priv->ieee->stats.rx_dropped++;
7974 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7975 return;
7976 }
7977
7978 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7979 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7980 if (filter & IPW_PROM_NO_MGMT)
7981 return;
7982 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7983 hdr_only = 1;
7984 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7985 if (filter & IPW_PROM_NO_CTL)
7986 return;
7987 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7988 hdr_only = 1;
7989 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7990 if (filter & IPW_PROM_NO_DATA)
7991 return;
7992 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7993 hdr_only = 1;
7994 }
7995
7996 /* Copy the SKB since this is for the promiscuous side */
7997 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7998 if (skb == NULL) {
7999 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8000 return;
8001 }
8002
8003 /* copy the frame data to write after where the radiotap header goes */
8004 ipw_rt = (void *)skb->data;
8005
8006 if (hdr_only)
8007 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
8008
8009 memcpy(ipw_rt->payload, hdr, len);
8010
8011 /* Zero the radiotap static buffer ... We only need to zero the bytes
8012 * NOT part of our real header, saves a little time.
8013 *
8014 * No longer necessary since we fill in all our data. Purge before
8015 * merging patch officially.
8016 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
8017 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
8018 */
8019
8020 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8021 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8022 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8023
8024 /* Set the size of the skb to the size of the frame */
8025 skb_put(skb, sizeof(*ipw_rt) + len);
8026
8027 /* Big bitfield of all the fields we provide in radiotap */
8028 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8029 (1 << IEEE80211_RADIOTAP_TSFT) |
8030 (1 << IEEE80211_RADIOTAP_FLAGS) |
8031 (1 << IEEE80211_RADIOTAP_RATE) |
8032 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8033 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8034 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8035 (1 << IEEE80211_RADIOTAP_ANTENNA));
8036
8037 /* Zero the flags, we'll add to them as we go */
8038 ipw_rt->rt_flags = 0;
8039 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8040 frame->parent_tsf[2] << 16 |
8041 frame->parent_tsf[1] << 8 |
8042 frame->parent_tsf[0]);
8043
8044 /* Convert to DBM */
8045 ipw_rt->rt_dbmsignal = signal;
8046 ipw_rt->rt_dbmnoise = noise;
8047
8048 /* Convert the channel data and set the flags */
8049 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8050 if (channel > 14) { /* 802.11a */
8051 ipw_rt->rt_chbitmask =
8052 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8053 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8054 ipw_rt->rt_chbitmask =
8055 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8056 } else { /* 802.11g */
8057 ipw_rt->rt_chbitmask =
8058 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8059 }
8060
8061 /* set the rate in multiples of 500k/s */
8062 switch (rate) {
8063 case IPW_TX_RATE_1MB:
8064 ipw_rt->rt_rate = 2;
8065 break;
8066 case IPW_TX_RATE_2MB:
8067 ipw_rt->rt_rate = 4;
8068 break;
8069 case IPW_TX_RATE_5MB:
8070 ipw_rt->rt_rate = 10;
8071 break;
8072 case IPW_TX_RATE_6MB:
8073 ipw_rt->rt_rate = 12;
8074 break;
8075 case IPW_TX_RATE_9MB:
8076 ipw_rt->rt_rate = 18;
8077 break;
8078 case IPW_TX_RATE_11MB:
8079 ipw_rt->rt_rate = 22;
8080 break;
8081 case IPW_TX_RATE_12MB:
8082 ipw_rt->rt_rate = 24;
8083 break;
8084 case IPW_TX_RATE_18MB:
8085 ipw_rt->rt_rate = 36;
8086 break;
8087 case IPW_TX_RATE_24MB:
8088 ipw_rt->rt_rate = 48;
8089 break;
8090 case IPW_TX_RATE_36MB:
8091 ipw_rt->rt_rate = 72;
8092 break;
8093 case IPW_TX_RATE_48MB:
8094 ipw_rt->rt_rate = 96;
8095 break;
8096 case IPW_TX_RATE_54MB:
8097 ipw_rt->rt_rate = 108;
8098 break;
8099 default:
8100 ipw_rt->rt_rate = 0;
8101 break;
8102 }
8103
8104 /* antenna number */
8105 ipw_rt->rt_antenna = (phy_flags & 3);
8106
8107 /* set the preamble flag if we have it */
8108 if (phy_flags & (1 << 6))
8109 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8110
8111 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8112
8113 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8114 priv->prom_priv->ieee->stats.rx_errors++;
8115 dev_kfree_skb_any(skb);
8116 }
8117}
8118#endif
8119
8120static int is_network_packet(struct ipw_priv *priv,
8121 struct ieee80211_hdr_4addr *header)
8122{
8123 /* Filter incoming packets to determine if they are targetted toward
8124 * this network, discarding packets coming from ourselves */
8125 switch (priv->ieee->iw_mode) {
8126 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8127 /* packets from our adapter are dropped (echo) */
8128 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8129 return 0;
8130
8131 /* {broad,multi}cast packets to our BSSID go through */
8132 if (is_multicast_ether_addr(header->addr1))
8133 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8134
8135 /* packets to our adapter go through */
8136 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8137 ETH_ALEN);
8138
8139 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8140 /* packets from our adapter are dropped (echo) */
8141 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8142 return 0;
8143
8144 /* {broad,multi}cast packets to our BSS go through */
8145 if (is_multicast_ether_addr(header->addr1))
8146 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8147
8148 /* packets to our adapter go through */
8149 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8150 ETH_ALEN);
8151 }
8152
8153 return 1;
8154}
8155
8156#define IPW_PACKET_RETRY_TIME HZ
8157
8158static int is_duplicate_packet(struct ipw_priv *priv,
8159 struct ieee80211_hdr_4addr *header)
8160{
8161 u16 sc = le16_to_cpu(header->seq_ctl);
8162 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8163 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8164 u16 *last_seq, *last_frag;
8165 unsigned long *last_time;
8166
8167 switch (priv->ieee->iw_mode) {
8168 case IW_MODE_ADHOC:
8169 {
8170 struct list_head *p;
8171 struct ipw_ibss_seq *entry = NULL;
8172 u8 *mac = header->addr2;
8173 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8174
8175 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8176 entry =
8177 list_entry(p, struct ipw_ibss_seq, list);
8178 if (!memcmp(entry->mac, mac, ETH_ALEN))
8179 break;
8180 }
8181 if (p == &priv->ibss_mac_hash[index]) {
8182 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8183 if (!entry) {
8184 IPW_ERROR
8185 ("Cannot malloc new mac entry\n");
8186 return 0;
8187 }
8188 memcpy(entry->mac, mac, ETH_ALEN);
8189 entry->seq_num = seq;
8190 entry->frag_num = frag;
8191 entry->packet_time = jiffies;
8192 list_add(&entry->list,
8193 &priv->ibss_mac_hash[index]);
8194 return 0;
8195 }
8196 last_seq = &entry->seq_num;
8197 last_frag = &entry->frag_num;
8198 last_time = &entry->packet_time;
8199 break;
8200 }
8201 case IW_MODE_INFRA:
8202 last_seq = &priv->last_seq_num;
8203 last_frag = &priv->last_frag_num;
8204 last_time = &priv->last_packet_time;
8205 break;
8206 default:
8207 return 0;
8208 }
8209 if ((*last_seq == seq) &&
8210 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8211 if (*last_frag == frag)
8212 goto drop;
8213 if (*last_frag + 1 != frag)
8214 /* out-of-order fragment */
8215 goto drop;
8216 } else
8217 *last_seq = seq;
8218
8219 *last_frag = frag;
8220 *last_time = jiffies;
8221 return 0;
8222
8223 drop:
8224 /* Comment this line now since we observed the card receives
8225 * duplicate packets but the FCTL_RETRY bit is not set in the
8226 * IBSS mode with fragmentation enabled.
8227 BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8228 return 1;
8229}
8230
8231static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8232 struct ipw_rx_mem_buffer *rxb,
8233 struct ieee80211_rx_stats *stats)
8234{
8235 struct sk_buff *skb = rxb->skb;
8236 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8237 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8238 (skb->data + IPW_RX_FRAME_SIZE);
8239
8240 ieee80211_rx_mgt(priv->ieee, header, stats);
8241
8242 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8243 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8244 IEEE80211_STYPE_PROBE_RESP) ||
8245 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8246 IEEE80211_STYPE_BEACON))) {
8247 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8248 ipw_add_station(priv, header->addr2);
8249 }
8250
8251 if (priv->config & CFG_NET_STATS) {
8252 IPW_DEBUG_HC("sending stat packet\n");
8253
8254 /* Set the size of the skb to the size of the full
8255 * ipw header and 802.11 frame */
8256 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8257 IPW_RX_FRAME_SIZE);
8258
8259 /* Advance past the ipw packet header to the 802.11 frame */
8260 skb_pull(skb, IPW_RX_FRAME_SIZE);
8261
8262 /* Push the ieee80211_rx_stats before the 802.11 frame */
8263 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8264
8265 skb->dev = priv->ieee->dev;
8266
8267 /* Point raw at the ieee80211_stats */
8268 skb_reset_mac_header(skb);
8269
8270 skb->pkt_type = PACKET_OTHERHOST;
8271 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8272 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8273 netif_rx(skb);
8274 rxb->skb = NULL;
8275 }
8276}
8277
8278/*
8279 * Main entry function for recieving a packet with 80211 headers. This
8280 * should be called when ever the FW has notified us that there is a new
8281 * skb in the recieve queue.
8282 */
8283static void ipw_rx(struct ipw_priv *priv)
8284{
8285 struct ipw_rx_mem_buffer *rxb;
8286 struct ipw_rx_packet *pkt;
8287 struct ieee80211_hdr_4addr *header;
8288 u32 r, w, i;
8289 u8 network_packet;
8290 u8 fill_rx = 0;
8291
8292 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8293 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8294 i = priv->rxq->read;
8295
8296 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8297 fill_rx = 1;
8298
8299 while (i != r) {
8300 rxb = priv->rxq->queue[i];
8301 if (unlikely(rxb == NULL)) {
8302 printk(KERN_CRIT "Queue not allocated!\n");
8303 break;
8304 }
8305 priv->rxq->queue[i] = NULL;
8306
8307 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8308 IPW_RX_BUF_SIZE,
8309 PCI_DMA_FROMDEVICE);
8310
8311 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8312 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8313 pkt->header.message_type,
8314 pkt->header.rx_seq_num, pkt->header.control_bits);
8315
8316 switch (pkt->header.message_type) {
8317 case RX_FRAME_TYPE: /* 802.11 frame */ {
8318 struct ieee80211_rx_stats stats = {
8319 .rssi = pkt->u.frame.rssi_dbm -
8320 IPW_RSSI_TO_DBM,
8321 .signal =
8322 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8323 IPW_RSSI_TO_DBM + 0x100,
8324 .noise =
8325 le16_to_cpu(pkt->u.frame.noise),
8326 .rate = pkt->u.frame.rate,
8327 .mac_time = jiffies,
8328 .received_channel =
8329 pkt->u.frame.received_channel,
8330 .freq =
8331 (pkt->u.frame.
8332 control & (1 << 0)) ?
8333 IEEE80211_24GHZ_BAND :
8334 IEEE80211_52GHZ_BAND,
8335 .len = le16_to_cpu(pkt->u.frame.length),
8336 };
8337
8338 if (stats.rssi != 0)
8339 stats.mask |= IEEE80211_STATMASK_RSSI;
8340 if (stats.signal != 0)
8341 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8342 if (stats.noise != 0)
8343 stats.mask |= IEEE80211_STATMASK_NOISE;
8344 if (stats.rate != 0)
8345 stats.mask |= IEEE80211_STATMASK_RATE;
8346
8347 priv->rx_packets++;
8348
8349#ifdef CONFIG_IPW2200_PROMISCUOUS
8350 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8351 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8352#endif
8353
8354#ifdef CONFIG_IPW2200_MONITOR
8355 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8356#ifdef CONFIG_IPW2200_RADIOTAP
8357
8358 ipw_handle_data_packet_monitor(priv,
8359 rxb,
8360 &stats);
8361#else
8362 ipw_handle_data_packet(priv, rxb,
8363 &stats);
8364#endif
8365 break;
8366 }
8367#endif
8368
8369 header =
8370 (struct ieee80211_hdr_4addr *)(rxb->skb->
8371 data +
8372 IPW_RX_FRAME_SIZE);
8373 /* TODO: Check Ad-Hoc dest/source and make sure
8374 * that we are actually parsing these packets
8375 * correctly -- we should probably use the
8376 * frame control of the packet and disregard
8377 * the current iw_mode */
8378
8379 network_packet =
8380 is_network_packet(priv, header);
8381 if (network_packet && priv->assoc_network) {
8382 priv->assoc_network->stats.rssi =
8383 stats.rssi;
8384 priv->exp_avg_rssi =
8385 exponential_average(priv->exp_avg_rssi,
8386 stats.rssi, DEPTH_RSSI);
8387 }
8388
8389 IPW_DEBUG_RX("Frame: len=%u\n",
8390 le16_to_cpu(pkt->u.frame.length));
8391
8392 if (le16_to_cpu(pkt->u.frame.length) <
8393 ieee80211_get_hdrlen(le16_to_cpu(
8394 header->frame_ctl))) {
8395 IPW_DEBUG_DROP
8396 ("Received packet is too small. "
8397 "Dropping.\n");
8398 priv->ieee->stats.rx_errors++;
8399 priv->wstats.discard.misc++;
8400 break;
8401 }
8402
8403 switch (WLAN_FC_GET_TYPE
8404 (le16_to_cpu(header->frame_ctl))) {
8405
8406 case IEEE80211_FTYPE_MGMT:
8407 ipw_handle_mgmt_packet(priv, rxb,
8408 &stats);
8409 break;
8410
8411 case IEEE80211_FTYPE_CTL:
8412 break;
8413
8414 case IEEE80211_FTYPE_DATA:
8415 if (unlikely(!network_packet ||
8416 is_duplicate_packet(priv,
8417 header)))
8418 {
8419 IPW_DEBUG_DROP("Dropping: "
8420 "%pM, "
8421 "%pM, "
8422 "%pM\n",
8423 header->addr1,
8424 header->addr2,
8425 header->addr3);
8426 break;
8427 }
8428
8429 ipw_handle_data_packet(priv, rxb,
8430 &stats);
8431
8432 break;
8433 }
8434 break;
8435 }
8436
8437 case RX_HOST_NOTIFICATION_TYPE:{
8438 IPW_DEBUG_RX
8439 ("Notification: subtype=%02X flags=%02X size=%d\n",
8440 pkt->u.notification.subtype,
8441 pkt->u.notification.flags,
8442 le16_to_cpu(pkt->u.notification.size));
8443 ipw_rx_notification(priv, &pkt->u.notification);
8444 break;
8445 }
8446
8447 default:
8448 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8449 pkt->header.message_type);
8450 break;
8451 }
8452
8453 /* For now we just don't re-use anything. We can tweak this
8454 * later to try and re-use notification packets and SKBs that
8455 * fail to Rx correctly */
8456 if (rxb->skb != NULL) {
8457 dev_kfree_skb_any(rxb->skb);
8458 rxb->skb = NULL;
8459 }
8460
8461 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8462 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8463 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8464
8465 i = (i + 1) % RX_QUEUE_SIZE;
8466
8467 /* If there are a lot of unsued frames, restock the Rx queue
8468 * so the ucode won't assert */
8469 if (fill_rx) {
8470 priv->rxq->read = i;
8471 ipw_rx_queue_replenish(priv);
8472 }
8473 }
8474
8475 /* Backtrack one entry */
8476 priv->rxq->read = i;
8477 ipw_rx_queue_restock(priv);
8478}
8479
8480#define DEFAULT_RTS_THRESHOLD 2304U
8481#define MIN_RTS_THRESHOLD 1U
8482#define MAX_RTS_THRESHOLD 2304U
8483#define DEFAULT_BEACON_INTERVAL 100U
8484#define DEFAULT_SHORT_RETRY_LIMIT 7U
8485#define DEFAULT_LONG_RETRY_LIMIT 4U
8486
8487/**
8488 * ipw_sw_reset
8489 * @option: options to control different reset behaviour
8490 * 0 = reset everything except the 'disable' module_param
8491 * 1 = reset everything and print out driver info (for probe only)
8492 * 2 = reset everything
8493 */
8494static int ipw_sw_reset(struct ipw_priv *priv, int option)
8495{
8496 int band, modulation;
8497 int old_mode = priv->ieee->iw_mode;
8498
8499 /* Initialize module parameter values here */
8500 priv->config = 0;
8501
8502 /* We default to disabling the LED code as right now it causes
8503 * too many systems to lock up... */
8504 if (!led)
8505 priv->config |= CFG_NO_LED;
8506
8507 if (associate)
8508 priv->config |= CFG_ASSOCIATE;
8509 else
8510 IPW_DEBUG_INFO("Auto associate disabled.\n");
8511
8512 if (auto_create)
8513 priv->config |= CFG_ADHOC_CREATE;
8514 else
8515 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8516
8517 priv->config &= ~CFG_STATIC_ESSID;
8518 priv->essid_len = 0;
8519 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8520
8521 if (disable && option) {
8522 priv->status |= STATUS_RF_KILL_SW;
8523 IPW_DEBUG_INFO("Radio disabled.\n");
8524 }
8525
8526 if (channel != 0) {
8527 priv->config |= CFG_STATIC_CHANNEL;
8528 priv->channel = channel;
8529 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8530 /* TODO: Validate that provided channel is in range */
8531 }
8532#ifdef CONFIG_IPW2200_QOS
8533 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8534 burst_duration_CCK, burst_duration_OFDM);
8535#endif /* CONFIG_IPW2200_QOS */
8536
8537 switch (mode) {
8538 case 1:
8539 priv->ieee->iw_mode = IW_MODE_ADHOC;
8540 priv->net_dev->type = ARPHRD_ETHER;
8541
8542 break;
8543#ifdef CONFIG_IPW2200_MONITOR
8544 case 2:
8545 priv->ieee->iw_mode = IW_MODE_MONITOR;
8546#ifdef CONFIG_IPW2200_RADIOTAP
8547 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8548#else
8549 priv->net_dev->type = ARPHRD_IEEE80211;
8550#endif
8551 break;
8552#endif
8553 default:
8554 case 0:
8555 priv->net_dev->type = ARPHRD_ETHER;
8556 priv->ieee->iw_mode = IW_MODE_INFRA;
8557 break;
8558 }
8559
8560 if (hwcrypto) {
8561 priv->ieee->host_encrypt = 0;
8562 priv->ieee->host_encrypt_msdu = 0;
8563 priv->ieee->host_decrypt = 0;
8564 priv->ieee->host_mc_decrypt = 0;
8565 }
8566 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8567
8568 /* IPW2200/2915 is abled to do hardware fragmentation. */
8569 priv->ieee->host_open_frag = 0;
8570
8571 if ((priv->pci_dev->device == 0x4223) ||
8572 (priv->pci_dev->device == 0x4224)) {
8573 if (option == 1)
8574 printk(KERN_INFO DRV_NAME
8575 ": Detected Intel PRO/Wireless 2915ABG Network "
8576 "Connection\n");
8577 priv->ieee->abg_true = 1;
8578 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8579 modulation = IEEE80211_OFDM_MODULATION |
8580 IEEE80211_CCK_MODULATION;
8581 priv->adapter = IPW_2915ABG;
8582 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8583 } else {
8584 if (option == 1)
8585 printk(KERN_INFO DRV_NAME
8586 ": Detected Intel PRO/Wireless 2200BG Network "
8587 "Connection\n");
8588
8589 priv->ieee->abg_true = 0;
8590 band = IEEE80211_24GHZ_BAND;
8591 modulation = IEEE80211_OFDM_MODULATION |
8592 IEEE80211_CCK_MODULATION;
8593 priv->adapter = IPW_2200BG;
8594 priv->ieee->mode = IEEE_G | IEEE_B;
8595 }
8596
8597 priv->ieee->freq_band = band;
8598 priv->ieee->modulation = modulation;
8599
8600 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8601
8602 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8603 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8604
8605 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8606 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8607 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8608
8609 /* If power management is turned on, default to AC mode */
8610 priv->power_mode = IPW_POWER_AC;
8611 priv->tx_power = IPW_TX_POWER_DEFAULT;
8612
8613 return old_mode == priv->ieee->iw_mode;
8614}
8615
8616/*
8617 * This file defines the Wireless Extension handlers. It does not
8618 * define any methods of hardware manipulation and relies on the
8619 * functions defined in ipw_main to provide the HW interaction.
8620 *
8621 * The exception to this is the use of the ipw_get_ordinal()
8622 * function used to poll the hardware vs. making unecessary calls.
8623 *
8624 */
8625
8626static int ipw_wx_get_name(struct net_device *dev,
8627 struct iw_request_info *info,
8628 union iwreq_data *wrqu, char *extra)
8629{
8630 struct ipw_priv *priv = ieee80211_priv(dev);
8631 mutex_lock(&priv->mutex);
8632 if (priv->status & STATUS_RF_KILL_MASK)
8633 strcpy(wrqu->name, "radio off");
8634 else if (!(priv->status & STATUS_ASSOCIATED))
8635 strcpy(wrqu->name, "unassociated");
8636 else
8637 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8638 ipw_modes[priv->assoc_request.ieee_mode]);
8639 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8640 mutex_unlock(&priv->mutex);
8641 return 0;
8642}
8643
8644static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8645{
8646 if (channel == 0) {
8647 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8648 priv->config &= ~CFG_STATIC_CHANNEL;
8649 IPW_DEBUG_ASSOC("Attempting to associate with new "
8650 "parameters.\n");
8651 ipw_associate(priv);
8652 return 0;
8653 }
8654
8655 priv->config |= CFG_STATIC_CHANNEL;
8656
8657 if (priv->channel == channel) {
8658 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8659 channel);
8660 return 0;
8661 }
8662
8663 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8664 priv->channel = channel;
8665
8666#ifdef CONFIG_IPW2200_MONITOR
8667 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8668 int i;
8669 if (priv->status & STATUS_SCANNING) {
8670 IPW_DEBUG_SCAN("Scan abort triggered due to "
8671 "channel change.\n");
8672 ipw_abort_scan(priv);
8673 }
8674
8675 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8676 udelay(10);
8677
8678 if (priv->status & STATUS_SCANNING)
8679 IPW_DEBUG_SCAN("Still scanning...\n");
8680 else
8681 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8682 1000 - i);
8683
8684 return 0;
8685 }
8686#endif /* CONFIG_IPW2200_MONITOR */
8687
8688 /* Network configuration changed -- force [re]association */
8689 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8690 if (!ipw_disassociate(priv))
8691 ipw_associate(priv);
8692
8693 return 0;
8694}
8695
8696static int ipw_wx_set_freq(struct net_device *dev,
8697 struct iw_request_info *info,
8698 union iwreq_data *wrqu, char *extra)
8699{
8700 struct ipw_priv *priv = ieee80211_priv(dev);
8701 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8702 struct iw_freq *fwrq = &wrqu->freq;
8703 int ret = 0, i;
8704 u8 channel, flags;
8705 int band;
8706
8707 if (fwrq->m == 0) {
8708 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8709 mutex_lock(&priv->mutex);
8710 ret = ipw_set_channel(priv, 0);
8711 mutex_unlock(&priv->mutex);
8712 return ret;
8713 }
8714 /* if setting by freq convert to channel */
8715 if (fwrq->e == 1) {
8716 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8717 if (channel == 0)
8718 return -EINVAL;
8719 } else
8720 channel = fwrq->m;
8721
8722 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8723 return -EINVAL;
8724
8725 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8726 i = ieee80211_channel_to_index(priv->ieee, channel);
8727 if (i == -1)
8728 return -EINVAL;
8729
8730 flags = (band == IEEE80211_24GHZ_BAND) ?
8731 geo->bg[i].flags : geo->a[i].flags;
8732 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8733 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8734 return -EINVAL;
8735 }
8736 }
8737
8738 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8739 mutex_lock(&priv->mutex);
8740 ret = ipw_set_channel(priv, channel);
8741 mutex_unlock(&priv->mutex);
8742 return ret;
8743}
8744
8745static int ipw_wx_get_freq(struct net_device *dev,
8746 struct iw_request_info *info,
8747 union iwreq_data *wrqu, char *extra)
8748{
8749 struct ipw_priv *priv = ieee80211_priv(dev);
8750
8751 wrqu->freq.e = 0;
8752
8753 /* If we are associated, trying to associate, or have a statically
8754 * configured CHANNEL then return that; otherwise return ANY */
8755 mutex_lock(&priv->mutex);
8756 if (priv->config & CFG_STATIC_CHANNEL ||
8757 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8758 int i;
8759
8760 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8761 BUG_ON(i == -1);
8762 wrqu->freq.e = 1;
8763
8764 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8765 case IEEE80211_52GHZ_BAND:
8766 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8767 break;
8768
8769 case IEEE80211_24GHZ_BAND:
8770 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8771 break;
8772
8773 default:
8774 BUG();
8775 }
8776 } else
8777 wrqu->freq.m = 0;
8778
8779 mutex_unlock(&priv->mutex);
8780 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8781 return 0;
8782}
8783
8784static int ipw_wx_set_mode(struct net_device *dev,
8785 struct iw_request_info *info,
8786 union iwreq_data *wrqu, char *extra)
8787{
8788 struct ipw_priv *priv = ieee80211_priv(dev);
8789 int err = 0;
8790
8791 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8792
8793 switch (wrqu->mode) {
8794#ifdef CONFIG_IPW2200_MONITOR
8795 case IW_MODE_MONITOR:
8796#endif
8797 case IW_MODE_ADHOC:
8798 case IW_MODE_INFRA:
8799 break;
8800 case IW_MODE_AUTO:
8801 wrqu->mode = IW_MODE_INFRA;
8802 break;
8803 default:
8804 return -EINVAL;
8805 }
8806 if (wrqu->mode == priv->ieee->iw_mode)
8807 return 0;
8808
8809 mutex_lock(&priv->mutex);
8810
8811 ipw_sw_reset(priv, 0);
8812
8813#ifdef CONFIG_IPW2200_MONITOR
8814 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8815 priv->net_dev->type = ARPHRD_ETHER;
8816
8817 if (wrqu->mode == IW_MODE_MONITOR)
8818#ifdef CONFIG_IPW2200_RADIOTAP
8819 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8820#else
8821 priv->net_dev->type = ARPHRD_IEEE80211;
8822#endif
8823#endif /* CONFIG_IPW2200_MONITOR */
8824
8825 /* Free the existing firmware and reset the fw_loaded
8826 * flag so ipw_load() will bring in the new firmawre */
8827 free_firmware();
8828
8829 priv->ieee->iw_mode = wrqu->mode;
8830
8831 queue_work(priv->workqueue, &priv->adapter_restart);
8832 mutex_unlock(&priv->mutex);
8833 return err;
8834}
8835
8836static int ipw_wx_get_mode(struct net_device *dev,
8837 struct iw_request_info *info,
8838 union iwreq_data *wrqu, char *extra)
8839{
8840 struct ipw_priv *priv = ieee80211_priv(dev);
8841 mutex_lock(&priv->mutex);
8842 wrqu->mode = priv->ieee->iw_mode;
8843 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8844 mutex_unlock(&priv->mutex);
8845 return 0;
8846}
8847
8848/* Values are in microsecond */
8849static const s32 timeout_duration[] = {
8850 350000,
8851 250000,
8852 75000,
8853 37000,
8854 25000,
8855};
8856
8857static const s32 period_duration[] = {
8858 400000,
8859 700000,
8860 1000000,
8861 1000000,
8862 1000000
8863};
8864
8865static int ipw_wx_get_range(struct net_device *dev,
8866 struct iw_request_info *info,
8867 union iwreq_data *wrqu, char *extra)
8868{
8869 struct ipw_priv *priv = ieee80211_priv(dev);
8870 struct iw_range *range = (struct iw_range *)extra;
8871 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8872 int i = 0, j;
8873
8874 wrqu->data.length = sizeof(*range);
8875 memset(range, 0, sizeof(*range));
8876
8877 /* 54Mbs == ~27 Mb/s real (802.11g) */
8878 range->throughput = 27 * 1000 * 1000;
8879
8880 range->max_qual.qual = 100;
8881 /* TODO: Find real max RSSI and stick here */
8882 range->max_qual.level = 0;
8883 range->max_qual.noise = 0;
8884 range->max_qual.updated = 7; /* Updated all three */
8885
8886 range->avg_qual.qual = 70;
8887 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8888 range->avg_qual.level = 0; /* FIXME to real average level */
8889 range->avg_qual.noise = 0;
8890 range->avg_qual.updated = 7; /* Updated all three */
8891 mutex_lock(&priv->mutex);
8892 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8893
8894 for (i = 0; i < range->num_bitrates; i++)
8895 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8896 500000;
8897
8898 range->max_rts = DEFAULT_RTS_THRESHOLD;
8899 range->min_frag = MIN_FRAG_THRESHOLD;
8900 range->max_frag = MAX_FRAG_THRESHOLD;
8901
8902 range->encoding_size[0] = 5;
8903 range->encoding_size[1] = 13;
8904 range->num_encoding_sizes = 2;
8905 range->max_encoding_tokens = WEP_KEYS;
8906
8907 /* Set the Wireless Extension versions */
8908 range->we_version_compiled = WIRELESS_EXT;
8909 range->we_version_source = 18;
8910
8911 i = 0;
8912 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8913 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8914 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8915 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8916 continue;
8917
8918 range->freq[i].i = geo->bg[j].channel;
8919 range->freq[i].m = geo->bg[j].freq * 100000;
8920 range->freq[i].e = 1;
8921 i++;
8922 }
8923 }
8924
8925 if (priv->ieee->mode & IEEE_A) {
8926 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8927 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8928 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8929 continue;
8930
8931 range->freq[i].i = geo->a[j].channel;
8932 range->freq[i].m = geo->a[j].freq * 100000;
8933 range->freq[i].e = 1;
8934 i++;
8935 }
8936 }
8937
8938 range->num_channels = i;
8939 range->num_frequency = i;
8940
8941 mutex_unlock(&priv->mutex);
8942
8943 /* Event capability (kernel + driver) */
8944 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8945 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8946 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8947 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8948 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8949
8950 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8951 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8952
8953 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8954
8955 IPW_DEBUG_WX("GET Range\n");
8956 return 0;
8957}
8958
8959static int ipw_wx_set_wap(struct net_device *dev,
8960 struct iw_request_info *info,
8961 union iwreq_data *wrqu, char *extra)
8962{
8963 struct ipw_priv *priv = ieee80211_priv(dev);
8964
8965 static const unsigned char any[] = {
8966 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8967 };
8968 static const unsigned char off[] = {
8969 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8970 };
8971
8972 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8973 return -EINVAL;
8974 mutex_lock(&priv->mutex);
8975 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8976 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8977 /* we disable mandatory BSSID association */
8978 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8979 priv->config &= ~CFG_STATIC_BSSID;
8980 IPW_DEBUG_ASSOC("Attempting to associate with new "
8981 "parameters.\n");
8982 ipw_associate(priv);
8983 mutex_unlock(&priv->mutex);
8984 return 0;
8985 }
8986
8987 priv->config |= CFG_STATIC_BSSID;
8988 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8989 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8990 mutex_unlock(&priv->mutex);
8991 return 0;
8992 }
8993
8994 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8995 wrqu->ap_addr.sa_data);
8996
8997 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8998
8999 /* Network configuration changed -- force [re]association */
9000 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9001 if (!ipw_disassociate(priv))
9002 ipw_associate(priv);
9003
9004 mutex_unlock(&priv->mutex);
9005 return 0;
9006}
9007
9008static int ipw_wx_get_wap(struct net_device *dev,
9009 struct iw_request_info *info,
9010 union iwreq_data *wrqu, char *extra)
9011{
9012 struct ipw_priv *priv = ieee80211_priv(dev);
9013
9014 /* If we are associated, trying to associate, or have a statically
9015 * configured BSSID then return that; otherwise return ANY */
9016 mutex_lock(&priv->mutex);
9017 if (priv->config & CFG_STATIC_BSSID ||
9018 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9019 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9020 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9021 } else
9022 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9023
9024 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9025 wrqu->ap_addr.sa_data);
9026 mutex_unlock(&priv->mutex);
9027 return 0;
9028}
9029
9030static int ipw_wx_set_essid(struct net_device *dev,
9031 struct iw_request_info *info,
9032 union iwreq_data *wrqu, char *extra)
9033{
9034 struct ipw_priv *priv = ieee80211_priv(dev);
9035 int length;
9036
9037 mutex_lock(&priv->mutex);
9038
9039 if (!wrqu->essid.flags)
9040 {
9041 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9042 ipw_disassociate(priv);
9043 priv->config &= ~CFG_STATIC_ESSID;
9044 ipw_associate(priv);
9045 mutex_unlock(&priv->mutex);
9046 return 0;
9047 }
9048
9049 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9050
9051 priv->config |= CFG_STATIC_ESSID;
9052
9053 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9054 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9055 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9056 mutex_unlock(&priv->mutex);
9057 return 0;
9058 }
9059
9060 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
9061 length);
9062
9063 priv->essid_len = length;
9064 memcpy(priv->essid, extra, priv->essid_len);
9065
9066 /* Network configuration changed -- force [re]association */
9067 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9068 if (!ipw_disassociate(priv))
9069 ipw_associate(priv);
9070
9071 mutex_unlock(&priv->mutex);
9072 return 0;
9073}
9074
9075static int ipw_wx_get_essid(struct net_device *dev,
9076 struct iw_request_info *info,
9077 union iwreq_data *wrqu, char *extra)
9078{
9079 struct ipw_priv *priv = ieee80211_priv(dev);
9080
9081 /* If we are associated, trying to associate, or have a statically
9082 * configured ESSID then return that; otherwise return ANY */
9083 mutex_lock(&priv->mutex);
9084 if (priv->config & CFG_STATIC_ESSID ||
9085 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9086 IPW_DEBUG_WX("Getting essid: '%s'\n",
9087 escape_essid(priv->essid, priv->essid_len));
9088 memcpy(extra, priv->essid, priv->essid_len);
9089 wrqu->essid.length = priv->essid_len;
9090 wrqu->essid.flags = 1; /* active */
9091 } else {
9092 IPW_DEBUG_WX("Getting essid: ANY\n");
9093 wrqu->essid.length = 0;
9094 wrqu->essid.flags = 0; /* active */
9095 }
9096 mutex_unlock(&priv->mutex);
9097 return 0;
9098}
9099
9100static int ipw_wx_set_nick(struct net_device *dev,
9101 struct iw_request_info *info,
9102 union iwreq_data *wrqu, char *extra)
9103{
9104 struct ipw_priv *priv = ieee80211_priv(dev);
9105
9106 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9107 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9108 return -E2BIG;
9109 mutex_lock(&priv->mutex);
9110 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9111 memset(priv->nick, 0, sizeof(priv->nick));
9112 memcpy(priv->nick, extra, wrqu->data.length);
9113 IPW_DEBUG_TRACE("<<\n");
9114 mutex_unlock(&priv->mutex);
9115 return 0;
9116
9117}
9118
9119static int ipw_wx_get_nick(struct net_device *dev,
9120 struct iw_request_info *info,
9121 union iwreq_data *wrqu, char *extra)
9122{
9123 struct ipw_priv *priv = ieee80211_priv(dev);
9124 IPW_DEBUG_WX("Getting nick\n");
9125 mutex_lock(&priv->mutex);
9126 wrqu->data.length = strlen(priv->nick);
9127 memcpy(extra, priv->nick, wrqu->data.length);
9128 wrqu->data.flags = 1; /* active */
9129 mutex_unlock(&priv->mutex);
9130 return 0;
9131}
9132
9133static int ipw_wx_set_sens(struct net_device *dev,
9134 struct iw_request_info *info,
9135 union iwreq_data *wrqu, char *extra)
9136{
9137 struct ipw_priv *priv = ieee80211_priv(dev);
9138 int err = 0;
9139
9140 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9141 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9142 mutex_lock(&priv->mutex);
9143
9144 if (wrqu->sens.fixed == 0)
9145 {
9146 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9147 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9148 goto out;
9149 }
9150 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9151 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9152 err = -EINVAL;
9153 goto out;
9154 }
9155
9156 priv->roaming_threshold = wrqu->sens.value;
9157 priv->disassociate_threshold = 3*wrqu->sens.value;
9158 out:
9159 mutex_unlock(&priv->mutex);
9160 return err;
9161}
9162
9163static int ipw_wx_get_sens(struct net_device *dev,
9164 struct iw_request_info *info,
9165 union iwreq_data *wrqu, char *extra)
9166{
9167 struct ipw_priv *priv = ieee80211_priv(dev);
9168 mutex_lock(&priv->mutex);
9169 wrqu->sens.fixed = 1;
9170 wrqu->sens.value = priv->roaming_threshold;
9171 mutex_unlock(&priv->mutex);
9172
9173 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9174 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9175
9176 return 0;
9177}
9178
9179static int ipw_wx_set_rate(struct net_device *dev,
9180 struct iw_request_info *info,
9181 union iwreq_data *wrqu, char *extra)
9182{
9183 /* TODO: We should use semaphores or locks for access to priv */
9184 struct ipw_priv *priv = ieee80211_priv(dev);
9185 u32 target_rate = wrqu->bitrate.value;
9186 u32 fixed, mask;
9187
9188 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9189 /* value = X, fixed = 1 means only rate X */
9190 /* value = X, fixed = 0 means all rates lower equal X */
9191
9192 if (target_rate == -1) {
9193 fixed = 0;
9194 mask = IEEE80211_DEFAULT_RATES_MASK;
9195 /* Now we should reassociate */
9196 goto apply;
9197 }
9198
9199 mask = 0;
9200 fixed = wrqu->bitrate.fixed;
9201
9202 if (target_rate == 1000000 || !fixed)
9203 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9204 if (target_rate == 1000000)
9205 goto apply;
9206
9207 if (target_rate == 2000000 || !fixed)
9208 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9209 if (target_rate == 2000000)
9210 goto apply;
9211
9212 if (target_rate == 5500000 || !fixed)
9213 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9214 if (target_rate == 5500000)
9215 goto apply;
9216
9217 if (target_rate == 6000000 || !fixed)
9218 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9219 if (target_rate == 6000000)
9220 goto apply;
9221
9222 if (target_rate == 9000000 || !fixed)
9223 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9224 if (target_rate == 9000000)
9225 goto apply;
9226
9227 if (target_rate == 11000000 || !fixed)
9228 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9229 if (target_rate == 11000000)
9230 goto apply;
9231
9232 if (target_rate == 12000000 || !fixed)
9233 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9234 if (target_rate == 12000000)
9235 goto apply;
9236
9237 if (target_rate == 18000000 || !fixed)
9238 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9239 if (target_rate == 18000000)
9240 goto apply;
9241
9242 if (target_rate == 24000000 || !fixed)
9243 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9244 if (target_rate == 24000000)
9245 goto apply;
9246
9247 if (target_rate == 36000000 || !fixed)
9248 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9249 if (target_rate == 36000000)
9250 goto apply;
9251
9252 if (target_rate == 48000000 || !fixed)
9253 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9254 if (target_rate == 48000000)
9255 goto apply;
9256
9257 if (target_rate == 54000000 || !fixed)
9258 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9259 if (target_rate == 54000000)
9260 goto apply;
9261
9262 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9263 return -EINVAL;
9264
9265 apply:
9266 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9267 mask, fixed ? "fixed" : "sub-rates");
9268 mutex_lock(&priv->mutex);
9269 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9270 priv->config &= ~CFG_FIXED_RATE;
9271 ipw_set_fixed_rate(priv, priv->ieee->mode);
9272 } else
9273 priv->config |= CFG_FIXED_RATE;
9274
9275 if (priv->rates_mask == mask) {
9276 IPW_DEBUG_WX("Mask set to current mask.\n");
9277 mutex_unlock(&priv->mutex);
9278 return 0;
9279 }
9280
9281 priv->rates_mask = mask;
9282
9283 /* Network configuration changed -- force [re]association */
9284 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9285 if (!ipw_disassociate(priv))
9286 ipw_associate(priv);
9287
9288 mutex_unlock(&priv->mutex);
9289 return 0;
9290}
9291
9292static int ipw_wx_get_rate(struct net_device *dev,
9293 struct iw_request_info *info,
9294 union iwreq_data *wrqu, char *extra)
9295{
9296 struct ipw_priv *priv = ieee80211_priv(dev);
9297 mutex_lock(&priv->mutex);
9298 wrqu->bitrate.value = priv->last_rate;
9299 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9300 mutex_unlock(&priv->mutex);
9301 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9302 return 0;
9303}
9304
9305static int ipw_wx_set_rts(struct net_device *dev,
9306 struct iw_request_info *info,
9307 union iwreq_data *wrqu, char *extra)
9308{
9309 struct ipw_priv *priv = ieee80211_priv(dev);
9310 mutex_lock(&priv->mutex);
9311 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9312 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9313 else {
9314 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9315 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9316 mutex_unlock(&priv->mutex);
9317 return -EINVAL;
9318 }
9319 priv->rts_threshold = wrqu->rts.value;
9320 }
9321
9322 ipw_send_rts_threshold(priv, priv->rts_threshold);
9323 mutex_unlock(&priv->mutex);
9324 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9325 return 0;
9326}
9327
9328static int ipw_wx_get_rts(struct net_device *dev,
9329 struct iw_request_info *info,
9330 union iwreq_data *wrqu, char *extra)
9331{
9332 struct ipw_priv *priv = ieee80211_priv(dev);
9333 mutex_lock(&priv->mutex);
9334 wrqu->rts.value = priv->rts_threshold;
9335 wrqu->rts.fixed = 0; /* no auto select */
9336 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9337 mutex_unlock(&priv->mutex);
9338 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9339 return 0;
9340}
9341
9342static int ipw_wx_set_txpow(struct net_device *dev,
9343 struct iw_request_info *info,
9344 union iwreq_data *wrqu, char *extra)
9345{
9346 struct ipw_priv *priv = ieee80211_priv(dev);
9347 int err = 0;
9348
9349 mutex_lock(&priv->mutex);
9350 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9351 err = -EINPROGRESS;
9352 goto out;
9353 }
9354
9355 if (!wrqu->power.fixed)
9356 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9357
9358 if (wrqu->power.flags != IW_TXPOW_DBM) {
9359 err = -EINVAL;
9360 goto out;
9361 }
9362
9363 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9364 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9365 err = -EINVAL;
9366 goto out;
9367 }
9368
9369 priv->tx_power = wrqu->power.value;
9370 err = ipw_set_tx_power(priv);
9371 out:
9372 mutex_unlock(&priv->mutex);
9373 return err;
9374}
9375
9376static int ipw_wx_get_txpow(struct net_device *dev,
9377 struct iw_request_info *info,
9378 union iwreq_data *wrqu, char *extra)
9379{
9380 struct ipw_priv *priv = ieee80211_priv(dev);
9381 mutex_lock(&priv->mutex);
9382 wrqu->power.value = priv->tx_power;
9383 wrqu->power.fixed = 1;
9384 wrqu->power.flags = IW_TXPOW_DBM;
9385 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9386 mutex_unlock(&priv->mutex);
9387
9388 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9389 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9390
9391 return 0;
9392}
9393
9394static int ipw_wx_set_frag(struct net_device *dev,
9395 struct iw_request_info *info,
9396 union iwreq_data *wrqu, char *extra)
9397{
9398 struct ipw_priv *priv = ieee80211_priv(dev);
9399 mutex_lock(&priv->mutex);
9400 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9401 priv->ieee->fts = DEFAULT_FTS;
9402 else {
9403 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9404 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9405 mutex_unlock(&priv->mutex);
9406 return -EINVAL;
9407 }
9408
9409 priv->ieee->fts = wrqu->frag.value & ~0x1;
9410 }
9411
9412 ipw_send_frag_threshold(priv, wrqu->frag.value);
9413 mutex_unlock(&priv->mutex);
9414 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9415 return 0;
9416}
9417
9418static int ipw_wx_get_frag(struct net_device *dev,
9419 struct iw_request_info *info,
9420 union iwreq_data *wrqu, char *extra)
9421{
9422 struct ipw_priv *priv = ieee80211_priv(dev);
9423 mutex_lock(&priv->mutex);
9424 wrqu->frag.value = priv->ieee->fts;
9425 wrqu->frag.fixed = 0; /* no auto select */
9426 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9427 mutex_unlock(&priv->mutex);
9428 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9429
9430 return 0;
9431}
9432
9433static int ipw_wx_set_retry(struct net_device *dev,
9434 struct iw_request_info *info,
9435 union iwreq_data *wrqu, char *extra)
9436{
9437 struct ipw_priv *priv = ieee80211_priv(dev);
9438
9439 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9440 return -EINVAL;
9441
9442 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9443 return 0;
9444
9445 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9446 return -EINVAL;
9447
9448 mutex_lock(&priv->mutex);
9449 if (wrqu->retry.flags & IW_RETRY_SHORT)
9450 priv->short_retry_limit = (u8) wrqu->retry.value;
9451 else if (wrqu->retry.flags & IW_RETRY_LONG)
9452 priv->long_retry_limit = (u8) wrqu->retry.value;
9453 else {
9454 priv->short_retry_limit = (u8) wrqu->retry.value;
9455 priv->long_retry_limit = (u8) wrqu->retry.value;
9456 }
9457
9458 ipw_send_retry_limit(priv, priv->short_retry_limit,
9459 priv->long_retry_limit);
9460 mutex_unlock(&priv->mutex);
9461 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9462 priv->short_retry_limit, priv->long_retry_limit);
9463 return 0;
9464}
9465
9466static int ipw_wx_get_retry(struct net_device *dev,
9467 struct iw_request_info *info,
9468 union iwreq_data *wrqu, char *extra)
9469{
9470 struct ipw_priv *priv = ieee80211_priv(dev);
9471
9472 mutex_lock(&priv->mutex);
9473 wrqu->retry.disabled = 0;
9474
9475 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9476 mutex_unlock(&priv->mutex);
9477 return -EINVAL;
9478 }
9479
9480 if (wrqu->retry.flags & IW_RETRY_LONG) {
9481 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9482 wrqu->retry.value = priv->long_retry_limit;
9483 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9484 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9485 wrqu->retry.value = priv->short_retry_limit;
9486 } else {
9487 wrqu->retry.flags = IW_RETRY_LIMIT;
9488 wrqu->retry.value = priv->short_retry_limit;
9489 }
9490 mutex_unlock(&priv->mutex);
9491
9492 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9493
9494 return 0;
9495}
9496
9497static int ipw_wx_set_scan(struct net_device *dev,
9498 struct iw_request_info *info,
9499 union iwreq_data *wrqu, char *extra)
9500{
9501 struct ipw_priv *priv = ieee80211_priv(dev);
9502 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9503 struct delayed_work *work = NULL;
9504
9505 mutex_lock(&priv->mutex);
9506
9507 priv->user_requested_scan = 1;
9508
9509 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9510 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9511 int len = min((int)req->essid_len,
9512 (int)sizeof(priv->direct_scan_ssid));
9513 memcpy(priv->direct_scan_ssid, req->essid, len);
9514 priv->direct_scan_ssid_len = len;
9515 work = &priv->request_direct_scan;
9516 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9517 work = &priv->request_passive_scan;
9518 }
9519 } else {
9520 /* Normal active broadcast scan */
9521 work = &priv->request_scan;
9522 }
9523
9524 mutex_unlock(&priv->mutex);
9525
9526 IPW_DEBUG_WX("Start scan\n");
9527
9528 queue_delayed_work(priv->workqueue, work, 0);
9529
9530 return 0;
9531}
9532
9533static int ipw_wx_get_scan(struct net_device *dev,
9534 struct iw_request_info *info,
9535 union iwreq_data *wrqu, char *extra)
9536{
9537 struct ipw_priv *priv = ieee80211_priv(dev);
9538 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9539}
9540
9541static int ipw_wx_set_encode(struct net_device *dev,
9542 struct iw_request_info *info,
9543 union iwreq_data *wrqu, char *key)
9544{
9545 struct ipw_priv *priv = ieee80211_priv(dev);
9546 int ret;
9547 u32 cap = priv->capability;
9548
9549 mutex_lock(&priv->mutex);
9550 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9551
9552 /* In IBSS mode, we need to notify the firmware to update
9553 * the beacon info after we changed the capability. */
9554 if (cap != priv->capability &&
9555 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9556 priv->status & STATUS_ASSOCIATED)
9557 ipw_disassociate(priv);
9558
9559 mutex_unlock(&priv->mutex);
9560 return ret;
9561}
9562
9563static int ipw_wx_get_encode(struct net_device *dev,
9564 struct iw_request_info *info,
9565 union iwreq_data *wrqu, char *key)
9566{
9567 struct ipw_priv *priv = ieee80211_priv(dev);
9568 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9569}
9570
9571static int ipw_wx_set_power(struct net_device *dev,
9572 struct iw_request_info *info,
9573 union iwreq_data *wrqu, char *extra)
9574{
9575 struct ipw_priv *priv = ieee80211_priv(dev);
9576 int err;
9577 mutex_lock(&priv->mutex);
9578 if (wrqu->power.disabled) {
9579 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9580 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9581 if (err) {
9582 IPW_DEBUG_WX("failed setting power mode.\n");
9583 mutex_unlock(&priv->mutex);
9584 return err;
9585 }
9586 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9587 mutex_unlock(&priv->mutex);
9588 return 0;
9589 }
9590
9591 switch (wrqu->power.flags & IW_POWER_MODE) {
9592 case IW_POWER_ON: /* If not specified */
9593 case IW_POWER_MODE: /* If set all mask */
9594 case IW_POWER_ALL_R: /* If explicitly state all */
9595 break;
9596 default: /* Otherwise we don't support it */
9597 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9598 wrqu->power.flags);
9599 mutex_unlock(&priv->mutex);
9600 return -EOPNOTSUPP;
9601 }
9602
9603 /* If the user hasn't specified a power management mode yet, default
9604 * to BATTERY */
9605 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9606 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9607 else
9608 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9609
9610 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9611 if (err) {
9612 IPW_DEBUG_WX("failed setting power mode.\n");
9613 mutex_unlock(&priv->mutex);
9614 return err;
9615 }
9616
9617 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9618 mutex_unlock(&priv->mutex);
9619 return 0;
9620}
9621
9622static int ipw_wx_get_power(struct net_device *dev,
9623 struct iw_request_info *info,
9624 union iwreq_data *wrqu, char *extra)
9625{
9626 struct ipw_priv *priv = ieee80211_priv(dev);
9627 mutex_lock(&priv->mutex);
9628 if (!(priv->power_mode & IPW_POWER_ENABLED))
9629 wrqu->power.disabled = 1;
9630 else
9631 wrqu->power.disabled = 0;
9632
9633 mutex_unlock(&priv->mutex);
9634 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9635
9636 return 0;
9637}
9638
9639static int ipw_wx_set_powermode(struct net_device *dev,
9640 struct iw_request_info *info,
9641 union iwreq_data *wrqu, char *extra)
9642{
9643 struct ipw_priv *priv = ieee80211_priv(dev);
9644 int mode = *(int *)extra;
9645 int err;
9646
9647 mutex_lock(&priv->mutex);
9648 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9649 mode = IPW_POWER_AC;
9650
9651 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9652 err = ipw_send_power_mode(priv, mode);
9653 if (err) {
9654 IPW_DEBUG_WX("failed setting power mode.\n");
9655 mutex_unlock(&priv->mutex);
9656 return err;
9657 }
9658 priv->power_mode = IPW_POWER_ENABLED | mode;
9659 }
9660 mutex_unlock(&priv->mutex);
9661 return 0;
9662}
9663
9664#define MAX_WX_STRING 80
9665static int ipw_wx_get_powermode(struct net_device *dev,
9666 struct iw_request_info *info,
9667 union iwreq_data *wrqu, char *extra)
9668{
9669 struct ipw_priv *priv = ieee80211_priv(dev);
9670 int level = IPW_POWER_LEVEL(priv->power_mode);
9671 char *p = extra;
9672
9673 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9674
9675 switch (level) {
9676 case IPW_POWER_AC:
9677 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9678 break;
9679 case IPW_POWER_BATTERY:
9680 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9681 break;
9682 default:
9683 p += snprintf(p, MAX_WX_STRING - (p - extra),
9684 "(Timeout %dms, Period %dms)",
9685 timeout_duration[level - 1] / 1000,
9686 period_duration[level - 1] / 1000);
9687 }
9688
9689 if (!(priv->power_mode & IPW_POWER_ENABLED))
9690 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9691
9692 wrqu->data.length = p - extra + 1;
9693
9694 return 0;
9695}
9696
9697static int ipw_wx_set_wireless_mode(struct net_device *dev,
9698 struct iw_request_info *info,
9699 union iwreq_data *wrqu, char *extra)
9700{
9701 struct ipw_priv *priv = ieee80211_priv(dev);
9702 int mode = *(int *)extra;
9703 u8 band = 0, modulation = 0;
9704
9705 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9706 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9707 return -EINVAL;
9708 }
9709 mutex_lock(&priv->mutex);
9710 if (priv->adapter == IPW_2915ABG) {
9711 priv->ieee->abg_true = 1;
9712 if (mode & IEEE_A) {
9713 band |= IEEE80211_52GHZ_BAND;
9714 modulation |= IEEE80211_OFDM_MODULATION;
9715 } else
9716 priv->ieee->abg_true = 0;
9717 } else {
9718 if (mode & IEEE_A) {
9719 IPW_WARNING("Attempt to set 2200BG into "
9720 "802.11a mode\n");
9721 mutex_unlock(&priv->mutex);
9722 return -EINVAL;
9723 }
9724
9725 priv->ieee->abg_true = 0;
9726 }
9727
9728 if (mode & IEEE_B) {
9729 band |= IEEE80211_24GHZ_BAND;
9730 modulation |= IEEE80211_CCK_MODULATION;
9731 } else
9732 priv->ieee->abg_true = 0;
9733
9734 if (mode & IEEE_G) {
9735 band |= IEEE80211_24GHZ_BAND;
9736 modulation |= IEEE80211_OFDM_MODULATION;
9737 } else
9738 priv->ieee->abg_true = 0;
9739
9740 priv->ieee->mode = mode;
9741 priv->ieee->freq_band = band;
9742 priv->ieee->modulation = modulation;
9743 init_supported_rates(priv, &priv->rates);
9744
9745 /* Network configuration changed -- force [re]association */
9746 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9747 if (!ipw_disassociate(priv)) {
9748 ipw_send_supported_rates(priv, &priv->rates);
9749 ipw_associate(priv);
9750 }
9751
9752 /* Update the band LEDs */
9753 ipw_led_band_on(priv);
9754
9755 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9756 mode & IEEE_A ? 'a' : '.',
9757 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9758 mutex_unlock(&priv->mutex);
9759 return 0;
9760}
9761
9762static int ipw_wx_get_wireless_mode(struct net_device *dev,
9763 struct iw_request_info *info,
9764 union iwreq_data *wrqu, char *extra)
9765{
9766 struct ipw_priv *priv = ieee80211_priv(dev);
9767 mutex_lock(&priv->mutex);
9768 switch (priv->ieee->mode) {
9769 case IEEE_A:
9770 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9771 break;
9772 case IEEE_B:
9773 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9774 break;
9775 case IEEE_A | IEEE_B:
9776 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9777 break;
9778 case IEEE_G:
9779 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9780 break;
9781 case IEEE_A | IEEE_G:
9782 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9783 break;
9784 case IEEE_B | IEEE_G:
9785 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9786 break;
9787 case IEEE_A | IEEE_B | IEEE_G:
9788 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9789 break;
9790 default:
9791 strncpy(extra, "unknown", MAX_WX_STRING);
9792 break;
9793 }
9794
9795 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9796
9797 wrqu->data.length = strlen(extra) + 1;
9798 mutex_unlock(&priv->mutex);
9799
9800 return 0;
9801}
9802
9803static int ipw_wx_set_preamble(struct net_device *dev,
9804 struct iw_request_info *info,
9805 union iwreq_data *wrqu, char *extra)
9806{
9807 struct ipw_priv *priv = ieee80211_priv(dev);
9808 int mode = *(int *)extra;
9809 mutex_lock(&priv->mutex);
9810 /* Switching from SHORT -> LONG requires a disassociation */
9811 if (mode == 1) {
9812 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9813 priv->config |= CFG_PREAMBLE_LONG;
9814
9815 /* Network configuration changed -- force [re]association */
9816 IPW_DEBUG_ASSOC
9817 ("[re]association triggered due to preamble change.\n");
9818 if (!ipw_disassociate(priv))
9819 ipw_associate(priv);
9820 }
9821 goto done;
9822 }
9823
9824 if (mode == 0) {
9825 priv->config &= ~CFG_PREAMBLE_LONG;
9826 goto done;
9827 }
9828 mutex_unlock(&priv->mutex);
9829 return -EINVAL;
9830
9831 done:
9832 mutex_unlock(&priv->mutex);
9833 return 0;
9834}
9835
9836static int ipw_wx_get_preamble(struct net_device *dev,
9837 struct iw_request_info *info,
9838 union iwreq_data *wrqu, char *extra)
9839{
9840 struct ipw_priv *priv = ieee80211_priv(dev);
9841 mutex_lock(&priv->mutex);
9842 if (priv->config & CFG_PREAMBLE_LONG)
9843 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9844 else
9845 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9846 mutex_unlock(&priv->mutex);
9847 return 0;
9848}
9849
9850#ifdef CONFIG_IPW2200_MONITOR
9851static int ipw_wx_set_monitor(struct net_device *dev,
9852 struct iw_request_info *info,
9853 union iwreq_data *wrqu, char *extra)
9854{
9855 struct ipw_priv *priv = ieee80211_priv(dev);
9856 int *parms = (int *)extra;
9857 int enable = (parms[0] > 0);
9858 mutex_lock(&priv->mutex);
9859 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9860 if (enable) {
9861 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9862#ifdef CONFIG_IPW2200_RADIOTAP
9863 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9864#else
9865 priv->net_dev->type = ARPHRD_IEEE80211;
9866#endif
9867 queue_work(priv->workqueue, &priv->adapter_restart);
9868 }
9869
9870 ipw_set_channel(priv, parms[1]);
9871 } else {
9872 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9873 mutex_unlock(&priv->mutex);
9874 return 0;
9875 }
9876 priv->net_dev->type = ARPHRD_ETHER;
9877 queue_work(priv->workqueue, &priv->adapter_restart);
9878 }
9879 mutex_unlock(&priv->mutex);
9880 return 0;
9881}
9882
9883#endif /* CONFIG_IPW2200_MONITOR */
9884
9885static int ipw_wx_reset(struct net_device *dev,
9886 struct iw_request_info *info,
9887 union iwreq_data *wrqu, char *extra)
9888{
9889 struct ipw_priv *priv = ieee80211_priv(dev);
9890 IPW_DEBUG_WX("RESET\n");
9891 queue_work(priv->workqueue, &priv->adapter_restart);
9892 return 0;
9893}
9894
9895static int ipw_wx_sw_reset(struct net_device *dev,
9896 struct iw_request_info *info,
9897 union iwreq_data *wrqu, char *extra)
9898{
9899 struct ipw_priv *priv = ieee80211_priv(dev);
9900 union iwreq_data wrqu_sec = {
9901 .encoding = {
9902 .flags = IW_ENCODE_DISABLED,
9903 },
9904 };
9905 int ret;
9906
9907 IPW_DEBUG_WX("SW_RESET\n");
9908
9909 mutex_lock(&priv->mutex);
9910
9911 ret = ipw_sw_reset(priv, 2);
9912 if (!ret) {
9913 free_firmware();
9914 ipw_adapter_restart(priv);
9915 }
9916
9917 /* The SW reset bit might have been toggled on by the 'disable'
9918 * module parameter, so take appropriate action */
9919 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9920
9921 mutex_unlock(&priv->mutex);
9922 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9923 mutex_lock(&priv->mutex);
9924
9925 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9926 /* Configuration likely changed -- force [re]association */
9927 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9928 "reset.\n");
9929 if (!ipw_disassociate(priv))
9930 ipw_associate(priv);
9931 }
9932
9933 mutex_unlock(&priv->mutex);
9934
9935 return 0;
9936}
9937
9938/* Rebase the WE IOCTLs to zero for the handler array */
9939#define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9940static iw_handler ipw_wx_handlers[] = {
9941 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9942 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9943 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9944 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9945 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9946 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9947 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9948 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9949 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9950 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9951 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9952 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9953 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9954 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9955 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9956 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9957 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9958 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9959 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9960 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9961 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9962 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9963 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9964 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9965 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9966 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9967 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9968 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9969 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9970 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9971 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9972 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9973 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9974 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9975 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9976 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9977 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9978 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9979 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9980 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9981 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9982};
9983
9984enum {
9985 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9986 IPW_PRIV_GET_POWER,
9987 IPW_PRIV_SET_MODE,
9988 IPW_PRIV_GET_MODE,
9989 IPW_PRIV_SET_PREAMBLE,
9990 IPW_PRIV_GET_PREAMBLE,
9991 IPW_PRIV_RESET,
9992 IPW_PRIV_SW_RESET,
9993#ifdef CONFIG_IPW2200_MONITOR
9994 IPW_PRIV_SET_MONITOR,
9995#endif
9996};
9997
9998static struct iw_priv_args ipw_priv_args[] = {
9999 {
10000 .cmd = IPW_PRIV_SET_POWER,
10001 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10002 .name = "set_power"},
10003 {
10004 .cmd = IPW_PRIV_GET_POWER,
10005 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10006 .name = "get_power"},
10007 {
10008 .cmd = IPW_PRIV_SET_MODE,
10009 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10010 .name = "set_mode"},
10011 {
10012 .cmd = IPW_PRIV_GET_MODE,
10013 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10014 .name = "get_mode"},
10015 {
10016 .cmd = IPW_PRIV_SET_PREAMBLE,
10017 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10018 .name = "set_preamble"},
10019 {
10020 .cmd = IPW_PRIV_GET_PREAMBLE,
10021 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10022 .name = "get_preamble"},
10023 {
10024 IPW_PRIV_RESET,
10025 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10026 {
10027 IPW_PRIV_SW_RESET,
10028 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10029#ifdef CONFIG_IPW2200_MONITOR
10030 {
10031 IPW_PRIV_SET_MONITOR,
10032 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10033#endif /* CONFIG_IPW2200_MONITOR */
10034};
10035
10036static iw_handler ipw_priv_handler[] = {
10037 ipw_wx_set_powermode,
10038 ipw_wx_get_powermode,
10039 ipw_wx_set_wireless_mode,
10040 ipw_wx_get_wireless_mode,
10041 ipw_wx_set_preamble,
10042 ipw_wx_get_preamble,
10043 ipw_wx_reset,
10044 ipw_wx_sw_reset,
10045#ifdef CONFIG_IPW2200_MONITOR
10046 ipw_wx_set_monitor,
10047#endif
10048};
10049
10050static struct iw_handler_def ipw_wx_handler_def = {
10051 .standard = ipw_wx_handlers,
10052 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10053 .num_private = ARRAY_SIZE(ipw_priv_handler),
10054 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10055 .private = ipw_priv_handler,
10056 .private_args = ipw_priv_args,
10057 .get_wireless_stats = ipw_get_wireless_stats,
10058};
10059
10060/*
10061 * Get wireless statistics.
10062 * Called by /proc/net/wireless
10063 * Also called by SIOCGIWSTATS
10064 */
10065static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10066{
10067 struct ipw_priv *priv = ieee80211_priv(dev);
10068 struct iw_statistics *wstats;
10069
10070 wstats = &priv->wstats;
10071
10072 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10073 * netdev->get_wireless_stats seems to be called before fw is
10074 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10075 * and associated; if not associcated, the values are all meaningless
10076 * anyway, so set them all to NULL and INVALID */
10077 if (!(priv->status & STATUS_ASSOCIATED)) {
10078 wstats->miss.beacon = 0;
10079 wstats->discard.retries = 0;
10080 wstats->qual.qual = 0;
10081 wstats->qual.level = 0;
10082 wstats->qual.noise = 0;
10083 wstats->qual.updated = 7;
10084 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10085 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10086 return wstats;
10087 }
10088
10089 wstats->qual.qual = priv->quality;
10090 wstats->qual.level = priv->exp_avg_rssi;
10091 wstats->qual.noise = priv->exp_avg_noise;
10092 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10093 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10094
10095 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10096 wstats->discard.retries = priv->last_tx_failures;
10097 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10098
10099/* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10100 goto fail_get_ordinal;
10101 wstats->discard.retries += tx_retry; */
10102
10103 return wstats;
10104}
10105
10106/* net device stuff */
10107
10108static void init_sys_config(struct ipw_sys_config *sys_config)
10109{
10110 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10111 sys_config->bt_coexistence = 0;
10112 sys_config->answer_broadcast_ssid_probe = 0;
10113 sys_config->accept_all_data_frames = 0;
10114 sys_config->accept_non_directed_frames = 1;
10115 sys_config->exclude_unicast_unencrypted = 0;
10116 sys_config->disable_unicast_decryption = 1;
10117 sys_config->exclude_multicast_unencrypted = 0;
10118 sys_config->disable_multicast_decryption = 1;
10119 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10120 antenna = CFG_SYS_ANTENNA_BOTH;
10121 sys_config->antenna_diversity = antenna;
10122 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10123 sys_config->dot11g_auto_detection = 0;
10124 sys_config->enable_cts_to_self = 0;
10125 sys_config->bt_coexist_collision_thr = 0;
10126 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10127 sys_config->silence_threshold = 0x1e;
10128}
10129
10130static int ipw_net_open(struct net_device *dev)
10131{
10132 IPW_DEBUG_INFO("dev->open\n");
10133 netif_start_queue(dev);
10134 return 0;
10135}
10136
10137static int ipw_net_stop(struct net_device *dev)
10138{
10139 IPW_DEBUG_INFO("dev->close\n");
10140 netif_stop_queue(dev);
10141 return 0;
10142}
10143
10144/*
10145todo:
10146
10147modify to send one tfd per fragment instead of using chunking. otherwise
10148we need to heavily modify the ieee80211_skb_to_txb.
10149*/
10150
10151static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10152 int pri)
10153{
10154 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10155 txb->fragments[0]->data;
10156 int i = 0;
10157 struct tfd_frame *tfd;
10158#ifdef CONFIG_IPW2200_QOS
10159 int tx_id = ipw_get_tx_queue_number(priv, pri);
10160 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10161#else
10162 struct clx2_tx_queue *txq = &priv->txq[0];
10163#endif
10164 struct clx2_queue *q = &txq->q;
10165 u8 id, hdr_len, unicast;
10166 u16 remaining_bytes;
10167 int fc;
10168
10169 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10170 switch (priv->ieee->iw_mode) {
10171 case IW_MODE_ADHOC:
10172 unicast = !is_multicast_ether_addr(hdr->addr1);
10173 id = ipw_find_station(priv, hdr->addr1);
10174 if (id == IPW_INVALID_STATION) {
10175 id = ipw_add_station(priv, hdr->addr1);
10176 if (id == IPW_INVALID_STATION) {
10177 IPW_WARNING("Attempt to send data to "
10178 "invalid cell: %pM\n",
10179 hdr->addr1);
10180 goto drop;
10181 }
10182 }
10183 break;
10184
10185 case IW_MODE_INFRA:
10186 default:
10187 unicast = !is_multicast_ether_addr(hdr->addr3);
10188 id = 0;
10189 break;
10190 }
10191
10192 tfd = &txq->bd[q->first_empty];
10193 txq->txb[q->first_empty] = txb;
10194 memset(tfd, 0, sizeof(*tfd));
10195 tfd->u.data.station_number = id;
10196
10197 tfd->control_flags.message_type = TX_FRAME_TYPE;
10198 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10199
10200 tfd->u.data.cmd_id = DINO_CMD_TX;
10201 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10202 remaining_bytes = txb->payload_size;
10203
10204 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10205 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10206 else
10207 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10208
10209 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10210 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10211
10212 fc = le16_to_cpu(hdr->frame_ctl);
10213 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10214
10215 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10216
10217 if (likely(unicast))
10218 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10219
10220 if (txb->encrypted && !priv->ieee->host_encrypt) {
10221 switch (priv->ieee->sec.level) {
10222 case SEC_LEVEL_3:
10223 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10224 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10225 /* XXX: ACK flag must be set for CCMP even if it
10226 * is a multicast/broadcast packet, because CCMP
10227 * group communication encrypted by GTK is
10228 * actually done by the AP. */
10229 if (!unicast)
10230 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10231
10232 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10233 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10234 tfd->u.data.key_index = 0;
10235 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10236 break;
10237 case SEC_LEVEL_2:
10238 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10239 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10240 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10241 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10242 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10243 break;
10244 case SEC_LEVEL_1:
10245 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10246 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10247 tfd->u.data.key_index = priv->ieee->tx_keyidx;
10248 if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10249 40)
10250 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10251 else
10252 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10253 break;
10254 case SEC_LEVEL_0:
10255 break;
10256 default:
10257 printk(KERN_ERR "Unknow security level %d\n",
10258 priv->ieee->sec.level);
10259 break;
10260 }
10261 } else
10262 /* No hardware encryption */
10263 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10264
10265#ifdef CONFIG_IPW2200_QOS
10266 if (fc & IEEE80211_STYPE_QOS_DATA)
10267 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10268#endif /* CONFIG_IPW2200_QOS */
10269
10270 /* payload */
10271 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10272 txb->nr_frags));
10273 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10274 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10275 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10276 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10277 i, le32_to_cpu(tfd->u.data.num_chunks),
10278 txb->fragments[i]->len - hdr_len);
10279 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10280 i, tfd->u.data.num_chunks,
10281 txb->fragments[i]->len - hdr_len);
10282 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10283 txb->fragments[i]->len - hdr_len);
10284
10285 tfd->u.data.chunk_ptr[i] =
10286 cpu_to_le32(pci_map_single
10287 (priv->pci_dev,
10288 txb->fragments[i]->data + hdr_len,
10289 txb->fragments[i]->len - hdr_len,
10290 PCI_DMA_TODEVICE));
10291 tfd->u.data.chunk_len[i] =
10292 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10293 }
10294
10295 if (i != txb->nr_frags) {
10296 struct sk_buff *skb;
10297 u16 remaining_bytes = 0;
10298 int j;
10299
10300 for (j = i; j < txb->nr_frags; j++)
10301 remaining_bytes += txb->fragments[j]->len - hdr_len;
10302
10303 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10304 remaining_bytes);
10305 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10306 if (skb != NULL) {
10307 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10308 for (j = i; j < txb->nr_frags; j++) {
10309 int size = txb->fragments[j]->len - hdr_len;
10310
10311 printk(KERN_INFO "Adding frag %d %d...\n",
10312 j, size);
10313 memcpy(skb_put(skb, size),
10314 txb->fragments[j]->data + hdr_len, size);
10315 }
10316 dev_kfree_skb_any(txb->fragments[i]);
10317 txb->fragments[i] = skb;
10318 tfd->u.data.chunk_ptr[i] =
10319 cpu_to_le32(pci_map_single
10320 (priv->pci_dev, skb->data,
10321 remaining_bytes,
10322 PCI_DMA_TODEVICE));
10323
10324 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10325 }
10326 }
10327
10328 /* kick DMA */
10329 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10330 ipw_write32(priv, q->reg_w, q->first_empty);
10331
10332 if (ipw_tx_queue_space(q) < q->high_mark)
10333 netif_stop_queue(priv->net_dev);
10334
10335 return NETDEV_TX_OK;
10336
10337 drop:
10338 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10339 ieee80211_txb_free(txb);
10340 return NETDEV_TX_OK;
10341}
10342
10343static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10344{
10345 struct ipw_priv *priv = ieee80211_priv(dev);
10346#ifdef CONFIG_IPW2200_QOS
10347 int tx_id = ipw_get_tx_queue_number(priv, pri);
10348 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10349#else
10350 struct clx2_tx_queue *txq = &priv->txq[0];
10351#endif /* CONFIG_IPW2200_QOS */
10352
10353 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10354 return 1;
10355
10356 return 0;
10357}
10358
10359#ifdef CONFIG_IPW2200_PROMISCUOUS
10360static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10361 struct ieee80211_txb *txb)
10362{
10363 struct ieee80211_rx_stats dummystats;
10364 struct ieee80211_hdr *hdr;
10365 u8 n;
10366 u16 filter = priv->prom_priv->filter;
10367 int hdr_only = 0;
10368
10369 if (filter & IPW_PROM_NO_TX)
10370 return;
10371
10372 memset(&dummystats, 0, sizeof(dummystats));
10373
10374 /* Filtering of fragment chains is done agains the first fragment */
10375 hdr = (void *)txb->fragments[0]->data;
10376 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10377 if (filter & IPW_PROM_NO_MGMT)
10378 return;
10379 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10380 hdr_only = 1;
10381 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10382 if (filter & IPW_PROM_NO_CTL)
10383 return;
10384 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10385 hdr_only = 1;
10386 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10387 if (filter & IPW_PROM_NO_DATA)
10388 return;
10389 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10390 hdr_only = 1;
10391 }
10392
10393 for(n=0; n<txb->nr_frags; ++n) {
10394 struct sk_buff *src = txb->fragments[n];
10395 struct sk_buff *dst;
10396 struct ieee80211_radiotap_header *rt_hdr;
10397 int len;
10398
10399 if (hdr_only) {
10400 hdr = (void *)src->data;
10401 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10402 } else
10403 len = src->len;
10404
10405 dst = alloc_skb(
10406 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10407 if (!dst) continue;
10408
10409 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10410
10411 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10412 rt_hdr->it_pad = 0;
10413 rt_hdr->it_present = 0; /* after all, it's just an idea */
10414 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10415
10416 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10417 ieee80211chan2mhz(priv->channel));
10418 if (priv->channel > 14) /* 802.11a */
10419 *(__le16*)skb_put(dst, sizeof(u16)) =
10420 cpu_to_le16(IEEE80211_CHAN_OFDM |
10421 IEEE80211_CHAN_5GHZ);
10422 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10423 *(__le16*)skb_put(dst, sizeof(u16)) =
10424 cpu_to_le16(IEEE80211_CHAN_CCK |
10425 IEEE80211_CHAN_2GHZ);
10426 else /* 802.11g */
10427 *(__le16*)skb_put(dst, sizeof(u16)) =
10428 cpu_to_le16(IEEE80211_CHAN_OFDM |
10429 IEEE80211_CHAN_2GHZ);
10430
10431 rt_hdr->it_len = cpu_to_le16(dst->len);
10432
10433 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10434
10435 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10436 dev_kfree_skb_any(dst);
10437 }
10438}
10439#endif
10440
10441static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10442 struct net_device *dev, int pri)
10443{
10444 struct ipw_priv *priv = ieee80211_priv(dev);
10445 unsigned long flags;
10446 int ret;
10447
10448 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10449 spin_lock_irqsave(&priv->lock, flags);
10450
10451#ifdef CONFIG_IPW2200_PROMISCUOUS
10452 if (rtap_iface && netif_running(priv->prom_net_dev))
10453 ipw_handle_promiscuous_tx(priv, txb);
10454#endif
10455
10456 ret = ipw_tx_skb(priv, txb, pri);
10457 if (ret == NETDEV_TX_OK)
10458 __ipw_led_activity_on(priv);
10459 spin_unlock_irqrestore(&priv->lock, flags);
10460
10461 return ret;
10462}
10463
10464static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10465{
10466 struct ipw_priv *priv = ieee80211_priv(dev);
10467
10468 priv->ieee->stats.tx_packets = priv->tx_packets;
10469 priv->ieee->stats.rx_packets = priv->rx_packets;
10470 return &priv->ieee->stats;
10471}
10472
10473static void ipw_net_set_multicast_list(struct net_device *dev)
10474{
10475
10476}
10477
10478static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10479{
10480 struct ipw_priv *priv = ieee80211_priv(dev);
10481 struct sockaddr *addr = p;
10482
10483 if (!is_valid_ether_addr(addr->sa_data))
10484 return -EADDRNOTAVAIL;
10485 mutex_lock(&priv->mutex);
10486 priv->config |= CFG_CUSTOM_MAC;
10487 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10488 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10489 priv->net_dev->name, priv->mac_addr);
10490 queue_work(priv->workqueue, &priv->adapter_restart);
10491 mutex_unlock(&priv->mutex);
10492 return 0;
10493}
10494
10495static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10496 struct ethtool_drvinfo *info)
10497{
10498 struct ipw_priv *p = ieee80211_priv(dev);
10499 char vers[64];
10500 char date[32];
10501 u32 len;
10502
10503 strcpy(info->driver, DRV_NAME);
10504 strcpy(info->version, DRV_VERSION);
10505
10506 len = sizeof(vers);
10507 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10508 len = sizeof(date);
10509 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10510
10511 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10512 vers, date);
10513 strcpy(info->bus_info, pci_name(p->pci_dev));
10514 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10515}
10516
10517static u32 ipw_ethtool_get_link(struct net_device *dev)
10518{
10519 struct ipw_priv *priv = ieee80211_priv(dev);
10520 return (priv->status & STATUS_ASSOCIATED) != 0;
10521}
10522
10523static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10524{
10525 return IPW_EEPROM_IMAGE_SIZE;
10526}
10527
10528static int ipw_ethtool_get_eeprom(struct net_device *dev,
10529 struct ethtool_eeprom *eeprom, u8 * bytes)
10530{
10531 struct ipw_priv *p = ieee80211_priv(dev);
10532
10533 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10534 return -EINVAL;
10535 mutex_lock(&p->mutex);
10536 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10537 mutex_unlock(&p->mutex);
10538 return 0;
10539}
10540
10541static int ipw_ethtool_set_eeprom(struct net_device *dev,
10542 struct ethtool_eeprom *eeprom, u8 * bytes)
10543{
10544 struct ipw_priv *p = ieee80211_priv(dev);
10545 int i;
10546
10547 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10548 return -EINVAL;
10549 mutex_lock(&p->mutex);
10550 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10551 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10552 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10553 mutex_unlock(&p->mutex);
10554 return 0;
10555}
10556
10557static const struct ethtool_ops ipw_ethtool_ops = {
10558 .get_link = ipw_ethtool_get_link,
10559 .get_drvinfo = ipw_ethtool_get_drvinfo,
10560 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10561 .get_eeprom = ipw_ethtool_get_eeprom,
10562 .set_eeprom = ipw_ethtool_set_eeprom,
10563};
10564
10565static irqreturn_t ipw_isr(int irq, void *data)
10566{
10567 struct ipw_priv *priv = data;
10568 u32 inta, inta_mask;
10569
10570 if (!priv)
10571 return IRQ_NONE;
10572
10573 spin_lock(&priv->irq_lock);
10574
10575 if (!(priv->status & STATUS_INT_ENABLED)) {
10576 /* IRQ is disabled */
10577 goto none;
10578 }
10579
10580 inta = ipw_read32(priv, IPW_INTA_RW);
10581 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10582
10583 if (inta == 0xFFFFFFFF) {
10584 /* Hardware disappeared */
10585 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10586 goto none;
10587 }
10588
10589 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10590 /* Shared interrupt */
10591 goto none;
10592 }
10593
10594 /* tell the device to stop sending interrupts */
10595 __ipw_disable_interrupts(priv);
10596
10597 /* ack current interrupts */
10598 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10599 ipw_write32(priv, IPW_INTA_RW, inta);
10600
10601 /* Cache INTA value for our tasklet */
10602 priv->isr_inta = inta;
10603
10604 tasklet_schedule(&priv->irq_tasklet);
10605
10606 spin_unlock(&priv->irq_lock);
10607
10608 return IRQ_HANDLED;
10609 none:
10610 spin_unlock(&priv->irq_lock);
10611 return IRQ_NONE;
10612}
10613
10614static void ipw_rf_kill(void *adapter)
10615{
10616 struct ipw_priv *priv = adapter;
10617 unsigned long flags;
10618
10619 spin_lock_irqsave(&priv->lock, flags);
10620
10621 if (rf_kill_active(priv)) {
10622 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10623 if (priv->workqueue)
10624 queue_delayed_work(priv->workqueue,
10625 &priv->rf_kill, 2 * HZ);
10626 goto exit_unlock;
10627 }
10628
10629 /* RF Kill is now disabled, so bring the device back up */
10630
10631 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10632 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10633 "device\n");
10634
10635 /* we can not do an adapter restart while inside an irq lock */
10636 queue_work(priv->workqueue, &priv->adapter_restart);
10637 } else
10638 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10639 "enabled\n");
10640
10641 exit_unlock:
10642 spin_unlock_irqrestore(&priv->lock, flags);
10643}
10644
10645static void ipw_bg_rf_kill(struct work_struct *work)
10646{
10647 struct ipw_priv *priv =
10648 container_of(work, struct ipw_priv, rf_kill.work);
10649 mutex_lock(&priv->mutex);
10650 ipw_rf_kill(priv);
10651 mutex_unlock(&priv->mutex);
10652}
10653
10654static void ipw_link_up(struct ipw_priv *priv)
10655{
10656 priv->last_seq_num = -1;
10657 priv->last_frag_num = -1;
10658 priv->last_packet_time = 0;
10659
10660 netif_carrier_on(priv->net_dev);
10661
10662 cancel_delayed_work(&priv->request_scan);
10663 cancel_delayed_work(&priv->request_direct_scan);
10664 cancel_delayed_work(&priv->request_passive_scan);
10665 cancel_delayed_work(&priv->scan_event);
10666 ipw_reset_stats(priv);
10667 /* Ensure the rate is updated immediately */
10668 priv->last_rate = ipw_get_current_rate(priv);
10669 ipw_gather_stats(priv);
10670 ipw_led_link_up(priv);
10671 notify_wx_assoc_event(priv);
10672
10673 if (priv->config & CFG_BACKGROUND_SCAN)
10674 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10675}
10676
10677static void ipw_bg_link_up(struct work_struct *work)
10678{
10679 struct ipw_priv *priv =
10680 container_of(work, struct ipw_priv, link_up);
10681 mutex_lock(&priv->mutex);
10682 ipw_link_up(priv);
10683 mutex_unlock(&priv->mutex);
10684}
10685
10686static void ipw_link_down(struct ipw_priv *priv)
10687{
10688 ipw_led_link_down(priv);
10689 netif_carrier_off(priv->net_dev);
10690 notify_wx_assoc_event(priv);
10691
10692 /* Cancel any queued work ... */
10693 cancel_delayed_work(&priv->request_scan);
10694 cancel_delayed_work(&priv->request_direct_scan);
10695 cancel_delayed_work(&priv->request_passive_scan);
10696 cancel_delayed_work(&priv->adhoc_check);
10697 cancel_delayed_work(&priv->gather_stats);
10698
10699 ipw_reset_stats(priv);
10700
10701 if (!(priv->status & STATUS_EXIT_PENDING)) {
10702 /* Queue up another scan... */
10703 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10704 } else
10705 cancel_delayed_work(&priv->scan_event);
10706}
10707
10708static void ipw_bg_link_down(struct work_struct *work)
10709{
10710 struct ipw_priv *priv =
10711 container_of(work, struct ipw_priv, link_down);
10712 mutex_lock(&priv->mutex);
10713 ipw_link_down(priv);
10714 mutex_unlock(&priv->mutex);
10715}
10716
10717static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10718{
10719 int ret = 0;
10720
10721 priv->workqueue = create_workqueue(DRV_NAME);
10722 init_waitqueue_head(&priv->wait_command_queue);
10723 init_waitqueue_head(&priv->wait_state);
10724
10725 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10726 INIT_WORK(&priv->associate, ipw_bg_associate);
10727 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10728 INIT_WORK(&priv->system_config, ipw_system_config);
10729 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10730 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10731 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10732 INIT_WORK(&priv->up, ipw_bg_up);
10733 INIT_WORK(&priv->down, ipw_bg_down);
10734 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10735 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10736 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10737 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10738 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10739 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10740 INIT_WORK(&priv->roam, ipw_bg_roam);
10741 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10742 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10743 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10744 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10745 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10746 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10747 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10748
10749#ifdef CONFIG_IPW2200_QOS
10750 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10751#endif /* CONFIG_IPW2200_QOS */
10752
10753 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10754 ipw_irq_tasklet, (unsigned long)priv);
10755
10756 return ret;
10757}
10758
10759static void shim__set_security(struct net_device *dev,
10760 struct ieee80211_security *sec)
10761{
10762 struct ipw_priv *priv = ieee80211_priv(dev);
10763 int i;
10764 for (i = 0; i < 4; i++) {
10765 if (sec->flags & (1 << i)) {
10766 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10767 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10768 if (sec->key_sizes[i] == 0)
10769 priv->ieee->sec.flags &= ~(1 << i);
10770 else {
10771 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10772 sec->key_sizes[i]);
10773 priv->ieee->sec.flags |= (1 << i);
10774 }
10775 priv->status |= STATUS_SECURITY_UPDATED;
10776 } else if (sec->level != SEC_LEVEL_1)
10777 priv->ieee->sec.flags &= ~(1 << i);
10778 }
10779
10780 if (sec->flags & SEC_ACTIVE_KEY) {
10781 if (sec->active_key <= 3) {
10782 priv->ieee->sec.active_key = sec->active_key;
10783 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10784 } else
10785 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10786 priv->status |= STATUS_SECURITY_UPDATED;
10787 } else
10788 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10789
10790 if ((sec->flags & SEC_AUTH_MODE) &&
10791 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10792 priv->ieee->sec.auth_mode = sec->auth_mode;
10793 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10794 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10795 priv->capability |= CAP_SHARED_KEY;
10796 else
10797 priv->capability &= ~CAP_SHARED_KEY;
10798 priv->status |= STATUS_SECURITY_UPDATED;
10799 }
10800
10801 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10802 priv->ieee->sec.flags |= SEC_ENABLED;
10803 priv->ieee->sec.enabled = sec->enabled;
10804 priv->status |= STATUS_SECURITY_UPDATED;
10805 if (sec->enabled)
10806 priv->capability |= CAP_PRIVACY_ON;
10807 else
10808 priv->capability &= ~CAP_PRIVACY_ON;
10809 }
10810
10811 if (sec->flags & SEC_ENCRYPT)
10812 priv->ieee->sec.encrypt = sec->encrypt;
10813
10814 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10815 priv->ieee->sec.level = sec->level;
10816 priv->ieee->sec.flags |= SEC_LEVEL;
10817 priv->status |= STATUS_SECURITY_UPDATED;
10818 }
10819
10820 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10821 ipw_set_hwcrypto_keys(priv);
10822
10823 /* To match current functionality of ipw2100 (which works well w/
10824 * various supplicants, we don't force a disassociate if the
10825 * privacy capability changes ... */
10826#if 0
10827 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10828 (((priv->assoc_request.capability &
10829 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10830 (!(priv->assoc_request.capability &
10831 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10832 IPW_DEBUG_ASSOC("Disassociating due to capability "
10833 "change.\n");
10834 ipw_disassociate(priv);
10835 }
10836#endif
10837}
10838
10839static int init_supported_rates(struct ipw_priv *priv,
10840 struct ipw_supported_rates *rates)
10841{
10842 /* TODO: Mask out rates based on priv->rates_mask */
10843
10844 memset(rates, 0, sizeof(*rates));
10845 /* configure supported rates */
10846 switch (priv->ieee->freq_band) {
10847 case IEEE80211_52GHZ_BAND:
10848 rates->ieee_mode = IPW_A_MODE;
10849 rates->purpose = IPW_RATE_CAPABILITIES;
10850 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10851 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10852 break;
10853
10854 default: /* Mixed or 2.4Ghz */
10855 rates->ieee_mode = IPW_G_MODE;
10856 rates->purpose = IPW_RATE_CAPABILITIES;
10857 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10858 IEEE80211_CCK_DEFAULT_RATES_MASK);
10859 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10860 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10861 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10862 }
10863 break;
10864 }
10865
10866 return 0;
10867}
10868
10869static int ipw_config(struct ipw_priv *priv)
10870{
10871 /* This is only called from ipw_up, which resets/reloads the firmware
10872 so, we don't need to first disable the card before we configure
10873 it */
10874 if (ipw_set_tx_power(priv))
10875 goto error;
10876
10877 /* initialize adapter address */
10878 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10879 goto error;
10880
10881 /* set basic system config settings */
10882 init_sys_config(&priv->sys_config);
10883
10884 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10885 * Does not support BT priority yet (don't abort or defer our Tx) */
10886 if (bt_coexist) {
10887 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10888
10889 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10890 priv->sys_config.bt_coexistence
10891 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10892 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10893 priv->sys_config.bt_coexistence
10894 |= CFG_BT_COEXISTENCE_OOB;
10895 }
10896
10897#ifdef CONFIG_IPW2200_PROMISCUOUS
10898 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10899 priv->sys_config.accept_all_data_frames = 1;
10900 priv->sys_config.accept_non_directed_frames = 1;
10901 priv->sys_config.accept_all_mgmt_bcpr = 1;
10902 priv->sys_config.accept_all_mgmt_frames = 1;
10903 }
10904#endif
10905
10906 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10907 priv->sys_config.answer_broadcast_ssid_probe = 1;
10908 else
10909 priv->sys_config.answer_broadcast_ssid_probe = 0;
10910
10911 if (ipw_send_system_config(priv))
10912 goto error;
10913
10914 init_supported_rates(priv, &priv->rates);
10915 if (ipw_send_supported_rates(priv, &priv->rates))
10916 goto error;
10917
10918 /* Set request-to-send threshold */
10919 if (priv->rts_threshold) {
10920 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10921 goto error;
10922 }
10923#ifdef CONFIG_IPW2200_QOS
10924 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10925 ipw_qos_activate(priv, NULL);
10926#endif /* CONFIG_IPW2200_QOS */
10927
10928 if (ipw_set_random_seed(priv))
10929 goto error;
10930
10931 /* final state transition to the RUN state */
10932 if (ipw_send_host_complete(priv))
10933 goto error;
10934
10935 priv->status |= STATUS_INIT;
10936
10937 ipw_led_init(priv);
10938 ipw_led_radio_on(priv);
10939 priv->notif_missed_beacons = 0;
10940
10941 /* Set hardware WEP key if it is configured. */
10942 if ((priv->capability & CAP_PRIVACY_ON) &&
10943 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10944 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10945 ipw_set_hwcrypto_keys(priv);
10946
10947 return 0;
10948
10949 error:
10950 return -EIO;
10951}
10952
10953/*
10954 * NOTE:
10955 *
10956 * These tables have been tested in conjunction with the
10957 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10958 *
10959 * Altering this values, using it on other hardware, or in geographies
10960 * not intended for resale of the above mentioned Intel adapters has
10961 * not been tested.
10962 *
10963 * Remember to update the table in README.ipw2200 when changing this
10964 * table.
10965 *
10966 */
10967static const struct ieee80211_geo ipw_geos[] = {
10968 { /* Restricted */
10969 "---",
10970 .bg_channels = 11,
10971 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10972 {2427, 4}, {2432, 5}, {2437, 6},
10973 {2442, 7}, {2447, 8}, {2452, 9},
10974 {2457, 10}, {2462, 11}},
10975 },
10976
10977 { /* Custom US/Canada */
10978 "ZZF",
10979 .bg_channels = 11,
10980 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10981 {2427, 4}, {2432, 5}, {2437, 6},
10982 {2442, 7}, {2447, 8}, {2452, 9},
10983 {2457, 10}, {2462, 11}},
10984 .a_channels = 8,
10985 .a = {{5180, 36},
10986 {5200, 40},
10987 {5220, 44},
10988 {5240, 48},
10989 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10990 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10991 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10992 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10993 },
10994
10995 { /* Rest of World */
10996 "ZZD",
10997 .bg_channels = 13,
10998 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10999 {2427, 4}, {2432, 5}, {2437, 6},
11000 {2442, 7}, {2447, 8}, {2452, 9},
11001 {2457, 10}, {2462, 11}, {2467, 12},
11002 {2472, 13}},
11003 },
11004
11005 { /* Custom USA & Europe & High */
11006 "ZZA",
11007 .bg_channels = 11,
11008 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11009 {2427, 4}, {2432, 5}, {2437, 6},
11010 {2442, 7}, {2447, 8}, {2452, 9},
11011 {2457, 10}, {2462, 11}},
11012 .a_channels = 13,
11013 .a = {{5180, 36},
11014 {5200, 40},
11015 {5220, 44},
11016 {5240, 48},
11017 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11018 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11019 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11020 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11021 {5745, 149},
11022 {5765, 153},
11023 {5785, 157},
11024 {5805, 161},
11025 {5825, 165}},
11026 },
11027
11028 { /* Custom NA & Europe */
11029 "ZZB",
11030 .bg_channels = 11,
11031 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11032 {2427, 4}, {2432, 5}, {2437, 6},
11033 {2442, 7}, {2447, 8}, {2452, 9},
11034 {2457, 10}, {2462, 11}},
11035 .a_channels = 13,
11036 .a = {{5180, 36},
11037 {5200, 40},
11038 {5220, 44},
11039 {5240, 48},
11040 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11041 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11042 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11043 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11044 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11045 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11046 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11047 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11048 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11049 },
11050
11051 { /* Custom Japan */
11052 "ZZC",
11053 .bg_channels = 11,
11054 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11055 {2427, 4}, {2432, 5}, {2437, 6},
11056 {2442, 7}, {2447, 8}, {2452, 9},
11057 {2457, 10}, {2462, 11}},
11058 .a_channels = 4,
11059 .a = {{5170, 34}, {5190, 38},
11060 {5210, 42}, {5230, 46}},
11061 },
11062
11063 { /* Custom */
11064 "ZZM",
11065 .bg_channels = 11,
11066 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11067 {2427, 4}, {2432, 5}, {2437, 6},
11068 {2442, 7}, {2447, 8}, {2452, 9},
11069 {2457, 10}, {2462, 11}},
11070 },
11071
11072 { /* Europe */
11073 "ZZE",
11074 .bg_channels = 13,
11075 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11076 {2427, 4}, {2432, 5}, {2437, 6},
11077 {2442, 7}, {2447, 8}, {2452, 9},
11078 {2457, 10}, {2462, 11}, {2467, 12},
11079 {2472, 13}},
11080 .a_channels = 19,
11081 .a = {{5180, 36},
11082 {5200, 40},
11083 {5220, 44},
11084 {5240, 48},
11085 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11086 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11087 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11088 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11089 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11090 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11091 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11092 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11093 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11094 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11095 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11096 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11097 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11098 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11099 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11100 },
11101
11102 { /* Custom Japan */
11103 "ZZJ",
11104 .bg_channels = 14,
11105 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11106 {2427, 4}, {2432, 5}, {2437, 6},
11107 {2442, 7}, {2447, 8}, {2452, 9},
11108 {2457, 10}, {2462, 11}, {2467, 12},
11109 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11110 .a_channels = 4,
11111 .a = {{5170, 34}, {5190, 38},
11112 {5210, 42}, {5230, 46}},
11113 },
11114
11115 { /* Rest of World */
11116 "ZZR",
11117 .bg_channels = 14,
11118 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11119 {2427, 4}, {2432, 5}, {2437, 6},
11120 {2442, 7}, {2447, 8}, {2452, 9},
11121 {2457, 10}, {2462, 11}, {2467, 12},
11122 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11123 IEEE80211_CH_PASSIVE_ONLY}},
11124 },
11125
11126 { /* High Band */
11127 "ZZH",
11128 .bg_channels = 13,
11129 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11130 {2427, 4}, {2432, 5}, {2437, 6},
11131 {2442, 7}, {2447, 8}, {2452, 9},
11132 {2457, 10}, {2462, 11},
11133 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11134 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11135 .a_channels = 4,
11136 .a = {{5745, 149}, {5765, 153},
11137 {5785, 157}, {5805, 161}},
11138 },
11139
11140 { /* Custom Europe */
11141 "ZZG",
11142 .bg_channels = 13,
11143 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11144 {2427, 4}, {2432, 5}, {2437, 6},
11145 {2442, 7}, {2447, 8}, {2452, 9},
11146 {2457, 10}, {2462, 11},
11147 {2467, 12}, {2472, 13}},
11148 .a_channels = 4,
11149 .a = {{5180, 36}, {5200, 40},
11150 {5220, 44}, {5240, 48}},
11151 },
11152
11153 { /* Europe */
11154 "ZZK",
11155 .bg_channels = 13,
11156 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11157 {2427, 4}, {2432, 5}, {2437, 6},
11158 {2442, 7}, {2447, 8}, {2452, 9},
11159 {2457, 10}, {2462, 11},
11160 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11161 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11162 .a_channels = 24,
11163 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11164 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11165 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11166 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11167 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11168 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11169 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11170 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11171 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11172 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11173 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11174 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11175 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11176 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11177 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11178 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11179 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11180 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11181 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11182 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11183 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11184 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11185 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11186 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11187 },
11188
11189 { /* Europe */
11190 "ZZL",
11191 .bg_channels = 11,
11192 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11193 {2427, 4}, {2432, 5}, {2437, 6},
11194 {2442, 7}, {2447, 8}, {2452, 9},
11195 {2457, 10}, {2462, 11}},
11196 .a_channels = 13,
11197 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11198 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11199 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11200 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11201 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11202 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11203 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11204 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11205 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11206 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11207 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11208 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11209 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11210 }
11211};
11212
11213#define MAX_HW_RESTARTS 5
11214static int ipw_up(struct ipw_priv *priv)
11215{
11216 int rc, i, j;
11217
11218 if (priv->status & STATUS_EXIT_PENDING)
11219 return -EIO;
11220
11221 if (cmdlog && !priv->cmdlog) {
11222 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11223 GFP_KERNEL);
11224 if (priv->cmdlog == NULL) {
11225 IPW_ERROR("Error allocating %d command log entries.\n",
11226 cmdlog);
11227 return -ENOMEM;
11228 } else {
11229 priv->cmdlog_len = cmdlog;
11230 }
11231 }
11232
11233 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11234 /* Load the microcode, firmware, and eeprom.
11235 * Also start the clocks. */
11236 rc = ipw_load(priv);
11237 if (rc) {
11238 IPW_ERROR("Unable to load firmware: %d\n", rc);
11239 return rc;
11240 }
11241
11242 ipw_init_ordinals(priv);
11243 if (!(priv->config & CFG_CUSTOM_MAC))
11244 eeprom_parse_mac(priv, priv->mac_addr);
11245 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11246
11247 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11248 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11249 ipw_geos[j].name, 3))
11250 break;
11251 }
11252 if (j == ARRAY_SIZE(ipw_geos)) {
11253 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11254 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11255 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11256 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11257 j = 0;
11258 }
11259 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11260 IPW_WARNING("Could not set geography.");
11261 return 0;
11262 }
11263
11264 if (priv->status & STATUS_RF_KILL_SW) {
11265 IPW_WARNING("Radio disabled by module parameter.\n");
11266 return 0;
11267 } else if (rf_kill_active(priv)) {
11268 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11269 "Kill switch must be turned off for "
11270 "wireless networking to work.\n");
11271 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11272 2 * HZ);
11273 return 0;
11274 }
11275
11276 rc = ipw_config(priv);
11277 if (!rc) {
11278 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11279
11280 /* If configure to try and auto-associate, kick
11281 * off a scan. */
11282 queue_delayed_work(priv->workqueue,
11283 &priv->request_scan, 0);
11284
11285 return 0;
11286 }
11287
11288 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11289 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11290 i, MAX_HW_RESTARTS);
11291
11292 /* We had an error bringing up the hardware, so take it
11293 * all the way back down so we can try again */
11294 ipw_down(priv);
11295 }
11296
11297 /* tried to restart and config the device for as long as our
11298 * patience could withstand */
11299 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11300
11301 return -EIO;
11302}
11303
11304static void ipw_bg_up(struct work_struct *work)
11305{
11306 struct ipw_priv *priv =
11307 container_of(work, struct ipw_priv, up);
11308 mutex_lock(&priv->mutex);
11309 ipw_up(priv);
11310 mutex_unlock(&priv->mutex);
11311}
11312
11313static void ipw_deinit(struct ipw_priv *priv)
11314{
11315 int i;
11316
11317 if (priv->status & STATUS_SCANNING) {
11318 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11319 ipw_abort_scan(priv);
11320 }
11321
11322 if (priv->status & STATUS_ASSOCIATED) {
11323 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11324 ipw_disassociate(priv);
11325 }
11326
11327 ipw_led_shutdown(priv);
11328
11329 /* Wait up to 1s for status to change to not scanning and not
11330 * associated (disassociation can take a while for a ful 802.11
11331 * exchange */
11332 for (i = 1000; i && (priv->status &
11333 (STATUS_DISASSOCIATING |
11334 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11335 udelay(10);
11336
11337 if (priv->status & (STATUS_DISASSOCIATING |
11338 STATUS_ASSOCIATED | STATUS_SCANNING))
11339 IPW_DEBUG_INFO("Still associated or scanning...\n");
11340 else
11341 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11342
11343 /* Attempt to disable the card */
11344 ipw_send_card_disable(priv, 0);
11345
11346 priv->status &= ~STATUS_INIT;
11347}
11348
11349static void ipw_down(struct ipw_priv *priv)
11350{
11351 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11352
11353 priv->status |= STATUS_EXIT_PENDING;
11354
11355 if (ipw_is_init(priv))
11356 ipw_deinit(priv);
11357
11358 /* Wipe out the EXIT_PENDING status bit if we are not actually
11359 * exiting the module */
11360 if (!exit_pending)
11361 priv->status &= ~STATUS_EXIT_PENDING;
11362
11363 /* tell the device to stop sending interrupts */
11364 ipw_disable_interrupts(priv);
11365
11366 /* Clear all bits but the RF Kill */
11367 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11368 netif_carrier_off(priv->net_dev);
11369
11370 ipw_stop_nic(priv);
11371
11372 ipw_led_radio_off(priv);
11373}
11374
11375static void ipw_bg_down(struct work_struct *work)
11376{
11377 struct ipw_priv *priv =
11378 container_of(work, struct ipw_priv, down);
11379 mutex_lock(&priv->mutex);
11380 ipw_down(priv);
11381 mutex_unlock(&priv->mutex);
11382}
11383
11384/* Called by register_netdev() */
11385static int ipw_net_init(struct net_device *dev)
11386{
11387 struct ipw_priv *priv = ieee80211_priv(dev);
11388 mutex_lock(&priv->mutex);
11389
11390 if (ipw_up(priv)) {
11391 mutex_unlock(&priv->mutex);
11392 return -EIO;
11393 }
11394
11395 mutex_unlock(&priv->mutex);
11396 return 0;
11397}
11398
11399/* PCI driver stuff */
11400static struct pci_device_id card_ids[] = {
11401 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11402 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11403 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11404 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11405 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11406 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11407 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11408 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11409 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11410 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11411 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11412 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11413 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11414 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11415 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11416 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11417 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11418 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11419 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11420 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11421 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11422 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11423
11424 /* required last entry */
11425 {0,}
11426};
11427
11428MODULE_DEVICE_TABLE(pci, card_ids);
11429
11430static struct attribute *ipw_sysfs_entries[] = {
11431 &dev_attr_rf_kill.attr,
11432 &dev_attr_direct_dword.attr,
11433 &dev_attr_indirect_byte.attr,
11434 &dev_attr_indirect_dword.attr,
11435 &dev_attr_mem_gpio_reg.attr,
11436 &dev_attr_command_event_reg.attr,
11437 &dev_attr_nic_type.attr,
11438 &dev_attr_status.attr,
11439 &dev_attr_cfg.attr,
11440 &dev_attr_error.attr,
11441 &dev_attr_event_log.attr,
11442 &dev_attr_cmd_log.attr,
11443 &dev_attr_eeprom_delay.attr,
11444 &dev_attr_ucode_version.attr,
11445 &dev_attr_rtc.attr,
11446 &dev_attr_scan_age.attr,
11447 &dev_attr_led.attr,
11448 &dev_attr_speed_scan.attr,
11449 &dev_attr_net_stats.attr,
11450 &dev_attr_channels.attr,
11451#ifdef CONFIG_IPW2200_PROMISCUOUS
11452 &dev_attr_rtap_iface.attr,
11453 &dev_attr_rtap_filter.attr,
11454#endif
11455 NULL
11456};
11457
11458static struct attribute_group ipw_attribute_group = {
11459 .name = NULL, /* put in device directory */
11460 .attrs = ipw_sysfs_entries,
11461};
11462
11463#ifdef CONFIG_IPW2200_PROMISCUOUS
11464static int ipw_prom_open(struct net_device *dev)
11465{
11466 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11467 struct ipw_priv *priv = prom_priv->priv;
11468
11469 IPW_DEBUG_INFO("prom dev->open\n");
11470 netif_carrier_off(dev);
11471
11472 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11473 priv->sys_config.accept_all_data_frames = 1;
11474 priv->sys_config.accept_non_directed_frames = 1;
11475 priv->sys_config.accept_all_mgmt_bcpr = 1;
11476 priv->sys_config.accept_all_mgmt_frames = 1;
11477
11478 ipw_send_system_config(priv);
11479 }
11480
11481 return 0;
11482}
11483
11484static int ipw_prom_stop(struct net_device *dev)
11485{
11486 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11487 struct ipw_priv *priv = prom_priv->priv;
11488
11489 IPW_DEBUG_INFO("prom dev->stop\n");
11490
11491 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11492 priv->sys_config.accept_all_data_frames = 0;
11493 priv->sys_config.accept_non_directed_frames = 0;
11494 priv->sys_config.accept_all_mgmt_bcpr = 0;
11495 priv->sys_config.accept_all_mgmt_frames = 0;
11496
11497 ipw_send_system_config(priv);
11498 }
11499
11500 return 0;
11501}
11502
11503static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11504{
11505 IPW_DEBUG_INFO("prom dev->xmit\n");
11506 return -EOPNOTSUPP;
11507}
11508
11509static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11510{
11511 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11512 return &prom_priv->ieee->stats;
11513}
11514
11515static int ipw_prom_alloc(struct ipw_priv *priv)
11516{
11517 int rc = 0;
11518
11519 if (priv->prom_net_dev)
11520 return -EPERM;
11521
11522 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11523 if (priv->prom_net_dev == NULL)
11524 return -ENOMEM;
11525
11526 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11527 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11528 priv->prom_priv->priv = priv;
11529
11530 strcpy(priv->prom_net_dev->name, "rtap%d");
11531 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11532
11533 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11534 priv->prom_net_dev->open = ipw_prom_open;
11535 priv->prom_net_dev->stop = ipw_prom_stop;
11536 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11537 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11538
11539 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11540 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11541
11542 rc = register_netdev(priv->prom_net_dev);
11543 if (rc) {
11544 free_ieee80211(priv->prom_net_dev);
11545 priv->prom_net_dev = NULL;
11546 return rc;
11547 }
11548
11549 return 0;
11550}
11551
11552static void ipw_prom_free(struct ipw_priv *priv)
11553{
11554 if (!priv->prom_net_dev)
11555 return;
11556
11557 unregister_netdev(priv->prom_net_dev);
11558 free_ieee80211(priv->prom_net_dev);
11559
11560 priv->prom_net_dev = NULL;
11561}
11562
11563#endif
11564
11565
11566static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11567 const struct pci_device_id *ent)
11568{
11569 int err = 0;
11570 struct net_device *net_dev;
11571 void __iomem *base;
11572 u32 length, val;
11573 struct ipw_priv *priv;
11574 int i;
11575
11576 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11577 if (net_dev == NULL) {
11578 err = -ENOMEM;
11579 goto out;
11580 }
11581
11582 priv = ieee80211_priv(net_dev);
11583 priv->ieee = netdev_priv(net_dev);
11584
11585 priv->net_dev = net_dev;
11586 priv->pci_dev = pdev;
11587 ipw_debug_level = debug;
11588 spin_lock_init(&priv->irq_lock);
11589 spin_lock_init(&priv->lock);
11590 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11591 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11592
11593 mutex_init(&priv->mutex);
11594 if (pci_enable_device(pdev)) {
11595 err = -ENODEV;
11596 goto out_free_ieee80211;
11597 }
11598
11599 pci_set_master(pdev);
11600
11601 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11602 if (!err)
11603 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11604 if (err) {
11605 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11606 goto out_pci_disable_device;
11607 }
11608
11609 pci_set_drvdata(pdev, priv);
11610
11611 err = pci_request_regions(pdev, DRV_NAME);
11612 if (err)
11613 goto out_pci_disable_device;
11614
11615 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11616 * PCI Tx retries from interfering with C3 CPU state */
11617 pci_read_config_dword(pdev, 0x40, &val);
11618 if ((val & 0x0000ff00) != 0)
11619 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11620
11621 length = pci_resource_len(pdev, 0);
11622 priv->hw_len = length;
11623
11624 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11625 if (!base) {
11626 err = -ENODEV;
11627 goto out_pci_release_regions;
11628 }
11629
11630 priv->hw_base = base;
11631 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11632 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11633
11634 err = ipw_setup_deferred_work(priv);
11635 if (err) {
11636 IPW_ERROR("Unable to setup deferred work\n");
11637 goto out_iounmap;
11638 }
11639
11640 ipw_sw_reset(priv, 1);
11641
11642 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11643 if (err) {
11644 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11645 goto out_destroy_workqueue;
11646 }
11647
11648 SET_NETDEV_DEV(net_dev, &pdev->dev);
11649
11650 mutex_lock(&priv->mutex);
11651
11652 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11653 priv->ieee->set_security = shim__set_security;
11654 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11655
11656#ifdef CONFIG_IPW2200_QOS
11657 priv->ieee->is_qos_active = ipw_is_qos_active;
11658 priv->ieee->handle_probe_response = ipw_handle_beacon;
11659 priv->ieee->handle_beacon = ipw_handle_probe_response;
11660 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11661#endif /* CONFIG_IPW2200_QOS */
11662
11663 priv->ieee->perfect_rssi = -20;
11664 priv->ieee->worst_rssi = -85;
11665
11666 net_dev->open = ipw_net_open;
11667 net_dev->stop = ipw_net_stop;
11668 net_dev->init = ipw_net_init;
11669 net_dev->get_stats = ipw_net_get_stats;
11670 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11671 net_dev->set_mac_address = ipw_net_set_mac_address;
11672 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11673 net_dev->wireless_data = &priv->wireless_data;
11674 net_dev->wireless_handlers = &ipw_wx_handler_def;
11675 net_dev->ethtool_ops = &ipw_ethtool_ops;
11676 net_dev->irq = pdev->irq;
11677 net_dev->base_addr = (unsigned long)priv->hw_base;
11678 net_dev->mem_start = pci_resource_start(pdev, 0);
11679 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11680
11681 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11682 if (err) {
11683 IPW_ERROR("failed to create sysfs device attributes\n");
11684 mutex_unlock(&priv->mutex);
11685 goto out_release_irq;
11686 }
11687
11688 mutex_unlock(&priv->mutex);
11689 err = register_netdev(net_dev);
11690 if (err) {
11691 IPW_ERROR("failed to register network device\n");
11692 goto out_remove_sysfs;
11693 }
11694
11695#ifdef CONFIG_IPW2200_PROMISCUOUS
11696 if (rtap_iface) {
11697 err = ipw_prom_alloc(priv);
11698 if (err) {
11699 IPW_ERROR("Failed to register promiscuous network "
11700 "device (error %d).\n", err);
11701 unregister_netdev(priv->net_dev);
11702 goto out_remove_sysfs;
11703 }
11704 }
11705#endif
11706
11707 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11708 "channels, %d 802.11a channels)\n",
11709 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11710 priv->ieee->geo.a_channels);
11711
11712 return 0;
11713
11714 out_remove_sysfs:
11715 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11716 out_release_irq:
11717 free_irq(pdev->irq, priv);
11718 out_destroy_workqueue:
11719 destroy_workqueue(priv->workqueue);
11720 priv->workqueue = NULL;
11721 out_iounmap:
11722 iounmap(priv->hw_base);
11723 out_pci_release_regions:
11724 pci_release_regions(pdev);
11725 out_pci_disable_device:
11726 pci_disable_device(pdev);
11727 pci_set_drvdata(pdev, NULL);
11728 out_free_ieee80211:
11729 free_ieee80211(priv->net_dev);
11730 out:
11731 return err;
11732}
11733
11734static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11735{
11736 struct ipw_priv *priv = pci_get_drvdata(pdev);
11737 struct list_head *p, *q;
11738 int i;
11739
11740 if (!priv)
11741 return;
11742
11743 mutex_lock(&priv->mutex);
11744
11745 priv->status |= STATUS_EXIT_PENDING;
11746 ipw_down(priv);
11747 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11748
11749 mutex_unlock(&priv->mutex);
11750
11751 unregister_netdev(priv->net_dev);
11752
11753 if (priv->rxq) {
11754 ipw_rx_queue_free(priv, priv->rxq);
11755 priv->rxq = NULL;
11756 }
11757 ipw_tx_queue_free(priv);
11758
11759 if (priv->cmdlog) {
11760 kfree(priv->cmdlog);
11761 priv->cmdlog = NULL;
11762 }
11763 /* ipw_down will ensure that there is no more pending work
11764 * in the workqueue's, so we can safely remove them now. */
11765 cancel_delayed_work(&priv->adhoc_check);
11766 cancel_delayed_work(&priv->gather_stats);
11767 cancel_delayed_work(&priv->request_scan);
11768 cancel_delayed_work(&priv->request_direct_scan);
11769 cancel_delayed_work(&priv->request_passive_scan);
11770 cancel_delayed_work(&priv->scan_event);
11771 cancel_delayed_work(&priv->rf_kill);
11772 cancel_delayed_work(&priv->scan_check);
11773 destroy_workqueue(priv->workqueue);
11774 priv->workqueue = NULL;
11775
11776 /* Free MAC hash list for ADHOC */
11777 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11778 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11779 list_del(p);
11780 kfree(list_entry(p, struct ipw_ibss_seq, list));
11781 }
11782 }
11783
11784 kfree(priv->error);
11785 priv->error = NULL;
11786
11787#ifdef CONFIG_IPW2200_PROMISCUOUS
11788 ipw_prom_free(priv);
11789#endif
11790
11791 free_irq(pdev->irq, priv);
11792 iounmap(priv->hw_base);
11793 pci_release_regions(pdev);
11794 pci_disable_device(pdev);
11795 pci_set_drvdata(pdev, NULL);
11796 free_ieee80211(priv->net_dev);
11797 free_firmware();
11798}
11799
11800#ifdef CONFIG_PM
11801static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11802{
11803 struct ipw_priv *priv = pci_get_drvdata(pdev);
11804 struct net_device *dev = priv->net_dev;
11805
11806 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11807
11808 /* Take down the device; powers it off, etc. */
11809 ipw_down(priv);
11810
11811 /* Remove the PRESENT state of the device */
11812 netif_device_detach(dev);
11813
11814 pci_save_state(pdev);
11815 pci_disable_device(pdev);
11816 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11817
11818 return 0;
11819}
11820
11821static int ipw_pci_resume(struct pci_dev *pdev)
11822{
11823 struct ipw_priv *priv = pci_get_drvdata(pdev);
11824 struct net_device *dev = priv->net_dev;
11825 int err;
11826 u32 val;
11827
11828 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11829
11830 pci_set_power_state(pdev, PCI_D0);
11831 err = pci_enable_device(pdev);
11832 if (err) {
11833 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11834 dev->name);
11835 return err;
11836 }
11837 pci_restore_state(pdev);
11838
11839 /*
11840 * Suspend/Resume resets the PCI configuration space, so we have to
11841 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11842 * from interfering with C3 CPU state. pci_restore_state won't help
11843 * here since it only restores the first 64 bytes pci config header.
11844 */
11845 pci_read_config_dword(pdev, 0x40, &val);
11846 if ((val & 0x0000ff00) != 0)
11847 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11848
11849 /* Set the device back into the PRESENT state; this will also wake
11850 * the queue of needed */
11851 netif_device_attach(dev);
11852
11853 /* Bring the device back up */
11854 queue_work(priv->workqueue, &priv->up);
11855
11856 return 0;
11857}
11858#endif
11859
11860static void ipw_pci_shutdown(struct pci_dev *pdev)
11861{
11862 struct ipw_priv *priv = pci_get_drvdata(pdev);
11863
11864 /* Take down the device; powers it off, etc. */
11865 ipw_down(priv);
11866
11867 pci_disable_device(pdev);
11868}
11869
11870/* driver initialization stuff */
11871static struct pci_driver ipw_driver = {
11872 .name = DRV_NAME,
11873 .id_table = card_ids,
11874 .probe = ipw_pci_probe,
11875 .remove = __devexit_p(ipw_pci_remove),
11876#ifdef CONFIG_PM
11877 .suspend = ipw_pci_suspend,
11878 .resume = ipw_pci_resume,
11879#endif
11880 .shutdown = ipw_pci_shutdown,
11881};
11882
11883static int __init ipw_init(void)
11884{
11885 int ret;
11886
11887 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11888 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11889
11890 ret = pci_register_driver(&ipw_driver);
11891 if (ret) {
11892 IPW_ERROR("Unable to initialize PCI module\n");
11893 return ret;
11894 }
11895
11896 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11897 if (ret) {
11898 IPW_ERROR("Unable to create driver sysfs file\n");
11899 pci_unregister_driver(&ipw_driver);
11900 return ret;
11901 }
11902
11903 return ret;
11904}
11905
11906static void __exit ipw_exit(void)
11907{
11908 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11909 pci_unregister_driver(&ipw_driver);
11910}
11911
11912module_param(disable, int, 0444);
11913MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11914
11915module_param(associate, int, 0444);
11916MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11917
11918module_param(auto_create, int, 0444);
11919MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11920
11921module_param(led, int, 0444);
11922MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11923
11924module_param(debug, int, 0444);
11925MODULE_PARM_DESC(debug, "debug output mask");
11926
11927module_param(channel, int, 0444);
11928MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11929
11930#ifdef CONFIG_IPW2200_PROMISCUOUS
11931module_param(rtap_iface, int, 0444);
11932MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11933#endif
11934
11935#ifdef CONFIG_IPW2200_QOS
11936module_param(qos_enable, int, 0444);
11937MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11938
11939module_param(qos_burst_enable, int, 0444);
11940MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11941
11942module_param(qos_no_ack_mask, int, 0444);
11943MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11944
11945module_param(burst_duration_CCK, int, 0444);
11946MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11947
11948module_param(burst_duration_OFDM, int, 0444);
11949MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11950#endif /* CONFIG_IPW2200_QOS */
11951
11952#ifdef CONFIG_IPW2200_MONITOR
11953module_param(mode, int, 0444);
11954MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11955#else
11956module_param(mode, int, 0444);
11957MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11958#endif
11959
11960module_param(bt_coexist, int, 0444);
11961MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11962
11963module_param(hwcrypto, int, 0444);
11964MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11965
11966module_param(cmdlog, int, 0444);
11967MODULE_PARM_DESC(cmdlog,
11968 "allocate a ring buffer for logging firmware commands");
11969
11970module_param(roaming, int, 0444);
11971MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11972
11973module_param(antenna, int, 0444);
11974MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11975
11976module_exit(ipw_exit);
11977module_init(ipw_init);