]>
Commit | Line | Data |
---|---|---|
1 | /****************************************************************************** | |
2 | ||
3 | Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved. | |
4 | ||
5 | 802.11 status code portion of this file from ethereal-0.10.6: | |
6 | Copyright 2000, Axis Communications AB | |
7 | Ethereal - Network traffic analyzer | |
8 | By Gerald Combs <gerald@ethereal.com> | |
9 | Copyright 1998 Gerald Combs | |
10 | ||
11 | This program is free software; you can redistribute it and/or modify it | |
12 | under the terms of version 2 of the GNU General Public License as | |
13 | published by the Free Software Foundation. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, but WITHOUT | |
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
17 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
18 | more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License along with | |
21 | this program; if not, write to the Free Software Foundation, Inc., 59 | |
22 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. | |
23 | ||
24 | The full GNU General Public License is included in this distribution in the | |
25 | file called LICENSE. | |
26 | ||
27 | Contact Information: | |
28 | Intel Linux Wireless <ilw@linux.intel.com> | |
29 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | |
30 | ||
31 | ******************************************************************************/ | |
32 | ||
33 | #include <linux/sched.h> | |
34 | #include <linux/slab.h> | |
35 | #include "ipw2200.h" | |
36 | ||
37 | ||
38 | #ifndef KBUILD_EXTMOD | |
39 | #define VK "k" | |
40 | #else | |
41 | #define VK | |
42 | #endif | |
43 | ||
44 | #ifdef CONFIG_IPW2200_DEBUG | |
45 | #define VD "d" | |
46 | #else | |
47 | #define VD | |
48 | #endif | |
49 | ||
50 | #ifdef CONFIG_IPW2200_MONITOR | |
51 | #define VM "m" | |
52 | #else | |
53 | #define VM | |
54 | #endif | |
55 | ||
56 | #ifdef CONFIG_IPW2200_PROMISCUOUS | |
57 | #define VP "p" | |
58 | #else | |
59 | #define VP | |
60 | #endif | |
61 | ||
62 | #ifdef CONFIG_IPW2200_RADIOTAP | |
63 | #define VR "r" | |
64 | #else | |
65 | #define VR | |
66 | #endif | |
67 | ||
68 | #ifdef CONFIG_IPW2200_QOS | |
69 | #define VQ "q" | |
70 | #else | |
71 | #define VQ | |
72 | #endif | |
73 | ||
74 | #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ | |
75 | #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver" | |
76 | #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation" | |
77 | #define DRV_VERSION IPW2200_VERSION | |
78 | ||
79 | #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1) | |
80 | ||
81 | MODULE_DESCRIPTION(DRV_DESCRIPTION); | |
82 | MODULE_VERSION(DRV_VERSION); | |
83 | MODULE_AUTHOR(DRV_COPYRIGHT); | |
84 | MODULE_LICENSE("GPL"); | |
85 | MODULE_FIRMWARE("ipw2200-ibss.fw"); | |
86 | #ifdef CONFIG_IPW2200_MONITOR | |
87 | MODULE_FIRMWARE("ipw2200-sniffer.fw"); | |
88 | #endif | |
89 | MODULE_FIRMWARE("ipw2200-bss.fw"); | |
90 | ||
91 | static int cmdlog = 0; | |
92 | static int debug = 0; | |
93 | static int default_channel = 0; | |
94 | static int network_mode = 0; | |
95 | ||
96 | static u32 ipw_debug_level; | |
97 | static int associate; | |
98 | static int auto_create = 1; | |
99 | static int led_support = 1; | |
100 | static int disable = 0; | |
101 | static int bt_coexist = 0; | |
102 | static int hwcrypto = 0; | |
103 | static int roaming = 1; | |
104 | static const char ipw_modes[] = { | |
105 | 'a', 'b', 'g', '?' | |
106 | }; | |
107 | static int antenna = CFG_SYS_ANTENNA_BOTH; | |
108 | ||
109 | #ifdef CONFIG_IPW2200_PROMISCUOUS | |
110 | static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */ | |
111 | #endif | |
112 | ||
113 | static struct ieee80211_rate ipw2200_rates[] = { | |
114 | { .bitrate = 10 }, | |
115 | { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, | |
116 | { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, | |
117 | { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, | |
118 | { .bitrate = 60 }, | |
119 | { .bitrate = 90 }, | |
120 | { .bitrate = 120 }, | |
121 | { .bitrate = 180 }, | |
122 | { .bitrate = 240 }, | |
123 | { .bitrate = 360 }, | |
124 | { .bitrate = 480 }, | |
125 | { .bitrate = 540 } | |
126 | }; | |
127 | ||
128 | #define ipw2200_a_rates (ipw2200_rates + 4) | |
129 | #define ipw2200_num_a_rates 8 | |
130 | #define ipw2200_bg_rates (ipw2200_rates + 0) | |
131 | #define ipw2200_num_bg_rates 12 | |
132 | ||
133 | #ifdef CONFIG_IPW2200_QOS | |
134 | static int qos_enable = 0; | |
135 | static int qos_burst_enable = 0; | |
136 | static int qos_no_ack_mask = 0; | |
137 | static int burst_duration_CCK = 0; | |
138 | static int burst_duration_OFDM = 0; | |
139 | ||
140 | static struct libipw_qos_parameters def_qos_parameters_OFDM = { | |
141 | {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM, | |
142 | QOS_TX3_CW_MIN_OFDM}, | |
143 | {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM, | |
144 | QOS_TX3_CW_MAX_OFDM}, | |
145 | {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS}, | |
146 | {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM}, | |
147 | {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM, | |
148 | QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM} | |
149 | }; | |
150 | ||
151 | static struct libipw_qos_parameters def_qos_parameters_CCK = { | |
152 | {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK, | |
153 | QOS_TX3_CW_MIN_CCK}, | |
154 | {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK, | |
155 | QOS_TX3_CW_MAX_CCK}, | |
156 | {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS}, | |
157 | {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM}, | |
158 | {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK, | |
159 | QOS_TX3_TXOP_LIMIT_CCK} | |
160 | }; | |
161 | ||
162 | static struct libipw_qos_parameters def_parameters_OFDM = { | |
163 | {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM, | |
164 | DEF_TX3_CW_MIN_OFDM}, | |
165 | {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM, | |
166 | DEF_TX3_CW_MAX_OFDM}, | |
167 | {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS}, | |
168 | {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM}, | |
169 | {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM, | |
170 | DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM} | |
171 | }; | |
172 | ||
173 | static struct libipw_qos_parameters def_parameters_CCK = { | |
174 | {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK, | |
175 | DEF_TX3_CW_MIN_CCK}, | |
176 | {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK, | |
177 | DEF_TX3_CW_MAX_CCK}, | |
178 | {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS}, | |
179 | {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM}, | |
180 | {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK, | |
181 | DEF_TX3_TXOP_LIMIT_CCK} | |
182 | }; | |
183 | ||
184 | static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 }; | |
185 | ||
186 | static int from_priority_to_tx_queue[] = { | |
187 | IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1, | |
188 | IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4 | |
189 | }; | |
190 | ||
191 | static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv); | |
192 | ||
193 | static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters | |
194 | *qos_param); | |
195 | static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element | |
196 | *qos_param); | |
197 | #endif /* CONFIG_IPW2200_QOS */ | |
198 | ||
199 | static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev); | |
200 | static void ipw_remove_current_network(struct ipw_priv *priv); | |
201 | static void ipw_rx(struct ipw_priv *priv); | |
202 | static int ipw_queue_tx_reclaim(struct ipw_priv *priv, | |
203 | struct clx2_tx_queue *txq, int qindex); | |
204 | static int ipw_queue_reset(struct ipw_priv *priv); | |
205 | ||
206 | static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf, | |
207 | int len, int sync); | |
208 | ||
209 | static void ipw_tx_queue_free(struct ipw_priv *); | |
210 | ||
211 | static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *); | |
212 | static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *); | |
213 | static void ipw_rx_queue_replenish(void *); | |
214 | static int ipw_up(struct ipw_priv *); | |
215 | static void ipw_bg_up(struct work_struct *work); | |
216 | static void ipw_down(struct ipw_priv *); | |
217 | static void ipw_bg_down(struct work_struct *work); | |
218 | static int ipw_config(struct ipw_priv *); | |
219 | static int init_supported_rates(struct ipw_priv *priv, | |
220 | struct ipw_supported_rates *prates); | |
221 | static void ipw_set_hwcrypto_keys(struct ipw_priv *); | |
222 | static void ipw_send_wep_keys(struct ipw_priv *, int); | |
223 | ||
224 | static int snprint_line(char *buf, size_t count, | |
225 | const u8 * data, u32 len, u32 ofs) | |
226 | { | |
227 | int out, i, j, l; | |
228 | char c; | |
229 | ||
230 | out = snprintf(buf, count, "%08X", ofs); | |
231 | ||
232 | for (l = 0, i = 0; i < 2; i++) { | |
233 | out += snprintf(buf + out, count - out, " "); | |
234 | for (j = 0; j < 8 && l < len; j++, l++) | |
235 | out += snprintf(buf + out, count - out, "%02X ", | |
236 | data[(i * 8 + j)]); | |
237 | for (; j < 8; j++) | |
238 | out += snprintf(buf + out, count - out, " "); | |
239 | } | |
240 | ||
241 | out += snprintf(buf + out, count - out, " "); | |
242 | for (l = 0, i = 0; i < 2; i++) { | |
243 | out += snprintf(buf + out, count - out, " "); | |
244 | for (j = 0; j < 8 && l < len; j++, l++) { | |
245 | c = data[(i * 8 + j)]; | |
246 | if (!isascii(c) || !isprint(c)) | |
247 | c = '.'; | |
248 | ||
249 | out += snprintf(buf + out, count - out, "%c", c); | |
250 | } | |
251 | ||
252 | for (; j < 8; j++) | |
253 | out += snprintf(buf + out, count - out, " "); | |
254 | } | |
255 | ||
256 | return out; | |
257 | } | |
258 | ||
259 | static void printk_buf(int level, const u8 * data, u32 len) | |
260 | { | |
261 | char line[81]; | |
262 | u32 ofs = 0; | |
263 | if (!(ipw_debug_level & level)) | |
264 | return; | |
265 | ||
266 | while (len) { | |
267 | snprint_line(line, sizeof(line), &data[ofs], | |
268 | min(len, 16U), ofs); | |
269 | printk(KERN_DEBUG "%s\n", line); | |
270 | ofs += 16; | |
271 | len -= min(len, 16U); | |
272 | } | |
273 | } | |
274 | ||
275 | static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len) | |
276 | { | |
277 | size_t out = size; | |
278 | u32 ofs = 0; | |
279 | int total = 0; | |
280 | ||
281 | while (size && len) { | |
282 | out = snprint_line(output, size, &data[ofs], | |
283 | min_t(size_t, len, 16U), ofs); | |
284 | ||
285 | ofs += 16; | |
286 | output += out; | |
287 | size -= out; | |
288 | len -= min_t(size_t, len, 16U); | |
289 | total += out; | |
290 | } | |
291 | return total; | |
292 | } | |
293 | ||
294 | /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */ | |
295 | static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg); | |
296 | #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b) | |
297 | ||
298 | /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */ | |
299 | static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg); | |
300 | #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b) | |
301 | ||
302 | /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ | |
303 | static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value); | |
304 | static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c) | |
305 | { | |
306 | IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__, | |
307 | __LINE__, (u32) (b), (u32) (c)); | |
308 | _ipw_write_reg8(a, b, c); | |
309 | } | |
310 | ||
311 | /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ | |
312 | static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value); | |
313 | static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c) | |
314 | { | |
315 | IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__, | |
316 | __LINE__, (u32) (b), (u32) (c)); | |
317 | _ipw_write_reg16(a, b, c); | |
318 | } | |
319 | ||
320 | /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */ | |
321 | static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value); | |
322 | static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c) | |
323 | { | |
324 | IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__, | |
325 | __LINE__, (u32) (b), (u32) (c)); | |
326 | _ipw_write_reg32(a, b, c); | |
327 | } | |
328 | ||
329 | /* 8-bit direct write (low 4K) */ | |
330 | static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs, | |
331 | u8 val) | |
332 | { | |
333 | writeb(val, ipw->hw_base + ofs); | |
334 | } | |
335 | ||
336 | /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ | |
337 | #define ipw_write8(ipw, ofs, val) do { \ | |
338 | IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \ | |
339 | __LINE__, (u32)(ofs), (u32)(val)); \ | |
340 | _ipw_write8(ipw, ofs, val); \ | |
341 | } while (0) | |
342 | ||
343 | /* 16-bit direct write (low 4K) */ | |
344 | static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs, | |
345 | u16 val) | |
346 | { | |
347 | writew(val, ipw->hw_base + ofs); | |
348 | } | |
349 | ||
350 | /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ | |
351 | #define ipw_write16(ipw, ofs, val) do { \ | |
352 | IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \ | |
353 | __LINE__, (u32)(ofs), (u32)(val)); \ | |
354 | _ipw_write16(ipw, ofs, val); \ | |
355 | } while (0) | |
356 | ||
357 | /* 32-bit direct write (low 4K) */ | |
358 | static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs, | |
359 | u32 val) | |
360 | { | |
361 | writel(val, ipw->hw_base + ofs); | |
362 | } | |
363 | ||
364 | /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */ | |
365 | #define ipw_write32(ipw, ofs, val) do { \ | |
366 | IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \ | |
367 | __LINE__, (u32)(ofs), (u32)(val)); \ | |
368 | _ipw_write32(ipw, ofs, val); \ | |
369 | } while (0) | |
370 | ||
371 | /* 8-bit direct read (low 4K) */ | |
372 | static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs) | |
373 | { | |
374 | return readb(ipw->hw_base + ofs); | |
375 | } | |
376 | ||
377 | /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */ | |
378 | #define ipw_read8(ipw, ofs) ({ \ | |
379 | IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \ | |
380 | (u32)(ofs)); \ | |
381 | _ipw_read8(ipw, ofs); \ | |
382 | }) | |
383 | ||
384 | /* 16-bit direct read (low 4K) */ | |
385 | static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs) | |
386 | { | |
387 | return readw(ipw->hw_base + ofs); | |
388 | } | |
389 | ||
390 | /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */ | |
391 | #define ipw_read16(ipw, ofs) ({ \ | |
392 | IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \ | |
393 | (u32)(ofs)); \ | |
394 | _ipw_read16(ipw, ofs); \ | |
395 | }) | |
396 | ||
397 | /* 32-bit direct read (low 4K) */ | |
398 | static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs) | |
399 | { | |
400 | return readl(ipw->hw_base + ofs); | |
401 | } | |
402 | ||
403 | /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */ | |
404 | #define ipw_read32(ipw, ofs) ({ \ | |
405 | IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \ | |
406 | (u32)(ofs)); \ | |
407 | _ipw_read32(ipw, ofs); \ | |
408 | }) | |
409 | ||
410 | static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int); | |
411 | /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */ | |
412 | #define ipw_read_indirect(a, b, c, d) ({ \ | |
413 | IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \ | |
414 | __LINE__, (u32)(b), (u32)(d)); \ | |
415 | _ipw_read_indirect(a, b, c, d); \ | |
416 | }) | |
417 | ||
418 | /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */ | |
419 | static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data, | |
420 | int num); | |
421 | #define ipw_write_indirect(a, b, c, d) do { \ | |
422 | IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \ | |
423 | __LINE__, (u32)(b), (u32)(d)); \ | |
424 | _ipw_write_indirect(a, b, c, d); \ | |
425 | } while (0) | |
426 | ||
427 | /* 32-bit indirect write (above 4K) */ | |
428 | static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value) | |
429 | { | |
430 | IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value); | |
431 | _ipw_write32(priv, IPW_INDIRECT_ADDR, reg); | |
432 | _ipw_write32(priv, IPW_INDIRECT_DATA, value); | |
433 | } | |
434 | ||
435 | /* 8-bit indirect write (above 4K) */ | |
436 | static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value) | |
437 | { | |
438 | u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */ | |
439 | u32 dif_len = reg - aligned_addr; | |
440 | ||
441 | IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); | |
442 | _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); | |
443 | _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value); | |
444 | } | |
445 | ||
446 | /* 16-bit indirect write (above 4K) */ | |
447 | static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value) | |
448 | { | |
449 | u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */ | |
450 | u32 dif_len = (reg - aligned_addr) & (~0x1ul); | |
451 | ||
452 | IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); | |
453 | _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); | |
454 | _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value); | |
455 | } | |
456 | ||
457 | /* 8-bit indirect read (above 4K) */ | |
458 | static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg) | |
459 | { | |
460 | u32 word; | |
461 | _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK); | |
462 | IPW_DEBUG_IO(" reg = 0x%8X :\n", reg); | |
463 | word = _ipw_read32(priv, IPW_INDIRECT_DATA); | |
464 | return (word >> ((reg & 0x3) * 8)) & 0xff; | |
465 | } | |
466 | ||
467 | /* 32-bit indirect read (above 4K) */ | |
468 | static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg) | |
469 | { | |
470 | u32 value; | |
471 | ||
472 | IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg); | |
473 | ||
474 | _ipw_write32(priv, IPW_INDIRECT_ADDR, reg); | |
475 | value = _ipw_read32(priv, IPW_INDIRECT_DATA); | |
476 | IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value); | |
477 | return value; | |
478 | } | |
479 | ||
480 | /* General purpose, no alignment requirement, iterative (multi-byte) read, */ | |
481 | /* for area above 1st 4K of SRAM/reg space */ | |
482 | static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf, | |
483 | int num) | |
484 | { | |
485 | u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */ | |
486 | u32 dif_len = addr - aligned_addr; | |
487 | u32 i; | |
488 | ||
489 | IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); | |
490 | ||
491 | if (num <= 0) { | |
492 | return; | |
493 | } | |
494 | ||
495 | /* Read the first dword (or portion) byte by byte */ | |
496 | if (unlikely(dif_len)) { | |
497 | _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); | |
498 | /* Start reading at aligned_addr + dif_len */ | |
499 | for (i = dif_len; ((i < 4) && (num > 0)); i++, num--) | |
500 | *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i); | |
501 | aligned_addr += 4; | |
502 | } | |
503 | ||
504 | /* Read all of the middle dwords as dwords, with auto-increment */ | |
505 | _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr); | |
506 | for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4) | |
507 | *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA); | |
508 | ||
509 | /* Read the last dword (or portion) byte by byte */ | |
510 | if (unlikely(num)) { | |
511 | _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); | |
512 | for (i = 0; num > 0; i++, num--) | |
513 | *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i); | |
514 | } | |
515 | } | |
516 | ||
517 | /* General purpose, no alignment requirement, iterative (multi-byte) write, */ | |
518 | /* for area above 1st 4K of SRAM/reg space */ | |
519 | static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf, | |
520 | int num) | |
521 | { | |
522 | u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */ | |
523 | u32 dif_len = addr - aligned_addr; | |
524 | u32 i; | |
525 | ||
526 | IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); | |
527 | ||
528 | if (num <= 0) { | |
529 | return; | |
530 | } | |
531 | ||
532 | /* Write the first dword (or portion) byte by byte */ | |
533 | if (unlikely(dif_len)) { | |
534 | _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); | |
535 | /* Start writing at aligned_addr + dif_len */ | |
536 | for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++) | |
537 | _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf); | |
538 | aligned_addr += 4; | |
539 | } | |
540 | ||
541 | /* Write all of the middle dwords as dwords, with auto-increment */ | |
542 | _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr); | |
543 | for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4) | |
544 | _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf); | |
545 | ||
546 | /* Write the last dword (or portion) byte by byte */ | |
547 | if (unlikely(num)) { | |
548 | _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr); | |
549 | for (i = 0; num > 0; i++, num--, buf++) | |
550 | _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf); | |
551 | } | |
552 | } | |
553 | ||
554 | /* General purpose, no alignment requirement, iterative (multi-byte) write, */ | |
555 | /* for 1st 4K of SRAM/regs space */ | |
556 | static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf, | |
557 | int num) | |
558 | { | |
559 | memcpy_toio((priv->hw_base + addr), buf, num); | |
560 | } | |
561 | ||
562 | /* Set bit(s) in low 4K of SRAM/regs */ | |
563 | static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask) | |
564 | { | |
565 | ipw_write32(priv, reg, ipw_read32(priv, reg) | mask); | |
566 | } | |
567 | ||
568 | /* Clear bit(s) in low 4K of SRAM/regs */ | |
569 | static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask) | |
570 | { | |
571 | ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask); | |
572 | } | |
573 | ||
574 | static inline void __ipw_enable_interrupts(struct ipw_priv *priv) | |
575 | { | |
576 | if (priv->status & STATUS_INT_ENABLED) | |
577 | return; | |
578 | priv->status |= STATUS_INT_ENABLED; | |
579 | ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL); | |
580 | } | |
581 | ||
582 | static inline void __ipw_disable_interrupts(struct ipw_priv *priv) | |
583 | { | |
584 | if (!(priv->status & STATUS_INT_ENABLED)) | |
585 | return; | |
586 | priv->status &= ~STATUS_INT_ENABLED; | |
587 | ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); | |
588 | } | |
589 | ||
590 | static inline void ipw_enable_interrupts(struct ipw_priv *priv) | |
591 | { | |
592 | unsigned long flags; | |
593 | ||
594 | spin_lock_irqsave(&priv->irq_lock, flags); | |
595 | __ipw_enable_interrupts(priv); | |
596 | spin_unlock_irqrestore(&priv->irq_lock, flags); | |
597 | } | |
598 | ||
599 | static inline void ipw_disable_interrupts(struct ipw_priv *priv) | |
600 | { | |
601 | unsigned long flags; | |
602 | ||
603 | spin_lock_irqsave(&priv->irq_lock, flags); | |
604 | __ipw_disable_interrupts(priv); | |
605 | spin_unlock_irqrestore(&priv->irq_lock, flags); | |
606 | } | |
607 | ||
608 | static char *ipw_error_desc(u32 val) | |
609 | { | |
610 | switch (val) { | |
611 | case IPW_FW_ERROR_OK: | |
612 | return "ERROR_OK"; | |
613 | case IPW_FW_ERROR_FAIL: | |
614 | return "ERROR_FAIL"; | |
615 | case IPW_FW_ERROR_MEMORY_UNDERFLOW: | |
616 | return "MEMORY_UNDERFLOW"; | |
617 | case IPW_FW_ERROR_MEMORY_OVERFLOW: | |
618 | return "MEMORY_OVERFLOW"; | |
619 | case IPW_FW_ERROR_BAD_PARAM: | |
620 | return "BAD_PARAM"; | |
621 | case IPW_FW_ERROR_BAD_CHECKSUM: | |
622 | return "BAD_CHECKSUM"; | |
623 | case IPW_FW_ERROR_NMI_INTERRUPT: | |
624 | return "NMI_INTERRUPT"; | |
625 | case IPW_FW_ERROR_BAD_DATABASE: | |
626 | return "BAD_DATABASE"; | |
627 | case IPW_FW_ERROR_ALLOC_FAIL: | |
628 | return "ALLOC_FAIL"; | |
629 | case IPW_FW_ERROR_DMA_UNDERRUN: | |
630 | return "DMA_UNDERRUN"; | |
631 | case IPW_FW_ERROR_DMA_STATUS: | |
632 | return "DMA_STATUS"; | |
633 | case IPW_FW_ERROR_DINO_ERROR: | |
634 | return "DINO_ERROR"; | |
635 | case IPW_FW_ERROR_EEPROM_ERROR: | |
636 | return "EEPROM_ERROR"; | |
637 | case IPW_FW_ERROR_SYSASSERT: | |
638 | return "SYSASSERT"; | |
639 | case IPW_FW_ERROR_FATAL_ERROR: | |
640 | return "FATAL_ERROR"; | |
641 | default: | |
642 | return "UNKNOWN_ERROR"; | |
643 | } | |
644 | } | |
645 | ||
646 | static void ipw_dump_error_log(struct ipw_priv *priv, | |
647 | struct ipw_fw_error *error) | |
648 | { | |
649 | u32 i; | |
650 | ||
651 | if (!error) { | |
652 | IPW_ERROR("Error allocating and capturing error log. " | |
653 | "Nothing to dump.\n"); | |
654 | return; | |
655 | } | |
656 | ||
657 | IPW_ERROR("Start IPW Error Log Dump:\n"); | |
658 | IPW_ERROR("Status: 0x%08X, Config: %08X\n", | |
659 | error->status, error->config); | |
660 | ||
661 | for (i = 0; i < error->elem_len; i++) | |
662 | IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", | |
663 | ipw_error_desc(error->elem[i].desc), | |
664 | error->elem[i].time, | |
665 | error->elem[i].blink1, | |
666 | error->elem[i].blink2, | |
667 | error->elem[i].link1, | |
668 | error->elem[i].link2, error->elem[i].data); | |
669 | for (i = 0; i < error->log_len; i++) | |
670 | IPW_ERROR("%i\t0x%08x\t%i\n", | |
671 | error->log[i].time, | |
672 | error->log[i].data, error->log[i].event); | |
673 | } | |
674 | ||
675 | static inline int ipw_is_init(struct ipw_priv *priv) | |
676 | { | |
677 | return (priv->status & STATUS_INIT) ? 1 : 0; | |
678 | } | |
679 | ||
680 | static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len) | |
681 | { | |
682 | u32 addr, field_info, field_len, field_count, total_len; | |
683 | ||
684 | IPW_DEBUG_ORD("ordinal = %i\n", ord); | |
685 | ||
686 | if (!priv || !val || !len) { | |
687 | IPW_DEBUG_ORD("Invalid argument\n"); | |
688 | return -EINVAL; | |
689 | } | |
690 | ||
691 | /* verify device ordinal tables have been initialized */ | |
692 | if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) { | |
693 | IPW_DEBUG_ORD("Access ordinals before initialization\n"); | |
694 | return -EINVAL; | |
695 | } | |
696 | ||
697 | switch (IPW_ORD_TABLE_ID_MASK & ord) { | |
698 | case IPW_ORD_TABLE_0_MASK: | |
699 | /* | |
700 | * TABLE 0: Direct access to a table of 32 bit values | |
701 | * | |
702 | * This is a very simple table with the data directly | |
703 | * read from the table | |
704 | */ | |
705 | ||
706 | /* remove the table id from the ordinal */ | |
707 | ord &= IPW_ORD_TABLE_VALUE_MASK; | |
708 | ||
709 | /* boundary check */ | |
710 | if (ord > priv->table0_len) { | |
711 | IPW_DEBUG_ORD("ordinal value (%i) longer then " | |
712 | "max (%i)\n", ord, priv->table0_len); | |
713 | return -EINVAL; | |
714 | } | |
715 | ||
716 | /* verify we have enough room to store the value */ | |
717 | if (*len < sizeof(u32)) { | |
718 | IPW_DEBUG_ORD("ordinal buffer length too small, " | |
719 | "need %zd\n", sizeof(u32)); | |
720 | return -EINVAL; | |
721 | } | |
722 | ||
723 | IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n", | |
724 | ord, priv->table0_addr + (ord << 2)); | |
725 | ||
726 | *len = sizeof(u32); | |
727 | ord <<= 2; | |
728 | *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord); | |
729 | break; | |
730 | ||
731 | case IPW_ORD_TABLE_1_MASK: | |
732 | /* | |
733 | * TABLE 1: Indirect access to a table of 32 bit values | |
734 | * | |
735 | * This is a fairly large table of u32 values each | |
736 | * representing starting addr for the data (which is | |
737 | * also a u32) | |
738 | */ | |
739 | ||
740 | /* remove the table id from the ordinal */ | |
741 | ord &= IPW_ORD_TABLE_VALUE_MASK; | |
742 | ||
743 | /* boundary check */ | |
744 | if (ord > priv->table1_len) { | |
745 | IPW_DEBUG_ORD("ordinal value too long\n"); | |
746 | return -EINVAL; | |
747 | } | |
748 | ||
749 | /* verify we have enough room to store the value */ | |
750 | if (*len < sizeof(u32)) { | |
751 | IPW_DEBUG_ORD("ordinal buffer length too small, " | |
752 | "need %zd\n", sizeof(u32)); | |
753 | return -EINVAL; | |
754 | } | |
755 | ||
756 | *((u32 *) val) = | |
757 | ipw_read_reg32(priv, (priv->table1_addr + (ord << 2))); | |
758 | *len = sizeof(u32); | |
759 | break; | |
760 | ||
761 | case IPW_ORD_TABLE_2_MASK: | |
762 | /* | |
763 | * TABLE 2: Indirect access to a table of variable sized values | |
764 | * | |
765 | * This table consist of six values, each containing | |
766 | * - dword containing the starting offset of the data | |
767 | * - dword containing the lengh in the first 16bits | |
768 | * and the count in the second 16bits | |
769 | */ | |
770 | ||
771 | /* remove the table id from the ordinal */ | |
772 | ord &= IPW_ORD_TABLE_VALUE_MASK; | |
773 | ||
774 | /* boundary check */ | |
775 | if (ord > priv->table2_len) { | |
776 | IPW_DEBUG_ORD("ordinal value too long\n"); | |
777 | return -EINVAL; | |
778 | } | |
779 | ||
780 | /* get the address of statistic */ | |
781 | addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3)); | |
782 | ||
783 | /* get the second DW of statistics ; | |
784 | * two 16-bit words - first is length, second is count */ | |
785 | field_info = | |
786 | ipw_read_reg32(priv, | |
787 | priv->table2_addr + (ord << 3) + | |
788 | sizeof(u32)); | |
789 | ||
790 | /* get each entry length */ | |
791 | field_len = *((u16 *) & field_info); | |
792 | ||
793 | /* get number of entries */ | |
794 | field_count = *(((u16 *) & field_info) + 1); | |
795 | ||
796 | /* abort if not enough memory */ | |
797 | total_len = field_len * field_count; | |
798 | if (total_len > *len) { | |
799 | *len = total_len; | |
800 | return -EINVAL; | |
801 | } | |
802 | ||
803 | *len = total_len; | |
804 | if (!total_len) | |
805 | return 0; | |
806 | ||
807 | IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, " | |
808 | "field_info = 0x%08x\n", | |
809 | addr, total_len, field_info); | |
810 | ipw_read_indirect(priv, addr, val, total_len); | |
811 | break; | |
812 | ||
813 | default: | |
814 | IPW_DEBUG_ORD("Invalid ordinal!\n"); | |
815 | return -EINVAL; | |
816 | ||
817 | } | |
818 | ||
819 | return 0; | |
820 | } | |
821 | ||
822 | static void ipw_init_ordinals(struct ipw_priv *priv) | |
823 | { | |
824 | priv->table0_addr = IPW_ORDINALS_TABLE_LOWER; | |
825 | priv->table0_len = ipw_read32(priv, priv->table0_addr); | |
826 | ||
827 | IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n", | |
828 | priv->table0_addr, priv->table0_len); | |
829 | ||
830 | priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1); | |
831 | priv->table1_len = ipw_read_reg32(priv, priv->table1_addr); | |
832 | ||
833 | IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n", | |
834 | priv->table1_addr, priv->table1_len); | |
835 | ||
836 | priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2); | |
837 | priv->table2_len = ipw_read_reg32(priv, priv->table2_addr); | |
838 | priv->table2_len &= 0x0000ffff; /* use first two bytes */ | |
839 | ||
840 | IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n", | |
841 | priv->table2_addr, priv->table2_len); | |
842 | ||
843 | } | |
844 | ||
845 | static u32 ipw_register_toggle(u32 reg) | |
846 | { | |
847 | reg &= ~IPW_START_STANDBY; | |
848 | if (reg & IPW_GATE_ODMA) | |
849 | reg &= ~IPW_GATE_ODMA; | |
850 | if (reg & IPW_GATE_IDMA) | |
851 | reg &= ~IPW_GATE_IDMA; | |
852 | if (reg & IPW_GATE_ADMA) | |
853 | reg &= ~IPW_GATE_ADMA; | |
854 | return reg; | |
855 | } | |
856 | ||
857 | /* | |
858 | * LED behavior: | |
859 | * - On radio ON, turn on any LEDs that require to be on during start | |
860 | * - On initialization, start unassociated blink | |
861 | * - On association, disable unassociated blink | |
862 | * - On disassociation, start unassociated blink | |
863 | * - On radio OFF, turn off any LEDs started during radio on | |
864 | * | |
865 | */ | |
866 | #define LD_TIME_LINK_ON msecs_to_jiffies(300) | |
867 | #define LD_TIME_LINK_OFF msecs_to_jiffies(2700) | |
868 | #define LD_TIME_ACT_ON msecs_to_jiffies(250) | |
869 | ||
870 | static void ipw_led_link_on(struct ipw_priv *priv) | |
871 | { | |
872 | unsigned long flags; | |
873 | u32 led; | |
874 | ||
875 | /* If configured to not use LEDs, or nic_type is 1, | |
876 | * then we don't toggle a LINK led */ | |
877 | if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1) | |
878 | return; | |
879 | ||
880 | spin_lock_irqsave(&priv->lock, flags); | |
881 | ||
882 | if (!(priv->status & STATUS_RF_KILL_MASK) && | |
883 | !(priv->status & STATUS_LED_LINK_ON)) { | |
884 | IPW_DEBUG_LED("Link LED On\n"); | |
885 | led = ipw_read_reg32(priv, IPW_EVENT_REG); | |
886 | led |= priv->led_association_on; | |
887 | ||
888 | led = ipw_register_toggle(led); | |
889 | ||
890 | IPW_DEBUG_LED("Reg: 0x%08X\n", led); | |
891 | ipw_write_reg32(priv, IPW_EVENT_REG, led); | |
892 | ||
893 | priv->status |= STATUS_LED_LINK_ON; | |
894 | ||
895 | /* If we aren't associated, schedule turning the LED off */ | |
896 | if (!(priv->status & STATUS_ASSOCIATED)) | |
897 | schedule_delayed_work(&priv->led_link_off, | |
898 | LD_TIME_LINK_ON); | |
899 | } | |
900 | ||
901 | spin_unlock_irqrestore(&priv->lock, flags); | |
902 | } | |
903 | ||
904 | static void ipw_bg_led_link_on(struct work_struct *work) | |
905 | { | |
906 | struct ipw_priv *priv = | |
907 | container_of(work, struct ipw_priv, led_link_on.work); | |
908 | mutex_lock(&priv->mutex); | |
909 | ipw_led_link_on(priv); | |
910 | mutex_unlock(&priv->mutex); | |
911 | } | |
912 | ||
913 | static void ipw_led_link_off(struct ipw_priv *priv) | |
914 | { | |
915 | unsigned long flags; | |
916 | u32 led; | |
917 | ||
918 | /* If configured not to use LEDs, or nic type is 1, | |
919 | * then we don't goggle the LINK led. */ | |
920 | if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1) | |
921 | return; | |
922 | ||
923 | spin_lock_irqsave(&priv->lock, flags); | |
924 | ||
925 | if (priv->status & STATUS_LED_LINK_ON) { | |
926 | led = ipw_read_reg32(priv, IPW_EVENT_REG); | |
927 | led &= priv->led_association_off; | |
928 | led = ipw_register_toggle(led); | |
929 | ||
930 | IPW_DEBUG_LED("Reg: 0x%08X\n", led); | |
931 | ipw_write_reg32(priv, IPW_EVENT_REG, led); | |
932 | ||
933 | IPW_DEBUG_LED("Link LED Off\n"); | |
934 | ||
935 | priv->status &= ~STATUS_LED_LINK_ON; | |
936 | ||
937 | /* If we aren't associated and the radio is on, schedule | |
938 | * turning the LED on (blink while unassociated) */ | |
939 | if (!(priv->status & STATUS_RF_KILL_MASK) && | |
940 | !(priv->status & STATUS_ASSOCIATED)) | |
941 | schedule_delayed_work(&priv->led_link_on, | |
942 | LD_TIME_LINK_OFF); | |
943 | ||
944 | } | |
945 | ||
946 | spin_unlock_irqrestore(&priv->lock, flags); | |
947 | } | |
948 | ||
949 | static void ipw_bg_led_link_off(struct work_struct *work) | |
950 | { | |
951 | struct ipw_priv *priv = | |
952 | container_of(work, struct ipw_priv, led_link_off.work); | |
953 | mutex_lock(&priv->mutex); | |
954 | ipw_led_link_off(priv); | |
955 | mutex_unlock(&priv->mutex); | |
956 | } | |
957 | ||
958 | static void __ipw_led_activity_on(struct ipw_priv *priv) | |
959 | { | |
960 | u32 led; | |
961 | ||
962 | if (priv->config & CFG_NO_LED) | |
963 | return; | |
964 | ||
965 | if (priv->status & STATUS_RF_KILL_MASK) | |
966 | return; | |
967 | ||
968 | if (!(priv->status & STATUS_LED_ACT_ON)) { | |
969 | led = ipw_read_reg32(priv, IPW_EVENT_REG); | |
970 | led |= priv->led_activity_on; | |
971 | ||
972 | led = ipw_register_toggle(led); | |
973 | ||
974 | IPW_DEBUG_LED("Reg: 0x%08X\n", led); | |
975 | ipw_write_reg32(priv, IPW_EVENT_REG, led); | |
976 | ||
977 | IPW_DEBUG_LED("Activity LED On\n"); | |
978 | ||
979 | priv->status |= STATUS_LED_ACT_ON; | |
980 | ||
981 | cancel_delayed_work(&priv->led_act_off); | |
982 | schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON); | |
983 | } else { | |
984 | /* Reschedule LED off for full time period */ | |
985 | cancel_delayed_work(&priv->led_act_off); | |
986 | schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON); | |
987 | } | |
988 | } | |
989 | ||
990 | #if 0 | |
991 | void ipw_led_activity_on(struct ipw_priv *priv) | |
992 | { | |
993 | unsigned long flags; | |
994 | spin_lock_irqsave(&priv->lock, flags); | |
995 | __ipw_led_activity_on(priv); | |
996 | spin_unlock_irqrestore(&priv->lock, flags); | |
997 | } | |
998 | #endif /* 0 */ | |
999 | ||
1000 | static void ipw_led_activity_off(struct ipw_priv *priv) | |
1001 | { | |
1002 | unsigned long flags; | |
1003 | u32 led; | |
1004 | ||
1005 | if (priv->config & CFG_NO_LED) | |
1006 | return; | |
1007 | ||
1008 | spin_lock_irqsave(&priv->lock, flags); | |
1009 | ||
1010 | if (priv->status & STATUS_LED_ACT_ON) { | |
1011 | led = ipw_read_reg32(priv, IPW_EVENT_REG); | |
1012 | led &= priv->led_activity_off; | |
1013 | ||
1014 | led = ipw_register_toggle(led); | |
1015 | ||
1016 | IPW_DEBUG_LED("Reg: 0x%08X\n", led); | |
1017 | ipw_write_reg32(priv, IPW_EVENT_REG, led); | |
1018 | ||
1019 | IPW_DEBUG_LED("Activity LED Off\n"); | |
1020 | ||
1021 | priv->status &= ~STATUS_LED_ACT_ON; | |
1022 | } | |
1023 | ||
1024 | spin_unlock_irqrestore(&priv->lock, flags); | |
1025 | } | |
1026 | ||
1027 | static void ipw_bg_led_activity_off(struct work_struct *work) | |
1028 | { | |
1029 | struct ipw_priv *priv = | |
1030 | container_of(work, struct ipw_priv, led_act_off.work); | |
1031 | mutex_lock(&priv->mutex); | |
1032 | ipw_led_activity_off(priv); | |
1033 | mutex_unlock(&priv->mutex); | |
1034 | } | |
1035 | ||
1036 | static void ipw_led_band_on(struct ipw_priv *priv) | |
1037 | { | |
1038 | unsigned long flags; | |
1039 | u32 led; | |
1040 | ||
1041 | /* Only nic type 1 supports mode LEDs */ | |
1042 | if (priv->config & CFG_NO_LED || | |
1043 | priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network) | |
1044 | return; | |
1045 | ||
1046 | spin_lock_irqsave(&priv->lock, flags); | |
1047 | ||
1048 | led = ipw_read_reg32(priv, IPW_EVENT_REG); | |
1049 | if (priv->assoc_network->mode == IEEE_A) { | |
1050 | led |= priv->led_ofdm_on; | |
1051 | led &= priv->led_association_off; | |
1052 | IPW_DEBUG_LED("Mode LED On: 802.11a\n"); | |
1053 | } else if (priv->assoc_network->mode == IEEE_G) { | |
1054 | led |= priv->led_ofdm_on; | |
1055 | led |= priv->led_association_on; | |
1056 | IPW_DEBUG_LED("Mode LED On: 802.11g\n"); | |
1057 | } else { | |
1058 | led &= priv->led_ofdm_off; | |
1059 | led |= priv->led_association_on; | |
1060 | IPW_DEBUG_LED("Mode LED On: 802.11b\n"); | |
1061 | } | |
1062 | ||
1063 | led = ipw_register_toggle(led); | |
1064 | ||
1065 | IPW_DEBUG_LED("Reg: 0x%08X\n", led); | |
1066 | ipw_write_reg32(priv, IPW_EVENT_REG, led); | |
1067 | ||
1068 | spin_unlock_irqrestore(&priv->lock, flags); | |
1069 | } | |
1070 | ||
1071 | static void ipw_led_band_off(struct ipw_priv *priv) | |
1072 | { | |
1073 | unsigned long flags; | |
1074 | u32 led; | |
1075 | ||
1076 | /* Only nic type 1 supports mode LEDs */ | |
1077 | if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1) | |
1078 | return; | |
1079 | ||
1080 | spin_lock_irqsave(&priv->lock, flags); | |
1081 | ||
1082 | led = ipw_read_reg32(priv, IPW_EVENT_REG); | |
1083 | led &= priv->led_ofdm_off; | |
1084 | led &= priv->led_association_off; | |
1085 | ||
1086 | led = ipw_register_toggle(led); | |
1087 | ||
1088 | IPW_DEBUG_LED("Reg: 0x%08X\n", led); | |
1089 | ipw_write_reg32(priv, IPW_EVENT_REG, led); | |
1090 | ||
1091 | spin_unlock_irqrestore(&priv->lock, flags); | |
1092 | } | |
1093 | ||
1094 | static void ipw_led_radio_on(struct ipw_priv *priv) | |
1095 | { | |
1096 | ipw_led_link_on(priv); | |
1097 | } | |
1098 | ||
1099 | static void ipw_led_radio_off(struct ipw_priv *priv) | |
1100 | { | |
1101 | ipw_led_activity_off(priv); | |
1102 | ipw_led_link_off(priv); | |
1103 | } | |
1104 | ||
1105 | static void ipw_led_link_up(struct ipw_priv *priv) | |
1106 | { | |
1107 | /* Set the Link Led on for all nic types */ | |
1108 | ipw_led_link_on(priv); | |
1109 | } | |
1110 | ||
1111 | static void ipw_led_link_down(struct ipw_priv *priv) | |
1112 | { | |
1113 | ipw_led_activity_off(priv); | |
1114 | ipw_led_link_off(priv); | |
1115 | ||
1116 | if (priv->status & STATUS_RF_KILL_MASK) | |
1117 | ipw_led_radio_off(priv); | |
1118 | } | |
1119 | ||
1120 | static void ipw_led_init(struct ipw_priv *priv) | |
1121 | { | |
1122 | priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE]; | |
1123 | ||
1124 | /* Set the default PINs for the link and activity leds */ | |
1125 | priv->led_activity_on = IPW_ACTIVITY_LED; | |
1126 | priv->led_activity_off = ~(IPW_ACTIVITY_LED); | |
1127 | ||
1128 | priv->led_association_on = IPW_ASSOCIATED_LED; | |
1129 | priv->led_association_off = ~(IPW_ASSOCIATED_LED); | |
1130 | ||
1131 | /* Set the default PINs for the OFDM leds */ | |
1132 | priv->led_ofdm_on = IPW_OFDM_LED; | |
1133 | priv->led_ofdm_off = ~(IPW_OFDM_LED); | |
1134 | ||
1135 | switch (priv->nic_type) { | |
1136 | case EEPROM_NIC_TYPE_1: | |
1137 | /* In this NIC type, the LEDs are reversed.... */ | |
1138 | priv->led_activity_on = IPW_ASSOCIATED_LED; | |
1139 | priv->led_activity_off = ~(IPW_ASSOCIATED_LED); | |
1140 | priv->led_association_on = IPW_ACTIVITY_LED; | |
1141 | priv->led_association_off = ~(IPW_ACTIVITY_LED); | |
1142 | ||
1143 | if (!(priv->config & CFG_NO_LED)) | |
1144 | ipw_led_band_on(priv); | |
1145 | ||
1146 | /* And we don't blink link LEDs for this nic, so | |
1147 | * just return here */ | |
1148 | return; | |
1149 | ||
1150 | case EEPROM_NIC_TYPE_3: | |
1151 | case EEPROM_NIC_TYPE_2: | |
1152 | case EEPROM_NIC_TYPE_4: | |
1153 | case EEPROM_NIC_TYPE_0: | |
1154 | break; | |
1155 | ||
1156 | default: | |
1157 | IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n", | |
1158 | priv->nic_type); | |
1159 | priv->nic_type = EEPROM_NIC_TYPE_0; | |
1160 | break; | |
1161 | } | |
1162 | ||
1163 | if (!(priv->config & CFG_NO_LED)) { | |
1164 | if (priv->status & STATUS_ASSOCIATED) | |
1165 | ipw_led_link_on(priv); | |
1166 | else | |
1167 | ipw_led_link_off(priv); | |
1168 | } | |
1169 | } | |
1170 | ||
1171 | static void ipw_led_shutdown(struct ipw_priv *priv) | |
1172 | { | |
1173 | ipw_led_activity_off(priv); | |
1174 | ipw_led_link_off(priv); | |
1175 | ipw_led_band_off(priv); | |
1176 | cancel_delayed_work(&priv->led_link_on); | |
1177 | cancel_delayed_work(&priv->led_link_off); | |
1178 | cancel_delayed_work(&priv->led_act_off); | |
1179 | } | |
1180 | ||
1181 | /* | |
1182 | * The following adds a new attribute to the sysfs representation | |
1183 | * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/) | |
1184 | * used for controling the debug level. | |
1185 | * | |
1186 | * See the level definitions in ipw for details. | |
1187 | */ | |
1188 | static ssize_t show_debug_level(struct device_driver *d, char *buf) | |
1189 | { | |
1190 | return sprintf(buf, "0x%08X\n", ipw_debug_level); | |
1191 | } | |
1192 | ||
1193 | static ssize_t store_debug_level(struct device_driver *d, const char *buf, | |
1194 | size_t count) | |
1195 | { | |
1196 | char *p = (char *)buf; | |
1197 | u32 val; | |
1198 | ||
1199 | if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') { | |
1200 | p++; | |
1201 | if (p[0] == 'x' || p[0] == 'X') | |
1202 | p++; | |
1203 | val = simple_strtoul(p, &p, 16); | |
1204 | } else | |
1205 | val = simple_strtoul(p, &p, 10); | |
1206 | if (p == buf) | |
1207 | printk(KERN_INFO DRV_NAME | |
1208 | ": %s is not in hex or decimal form.\n", buf); | |
1209 | else | |
1210 | ipw_debug_level = val; | |
1211 | ||
1212 | return strnlen(buf, count); | |
1213 | } | |
1214 | ||
1215 | static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, | |
1216 | show_debug_level, store_debug_level); | |
1217 | ||
1218 | static inline u32 ipw_get_event_log_len(struct ipw_priv *priv) | |
1219 | { | |
1220 | /* length = 1st dword in log */ | |
1221 | return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG)); | |
1222 | } | |
1223 | ||
1224 | static void ipw_capture_event_log(struct ipw_priv *priv, | |
1225 | u32 log_len, struct ipw_event *log) | |
1226 | { | |
1227 | u32 base; | |
1228 | ||
1229 | if (log_len) { | |
1230 | base = ipw_read32(priv, IPW_EVENT_LOG); | |
1231 | ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32), | |
1232 | (u8 *) log, sizeof(*log) * log_len); | |
1233 | } | |
1234 | } | |
1235 | ||
1236 | static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv) | |
1237 | { | |
1238 | struct ipw_fw_error *error; | |
1239 | u32 log_len = ipw_get_event_log_len(priv); | |
1240 | u32 base = ipw_read32(priv, IPW_ERROR_LOG); | |
1241 | u32 elem_len = ipw_read_reg32(priv, base); | |
1242 | ||
1243 | error = kmalloc(sizeof(*error) + | |
1244 | sizeof(*error->elem) * elem_len + | |
1245 | sizeof(*error->log) * log_len, GFP_ATOMIC); | |
1246 | if (!error) { | |
1247 | IPW_ERROR("Memory allocation for firmware error log " | |
1248 | "failed.\n"); | |
1249 | return NULL; | |
1250 | } | |
1251 | error->jiffies = jiffies; | |
1252 | error->status = priv->status; | |
1253 | error->config = priv->config; | |
1254 | error->elem_len = elem_len; | |
1255 | error->log_len = log_len; | |
1256 | error->elem = (struct ipw_error_elem *)error->payload; | |
1257 | error->log = (struct ipw_event *)(error->elem + elem_len); | |
1258 | ||
1259 | ipw_capture_event_log(priv, log_len, error->log); | |
1260 | ||
1261 | if (elem_len) | |
1262 | ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem, | |
1263 | sizeof(*error->elem) * elem_len); | |
1264 | ||
1265 | return error; | |
1266 | } | |
1267 | ||
1268 | static ssize_t show_event_log(struct device *d, | |
1269 | struct device_attribute *attr, char *buf) | |
1270 | { | |
1271 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1272 | u32 log_len = ipw_get_event_log_len(priv); | |
1273 | u32 log_size; | |
1274 | struct ipw_event *log; | |
1275 | u32 len = 0, i; | |
1276 | ||
1277 | /* not using min() because of its strict type checking */ | |
1278 | log_size = PAGE_SIZE / sizeof(*log) > log_len ? | |
1279 | sizeof(*log) * log_len : PAGE_SIZE; | |
1280 | log = kzalloc(log_size, GFP_KERNEL); | |
1281 | if (!log) { | |
1282 | IPW_ERROR("Unable to allocate memory for log\n"); | |
1283 | return 0; | |
1284 | } | |
1285 | log_len = log_size / sizeof(*log); | |
1286 | ipw_capture_event_log(priv, log_len, log); | |
1287 | ||
1288 | len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len); | |
1289 | for (i = 0; i < log_len; i++) | |
1290 | len += snprintf(buf + len, PAGE_SIZE - len, | |
1291 | "\n%08X%08X%08X", | |
1292 | log[i].time, log[i].event, log[i].data); | |
1293 | len += snprintf(buf + len, PAGE_SIZE - len, "\n"); | |
1294 | kfree(log); | |
1295 | return len; | |
1296 | } | |
1297 | ||
1298 | static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL); | |
1299 | ||
1300 | static ssize_t show_error(struct device *d, | |
1301 | struct device_attribute *attr, char *buf) | |
1302 | { | |
1303 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1304 | u32 len = 0, i; | |
1305 | if (!priv->error) | |
1306 | return 0; | |
1307 | len += snprintf(buf + len, PAGE_SIZE - len, | |
1308 | "%08lX%08X%08X%08X", | |
1309 | priv->error->jiffies, | |
1310 | priv->error->status, | |
1311 | priv->error->config, priv->error->elem_len); | |
1312 | for (i = 0; i < priv->error->elem_len; i++) | |
1313 | len += snprintf(buf + len, PAGE_SIZE - len, | |
1314 | "\n%08X%08X%08X%08X%08X%08X%08X", | |
1315 | priv->error->elem[i].time, | |
1316 | priv->error->elem[i].desc, | |
1317 | priv->error->elem[i].blink1, | |
1318 | priv->error->elem[i].blink2, | |
1319 | priv->error->elem[i].link1, | |
1320 | priv->error->elem[i].link2, | |
1321 | priv->error->elem[i].data); | |
1322 | ||
1323 | len += snprintf(buf + len, PAGE_SIZE - len, | |
1324 | "\n%08X", priv->error->log_len); | |
1325 | for (i = 0; i < priv->error->log_len; i++) | |
1326 | len += snprintf(buf + len, PAGE_SIZE - len, | |
1327 | "\n%08X%08X%08X", | |
1328 | priv->error->log[i].time, | |
1329 | priv->error->log[i].event, | |
1330 | priv->error->log[i].data); | |
1331 | len += snprintf(buf + len, PAGE_SIZE - len, "\n"); | |
1332 | return len; | |
1333 | } | |
1334 | ||
1335 | static ssize_t clear_error(struct device *d, | |
1336 | struct device_attribute *attr, | |
1337 | const char *buf, size_t count) | |
1338 | { | |
1339 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1340 | ||
1341 | kfree(priv->error); | |
1342 | priv->error = NULL; | |
1343 | return count; | |
1344 | } | |
1345 | ||
1346 | static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error); | |
1347 | ||
1348 | static ssize_t show_cmd_log(struct device *d, | |
1349 | struct device_attribute *attr, char *buf) | |
1350 | { | |
1351 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1352 | u32 len = 0, i; | |
1353 | if (!priv->cmdlog) | |
1354 | return 0; | |
1355 | for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len; | |
1356 | (i != priv->cmdlog_pos) && (PAGE_SIZE - len); | |
1357 | i = (i + 1) % priv->cmdlog_len) { | |
1358 | len += | |
1359 | snprintf(buf + len, PAGE_SIZE - len, | |
1360 | "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies, | |
1361 | priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd, | |
1362 | priv->cmdlog[i].cmd.len); | |
1363 | len += | |
1364 | snprintk_buf(buf + len, PAGE_SIZE - len, | |
1365 | (u8 *) priv->cmdlog[i].cmd.param, | |
1366 | priv->cmdlog[i].cmd.len); | |
1367 | len += snprintf(buf + len, PAGE_SIZE - len, "\n"); | |
1368 | } | |
1369 | len += snprintf(buf + len, PAGE_SIZE - len, "\n"); | |
1370 | return len; | |
1371 | } | |
1372 | ||
1373 | static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL); | |
1374 | ||
1375 | #ifdef CONFIG_IPW2200_PROMISCUOUS | |
1376 | static void ipw_prom_free(struct ipw_priv *priv); | |
1377 | static int ipw_prom_alloc(struct ipw_priv *priv); | |
1378 | static ssize_t store_rtap_iface(struct device *d, | |
1379 | struct device_attribute *attr, | |
1380 | const char *buf, size_t count) | |
1381 | { | |
1382 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1383 | int rc = 0; | |
1384 | ||
1385 | if (count < 1) | |
1386 | return -EINVAL; | |
1387 | ||
1388 | switch (buf[0]) { | |
1389 | case '0': | |
1390 | if (!rtap_iface) | |
1391 | return count; | |
1392 | ||
1393 | if (netif_running(priv->prom_net_dev)) { | |
1394 | IPW_WARNING("Interface is up. Cannot unregister.\n"); | |
1395 | return count; | |
1396 | } | |
1397 | ||
1398 | ipw_prom_free(priv); | |
1399 | rtap_iface = 0; | |
1400 | break; | |
1401 | ||
1402 | case '1': | |
1403 | if (rtap_iface) | |
1404 | return count; | |
1405 | ||
1406 | rc = ipw_prom_alloc(priv); | |
1407 | if (!rc) | |
1408 | rtap_iface = 1; | |
1409 | break; | |
1410 | ||
1411 | default: | |
1412 | return -EINVAL; | |
1413 | } | |
1414 | ||
1415 | if (rc) { | |
1416 | IPW_ERROR("Failed to register promiscuous network " | |
1417 | "device (error %d).\n", rc); | |
1418 | } | |
1419 | ||
1420 | return count; | |
1421 | } | |
1422 | ||
1423 | static ssize_t show_rtap_iface(struct device *d, | |
1424 | struct device_attribute *attr, | |
1425 | char *buf) | |
1426 | { | |
1427 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1428 | if (rtap_iface) | |
1429 | return sprintf(buf, "%s", priv->prom_net_dev->name); | |
1430 | else { | |
1431 | buf[0] = '-'; | |
1432 | buf[1] = '1'; | |
1433 | buf[2] = '\0'; | |
1434 | return 3; | |
1435 | } | |
1436 | } | |
1437 | ||
1438 | static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface, | |
1439 | store_rtap_iface); | |
1440 | ||
1441 | static ssize_t store_rtap_filter(struct device *d, | |
1442 | struct device_attribute *attr, | |
1443 | const char *buf, size_t count) | |
1444 | { | |
1445 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1446 | ||
1447 | if (!priv->prom_priv) { | |
1448 | IPW_ERROR("Attempting to set filter without " | |
1449 | "rtap_iface enabled.\n"); | |
1450 | return -EPERM; | |
1451 | } | |
1452 | ||
1453 | priv->prom_priv->filter = simple_strtol(buf, NULL, 0); | |
1454 | ||
1455 | IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n", | |
1456 | BIT_ARG16(priv->prom_priv->filter)); | |
1457 | ||
1458 | return count; | |
1459 | } | |
1460 | ||
1461 | static ssize_t show_rtap_filter(struct device *d, | |
1462 | struct device_attribute *attr, | |
1463 | char *buf) | |
1464 | { | |
1465 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1466 | return sprintf(buf, "0x%04X", | |
1467 | priv->prom_priv ? priv->prom_priv->filter : 0); | |
1468 | } | |
1469 | ||
1470 | static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter, | |
1471 | store_rtap_filter); | |
1472 | #endif | |
1473 | ||
1474 | static ssize_t show_scan_age(struct device *d, struct device_attribute *attr, | |
1475 | char *buf) | |
1476 | { | |
1477 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1478 | return sprintf(buf, "%d\n", priv->ieee->scan_age); | |
1479 | } | |
1480 | ||
1481 | static ssize_t store_scan_age(struct device *d, struct device_attribute *attr, | |
1482 | const char *buf, size_t count) | |
1483 | { | |
1484 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1485 | struct net_device *dev = priv->net_dev; | |
1486 | char buffer[] = "00000000"; | |
1487 | unsigned long len = | |
1488 | (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1; | |
1489 | unsigned long val; | |
1490 | char *p = buffer; | |
1491 | ||
1492 | IPW_DEBUG_INFO("enter\n"); | |
1493 | ||
1494 | strncpy(buffer, buf, len); | |
1495 | buffer[len] = 0; | |
1496 | ||
1497 | if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') { | |
1498 | p++; | |
1499 | if (p[0] == 'x' || p[0] == 'X') | |
1500 | p++; | |
1501 | val = simple_strtoul(p, &p, 16); | |
1502 | } else | |
1503 | val = simple_strtoul(p, &p, 10); | |
1504 | if (p == buffer) { | |
1505 | IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name); | |
1506 | } else { | |
1507 | priv->ieee->scan_age = val; | |
1508 | IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age); | |
1509 | } | |
1510 | ||
1511 | IPW_DEBUG_INFO("exit\n"); | |
1512 | return len; | |
1513 | } | |
1514 | ||
1515 | static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age); | |
1516 | ||
1517 | static ssize_t show_led(struct device *d, struct device_attribute *attr, | |
1518 | char *buf) | |
1519 | { | |
1520 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1521 | return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1); | |
1522 | } | |
1523 | ||
1524 | static ssize_t store_led(struct device *d, struct device_attribute *attr, | |
1525 | const char *buf, size_t count) | |
1526 | { | |
1527 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1528 | ||
1529 | IPW_DEBUG_INFO("enter\n"); | |
1530 | ||
1531 | if (count == 0) | |
1532 | return 0; | |
1533 | ||
1534 | if (*buf == 0) { | |
1535 | IPW_DEBUG_LED("Disabling LED control.\n"); | |
1536 | priv->config |= CFG_NO_LED; | |
1537 | ipw_led_shutdown(priv); | |
1538 | } else { | |
1539 | IPW_DEBUG_LED("Enabling LED control.\n"); | |
1540 | priv->config &= ~CFG_NO_LED; | |
1541 | ipw_led_init(priv); | |
1542 | } | |
1543 | ||
1544 | IPW_DEBUG_INFO("exit\n"); | |
1545 | return count; | |
1546 | } | |
1547 | ||
1548 | static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led); | |
1549 | ||
1550 | static ssize_t show_status(struct device *d, | |
1551 | struct device_attribute *attr, char *buf) | |
1552 | { | |
1553 | struct ipw_priv *p = dev_get_drvdata(d); | |
1554 | return sprintf(buf, "0x%08x\n", (int)p->status); | |
1555 | } | |
1556 | ||
1557 | static DEVICE_ATTR(status, S_IRUGO, show_status, NULL); | |
1558 | ||
1559 | static ssize_t show_cfg(struct device *d, struct device_attribute *attr, | |
1560 | char *buf) | |
1561 | { | |
1562 | struct ipw_priv *p = dev_get_drvdata(d); | |
1563 | return sprintf(buf, "0x%08x\n", (int)p->config); | |
1564 | } | |
1565 | ||
1566 | static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL); | |
1567 | ||
1568 | static ssize_t show_nic_type(struct device *d, | |
1569 | struct device_attribute *attr, char *buf) | |
1570 | { | |
1571 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1572 | return sprintf(buf, "TYPE: %d\n", priv->nic_type); | |
1573 | } | |
1574 | ||
1575 | static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL); | |
1576 | ||
1577 | static ssize_t show_ucode_version(struct device *d, | |
1578 | struct device_attribute *attr, char *buf) | |
1579 | { | |
1580 | u32 len = sizeof(u32), tmp = 0; | |
1581 | struct ipw_priv *p = dev_get_drvdata(d); | |
1582 | ||
1583 | if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len)) | |
1584 | return 0; | |
1585 | ||
1586 | return sprintf(buf, "0x%08x\n", tmp); | |
1587 | } | |
1588 | ||
1589 | static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL); | |
1590 | ||
1591 | static ssize_t show_rtc(struct device *d, struct device_attribute *attr, | |
1592 | char *buf) | |
1593 | { | |
1594 | u32 len = sizeof(u32), tmp = 0; | |
1595 | struct ipw_priv *p = dev_get_drvdata(d); | |
1596 | ||
1597 | if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len)) | |
1598 | return 0; | |
1599 | ||
1600 | return sprintf(buf, "0x%08x\n", tmp); | |
1601 | } | |
1602 | ||
1603 | static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL); | |
1604 | ||
1605 | /* | |
1606 | * Add a device attribute to view/control the delay between eeprom | |
1607 | * operations. | |
1608 | */ | |
1609 | static ssize_t show_eeprom_delay(struct device *d, | |
1610 | struct device_attribute *attr, char *buf) | |
1611 | { | |
1612 | struct ipw_priv *p = dev_get_drvdata(d); | |
1613 | int n = p->eeprom_delay; | |
1614 | return sprintf(buf, "%i\n", n); | |
1615 | } | |
1616 | static ssize_t store_eeprom_delay(struct device *d, | |
1617 | struct device_attribute *attr, | |
1618 | const char *buf, size_t count) | |
1619 | { | |
1620 | struct ipw_priv *p = dev_get_drvdata(d); | |
1621 | sscanf(buf, "%i", &p->eeprom_delay); | |
1622 | return strnlen(buf, count); | |
1623 | } | |
1624 | ||
1625 | static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO, | |
1626 | show_eeprom_delay, store_eeprom_delay); | |
1627 | ||
1628 | static ssize_t show_command_event_reg(struct device *d, | |
1629 | struct device_attribute *attr, char *buf) | |
1630 | { | |
1631 | u32 reg = 0; | |
1632 | struct ipw_priv *p = dev_get_drvdata(d); | |
1633 | ||
1634 | reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT); | |
1635 | return sprintf(buf, "0x%08x\n", reg); | |
1636 | } | |
1637 | static ssize_t store_command_event_reg(struct device *d, | |
1638 | struct device_attribute *attr, | |
1639 | const char *buf, size_t count) | |
1640 | { | |
1641 | u32 reg; | |
1642 | struct ipw_priv *p = dev_get_drvdata(d); | |
1643 | ||
1644 | sscanf(buf, "%x", ®); | |
1645 | ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg); | |
1646 | return strnlen(buf, count); | |
1647 | } | |
1648 | ||
1649 | static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO, | |
1650 | show_command_event_reg, store_command_event_reg); | |
1651 | ||
1652 | static ssize_t show_mem_gpio_reg(struct device *d, | |
1653 | struct device_attribute *attr, char *buf) | |
1654 | { | |
1655 | u32 reg = 0; | |
1656 | struct ipw_priv *p = dev_get_drvdata(d); | |
1657 | ||
1658 | reg = ipw_read_reg32(p, 0x301100); | |
1659 | return sprintf(buf, "0x%08x\n", reg); | |
1660 | } | |
1661 | static ssize_t store_mem_gpio_reg(struct device *d, | |
1662 | struct device_attribute *attr, | |
1663 | const char *buf, size_t count) | |
1664 | { | |
1665 | u32 reg; | |
1666 | struct ipw_priv *p = dev_get_drvdata(d); | |
1667 | ||
1668 | sscanf(buf, "%x", ®); | |
1669 | ipw_write_reg32(p, 0x301100, reg); | |
1670 | return strnlen(buf, count); | |
1671 | } | |
1672 | ||
1673 | static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO, | |
1674 | show_mem_gpio_reg, store_mem_gpio_reg); | |
1675 | ||
1676 | static ssize_t show_indirect_dword(struct device *d, | |
1677 | struct device_attribute *attr, char *buf) | |
1678 | { | |
1679 | u32 reg = 0; | |
1680 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1681 | ||
1682 | if (priv->status & STATUS_INDIRECT_DWORD) | |
1683 | reg = ipw_read_reg32(priv, priv->indirect_dword); | |
1684 | else | |
1685 | reg = 0; | |
1686 | ||
1687 | return sprintf(buf, "0x%08x\n", reg); | |
1688 | } | |
1689 | static ssize_t store_indirect_dword(struct device *d, | |
1690 | struct device_attribute *attr, | |
1691 | const char *buf, size_t count) | |
1692 | { | |
1693 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1694 | ||
1695 | sscanf(buf, "%x", &priv->indirect_dword); | |
1696 | priv->status |= STATUS_INDIRECT_DWORD; | |
1697 | return strnlen(buf, count); | |
1698 | } | |
1699 | ||
1700 | static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO, | |
1701 | show_indirect_dword, store_indirect_dword); | |
1702 | ||
1703 | static ssize_t show_indirect_byte(struct device *d, | |
1704 | struct device_attribute *attr, char *buf) | |
1705 | { | |
1706 | u8 reg = 0; | |
1707 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1708 | ||
1709 | if (priv->status & STATUS_INDIRECT_BYTE) | |
1710 | reg = ipw_read_reg8(priv, priv->indirect_byte); | |
1711 | else | |
1712 | reg = 0; | |
1713 | ||
1714 | return sprintf(buf, "0x%02x\n", reg); | |
1715 | } | |
1716 | static ssize_t store_indirect_byte(struct device *d, | |
1717 | struct device_attribute *attr, | |
1718 | const char *buf, size_t count) | |
1719 | { | |
1720 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1721 | ||
1722 | sscanf(buf, "%x", &priv->indirect_byte); | |
1723 | priv->status |= STATUS_INDIRECT_BYTE; | |
1724 | return strnlen(buf, count); | |
1725 | } | |
1726 | ||
1727 | static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO, | |
1728 | show_indirect_byte, store_indirect_byte); | |
1729 | ||
1730 | static ssize_t show_direct_dword(struct device *d, | |
1731 | struct device_attribute *attr, char *buf) | |
1732 | { | |
1733 | u32 reg = 0; | |
1734 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1735 | ||
1736 | if (priv->status & STATUS_DIRECT_DWORD) | |
1737 | reg = ipw_read32(priv, priv->direct_dword); | |
1738 | else | |
1739 | reg = 0; | |
1740 | ||
1741 | return sprintf(buf, "0x%08x\n", reg); | |
1742 | } | |
1743 | static ssize_t store_direct_dword(struct device *d, | |
1744 | struct device_attribute *attr, | |
1745 | const char *buf, size_t count) | |
1746 | { | |
1747 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1748 | ||
1749 | sscanf(buf, "%x", &priv->direct_dword); | |
1750 | priv->status |= STATUS_DIRECT_DWORD; | |
1751 | return strnlen(buf, count); | |
1752 | } | |
1753 | ||
1754 | static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO, | |
1755 | show_direct_dword, store_direct_dword); | |
1756 | ||
1757 | static int rf_kill_active(struct ipw_priv *priv) | |
1758 | { | |
1759 | if (0 == (ipw_read32(priv, 0x30) & 0x10000)) { | |
1760 | priv->status |= STATUS_RF_KILL_HW; | |
1761 | wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); | |
1762 | } else { | |
1763 | priv->status &= ~STATUS_RF_KILL_HW; | |
1764 | wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false); | |
1765 | } | |
1766 | ||
1767 | return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0; | |
1768 | } | |
1769 | ||
1770 | static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr, | |
1771 | char *buf) | |
1772 | { | |
1773 | /* 0 - RF kill not enabled | |
1774 | 1 - SW based RF kill active (sysfs) | |
1775 | 2 - HW based RF kill active | |
1776 | 3 - Both HW and SW baed RF kill active */ | |
1777 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1778 | int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | | |
1779 | (rf_kill_active(priv) ? 0x2 : 0x0); | |
1780 | return sprintf(buf, "%i\n", val); | |
1781 | } | |
1782 | ||
1783 | static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio) | |
1784 | { | |
1785 | if ((disable_radio ? 1 : 0) == | |
1786 | ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0)) | |
1787 | return 0; | |
1788 | ||
1789 | IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", | |
1790 | disable_radio ? "OFF" : "ON"); | |
1791 | ||
1792 | if (disable_radio) { | |
1793 | priv->status |= STATUS_RF_KILL_SW; | |
1794 | ||
1795 | cancel_delayed_work(&priv->request_scan); | |
1796 | cancel_delayed_work(&priv->request_direct_scan); | |
1797 | cancel_delayed_work(&priv->request_passive_scan); | |
1798 | cancel_delayed_work(&priv->scan_event); | |
1799 | schedule_work(&priv->down); | |
1800 | } else { | |
1801 | priv->status &= ~STATUS_RF_KILL_SW; | |
1802 | if (rf_kill_active(priv)) { | |
1803 | IPW_DEBUG_RF_KILL("Can not turn radio back on - " | |
1804 | "disabled by HW switch\n"); | |
1805 | /* Make sure the RF_KILL check timer is running */ | |
1806 | cancel_delayed_work(&priv->rf_kill); | |
1807 | schedule_delayed_work(&priv->rf_kill, | |
1808 | round_jiffies_relative(2 * HZ)); | |
1809 | } else | |
1810 | schedule_work(&priv->up); | |
1811 | } | |
1812 | ||
1813 | return 1; | |
1814 | } | |
1815 | ||
1816 | static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr, | |
1817 | const char *buf, size_t count) | |
1818 | { | |
1819 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1820 | ||
1821 | ipw_radio_kill_sw(priv, buf[0] == '1'); | |
1822 | ||
1823 | return count; | |
1824 | } | |
1825 | ||
1826 | static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill); | |
1827 | ||
1828 | static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr, | |
1829 | char *buf) | |
1830 | { | |
1831 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1832 | int pos = 0, len = 0; | |
1833 | if (priv->config & CFG_SPEED_SCAN) { | |
1834 | while (priv->speed_scan[pos] != 0) | |
1835 | len += sprintf(&buf[len], "%d ", | |
1836 | priv->speed_scan[pos++]); | |
1837 | return len + sprintf(&buf[len], "\n"); | |
1838 | } | |
1839 | ||
1840 | return sprintf(buf, "0\n"); | |
1841 | } | |
1842 | ||
1843 | static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr, | |
1844 | const char *buf, size_t count) | |
1845 | { | |
1846 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1847 | int channel, pos = 0; | |
1848 | const char *p = buf; | |
1849 | ||
1850 | /* list of space separated channels to scan, optionally ending with 0 */ | |
1851 | while ((channel = simple_strtol(p, NULL, 0))) { | |
1852 | if (pos == MAX_SPEED_SCAN - 1) { | |
1853 | priv->speed_scan[pos] = 0; | |
1854 | break; | |
1855 | } | |
1856 | ||
1857 | if (libipw_is_valid_channel(priv->ieee, channel)) | |
1858 | priv->speed_scan[pos++] = channel; | |
1859 | else | |
1860 | IPW_WARNING("Skipping invalid channel request: %d\n", | |
1861 | channel); | |
1862 | p = strchr(p, ' '); | |
1863 | if (!p) | |
1864 | break; | |
1865 | while (*p == ' ' || *p == '\t') | |
1866 | p++; | |
1867 | } | |
1868 | ||
1869 | if (pos == 0) | |
1870 | priv->config &= ~CFG_SPEED_SCAN; | |
1871 | else { | |
1872 | priv->speed_scan_pos = 0; | |
1873 | priv->config |= CFG_SPEED_SCAN; | |
1874 | } | |
1875 | ||
1876 | return count; | |
1877 | } | |
1878 | ||
1879 | static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan, | |
1880 | store_speed_scan); | |
1881 | ||
1882 | static ssize_t show_net_stats(struct device *d, struct device_attribute *attr, | |
1883 | char *buf) | |
1884 | { | |
1885 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1886 | return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0'); | |
1887 | } | |
1888 | ||
1889 | static ssize_t store_net_stats(struct device *d, struct device_attribute *attr, | |
1890 | const char *buf, size_t count) | |
1891 | { | |
1892 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1893 | if (buf[0] == '1') | |
1894 | priv->config |= CFG_NET_STATS; | |
1895 | else | |
1896 | priv->config &= ~CFG_NET_STATS; | |
1897 | ||
1898 | return count; | |
1899 | } | |
1900 | ||
1901 | static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO, | |
1902 | show_net_stats, store_net_stats); | |
1903 | ||
1904 | static ssize_t show_channels(struct device *d, | |
1905 | struct device_attribute *attr, | |
1906 | char *buf) | |
1907 | { | |
1908 | struct ipw_priv *priv = dev_get_drvdata(d); | |
1909 | const struct libipw_geo *geo = libipw_get_geo(priv->ieee); | |
1910 | int len = 0, i; | |
1911 | ||
1912 | len = sprintf(&buf[len], | |
1913 | "Displaying %d channels in 2.4Ghz band " | |
1914 | "(802.11bg):\n", geo->bg_channels); | |
1915 | ||
1916 | for (i = 0; i < geo->bg_channels; i++) { | |
1917 | len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n", | |
1918 | geo->bg[i].channel, | |
1919 | geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ? | |
1920 | " (radar spectrum)" : "", | |
1921 | ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) || | |
1922 | (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)) | |
1923 | ? "" : ", IBSS", | |
1924 | geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ? | |
1925 | "passive only" : "active/passive", | |
1926 | geo->bg[i].flags & LIBIPW_CH_B_ONLY ? | |
1927 | "B" : "B/G"); | |
1928 | } | |
1929 | ||
1930 | len += sprintf(&buf[len], | |
1931 | "Displaying %d channels in 5.2Ghz band " | |
1932 | "(802.11a):\n", geo->a_channels); | |
1933 | for (i = 0; i < geo->a_channels; i++) { | |
1934 | len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n", | |
1935 | geo->a[i].channel, | |
1936 | geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ? | |
1937 | " (radar spectrum)" : "", | |
1938 | ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) || | |
1939 | (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)) | |
1940 | ? "" : ", IBSS", | |
1941 | geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ? | |
1942 | "passive only" : "active/passive"); | |
1943 | } | |
1944 | ||
1945 | return len; | |
1946 | } | |
1947 | ||
1948 | static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL); | |
1949 | ||
1950 | static void notify_wx_assoc_event(struct ipw_priv *priv) | |
1951 | { | |
1952 | union iwreq_data wrqu; | |
1953 | wrqu.ap_addr.sa_family = ARPHRD_ETHER; | |
1954 | if (priv->status & STATUS_ASSOCIATED) | |
1955 | memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); | |
1956 | else | |
1957 | memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN); | |
1958 | wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); | |
1959 | } | |
1960 | ||
1961 | static void ipw_irq_tasklet(struct ipw_priv *priv) | |
1962 | { | |
1963 | u32 inta, inta_mask, handled = 0; | |
1964 | unsigned long flags; | |
1965 | int rc = 0; | |
1966 | ||
1967 | spin_lock_irqsave(&priv->irq_lock, flags); | |
1968 | ||
1969 | inta = ipw_read32(priv, IPW_INTA_RW); | |
1970 | inta_mask = ipw_read32(priv, IPW_INTA_MASK_R); | |
1971 | ||
1972 | if (inta == 0xFFFFFFFF) { | |
1973 | /* Hardware disappeared */ | |
1974 | IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n"); | |
1975 | /* Only handle the cached INTA values */ | |
1976 | inta = 0; | |
1977 | } | |
1978 | inta &= (IPW_INTA_MASK_ALL & inta_mask); | |
1979 | ||
1980 | /* Add any cached INTA values that need to be handled */ | |
1981 | inta |= priv->isr_inta; | |
1982 | ||
1983 | spin_unlock_irqrestore(&priv->irq_lock, flags); | |
1984 | ||
1985 | spin_lock_irqsave(&priv->lock, flags); | |
1986 | ||
1987 | /* handle all the justifications for the interrupt */ | |
1988 | if (inta & IPW_INTA_BIT_RX_TRANSFER) { | |
1989 | ipw_rx(priv); | |
1990 | handled |= IPW_INTA_BIT_RX_TRANSFER; | |
1991 | } | |
1992 | ||
1993 | if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) { | |
1994 | IPW_DEBUG_HC("Command completed.\n"); | |
1995 | rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1); | |
1996 | priv->status &= ~STATUS_HCMD_ACTIVE; | |
1997 | wake_up_interruptible(&priv->wait_command_queue); | |
1998 | handled |= IPW_INTA_BIT_TX_CMD_QUEUE; | |
1999 | } | |
2000 | ||
2001 | if (inta & IPW_INTA_BIT_TX_QUEUE_1) { | |
2002 | IPW_DEBUG_TX("TX_QUEUE_1\n"); | |
2003 | rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0); | |
2004 | handled |= IPW_INTA_BIT_TX_QUEUE_1; | |
2005 | } | |
2006 | ||
2007 | if (inta & IPW_INTA_BIT_TX_QUEUE_2) { | |
2008 | IPW_DEBUG_TX("TX_QUEUE_2\n"); | |
2009 | rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1); | |
2010 | handled |= IPW_INTA_BIT_TX_QUEUE_2; | |
2011 | } | |
2012 | ||
2013 | if (inta & IPW_INTA_BIT_TX_QUEUE_3) { | |
2014 | IPW_DEBUG_TX("TX_QUEUE_3\n"); | |
2015 | rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2); | |
2016 | handled |= IPW_INTA_BIT_TX_QUEUE_3; | |
2017 | } | |
2018 | ||
2019 | if (inta & IPW_INTA_BIT_TX_QUEUE_4) { | |
2020 | IPW_DEBUG_TX("TX_QUEUE_4\n"); | |
2021 | rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3); | |
2022 | handled |= IPW_INTA_BIT_TX_QUEUE_4; | |
2023 | } | |
2024 | ||
2025 | if (inta & IPW_INTA_BIT_STATUS_CHANGE) { | |
2026 | IPW_WARNING("STATUS_CHANGE\n"); | |
2027 | handled |= IPW_INTA_BIT_STATUS_CHANGE; | |
2028 | } | |
2029 | ||
2030 | if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) { | |
2031 | IPW_WARNING("TX_PERIOD_EXPIRED\n"); | |
2032 | handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED; | |
2033 | } | |
2034 | ||
2035 | if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) { | |
2036 | IPW_WARNING("HOST_CMD_DONE\n"); | |
2037 | handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE; | |
2038 | } | |
2039 | ||
2040 | if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) { | |
2041 | IPW_WARNING("FW_INITIALIZATION_DONE\n"); | |
2042 | handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE; | |
2043 | } | |
2044 | ||
2045 | if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) { | |
2046 | IPW_WARNING("PHY_OFF_DONE\n"); | |
2047 | handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE; | |
2048 | } | |
2049 | ||
2050 | if (inta & IPW_INTA_BIT_RF_KILL_DONE) { | |
2051 | IPW_DEBUG_RF_KILL("RF_KILL_DONE\n"); | |
2052 | priv->status |= STATUS_RF_KILL_HW; | |
2053 | wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true); | |
2054 | wake_up_interruptible(&priv->wait_command_queue); | |
2055 | priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING); | |
2056 | cancel_delayed_work(&priv->request_scan); | |
2057 | cancel_delayed_work(&priv->request_direct_scan); | |
2058 | cancel_delayed_work(&priv->request_passive_scan); | |
2059 | cancel_delayed_work(&priv->scan_event); | |
2060 | schedule_work(&priv->link_down); | |
2061 | schedule_delayed_work(&priv->rf_kill, 2 * HZ); | |
2062 | handled |= IPW_INTA_BIT_RF_KILL_DONE; | |
2063 | } | |
2064 | ||
2065 | if (inta & IPW_INTA_BIT_FATAL_ERROR) { | |
2066 | IPW_WARNING("Firmware error detected. Restarting.\n"); | |
2067 | if (priv->error) { | |
2068 | IPW_DEBUG_FW("Sysfs 'error' log already exists.\n"); | |
2069 | if (ipw_debug_level & IPW_DL_FW_ERRORS) { | |
2070 | struct ipw_fw_error *error = | |
2071 | ipw_alloc_error_log(priv); | |
2072 | ipw_dump_error_log(priv, error); | |
2073 | kfree(error); | |
2074 | } | |
2075 | } else { | |
2076 | priv->error = ipw_alloc_error_log(priv); | |
2077 | if (priv->error) | |
2078 | IPW_DEBUG_FW("Sysfs 'error' log captured.\n"); | |
2079 | else | |
2080 | IPW_DEBUG_FW("Error allocating sysfs 'error' " | |
2081 | "log.\n"); | |
2082 | if (ipw_debug_level & IPW_DL_FW_ERRORS) | |
2083 | ipw_dump_error_log(priv, priv->error); | |
2084 | } | |
2085 | ||
2086 | /* XXX: If hardware encryption is for WPA/WPA2, | |
2087 | * we have to notify the supplicant. */ | |
2088 | if (priv->ieee->sec.encrypt) { | |
2089 | priv->status &= ~STATUS_ASSOCIATED; | |
2090 | notify_wx_assoc_event(priv); | |
2091 | } | |
2092 | ||
2093 | /* Keep the restart process from trying to send host | |
2094 | * commands by clearing the INIT status bit */ | |
2095 | priv->status &= ~STATUS_INIT; | |
2096 | ||
2097 | /* Cancel currently queued command. */ | |
2098 | priv->status &= ~STATUS_HCMD_ACTIVE; | |
2099 | wake_up_interruptible(&priv->wait_command_queue); | |
2100 | ||
2101 | schedule_work(&priv->adapter_restart); | |
2102 | handled |= IPW_INTA_BIT_FATAL_ERROR; | |
2103 | } | |
2104 | ||
2105 | if (inta & IPW_INTA_BIT_PARITY_ERROR) { | |
2106 | IPW_ERROR("Parity error\n"); | |
2107 | handled |= IPW_INTA_BIT_PARITY_ERROR; | |
2108 | } | |
2109 | ||
2110 | if (handled != inta) { | |
2111 | IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled); | |
2112 | } | |
2113 | ||
2114 | spin_unlock_irqrestore(&priv->lock, flags); | |
2115 | ||
2116 | /* enable all interrupts */ | |
2117 | ipw_enable_interrupts(priv); | |
2118 | } | |
2119 | ||
2120 | #define IPW_CMD(x) case IPW_CMD_ ## x : return #x | |
2121 | static char *get_cmd_string(u8 cmd) | |
2122 | { | |
2123 | switch (cmd) { | |
2124 | IPW_CMD(HOST_COMPLETE); | |
2125 | IPW_CMD(POWER_DOWN); | |
2126 | IPW_CMD(SYSTEM_CONFIG); | |
2127 | IPW_CMD(MULTICAST_ADDRESS); | |
2128 | IPW_CMD(SSID); | |
2129 | IPW_CMD(ADAPTER_ADDRESS); | |
2130 | IPW_CMD(PORT_TYPE); | |
2131 | IPW_CMD(RTS_THRESHOLD); | |
2132 | IPW_CMD(FRAG_THRESHOLD); | |
2133 | IPW_CMD(POWER_MODE); | |
2134 | IPW_CMD(WEP_KEY); | |
2135 | IPW_CMD(TGI_TX_KEY); | |
2136 | IPW_CMD(SCAN_REQUEST); | |
2137 | IPW_CMD(SCAN_REQUEST_EXT); | |
2138 | IPW_CMD(ASSOCIATE); | |
2139 | IPW_CMD(SUPPORTED_RATES); | |
2140 | IPW_CMD(SCAN_ABORT); | |
2141 | IPW_CMD(TX_FLUSH); | |
2142 | IPW_CMD(QOS_PARAMETERS); | |
2143 | IPW_CMD(DINO_CONFIG); | |
2144 | IPW_CMD(RSN_CAPABILITIES); | |
2145 | IPW_CMD(RX_KEY); | |
2146 | IPW_CMD(CARD_DISABLE); | |
2147 | IPW_CMD(SEED_NUMBER); | |
2148 | IPW_CMD(TX_POWER); | |
2149 | IPW_CMD(COUNTRY_INFO); | |
2150 | IPW_CMD(AIRONET_INFO); | |
2151 | IPW_CMD(AP_TX_POWER); | |
2152 | IPW_CMD(CCKM_INFO); | |
2153 | IPW_CMD(CCX_VER_INFO); | |
2154 | IPW_CMD(SET_CALIBRATION); | |
2155 | IPW_CMD(SENSITIVITY_CALIB); | |
2156 | IPW_CMD(RETRY_LIMIT); | |
2157 | IPW_CMD(IPW_PRE_POWER_DOWN); | |
2158 | IPW_CMD(VAP_BEACON_TEMPLATE); | |
2159 | IPW_CMD(VAP_DTIM_PERIOD); | |
2160 | IPW_CMD(EXT_SUPPORTED_RATES); | |
2161 | IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT); | |
2162 | IPW_CMD(VAP_QUIET_INTERVALS); | |
2163 | IPW_CMD(VAP_CHANNEL_SWITCH); | |
2164 | IPW_CMD(VAP_MANDATORY_CHANNELS); | |
2165 | IPW_CMD(VAP_CELL_PWR_LIMIT); | |
2166 | IPW_CMD(VAP_CF_PARAM_SET); | |
2167 | IPW_CMD(VAP_SET_BEACONING_STATE); | |
2168 | IPW_CMD(MEASUREMENT); | |
2169 | IPW_CMD(POWER_CAPABILITY); | |
2170 | IPW_CMD(SUPPORTED_CHANNELS); | |
2171 | IPW_CMD(TPC_REPORT); | |
2172 | IPW_CMD(WME_INFO); | |
2173 | IPW_CMD(PRODUCTION_COMMAND); | |
2174 | default: | |
2175 | return "UNKNOWN"; | |
2176 | } | |
2177 | } | |
2178 | ||
2179 | #define HOST_COMPLETE_TIMEOUT HZ | |
2180 | ||
2181 | static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd) | |
2182 | { | |
2183 | int rc = 0; | |
2184 | unsigned long flags; | |
2185 | ||
2186 | spin_lock_irqsave(&priv->lock, flags); | |
2187 | if (priv->status & STATUS_HCMD_ACTIVE) { | |
2188 | IPW_ERROR("Failed to send %s: Already sending a command.\n", | |
2189 | get_cmd_string(cmd->cmd)); | |
2190 | spin_unlock_irqrestore(&priv->lock, flags); | |
2191 | return -EAGAIN; | |
2192 | } | |
2193 | ||
2194 | priv->status |= STATUS_HCMD_ACTIVE; | |
2195 | ||
2196 | if (priv->cmdlog) { | |
2197 | priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies; | |
2198 | priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd; | |
2199 | priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len; | |
2200 | memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param, | |
2201 | cmd->len); | |
2202 | priv->cmdlog[priv->cmdlog_pos].retcode = -1; | |
2203 | } | |
2204 | ||
2205 | IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n", | |
2206 | get_cmd_string(cmd->cmd), cmd->cmd, cmd->len, | |
2207 | priv->status); | |
2208 | ||
2209 | #ifndef DEBUG_CMD_WEP_KEY | |
2210 | if (cmd->cmd == IPW_CMD_WEP_KEY) | |
2211 | IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n"); | |
2212 | else | |
2213 | #endif | |
2214 | printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len); | |
2215 | ||
2216 | rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0); | |
2217 | if (rc) { | |
2218 | priv->status &= ~STATUS_HCMD_ACTIVE; | |
2219 | IPW_ERROR("Failed to send %s: Reason %d\n", | |
2220 | get_cmd_string(cmd->cmd), rc); | |
2221 | spin_unlock_irqrestore(&priv->lock, flags); | |
2222 | goto exit; | |
2223 | } | |
2224 | spin_unlock_irqrestore(&priv->lock, flags); | |
2225 | ||
2226 | rc = wait_event_interruptible_timeout(priv->wait_command_queue, | |
2227 | !(priv-> | |
2228 | status & STATUS_HCMD_ACTIVE), | |
2229 | HOST_COMPLETE_TIMEOUT); | |
2230 | if (rc == 0) { | |
2231 | spin_lock_irqsave(&priv->lock, flags); | |
2232 | if (priv->status & STATUS_HCMD_ACTIVE) { | |
2233 | IPW_ERROR("Failed to send %s: Command timed out.\n", | |
2234 | get_cmd_string(cmd->cmd)); | |
2235 | priv->status &= ~STATUS_HCMD_ACTIVE; | |
2236 | spin_unlock_irqrestore(&priv->lock, flags); | |
2237 | rc = -EIO; | |
2238 | goto exit; | |
2239 | } | |
2240 | spin_unlock_irqrestore(&priv->lock, flags); | |
2241 | } else | |
2242 | rc = 0; | |
2243 | ||
2244 | if (priv->status & STATUS_RF_KILL_HW) { | |
2245 | IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n", | |
2246 | get_cmd_string(cmd->cmd)); | |
2247 | rc = -EIO; | |
2248 | goto exit; | |
2249 | } | |
2250 | ||
2251 | exit: | |
2252 | if (priv->cmdlog) { | |
2253 | priv->cmdlog[priv->cmdlog_pos++].retcode = rc; | |
2254 | priv->cmdlog_pos %= priv->cmdlog_len; | |
2255 | } | |
2256 | return rc; | |
2257 | } | |
2258 | ||
2259 | static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command) | |
2260 | { | |
2261 | struct host_cmd cmd = { | |
2262 | .cmd = command, | |
2263 | }; | |
2264 | ||
2265 | return __ipw_send_cmd(priv, &cmd); | |
2266 | } | |
2267 | ||
2268 | static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len, | |
2269 | void *data) | |
2270 | { | |
2271 | struct host_cmd cmd = { | |
2272 | .cmd = command, | |
2273 | .len = len, | |
2274 | .param = data, | |
2275 | }; | |
2276 | ||
2277 | return __ipw_send_cmd(priv, &cmd); | |
2278 | } | |
2279 | ||
2280 | static int ipw_send_host_complete(struct ipw_priv *priv) | |
2281 | { | |
2282 | if (!priv) { | |
2283 | IPW_ERROR("Invalid args\n"); | |
2284 | return -1; | |
2285 | } | |
2286 | ||
2287 | return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE); | |
2288 | } | |
2289 | ||
2290 | static int ipw_send_system_config(struct ipw_priv *priv) | |
2291 | { | |
2292 | return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG, | |
2293 | sizeof(priv->sys_config), | |
2294 | &priv->sys_config); | |
2295 | } | |
2296 | ||
2297 | static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len) | |
2298 | { | |
2299 | if (!priv || !ssid) { | |
2300 | IPW_ERROR("Invalid args\n"); | |
2301 | return -1; | |
2302 | } | |
2303 | ||
2304 | return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE), | |
2305 | ssid); | |
2306 | } | |
2307 | ||
2308 | static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac) | |
2309 | { | |
2310 | if (!priv || !mac) { | |
2311 | IPW_ERROR("Invalid args\n"); | |
2312 | return -1; | |
2313 | } | |
2314 | ||
2315 | IPW_DEBUG_INFO("%s: Setting MAC to %pM\n", | |
2316 | priv->net_dev->name, mac); | |
2317 | ||
2318 | return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac); | |
2319 | } | |
2320 | ||
2321 | static void ipw_adapter_restart(void *adapter) | |
2322 | { | |
2323 | struct ipw_priv *priv = adapter; | |
2324 | ||
2325 | if (priv->status & STATUS_RF_KILL_MASK) | |
2326 | return; | |
2327 | ||
2328 | ipw_down(priv); | |
2329 | ||
2330 | if (priv->assoc_network && | |
2331 | (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS)) | |
2332 | ipw_remove_current_network(priv); | |
2333 | ||
2334 | if (ipw_up(priv)) { | |
2335 | IPW_ERROR("Failed to up device\n"); | |
2336 | return; | |
2337 | } | |
2338 | } | |
2339 | ||
2340 | static void ipw_bg_adapter_restart(struct work_struct *work) | |
2341 | { | |
2342 | struct ipw_priv *priv = | |
2343 | container_of(work, struct ipw_priv, adapter_restart); | |
2344 | mutex_lock(&priv->mutex); | |
2345 | ipw_adapter_restart(priv); | |
2346 | mutex_unlock(&priv->mutex); | |
2347 | } | |
2348 | ||
2349 | static void ipw_abort_scan(struct ipw_priv *priv); | |
2350 | ||
2351 | #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ) | |
2352 | ||
2353 | static void ipw_scan_check(void *data) | |
2354 | { | |
2355 | struct ipw_priv *priv = data; | |
2356 | ||
2357 | if (priv->status & STATUS_SCAN_ABORTING) { | |
2358 | IPW_DEBUG_SCAN("Scan completion watchdog resetting " | |
2359 | "adapter after (%dms).\n", | |
2360 | jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG)); | |
2361 | schedule_work(&priv->adapter_restart); | |
2362 | } else if (priv->status & STATUS_SCANNING) { | |
2363 | IPW_DEBUG_SCAN("Scan completion watchdog aborting scan " | |
2364 | "after (%dms).\n", | |
2365 | jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG)); | |
2366 | ipw_abort_scan(priv); | |
2367 | schedule_delayed_work(&priv->scan_check, HZ); | |
2368 | } | |
2369 | } | |
2370 | ||
2371 | static void ipw_bg_scan_check(struct work_struct *work) | |
2372 | { | |
2373 | struct ipw_priv *priv = | |
2374 | container_of(work, struct ipw_priv, scan_check.work); | |
2375 | mutex_lock(&priv->mutex); | |
2376 | ipw_scan_check(priv); | |
2377 | mutex_unlock(&priv->mutex); | |
2378 | } | |
2379 | ||
2380 | static int ipw_send_scan_request_ext(struct ipw_priv *priv, | |
2381 | struct ipw_scan_request_ext *request) | |
2382 | { | |
2383 | return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT, | |
2384 | sizeof(*request), request); | |
2385 | } | |
2386 | ||
2387 | static int ipw_send_scan_abort(struct ipw_priv *priv) | |
2388 | { | |
2389 | if (!priv) { | |
2390 | IPW_ERROR("Invalid args\n"); | |
2391 | return -1; | |
2392 | } | |
2393 | ||
2394 | return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT); | |
2395 | } | |
2396 | ||
2397 | static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens) | |
2398 | { | |
2399 | struct ipw_sensitivity_calib calib = { | |
2400 | .beacon_rssi_raw = cpu_to_le16(sens), | |
2401 | }; | |
2402 | ||
2403 | return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib), | |
2404 | &calib); | |
2405 | } | |
2406 | ||
2407 | static int ipw_send_associate(struct ipw_priv *priv, | |
2408 | struct ipw_associate *associate) | |
2409 | { | |
2410 | if (!priv || !associate) { | |
2411 | IPW_ERROR("Invalid args\n"); | |
2412 | return -1; | |
2413 | } | |
2414 | ||
2415 | return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate), | |
2416 | associate); | |
2417 | } | |
2418 | ||
2419 | static int ipw_send_supported_rates(struct ipw_priv *priv, | |
2420 | struct ipw_supported_rates *rates) | |
2421 | { | |
2422 | if (!priv || !rates) { | |
2423 | IPW_ERROR("Invalid args\n"); | |
2424 | return -1; | |
2425 | } | |
2426 | ||
2427 | return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates), | |
2428 | rates); | |
2429 | } | |
2430 | ||
2431 | static int ipw_set_random_seed(struct ipw_priv *priv) | |
2432 | { | |
2433 | u32 val; | |
2434 | ||
2435 | if (!priv) { | |
2436 | IPW_ERROR("Invalid args\n"); | |
2437 | return -1; | |
2438 | } | |
2439 | ||
2440 | get_random_bytes(&val, sizeof(val)); | |
2441 | ||
2442 | return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val); | |
2443 | } | |
2444 | ||
2445 | static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off) | |
2446 | { | |
2447 | __le32 v = cpu_to_le32(phy_off); | |
2448 | if (!priv) { | |
2449 | IPW_ERROR("Invalid args\n"); | |
2450 | return -1; | |
2451 | } | |
2452 | ||
2453 | return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v); | |
2454 | } | |
2455 | ||
2456 | static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power) | |
2457 | { | |
2458 | if (!priv || !power) { | |
2459 | IPW_ERROR("Invalid args\n"); | |
2460 | return -1; | |
2461 | } | |
2462 | ||
2463 | return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power); | |
2464 | } | |
2465 | ||
2466 | static int ipw_set_tx_power(struct ipw_priv *priv) | |
2467 | { | |
2468 | const struct libipw_geo *geo = libipw_get_geo(priv->ieee); | |
2469 | struct ipw_tx_power tx_power; | |
2470 | s8 max_power; | |
2471 | int i; | |
2472 | ||
2473 | memset(&tx_power, 0, sizeof(tx_power)); | |
2474 | ||
2475 | /* configure device for 'G' band */ | |
2476 | tx_power.ieee_mode = IPW_G_MODE; | |
2477 | tx_power.num_channels = geo->bg_channels; | |
2478 | for (i = 0; i < geo->bg_channels; i++) { | |
2479 | max_power = geo->bg[i].max_power; | |
2480 | tx_power.channels_tx_power[i].channel_number = | |
2481 | geo->bg[i].channel; | |
2482 | tx_power.channels_tx_power[i].tx_power = max_power ? | |
2483 | min(max_power, priv->tx_power) : priv->tx_power; | |
2484 | } | |
2485 | if (ipw_send_tx_power(priv, &tx_power)) | |
2486 | return -EIO; | |
2487 | ||
2488 | /* configure device to also handle 'B' band */ | |
2489 | tx_power.ieee_mode = IPW_B_MODE; | |
2490 | if (ipw_send_tx_power(priv, &tx_power)) | |
2491 | return -EIO; | |
2492 | ||
2493 | /* configure device to also handle 'A' band */ | |
2494 | if (priv->ieee->abg_true) { | |
2495 | tx_power.ieee_mode = IPW_A_MODE; | |
2496 | tx_power.num_channels = geo->a_channels; | |
2497 | for (i = 0; i < tx_power.num_channels; i++) { | |
2498 | max_power = geo->a[i].max_power; | |
2499 | tx_power.channels_tx_power[i].channel_number = | |
2500 | geo->a[i].channel; | |
2501 | tx_power.channels_tx_power[i].tx_power = max_power ? | |
2502 | min(max_power, priv->tx_power) : priv->tx_power; | |
2503 | } | |
2504 | if (ipw_send_tx_power(priv, &tx_power)) | |
2505 | return -EIO; | |
2506 | } | |
2507 | return 0; | |
2508 | } | |
2509 | ||
2510 | static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts) | |
2511 | { | |
2512 | struct ipw_rts_threshold rts_threshold = { | |
2513 | .rts_threshold = cpu_to_le16(rts), | |
2514 | }; | |
2515 | ||
2516 | if (!priv) { | |
2517 | IPW_ERROR("Invalid args\n"); | |
2518 | return -1; | |
2519 | } | |
2520 | ||
2521 | return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD, | |
2522 | sizeof(rts_threshold), &rts_threshold); | |
2523 | } | |
2524 | ||
2525 | static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag) | |
2526 | { | |
2527 | struct ipw_frag_threshold frag_threshold = { | |
2528 | .frag_threshold = cpu_to_le16(frag), | |
2529 | }; | |
2530 | ||
2531 | if (!priv) { | |
2532 | IPW_ERROR("Invalid args\n"); | |
2533 | return -1; | |
2534 | } | |
2535 | ||
2536 | return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD, | |
2537 | sizeof(frag_threshold), &frag_threshold); | |
2538 | } | |
2539 | ||
2540 | static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode) | |
2541 | { | |
2542 | __le32 param; | |
2543 | ||
2544 | if (!priv) { | |
2545 | IPW_ERROR("Invalid args\n"); | |
2546 | return -1; | |
2547 | } | |
2548 | ||
2549 | /* If on battery, set to 3, if AC set to CAM, else user | |
2550 | * level */ | |
2551 | switch (mode) { | |
2552 | case IPW_POWER_BATTERY: | |
2553 | param = cpu_to_le32(IPW_POWER_INDEX_3); | |
2554 | break; | |
2555 | case IPW_POWER_AC: | |
2556 | param = cpu_to_le32(IPW_POWER_MODE_CAM); | |
2557 | break; | |
2558 | default: | |
2559 | param = cpu_to_le32(mode); | |
2560 | break; | |
2561 | } | |
2562 | ||
2563 | return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param), | |
2564 | ¶m); | |
2565 | } | |
2566 | ||
2567 | static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit) | |
2568 | { | |
2569 | struct ipw_retry_limit retry_limit = { | |
2570 | .short_retry_limit = slimit, | |
2571 | .long_retry_limit = llimit | |
2572 | }; | |
2573 | ||
2574 | if (!priv) { | |
2575 | IPW_ERROR("Invalid args\n"); | |
2576 | return -1; | |
2577 | } | |
2578 | ||
2579 | return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit), | |
2580 | &retry_limit); | |
2581 | } | |
2582 | ||
2583 | /* | |
2584 | * The IPW device contains a Microwire compatible EEPROM that stores | |
2585 | * various data like the MAC address. Usually the firmware has exclusive | |
2586 | * access to the eeprom, but during device initialization (before the | |
2587 | * device driver has sent the HostComplete command to the firmware) the | |
2588 | * device driver has read access to the EEPROM by way of indirect addressing | |
2589 | * through a couple of memory mapped registers. | |
2590 | * | |
2591 | * The following is a simplified implementation for pulling data out of the | |
2592 | * the eeprom, along with some helper functions to find information in | |
2593 | * the per device private data's copy of the eeprom. | |
2594 | * | |
2595 | * NOTE: To better understand how these functions work (i.e what is a chip | |
2596 | * select and why do have to keep driving the eeprom clock?), read | |
2597 | * just about any data sheet for a Microwire compatible EEPROM. | |
2598 | */ | |
2599 | ||
2600 | /* write a 32 bit value into the indirect accessor register */ | |
2601 | static inline void eeprom_write_reg(struct ipw_priv *p, u32 data) | |
2602 | { | |
2603 | ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data); | |
2604 | ||
2605 | /* the eeprom requires some time to complete the operation */ | |
2606 | udelay(p->eeprom_delay); | |
2607 | } | |
2608 | ||
2609 | /* perform a chip select operation */ | |
2610 | static void eeprom_cs(struct ipw_priv *priv) | |
2611 | { | |
2612 | eeprom_write_reg(priv, 0); | |
2613 | eeprom_write_reg(priv, EEPROM_BIT_CS); | |
2614 | eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK); | |
2615 | eeprom_write_reg(priv, EEPROM_BIT_CS); | |
2616 | } | |
2617 | ||
2618 | /* perform a chip select operation */ | |
2619 | static void eeprom_disable_cs(struct ipw_priv *priv) | |
2620 | { | |
2621 | eeprom_write_reg(priv, EEPROM_BIT_CS); | |
2622 | eeprom_write_reg(priv, 0); | |
2623 | eeprom_write_reg(priv, EEPROM_BIT_SK); | |
2624 | } | |
2625 | ||
2626 | /* push a single bit down to the eeprom */ | |
2627 | static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit) | |
2628 | { | |
2629 | int d = (bit ? EEPROM_BIT_DI : 0); | |
2630 | eeprom_write_reg(p, EEPROM_BIT_CS | d); | |
2631 | eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK); | |
2632 | } | |
2633 | ||
2634 | /* push an opcode followed by an address down to the eeprom */ | |
2635 | static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr) | |
2636 | { | |
2637 | int i; | |
2638 | ||
2639 | eeprom_cs(priv); | |
2640 | eeprom_write_bit(priv, 1); | |
2641 | eeprom_write_bit(priv, op & 2); | |
2642 | eeprom_write_bit(priv, op & 1); | |
2643 | for (i = 7; i >= 0; i--) { | |
2644 | eeprom_write_bit(priv, addr & (1 << i)); | |
2645 | } | |
2646 | } | |
2647 | ||
2648 | /* pull 16 bits off the eeprom, one bit at a time */ | |
2649 | static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr) | |
2650 | { | |
2651 | int i; | |
2652 | u16 r = 0; | |
2653 | ||
2654 | /* Send READ Opcode */ | |
2655 | eeprom_op(priv, EEPROM_CMD_READ, addr); | |
2656 | ||
2657 | /* Send dummy bit */ | |
2658 | eeprom_write_reg(priv, EEPROM_BIT_CS); | |
2659 | ||
2660 | /* Read the byte off the eeprom one bit at a time */ | |
2661 | for (i = 0; i < 16; i++) { | |
2662 | u32 data = 0; | |
2663 | eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK); | |
2664 | eeprom_write_reg(priv, EEPROM_BIT_CS); | |
2665 | data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS); | |
2666 | r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0); | |
2667 | } | |
2668 | ||
2669 | /* Send another dummy bit */ | |
2670 | eeprom_write_reg(priv, 0); | |
2671 | eeprom_disable_cs(priv); | |
2672 | ||
2673 | return r; | |
2674 | } | |
2675 | ||
2676 | /* helper function for pulling the mac address out of the private */ | |
2677 | /* data's copy of the eeprom data */ | |
2678 | static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac) | |
2679 | { | |
2680 | memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6); | |
2681 | } | |
2682 | ||
2683 | /* | |
2684 | * Either the device driver (i.e. the host) or the firmware can | |
2685 | * load eeprom data into the designated region in SRAM. If neither | |
2686 | * happens then the FW will shutdown with a fatal error. | |
2687 | * | |
2688 | * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE | |
2689 | * bit needs region of shared SRAM needs to be non-zero. | |
2690 | */ | |
2691 | static void ipw_eeprom_init_sram(struct ipw_priv *priv) | |
2692 | { | |
2693 | int i; | |
2694 | __le16 *eeprom = (__le16 *) priv->eeprom; | |
2695 | ||
2696 | IPW_DEBUG_TRACE(">>\n"); | |
2697 | ||
2698 | /* read entire contents of eeprom into private buffer */ | |
2699 | for (i = 0; i < 128; i++) | |
2700 | eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i)); | |
2701 | ||
2702 | /* | |
2703 | If the data looks correct, then copy it to our private | |
2704 | copy. Otherwise let the firmware know to perform the operation | |
2705 | on its own. | |
2706 | */ | |
2707 | if (priv->eeprom[EEPROM_VERSION] != 0) { | |
2708 | IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n"); | |
2709 | ||
2710 | /* write the eeprom data to sram */ | |
2711 | for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++) | |
2712 | ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]); | |
2713 | ||
2714 | /* Do not load eeprom data on fatal error or suspend */ | |
2715 | ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); | |
2716 | } else { | |
2717 | IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n"); | |
2718 | ||
2719 | /* Load eeprom data on fatal error or suspend */ | |
2720 | ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1); | |
2721 | } | |
2722 | ||
2723 | IPW_DEBUG_TRACE("<<\n"); | |
2724 | } | |
2725 | ||
2726 | static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count) | |
2727 | { | |
2728 | count >>= 2; | |
2729 | if (!count) | |
2730 | return; | |
2731 | _ipw_write32(priv, IPW_AUTOINC_ADDR, start); | |
2732 | while (count--) | |
2733 | _ipw_write32(priv, IPW_AUTOINC_DATA, 0); | |
2734 | } | |
2735 | ||
2736 | static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv) | |
2737 | { | |
2738 | ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL, | |
2739 | CB_NUMBER_OF_ELEMENTS_SMALL * | |
2740 | sizeof(struct command_block)); | |
2741 | } | |
2742 | ||
2743 | static int ipw_fw_dma_enable(struct ipw_priv *priv) | |
2744 | { /* start dma engine but no transfers yet */ | |
2745 | ||
2746 | IPW_DEBUG_FW(">> :\n"); | |
2747 | ||
2748 | /* Start the dma */ | |
2749 | ipw_fw_dma_reset_command_blocks(priv); | |
2750 | ||
2751 | /* Write CB base address */ | |
2752 | ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL); | |
2753 | ||
2754 | IPW_DEBUG_FW("<< :\n"); | |
2755 | return 0; | |
2756 | } | |
2757 | ||
2758 | static void ipw_fw_dma_abort(struct ipw_priv *priv) | |
2759 | { | |
2760 | u32 control = 0; | |
2761 | ||
2762 | IPW_DEBUG_FW(">> :\n"); | |
2763 | ||
2764 | /* set the Stop and Abort bit */ | |
2765 | control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT; | |
2766 | ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control); | |
2767 | priv->sram_desc.last_cb_index = 0; | |
2768 | ||
2769 | IPW_DEBUG_FW("<<\n"); | |
2770 | } | |
2771 | ||
2772 | static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index, | |
2773 | struct command_block *cb) | |
2774 | { | |
2775 | u32 address = | |
2776 | IPW_SHARED_SRAM_DMA_CONTROL + | |
2777 | (sizeof(struct command_block) * index); | |
2778 | IPW_DEBUG_FW(">> :\n"); | |
2779 | ||
2780 | ipw_write_indirect(priv, address, (u8 *) cb, | |
2781 | (int)sizeof(struct command_block)); | |
2782 | ||
2783 | IPW_DEBUG_FW("<< :\n"); | |
2784 | return 0; | |
2785 | ||
2786 | } | |
2787 | ||
2788 | static int ipw_fw_dma_kick(struct ipw_priv *priv) | |
2789 | { | |
2790 | u32 control = 0; | |
2791 | u32 index = 0; | |
2792 | ||
2793 | IPW_DEBUG_FW(">> :\n"); | |
2794 | ||
2795 | for (index = 0; index < priv->sram_desc.last_cb_index; index++) | |
2796 | ipw_fw_dma_write_command_block(priv, index, | |
2797 | &priv->sram_desc.cb_list[index]); | |
2798 | ||
2799 | /* Enable the DMA in the CSR register */ | |
2800 | ipw_clear_bit(priv, IPW_RESET_REG, | |
2801 | IPW_RESET_REG_MASTER_DISABLED | | |
2802 | IPW_RESET_REG_STOP_MASTER); | |
2803 | ||
2804 | /* Set the Start bit. */ | |
2805 | control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START; | |
2806 | ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control); | |
2807 | ||
2808 | IPW_DEBUG_FW("<< :\n"); | |
2809 | return 0; | |
2810 | } | |
2811 | ||
2812 | static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv) | |
2813 | { | |
2814 | u32 address; | |
2815 | u32 register_value = 0; | |
2816 | u32 cb_fields_address = 0; | |
2817 | ||
2818 | IPW_DEBUG_FW(">> :\n"); | |
2819 | address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB); | |
2820 | IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address); | |
2821 | ||
2822 | /* Read the DMA Controlor register */ | |
2823 | register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL); | |
2824 | IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value); | |
2825 | ||
2826 | /* Print the CB values */ | |
2827 | cb_fields_address = address; | |
2828 | register_value = ipw_read_reg32(priv, cb_fields_address); | |
2829 | IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value); | |
2830 | ||
2831 | cb_fields_address += sizeof(u32); | |
2832 | register_value = ipw_read_reg32(priv, cb_fields_address); | |
2833 | IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value); | |
2834 | ||
2835 | cb_fields_address += sizeof(u32); | |
2836 | register_value = ipw_read_reg32(priv, cb_fields_address); | |
2837 | IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n", | |
2838 | register_value); | |
2839 | ||
2840 | cb_fields_address += sizeof(u32); | |
2841 | register_value = ipw_read_reg32(priv, cb_fields_address); | |
2842 | IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value); | |
2843 | ||
2844 | IPW_DEBUG_FW(">> :\n"); | |
2845 | } | |
2846 | ||
2847 | static int ipw_fw_dma_command_block_index(struct ipw_priv *priv) | |
2848 | { | |
2849 | u32 current_cb_address = 0; | |
2850 | u32 current_cb_index = 0; | |
2851 | ||
2852 | IPW_DEBUG_FW("<< :\n"); | |
2853 | current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB); | |
2854 | ||
2855 | current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) / | |
2856 | sizeof(struct command_block); | |
2857 | ||
2858 | IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n", | |
2859 | current_cb_index, current_cb_address); | |
2860 | ||
2861 | IPW_DEBUG_FW(">> :\n"); | |
2862 | return current_cb_index; | |
2863 | ||
2864 | } | |
2865 | ||
2866 | static int ipw_fw_dma_add_command_block(struct ipw_priv *priv, | |
2867 | u32 src_address, | |
2868 | u32 dest_address, | |
2869 | u32 length, | |
2870 | int interrupt_enabled, int is_last) | |
2871 | { | |
2872 | ||
2873 | u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC | | |
2874 | CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG | | |
2875 | CB_DEST_SIZE_LONG; | |
2876 | struct command_block *cb; | |
2877 | u32 last_cb_element = 0; | |
2878 | ||
2879 | IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n", | |
2880 | src_address, dest_address, length); | |
2881 | ||
2882 | if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL) | |
2883 | return -1; | |
2884 | ||
2885 | last_cb_element = priv->sram_desc.last_cb_index; | |
2886 | cb = &priv->sram_desc.cb_list[last_cb_element]; | |
2887 | priv->sram_desc.last_cb_index++; | |
2888 | ||
2889 | /* Calculate the new CB control word */ | |
2890 | if (interrupt_enabled) | |
2891 | control |= CB_INT_ENABLED; | |
2892 | ||
2893 | if (is_last) | |
2894 | control |= CB_LAST_VALID; | |
2895 | ||
2896 | control |= length; | |
2897 | ||
2898 | /* Calculate the CB Element's checksum value */ | |
2899 | cb->status = control ^ src_address ^ dest_address; | |
2900 | ||
2901 | /* Copy the Source and Destination addresses */ | |
2902 | cb->dest_addr = dest_address; | |
2903 | cb->source_addr = src_address; | |
2904 | ||
2905 | /* Copy the Control Word last */ | |
2906 | cb->control = control; | |
2907 | ||
2908 | return 0; | |
2909 | } | |
2910 | ||
2911 | static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address, | |
2912 | int nr, u32 dest_address, u32 len) | |
2913 | { | |
2914 | int ret, i; | |
2915 | u32 size; | |
2916 | ||
2917 | IPW_DEBUG_FW(">>\n"); | |
2918 | IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n", | |
2919 | nr, dest_address, len); | |
2920 | ||
2921 | for (i = 0; i < nr; i++) { | |
2922 | size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH); | |
2923 | ret = ipw_fw_dma_add_command_block(priv, src_address[i], | |
2924 | dest_address + | |
2925 | i * CB_MAX_LENGTH, size, | |
2926 | 0, 0); | |
2927 | if (ret) { | |
2928 | IPW_DEBUG_FW_INFO(": Failed\n"); | |
2929 | return -1; | |
2930 | } else | |
2931 | IPW_DEBUG_FW_INFO(": Added new cb\n"); | |
2932 | } | |
2933 | ||
2934 | IPW_DEBUG_FW("<<\n"); | |
2935 | return 0; | |
2936 | } | |
2937 | ||
2938 | static int ipw_fw_dma_wait(struct ipw_priv *priv) | |
2939 | { | |
2940 | u32 current_index = 0, previous_index; | |
2941 | u32 watchdog = 0; | |
2942 | ||
2943 | IPW_DEBUG_FW(">> :\n"); | |
2944 | ||
2945 | current_index = ipw_fw_dma_command_block_index(priv); | |
2946 | IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n", | |
2947 | (int)priv->sram_desc.last_cb_index); | |
2948 | ||
2949 | while (current_index < priv->sram_desc.last_cb_index) { | |
2950 | udelay(50); | |
2951 | previous_index = current_index; | |
2952 | current_index = ipw_fw_dma_command_block_index(priv); | |
2953 | ||
2954 | if (previous_index < current_index) { | |
2955 | watchdog = 0; | |
2956 | continue; | |
2957 | } | |
2958 | if (++watchdog > 400) { | |
2959 | IPW_DEBUG_FW_INFO("Timeout\n"); | |
2960 | ipw_fw_dma_dump_command_block(priv); | |
2961 | ipw_fw_dma_abort(priv); | |
2962 | return -1; | |
2963 | } | |
2964 | } | |
2965 | ||
2966 | ipw_fw_dma_abort(priv); | |
2967 | ||
2968 | /*Disable the DMA in the CSR register */ | |
2969 | ipw_set_bit(priv, IPW_RESET_REG, | |
2970 | IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER); | |
2971 | ||
2972 | IPW_DEBUG_FW("<< dmaWaitSync\n"); | |
2973 | return 0; | |
2974 | } | |
2975 | ||
2976 | static void ipw_remove_current_network(struct ipw_priv *priv) | |
2977 | { | |
2978 | struct list_head *element, *safe; | |
2979 | struct libipw_network *network = NULL; | |
2980 | unsigned long flags; | |
2981 | ||
2982 | spin_lock_irqsave(&priv->ieee->lock, flags); | |
2983 | list_for_each_safe(element, safe, &priv->ieee->network_list) { | |
2984 | network = list_entry(element, struct libipw_network, list); | |
2985 | if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) { | |
2986 | list_del(element); | |
2987 | list_add_tail(&network->list, | |
2988 | &priv->ieee->network_free_list); | |
2989 | } | |
2990 | } | |
2991 | spin_unlock_irqrestore(&priv->ieee->lock, flags); | |
2992 | } | |
2993 | ||
2994 | /** | |
2995 | * Check that card is still alive. | |
2996 | * Reads debug register from domain0. | |
2997 | * If card is present, pre-defined value should | |
2998 | * be found there. | |
2999 | * | |
3000 | * @param priv | |
3001 | * @return 1 if card is present, 0 otherwise | |
3002 | */ | |
3003 | static inline int ipw_alive(struct ipw_priv *priv) | |
3004 | { | |
3005 | return ipw_read32(priv, 0x90) == 0xd55555d5; | |
3006 | } | |
3007 | ||
3008 | /* timeout in msec, attempted in 10-msec quanta */ | |
3009 | static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask, | |
3010 | int timeout) | |
3011 | { | |
3012 | int i = 0; | |
3013 | ||
3014 | do { | |
3015 | if ((ipw_read32(priv, addr) & mask) == mask) | |
3016 | return i; | |
3017 | mdelay(10); | |
3018 | i += 10; | |
3019 | } while (i < timeout); | |
3020 | ||
3021 | return -ETIME; | |
3022 | } | |
3023 | ||
3024 | /* These functions load the firmware and micro code for the operation of | |
3025 | * the ipw hardware. It assumes the buffer has all the bits for the | |
3026 | * image and the caller is handling the memory allocation and clean up. | |
3027 | */ | |
3028 | ||
3029 | static int ipw_stop_master(struct ipw_priv *priv) | |
3030 | { | |
3031 | int rc; | |
3032 | ||
3033 | IPW_DEBUG_TRACE(">>\n"); | |
3034 | /* stop master. typical delay - 0 */ | |
3035 | ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER); | |
3036 | ||
3037 | /* timeout is in msec, polled in 10-msec quanta */ | |
3038 | rc = ipw_poll_bit(priv, IPW_RESET_REG, | |
3039 | IPW_RESET_REG_MASTER_DISABLED, 100); | |
3040 | if (rc < 0) { | |
3041 | IPW_ERROR("wait for stop master failed after 100ms\n"); | |
3042 | return -1; | |
3043 | } | |
3044 | ||
3045 | IPW_DEBUG_INFO("stop master %dms\n", rc); | |
3046 | ||
3047 | return rc; | |
3048 | } | |
3049 | ||
3050 | static void ipw_arc_release(struct ipw_priv *priv) | |
3051 | { | |
3052 | IPW_DEBUG_TRACE(">>\n"); | |
3053 | mdelay(5); | |
3054 | ||
3055 | ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); | |
3056 | ||
3057 | /* no one knows timing, for safety add some delay */ | |
3058 | mdelay(5); | |
3059 | } | |
3060 | ||
3061 | struct fw_chunk { | |
3062 | __le32 address; | |
3063 | __le32 length; | |
3064 | }; | |
3065 | ||
3066 | static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len) | |
3067 | { | |
3068 | int rc = 0, i, addr; | |
3069 | u8 cr = 0; | |
3070 | __le16 *image; | |
3071 | ||
3072 | image = (__le16 *) data; | |
3073 | ||
3074 | IPW_DEBUG_TRACE(">>\n"); | |
3075 | ||
3076 | rc = ipw_stop_master(priv); | |
3077 | ||
3078 | if (rc < 0) | |
3079 | return rc; | |
3080 | ||
3081 | for (addr = IPW_SHARED_LOWER_BOUND; | |
3082 | addr < IPW_REGISTER_DOMAIN1_END; addr += 4) { | |
3083 | ipw_write32(priv, addr, 0); | |
3084 | } | |
3085 | ||
3086 | /* no ucode (yet) */ | |
3087 | memset(&priv->dino_alive, 0, sizeof(priv->dino_alive)); | |
3088 | /* destroy DMA queues */ | |
3089 | /* reset sequence */ | |
3090 | ||
3091 | ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON); | |
3092 | ipw_arc_release(priv); | |
3093 | ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF); | |
3094 | mdelay(1); | |
3095 | ||
3096 | /* reset PHY */ | |
3097 | ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN); | |
3098 | mdelay(1); | |
3099 | ||
3100 | ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0); | |
3101 | mdelay(1); | |
3102 | ||
3103 | /* enable ucode store */ | |
3104 | ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0); | |
3105 | ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS); | |
3106 | mdelay(1); | |
3107 | ||
3108 | /* write ucode */ | |
3109 | /** | |
3110 | * @bug | |
3111 | * Do NOT set indirect address register once and then | |
3112 | * store data to indirect data register in the loop. | |
3113 | * It seems very reasonable, but in this case DINO do not | |
3114 | * accept ucode. It is essential to set address each time. | |
3115 | */ | |
3116 | /* load new ipw uCode */ | |
3117 | for (i = 0; i < len / 2; i++) | |
3118 | ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE, | |
3119 | le16_to_cpu(image[i])); | |
3120 | ||
3121 | /* enable DINO */ | |
3122 | ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0); | |
3123 | ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM); | |
3124 | ||
3125 | /* this is where the igx / win driver deveates from the VAP driver. */ | |
3126 | ||
3127 | /* wait for alive response */ | |
3128 | for (i = 0; i < 100; i++) { | |
3129 | /* poll for incoming data */ | |
3130 | cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS); | |
3131 | if (cr & DINO_RXFIFO_DATA) | |
3132 | break; | |
3133 | mdelay(1); | |
3134 | } | |
3135 | ||
3136 | if (cr & DINO_RXFIFO_DATA) { | |
3137 | /* alive_command_responce size is NOT multiple of 4 */ | |
3138 | __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4]; | |
3139 | ||
3140 | for (i = 0; i < ARRAY_SIZE(response_buffer); i++) | |
3141 | response_buffer[i] = | |
3142 | cpu_to_le32(ipw_read_reg32(priv, | |
3143 | IPW_BASEBAND_RX_FIFO_READ)); | |
3144 | memcpy(&priv->dino_alive, response_buffer, | |
3145 | sizeof(priv->dino_alive)); | |
3146 | if (priv->dino_alive.alive_command == 1 | |
3147 | && priv->dino_alive.ucode_valid == 1) { | |
3148 | rc = 0; | |
3149 | IPW_DEBUG_INFO | |
3150 | ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) " | |
3151 | "of %02d/%02d/%02d %02d:%02d\n", | |
3152 | priv->dino_alive.software_revision, | |
3153 | priv->dino_alive.software_revision, | |
3154 | priv->dino_alive.device_identifier, | |
3155 | priv->dino_alive.device_identifier, | |
3156 | priv->dino_alive.time_stamp[0], | |
3157 | priv->dino_alive.time_stamp[1], | |
3158 | priv->dino_alive.time_stamp[2], | |
3159 | priv->dino_alive.time_stamp[3], | |
3160 | priv->dino_alive.time_stamp[4]); | |
3161 | } else { | |
3162 | IPW_DEBUG_INFO("Microcode is not alive\n"); | |
3163 | rc = -EINVAL; | |
3164 | } | |
3165 | } else { | |
3166 | IPW_DEBUG_INFO("No alive response from DINO\n"); | |
3167 | rc = -ETIME; | |
3168 | } | |
3169 | ||
3170 | /* disable DINO, otherwise for some reason | |
3171 | firmware have problem getting alive resp. */ | |
3172 | ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0); | |
3173 | ||
3174 | return rc; | |
3175 | } | |
3176 | ||
3177 | static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len) | |
3178 | { | |
3179 | int ret = -1; | |
3180 | int offset = 0; | |
3181 | struct fw_chunk *chunk; | |
3182 | int total_nr = 0; | |
3183 | int i; | |
3184 | struct pci_pool *pool; | |
3185 | void **virts; | |
3186 | dma_addr_t *phys; | |
3187 | ||
3188 | IPW_DEBUG_TRACE("<< :\n"); | |
3189 | ||
3190 | virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL, | |
3191 | GFP_KERNEL); | |
3192 | if (!virts) | |
3193 | return -ENOMEM; | |
3194 | ||
3195 | phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL, | |
3196 | GFP_KERNEL); | |
3197 | if (!phys) { | |
3198 | kfree(virts); | |
3199 | return -ENOMEM; | |
3200 | } | |
3201 | pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0); | |
3202 | if (!pool) { | |
3203 | IPW_ERROR("pci_pool_create failed\n"); | |
3204 | kfree(phys); | |
3205 | kfree(virts); | |
3206 | return -ENOMEM; | |
3207 | } | |
3208 | ||
3209 | /* Start the Dma */ | |
3210 | ret = ipw_fw_dma_enable(priv); | |
3211 | ||
3212 | /* the DMA is already ready this would be a bug. */ | |
3213 | BUG_ON(priv->sram_desc.last_cb_index > 0); | |
3214 | ||
3215 | do { | |
3216 | u32 chunk_len; | |
3217 | u8 *start; | |
3218 | int size; | |
3219 | int nr = 0; | |
3220 | ||
3221 | chunk = (struct fw_chunk *)(data + offset); | |
3222 | offset += sizeof(struct fw_chunk); | |
3223 | chunk_len = le32_to_cpu(chunk->length); | |
3224 | start = data + offset; | |
3225 | ||
3226 | nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH; | |
3227 | for (i = 0; i < nr; i++) { | |
3228 | virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL, | |
3229 | &phys[total_nr]); | |
3230 | if (!virts[total_nr]) { | |
3231 | ret = -ENOMEM; | |
3232 | goto out; | |
3233 | } | |
3234 | size = min_t(u32, chunk_len - i * CB_MAX_LENGTH, | |
3235 | CB_MAX_LENGTH); | |
3236 | memcpy(virts[total_nr], start, size); | |
3237 | start += size; | |
3238 | total_nr++; | |
3239 | /* We don't support fw chunk larger than 64*8K */ | |
3240 | BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL); | |
3241 | } | |
3242 | ||
3243 | /* build DMA packet and queue up for sending */ | |
3244 | /* dma to chunk->address, the chunk->length bytes from data + | |
3245 | * offeset*/ | |
3246 | /* Dma loading */ | |
3247 | ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr], | |
3248 | nr, le32_to_cpu(chunk->address), | |
3249 | chunk_len); | |
3250 | if (ret) { | |
3251 | IPW_DEBUG_INFO("dmaAddBuffer Failed\n"); | |
3252 | goto out; | |
3253 | } | |
3254 | ||
3255 | offset += chunk_len; | |
3256 | } while (offset < len); | |
3257 | ||
3258 | /* Run the DMA and wait for the answer */ | |
3259 | ret = ipw_fw_dma_kick(priv); | |
3260 | if (ret) { | |
3261 | IPW_ERROR("dmaKick Failed\n"); | |
3262 | goto out; | |
3263 | } | |
3264 | ||
3265 | ret = ipw_fw_dma_wait(priv); | |
3266 | if (ret) { | |
3267 | IPW_ERROR("dmaWaitSync Failed\n"); | |
3268 | goto out; | |
3269 | } | |
3270 | out: | |
3271 | for (i = 0; i < total_nr; i++) | |
3272 | pci_pool_free(pool, virts[i], phys[i]); | |
3273 | ||
3274 | pci_pool_destroy(pool); | |
3275 | kfree(phys); | |
3276 | kfree(virts); | |
3277 | ||
3278 | return ret; | |
3279 | } | |
3280 | ||
3281 | /* stop nic */ | |
3282 | static int ipw_stop_nic(struct ipw_priv *priv) | |
3283 | { | |
3284 | int rc = 0; | |
3285 | ||
3286 | /* stop */ | |
3287 | ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER); | |
3288 | ||
3289 | rc = ipw_poll_bit(priv, IPW_RESET_REG, | |
3290 | IPW_RESET_REG_MASTER_DISABLED, 500); | |
3291 | if (rc < 0) { | |
3292 | IPW_ERROR("wait for reg master disabled failed after 500ms\n"); | |
3293 | return rc; | |
3294 | } | |
3295 | ||
3296 | ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); | |
3297 | ||
3298 | return rc; | |
3299 | } | |
3300 | ||
3301 | static void ipw_start_nic(struct ipw_priv *priv) | |
3302 | { | |
3303 | IPW_DEBUG_TRACE(">>\n"); | |
3304 | ||
3305 | /* prvHwStartNic release ARC */ | |
3306 | ipw_clear_bit(priv, IPW_RESET_REG, | |
3307 | IPW_RESET_REG_MASTER_DISABLED | | |
3308 | IPW_RESET_REG_STOP_MASTER | | |
3309 | CBD_RESET_REG_PRINCETON_RESET); | |
3310 | ||
3311 | /* enable power management */ | |
3312 | ipw_set_bit(priv, IPW_GP_CNTRL_RW, | |
3313 | IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); | |
3314 | ||
3315 | IPW_DEBUG_TRACE("<<\n"); | |
3316 | } | |
3317 | ||
3318 | static int ipw_init_nic(struct ipw_priv *priv) | |
3319 | { | |
3320 | int rc; | |
3321 | ||
3322 | IPW_DEBUG_TRACE(">>\n"); | |
3323 | /* reset */ | |
3324 | /*prvHwInitNic */ | |
3325 | /* set "initialization complete" bit to move adapter to D0 state */ | |
3326 | ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE); | |
3327 | ||
3328 | /* low-level PLL activation */ | |
3329 | ipw_write32(priv, IPW_READ_INT_REGISTER, | |
3330 | IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER); | |
3331 | ||
3332 | /* wait for clock stabilization */ | |
3333 | rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW, | |
3334 | IPW_GP_CNTRL_BIT_CLOCK_READY, 250); | |
3335 | if (rc < 0) | |
3336 | IPW_DEBUG_INFO("FAILED wait for clock stablization\n"); | |
3337 | ||
3338 | /* assert SW reset */ | |
3339 | ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET); | |
3340 | ||
3341 | udelay(10); | |
3342 | ||
3343 | /* set "initialization complete" bit to move adapter to D0 state */ | |
3344 | ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE); | |
3345 | ||
3346 | IPW_DEBUG_TRACE(">>\n"); | |
3347 | return 0; | |
3348 | } | |
3349 | ||
3350 | /* Call this function from process context, it will sleep in request_firmware. | |
3351 | * Probe is an ok place to call this from. | |
3352 | */ | |
3353 | static int ipw_reset_nic(struct ipw_priv *priv) | |
3354 | { | |
3355 | int rc = 0; | |
3356 | unsigned long flags; | |
3357 | ||
3358 | IPW_DEBUG_TRACE(">>\n"); | |
3359 | ||
3360 | rc = ipw_init_nic(priv); | |
3361 | ||
3362 | spin_lock_irqsave(&priv->lock, flags); | |
3363 | /* Clear the 'host command active' bit... */ | |
3364 | priv->status &= ~STATUS_HCMD_ACTIVE; | |
3365 | wake_up_interruptible(&priv->wait_command_queue); | |
3366 | priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING); | |
3367 | wake_up_interruptible(&priv->wait_state); | |
3368 | spin_unlock_irqrestore(&priv->lock, flags); | |
3369 | ||
3370 | IPW_DEBUG_TRACE("<<\n"); | |
3371 | return rc; | |
3372 | } | |
3373 | ||
3374 | ||
3375 | struct ipw_fw { | |
3376 | __le32 ver; | |
3377 | __le32 boot_size; | |
3378 | __le32 ucode_size; | |
3379 | __le32 fw_size; | |
3380 | u8 data[0]; | |
3381 | }; | |
3382 | ||
3383 | static int ipw_get_fw(struct ipw_priv *priv, | |
3384 | const struct firmware **raw, const char *name) | |
3385 | { | |
3386 | struct ipw_fw *fw; | |
3387 | int rc; | |
3388 | ||
3389 | /* ask firmware_class module to get the boot firmware off disk */ | |
3390 | rc = request_firmware(raw, name, &priv->pci_dev->dev); | |
3391 | if (rc < 0) { | |
3392 | IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc); | |
3393 | return rc; | |
3394 | } | |
3395 | ||
3396 | if ((*raw)->size < sizeof(*fw)) { | |
3397 | IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size); | |
3398 | return -EINVAL; | |
3399 | } | |
3400 | ||
3401 | fw = (void *)(*raw)->data; | |
3402 | ||
3403 | if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) + | |
3404 | le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) { | |
3405 | IPW_ERROR("%s is too small or corrupt (%zd)\n", | |
3406 | name, (*raw)->size); | |
3407 | return -EINVAL; | |
3408 | } | |
3409 | ||
3410 | IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n", | |
3411 | name, | |
3412 | le32_to_cpu(fw->ver) >> 16, | |
3413 | le32_to_cpu(fw->ver) & 0xff, | |
3414 | (*raw)->size - sizeof(*fw)); | |
3415 | return 0; | |
3416 | } | |
3417 | ||
3418 | #define IPW_RX_BUF_SIZE (3000) | |
3419 | ||
3420 | static void ipw_rx_queue_reset(struct ipw_priv *priv, | |
3421 | struct ipw_rx_queue *rxq) | |
3422 | { | |
3423 | unsigned long flags; | |
3424 | int i; | |
3425 | ||
3426 | spin_lock_irqsave(&rxq->lock, flags); | |
3427 | ||
3428 | INIT_LIST_HEAD(&rxq->rx_free); | |
3429 | INIT_LIST_HEAD(&rxq->rx_used); | |
3430 | ||
3431 | /* Fill the rx_used queue with _all_ of the Rx buffers */ | |
3432 | for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) { | |
3433 | /* In the reset function, these buffers may have been allocated | |
3434 | * to an SKB, so we need to unmap and free potential storage */ | |
3435 | if (rxq->pool[i].skb != NULL) { | |
3436 | pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, | |
3437 | IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); | |
3438 | dev_kfree_skb(rxq->pool[i].skb); | |
3439 | rxq->pool[i].skb = NULL; | |
3440 | } | |
3441 | list_add_tail(&rxq->pool[i].list, &rxq->rx_used); | |
3442 | } | |
3443 | ||
3444 | /* Set us so that we have processed and used all buffers, but have | |
3445 | * not restocked the Rx queue with fresh buffers */ | |
3446 | rxq->read = rxq->write = 0; | |
3447 | rxq->free_count = 0; | |
3448 | spin_unlock_irqrestore(&rxq->lock, flags); | |
3449 | } | |
3450 | ||
3451 | #ifdef CONFIG_PM | |
3452 | static int fw_loaded = 0; | |
3453 | static const struct firmware *raw = NULL; | |
3454 | ||
3455 | static void free_firmware(void) | |
3456 | { | |
3457 | if (fw_loaded) { | |
3458 | release_firmware(raw); | |
3459 | raw = NULL; | |
3460 | fw_loaded = 0; | |
3461 | } | |
3462 | } | |
3463 | #else | |
3464 | #define free_firmware() do {} while (0) | |
3465 | #endif | |
3466 | ||
3467 | static int ipw_load(struct ipw_priv *priv) | |
3468 | { | |
3469 | #ifndef CONFIG_PM | |
3470 | const struct firmware *raw = NULL; | |
3471 | #endif | |
3472 | struct ipw_fw *fw; | |
3473 | u8 *boot_img, *ucode_img, *fw_img; | |
3474 | u8 *name = NULL; | |
3475 | int rc = 0, retries = 3; | |
3476 | ||
3477 | switch (priv->ieee->iw_mode) { | |
3478 | case IW_MODE_ADHOC: | |
3479 | name = "ipw2200-ibss.fw"; | |
3480 | break; | |
3481 | #ifdef CONFIG_IPW2200_MONITOR | |
3482 | case IW_MODE_MONITOR: | |
3483 | name = "ipw2200-sniffer.fw"; | |
3484 | break; | |
3485 | #endif | |
3486 | case IW_MODE_INFRA: | |
3487 | name = "ipw2200-bss.fw"; | |
3488 | break; | |
3489 | } | |
3490 | ||
3491 | if (!name) { | |
3492 | rc = -EINVAL; | |
3493 | goto error; | |
3494 | } | |
3495 | ||
3496 | #ifdef CONFIG_PM | |
3497 | if (!fw_loaded) { | |
3498 | #endif | |
3499 | rc = ipw_get_fw(priv, &raw, name); | |
3500 | if (rc < 0) | |
3501 | goto error; | |
3502 | #ifdef CONFIG_PM | |
3503 | } | |
3504 | #endif | |
3505 | ||
3506 | fw = (void *)raw->data; | |
3507 | boot_img = &fw->data[0]; | |
3508 | ucode_img = &fw->data[le32_to_cpu(fw->boot_size)]; | |
3509 | fw_img = &fw->data[le32_to_cpu(fw->boot_size) + | |
3510 | le32_to_cpu(fw->ucode_size)]; | |
3511 | ||
3512 | if (rc < 0) | |
3513 | goto error; | |
3514 | ||
3515 | if (!priv->rxq) | |
3516 | priv->rxq = ipw_rx_queue_alloc(priv); | |
3517 | else | |
3518 | ipw_rx_queue_reset(priv, priv->rxq); | |
3519 | if (!priv->rxq) { | |
3520 | IPW_ERROR("Unable to initialize Rx queue\n"); | |
3521 | goto error; | |
3522 | } | |
3523 | ||
3524 | retry: | |
3525 | /* Ensure interrupts are disabled */ | |
3526 | ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); | |
3527 | priv->status &= ~STATUS_INT_ENABLED; | |
3528 | ||
3529 | /* ack pending interrupts */ | |
3530 | ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); | |
3531 | ||
3532 | ipw_stop_nic(priv); | |
3533 | ||
3534 | rc = ipw_reset_nic(priv); | |
3535 | if (rc < 0) { | |
3536 | IPW_ERROR("Unable to reset NIC\n"); | |
3537 | goto error; | |
3538 | } | |
3539 | ||
3540 | ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND, | |
3541 | IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND); | |
3542 | ||
3543 | /* DMA the initial boot firmware into the device */ | |
3544 | rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size)); | |
3545 | if (rc < 0) { | |
3546 | IPW_ERROR("Unable to load boot firmware: %d\n", rc); | |
3547 | goto error; | |
3548 | } | |
3549 | ||
3550 | /* kick start the device */ | |
3551 | ipw_start_nic(priv); | |
3552 | ||
3553 | /* wait for the device to finish its initial startup sequence */ | |
3554 | rc = ipw_poll_bit(priv, IPW_INTA_RW, | |
3555 | IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500); | |
3556 | if (rc < 0) { | |
3557 | IPW_ERROR("device failed to boot initial fw image\n"); | |
3558 | goto error; | |
3559 | } | |
3560 | IPW_DEBUG_INFO("initial device response after %dms\n", rc); | |
3561 | ||
3562 | /* ack fw init done interrupt */ | |
3563 | ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE); | |
3564 | ||
3565 | /* DMA the ucode into the device */ | |
3566 | rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size)); | |
3567 | if (rc < 0) { | |
3568 | IPW_ERROR("Unable to load ucode: %d\n", rc); | |
3569 | goto error; | |
3570 | } | |
3571 | ||
3572 | /* stop nic */ | |
3573 | ipw_stop_nic(priv); | |
3574 | ||
3575 | /* DMA bss firmware into the device */ | |
3576 | rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size)); | |
3577 | if (rc < 0) { | |
3578 | IPW_ERROR("Unable to load firmware: %d\n", rc); | |
3579 | goto error; | |
3580 | } | |
3581 | #ifdef CONFIG_PM | |
3582 | fw_loaded = 1; | |
3583 | #endif | |
3584 | ||
3585 | ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); | |
3586 | ||
3587 | rc = ipw_queue_reset(priv); | |
3588 | if (rc < 0) { | |
3589 | IPW_ERROR("Unable to initialize queues\n"); | |
3590 | goto error; | |
3591 | } | |
3592 | ||
3593 | /* Ensure interrupts are disabled */ | |
3594 | ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL); | |
3595 | /* ack pending interrupts */ | |
3596 | ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); | |
3597 | ||
3598 | /* kick start the device */ | |
3599 | ipw_start_nic(priv); | |
3600 | ||
3601 | if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) { | |
3602 | if (retries > 0) { | |
3603 | IPW_WARNING("Parity error. Retrying init.\n"); | |
3604 | retries--; | |
3605 | goto retry; | |
3606 | } | |
3607 | ||
3608 | IPW_ERROR("TODO: Handle parity error -- schedule restart?\n"); | |
3609 | rc = -EIO; | |
3610 | goto error; | |
3611 | } | |
3612 | ||
3613 | /* wait for the device */ | |
3614 | rc = ipw_poll_bit(priv, IPW_INTA_RW, | |
3615 | IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500); | |
3616 | if (rc < 0) { | |
3617 | IPW_ERROR("device failed to start within 500ms\n"); | |
3618 | goto error; | |
3619 | } | |
3620 | IPW_DEBUG_INFO("device response after %dms\n", rc); | |
3621 | ||
3622 | /* ack fw init done interrupt */ | |
3623 | ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE); | |
3624 | ||
3625 | /* read eeprom data and initialize the eeprom region of sram */ | |
3626 | priv->eeprom_delay = 1; | |
3627 | ipw_eeprom_init_sram(priv); | |
3628 | ||
3629 | /* enable interrupts */ | |
3630 | ipw_enable_interrupts(priv); | |
3631 | ||
3632 | /* Ensure our queue has valid packets */ | |
3633 | ipw_rx_queue_replenish(priv); | |
3634 | ||
3635 | ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read); | |
3636 | ||
3637 | /* ack pending interrupts */ | |
3638 | ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL); | |
3639 | ||
3640 | #ifndef CONFIG_PM | |
3641 | release_firmware(raw); | |
3642 | #endif | |
3643 | return 0; | |
3644 | ||
3645 | error: | |
3646 | if (priv->rxq) { | |
3647 | ipw_rx_queue_free(priv, priv->rxq); | |
3648 | priv->rxq = NULL; | |
3649 | } | |
3650 | ipw_tx_queue_free(priv); | |
3651 | if (raw) | |
3652 | release_firmware(raw); | |
3653 | #ifdef CONFIG_PM | |
3654 | fw_loaded = 0; | |
3655 | raw = NULL; | |
3656 | #endif | |
3657 | ||
3658 | return rc; | |
3659 | } | |
3660 | ||
3661 | /** | |
3662 | * DMA services | |
3663 | * | |
3664 | * Theory of operation | |
3665 | * | |
3666 | * A queue is a circular buffers with 'Read' and 'Write' pointers. | |
3667 | * 2 empty entries always kept in the buffer to protect from overflow. | |
3668 | * | |
3669 | * For Tx queue, there are low mark and high mark limits. If, after queuing | |
3670 | * the packet for Tx, free space become < low mark, Tx queue stopped. When | |
3671 | * reclaiming packets (on 'tx done IRQ), if free space become > high mark, | |
3672 | * Tx queue resumed. | |
3673 | * | |
3674 | * The IPW operates with six queues, one receive queue in the device's | |
3675 | * sram, one transmit queue for sending commands to the device firmware, | |
3676 | * and four transmit queues for data. | |
3677 | * | |
3678 | * The four transmit queues allow for performing quality of service (qos) | |
3679 | * transmissions as per the 802.11 protocol. Currently Linux does not | |
3680 | * provide a mechanism to the user for utilizing prioritized queues, so | |
3681 | * we only utilize the first data transmit queue (queue1). | |
3682 | */ | |
3683 | ||
3684 | /** | |
3685 | * Driver allocates buffers of this size for Rx | |
3686 | */ | |
3687 | ||
3688 | /** | |
3689 | * ipw_rx_queue_space - Return number of free slots available in queue. | |
3690 | */ | |
3691 | static int ipw_rx_queue_space(const struct ipw_rx_queue *q) | |
3692 | { | |
3693 | int s = q->read - q->write; | |
3694 | if (s <= 0) | |
3695 | s += RX_QUEUE_SIZE; | |
3696 | /* keep some buffer to not confuse full and empty queue */ | |
3697 | s -= 2; | |
3698 | if (s < 0) | |
3699 | s = 0; | |
3700 | return s; | |
3701 | } | |
3702 | ||
3703 | static inline int ipw_tx_queue_space(const struct clx2_queue *q) | |
3704 | { | |
3705 | int s = q->last_used - q->first_empty; | |
3706 | if (s <= 0) | |
3707 | s += q->n_bd; | |
3708 | s -= 2; /* keep some reserve to not confuse empty and full situations */ | |
3709 | if (s < 0) | |
3710 | s = 0; | |
3711 | return s; | |
3712 | } | |
3713 | ||
3714 | static inline int ipw_queue_inc_wrap(int index, int n_bd) | |
3715 | { | |
3716 | return (++index == n_bd) ? 0 : index; | |
3717 | } | |
3718 | ||
3719 | /** | |
3720 | * Initialize common DMA queue structure | |
3721 | * | |
3722 | * @param q queue to init | |
3723 | * @param count Number of BD's to allocate. Should be power of 2 | |
3724 | * @param read_register Address for 'read' register | |
3725 | * (not offset within BAR, full address) | |
3726 | * @param write_register Address for 'write' register | |
3727 | * (not offset within BAR, full address) | |
3728 | * @param base_register Address for 'base' register | |
3729 | * (not offset within BAR, full address) | |
3730 | * @param size Address for 'size' register | |
3731 | * (not offset within BAR, full address) | |
3732 | */ | |
3733 | static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q, | |
3734 | int count, u32 read, u32 write, u32 base, u32 size) | |
3735 | { | |
3736 | q->n_bd = count; | |
3737 | ||
3738 | q->low_mark = q->n_bd / 4; | |
3739 | if (q->low_mark < 4) | |
3740 | q->low_mark = 4; | |
3741 | ||
3742 | q->high_mark = q->n_bd / 8; | |
3743 | if (q->high_mark < 2) | |
3744 | q->high_mark = 2; | |
3745 | ||
3746 | q->first_empty = q->last_used = 0; | |
3747 | q->reg_r = read; | |
3748 | q->reg_w = write; | |
3749 | ||
3750 | ipw_write32(priv, base, q->dma_addr); | |
3751 | ipw_write32(priv, size, count); | |
3752 | ipw_write32(priv, read, 0); | |
3753 | ipw_write32(priv, write, 0); | |
3754 | ||
3755 | _ipw_read32(priv, 0x90); | |
3756 | } | |
3757 | ||
3758 | static int ipw_queue_tx_init(struct ipw_priv *priv, | |
3759 | struct clx2_tx_queue *q, | |
3760 | int count, u32 read, u32 write, u32 base, u32 size) | |
3761 | { | |
3762 | struct pci_dev *dev = priv->pci_dev; | |
3763 | ||
3764 | q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL); | |
3765 | if (!q->txb) { | |
3766 | IPW_ERROR("vmalloc for auxilary BD structures failed\n"); | |
3767 | return -ENOMEM; | |
3768 | } | |
3769 | ||
3770 | q->bd = | |
3771 | pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr); | |
3772 | if (!q->bd) { | |
3773 | IPW_ERROR("pci_alloc_consistent(%zd) failed\n", | |
3774 | sizeof(q->bd[0]) * count); | |
3775 | kfree(q->txb); | |
3776 | q->txb = NULL; | |
3777 | return -ENOMEM; | |
3778 | } | |
3779 | ||
3780 | ipw_queue_init(priv, &q->q, count, read, write, base, size); | |
3781 | return 0; | |
3782 | } | |
3783 | ||
3784 | /** | |
3785 | * Free one TFD, those at index [txq->q.last_used]. | |
3786 | * Do NOT advance any indexes | |
3787 | * | |
3788 | * @param dev | |
3789 | * @param txq | |
3790 | */ | |
3791 | static void ipw_queue_tx_free_tfd(struct ipw_priv *priv, | |
3792 | struct clx2_tx_queue *txq) | |
3793 | { | |
3794 | struct tfd_frame *bd = &txq->bd[txq->q.last_used]; | |
3795 | struct pci_dev *dev = priv->pci_dev; | |
3796 | int i; | |
3797 | ||
3798 | /* classify bd */ | |
3799 | if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE) | |
3800 | /* nothing to cleanup after for host commands */ | |
3801 | return; | |
3802 | ||
3803 | /* sanity check */ | |
3804 | if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) { | |
3805 | IPW_ERROR("Too many chunks: %i\n", | |
3806 | le32_to_cpu(bd->u.data.num_chunks)); | |
3807 | /** @todo issue fatal error, it is quite serious situation */ | |
3808 | return; | |
3809 | } | |
3810 | ||
3811 | /* unmap chunks if any */ | |
3812 | for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) { | |
3813 | pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]), | |
3814 | le16_to_cpu(bd->u.data.chunk_len[i]), | |
3815 | PCI_DMA_TODEVICE); | |
3816 | if (txq->txb[txq->q.last_used]) { | |
3817 | libipw_txb_free(txq->txb[txq->q.last_used]); | |
3818 | txq->txb[txq->q.last_used] = NULL; | |
3819 | } | |
3820 | } | |
3821 | } | |
3822 | ||
3823 | /** | |
3824 | * Deallocate DMA queue. | |
3825 | * | |
3826 | * Empty queue by removing and destroying all BD's. | |
3827 | * Free all buffers. | |
3828 | * | |
3829 | * @param dev | |
3830 | * @param q | |
3831 | */ | |
3832 | static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq) | |
3833 | { | |
3834 | struct clx2_queue *q = &txq->q; | |
3835 | struct pci_dev *dev = priv->pci_dev; | |
3836 | ||
3837 | if (q->n_bd == 0) | |
3838 | return; | |
3839 | ||
3840 | /* first, empty all BD's */ | |
3841 | for (; q->first_empty != q->last_used; | |
3842 | q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { | |
3843 | ipw_queue_tx_free_tfd(priv, txq); | |
3844 | } | |
3845 | ||
3846 | /* free buffers belonging to queue itself */ | |
3847 | pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd, | |
3848 | q->dma_addr); | |
3849 | kfree(txq->txb); | |
3850 | ||
3851 | /* 0 fill whole structure */ | |
3852 | memset(txq, 0, sizeof(*txq)); | |
3853 | } | |
3854 | ||
3855 | /** | |
3856 | * Destroy all DMA queues and structures | |
3857 | * | |
3858 | * @param priv | |
3859 | */ | |
3860 | static void ipw_tx_queue_free(struct ipw_priv *priv) | |
3861 | { | |
3862 | /* Tx CMD queue */ | |
3863 | ipw_queue_tx_free(priv, &priv->txq_cmd); | |
3864 | ||
3865 | /* Tx queues */ | |
3866 | ipw_queue_tx_free(priv, &priv->txq[0]); | |
3867 | ipw_queue_tx_free(priv, &priv->txq[1]); | |
3868 | ipw_queue_tx_free(priv, &priv->txq[2]); | |
3869 | ipw_queue_tx_free(priv, &priv->txq[3]); | |
3870 | } | |
3871 | ||
3872 | static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid) | |
3873 | { | |
3874 | /* First 3 bytes are manufacturer */ | |
3875 | bssid[0] = priv->mac_addr[0]; | |
3876 | bssid[1] = priv->mac_addr[1]; | |
3877 | bssid[2] = priv->mac_addr[2]; | |
3878 | ||
3879 | /* Last bytes are random */ | |
3880 | get_random_bytes(&bssid[3], ETH_ALEN - 3); | |
3881 | ||
3882 | bssid[0] &= 0xfe; /* clear multicast bit */ | |
3883 | bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */ | |
3884 | } | |
3885 | ||
3886 | static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid) | |
3887 | { | |
3888 | struct ipw_station_entry entry; | |
3889 | int i; | |
3890 | ||
3891 | for (i = 0; i < priv->num_stations; i++) { | |
3892 | if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) { | |
3893 | /* Another node is active in network */ | |
3894 | priv->missed_adhoc_beacons = 0; | |
3895 | if (!(priv->config & CFG_STATIC_CHANNEL)) | |
3896 | /* when other nodes drop out, we drop out */ | |
3897 | priv->config &= ~CFG_ADHOC_PERSIST; | |
3898 | ||
3899 | return i; | |
3900 | } | |
3901 | } | |
3902 | ||
3903 | if (i == MAX_STATIONS) | |
3904 | return IPW_INVALID_STATION; | |
3905 | ||
3906 | IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid); | |
3907 | ||
3908 | entry.reserved = 0; | |
3909 | entry.support_mode = 0; | |
3910 | memcpy(entry.mac_addr, bssid, ETH_ALEN); | |
3911 | memcpy(priv->stations[i], bssid, ETH_ALEN); | |
3912 | ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry), | |
3913 | &entry, sizeof(entry)); | |
3914 | priv->num_stations++; | |
3915 | ||
3916 | return i; | |
3917 | } | |
3918 | ||
3919 | static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid) | |
3920 | { | |
3921 | int i; | |
3922 | ||
3923 | for (i = 0; i < priv->num_stations; i++) | |
3924 | if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) | |
3925 | return i; | |
3926 | ||
3927 | return IPW_INVALID_STATION; | |
3928 | } | |
3929 | ||
3930 | static void ipw_send_disassociate(struct ipw_priv *priv, int quiet) | |
3931 | { | |
3932 | int err; | |
3933 | ||
3934 | if (priv->status & STATUS_ASSOCIATING) { | |
3935 | IPW_DEBUG_ASSOC("Disassociating while associating.\n"); | |
3936 | schedule_work(&priv->disassociate); | |
3937 | return; | |
3938 | } | |
3939 | ||
3940 | if (!(priv->status & STATUS_ASSOCIATED)) { | |
3941 | IPW_DEBUG_ASSOC("Disassociating while not associated.\n"); | |
3942 | return; | |
3943 | } | |
3944 | ||
3945 | IPW_DEBUG_ASSOC("Disassocation attempt from %pM " | |
3946 | "on channel %d.\n", | |
3947 | priv->assoc_request.bssid, | |
3948 | priv->assoc_request.channel); | |
3949 | ||
3950 | priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); | |
3951 | priv->status |= STATUS_DISASSOCIATING; | |
3952 | ||
3953 | if (quiet) | |
3954 | priv->assoc_request.assoc_type = HC_DISASSOC_QUIET; | |
3955 | else | |
3956 | priv->assoc_request.assoc_type = HC_DISASSOCIATE; | |
3957 | ||
3958 | err = ipw_send_associate(priv, &priv->assoc_request); | |
3959 | if (err) { | |
3960 | IPW_DEBUG_HC("Attempt to send [dis]associate command " | |
3961 | "failed.\n"); | |
3962 | return; | |
3963 | } | |
3964 | ||
3965 | } | |
3966 | ||
3967 | static int ipw_disassociate(void *data) | |
3968 | { | |
3969 | struct ipw_priv *priv = data; | |
3970 | if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) | |
3971 | return 0; | |
3972 | ipw_send_disassociate(data, 0); | |
3973 | netif_carrier_off(priv->net_dev); | |
3974 | return 1; | |
3975 | } | |
3976 | ||
3977 | static void ipw_bg_disassociate(struct work_struct *work) | |
3978 | { | |
3979 | struct ipw_priv *priv = | |
3980 | container_of(work, struct ipw_priv, disassociate); | |
3981 | mutex_lock(&priv->mutex); | |
3982 | ipw_disassociate(priv); | |
3983 | mutex_unlock(&priv->mutex); | |
3984 | } | |
3985 | ||
3986 | static void ipw_system_config(struct work_struct *work) | |
3987 | { | |
3988 | struct ipw_priv *priv = | |
3989 | container_of(work, struct ipw_priv, system_config); | |
3990 | ||
3991 | #ifdef CONFIG_IPW2200_PROMISCUOUS | |
3992 | if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) { | |
3993 | priv->sys_config.accept_all_data_frames = 1; | |
3994 | priv->sys_config.accept_non_directed_frames = 1; | |
3995 | priv->sys_config.accept_all_mgmt_bcpr = 1; | |
3996 | priv->sys_config.accept_all_mgmt_frames = 1; | |
3997 | } | |
3998 | #endif | |
3999 | ||
4000 | ipw_send_system_config(priv); | |
4001 | } | |
4002 | ||
4003 | struct ipw_status_code { | |
4004 | u16 status; | |
4005 | const char *reason; | |
4006 | }; | |
4007 | ||
4008 | static const struct ipw_status_code ipw_status_codes[] = { | |
4009 | {0x00, "Successful"}, | |
4010 | {0x01, "Unspecified failure"}, | |
4011 | {0x0A, "Cannot support all requested capabilities in the " | |
4012 | "Capability information field"}, | |
4013 | {0x0B, "Reassociation denied due to inability to confirm that " | |
4014 | "association exists"}, | |
4015 | {0x0C, "Association denied due to reason outside the scope of this " | |
4016 | "standard"}, | |
4017 | {0x0D, | |
4018 | "Responding station does not support the specified authentication " | |
4019 | "algorithm"}, | |
4020 | {0x0E, | |
4021 | "Received an Authentication frame with authentication sequence " | |
4022 | "transaction sequence number out of expected sequence"}, | |
4023 | {0x0F, "Authentication rejected because of challenge failure"}, | |
4024 | {0x10, "Authentication rejected due to timeout waiting for next " | |
4025 | "frame in sequence"}, | |
4026 | {0x11, "Association denied because AP is unable to handle additional " | |
4027 | "associated stations"}, | |
4028 | {0x12, | |
4029 | "Association denied due to requesting station not supporting all " | |
4030 | "of the datarates in the BSSBasicServiceSet Parameter"}, | |
4031 | {0x13, | |
4032 | "Association denied due to requesting station not supporting " | |
4033 | "short preamble operation"}, | |
4034 | {0x14, | |
4035 | "Association denied due to requesting station not supporting " | |
4036 | "PBCC encoding"}, | |
4037 | {0x15, | |
4038 | "Association denied due to requesting station not supporting " | |
4039 | "channel agility"}, | |
4040 | {0x19, | |
4041 | "Association denied due to requesting station not supporting " | |
4042 | "short slot operation"}, | |
4043 | {0x1A, | |
4044 | "Association denied due to requesting station not supporting " | |
4045 | "DSSS-OFDM operation"}, | |
4046 | {0x28, "Invalid Information Element"}, | |
4047 | {0x29, "Group Cipher is not valid"}, | |
4048 | {0x2A, "Pairwise Cipher is not valid"}, | |
4049 | {0x2B, "AKMP is not valid"}, | |
4050 | {0x2C, "Unsupported RSN IE version"}, | |
4051 | {0x2D, "Invalid RSN IE Capabilities"}, | |
4052 | {0x2E, "Cipher suite is rejected per security policy"}, | |
4053 | }; | |
4054 | ||
4055 | static const char *ipw_get_status_code(u16 status) | |
4056 | { | |
4057 | int i; | |
4058 | for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++) | |
4059 | if (ipw_status_codes[i].status == (status & 0xff)) | |
4060 | return ipw_status_codes[i].reason; | |
4061 | return "Unknown status value."; | |
4062 | } | |
4063 | ||
4064 | static void inline average_init(struct average *avg) | |
4065 | { | |
4066 | memset(avg, 0, sizeof(*avg)); | |
4067 | } | |
4068 | ||
4069 | #define DEPTH_RSSI 8 | |
4070 | #define DEPTH_NOISE 16 | |
4071 | static s16 exponential_average(s16 prev_avg, s16 val, u8 depth) | |
4072 | { | |
4073 | return ((depth-1)*prev_avg + val)/depth; | |
4074 | } | |
4075 | ||
4076 | static void average_add(struct average *avg, s16 val) | |
4077 | { | |
4078 | avg->sum -= avg->entries[avg->pos]; | |
4079 | avg->sum += val; | |
4080 | avg->entries[avg->pos++] = val; | |
4081 | if (unlikely(avg->pos == AVG_ENTRIES)) { | |
4082 | avg->init = 1; | |
4083 | avg->pos = 0; | |
4084 | } | |
4085 | } | |
4086 | ||
4087 | static s16 average_value(struct average *avg) | |
4088 | { | |
4089 | if (!unlikely(avg->init)) { | |
4090 | if (avg->pos) | |
4091 | return avg->sum / avg->pos; | |
4092 | return 0; | |
4093 | } | |
4094 | ||
4095 | return avg->sum / AVG_ENTRIES; | |
4096 | } | |
4097 | ||
4098 | static void ipw_reset_stats(struct ipw_priv *priv) | |
4099 | { | |
4100 | u32 len = sizeof(u32); | |
4101 | ||
4102 | priv->quality = 0; | |
4103 | ||
4104 | average_init(&priv->average_missed_beacons); | |
4105 | priv->exp_avg_rssi = -60; | |
4106 | priv->exp_avg_noise = -85 + 0x100; | |
4107 | ||
4108 | priv->last_rate = 0; | |
4109 | priv->last_missed_beacons = 0; | |
4110 | priv->last_rx_packets = 0; | |
4111 | priv->last_tx_packets = 0; | |
4112 | priv->last_tx_failures = 0; | |
4113 | ||
4114 | /* Firmware managed, reset only when NIC is restarted, so we have to | |
4115 | * normalize on the current value */ | |
4116 | ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, | |
4117 | &priv->last_rx_err, &len); | |
4118 | ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, | |
4119 | &priv->last_tx_failures, &len); | |
4120 | ||
4121 | /* Driver managed, reset with each association */ | |
4122 | priv->missed_adhoc_beacons = 0; | |
4123 | priv->missed_beacons = 0; | |
4124 | priv->tx_packets = 0; | |
4125 | priv->rx_packets = 0; | |
4126 | ||
4127 | } | |
4128 | ||
4129 | static u32 ipw_get_max_rate(struct ipw_priv *priv) | |
4130 | { | |
4131 | u32 i = 0x80000000; | |
4132 | u32 mask = priv->rates_mask; | |
4133 | /* If currently associated in B mode, restrict the maximum | |
4134 | * rate match to B rates */ | |
4135 | if (priv->assoc_request.ieee_mode == IPW_B_MODE) | |
4136 | mask &= LIBIPW_CCK_RATES_MASK; | |
4137 | ||
4138 | /* TODO: Verify that the rate is supported by the current rates | |
4139 | * list. */ | |
4140 | ||
4141 | while (i && !(mask & i)) | |
4142 | i >>= 1; | |
4143 | switch (i) { | |
4144 | case LIBIPW_CCK_RATE_1MB_MASK: | |
4145 | return 1000000; | |
4146 | case LIBIPW_CCK_RATE_2MB_MASK: | |
4147 | return 2000000; | |
4148 | case LIBIPW_CCK_RATE_5MB_MASK: | |
4149 | return 5500000; | |
4150 | case LIBIPW_OFDM_RATE_6MB_MASK: | |
4151 | return 6000000; | |
4152 | case LIBIPW_OFDM_RATE_9MB_MASK: | |
4153 | return 9000000; | |
4154 | case LIBIPW_CCK_RATE_11MB_MASK: | |
4155 | return 11000000; | |
4156 | case LIBIPW_OFDM_RATE_12MB_MASK: | |
4157 | return 12000000; | |
4158 | case LIBIPW_OFDM_RATE_18MB_MASK: | |
4159 | return 18000000; | |
4160 | case LIBIPW_OFDM_RATE_24MB_MASK: | |
4161 | return 24000000; | |
4162 | case LIBIPW_OFDM_RATE_36MB_MASK: | |
4163 | return 36000000; | |
4164 | case LIBIPW_OFDM_RATE_48MB_MASK: | |
4165 | return 48000000; | |
4166 | case LIBIPW_OFDM_RATE_54MB_MASK: | |
4167 | return 54000000; | |
4168 | } | |
4169 | ||
4170 | if (priv->ieee->mode == IEEE_B) | |
4171 | return 11000000; | |
4172 | else | |
4173 | return 54000000; | |
4174 | } | |
4175 | ||
4176 | static u32 ipw_get_current_rate(struct ipw_priv *priv) | |
4177 | { | |
4178 | u32 rate, len = sizeof(rate); | |
4179 | int err; | |
4180 | ||
4181 | if (!(priv->status & STATUS_ASSOCIATED)) | |
4182 | return 0; | |
4183 | ||
4184 | if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) { | |
4185 | err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate, | |
4186 | &len); | |
4187 | if (err) { | |
4188 | IPW_DEBUG_INFO("failed querying ordinals.\n"); | |
4189 | return 0; | |
4190 | } | |
4191 | } else | |
4192 | return ipw_get_max_rate(priv); | |
4193 | ||
4194 | switch (rate) { | |
4195 | case IPW_TX_RATE_1MB: | |
4196 | return 1000000; | |
4197 | case IPW_TX_RATE_2MB: | |
4198 | return 2000000; | |
4199 | case IPW_TX_RATE_5MB: | |
4200 | return 5500000; | |
4201 | case IPW_TX_RATE_6MB: | |
4202 | return 6000000; | |
4203 | case IPW_TX_RATE_9MB: | |
4204 | return 9000000; | |
4205 | case IPW_TX_RATE_11MB: | |
4206 | return 11000000; | |
4207 | case IPW_TX_RATE_12MB: | |
4208 | return 12000000; | |
4209 | case IPW_TX_RATE_18MB: | |
4210 | return 18000000; | |
4211 | case IPW_TX_RATE_24MB: | |
4212 | return 24000000; | |
4213 | case IPW_TX_RATE_36MB: | |
4214 | return 36000000; | |
4215 | case IPW_TX_RATE_48MB: | |
4216 | return 48000000; | |
4217 | case IPW_TX_RATE_54MB: | |
4218 | return 54000000; | |
4219 | } | |
4220 | ||
4221 | return 0; | |
4222 | } | |
4223 | ||
4224 | #define IPW_STATS_INTERVAL (2 * HZ) | |
4225 | static void ipw_gather_stats(struct ipw_priv *priv) | |
4226 | { | |
4227 | u32 rx_err, rx_err_delta, rx_packets_delta; | |
4228 | u32 tx_failures, tx_failures_delta, tx_packets_delta; | |
4229 | u32 missed_beacons_percent, missed_beacons_delta; | |
4230 | u32 quality = 0; | |
4231 | u32 len = sizeof(u32); | |
4232 | s16 rssi; | |
4233 | u32 beacon_quality, signal_quality, tx_quality, rx_quality, | |
4234 | rate_quality; | |
4235 | u32 max_rate; | |
4236 | ||
4237 | if (!(priv->status & STATUS_ASSOCIATED)) { | |
4238 | priv->quality = 0; | |
4239 | return; | |
4240 | } | |
4241 | ||
4242 | /* Update the statistics */ | |
4243 | ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS, | |
4244 | &priv->missed_beacons, &len); | |
4245 | missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons; | |
4246 | priv->last_missed_beacons = priv->missed_beacons; | |
4247 | if (priv->assoc_request.beacon_interval) { | |
4248 | missed_beacons_percent = missed_beacons_delta * | |
4249 | (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) / | |
4250 | (IPW_STATS_INTERVAL * 10); | |
4251 | } else { | |
4252 | missed_beacons_percent = 0; | |
4253 | } | |
4254 | average_add(&priv->average_missed_beacons, missed_beacons_percent); | |
4255 | ||
4256 | ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len); | |
4257 | rx_err_delta = rx_err - priv->last_rx_err; | |
4258 | priv->last_rx_err = rx_err; | |
4259 | ||
4260 | ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len); | |
4261 | tx_failures_delta = tx_failures - priv->last_tx_failures; | |
4262 | priv->last_tx_failures = tx_failures; | |
4263 | ||
4264 | rx_packets_delta = priv->rx_packets - priv->last_rx_packets; | |
4265 | priv->last_rx_packets = priv->rx_packets; | |
4266 | ||
4267 | tx_packets_delta = priv->tx_packets - priv->last_tx_packets; | |
4268 | priv->last_tx_packets = priv->tx_packets; | |
4269 | ||
4270 | /* Calculate quality based on the following: | |
4271 | * | |
4272 | * Missed beacon: 100% = 0, 0% = 70% missed | |
4273 | * Rate: 60% = 1Mbs, 100% = Max | |
4274 | * Rx and Tx errors represent a straight % of total Rx/Tx | |
4275 | * RSSI: 100% = > -50, 0% = < -80 | |
4276 | * Rx errors: 100% = 0, 0% = 50% missed | |
4277 | * | |
4278 | * The lowest computed quality is used. | |
4279 | * | |
4280 | */ | |
4281 | #define BEACON_THRESHOLD 5 | |
4282 | beacon_quality = 100 - missed_beacons_percent; | |
4283 | if (beacon_quality < BEACON_THRESHOLD) | |
4284 | beacon_quality = 0; | |
4285 | else | |
4286 | beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 / | |
4287 | (100 - BEACON_THRESHOLD); | |
4288 | IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n", | |
4289 | beacon_quality, missed_beacons_percent); | |
4290 | ||
4291 | priv->last_rate = ipw_get_current_rate(priv); | |
4292 | max_rate = ipw_get_max_rate(priv); | |
4293 | rate_quality = priv->last_rate * 40 / max_rate + 60; | |
4294 | IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n", | |
4295 | rate_quality, priv->last_rate / 1000000); | |
4296 | ||
4297 | if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta) | |
4298 | rx_quality = 100 - (rx_err_delta * 100) / | |
4299 | (rx_packets_delta + rx_err_delta); | |
4300 | else | |
4301 | rx_quality = 100; | |
4302 | IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n", | |
4303 | rx_quality, rx_err_delta, rx_packets_delta); | |
4304 | ||
4305 | if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta) | |
4306 | tx_quality = 100 - (tx_failures_delta * 100) / | |
4307 | (tx_packets_delta + tx_failures_delta); | |
4308 | else | |
4309 | tx_quality = 100; | |
4310 | IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n", | |
4311 | tx_quality, tx_failures_delta, tx_packets_delta); | |
4312 | ||
4313 | rssi = priv->exp_avg_rssi; | |
4314 | signal_quality = | |
4315 | (100 * | |
4316 | (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) * | |
4317 | (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) - | |
4318 | (priv->ieee->perfect_rssi - rssi) * | |
4319 | (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) + | |
4320 | 62 * (priv->ieee->perfect_rssi - rssi))) / | |
4321 | ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) * | |
4322 | (priv->ieee->perfect_rssi - priv->ieee->worst_rssi)); | |
4323 | if (signal_quality > 100) | |
4324 | signal_quality = 100; | |
4325 | else if (signal_quality < 1) | |
4326 | signal_quality = 0; | |
4327 | ||
4328 | IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n", | |
4329 | signal_quality, rssi); | |
4330 | ||
4331 | quality = min(rx_quality, signal_quality); | |
4332 | quality = min(tx_quality, quality); | |
4333 | quality = min(rate_quality, quality); | |
4334 | quality = min(beacon_quality, quality); | |
4335 | if (quality == beacon_quality) | |
4336 | IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n", | |
4337 | quality); | |
4338 | if (quality == rate_quality) | |
4339 | IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n", | |
4340 | quality); | |
4341 | if (quality == tx_quality) | |
4342 | IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n", | |
4343 | quality); | |
4344 | if (quality == rx_quality) | |
4345 | IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n", | |
4346 | quality); | |
4347 | if (quality == signal_quality) | |
4348 | IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n", | |
4349 | quality); | |
4350 | ||
4351 | priv->quality = quality; | |
4352 | ||
4353 | schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL); | |
4354 | } | |
4355 | ||
4356 | static void ipw_bg_gather_stats(struct work_struct *work) | |
4357 | { | |
4358 | struct ipw_priv *priv = | |
4359 | container_of(work, struct ipw_priv, gather_stats.work); | |
4360 | mutex_lock(&priv->mutex); | |
4361 | ipw_gather_stats(priv); | |
4362 | mutex_unlock(&priv->mutex); | |
4363 | } | |
4364 | ||
4365 | /* Missed beacon behavior: | |
4366 | * 1st missed -> roaming_threshold, just wait, don't do any scan/roam. | |
4367 | * roaming_threshold -> disassociate_threshold, scan and roam for better signal. | |
4368 | * Above disassociate threshold, give up and stop scanning. | |
4369 | * Roaming is disabled if disassociate_threshold <= roaming_threshold */ | |
4370 | static void ipw_handle_missed_beacon(struct ipw_priv *priv, | |
4371 | int missed_count) | |
4372 | { | |
4373 | priv->notif_missed_beacons = missed_count; | |
4374 | ||
4375 | if (missed_count > priv->disassociate_threshold && | |
4376 | priv->status & STATUS_ASSOCIATED) { | |
4377 | /* If associated and we've hit the missed | |
4378 | * beacon threshold, disassociate, turn | |
4379 | * off roaming, and abort any active scans */ | |
4380 | IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | | |
4381 | IPW_DL_STATE | IPW_DL_ASSOC, | |
4382 | "Missed beacon: %d - disassociate\n", missed_count); | |
4383 | priv->status &= ~STATUS_ROAMING; | |
4384 | if (priv->status & STATUS_SCANNING) { | |
4385 | IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | | |
4386 | IPW_DL_STATE, | |
4387 | "Aborting scan with missed beacon.\n"); | |
4388 | schedule_work(&priv->abort_scan); | |
4389 | } | |
4390 | ||
4391 | schedule_work(&priv->disassociate); | |
4392 | return; | |
4393 | } | |
4394 | ||
4395 | if (priv->status & STATUS_ROAMING) { | |
4396 | /* If we are currently roaming, then just | |
4397 | * print a debug statement... */ | |
4398 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, | |
4399 | "Missed beacon: %d - roam in progress\n", | |
4400 | missed_count); | |
4401 | return; | |
4402 | } | |
4403 | ||
4404 | if (roaming && | |
4405 | (missed_count > priv->roaming_threshold && | |
4406 | missed_count <= priv->disassociate_threshold)) { | |
4407 | /* If we are not already roaming, set the ROAM | |
4408 | * bit in the status and kick off a scan. | |
4409 | * This can happen several times before we reach | |
4410 | * disassociate_threshold. */ | |
4411 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, | |
4412 | "Missed beacon: %d - initiate " | |
4413 | "roaming\n", missed_count); | |
4414 | if (!(priv->status & STATUS_ROAMING)) { | |
4415 | priv->status |= STATUS_ROAMING; | |
4416 | if (!(priv->status & STATUS_SCANNING)) | |
4417 | schedule_delayed_work(&priv->request_scan, 0); | |
4418 | } | |
4419 | return; | |
4420 | } | |
4421 | ||
4422 | if (priv->status & STATUS_SCANNING && | |
4423 | missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) { | |
4424 | /* Stop scan to keep fw from getting | |
4425 | * stuck (only if we aren't roaming -- | |
4426 | * otherwise we'll never scan more than 2 or 3 | |
4427 | * channels..) */ | |
4428 | IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE, | |
4429 | "Aborting scan with missed beacon.\n"); | |
4430 | schedule_work(&priv->abort_scan); | |
4431 | } | |
4432 | ||
4433 | IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count); | |
4434 | } | |
4435 | ||
4436 | static void ipw_scan_event(struct work_struct *work) | |
4437 | { | |
4438 | union iwreq_data wrqu; | |
4439 | ||
4440 | struct ipw_priv *priv = | |
4441 | container_of(work, struct ipw_priv, scan_event.work); | |
4442 | ||
4443 | wrqu.data.length = 0; | |
4444 | wrqu.data.flags = 0; | |
4445 | wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL); | |
4446 | } | |
4447 | ||
4448 | static void handle_scan_event(struct ipw_priv *priv) | |
4449 | { | |
4450 | /* Only userspace-requested scan completion events go out immediately */ | |
4451 | if (!priv->user_requested_scan) { | |
4452 | if (!delayed_work_pending(&priv->scan_event)) | |
4453 | schedule_delayed_work(&priv->scan_event, | |
4454 | round_jiffies_relative(msecs_to_jiffies(4000))); | |
4455 | } else { | |
4456 | union iwreq_data wrqu; | |
4457 | ||
4458 | priv->user_requested_scan = 0; | |
4459 | cancel_delayed_work(&priv->scan_event); | |
4460 | ||
4461 | wrqu.data.length = 0; | |
4462 | wrqu.data.flags = 0; | |
4463 | wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL); | |
4464 | } | |
4465 | } | |
4466 | ||
4467 | /** | |
4468 | * Handle host notification packet. | |
4469 | * Called from interrupt routine | |
4470 | */ | |
4471 | static void ipw_rx_notification(struct ipw_priv *priv, | |
4472 | struct ipw_rx_notification *notif) | |
4473 | { | |
4474 | DECLARE_SSID_BUF(ssid); | |
4475 | u16 size = le16_to_cpu(notif->size); | |
4476 | ||
4477 | IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size); | |
4478 | ||
4479 | switch (notif->subtype) { | |
4480 | case HOST_NOTIFICATION_STATUS_ASSOCIATED:{ | |
4481 | struct notif_association *assoc = ¬if->u.assoc; | |
4482 | ||
4483 | switch (assoc->state) { | |
4484 | case CMAS_ASSOCIATED:{ | |
4485 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | | |
4486 | IPW_DL_ASSOC, | |
4487 | "associated: '%s' %pM\n", | |
4488 | print_ssid(ssid, priv->essid, | |
4489 | priv->essid_len), | |
4490 | priv->bssid); | |
4491 | ||
4492 | switch (priv->ieee->iw_mode) { | |
4493 | case IW_MODE_INFRA: | |
4494 | memcpy(priv->ieee->bssid, | |
4495 | priv->bssid, ETH_ALEN); | |
4496 | break; | |
4497 | ||
4498 | case IW_MODE_ADHOC: | |
4499 | memcpy(priv->ieee->bssid, | |
4500 | priv->bssid, ETH_ALEN); | |
4501 | ||
4502 | /* clear out the station table */ | |
4503 | priv->num_stations = 0; | |
4504 | ||
4505 | IPW_DEBUG_ASSOC | |
4506 | ("queueing adhoc check\n"); | |
4507 | schedule_delayed_work( | |
4508 | &priv->adhoc_check, | |
4509 | le16_to_cpu(priv-> | |
4510 | assoc_request. | |
4511 | beacon_interval)); | |
4512 | break; | |
4513 | } | |
4514 | ||
4515 | priv->status &= ~STATUS_ASSOCIATING; | |
4516 | priv->status |= STATUS_ASSOCIATED; | |
4517 | schedule_work(&priv->system_config); | |
4518 | ||
4519 | #ifdef CONFIG_IPW2200_QOS | |
4520 | #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \ | |
4521 | le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control)) | |
4522 | if ((priv->status & STATUS_AUTH) && | |
4523 | (IPW_GET_PACKET_STYPE(¬if->u.raw) | |
4524 | == IEEE80211_STYPE_ASSOC_RESP)) { | |
4525 | if ((sizeof | |
4526 | (struct | |
4527 | libipw_assoc_response) | |
4528 | <= size) | |
4529 | && (size <= 2314)) { | |
4530 | struct | |
4531 | libipw_rx_stats | |
4532 | stats = { | |
4533 | .len = size - 1, | |
4534 | }; | |
4535 | ||
4536 | IPW_DEBUG_QOS | |
4537 | ("QoS Associate " | |
4538 | "size %d\n", size); | |
4539 | libipw_rx_mgt(priv-> | |
4540 | ieee, | |
4541 | (struct | |
4542 | libipw_hdr_4addr | |
4543 | *) | |
4544 | ¬if->u.raw, &stats); | |
4545 | } | |
4546 | } | |
4547 | #endif | |
4548 | ||
4549 | schedule_work(&priv->link_up); | |
4550 | ||
4551 | break; | |
4552 | } | |
4553 | ||
4554 | case CMAS_AUTHENTICATED:{ | |
4555 | if (priv-> | |
4556 | status & (STATUS_ASSOCIATED | | |
4557 | STATUS_AUTH)) { | |
4558 | struct notif_authenticate *auth | |
4559 | = ¬if->u.auth; | |
4560 | IPW_DEBUG(IPW_DL_NOTIF | | |
4561 | IPW_DL_STATE | | |
4562 | IPW_DL_ASSOC, | |
4563 | "deauthenticated: '%s' " | |
4564 | "%pM" | |
4565 | ": (0x%04X) - %s\n", | |
4566 | print_ssid(ssid, | |
4567 | priv-> | |
4568 | essid, | |
4569 | priv-> | |
4570 | essid_len), | |
4571 | priv->bssid, | |
4572 | le16_to_cpu(auth->status), | |
4573 | ipw_get_status_code | |
4574 | (le16_to_cpu | |
4575 | (auth->status))); | |
4576 | ||
4577 | priv->status &= | |
4578 | ~(STATUS_ASSOCIATING | | |
4579 | STATUS_AUTH | | |
4580 | STATUS_ASSOCIATED); | |
4581 | ||
4582 | schedule_work(&priv->link_down); | |
4583 | break; | |
4584 | } | |
4585 | ||
4586 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | | |
4587 | IPW_DL_ASSOC, | |
4588 | "authenticated: '%s' %pM\n", | |
4589 | print_ssid(ssid, priv->essid, | |
4590 | priv->essid_len), | |
4591 | priv->bssid); | |
4592 | break; | |
4593 | } | |
4594 | ||
4595 | case CMAS_INIT:{ | |
4596 | if (priv->status & STATUS_AUTH) { | |
4597 | struct | |
4598 | libipw_assoc_response | |
4599 | *resp; | |
4600 | resp = | |
4601 | (struct | |
4602 | libipw_assoc_response | |
4603 | *)¬if->u.raw; | |
4604 | IPW_DEBUG(IPW_DL_NOTIF | | |
4605 | IPW_DL_STATE | | |
4606 | IPW_DL_ASSOC, | |
4607 | "association failed (0x%04X): %s\n", | |
4608 | le16_to_cpu(resp->status), | |
4609 | ipw_get_status_code | |
4610 | (le16_to_cpu | |
4611 | (resp->status))); | |
4612 | } | |
4613 | ||
4614 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | | |
4615 | IPW_DL_ASSOC, | |
4616 | "disassociated: '%s' %pM\n", | |
4617 | print_ssid(ssid, priv->essid, | |
4618 | priv->essid_len), | |
4619 | priv->bssid); | |
4620 | ||
4621 | priv->status &= | |
4622 | ~(STATUS_DISASSOCIATING | | |
4623 | STATUS_ASSOCIATING | | |
4624 | STATUS_ASSOCIATED | STATUS_AUTH); | |
4625 | if (priv->assoc_network | |
4626 | && (priv->assoc_network-> | |
4627 | capability & | |
4628 | WLAN_CAPABILITY_IBSS)) | |
4629 | ipw_remove_current_network | |
4630 | (priv); | |
4631 | ||
4632 | schedule_work(&priv->link_down); | |
4633 | ||
4634 | break; | |
4635 | } | |
4636 | ||
4637 | case CMAS_RX_ASSOC_RESP: | |
4638 | break; | |
4639 | ||
4640 | default: | |
4641 | IPW_ERROR("assoc: unknown (%d)\n", | |
4642 | assoc->state); | |
4643 | break; | |
4644 | } | |
4645 | ||
4646 | break; | |
4647 | } | |
4648 | ||
4649 | case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{ | |
4650 | struct notif_authenticate *auth = ¬if->u.auth; | |
4651 | switch (auth->state) { | |
4652 | case CMAS_AUTHENTICATED: | |
4653 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, | |
4654 | "authenticated: '%s' %pM\n", | |
4655 | print_ssid(ssid, priv->essid, | |
4656 | priv->essid_len), | |
4657 | priv->bssid); | |
4658 | priv->status |= STATUS_AUTH; | |
4659 | break; | |
4660 | ||
4661 | case CMAS_INIT: | |
4662 | if (priv->status & STATUS_AUTH) { | |
4663 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | | |
4664 | IPW_DL_ASSOC, | |
4665 | "authentication failed (0x%04X): %s\n", | |
4666 | le16_to_cpu(auth->status), | |
4667 | ipw_get_status_code(le16_to_cpu | |
4668 | (auth-> | |
4669 | status))); | |
4670 | } | |
4671 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | | |
4672 | IPW_DL_ASSOC, | |
4673 | "deauthenticated: '%s' %pM\n", | |
4674 | print_ssid(ssid, priv->essid, | |
4675 | priv->essid_len), | |
4676 | priv->bssid); | |
4677 | ||
4678 | priv->status &= ~(STATUS_ASSOCIATING | | |
4679 | STATUS_AUTH | | |
4680 | STATUS_ASSOCIATED); | |
4681 | ||
4682 | schedule_work(&priv->link_down); | |
4683 | break; | |
4684 | ||
4685 | case CMAS_TX_AUTH_SEQ_1: | |
4686 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | | |
4687 | IPW_DL_ASSOC, "AUTH_SEQ_1\n"); | |
4688 | break; | |
4689 | case CMAS_RX_AUTH_SEQ_2: | |
4690 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | | |
4691 | IPW_DL_ASSOC, "AUTH_SEQ_2\n"); | |
4692 | break; | |
4693 | case CMAS_AUTH_SEQ_1_PASS: | |
4694 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | | |
4695 | IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n"); | |
4696 | break; | |
4697 | case CMAS_AUTH_SEQ_1_FAIL: | |
4698 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | | |
4699 | IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n"); | |
4700 | break; | |
4701 | case CMAS_TX_AUTH_SEQ_3: | |
4702 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | | |
4703 | IPW_DL_ASSOC, "AUTH_SEQ_3\n"); | |
4704 | break; | |
4705 | case CMAS_RX_AUTH_SEQ_4: | |
4706 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | | |
4707 | IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n"); | |
4708 | break; | |
4709 | case CMAS_AUTH_SEQ_2_PASS: | |
4710 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | | |
4711 | IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n"); | |
4712 | break; | |
4713 | case CMAS_AUTH_SEQ_2_FAIL: | |
4714 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | | |
4715 | IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n"); | |
4716 | break; | |
4717 | case CMAS_TX_ASSOC: | |
4718 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | | |
4719 | IPW_DL_ASSOC, "TX_ASSOC\n"); | |
4720 | break; | |
4721 | case CMAS_RX_ASSOC_RESP: | |
4722 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | | |
4723 | IPW_DL_ASSOC, "RX_ASSOC_RESP\n"); | |
4724 | ||
4725 | break; | |
4726 | case CMAS_ASSOCIATED: | |
4727 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | | |
4728 | IPW_DL_ASSOC, "ASSOCIATED\n"); | |
4729 | break; | |
4730 | default: | |
4731 | IPW_DEBUG_NOTIF("auth: failure - %d\n", | |
4732 | auth->state); | |
4733 | break; | |
4734 | } | |
4735 | break; | |
4736 | } | |
4737 | ||
4738 | case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{ | |
4739 | struct notif_channel_result *x = | |
4740 | ¬if->u.channel_result; | |
4741 | ||
4742 | if (size == sizeof(*x)) { | |
4743 | IPW_DEBUG_SCAN("Scan result for channel %d\n", | |
4744 | x->channel_num); | |
4745 | } else { | |
4746 | IPW_DEBUG_SCAN("Scan result of wrong size %d " | |
4747 | "(should be %zd)\n", | |
4748 | size, sizeof(*x)); | |
4749 | } | |
4750 | break; | |
4751 | } | |
4752 | ||
4753 | case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{ | |
4754 | struct notif_scan_complete *x = ¬if->u.scan_complete; | |
4755 | if (size == sizeof(*x)) { | |
4756 | IPW_DEBUG_SCAN | |
4757 | ("Scan completed: type %d, %d channels, " | |
4758 | "%d status\n", x->scan_type, | |
4759 | x->num_channels, x->status); | |
4760 | } else { | |
4761 | IPW_ERROR("Scan completed of wrong size %d " | |
4762 | "(should be %zd)\n", | |
4763 | size, sizeof(*x)); | |
4764 | } | |
4765 | ||
4766 | priv->status &= | |
4767 | ~(STATUS_SCANNING | STATUS_SCAN_ABORTING); | |
4768 | ||
4769 | wake_up_interruptible(&priv->wait_state); | |
4770 | cancel_delayed_work(&priv->scan_check); | |
4771 | ||
4772 | if (priv->status & STATUS_EXIT_PENDING) | |
4773 | break; | |
4774 | ||
4775 | priv->ieee->scans++; | |
4776 | ||
4777 | #ifdef CONFIG_IPW2200_MONITOR | |
4778 | if (priv->ieee->iw_mode == IW_MODE_MONITOR) { | |
4779 | priv->status |= STATUS_SCAN_FORCED; | |
4780 | schedule_delayed_work(&priv->request_scan, 0); | |
4781 | break; | |
4782 | } | |
4783 | priv->status &= ~STATUS_SCAN_FORCED; | |
4784 | #endif /* CONFIG_IPW2200_MONITOR */ | |
4785 | ||
4786 | /* Do queued direct scans first */ | |
4787 | if (priv->status & STATUS_DIRECT_SCAN_PENDING) | |
4788 | schedule_delayed_work(&priv->request_direct_scan, 0); | |
4789 | ||
4790 | if (!(priv->status & (STATUS_ASSOCIATED | | |
4791 | STATUS_ASSOCIATING | | |
4792 | STATUS_ROAMING | | |
4793 | STATUS_DISASSOCIATING))) | |
4794 | schedule_work(&priv->associate); | |
4795 | else if (priv->status & STATUS_ROAMING) { | |
4796 | if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) | |
4797 | /* If a scan completed and we are in roam mode, then | |
4798 | * the scan that completed was the one requested as a | |
4799 | * result of entering roam... so, schedule the | |
4800 | * roam work */ | |
4801 | schedule_work(&priv->roam); | |
4802 | else | |
4803 | /* Don't schedule if we aborted the scan */ | |
4804 | priv->status &= ~STATUS_ROAMING; | |
4805 | } else if (priv->status & STATUS_SCAN_PENDING) | |
4806 | schedule_delayed_work(&priv->request_scan, 0); | |
4807 | else if (priv->config & CFG_BACKGROUND_SCAN | |
4808 | && priv->status & STATUS_ASSOCIATED) | |
4809 | schedule_delayed_work(&priv->request_scan, | |
4810 | round_jiffies_relative(HZ)); | |
4811 | ||
4812 | /* Send an empty event to user space. | |
4813 | * We don't send the received data on the event because | |
4814 | * it would require us to do complex transcoding, and | |
4815 | * we want to minimise the work done in the irq handler | |
4816 | * Use a request to extract the data. | |
4817 | * Also, we generate this even for any scan, regardless | |
4818 | * on how the scan was initiated. User space can just | |
4819 | * sync on periodic scan to get fresh data... | |
4820 | * Jean II */ | |
4821 | if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) | |
4822 | handle_scan_event(priv); | |
4823 | break; | |
4824 | } | |
4825 | ||
4826 | case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{ | |
4827 | struct notif_frag_length *x = ¬if->u.frag_len; | |
4828 | ||
4829 | if (size == sizeof(*x)) | |
4830 | IPW_ERROR("Frag length: %d\n", | |
4831 | le16_to_cpu(x->frag_length)); | |
4832 | else | |
4833 | IPW_ERROR("Frag length of wrong size %d " | |
4834 | "(should be %zd)\n", | |
4835 | size, sizeof(*x)); | |
4836 | break; | |
4837 | } | |
4838 | ||
4839 | case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{ | |
4840 | struct notif_link_deterioration *x = | |
4841 | ¬if->u.link_deterioration; | |
4842 | ||
4843 | if (size == sizeof(*x)) { | |
4844 | IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, | |
4845 | "link deterioration: type %d, cnt %d\n", | |
4846 | x->silence_notification_type, | |
4847 | x->silence_count); | |
4848 | memcpy(&priv->last_link_deterioration, x, | |
4849 | sizeof(*x)); | |
4850 | } else { | |
4851 | IPW_ERROR("Link Deterioration of wrong size %d " | |
4852 | "(should be %zd)\n", | |
4853 | size, sizeof(*x)); | |
4854 | } | |
4855 | break; | |
4856 | } | |
4857 | ||
4858 | case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{ | |
4859 | IPW_ERROR("Dino config\n"); | |
4860 | if (priv->hcmd | |
4861 | && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG) | |
4862 | IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n"); | |
4863 | ||
4864 | break; | |
4865 | } | |
4866 | ||
4867 | case HOST_NOTIFICATION_STATUS_BEACON_STATE:{ | |
4868 | struct notif_beacon_state *x = ¬if->u.beacon_state; | |
4869 | if (size != sizeof(*x)) { | |
4870 | IPW_ERROR | |
4871 | ("Beacon state of wrong size %d (should " | |
4872 | "be %zd)\n", size, sizeof(*x)); | |
4873 | break; | |
4874 | } | |
4875 | ||
4876 | if (le32_to_cpu(x->state) == | |
4877 | HOST_NOTIFICATION_STATUS_BEACON_MISSING) | |
4878 | ipw_handle_missed_beacon(priv, | |
4879 | le32_to_cpu(x-> | |
4880 | number)); | |
4881 | ||
4882 | break; | |
4883 | } | |
4884 | ||
4885 | case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{ | |
4886 | struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key; | |
4887 | if (size == sizeof(*x)) { | |
4888 | IPW_ERROR("TGi Tx Key: state 0x%02x sec type " | |
4889 | "0x%02x station %d\n", | |
4890 | x->key_state, x->security_type, | |
4891 | x->station_index); | |
4892 | break; | |
4893 | } | |
4894 | ||
4895 | IPW_ERROR | |
4896 | ("TGi Tx Key of wrong size %d (should be %zd)\n", | |
4897 | size, sizeof(*x)); | |
4898 | break; | |
4899 | } | |
4900 | ||
4901 | case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{ | |
4902 | struct notif_calibration *x = ¬if->u.calibration; | |
4903 | ||
4904 | if (size == sizeof(*x)) { | |
4905 | memcpy(&priv->calib, x, sizeof(*x)); | |
4906 | IPW_DEBUG_INFO("TODO: Calibration\n"); | |
4907 | break; | |
4908 | } | |
4909 | ||
4910 | IPW_ERROR | |
4911 | ("Calibration of wrong size %d (should be %zd)\n", | |
4912 | size, sizeof(*x)); | |
4913 | break; | |
4914 | } | |
4915 | ||
4916 | case HOST_NOTIFICATION_NOISE_STATS:{ | |
4917 | if (size == sizeof(u32)) { | |
4918 | priv->exp_avg_noise = | |
4919 | exponential_average(priv->exp_avg_noise, | |
4920 | (u8) (le32_to_cpu(notif->u.noise.value) & 0xff), | |
4921 | DEPTH_NOISE); | |
4922 | break; | |
4923 | } | |
4924 | ||
4925 | IPW_ERROR | |
4926 | ("Noise stat is wrong size %d (should be %zd)\n", | |
4927 | size, sizeof(u32)); | |
4928 | break; | |
4929 | } | |
4930 | ||
4931 | default: | |
4932 | IPW_DEBUG_NOTIF("Unknown notification: " | |
4933 | "subtype=%d,flags=0x%2x,size=%d\n", | |
4934 | notif->subtype, notif->flags, size); | |
4935 | } | |
4936 | } | |
4937 | ||
4938 | /** | |
4939 | * Destroys all DMA structures and initialise them again | |
4940 | * | |
4941 | * @param priv | |
4942 | * @return error code | |
4943 | */ | |
4944 | static int ipw_queue_reset(struct ipw_priv *priv) | |
4945 | { | |
4946 | int rc = 0; | |
4947 | /** @todo customize queue sizes */ | |
4948 | int nTx = 64, nTxCmd = 8; | |
4949 | ipw_tx_queue_free(priv); | |
4950 | /* Tx CMD queue */ | |
4951 | rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd, | |
4952 | IPW_TX_CMD_QUEUE_READ_INDEX, | |
4953 | IPW_TX_CMD_QUEUE_WRITE_INDEX, | |
4954 | IPW_TX_CMD_QUEUE_BD_BASE, | |
4955 | IPW_TX_CMD_QUEUE_BD_SIZE); | |
4956 | if (rc) { | |
4957 | IPW_ERROR("Tx Cmd queue init failed\n"); | |
4958 | goto error; | |
4959 | } | |
4960 | /* Tx queue(s) */ | |
4961 | rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx, | |
4962 | IPW_TX_QUEUE_0_READ_INDEX, | |
4963 | IPW_TX_QUEUE_0_WRITE_INDEX, | |
4964 | IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE); | |
4965 | if (rc) { | |
4966 | IPW_ERROR("Tx 0 queue init failed\n"); | |
4967 | goto error; | |
4968 | } | |
4969 | rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx, | |
4970 | IPW_TX_QUEUE_1_READ_INDEX, | |
4971 | IPW_TX_QUEUE_1_WRITE_INDEX, | |
4972 | IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE); | |
4973 | if (rc) { | |
4974 | IPW_ERROR("Tx 1 queue init failed\n"); | |
4975 | goto error; | |
4976 | } | |
4977 | rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx, | |
4978 | IPW_TX_QUEUE_2_READ_INDEX, | |
4979 | IPW_TX_QUEUE_2_WRITE_INDEX, | |
4980 | IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE); | |
4981 | if (rc) { | |
4982 | IPW_ERROR("Tx 2 queue init failed\n"); | |
4983 | goto error; | |
4984 | } | |
4985 | rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx, | |
4986 | IPW_TX_QUEUE_3_READ_INDEX, | |
4987 | IPW_TX_QUEUE_3_WRITE_INDEX, | |
4988 | IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE); | |
4989 | if (rc) { | |
4990 | IPW_ERROR("Tx 3 queue init failed\n"); | |
4991 | goto error; | |
4992 | } | |
4993 | /* statistics */ | |
4994 | priv->rx_bufs_min = 0; | |
4995 | priv->rx_pend_max = 0; | |
4996 | return rc; | |
4997 | ||
4998 | error: | |
4999 | ipw_tx_queue_free(priv); | |
5000 | return rc; | |
5001 | } | |
5002 | ||
5003 | /** | |
5004 | * Reclaim Tx queue entries no more used by NIC. | |
5005 | * | |
5006 | * When FW advances 'R' index, all entries between old and | |
5007 | * new 'R' index need to be reclaimed. As result, some free space | |
5008 | * forms. If there is enough free space (> low mark), wake Tx queue. | |
5009 | * | |
5010 | * @note Need to protect against garbage in 'R' index | |
5011 | * @param priv | |
5012 | * @param txq | |
5013 | * @param qindex | |
5014 | * @return Number of used entries remains in the queue | |
5015 | */ | |
5016 | static int ipw_queue_tx_reclaim(struct ipw_priv *priv, | |
5017 | struct clx2_tx_queue *txq, int qindex) | |
5018 | { | |
5019 | u32 hw_tail; | |
5020 | int used; | |
5021 | struct clx2_queue *q = &txq->q; | |
5022 | ||
5023 | hw_tail = ipw_read32(priv, q->reg_r); | |
5024 | if (hw_tail >= q->n_bd) { | |
5025 | IPW_ERROR | |
5026 | ("Read index for DMA queue (%d) is out of range [0-%d)\n", | |
5027 | hw_tail, q->n_bd); | |
5028 | goto done; | |
5029 | } | |
5030 | for (; q->last_used != hw_tail; | |
5031 | q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { | |
5032 | ipw_queue_tx_free_tfd(priv, txq); | |
5033 | priv->tx_packets++; | |
5034 | } | |
5035 | done: | |
5036 | if ((ipw_tx_queue_space(q) > q->low_mark) && | |
5037 | (qindex >= 0)) | |
5038 | netif_wake_queue(priv->net_dev); | |
5039 | used = q->first_empty - q->last_used; | |
5040 | if (used < 0) | |
5041 | used += q->n_bd; | |
5042 | ||
5043 | return used; | |
5044 | } | |
5045 | ||
5046 | static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf, | |
5047 | int len, int sync) | |
5048 | { | |
5049 | struct clx2_tx_queue *txq = &priv->txq_cmd; | |
5050 | struct clx2_queue *q = &txq->q; | |
5051 | struct tfd_frame *tfd; | |
5052 | ||
5053 | if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) { | |
5054 | IPW_ERROR("No space for Tx\n"); | |
5055 | return -EBUSY; | |
5056 | } | |
5057 | ||
5058 | tfd = &txq->bd[q->first_empty]; | |
5059 | txq->txb[q->first_empty] = NULL; | |
5060 | ||
5061 | memset(tfd, 0, sizeof(*tfd)); | |
5062 | tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE; | |
5063 | tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; | |
5064 | priv->hcmd_seq++; | |
5065 | tfd->u.cmd.index = hcmd; | |
5066 | tfd->u.cmd.length = len; | |
5067 | memcpy(tfd->u.cmd.payload, buf, len); | |
5068 | q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); | |
5069 | ipw_write32(priv, q->reg_w, q->first_empty); | |
5070 | _ipw_read32(priv, 0x90); | |
5071 | ||
5072 | return 0; | |
5073 | } | |
5074 | ||
5075 | /* | |
5076 | * Rx theory of operation | |
5077 | * | |
5078 | * The host allocates 32 DMA target addresses and passes the host address | |
5079 | * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is | |
5080 | * 0 to 31 | |
5081 | * | |
5082 | * Rx Queue Indexes | |
5083 | * The host/firmware share two index registers for managing the Rx buffers. | |
5084 | * | |
5085 | * The READ index maps to the first position that the firmware may be writing | |
5086 | * to -- the driver can read up to (but not including) this position and get | |
5087 | * good data. | |
5088 | * The READ index is managed by the firmware once the card is enabled. | |
5089 | * | |
5090 | * The WRITE index maps to the last position the driver has read from -- the | |
5091 | * position preceding WRITE is the last slot the firmware can place a packet. | |
5092 | * | |
5093 | * The queue is empty (no good data) if WRITE = READ - 1, and is full if | |
5094 | * WRITE = READ. | |
5095 | * | |
5096 | * During initialization the host sets up the READ queue position to the first | |
5097 | * INDEX position, and WRITE to the last (READ - 1 wrapped) | |
5098 | * | |
5099 | * When the firmware places a packet in a buffer it will advance the READ index | |
5100 | * and fire the RX interrupt. The driver can then query the READ index and | |
5101 | * process as many packets as possible, moving the WRITE index forward as it | |
5102 | * resets the Rx queue buffers with new memory. | |
5103 | * | |
5104 | * The management in the driver is as follows: | |
5105 | * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When | |
5106 | * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled | |
5107 | * to replensish the ipw->rxq->rx_free. | |
5108 | * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the | |
5109 | * ipw->rxq is replenished and the READ INDEX is updated (updating the | |
5110 | * 'processed' and 'read' driver indexes as well) | |
5111 | * + A received packet is processed and handed to the kernel network stack, | |
5112 | * detached from the ipw->rxq. The driver 'processed' index is updated. | |
5113 | * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free | |
5114 | * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ | |
5115 | * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there | |
5116 | * were enough free buffers and RX_STALLED is set it is cleared. | |
5117 | * | |
5118 | * | |
5119 | * Driver sequence: | |
5120 | * | |
5121 | * ipw_rx_queue_alloc() Allocates rx_free | |
5122 | * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls | |
5123 | * ipw_rx_queue_restock | |
5124 | * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx | |
5125 | * queue, updates firmware pointers, and updates | |
5126 | * the WRITE index. If insufficient rx_free buffers | |
5127 | * are available, schedules ipw_rx_queue_replenish | |
5128 | * | |
5129 | * -- enable interrupts -- | |
5130 | * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the | |
5131 | * READ INDEX, detaching the SKB from the pool. | |
5132 | * Moves the packet buffer from queue to rx_used. | |
5133 | * Calls ipw_rx_queue_restock to refill any empty | |
5134 | * slots. | |
5135 | * ... | |
5136 | * | |
5137 | */ | |
5138 | ||
5139 | /* | |
5140 | * If there are slots in the RX queue that need to be restocked, | |
5141 | * and we have free pre-allocated buffers, fill the ranks as much | |
5142 | * as we can pulling from rx_free. | |
5143 | * | |
5144 | * This moves the 'write' index forward to catch up with 'processed', and | |
5145 | * also updates the memory address in the firmware to reference the new | |
5146 | * target buffer. | |
5147 | */ | |
5148 | static void ipw_rx_queue_restock(struct ipw_priv *priv) | |
5149 | { | |
5150 | struct ipw_rx_queue *rxq = priv->rxq; | |
5151 | struct list_head *element; | |
5152 | struct ipw_rx_mem_buffer *rxb; | |
5153 | unsigned long flags; | |
5154 | int write; | |
5155 | ||
5156 | spin_lock_irqsave(&rxq->lock, flags); | |
5157 | write = rxq->write; | |
5158 | while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) { | |
5159 | element = rxq->rx_free.next; | |
5160 | rxb = list_entry(element, struct ipw_rx_mem_buffer, list); | |
5161 | list_del(element); | |
5162 | ||
5163 | ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE, | |
5164 | rxb->dma_addr); | |
5165 | rxq->queue[rxq->write] = rxb; | |
5166 | rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE; | |
5167 | rxq->free_count--; | |
5168 | } | |
5169 | spin_unlock_irqrestore(&rxq->lock, flags); | |
5170 | ||
5171 | /* If the pre-allocated buffer pool is dropping low, schedule to | |
5172 | * refill it */ | |
5173 | if (rxq->free_count <= RX_LOW_WATERMARK) | |
5174 | schedule_work(&priv->rx_replenish); | |
5175 | ||
5176 | /* If we've added more space for the firmware to place data, tell it */ | |
5177 | if (write != rxq->write) | |
5178 | ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write); | |
5179 | } | |
5180 | ||
5181 | /* | |
5182 | * Move all used packet from rx_used to rx_free, allocating a new SKB for each. | |
5183 | * Also restock the Rx queue via ipw_rx_queue_restock. | |
5184 | * | |
5185 | * This is called as a scheduled work item (except for during intialization) | |
5186 | */ | |
5187 | static void ipw_rx_queue_replenish(void *data) | |
5188 | { | |
5189 | struct ipw_priv *priv = data; | |
5190 | struct ipw_rx_queue *rxq = priv->rxq; | |
5191 | struct list_head *element; | |
5192 | struct ipw_rx_mem_buffer *rxb; | |
5193 | unsigned long flags; | |
5194 | ||
5195 | spin_lock_irqsave(&rxq->lock, flags); | |
5196 | while (!list_empty(&rxq->rx_used)) { | |
5197 | element = rxq->rx_used.next; | |
5198 | rxb = list_entry(element, struct ipw_rx_mem_buffer, list); | |
5199 | rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC); | |
5200 | if (!rxb->skb) { | |
5201 | printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n", | |
5202 | priv->net_dev->name); | |
5203 | /* We don't reschedule replenish work here -- we will | |
5204 | * call the restock method and if it still needs | |
5205 | * more buffers it will schedule replenish */ | |
5206 | break; | |
5207 | } | |
5208 | list_del(element); | |
5209 | ||
5210 | rxb->dma_addr = | |
5211 | pci_map_single(priv->pci_dev, rxb->skb->data, | |
5212 | IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); | |
5213 | ||
5214 | list_add_tail(&rxb->list, &rxq->rx_free); | |
5215 | rxq->free_count++; | |
5216 | } | |
5217 | spin_unlock_irqrestore(&rxq->lock, flags); | |
5218 | ||
5219 | ipw_rx_queue_restock(priv); | |
5220 | } | |
5221 | ||
5222 | static void ipw_bg_rx_queue_replenish(struct work_struct *work) | |
5223 | { | |
5224 | struct ipw_priv *priv = | |
5225 | container_of(work, struct ipw_priv, rx_replenish); | |
5226 | mutex_lock(&priv->mutex); | |
5227 | ipw_rx_queue_replenish(priv); | |
5228 | mutex_unlock(&priv->mutex); | |
5229 | } | |
5230 | ||
5231 | /* Assumes that the skb field of the buffers in 'pool' is kept accurate. | |
5232 | * If an SKB has been detached, the POOL needs to have its SKB set to NULL | |
5233 | * This free routine walks the list of POOL entries and if SKB is set to | |
5234 | * non NULL it is unmapped and freed | |
5235 | */ | |
5236 | static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq) | |
5237 | { | |
5238 | int i; | |
5239 | ||
5240 | if (!rxq) | |
5241 | return; | |
5242 | ||
5243 | for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) { | |
5244 | if (rxq->pool[i].skb != NULL) { | |
5245 | pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, | |
5246 | IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); | |
5247 | dev_kfree_skb(rxq->pool[i].skb); | |
5248 | } | |
5249 | } | |
5250 | ||
5251 | kfree(rxq); | |
5252 | } | |
5253 | ||
5254 | static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv) | |
5255 | { | |
5256 | struct ipw_rx_queue *rxq; | |
5257 | int i; | |
5258 | ||
5259 | rxq = kzalloc(sizeof(*rxq), GFP_KERNEL); | |
5260 | if (unlikely(!rxq)) { | |
5261 | IPW_ERROR("memory allocation failed\n"); | |
5262 | return NULL; | |
5263 | } | |
5264 | spin_lock_init(&rxq->lock); | |
5265 | INIT_LIST_HEAD(&rxq->rx_free); | |
5266 | INIT_LIST_HEAD(&rxq->rx_used); | |
5267 | ||
5268 | /* Fill the rx_used queue with _all_ of the Rx buffers */ | |
5269 | for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) | |
5270 | list_add_tail(&rxq->pool[i].list, &rxq->rx_used); | |
5271 | ||
5272 | /* Set us so that we have processed and used all buffers, but have | |
5273 | * not restocked the Rx queue with fresh buffers */ | |
5274 | rxq->read = rxq->write = 0; | |
5275 | rxq->free_count = 0; | |
5276 | ||
5277 | return rxq; | |
5278 | } | |
5279 | ||
5280 | static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate) | |
5281 | { | |
5282 | rate &= ~LIBIPW_BASIC_RATE_MASK; | |
5283 | if (ieee_mode == IEEE_A) { | |
5284 | switch (rate) { | |
5285 | case LIBIPW_OFDM_RATE_6MB: | |
5286 | return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? | |
5287 | 1 : 0; | |
5288 | case LIBIPW_OFDM_RATE_9MB: | |
5289 | return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? | |
5290 | 1 : 0; | |
5291 | case LIBIPW_OFDM_RATE_12MB: | |
5292 | return priv-> | |
5293 | rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0; | |
5294 | case LIBIPW_OFDM_RATE_18MB: | |
5295 | return priv-> | |
5296 | rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0; | |
5297 | case LIBIPW_OFDM_RATE_24MB: | |
5298 | return priv-> | |
5299 | rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0; | |
5300 | case LIBIPW_OFDM_RATE_36MB: | |
5301 | return priv-> | |
5302 | rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0; | |
5303 | case LIBIPW_OFDM_RATE_48MB: | |
5304 | return priv-> | |
5305 | rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0; | |
5306 | case LIBIPW_OFDM_RATE_54MB: | |
5307 | return priv-> | |
5308 | rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0; | |
5309 | default: | |
5310 | return 0; | |
5311 | } | |
5312 | } | |
5313 | ||
5314 | /* B and G mixed */ | |
5315 | switch (rate) { | |
5316 | case LIBIPW_CCK_RATE_1MB: | |
5317 | return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0; | |
5318 | case LIBIPW_CCK_RATE_2MB: | |
5319 | return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0; | |
5320 | case LIBIPW_CCK_RATE_5MB: | |
5321 | return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0; | |
5322 | case LIBIPW_CCK_RATE_11MB: | |
5323 | return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0; | |
5324 | } | |
5325 | ||
5326 | /* If we are limited to B modulations, bail at this point */ | |
5327 | if (ieee_mode == IEEE_B) | |
5328 | return 0; | |
5329 | ||
5330 | /* G */ | |
5331 | switch (rate) { | |
5332 | case LIBIPW_OFDM_RATE_6MB: | |
5333 | return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0; | |
5334 | case LIBIPW_OFDM_RATE_9MB: | |
5335 | return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0; | |
5336 | case LIBIPW_OFDM_RATE_12MB: | |
5337 | return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0; | |
5338 | case LIBIPW_OFDM_RATE_18MB: | |
5339 | return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0; | |
5340 | case LIBIPW_OFDM_RATE_24MB: | |
5341 | return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0; | |
5342 | case LIBIPW_OFDM_RATE_36MB: | |
5343 | return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0; | |
5344 | case LIBIPW_OFDM_RATE_48MB: | |
5345 | return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0; | |
5346 | case LIBIPW_OFDM_RATE_54MB: | |
5347 | return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0; | |
5348 | } | |
5349 | ||
5350 | return 0; | |
5351 | } | |
5352 | ||
5353 | static int ipw_compatible_rates(struct ipw_priv *priv, | |
5354 | const struct libipw_network *network, | |
5355 | struct ipw_supported_rates *rates) | |
5356 | { | |
5357 | int num_rates, i; | |
5358 | ||
5359 | memset(rates, 0, sizeof(*rates)); | |
5360 | num_rates = min(network->rates_len, (u8) IPW_MAX_RATES); | |
5361 | rates->num_rates = 0; | |
5362 | for (i = 0; i < num_rates; i++) { | |
5363 | if (!ipw_is_rate_in_mask(priv, network->mode, | |
5364 | network->rates[i])) { | |
5365 | ||
5366 | if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) { | |
5367 | IPW_DEBUG_SCAN("Adding masked mandatory " | |
5368 | "rate %02X\n", | |
5369 | network->rates[i]); | |
5370 | rates->supported_rates[rates->num_rates++] = | |
5371 | network->rates[i]; | |
5372 | continue; | |
5373 | } | |
5374 | ||
5375 | IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", | |
5376 | network->rates[i], priv->rates_mask); | |
5377 | continue; | |
5378 | } | |
5379 | ||
5380 | rates->supported_rates[rates->num_rates++] = network->rates[i]; | |
5381 | } | |
5382 | ||
5383 | num_rates = min(network->rates_ex_len, | |
5384 | (u8) (IPW_MAX_RATES - num_rates)); | |
5385 | for (i = 0; i < num_rates; i++) { | |
5386 | if (!ipw_is_rate_in_mask(priv, network->mode, | |
5387 | network->rates_ex[i])) { | |
5388 | if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) { | |
5389 | IPW_DEBUG_SCAN("Adding masked mandatory " | |
5390 | "rate %02X\n", | |
5391 | network->rates_ex[i]); | |
5392 | rates->supported_rates[rates->num_rates++] = | |
5393 | network->rates[i]; | |
5394 | continue; | |
5395 | } | |
5396 | ||
5397 | IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", | |
5398 | network->rates_ex[i], priv->rates_mask); | |
5399 | continue; | |
5400 | } | |
5401 | ||
5402 | rates->supported_rates[rates->num_rates++] = | |
5403 | network->rates_ex[i]; | |
5404 | } | |
5405 | ||
5406 | return 1; | |
5407 | } | |
5408 | ||
5409 | static void ipw_copy_rates(struct ipw_supported_rates *dest, | |
5410 | const struct ipw_supported_rates *src) | |
5411 | { | |
5412 | u8 i; | |
5413 | for (i = 0; i < src->num_rates; i++) | |
5414 | dest->supported_rates[i] = src->supported_rates[i]; | |
5415 | dest->num_rates = src->num_rates; | |
5416 | } | |
5417 | ||
5418 | /* TODO: Look at sniffed packets in the air to determine if the basic rate | |
5419 | * mask should ever be used -- right now all callers to add the scan rates are | |
5420 | * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */ | |
5421 | static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates, | |
5422 | u8 modulation, u32 rate_mask) | |
5423 | { | |
5424 | u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ? | |
5425 | LIBIPW_BASIC_RATE_MASK : 0; | |
5426 | ||
5427 | if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK) | |
5428 | rates->supported_rates[rates->num_rates++] = | |
5429 | LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB; | |
5430 | ||
5431 | if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK) | |
5432 | rates->supported_rates[rates->num_rates++] = | |
5433 | LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB; | |
5434 | ||
5435 | if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK) | |
5436 | rates->supported_rates[rates->num_rates++] = basic_mask | | |
5437 | LIBIPW_CCK_RATE_5MB; | |
5438 | ||
5439 | if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK) | |
5440 | rates->supported_rates[rates->num_rates++] = basic_mask | | |
5441 | LIBIPW_CCK_RATE_11MB; | |
5442 | } | |
5443 | ||
5444 | static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates, | |
5445 | u8 modulation, u32 rate_mask) | |
5446 | { | |
5447 | u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ? | |
5448 | LIBIPW_BASIC_RATE_MASK : 0; | |
5449 | ||
5450 | if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK) | |
5451 | rates->supported_rates[rates->num_rates++] = basic_mask | | |
5452 | LIBIPW_OFDM_RATE_6MB; | |
5453 | ||
5454 | if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK) | |
5455 | rates->supported_rates[rates->num_rates++] = | |
5456 | LIBIPW_OFDM_RATE_9MB; | |
5457 | ||
5458 | if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK) | |
5459 | rates->supported_rates[rates->num_rates++] = basic_mask | | |
5460 | LIBIPW_OFDM_RATE_12MB; | |
5461 | ||
5462 | if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK) | |
5463 | rates->supported_rates[rates->num_rates++] = | |
5464 | LIBIPW_OFDM_RATE_18MB; | |
5465 | ||
5466 | if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK) | |
5467 | rates->supported_rates[rates->num_rates++] = basic_mask | | |
5468 | LIBIPW_OFDM_RATE_24MB; | |
5469 | ||
5470 | if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK) | |
5471 | rates->supported_rates[rates->num_rates++] = | |
5472 | LIBIPW_OFDM_RATE_36MB; | |
5473 | ||
5474 | if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK) | |
5475 | rates->supported_rates[rates->num_rates++] = | |
5476 | LIBIPW_OFDM_RATE_48MB; | |
5477 | ||
5478 | if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK) | |
5479 | rates->supported_rates[rates->num_rates++] = | |
5480 | LIBIPW_OFDM_RATE_54MB; | |
5481 | } | |
5482 | ||
5483 | struct ipw_network_match { | |
5484 | struct libipw_network *network; | |
5485 | struct ipw_supported_rates rates; | |
5486 | }; | |
5487 | ||
5488 | static int ipw_find_adhoc_network(struct ipw_priv *priv, | |
5489 | struct ipw_network_match *match, | |
5490 | struct libipw_network *network, | |
5491 | int roaming) | |
5492 | { | |
5493 | struct ipw_supported_rates rates; | |
5494 | DECLARE_SSID_BUF(ssid); | |
5495 | ||
5496 | /* Verify that this network's capability is compatible with the | |
5497 | * current mode (AdHoc or Infrastructure) */ | |
5498 | if ((priv->ieee->iw_mode == IW_MODE_ADHOC && | |
5499 | !(network->capability & WLAN_CAPABILITY_IBSS))) { | |
5500 | IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to " | |
5501 | "capability mismatch.\n", | |
5502 | print_ssid(ssid, network->ssid, | |
5503 | network->ssid_len), | |
5504 | network->bssid); | |
5505 | return 0; | |
5506 | } | |
5507 | ||
5508 | if (unlikely(roaming)) { | |
5509 | /* If we are roaming, then ensure check if this is a valid | |
5510 | * network to try and roam to */ | |
5511 | if ((network->ssid_len != match->network->ssid_len) || | |
5512 | memcmp(network->ssid, match->network->ssid, | |
5513 | network->ssid_len)) { | |
5514 | IPW_DEBUG_MERGE("Network '%s (%pM)' excluded " | |
5515 | "because of non-network ESSID.\n", | |
5516 | print_ssid(ssid, network->ssid, | |
5517 | network->ssid_len), | |
5518 | network->bssid); | |
5519 | return 0; | |
5520 | } | |
5521 | } else { | |
5522 | /* If an ESSID has been configured then compare the broadcast | |
5523 | * ESSID to ours */ | |
5524 | if ((priv->config & CFG_STATIC_ESSID) && | |
5525 | ((network->ssid_len != priv->essid_len) || | |
5526 | memcmp(network->ssid, priv->essid, | |
5527 | min(network->ssid_len, priv->essid_len)))) { | |
5528 | char escaped[IW_ESSID_MAX_SIZE * 2 + 1]; | |
5529 | ||
5530 | strncpy(escaped, | |
5531 | print_ssid(ssid, network->ssid, | |
5532 | network->ssid_len), | |
5533 | sizeof(escaped)); | |
5534 | IPW_DEBUG_MERGE("Network '%s (%pM)' excluded " | |
5535 | "because of ESSID mismatch: '%s'.\n", | |
5536 | escaped, network->bssid, | |
5537 | print_ssid(ssid, priv->essid, | |
5538 | priv->essid_len)); | |
5539 | return 0; | |
5540 | } | |
5541 | } | |
5542 | ||
5543 | /* If the old network rate is better than this one, don't bother | |
5544 | * testing everything else. */ | |
5545 | ||
5546 | if (network->time_stamp[0] < match->network->time_stamp[0]) { | |
5547 | IPW_DEBUG_MERGE("Network '%s excluded because newer than " | |
5548 | "current network.\n", | |
5549 | print_ssid(ssid, match->network->ssid, | |
5550 | match->network->ssid_len)); | |
5551 | return 0; | |
5552 | } else if (network->time_stamp[1] < match->network->time_stamp[1]) { | |
5553 | IPW_DEBUG_MERGE("Network '%s excluded because newer than " | |
5554 | "current network.\n", | |
5555 | print_ssid(ssid, match->network->ssid, | |
5556 | match->network->ssid_len)); | |
5557 | return 0; | |
5558 | } | |
5559 | ||
5560 | /* Now go through and see if the requested network is valid... */ | |
5561 | if (priv->ieee->scan_age != 0 && | |
5562 | time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) { | |
5563 | IPW_DEBUG_MERGE("Network '%s (%pM)' excluded " | |
5564 | "because of age: %ums.\n", | |
5565 | print_ssid(ssid, network->ssid, | |
5566 | network->ssid_len), | |
5567 | network->bssid, | |
5568 | jiffies_to_msecs(jiffies - | |
5569 | network->last_scanned)); | |
5570 | return 0; | |
5571 | } | |
5572 | ||
5573 | if ((priv->config & CFG_STATIC_CHANNEL) && | |
5574 | (network->channel != priv->channel)) { | |
5575 | IPW_DEBUG_MERGE("Network '%s (%pM)' excluded " | |
5576 | "because of channel mismatch: %d != %d.\n", | |
5577 | print_ssid(ssid, network->ssid, | |
5578 | network->ssid_len), | |
5579 | network->bssid, | |
5580 | network->channel, priv->channel); | |
5581 | return 0; | |
5582 | } | |
5583 | ||
5584 | /* Verify privacy compatability */ | |
5585 | if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != | |
5586 | ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) { | |
5587 | IPW_DEBUG_MERGE("Network '%s (%pM)' excluded " | |
5588 | "because of privacy mismatch: %s != %s.\n", | |
5589 | print_ssid(ssid, network->ssid, | |
5590 | network->ssid_len), | |
5591 | network->bssid, | |
5592 | priv-> | |
5593 | capability & CAP_PRIVACY_ON ? "on" : "off", | |
5594 | network-> | |
5595 | capability & WLAN_CAPABILITY_PRIVACY ? "on" : | |
5596 | "off"); | |
5597 | return 0; | |
5598 | } | |
5599 | ||
5600 | if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) { | |
5601 | IPW_DEBUG_MERGE("Network '%s (%pM)' excluded " | |
5602 | "because of the same BSSID match: %pM" | |
5603 | ".\n", print_ssid(ssid, network->ssid, | |
5604 | network->ssid_len), | |
5605 | network->bssid, | |
5606 | priv->bssid); | |
5607 | return 0; | |
5608 | } | |
5609 | ||
5610 | /* Filter out any incompatible freq / mode combinations */ | |
5611 | if (!libipw_is_valid_mode(priv->ieee, network->mode)) { | |
5612 | IPW_DEBUG_MERGE("Network '%s (%pM)' excluded " | |
5613 | "because of invalid frequency/mode " | |
5614 | "combination.\n", | |
5615 | print_ssid(ssid, network->ssid, | |
5616 | network->ssid_len), | |
5617 | network->bssid); | |
5618 | return 0; | |
5619 | } | |
5620 | ||
5621 | /* Ensure that the rates supported by the driver are compatible with | |
5622 | * this AP, including verification of basic rates (mandatory) */ | |
5623 | if (!ipw_compatible_rates(priv, network, &rates)) { | |
5624 | IPW_DEBUG_MERGE("Network '%s (%pM)' excluded " | |
5625 | "because configured rate mask excludes " | |
5626 | "AP mandatory rate.\n", | |
5627 | print_ssid(ssid, network->ssid, | |
5628 | network->ssid_len), | |
5629 | network->bssid); | |
5630 | return 0; | |
5631 | } | |
5632 | ||
5633 | if (rates.num_rates == 0) { | |
5634 | IPW_DEBUG_MERGE("Network '%s (%pM)' excluded " | |
5635 | "because of no compatible rates.\n", | |
5636 | print_ssid(ssid, network->ssid, | |
5637 | network->ssid_len), | |
5638 | network->bssid); | |
5639 | return 0; | |
5640 | } | |
5641 | ||
5642 | /* TODO: Perform any further minimal comparititive tests. We do not | |
5643 | * want to put too much policy logic here; intelligent scan selection | |
5644 | * should occur within a generic IEEE 802.11 user space tool. */ | |
5645 | ||
5646 | /* Set up 'new' AP to this network */ | |
5647 | ipw_copy_rates(&match->rates, &rates); | |
5648 | match->network = network; | |
5649 | IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n", | |
5650 | print_ssid(ssid, network->ssid, network->ssid_len), | |
5651 | network->bssid); | |
5652 | ||
5653 | return 1; | |
5654 | } | |
5655 | ||
5656 | static void ipw_merge_adhoc_network(struct work_struct *work) | |
5657 | { | |
5658 | DECLARE_SSID_BUF(ssid); | |
5659 | struct ipw_priv *priv = | |
5660 | container_of(work, struct ipw_priv, merge_networks); | |
5661 | struct libipw_network *network = NULL; | |
5662 | struct ipw_network_match match = { | |
5663 | .network = priv->assoc_network | |
5664 | }; | |
5665 | ||
5666 | if ((priv->status & STATUS_ASSOCIATED) && | |
5667 | (priv->ieee->iw_mode == IW_MODE_ADHOC)) { | |
5668 | /* First pass through ROAM process -- look for a better | |
5669 | * network */ | |
5670 | unsigned long flags; | |
5671 | ||
5672 | spin_lock_irqsave(&priv->ieee->lock, flags); | |
5673 | list_for_each_entry(network, &priv->ieee->network_list, list) { | |
5674 | if (network != priv->assoc_network) | |
5675 | ipw_find_adhoc_network(priv, &match, network, | |
5676 | 1); | |
5677 | } | |
5678 | spin_unlock_irqrestore(&priv->ieee->lock, flags); | |
5679 | ||
5680 | if (match.network == priv->assoc_network) { | |
5681 | IPW_DEBUG_MERGE("No better ADHOC in this network to " | |
5682 | "merge to.\n"); | |
5683 | return; | |
5684 | } | |
5685 | ||
5686 | mutex_lock(&priv->mutex); | |
5687 | if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) { | |
5688 | IPW_DEBUG_MERGE("remove network %s\n", | |
5689 | print_ssid(ssid, priv->essid, | |
5690 | priv->essid_len)); | |
5691 | ipw_remove_current_network(priv); | |
5692 | } | |
5693 | ||
5694 | ipw_disassociate(priv); | |
5695 | priv->assoc_network = match.network; | |
5696 | mutex_unlock(&priv->mutex); | |
5697 | return; | |
5698 | } | |
5699 | } | |
5700 | ||
5701 | static int ipw_best_network(struct ipw_priv *priv, | |
5702 | struct ipw_network_match *match, | |
5703 | struct libipw_network *network, int roaming) | |
5704 | { | |
5705 | struct ipw_supported_rates rates; | |
5706 | DECLARE_SSID_BUF(ssid); | |
5707 | ||
5708 | /* Verify that this network's capability is compatible with the | |
5709 | * current mode (AdHoc or Infrastructure) */ | |
5710 | if ((priv->ieee->iw_mode == IW_MODE_INFRA && | |
5711 | !(network->capability & WLAN_CAPABILITY_ESS)) || | |
5712 | (priv->ieee->iw_mode == IW_MODE_ADHOC && | |
5713 | !(network->capability & WLAN_CAPABILITY_IBSS))) { | |
5714 | IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to " | |
5715 | "capability mismatch.\n", | |
5716 | print_ssid(ssid, network->ssid, | |
5717 | network->ssid_len), | |
5718 | network->bssid); | |
5719 | return 0; | |
5720 | } | |
5721 | ||
5722 | if (unlikely(roaming)) { | |
5723 | /* If we are roaming, then ensure check if this is a valid | |
5724 | * network to try and roam to */ | |
5725 | if ((network->ssid_len != match->network->ssid_len) || | |
5726 | memcmp(network->ssid, match->network->ssid, | |
5727 | network->ssid_len)) { | |
5728 | IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded " | |
5729 | "because of non-network ESSID.\n", | |
5730 | print_ssid(ssid, network->ssid, | |
5731 | network->ssid_len), | |
5732 | network->bssid); | |
5733 | return 0; | |
5734 | } | |
5735 | } else { | |
5736 | /* If an ESSID has been configured then compare the broadcast | |
5737 | * ESSID to ours */ | |
5738 | if ((priv->config & CFG_STATIC_ESSID) && | |
5739 | ((network->ssid_len != priv->essid_len) || | |
5740 | memcmp(network->ssid, priv->essid, | |
5741 | min(network->ssid_len, priv->essid_len)))) { | |
5742 | char escaped[IW_ESSID_MAX_SIZE * 2 + 1]; | |
5743 | strncpy(escaped, | |
5744 | print_ssid(ssid, network->ssid, | |
5745 | network->ssid_len), | |
5746 | sizeof(escaped)); | |
5747 | IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded " | |
5748 | "because of ESSID mismatch: '%s'.\n", | |
5749 | escaped, network->bssid, | |
5750 | print_ssid(ssid, priv->essid, | |
5751 | priv->essid_len)); | |
5752 | return 0; | |
5753 | } | |
5754 | } | |
5755 | ||
5756 | /* If the old network rate is better than this one, don't bother | |
5757 | * testing everything else. */ | |
5758 | if (match->network && match->network->stats.rssi > network->stats.rssi) { | |
5759 | char escaped[IW_ESSID_MAX_SIZE * 2 + 1]; | |
5760 | strncpy(escaped, | |
5761 | print_ssid(ssid, network->ssid, network->ssid_len), | |
5762 | sizeof(escaped)); | |
5763 | IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because " | |
5764 | "'%s (%pM)' has a stronger signal.\n", | |
5765 | escaped, network->bssid, | |
5766 | print_ssid(ssid, match->network->ssid, | |
5767 | match->network->ssid_len), | |
5768 | match->network->bssid); | |
5769 | return 0; | |
5770 | } | |
5771 | ||
5772 | /* If this network has already had an association attempt within the | |
5773 | * last 3 seconds, do not try and associate again... */ | |
5774 | if (network->last_associate && | |
5775 | time_after(network->last_associate + (HZ * 3UL), jiffies)) { | |
5776 | IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded " | |
5777 | "because of storming (%ums since last " | |
5778 | "assoc attempt).\n", | |
5779 | print_ssid(ssid, network->ssid, | |
5780 | network->ssid_len), | |
5781 | network->bssid, | |
5782 | jiffies_to_msecs(jiffies - | |
5783 | network->last_associate)); | |
5784 | return 0; | |
5785 | } | |
5786 | ||
5787 | /* Now go through and see if the requested network is valid... */ | |
5788 | if (priv->ieee->scan_age != 0 && | |
5789 | time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) { | |
5790 | IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded " | |
5791 | "because of age: %ums.\n", | |
5792 | print_ssid(ssid, network->ssid, | |
5793 | network->ssid_len), | |
5794 | network->bssid, | |
5795 | jiffies_to_msecs(jiffies - | |
5796 | network->last_scanned)); | |
5797 | return 0; | |
5798 | } | |
5799 | ||
5800 | if ((priv->config & CFG_STATIC_CHANNEL) && | |
5801 | (network->channel != priv->channel)) { | |
5802 | IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded " | |
5803 | "because of channel mismatch: %d != %d.\n", | |
5804 | print_ssid(ssid, network->ssid, | |
5805 | network->ssid_len), | |
5806 | network->bssid, | |
5807 | network->channel, priv->channel); | |
5808 | return 0; | |
5809 | } | |
5810 | ||
5811 | /* Verify privacy compatability */ | |
5812 | if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != | |
5813 | ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) { | |
5814 | IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded " | |
5815 | "because of privacy mismatch: %s != %s.\n", | |
5816 | print_ssid(ssid, network->ssid, | |
5817 | network->ssid_len), | |
5818 | network->bssid, | |
5819 | priv->capability & CAP_PRIVACY_ON ? "on" : | |
5820 | "off", | |
5821 | network->capability & | |
5822 | WLAN_CAPABILITY_PRIVACY ? "on" : "off"); | |
5823 | return 0; | |
5824 | } | |
5825 | ||
5826 | if ((priv->config & CFG_STATIC_BSSID) && | |
5827 | memcmp(network->bssid, priv->bssid, ETH_ALEN)) { | |
5828 | IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded " | |
5829 | "because of BSSID mismatch: %pM.\n", | |
5830 | print_ssid(ssid, network->ssid, | |
5831 | network->ssid_len), | |
5832 | network->bssid, priv->bssid); | |
5833 | return 0; | |
5834 | } | |
5835 | ||
5836 | /* Filter out any incompatible freq / mode combinations */ | |
5837 | if (!libipw_is_valid_mode(priv->ieee, network->mode)) { | |
5838 | IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded " | |
5839 | "because of invalid frequency/mode " | |
5840 | "combination.\n", | |
5841 | print_ssid(ssid, network->ssid, | |
5842 | network->ssid_len), | |
5843 | network->bssid); | |
5844 | return 0; | |
5845 | } | |
5846 | ||
5847 | /* Filter out invalid channel in current GEO */ | |
5848 | if (!libipw_is_valid_channel(priv->ieee, network->channel)) { | |
5849 | IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded " | |
5850 | "because of invalid channel in current GEO\n", | |
5851 | print_ssid(ssid, network->ssid, | |
5852 | network->ssid_len), | |
5853 | network->bssid); | |
5854 | return 0; | |
5855 | } | |
5856 | ||
5857 | /* Ensure that the rates supported by the driver are compatible with | |
5858 | * this AP, including verification of basic rates (mandatory) */ | |
5859 | if (!ipw_compatible_rates(priv, network, &rates)) { | |
5860 | IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded " | |
5861 | "because configured rate mask excludes " | |
5862 | "AP mandatory rate.\n", | |
5863 | print_ssid(ssid, network->ssid, | |
5864 | network->ssid_len), | |
5865 | network->bssid); | |
5866 | return 0; | |
5867 | } | |
5868 | ||
5869 | if (rates.num_rates == 0) { | |
5870 | IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded " | |
5871 | "because of no compatible rates.\n", | |
5872 | print_ssid(ssid, network->ssid, | |
5873 | network->ssid_len), | |
5874 | network->bssid); | |
5875 | return 0; | |
5876 | } | |
5877 | ||
5878 | /* TODO: Perform any further minimal comparititive tests. We do not | |
5879 | * want to put too much policy logic here; intelligent scan selection | |
5880 | * should occur within a generic IEEE 802.11 user space tool. */ | |
5881 | ||
5882 | /* Set up 'new' AP to this network */ | |
5883 | ipw_copy_rates(&match->rates, &rates); | |
5884 | match->network = network; | |
5885 | ||
5886 | IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n", | |
5887 | print_ssid(ssid, network->ssid, network->ssid_len), | |
5888 | network->bssid); | |
5889 | ||
5890 | return 1; | |
5891 | } | |
5892 | ||
5893 | static void ipw_adhoc_create(struct ipw_priv *priv, | |
5894 | struct libipw_network *network) | |
5895 | { | |
5896 | const struct libipw_geo *geo = libipw_get_geo(priv->ieee); | |
5897 | int i; | |
5898 | ||
5899 | /* | |
5900 | * For the purposes of scanning, we can set our wireless mode | |
5901 | * to trigger scans across combinations of bands, but when it | |
5902 | * comes to creating a new ad-hoc network, we have tell the FW | |
5903 | * exactly which band to use. | |
5904 | * | |
5905 | * We also have the possibility of an invalid channel for the | |
5906 | * chossen band. Attempting to create a new ad-hoc network | |
5907 | * with an invalid channel for wireless mode will trigger a | |
5908 | * FW fatal error. | |
5909 | * | |
5910 | */ | |
5911 | switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { | |
5912 | case LIBIPW_52GHZ_BAND: | |
5913 | network->mode = IEEE_A; | |
5914 | i = libipw_channel_to_index(priv->ieee, priv->channel); | |
5915 | BUG_ON(i == -1); | |
5916 | if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) { | |
5917 | IPW_WARNING("Overriding invalid channel\n"); | |
5918 | priv->channel = geo->a[0].channel; | |
5919 | } | |
5920 | break; | |
5921 | ||
5922 | case LIBIPW_24GHZ_BAND: | |
5923 | if (priv->ieee->mode & IEEE_G) | |
5924 | network->mode = IEEE_G; | |
5925 | else | |
5926 | network->mode = IEEE_B; | |
5927 | i = libipw_channel_to_index(priv->ieee, priv->channel); | |
5928 | BUG_ON(i == -1); | |
5929 | if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) { | |
5930 | IPW_WARNING("Overriding invalid channel\n"); | |
5931 | priv->channel = geo->bg[0].channel; | |
5932 | } | |
5933 | break; | |
5934 | ||
5935 | default: | |
5936 | IPW_WARNING("Overriding invalid channel\n"); | |
5937 | if (priv->ieee->mode & IEEE_A) { | |
5938 | network->mode = IEEE_A; | |
5939 | priv->channel = geo->a[0].channel; | |
5940 | } else if (priv->ieee->mode & IEEE_G) { | |
5941 | network->mode = IEEE_G; | |
5942 | priv->channel = geo->bg[0].channel; | |
5943 | } else { | |
5944 | network->mode = IEEE_B; | |
5945 | priv->channel = geo->bg[0].channel; | |
5946 | } | |
5947 | break; | |
5948 | } | |
5949 | ||
5950 | network->channel = priv->channel; | |
5951 | priv->config |= CFG_ADHOC_PERSIST; | |
5952 | ipw_create_bssid(priv, network->bssid); | |
5953 | network->ssid_len = priv->essid_len; | |
5954 | memcpy(network->ssid, priv->essid, priv->essid_len); | |
5955 | memset(&network->stats, 0, sizeof(network->stats)); | |
5956 | network->capability = WLAN_CAPABILITY_IBSS; | |
5957 | if (!(priv->config & CFG_PREAMBLE_LONG)) | |
5958 | network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE; | |
5959 | if (priv->capability & CAP_PRIVACY_ON) | |
5960 | network->capability |= WLAN_CAPABILITY_PRIVACY; | |
5961 | network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH); | |
5962 | memcpy(network->rates, priv->rates.supported_rates, network->rates_len); | |
5963 | network->rates_ex_len = priv->rates.num_rates - network->rates_len; | |
5964 | memcpy(network->rates_ex, | |
5965 | &priv->rates.supported_rates[network->rates_len], | |
5966 | network->rates_ex_len); | |
5967 | network->last_scanned = 0; | |
5968 | network->flags = 0; | |
5969 | network->last_associate = 0; | |
5970 | network->time_stamp[0] = 0; | |
5971 | network->time_stamp[1] = 0; | |
5972 | network->beacon_interval = 100; /* Default */ | |
5973 | network->listen_interval = 10; /* Default */ | |
5974 | network->atim_window = 0; /* Default */ | |
5975 | network->wpa_ie_len = 0; | |
5976 | network->rsn_ie_len = 0; | |
5977 | } | |
5978 | ||
5979 | static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index) | |
5980 | { | |
5981 | struct ipw_tgi_tx_key key; | |
5982 | ||
5983 | if (!(priv->ieee->sec.flags & (1 << index))) | |
5984 | return; | |
5985 | ||
5986 | key.key_id = index; | |
5987 | memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH); | |
5988 | key.security_type = type; | |
5989 | key.station_index = 0; /* always 0 for BSS */ | |
5990 | key.flags = 0; | |
5991 | /* 0 for new key; previous value of counter (after fatal error) */ | |
5992 | key.tx_counter[0] = cpu_to_le32(0); | |
5993 | key.tx_counter[1] = cpu_to_le32(0); | |
5994 | ||
5995 | ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key); | |
5996 | } | |
5997 | ||
5998 | static void ipw_send_wep_keys(struct ipw_priv *priv, int type) | |
5999 | { | |
6000 | struct ipw_wep_key key; | |
6001 | int i; | |
6002 | ||
6003 | key.cmd_id = DINO_CMD_WEP_KEY; | |
6004 | key.seq_num = 0; | |
6005 | ||
6006 | /* Note: AES keys cannot be set for multiple times. | |
6007 | * Only set it at the first time. */ | |
6008 | for (i = 0; i < 4; i++) { | |
6009 | key.key_index = i | type; | |
6010 | if (!(priv->ieee->sec.flags & (1 << i))) { | |
6011 | key.key_size = 0; | |
6012 | continue; | |
6013 | } | |
6014 | ||
6015 | key.key_size = priv->ieee->sec.key_sizes[i]; | |
6016 | memcpy(key.key, priv->ieee->sec.keys[i], key.key_size); | |
6017 | ||
6018 | ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key); | |
6019 | } | |
6020 | } | |
6021 | ||
6022 | static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level) | |
6023 | { | |
6024 | if (priv->ieee->host_encrypt) | |
6025 | return; | |
6026 | ||
6027 | switch (level) { | |
6028 | case SEC_LEVEL_3: | |
6029 | priv->sys_config.disable_unicast_decryption = 0; | |
6030 | priv->ieee->host_decrypt = 0; | |
6031 | break; | |
6032 | case SEC_LEVEL_2: | |
6033 | priv->sys_config.disable_unicast_decryption = 1; | |
6034 | priv->ieee->host_decrypt = 1; | |
6035 | break; | |
6036 | case SEC_LEVEL_1: | |
6037 | priv->sys_config.disable_unicast_decryption = 0; | |
6038 | priv->ieee->host_decrypt = 0; | |
6039 | break; | |
6040 | case SEC_LEVEL_0: | |
6041 | priv->sys_config.disable_unicast_decryption = 1; | |
6042 | break; | |
6043 | default: | |
6044 | break; | |
6045 | } | |
6046 | } | |
6047 | ||
6048 | static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level) | |
6049 | { | |
6050 | if (priv->ieee->host_encrypt) | |
6051 | return; | |
6052 | ||
6053 | switch (level) { | |
6054 | case SEC_LEVEL_3: | |
6055 | priv->sys_config.disable_multicast_decryption = 0; | |
6056 | break; | |
6057 | case SEC_LEVEL_2: | |
6058 | priv->sys_config.disable_multicast_decryption = 1; | |
6059 | break; | |
6060 | case SEC_LEVEL_1: | |
6061 | priv->sys_config.disable_multicast_decryption = 0; | |
6062 | break; | |
6063 | case SEC_LEVEL_0: | |
6064 | priv->sys_config.disable_multicast_decryption = 1; | |
6065 | break; | |
6066 | default: | |
6067 | break; | |
6068 | } | |
6069 | } | |
6070 | ||
6071 | static void ipw_set_hwcrypto_keys(struct ipw_priv *priv) | |
6072 | { | |
6073 | switch (priv->ieee->sec.level) { | |
6074 | case SEC_LEVEL_3: | |
6075 | if (priv->ieee->sec.flags & SEC_ACTIVE_KEY) | |
6076 | ipw_send_tgi_tx_key(priv, | |
6077 | DCT_FLAG_EXT_SECURITY_CCM, | |
6078 | priv->ieee->sec.active_key); | |
6079 | ||
6080 | if (!priv->ieee->host_mc_decrypt) | |
6081 | ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM); | |
6082 | break; | |
6083 | case SEC_LEVEL_2: | |
6084 | if (priv->ieee->sec.flags & SEC_ACTIVE_KEY) | |
6085 | ipw_send_tgi_tx_key(priv, | |
6086 | DCT_FLAG_EXT_SECURITY_TKIP, | |
6087 | priv->ieee->sec.active_key); | |
6088 | break; | |
6089 | case SEC_LEVEL_1: | |
6090 | ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP); | |
6091 | ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level); | |
6092 | ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level); | |
6093 | break; | |
6094 | case SEC_LEVEL_0: | |
6095 | default: | |
6096 | break; | |
6097 | } | |
6098 | } | |
6099 | ||
6100 | static void ipw_adhoc_check(void *data) | |
6101 | { | |
6102 | struct ipw_priv *priv = data; | |
6103 | ||
6104 | if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold && | |
6105 | !(priv->config & CFG_ADHOC_PERSIST)) { | |
6106 | IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | | |
6107 | IPW_DL_STATE | IPW_DL_ASSOC, | |
6108 | "Missed beacon: %d - disassociate\n", | |
6109 | priv->missed_adhoc_beacons); | |
6110 | ipw_remove_current_network(priv); | |
6111 | ipw_disassociate(priv); | |
6112 | return; | |
6113 | } | |
6114 | ||
6115 | schedule_delayed_work(&priv->adhoc_check, | |
6116 | le16_to_cpu(priv->assoc_request.beacon_interval)); | |
6117 | } | |
6118 | ||
6119 | static void ipw_bg_adhoc_check(struct work_struct *work) | |
6120 | { | |
6121 | struct ipw_priv *priv = | |
6122 | container_of(work, struct ipw_priv, adhoc_check.work); | |
6123 | mutex_lock(&priv->mutex); | |
6124 | ipw_adhoc_check(priv); | |
6125 | mutex_unlock(&priv->mutex); | |
6126 | } | |
6127 | ||
6128 | static void ipw_debug_config(struct ipw_priv *priv) | |
6129 | { | |
6130 | DECLARE_SSID_BUF(ssid); | |
6131 | IPW_DEBUG_INFO("Scan completed, no valid APs matched " | |
6132 | "[CFG 0x%08X]\n", priv->config); | |
6133 | if (priv->config & CFG_STATIC_CHANNEL) | |
6134 | IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel); | |
6135 | else | |
6136 | IPW_DEBUG_INFO("Channel unlocked.\n"); | |
6137 | if (priv->config & CFG_STATIC_ESSID) | |
6138 | IPW_DEBUG_INFO("ESSID locked to '%s'\n", | |
6139 | print_ssid(ssid, priv->essid, priv->essid_len)); | |
6140 | else | |
6141 | IPW_DEBUG_INFO("ESSID unlocked.\n"); | |
6142 | if (priv->config & CFG_STATIC_BSSID) | |
6143 | IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid); | |
6144 | else | |
6145 | IPW_DEBUG_INFO("BSSID unlocked.\n"); | |
6146 | if (priv->capability & CAP_PRIVACY_ON) | |
6147 | IPW_DEBUG_INFO("PRIVACY on\n"); | |
6148 | else | |
6149 | IPW_DEBUG_INFO("PRIVACY off\n"); | |
6150 | IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask); | |
6151 | } | |
6152 | ||
6153 | static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode) | |
6154 | { | |
6155 | /* TODO: Verify that this works... */ | |
6156 | struct ipw_fixed_rate fr; | |
6157 | u32 reg; | |
6158 | u16 mask = 0; | |
6159 | u16 new_tx_rates = priv->rates_mask; | |
6160 | ||
6161 | /* Identify 'current FW band' and match it with the fixed | |
6162 | * Tx rates */ | |
6163 | ||
6164 | switch (priv->ieee->freq_band) { | |
6165 | case LIBIPW_52GHZ_BAND: /* A only */ | |
6166 | /* IEEE_A */ | |
6167 | if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) { | |
6168 | /* Invalid fixed rate mask */ | |
6169 | IPW_DEBUG_WX | |
6170 | ("invalid fixed rate mask in ipw_set_fixed_rate\n"); | |
6171 | new_tx_rates = 0; | |
6172 | break; | |
6173 | } | |
6174 | ||
6175 | new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A; | |
6176 | break; | |
6177 | ||
6178 | default: /* 2.4Ghz or Mixed */ | |
6179 | /* IEEE_B */ | |
6180 | if (mode == IEEE_B) { | |
6181 | if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) { | |
6182 | /* Invalid fixed rate mask */ | |
6183 | IPW_DEBUG_WX | |
6184 | ("invalid fixed rate mask in ipw_set_fixed_rate\n"); | |
6185 | new_tx_rates = 0; | |
6186 | } | |
6187 | break; | |
6188 | } | |
6189 | ||
6190 | /* IEEE_G */ | |
6191 | if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK | | |
6192 | LIBIPW_OFDM_RATES_MASK)) { | |
6193 | /* Invalid fixed rate mask */ | |
6194 | IPW_DEBUG_WX | |
6195 | ("invalid fixed rate mask in ipw_set_fixed_rate\n"); | |
6196 | new_tx_rates = 0; | |
6197 | break; | |
6198 | } | |
6199 | ||
6200 | if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) { | |
6201 | mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1); | |
6202 | new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK; | |
6203 | } | |
6204 | ||
6205 | if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) { | |
6206 | mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1); | |
6207 | new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK; | |
6208 | } | |
6209 | ||
6210 | if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) { | |
6211 | mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1); | |
6212 | new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK; | |
6213 | } | |
6214 | ||
6215 | new_tx_rates |= mask; | |
6216 | break; | |
6217 | } | |
6218 | ||
6219 | fr.tx_rates = cpu_to_le16(new_tx_rates); | |
6220 | ||
6221 | reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE); | |
6222 | ipw_write_reg32(priv, reg, *(u32 *) & fr); | |
6223 | } | |
6224 | ||
6225 | static void ipw_abort_scan(struct ipw_priv *priv) | |
6226 | { | |
6227 | int err; | |
6228 | ||
6229 | if (priv->status & STATUS_SCAN_ABORTING) { | |
6230 | IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n"); | |
6231 | return; | |
6232 | } | |
6233 | priv->status |= STATUS_SCAN_ABORTING; | |
6234 | ||
6235 | err = ipw_send_scan_abort(priv); | |
6236 | if (err) | |
6237 | IPW_DEBUG_HC("Request to abort scan failed.\n"); | |
6238 | } | |
6239 | ||
6240 | static void ipw_add_scan_channels(struct ipw_priv *priv, | |
6241 | struct ipw_scan_request_ext *scan, | |
6242 | int scan_type) | |
6243 | { | |
6244 | int channel_index = 0; | |
6245 | const struct libipw_geo *geo; | |
6246 | int i; | |
6247 | ||
6248 | geo = libipw_get_geo(priv->ieee); | |
6249 | ||
6250 | if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) { | |
6251 | int start = channel_index; | |
6252 | for (i = 0; i < geo->a_channels; i++) { | |
6253 | if ((priv->status & STATUS_ASSOCIATED) && | |
6254 | geo->a[i].channel == priv->channel) | |
6255 | continue; | |
6256 | channel_index++; | |
6257 | scan->channels_list[channel_index] = geo->a[i].channel; | |
6258 | ipw_set_scan_type(scan, channel_index, | |
6259 | geo->a[i]. | |
6260 | flags & LIBIPW_CH_PASSIVE_ONLY ? | |
6261 | IPW_SCAN_PASSIVE_FULL_DWELL_SCAN : | |
6262 | scan_type); | |
6263 | } | |
6264 | ||
6265 | if (start != channel_index) { | |
6266 | scan->channels_list[start] = (u8) (IPW_A_MODE << 6) | | |
6267 | (channel_index - start); | |
6268 | channel_index++; | |
6269 | } | |
6270 | } | |
6271 | ||
6272 | if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) { | |
6273 | int start = channel_index; | |
6274 | if (priv->config & CFG_SPEED_SCAN) { | |
6275 | int index; | |
6276 | u8 channels[LIBIPW_24GHZ_CHANNELS] = { | |
6277 | /* nop out the list */ | |
6278 | [0] = 0 | |
6279 | }; | |
6280 | ||
6281 | u8 channel; | |
6282 | while (channel_index < IPW_SCAN_CHANNELS - 1) { | |
6283 | channel = | |
6284 | priv->speed_scan[priv->speed_scan_pos]; | |
6285 | if (channel == 0) { | |
6286 | priv->speed_scan_pos = 0; | |
6287 | channel = priv->speed_scan[0]; | |
6288 | } | |
6289 | if ((priv->status & STATUS_ASSOCIATED) && | |
6290 | channel == priv->channel) { | |
6291 | priv->speed_scan_pos++; | |
6292 | continue; | |
6293 | } | |
6294 | ||
6295 | /* If this channel has already been | |
6296 | * added in scan, break from loop | |
6297 | * and this will be the first channel | |
6298 | * in the next scan. | |
6299 | */ | |
6300 | if (channels[channel - 1] != 0) | |
6301 | break; | |
6302 | ||
6303 | channels[channel - 1] = 1; | |
6304 | priv->speed_scan_pos++; | |
6305 | channel_index++; | |
6306 | scan->channels_list[channel_index] = channel; | |
6307 | index = | |
6308 | libipw_channel_to_index(priv->ieee, channel); | |
6309 | ipw_set_scan_type(scan, channel_index, | |
6310 | geo->bg[index]. | |
6311 | flags & | |
6312 | LIBIPW_CH_PASSIVE_ONLY ? | |
6313 | IPW_SCAN_PASSIVE_FULL_DWELL_SCAN | |
6314 | : scan_type); | |
6315 | } | |
6316 | } else { | |
6317 | for (i = 0; i < geo->bg_channels; i++) { | |
6318 | if ((priv->status & STATUS_ASSOCIATED) && | |
6319 | geo->bg[i].channel == priv->channel) | |
6320 | continue; | |
6321 | channel_index++; | |
6322 | scan->channels_list[channel_index] = | |
6323 | geo->bg[i].channel; | |
6324 | ipw_set_scan_type(scan, channel_index, | |
6325 | geo->bg[i]. | |
6326 | flags & | |
6327 | LIBIPW_CH_PASSIVE_ONLY ? | |
6328 | IPW_SCAN_PASSIVE_FULL_DWELL_SCAN | |
6329 | : scan_type); | |
6330 | } | |
6331 | } | |
6332 | ||
6333 | if (start != channel_index) { | |
6334 | scan->channels_list[start] = (u8) (IPW_B_MODE << 6) | | |
6335 | (channel_index - start); | |
6336 | } | |
6337 | } | |
6338 | } | |
6339 | ||
6340 | static int ipw_passive_dwell_time(struct ipw_priv *priv) | |
6341 | { | |
6342 | /* staying on passive channels longer than the DTIM interval during a | |
6343 | * scan, while associated, causes the firmware to cancel the scan | |
6344 | * without notification. Hence, don't stay on passive channels longer | |
6345 | * than the beacon interval. | |
6346 | */ | |
6347 | if (priv->status & STATUS_ASSOCIATED | |
6348 | && priv->assoc_network->beacon_interval > 10) | |
6349 | return priv->assoc_network->beacon_interval - 10; | |
6350 | else | |
6351 | return 120; | |
6352 | } | |
6353 | ||
6354 | static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct) | |
6355 | { | |
6356 | struct ipw_scan_request_ext scan; | |
6357 | int err = 0, scan_type; | |
6358 | ||
6359 | if (!(priv->status & STATUS_INIT) || | |
6360 | (priv->status & STATUS_EXIT_PENDING)) | |
6361 | return 0; | |
6362 | ||
6363 | mutex_lock(&priv->mutex); | |
6364 | ||
6365 | if (direct && (priv->direct_scan_ssid_len == 0)) { | |
6366 | IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n"); | |
6367 | priv->status &= ~STATUS_DIRECT_SCAN_PENDING; | |
6368 | goto done; | |
6369 | } | |
6370 | ||
6371 | if (priv->status & STATUS_SCANNING) { | |
6372 | IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n"); | |
6373 | priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : | |
6374 | STATUS_SCAN_PENDING; | |
6375 | goto done; | |
6376 | } | |
6377 | ||
6378 | if (!(priv->status & STATUS_SCAN_FORCED) && | |
6379 | priv->status & STATUS_SCAN_ABORTING) { | |
6380 | IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n"); | |
6381 | priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : | |
6382 | STATUS_SCAN_PENDING; | |
6383 | goto done; | |
6384 | } | |
6385 | ||
6386 | if (priv->status & STATUS_RF_KILL_MASK) { | |
6387 | IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n"); | |
6388 | priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING : | |
6389 | STATUS_SCAN_PENDING; | |
6390 | goto done; | |
6391 | } | |
6392 | ||
6393 | memset(&scan, 0, sizeof(scan)); | |
6394 | scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee)); | |
6395 | ||
6396 | if (type == IW_SCAN_TYPE_PASSIVE) { | |
6397 | IPW_DEBUG_WX("use passive scanning\n"); | |
6398 | scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN; | |
6399 | scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = | |
6400 | cpu_to_le16(ipw_passive_dwell_time(priv)); | |
6401 | ipw_add_scan_channels(priv, &scan, scan_type); | |
6402 | goto send_request; | |
6403 | } | |
6404 | ||
6405 | /* Use active scan by default. */ | |
6406 | if (priv->config & CFG_SPEED_SCAN) | |
6407 | scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = | |
6408 | cpu_to_le16(30); | |
6409 | else | |
6410 | scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = | |
6411 | cpu_to_le16(20); | |
6412 | ||
6413 | scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] = | |
6414 | cpu_to_le16(20); | |
6415 | ||
6416 | scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = | |
6417 | cpu_to_le16(ipw_passive_dwell_time(priv)); | |
6418 | scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20); | |
6419 | ||
6420 | #ifdef CONFIG_IPW2200_MONITOR | |
6421 | if (priv->ieee->iw_mode == IW_MODE_MONITOR) { | |
6422 | u8 channel; | |
6423 | u8 band = 0; | |
6424 | ||
6425 | switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { | |
6426 | case LIBIPW_52GHZ_BAND: | |
6427 | band = (u8) (IPW_A_MODE << 6) | 1; | |
6428 | channel = priv->channel; | |
6429 | break; | |
6430 | ||
6431 | case LIBIPW_24GHZ_BAND: | |
6432 | band = (u8) (IPW_B_MODE << 6) | 1; | |
6433 | channel = priv->channel; | |
6434 | break; | |
6435 | ||
6436 | default: | |
6437 | band = (u8) (IPW_B_MODE << 6) | 1; | |
6438 | channel = 9; | |
6439 | break; | |
6440 | } | |
6441 | ||
6442 | scan.channels_list[0] = band; | |
6443 | scan.channels_list[1] = channel; | |
6444 | ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN); | |
6445 | ||
6446 | /* NOTE: The card will sit on this channel for this time | |
6447 | * period. Scan aborts are timing sensitive and frequently | |
6448 | * result in firmware restarts. As such, it is best to | |
6449 | * set a small dwell_time here and just keep re-issuing | |
6450 | * scans. Otherwise fast channel hopping will not actually | |
6451 | * hop channels. | |
6452 | * | |
6453 | * TODO: Move SPEED SCAN support to all modes and bands */ | |
6454 | scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = | |
6455 | cpu_to_le16(2000); | |
6456 | } else { | |
6457 | #endif /* CONFIG_IPW2200_MONITOR */ | |
6458 | /* Honor direct scans first, otherwise if we are roaming make | |
6459 | * this a direct scan for the current network. Finally, | |
6460 | * ensure that every other scan is a fast channel hop scan */ | |
6461 | if (direct) { | |
6462 | err = ipw_send_ssid(priv, priv->direct_scan_ssid, | |
6463 | priv->direct_scan_ssid_len); | |
6464 | if (err) { | |
6465 | IPW_DEBUG_HC("Attempt to send SSID command " | |
6466 | "failed\n"); | |
6467 | goto done; | |
6468 | } | |
6469 | ||
6470 | scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN; | |
6471 | } else if ((priv->status & STATUS_ROAMING) | |
6472 | || (!(priv->status & STATUS_ASSOCIATED) | |
6473 | && (priv->config & CFG_STATIC_ESSID) | |
6474 | && (le32_to_cpu(scan.full_scan_index) % 2))) { | |
6475 | err = ipw_send_ssid(priv, priv->essid, priv->essid_len); | |
6476 | if (err) { | |
6477 | IPW_DEBUG_HC("Attempt to send SSID command " | |
6478 | "failed.\n"); | |
6479 | goto done; | |
6480 | } | |
6481 | ||
6482 | scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN; | |
6483 | } else | |
6484 | scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN; | |
6485 | ||
6486 | ipw_add_scan_channels(priv, &scan, scan_type); | |
6487 | #ifdef CONFIG_IPW2200_MONITOR | |
6488 | } | |
6489 | #endif | |
6490 | ||
6491 | send_request: | |
6492 | err = ipw_send_scan_request_ext(priv, &scan); | |
6493 | if (err) { | |
6494 | IPW_DEBUG_HC("Sending scan command failed: %08X\n", err); | |
6495 | goto done; | |
6496 | } | |
6497 | ||
6498 | priv->status |= STATUS_SCANNING; | |
6499 | if (direct) { | |
6500 | priv->status &= ~STATUS_DIRECT_SCAN_PENDING; | |
6501 | priv->direct_scan_ssid_len = 0; | |
6502 | } else | |
6503 | priv->status &= ~STATUS_SCAN_PENDING; | |
6504 | ||
6505 | schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG); | |
6506 | done: | |
6507 | mutex_unlock(&priv->mutex); | |
6508 | return err; | |
6509 | } | |
6510 | ||
6511 | static void ipw_request_passive_scan(struct work_struct *work) | |
6512 | { | |
6513 | struct ipw_priv *priv = | |
6514 | container_of(work, struct ipw_priv, request_passive_scan.work); | |
6515 | ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0); | |
6516 | } | |
6517 | ||
6518 | static void ipw_request_scan(struct work_struct *work) | |
6519 | { | |
6520 | struct ipw_priv *priv = | |
6521 | container_of(work, struct ipw_priv, request_scan.work); | |
6522 | ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0); | |
6523 | } | |
6524 | ||
6525 | static void ipw_request_direct_scan(struct work_struct *work) | |
6526 | { | |
6527 | struct ipw_priv *priv = | |
6528 | container_of(work, struct ipw_priv, request_direct_scan.work); | |
6529 | ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1); | |
6530 | } | |
6531 | ||
6532 | static void ipw_bg_abort_scan(struct work_struct *work) | |
6533 | { | |
6534 | struct ipw_priv *priv = | |
6535 | container_of(work, struct ipw_priv, abort_scan); | |
6536 | mutex_lock(&priv->mutex); | |
6537 | ipw_abort_scan(priv); | |
6538 | mutex_unlock(&priv->mutex); | |
6539 | } | |
6540 | ||
6541 | static int ipw_wpa_enable(struct ipw_priv *priv, int value) | |
6542 | { | |
6543 | /* This is called when wpa_supplicant loads and closes the driver | |
6544 | * interface. */ | |
6545 | priv->ieee->wpa_enabled = value; | |
6546 | return 0; | |
6547 | } | |
6548 | ||
6549 | static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value) | |
6550 | { | |
6551 | struct libipw_device *ieee = priv->ieee; | |
6552 | struct libipw_security sec = { | |
6553 | .flags = SEC_AUTH_MODE, | |
6554 | }; | |
6555 | int ret = 0; | |
6556 | ||
6557 | if (value & IW_AUTH_ALG_SHARED_KEY) { | |
6558 | sec.auth_mode = WLAN_AUTH_SHARED_KEY; | |
6559 | ieee->open_wep = 0; | |
6560 | } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) { | |
6561 | sec.auth_mode = WLAN_AUTH_OPEN; | |
6562 | ieee->open_wep = 1; | |
6563 | } else if (value & IW_AUTH_ALG_LEAP) { | |
6564 | sec.auth_mode = WLAN_AUTH_LEAP; | |
6565 | ieee->open_wep = 1; | |
6566 | } else | |
6567 | return -EINVAL; | |
6568 | ||
6569 | if (ieee->set_security) | |
6570 | ieee->set_security(ieee->dev, &sec); | |
6571 | else | |
6572 | ret = -EOPNOTSUPP; | |
6573 | ||
6574 | return ret; | |
6575 | } | |
6576 | ||
6577 | static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie, | |
6578 | int wpa_ie_len) | |
6579 | { | |
6580 | /* make sure WPA is enabled */ | |
6581 | ipw_wpa_enable(priv, 1); | |
6582 | } | |
6583 | ||
6584 | static int ipw_set_rsn_capa(struct ipw_priv *priv, | |
6585 | char *capabilities, int length) | |
6586 | { | |
6587 | IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n"); | |
6588 | ||
6589 | return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length, | |
6590 | capabilities); | |
6591 | } | |
6592 | ||
6593 | /* | |
6594 | * WE-18 support | |
6595 | */ | |
6596 | ||
6597 | /* SIOCSIWGENIE */ | |
6598 | static int ipw_wx_set_genie(struct net_device *dev, | |
6599 | struct iw_request_info *info, | |
6600 | union iwreq_data *wrqu, char *extra) | |
6601 | { | |
6602 | struct ipw_priv *priv = libipw_priv(dev); | |
6603 | struct libipw_device *ieee = priv->ieee; | |
6604 | u8 *buf; | |
6605 | int err = 0; | |
6606 | ||
6607 | if (wrqu->data.length > MAX_WPA_IE_LEN || | |
6608 | (wrqu->data.length && extra == NULL)) | |
6609 | return -EINVAL; | |
6610 | ||
6611 | if (wrqu->data.length) { | |
6612 | buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL); | |
6613 | if (buf == NULL) { | |
6614 | err = -ENOMEM; | |
6615 | goto out; | |
6616 | } | |
6617 | ||
6618 | kfree(ieee->wpa_ie); | |
6619 | ieee->wpa_ie = buf; | |
6620 | ieee->wpa_ie_len = wrqu->data.length; | |
6621 | } else { | |
6622 | kfree(ieee->wpa_ie); | |
6623 | ieee->wpa_ie = NULL; | |
6624 | ieee->wpa_ie_len = 0; | |
6625 | } | |
6626 | ||
6627 | ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len); | |
6628 | out: | |
6629 | return err; | |
6630 | } | |
6631 | ||
6632 | /* SIOCGIWGENIE */ | |
6633 | static int ipw_wx_get_genie(struct net_device *dev, | |
6634 | struct iw_request_info *info, | |
6635 | union iwreq_data *wrqu, char *extra) | |
6636 | { | |
6637 | struct ipw_priv *priv = libipw_priv(dev); | |
6638 | struct libipw_device *ieee = priv->ieee; | |
6639 | int err = 0; | |
6640 | ||
6641 | if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) { | |
6642 | wrqu->data.length = 0; | |
6643 | goto out; | |
6644 | } | |
6645 | ||
6646 | if (wrqu->data.length < ieee->wpa_ie_len) { | |
6647 | err = -E2BIG; | |
6648 | goto out; | |
6649 | } | |
6650 | ||
6651 | wrqu->data.length = ieee->wpa_ie_len; | |
6652 | memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len); | |
6653 | ||
6654 | out: | |
6655 | return err; | |
6656 | } | |
6657 | ||
6658 | static int wext_cipher2level(int cipher) | |
6659 | { | |
6660 | switch (cipher) { | |
6661 | case IW_AUTH_CIPHER_NONE: | |
6662 | return SEC_LEVEL_0; | |
6663 | case IW_AUTH_CIPHER_WEP40: | |
6664 | case IW_AUTH_CIPHER_WEP104: | |
6665 | return SEC_LEVEL_1; | |
6666 | case IW_AUTH_CIPHER_TKIP: | |
6667 | return SEC_LEVEL_2; | |
6668 | case IW_AUTH_CIPHER_CCMP: | |
6669 | return SEC_LEVEL_3; | |
6670 | default: | |
6671 | return -1; | |
6672 | } | |
6673 | } | |
6674 | ||
6675 | /* SIOCSIWAUTH */ | |
6676 | static int ipw_wx_set_auth(struct net_device *dev, | |
6677 | struct iw_request_info *info, | |
6678 | union iwreq_data *wrqu, char *extra) | |
6679 | { | |
6680 | struct ipw_priv *priv = libipw_priv(dev); | |
6681 | struct libipw_device *ieee = priv->ieee; | |
6682 | struct iw_param *param = &wrqu->param; | |
6683 | struct lib80211_crypt_data *crypt; | |
6684 | unsigned long flags; | |
6685 | int ret = 0; | |
6686 | ||
6687 | switch (param->flags & IW_AUTH_INDEX) { | |
6688 | case IW_AUTH_WPA_VERSION: | |
6689 | break; | |
6690 | case IW_AUTH_CIPHER_PAIRWISE: | |
6691 | ipw_set_hw_decrypt_unicast(priv, | |
6692 | wext_cipher2level(param->value)); | |
6693 | break; | |
6694 | case IW_AUTH_CIPHER_GROUP: | |
6695 | ipw_set_hw_decrypt_multicast(priv, | |
6696 | wext_cipher2level(param->value)); | |
6697 | break; | |
6698 | case IW_AUTH_KEY_MGMT: | |
6699 | /* | |
6700 | * ipw2200 does not use these parameters | |
6701 | */ | |
6702 | break; | |
6703 | ||
6704 | case IW_AUTH_TKIP_COUNTERMEASURES: | |
6705 | crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; | |
6706 | if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) | |
6707 | break; | |
6708 | ||
6709 | flags = crypt->ops->get_flags(crypt->priv); | |
6710 | ||
6711 | if (param->value) | |
6712 | flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; | |
6713 | else | |
6714 | flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES; | |
6715 | ||
6716 | crypt->ops->set_flags(flags, crypt->priv); | |
6717 | ||
6718 | break; | |
6719 | ||
6720 | case IW_AUTH_DROP_UNENCRYPTED:{ | |
6721 | /* HACK: | |
6722 | * | |
6723 | * wpa_supplicant calls set_wpa_enabled when the driver | |
6724 | * is loaded and unloaded, regardless of if WPA is being | |
6725 | * used. No other calls are made which can be used to | |
6726 | * determine if encryption will be used or not prior to | |
6727 | * association being expected. If encryption is not being | |
6728 | * used, drop_unencrypted is set to false, else true -- we | |
6729 | * can use this to determine if the CAP_PRIVACY_ON bit should | |
6730 | * be set. | |
6731 | */ | |
6732 | struct libipw_security sec = { | |
6733 | .flags = SEC_ENABLED, | |
6734 | .enabled = param->value, | |
6735 | }; | |
6736 | priv->ieee->drop_unencrypted = param->value; | |
6737 | /* We only change SEC_LEVEL for open mode. Others | |
6738 | * are set by ipw_wpa_set_encryption. | |
6739 | */ | |
6740 | if (!param->value) { | |
6741 | sec.flags |= SEC_LEVEL; | |
6742 | sec.level = SEC_LEVEL_0; | |
6743 | } else { | |
6744 | sec.flags |= SEC_LEVEL; | |
6745 | sec.level = SEC_LEVEL_1; | |
6746 | } | |
6747 | if (priv->ieee->set_security) | |
6748 | priv->ieee->set_security(priv->ieee->dev, &sec); | |
6749 | break; | |
6750 | } | |
6751 | ||
6752 | case IW_AUTH_80211_AUTH_ALG: | |
6753 | ret = ipw_wpa_set_auth_algs(priv, param->value); | |
6754 | break; | |
6755 | ||
6756 | case IW_AUTH_WPA_ENABLED: | |
6757 | ret = ipw_wpa_enable(priv, param->value); | |
6758 | ipw_disassociate(priv); | |
6759 | break; | |
6760 | ||
6761 | case IW_AUTH_RX_UNENCRYPTED_EAPOL: | |
6762 | ieee->ieee802_1x = param->value; | |
6763 | break; | |
6764 | ||
6765 | case IW_AUTH_PRIVACY_INVOKED: | |
6766 | ieee->privacy_invoked = param->value; | |
6767 | break; | |
6768 | ||
6769 | default: | |
6770 | return -EOPNOTSUPP; | |
6771 | } | |
6772 | return ret; | |
6773 | } | |
6774 | ||
6775 | /* SIOCGIWAUTH */ | |
6776 | static int ipw_wx_get_auth(struct net_device *dev, | |
6777 | struct iw_request_info *info, | |
6778 | union iwreq_data *wrqu, char *extra) | |
6779 | { | |
6780 | struct ipw_priv *priv = libipw_priv(dev); | |
6781 | struct libipw_device *ieee = priv->ieee; | |
6782 | struct lib80211_crypt_data *crypt; | |
6783 | struct iw_param *param = &wrqu->param; | |
6784 | int ret = 0; | |
6785 | ||
6786 | switch (param->flags & IW_AUTH_INDEX) { | |
6787 | case IW_AUTH_WPA_VERSION: | |
6788 | case IW_AUTH_CIPHER_PAIRWISE: | |
6789 | case IW_AUTH_CIPHER_GROUP: | |
6790 | case IW_AUTH_KEY_MGMT: | |
6791 | /* | |
6792 | * wpa_supplicant will control these internally | |
6793 | */ | |
6794 | ret = -EOPNOTSUPP; | |
6795 | break; | |
6796 | ||
6797 | case IW_AUTH_TKIP_COUNTERMEASURES: | |
6798 | crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx]; | |
6799 | if (!crypt || !crypt->ops->get_flags) | |
6800 | break; | |
6801 | ||
6802 | param->value = (crypt->ops->get_flags(crypt->priv) & | |
6803 | IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0; | |
6804 | ||
6805 | break; | |
6806 | ||
6807 | case IW_AUTH_DROP_UNENCRYPTED: | |
6808 | param->value = ieee->drop_unencrypted; | |
6809 | break; | |
6810 | ||
6811 | case IW_AUTH_80211_AUTH_ALG: | |
6812 | param->value = ieee->sec.auth_mode; | |
6813 | break; | |
6814 | ||
6815 | case IW_AUTH_WPA_ENABLED: | |
6816 | param->value = ieee->wpa_enabled; | |
6817 | break; | |
6818 | ||
6819 | case IW_AUTH_RX_UNENCRYPTED_EAPOL: | |
6820 | param->value = ieee->ieee802_1x; | |
6821 | break; | |
6822 | ||
6823 | case IW_AUTH_ROAMING_CONTROL: | |
6824 | case IW_AUTH_PRIVACY_INVOKED: | |
6825 | param->value = ieee->privacy_invoked; | |
6826 | break; | |
6827 | ||
6828 | default: | |
6829 | return -EOPNOTSUPP; | |
6830 | } | |
6831 | return 0; | |
6832 | } | |
6833 | ||
6834 | /* SIOCSIWENCODEEXT */ | |
6835 | static int ipw_wx_set_encodeext(struct net_device *dev, | |
6836 | struct iw_request_info *info, | |
6837 | union iwreq_data *wrqu, char *extra) | |
6838 | { | |
6839 | struct ipw_priv *priv = libipw_priv(dev); | |
6840 | struct iw_encode_ext *ext = (struct iw_encode_ext *)extra; | |
6841 | ||
6842 | if (hwcrypto) { | |
6843 | if (ext->alg == IW_ENCODE_ALG_TKIP) { | |
6844 | /* IPW HW can't build TKIP MIC, | |
6845 | host decryption still needed */ | |
6846 | if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY) | |
6847 | priv->ieee->host_mc_decrypt = 1; | |
6848 | else { | |
6849 | priv->ieee->host_encrypt = 0; | |
6850 | priv->ieee->host_encrypt_msdu = 1; | |
6851 | priv->ieee->host_decrypt = 1; | |
6852 | } | |
6853 | } else { | |
6854 | priv->ieee->host_encrypt = 0; | |
6855 | priv->ieee->host_encrypt_msdu = 0; | |
6856 | priv->ieee->host_decrypt = 0; | |
6857 | priv->ieee->host_mc_decrypt = 0; | |
6858 | } | |
6859 | } | |
6860 | ||
6861 | return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra); | |
6862 | } | |
6863 | ||
6864 | /* SIOCGIWENCODEEXT */ | |
6865 | static int ipw_wx_get_encodeext(struct net_device *dev, | |
6866 | struct iw_request_info *info, | |
6867 | union iwreq_data *wrqu, char *extra) | |
6868 | { | |
6869 | struct ipw_priv *priv = libipw_priv(dev); | |
6870 | return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra); | |
6871 | } | |
6872 | ||
6873 | /* SIOCSIWMLME */ | |
6874 | static int ipw_wx_set_mlme(struct net_device *dev, | |
6875 | struct iw_request_info *info, | |
6876 | union iwreq_data *wrqu, char *extra) | |
6877 | { | |
6878 | struct ipw_priv *priv = libipw_priv(dev); | |
6879 | struct iw_mlme *mlme = (struct iw_mlme *)extra; | |
6880 | __le16 reason; | |
6881 | ||
6882 | reason = cpu_to_le16(mlme->reason_code); | |
6883 | ||
6884 | switch (mlme->cmd) { | |
6885 | case IW_MLME_DEAUTH: | |
6886 | /* silently ignore */ | |
6887 | break; | |
6888 | ||
6889 | case IW_MLME_DISASSOC: | |
6890 | ipw_disassociate(priv); | |
6891 | break; | |
6892 | ||
6893 | default: | |
6894 | return -EOPNOTSUPP; | |
6895 | } | |
6896 | return 0; | |
6897 | } | |
6898 | ||
6899 | #ifdef CONFIG_IPW2200_QOS | |
6900 | ||
6901 | /* QoS */ | |
6902 | /* | |
6903 | * get the modulation type of the current network or | |
6904 | * the card current mode | |
6905 | */ | |
6906 | static u8 ipw_qos_current_mode(struct ipw_priv * priv) | |
6907 | { | |
6908 | u8 mode = 0; | |
6909 | ||
6910 | if (priv->status & STATUS_ASSOCIATED) { | |
6911 | unsigned long flags; | |
6912 | ||
6913 | spin_lock_irqsave(&priv->ieee->lock, flags); | |
6914 | mode = priv->assoc_network->mode; | |
6915 | spin_unlock_irqrestore(&priv->ieee->lock, flags); | |
6916 | } else { | |
6917 | mode = priv->ieee->mode; | |
6918 | } | |
6919 | IPW_DEBUG_QOS("QoS network/card mode %d\n", mode); | |
6920 | return mode; | |
6921 | } | |
6922 | ||
6923 | /* | |
6924 | * Handle management frame beacon and probe response | |
6925 | */ | |
6926 | static int ipw_qos_handle_probe_response(struct ipw_priv *priv, | |
6927 | int active_network, | |
6928 | struct libipw_network *network) | |
6929 | { | |
6930 | u32 size = sizeof(struct libipw_qos_parameters); | |
6931 | ||
6932 | if (network->capability & WLAN_CAPABILITY_IBSS) | |
6933 | network->qos_data.active = network->qos_data.supported; | |
6934 | ||
6935 | if (network->flags & NETWORK_HAS_QOS_MASK) { | |
6936 | if (active_network && | |
6937 | (network->flags & NETWORK_HAS_QOS_PARAMETERS)) | |
6938 | network->qos_data.active = network->qos_data.supported; | |
6939 | ||
6940 | if ((network->qos_data.active == 1) && (active_network == 1) && | |
6941 | (network->flags & NETWORK_HAS_QOS_PARAMETERS) && | |
6942 | (network->qos_data.old_param_count != | |
6943 | network->qos_data.param_count)) { | |
6944 | network->qos_data.old_param_count = | |
6945 | network->qos_data.param_count; | |
6946 | schedule_work(&priv->qos_activate); | |
6947 | IPW_DEBUG_QOS("QoS parameters change call " | |
6948 | "qos_activate\n"); | |
6949 | } | |
6950 | } else { | |
6951 | if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B)) | |
6952 | memcpy(&network->qos_data.parameters, | |
6953 | &def_parameters_CCK, size); | |
6954 | else | |
6955 | memcpy(&network->qos_data.parameters, | |
6956 | &def_parameters_OFDM, size); | |
6957 | ||
6958 | if ((network->qos_data.active == 1) && (active_network == 1)) { | |
6959 | IPW_DEBUG_QOS("QoS was disabled call qos_activate\n"); | |
6960 | schedule_work(&priv->qos_activate); | |
6961 | } | |
6962 | ||
6963 | network->qos_data.active = 0; | |
6964 | network->qos_data.supported = 0; | |
6965 | } | |
6966 | if ((priv->status & STATUS_ASSOCIATED) && | |
6967 | (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) { | |
6968 | if (memcmp(network->bssid, priv->bssid, ETH_ALEN)) | |
6969 | if (network->capability & WLAN_CAPABILITY_IBSS) | |
6970 | if ((network->ssid_len == | |
6971 | priv->assoc_network->ssid_len) && | |
6972 | !memcmp(network->ssid, | |
6973 | priv->assoc_network->ssid, | |
6974 | network->ssid_len)) { | |
6975 | schedule_work(&priv->merge_networks); | |
6976 | } | |
6977 | } | |
6978 | ||
6979 | return 0; | |
6980 | } | |
6981 | ||
6982 | /* | |
6983 | * This function set up the firmware to support QoS. It sends | |
6984 | * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO | |
6985 | */ | |
6986 | static int ipw_qos_activate(struct ipw_priv *priv, | |
6987 | struct libipw_qos_data *qos_network_data) | |
6988 | { | |
6989 | int err; | |
6990 | struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS]; | |
6991 | struct libipw_qos_parameters *active_one = NULL; | |
6992 | u32 size = sizeof(struct libipw_qos_parameters); | |
6993 | u32 burst_duration; | |
6994 | int i; | |
6995 | u8 type; | |
6996 | ||
6997 | type = ipw_qos_current_mode(priv); | |
6998 | ||
6999 | active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]); | |
7000 | memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size); | |
7001 | active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]); | |
7002 | memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size); | |
7003 | ||
7004 | if (qos_network_data == NULL) { | |
7005 | if (type == IEEE_B) { | |
7006 | IPW_DEBUG_QOS("QoS activate network mode %d\n", type); | |
7007 | active_one = &def_parameters_CCK; | |
7008 | } else | |
7009 | active_one = &def_parameters_OFDM; | |
7010 | ||
7011 | memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); | |
7012 | burst_duration = ipw_qos_get_burst_duration(priv); | |
7013 | for (i = 0; i < QOS_QUEUE_NUM; i++) | |
7014 | qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] = | |
7015 | cpu_to_le16(burst_duration); | |
7016 | } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) { | |
7017 | if (type == IEEE_B) { | |
7018 | IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n", | |
7019 | type); | |
7020 | if (priv->qos_data.qos_enable == 0) | |
7021 | active_one = &def_parameters_CCK; | |
7022 | else | |
7023 | active_one = priv->qos_data.def_qos_parm_CCK; | |
7024 | } else { | |
7025 | if (priv->qos_data.qos_enable == 0) | |
7026 | active_one = &def_parameters_OFDM; | |
7027 | else | |
7028 | active_one = priv->qos_data.def_qos_parm_OFDM; | |
7029 | } | |
7030 | memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); | |
7031 | } else { | |
7032 | unsigned long flags; | |
7033 | int active; | |
7034 | ||
7035 | spin_lock_irqsave(&priv->ieee->lock, flags); | |
7036 | active_one = &(qos_network_data->parameters); | |
7037 | qos_network_data->old_param_count = | |
7038 | qos_network_data->param_count; | |
7039 | memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size); | |
7040 | active = qos_network_data->supported; | |
7041 | spin_unlock_irqrestore(&priv->ieee->lock, flags); | |
7042 | ||
7043 | if (active == 0) { | |
7044 | burst_duration = ipw_qos_get_burst_duration(priv); | |
7045 | for (i = 0; i < QOS_QUEUE_NUM; i++) | |
7046 | qos_parameters[QOS_PARAM_SET_ACTIVE]. | |
7047 | tx_op_limit[i] = cpu_to_le16(burst_duration); | |
7048 | } | |
7049 | } | |
7050 | ||
7051 | IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n"); | |
7052 | err = ipw_send_qos_params_command(priv, | |
7053 | (struct libipw_qos_parameters *) | |
7054 | &(qos_parameters[0])); | |
7055 | if (err) | |
7056 | IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n"); | |
7057 | ||
7058 | return err; | |
7059 | } | |
7060 | ||
7061 | /* | |
7062 | * send IPW_CMD_WME_INFO to the firmware | |
7063 | */ | |
7064 | static int ipw_qos_set_info_element(struct ipw_priv *priv) | |
7065 | { | |
7066 | int ret = 0; | |
7067 | struct libipw_qos_information_element qos_info; | |
7068 | ||
7069 | if (priv == NULL) | |
7070 | return -1; | |
7071 | ||
7072 | qos_info.elementID = QOS_ELEMENT_ID; | |
7073 | qos_info.length = sizeof(struct libipw_qos_information_element) - 2; | |
7074 | ||
7075 | qos_info.version = QOS_VERSION_1; | |
7076 | qos_info.ac_info = 0; | |
7077 | ||
7078 | memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN); | |
7079 | qos_info.qui_type = QOS_OUI_TYPE; | |
7080 | qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE; | |
7081 | ||
7082 | ret = ipw_send_qos_info_command(priv, &qos_info); | |
7083 | if (ret != 0) { | |
7084 | IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n"); | |
7085 | } | |
7086 | return ret; | |
7087 | } | |
7088 | ||
7089 | /* | |
7090 | * Set the QoS parameter with the association request structure | |
7091 | */ | |
7092 | static int ipw_qos_association(struct ipw_priv *priv, | |
7093 | struct libipw_network *network) | |
7094 | { | |
7095 | int err = 0; | |
7096 | struct libipw_qos_data *qos_data = NULL; | |
7097 | struct libipw_qos_data ibss_data = { | |
7098 | .supported = 1, | |
7099 | .active = 1, | |
7100 | }; | |
7101 | ||
7102 | switch (priv->ieee->iw_mode) { | |
7103 | case IW_MODE_ADHOC: | |
7104 | BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS)); | |
7105 | ||
7106 | qos_data = &ibss_data; | |
7107 | break; | |
7108 | ||
7109 | case IW_MODE_INFRA: | |
7110 | qos_data = &network->qos_data; | |
7111 | break; | |
7112 | ||
7113 | default: | |
7114 | BUG(); | |
7115 | break; | |
7116 | } | |
7117 | ||
7118 | err = ipw_qos_activate(priv, qos_data); | |
7119 | if (err) { | |
7120 | priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC; | |
7121 | return err; | |
7122 | } | |
7123 | ||
7124 | if (priv->qos_data.qos_enable && qos_data->supported) { | |
7125 | IPW_DEBUG_QOS("QoS will be enabled for this association\n"); | |
7126 | priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC; | |
7127 | return ipw_qos_set_info_element(priv); | |
7128 | } | |
7129 | ||
7130 | return 0; | |
7131 | } | |
7132 | ||
7133 | /* | |
7134 | * handling the beaconing responses. if we get different QoS setting | |
7135 | * off the network from the associated setting, adjust the QoS | |
7136 | * setting | |
7137 | */ | |
7138 | static int ipw_qos_association_resp(struct ipw_priv *priv, | |
7139 | struct libipw_network *network) | |
7140 | { | |
7141 | int ret = 0; | |
7142 | unsigned long flags; | |
7143 | u32 size = sizeof(struct libipw_qos_parameters); | |
7144 | int set_qos_param = 0; | |
7145 | ||
7146 | if ((priv == NULL) || (network == NULL) || | |
7147 | (priv->assoc_network == NULL)) | |
7148 | return ret; | |
7149 | ||
7150 | if (!(priv->status & STATUS_ASSOCIATED)) | |
7151 | return ret; | |
7152 | ||
7153 | if ((priv->ieee->iw_mode != IW_MODE_INFRA)) | |
7154 | return ret; | |
7155 | ||
7156 | spin_lock_irqsave(&priv->ieee->lock, flags); | |
7157 | if (network->flags & NETWORK_HAS_QOS_PARAMETERS) { | |
7158 | memcpy(&priv->assoc_network->qos_data, &network->qos_data, | |
7159 | sizeof(struct libipw_qos_data)); | |
7160 | priv->assoc_network->qos_data.active = 1; | |
7161 | if ((network->qos_data.old_param_count != | |
7162 | network->qos_data.param_count)) { | |
7163 | set_qos_param = 1; | |
7164 | network->qos_data.old_param_count = | |
7165 | network->qos_data.param_count; | |
7166 | } | |
7167 | ||
7168 | } else { | |
7169 | if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B)) | |
7170 | memcpy(&priv->assoc_network->qos_data.parameters, | |
7171 | &def_parameters_CCK, size); | |
7172 | else | |
7173 | memcpy(&priv->assoc_network->qos_data.parameters, | |
7174 | &def_parameters_OFDM, size); | |
7175 | priv->assoc_network->qos_data.active = 0; | |
7176 | priv->assoc_network->qos_data.supported = 0; | |
7177 | set_qos_param = 1; | |
7178 | } | |
7179 | ||
7180 | spin_unlock_irqrestore(&priv->ieee->lock, flags); | |
7181 | ||
7182 | if (set_qos_param == 1) | |
7183 | schedule_work(&priv->qos_activate); | |
7184 | ||
7185 | return ret; | |
7186 | } | |
7187 | ||
7188 | static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv) | |
7189 | { | |
7190 | u32 ret = 0; | |
7191 | ||
7192 | if ((priv == NULL)) | |
7193 | return 0; | |
7194 | ||
7195 | if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION)) | |
7196 | ret = priv->qos_data.burst_duration_CCK; | |
7197 | else | |
7198 | ret = priv->qos_data.burst_duration_OFDM; | |
7199 | ||
7200 | return ret; | |
7201 | } | |
7202 | ||
7203 | /* | |
7204 | * Initialize the setting of QoS global | |
7205 | */ | |
7206 | static void ipw_qos_init(struct ipw_priv *priv, int enable, | |
7207 | int burst_enable, u32 burst_duration_CCK, | |
7208 | u32 burst_duration_OFDM) | |
7209 | { | |
7210 | priv->qos_data.qos_enable = enable; | |
7211 | ||
7212 | if (priv->qos_data.qos_enable) { | |
7213 | priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK; | |
7214 | priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM; | |
7215 | IPW_DEBUG_QOS("QoS is enabled\n"); | |
7216 | } else { | |
7217 | priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK; | |
7218 | priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM; | |
7219 | IPW_DEBUG_QOS("QoS is not enabled\n"); | |
7220 | } | |
7221 | ||
7222 | priv->qos_data.burst_enable = burst_enable; | |
7223 | ||
7224 | if (burst_enable) { | |
7225 | priv->qos_data.burst_duration_CCK = burst_duration_CCK; | |
7226 | priv->qos_data.burst_duration_OFDM = burst_duration_OFDM; | |
7227 | } else { | |
7228 | priv->qos_data.burst_duration_CCK = 0; | |
7229 | priv->qos_data.burst_duration_OFDM = 0; | |
7230 | } | |
7231 | } | |
7232 | ||
7233 | /* | |
7234 | * map the packet priority to the right TX Queue | |
7235 | */ | |
7236 | static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority) | |
7237 | { | |
7238 | if (priority > 7 || !priv->qos_data.qos_enable) | |
7239 | priority = 0; | |
7240 | ||
7241 | return from_priority_to_tx_queue[priority] - 1; | |
7242 | } | |
7243 | ||
7244 | static int ipw_is_qos_active(struct net_device *dev, | |
7245 | struct sk_buff *skb) | |
7246 | { | |
7247 | struct ipw_priv *priv = libipw_priv(dev); | |
7248 | struct libipw_qos_data *qos_data = NULL; | |
7249 | int active, supported; | |
7250 | u8 *daddr = skb->data + ETH_ALEN; | |
7251 | int unicast = !is_multicast_ether_addr(daddr); | |
7252 | ||
7253 | if (!(priv->status & STATUS_ASSOCIATED)) | |
7254 | return 0; | |
7255 | ||
7256 | qos_data = &priv->assoc_network->qos_data; | |
7257 | ||
7258 | if (priv->ieee->iw_mode == IW_MODE_ADHOC) { | |
7259 | if (unicast == 0) | |
7260 | qos_data->active = 0; | |
7261 | else | |
7262 | qos_data->active = qos_data->supported; | |
7263 | } | |
7264 | active = qos_data->active; | |
7265 | supported = qos_data->supported; | |
7266 | IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d " | |
7267 | "unicast %d\n", | |
7268 | priv->qos_data.qos_enable, active, supported, unicast); | |
7269 | if (active && priv->qos_data.qos_enable) | |
7270 | return 1; | |
7271 | ||
7272 | return 0; | |
7273 | ||
7274 | } | |
7275 | /* | |
7276 | * add QoS parameter to the TX command | |
7277 | */ | |
7278 | static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv, | |
7279 | u16 priority, | |
7280 | struct tfd_data *tfd) | |
7281 | { | |
7282 | int tx_queue_id = 0; | |
7283 | ||
7284 | ||
7285 | tx_queue_id = from_priority_to_tx_queue[priority] - 1; | |
7286 | tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED; | |
7287 | ||
7288 | if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) { | |
7289 | tfd->tx_flags &= ~DCT_FLAG_ACK_REQD; | |
7290 | tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK); | |
7291 | } | |
7292 | return 0; | |
7293 | } | |
7294 | ||
7295 | /* | |
7296 | * background support to run QoS activate functionality | |
7297 | */ | |
7298 | static void ipw_bg_qos_activate(struct work_struct *work) | |
7299 | { | |
7300 | struct ipw_priv *priv = | |
7301 | container_of(work, struct ipw_priv, qos_activate); | |
7302 | ||
7303 | mutex_lock(&priv->mutex); | |
7304 | ||
7305 | if (priv->status & STATUS_ASSOCIATED) | |
7306 | ipw_qos_activate(priv, &(priv->assoc_network->qos_data)); | |
7307 | ||
7308 | mutex_unlock(&priv->mutex); | |
7309 | } | |
7310 | ||
7311 | static int ipw_handle_probe_response(struct net_device *dev, | |
7312 | struct libipw_probe_response *resp, | |
7313 | struct libipw_network *network) | |
7314 | { | |
7315 | struct ipw_priv *priv = libipw_priv(dev); | |
7316 | int active_network = ((priv->status & STATUS_ASSOCIATED) && | |
7317 | (network == priv->assoc_network)); | |
7318 | ||
7319 | ipw_qos_handle_probe_response(priv, active_network, network); | |
7320 | ||
7321 | return 0; | |
7322 | } | |
7323 | ||
7324 | static int ipw_handle_beacon(struct net_device *dev, | |
7325 | struct libipw_beacon *resp, | |
7326 | struct libipw_network *network) | |
7327 | { | |
7328 | struct ipw_priv *priv = libipw_priv(dev); | |
7329 | int active_network = ((priv->status & STATUS_ASSOCIATED) && | |
7330 | (network == priv->assoc_network)); | |
7331 | ||
7332 | ipw_qos_handle_probe_response(priv, active_network, network); | |
7333 | ||
7334 | return 0; | |
7335 | } | |
7336 | ||
7337 | static int ipw_handle_assoc_response(struct net_device *dev, | |
7338 | struct libipw_assoc_response *resp, | |
7339 | struct libipw_network *network) | |
7340 | { | |
7341 | struct ipw_priv *priv = libipw_priv(dev); | |
7342 | ipw_qos_association_resp(priv, network); | |
7343 | return 0; | |
7344 | } | |
7345 | ||
7346 | static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters | |
7347 | *qos_param) | |
7348 | { | |
7349 | return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS, | |
7350 | sizeof(*qos_param) * 3, qos_param); | |
7351 | } | |
7352 | ||
7353 | static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element | |
7354 | *qos_param) | |
7355 | { | |
7356 | return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param), | |
7357 | qos_param); | |
7358 | } | |
7359 | ||
7360 | #endif /* CONFIG_IPW2200_QOS */ | |
7361 | ||
7362 | static int ipw_associate_network(struct ipw_priv *priv, | |
7363 | struct libipw_network *network, | |
7364 | struct ipw_supported_rates *rates, int roaming) | |
7365 | { | |
7366 | int err; | |
7367 | DECLARE_SSID_BUF(ssid); | |
7368 | ||
7369 | if (priv->config & CFG_FIXED_RATE) | |
7370 | ipw_set_fixed_rate(priv, network->mode); | |
7371 | ||
7372 | if (!(priv->config & CFG_STATIC_ESSID)) { | |
7373 | priv->essid_len = min(network->ssid_len, | |
7374 | (u8) IW_ESSID_MAX_SIZE); | |
7375 | memcpy(priv->essid, network->ssid, priv->essid_len); | |
7376 | } | |
7377 | ||
7378 | network->last_associate = jiffies; | |
7379 | ||
7380 | memset(&priv->assoc_request, 0, sizeof(priv->assoc_request)); | |
7381 | priv->assoc_request.channel = network->channel; | |
7382 | priv->assoc_request.auth_key = 0; | |
7383 | ||
7384 | if ((priv->capability & CAP_PRIVACY_ON) && | |
7385 | (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) { | |
7386 | priv->assoc_request.auth_type = AUTH_SHARED_KEY; | |
7387 | priv->assoc_request.auth_key = priv->ieee->sec.active_key; | |
7388 | ||
7389 | if (priv->ieee->sec.level == SEC_LEVEL_1) | |
7390 | ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP); | |
7391 | ||
7392 | } else if ((priv->capability & CAP_PRIVACY_ON) && | |
7393 | (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)) | |
7394 | priv->assoc_request.auth_type = AUTH_LEAP; | |
7395 | else | |
7396 | priv->assoc_request.auth_type = AUTH_OPEN; | |
7397 | ||
7398 | if (priv->ieee->wpa_ie_len) { | |
7399 | priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */ | |
7400 | ipw_set_rsn_capa(priv, priv->ieee->wpa_ie, | |
7401 | priv->ieee->wpa_ie_len); | |
7402 | } | |
7403 | ||
7404 | /* | |
7405 | * It is valid for our ieee device to support multiple modes, but | |
7406 | * when it comes to associating to a given network we have to choose | |
7407 | * just one mode. | |
7408 | */ | |
7409 | if (network->mode & priv->ieee->mode & IEEE_A) | |
7410 | priv->assoc_request.ieee_mode = IPW_A_MODE; | |
7411 | else if (network->mode & priv->ieee->mode & IEEE_G) | |
7412 | priv->assoc_request.ieee_mode = IPW_G_MODE; | |
7413 | else if (network->mode & priv->ieee->mode & IEEE_B) | |
7414 | priv->assoc_request.ieee_mode = IPW_B_MODE; | |
7415 | ||
7416 | priv->assoc_request.capability = cpu_to_le16(network->capability); | |
7417 | if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE) | |
7418 | && !(priv->config & CFG_PREAMBLE_LONG)) { | |
7419 | priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE; | |
7420 | } else { | |
7421 | priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE; | |
7422 | ||
7423 | /* Clear the short preamble if we won't be supporting it */ | |
7424 | priv->assoc_request.capability &= | |
7425 | ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE); | |
7426 | } | |
7427 | ||
7428 | /* Clear capability bits that aren't used in Ad Hoc */ | |
7429 | if (priv->ieee->iw_mode == IW_MODE_ADHOC) | |
7430 | priv->assoc_request.capability &= | |
7431 | ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME); | |
7432 | ||
7433 | IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, " | |
7434 | "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n", | |
7435 | roaming ? "Rea" : "A", | |
7436 | print_ssid(ssid, priv->essid, priv->essid_len), | |
7437 | network->channel, | |
7438 | ipw_modes[priv->assoc_request.ieee_mode], | |
7439 | rates->num_rates, | |
7440 | (priv->assoc_request.preamble_length == | |
7441 | DCT_FLAG_LONG_PREAMBLE) ? "long" : "short", | |
7442 | network->capability & | |
7443 | WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long", | |
7444 | priv->capability & CAP_PRIVACY_ON ? "on " : "off", | |
7445 | priv->capability & CAP_PRIVACY_ON ? | |
7446 | (priv->capability & CAP_SHARED_KEY ? "(shared)" : | |
7447 | "(open)") : "", | |
7448 | priv->capability & CAP_PRIVACY_ON ? " key=" : "", | |
7449 | priv->capability & CAP_PRIVACY_ON ? | |
7450 | '1' + priv->ieee->sec.active_key : '.', | |
7451 | priv->capability & CAP_PRIVACY_ON ? '.' : ' '); | |
7452 | ||
7453 | priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval); | |
7454 | if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && | |
7455 | (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) { | |
7456 | priv->assoc_request.assoc_type = HC_IBSS_START; | |
7457 | priv->assoc_request.assoc_tsf_msw = 0; | |
7458 | priv->assoc_request.assoc_tsf_lsw = 0; | |
7459 | } else { | |
7460 | if (unlikely(roaming)) | |
7461 | priv->assoc_request.assoc_type = HC_REASSOCIATE; | |
7462 | else | |
7463 | priv->assoc_request.assoc_type = HC_ASSOCIATE; | |
7464 | priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]); | |
7465 | priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]); | |
7466 | } | |
7467 | ||
7468 | memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN); | |
7469 | ||
7470 | if (priv->ieee->iw_mode == IW_MODE_ADHOC) { | |
7471 | memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN); | |
7472 | priv->assoc_request.atim_window = cpu_to_le16(network->atim_window); | |
7473 | } else { | |
7474 | memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN); | |
7475 | priv->assoc_request.atim_window = 0; | |
7476 | } | |
7477 | ||
7478 | priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval); | |
7479 | ||
7480 | err = ipw_send_ssid(priv, priv->essid, priv->essid_len); | |
7481 | if (err) { | |
7482 | IPW_DEBUG_HC("Attempt to send SSID command failed.\n"); | |
7483 | return err; | |
7484 | } | |
7485 | ||
7486 | rates->ieee_mode = priv->assoc_request.ieee_mode; | |
7487 | rates->purpose = IPW_RATE_CONNECT; | |
7488 | ipw_send_supported_rates(priv, rates); | |
7489 | ||
7490 | if (priv->assoc_request.ieee_mode == IPW_G_MODE) | |
7491 | priv->sys_config.dot11g_auto_detection = 1; | |
7492 | else | |
7493 | priv->sys_config.dot11g_auto_detection = 0; | |
7494 | ||
7495 | if (priv->ieee->iw_mode == IW_MODE_ADHOC) | |
7496 | priv->sys_config.answer_broadcast_ssid_probe = 1; | |
7497 | else | |
7498 | priv->sys_config.answer_broadcast_ssid_probe = 0; | |
7499 | ||
7500 | err = ipw_send_system_config(priv); | |
7501 | if (err) { | |
7502 | IPW_DEBUG_HC("Attempt to send sys config command failed.\n"); | |
7503 | return err; | |
7504 | } | |
7505 | ||
7506 | IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi); | |
7507 | err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM); | |
7508 | if (err) { | |
7509 | IPW_DEBUG_HC("Attempt to send associate command failed.\n"); | |
7510 | return err; | |
7511 | } | |
7512 | ||
7513 | /* | |
7514 | * If preemption is enabled, it is possible for the association | |
7515 | * to complete before we return from ipw_send_associate. Therefore | |
7516 | * we have to be sure and update our priviate data first. | |
7517 | */ | |
7518 | priv->channel = network->channel; | |
7519 | memcpy(priv->bssid, network->bssid, ETH_ALEN); | |
7520 | priv->status |= STATUS_ASSOCIATING; | |
7521 | priv->status &= ~STATUS_SECURITY_UPDATED; | |
7522 | ||
7523 | priv->assoc_network = network; | |
7524 | ||
7525 | #ifdef CONFIG_IPW2200_QOS | |
7526 | ipw_qos_association(priv, network); | |
7527 | #endif | |
7528 | ||
7529 | err = ipw_send_associate(priv, &priv->assoc_request); | |
7530 | if (err) { | |
7531 | IPW_DEBUG_HC("Attempt to send associate command failed.\n"); | |
7532 | return err; | |
7533 | } | |
7534 | ||
7535 | IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM\n", | |
7536 | print_ssid(ssid, priv->essid, priv->essid_len), | |
7537 | priv->bssid); | |
7538 | ||
7539 | return 0; | |
7540 | } | |
7541 | ||
7542 | static void ipw_roam(void *data) | |
7543 | { | |
7544 | struct ipw_priv *priv = data; | |
7545 | struct libipw_network *network = NULL; | |
7546 | struct ipw_network_match match = { | |
7547 | .network = priv->assoc_network | |
7548 | }; | |
7549 | ||
7550 | /* The roaming process is as follows: | |
7551 | * | |
7552 | * 1. Missed beacon threshold triggers the roaming process by | |
7553 | * setting the status ROAM bit and requesting a scan. | |
7554 | * 2. When the scan completes, it schedules the ROAM work | |
7555 | * 3. The ROAM work looks at all of the known networks for one that | |
7556 | * is a better network than the currently associated. If none | |
7557 | * found, the ROAM process is over (ROAM bit cleared) | |
7558 | * 4. If a better network is found, a disassociation request is | |
7559 | * sent. | |
7560 | * 5. When the disassociation completes, the roam work is again | |
7561 | * scheduled. The second time through, the driver is no longer | |
7562 | * associated, and the newly selected network is sent an | |
7563 | * association request. | |
7564 | * 6. At this point ,the roaming process is complete and the ROAM | |
7565 | * status bit is cleared. | |
7566 | */ | |
7567 | ||
7568 | /* If we are no longer associated, and the roaming bit is no longer | |
7569 | * set, then we are not actively roaming, so just return */ | |
7570 | if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING))) | |
7571 | return; | |
7572 | ||
7573 | if (priv->status & STATUS_ASSOCIATED) { | |
7574 | /* First pass through ROAM process -- look for a better | |
7575 | * network */ | |
7576 | unsigned long flags; | |
7577 | u8 rssi = priv->assoc_network->stats.rssi; | |
7578 | priv->assoc_network->stats.rssi = -128; | |
7579 | spin_lock_irqsave(&priv->ieee->lock, flags); | |
7580 | list_for_each_entry(network, &priv->ieee->network_list, list) { | |
7581 | if (network != priv->assoc_network) | |
7582 | ipw_best_network(priv, &match, network, 1); | |
7583 | } | |
7584 | spin_unlock_irqrestore(&priv->ieee->lock, flags); | |
7585 | priv->assoc_network->stats.rssi = rssi; | |
7586 | ||
7587 | if (match.network == priv->assoc_network) { | |
7588 | IPW_DEBUG_ASSOC("No better APs in this network to " | |
7589 | "roam to.\n"); | |
7590 | priv->status &= ~STATUS_ROAMING; | |
7591 | ipw_debug_config(priv); | |
7592 | return; | |
7593 | } | |
7594 | ||
7595 | ipw_send_disassociate(priv, 1); | |
7596 | priv->assoc_network = match.network; | |
7597 | ||
7598 | return; | |
7599 | } | |
7600 | ||
7601 | /* Second pass through ROAM process -- request association */ | |
7602 | ipw_compatible_rates(priv, priv->assoc_network, &match.rates); | |
7603 | ipw_associate_network(priv, priv->assoc_network, &match.rates, 1); | |
7604 | priv->status &= ~STATUS_ROAMING; | |
7605 | } | |
7606 | ||
7607 | static void ipw_bg_roam(struct work_struct *work) | |
7608 | { | |
7609 | struct ipw_priv *priv = | |
7610 | container_of(work, struct ipw_priv, roam); | |
7611 | mutex_lock(&priv->mutex); | |
7612 | ipw_roam(priv); | |
7613 | mutex_unlock(&priv->mutex); | |
7614 | } | |
7615 | ||
7616 | static int ipw_associate(void *data) | |
7617 | { | |
7618 | struct ipw_priv *priv = data; | |
7619 | ||
7620 | struct libipw_network *network = NULL; | |
7621 | struct ipw_network_match match = { | |
7622 | .network = NULL | |
7623 | }; | |
7624 | struct ipw_supported_rates *rates; | |
7625 | struct list_head *element; | |
7626 | unsigned long flags; | |
7627 | DECLARE_SSID_BUF(ssid); | |
7628 | ||
7629 | if (priv->ieee->iw_mode == IW_MODE_MONITOR) { | |
7630 | IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n"); | |
7631 | return 0; | |
7632 | } | |
7633 | ||
7634 | if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { | |
7635 | IPW_DEBUG_ASSOC("Not attempting association (already in " | |
7636 | "progress)\n"); | |
7637 | return 0; | |
7638 | } | |
7639 | ||
7640 | if (priv->status & STATUS_DISASSOCIATING) { | |
7641 | IPW_DEBUG_ASSOC("Not attempting association (in " | |
7642 | "disassociating)\n "); | |
7643 | schedule_work(&priv->associate); | |
7644 | return 0; | |
7645 | } | |
7646 | ||
7647 | if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) { | |
7648 | IPW_DEBUG_ASSOC("Not attempting association (scanning or not " | |
7649 | "initialized)\n"); | |
7650 | return 0; | |
7651 | } | |
7652 | ||
7653 | if (!(priv->config & CFG_ASSOCIATE) && | |
7654 | !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) { | |
7655 | IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n"); | |
7656 | return 0; | |
7657 | } | |
7658 | ||
7659 | /* Protect our use of the network_list */ | |
7660 | spin_lock_irqsave(&priv->ieee->lock, flags); | |
7661 | list_for_each_entry(network, &priv->ieee->network_list, list) | |
7662 | ipw_best_network(priv, &match, network, 0); | |
7663 | ||
7664 | network = match.network; | |
7665 | rates = &match.rates; | |
7666 | ||
7667 | if (network == NULL && | |
7668 | priv->ieee->iw_mode == IW_MODE_ADHOC && | |
7669 | priv->config & CFG_ADHOC_CREATE && | |
7670 | priv->config & CFG_STATIC_ESSID && | |
7671 | priv->config & CFG_STATIC_CHANNEL) { | |
7672 | /* Use oldest network if the free list is empty */ | |
7673 | if (list_empty(&priv->ieee->network_free_list)) { | |
7674 | struct libipw_network *oldest = NULL; | |
7675 | struct libipw_network *target; | |
7676 | ||
7677 | list_for_each_entry(target, &priv->ieee->network_list, list) { | |
7678 | if ((oldest == NULL) || | |
7679 | (target->last_scanned < oldest->last_scanned)) | |
7680 | oldest = target; | |
7681 | } | |
7682 | ||
7683 | /* If there are no more slots, expire the oldest */ | |
7684 | list_del(&oldest->list); | |
7685 | target = oldest; | |
7686 | IPW_DEBUG_ASSOC("Expired '%s' (%pM) from " | |
7687 | "network list.\n", | |
7688 | print_ssid(ssid, target->ssid, | |
7689 | target->ssid_len), | |
7690 | target->bssid); | |
7691 | list_add_tail(&target->list, | |
7692 | &priv->ieee->network_free_list); | |
7693 | } | |
7694 | ||
7695 | element = priv->ieee->network_free_list.next; | |
7696 | network = list_entry(element, struct libipw_network, list); | |
7697 | ipw_adhoc_create(priv, network); | |
7698 | rates = &priv->rates; | |
7699 | list_del(element); | |
7700 | list_add_tail(&network->list, &priv->ieee->network_list); | |
7701 | } | |
7702 | spin_unlock_irqrestore(&priv->ieee->lock, flags); | |
7703 | ||
7704 | /* If we reached the end of the list, then we don't have any valid | |
7705 | * matching APs */ | |
7706 | if (!network) { | |
7707 | ipw_debug_config(priv); | |
7708 | ||
7709 | if (!(priv->status & STATUS_SCANNING)) { | |
7710 | if (!(priv->config & CFG_SPEED_SCAN)) | |
7711 | schedule_delayed_work(&priv->request_scan, | |
7712 | SCAN_INTERVAL); | |
7713 | else | |
7714 | schedule_delayed_work(&priv->request_scan, 0); | |
7715 | } | |
7716 | ||
7717 | return 0; | |
7718 | } | |
7719 | ||
7720 | ipw_associate_network(priv, network, rates, 0); | |
7721 | ||
7722 | return 1; | |
7723 | } | |
7724 | ||
7725 | static void ipw_bg_associate(struct work_struct *work) | |
7726 | { | |
7727 | struct ipw_priv *priv = | |
7728 | container_of(work, struct ipw_priv, associate); | |
7729 | mutex_lock(&priv->mutex); | |
7730 | ipw_associate(priv); | |
7731 | mutex_unlock(&priv->mutex); | |
7732 | } | |
7733 | ||
7734 | static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv, | |
7735 | struct sk_buff *skb) | |
7736 | { | |
7737 | struct ieee80211_hdr *hdr; | |
7738 | u16 fc; | |
7739 | ||
7740 | hdr = (struct ieee80211_hdr *)skb->data; | |
7741 | fc = le16_to_cpu(hdr->frame_control); | |
7742 | if (!(fc & IEEE80211_FCTL_PROTECTED)) | |
7743 | return; | |
7744 | ||
7745 | fc &= ~IEEE80211_FCTL_PROTECTED; | |
7746 | hdr->frame_control = cpu_to_le16(fc); | |
7747 | switch (priv->ieee->sec.level) { | |
7748 | case SEC_LEVEL_3: | |
7749 | /* Remove CCMP HDR */ | |
7750 | memmove(skb->data + LIBIPW_3ADDR_LEN, | |
7751 | skb->data + LIBIPW_3ADDR_LEN + 8, | |
7752 | skb->len - LIBIPW_3ADDR_LEN - 8); | |
7753 | skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */ | |
7754 | break; | |
7755 | case SEC_LEVEL_2: | |
7756 | break; | |
7757 | case SEC_LEVEL_1: | |
7758 | /* Remove IV */ | |
7759 | memmove(skb->data + LIBIPW_3ADDR_LEN, | |
7760 | skb->data + LIBIPW_3ADDR_LEN + 4, | |
7761 | skb->len - LIBIPW_3ADDR_LEN - 4); | |
7762 | skb_trim(skb, skb->len - 8); /* IV + ICV */ | |
7763 | break; | |
7764 | case SEC_LEVEL_0: | |
7765 | break; | |
7766 | default: | |
7767 | printk(KERN_ERR "Unknown security level %d\n", | |
7768 | priv->ieee->sec.level); | |
7769 | break; | |
7770 | } | |
7771 | } | |
7772 | ||
7773 | static void ipw_handle_data_packet(struct ipw_priv *priv, | |
7774 | struct ipw_rx_mem_buffer *rxb, | |
7775 | struct libipw_rx_stats *stats) | |
7776 | { | |
7777 | struct net_device *dev = priv->net_dev; | |
7778 | struct libipw_hdr_4addr *hdr; | |
7779 | struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; | |
7780 | ||
7781 | /* We received data from the HW, so stop the watchdog */ | |
7782 | dev->trans_start = jiffies; | |
7783 | ||
7784 | /* We only process data packets if the | |
7785 | * interface is open */ | |
7786 | if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) > | |
7787 | skb_tailroom(rxb->skb))) { | |
7788 | dev->stats.rx_errors++; | |
7789 | priv->wstats.discard.misc++; | |
7790 | IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); | |
7791 | return; | |
7792 | } else if (unlikely(!netif_running(priv->net_dev))) { | |
7793 | dev->stats.rx_dropped++; | |
7794 | priv->wstats.discard.misc++; | |
7795 | IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); | |
7796 | return; | |
7797 | } | |
7798 | ||
7799 | /* Advance skb->data to the start of the actual payload */ | |
7800 | skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data)); | |
7801 | ||
7802 | /* Set the size of the skb to the size of the frame */ | |
7803 | skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length)); | |
7804 | ||
7805 | IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); | |
7806 | ||
7807 | /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */ | |
7808 | hdr = (struct libipw_hdr_4addr *)rxb->skb->data; | |
7809 | if (priv->ieee->iw_mode != IW_MODE_MONITOR && | |
7810 | (is_multicast_ether_addr(hdr->addr1) ? | |
7811 | !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt)) | |
7812 | ipw_rebuild_decrypted_skb(priv, rxb->skb); | |
7813 | ||
7814 | if (!libipw_rx(priv->ieee, rxb->skb, stats)) | |
7815 | dev->stats.rx_errors++; | |
7816 | else { /* libipw_rx succeeded, so it now owns the SKB */ | |
7817 | rxb->skb = NULL; | |
7818 | __ipw_led_activity_on(priv); | |
7819 | } | |
7820 | } | |
7821 | ||
7822 | #ifdef CONFIG_IPW2200_RADIOTAP | |
7823 | static void ipw_handle_data_packet_monitor(struct ipw_priv *priv, | |
7824 | struct ipw_rx_mem_buffer *rxb, | |
7825 | struct libipw_rx_stats *stats) | |
7826 | { | |
7827 | struct net_device *dev = priv->net_dev; | |
7828 | struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; | |
7829 | struct ipw_rx_frame *frame = &pkt->u.frame; | |
7830 | ||
7831 | /* initial pull of some data */ | |
7832 | u16 received_channel = frame->received_channel; | |
7833 | u8 antennaAndPhy = frame->antennaAndPhy; | |
7834 | s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */ | |
7835 | u16 pktrate = frame->rate; | |
7836 | ||
7837 | /* Magic struct that slots into the radiotap header -- no reason | |
7838 | * to build this manually element by element, we can write it much | |
7839 | * more efficiently than we can parse it. ORDER MATTERS HERE */ | |
7840 | struct ipw_rt_hdr *ipw_rt; | |
7841 | ||
7842 | short len = le16_to_cpu(pkt->u.frame.length); | |
7843 | ||
7844 | /* We received data from the HW, so stop the watchdog */ | |
7845 | dev->trans_start = jiffies; | |
7846 | ||
7847 | /* We only process data packets if the | |
7848 | * interface is open */ | |
7849 | if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) > | |
7850 | skb_tailroom(rxb->skb))) { | |
7851 | dev->stats.rx_errors++; | |
7852 | priv->wstats.discard.misc++; | |
7853 | IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); | |
7854 | return; | |
7855 | } else if (unlikely(!netif_running(priv->net_dev))) { | |
7856 | dev->stats.rx_dropped++; | |
7857 | priv->wstats.discard.misc++; | |
7858 | IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); | |
7859 | return; | |
7860 | } | |
7861 | ||
7862 | /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use | |
7863 | * that now */ | |
7864 | if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) { | |
7865 | /* FIXME: Should alloc bigger skb instead */ | |
7866 | dev->stats.rx_dropped++; | |
7867 | priv->wstats.discard.misc++; | |
7868 | IPW_DEBUG_DROP("Dropping too large packet in monitor\n"); | |
7869 | return; | |
7870 | } | |
7871 | ||
7872 | /* copy the frame itself */ | |
7873 | memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr), | |
7874 | rxb->skb->data + IPW_RX_FRAME_SIZE, len); | |
7875 | ||
7876 | ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data; | |
7877 | ||
7878 | ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; | |
7879 | ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ | |
7880 | ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */ | |
7881 | ||
7882 | /* Big bitfield of all the fields we provide in radiotap */ | |
7883 | ipw_rt->rt_hdr.it_present = cpu_to_le32( | |
7884 | (1 << IEEE80211_RADIOTAP_TSFT) | | |
7885 | (1 << IEEE80211_RADIOTAP_FLAGS) | | |
7886 | (1 << IEEE80211_RADIOTAP_RATE) | | |
7887 | (1 << IEEE80211_RADIOTAP_CHANNEL) | | |
7888 | (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | | |
7889 | (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) | | |
7890 | (1 << IEEE80211_RADIOTAP_ANTENNA)); | |
7891 | ||
7892 | /* Zero the flags, we'll add to them as we go */ | |
7893 | ipw_rt->rt_flags = 0; | |
7894 | ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 | | |
7895 | frame->parent_tsf[2] << 16 | | |
7896 | frame->parent_tsf[1] << 8 | | |
7897 | frame->parent_tsf[0]); | |
7898 | ||
7899 | /* Convert signal to DBM */ | |
7900 | ipw_rt->rt_dbmsignal = antsignal; | |
7901 | ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise); | |
7902 | ||
7903 | /* Convert the channel data and set the flags */ | |
7904 | ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel)); | |
7905 | if (received_channel > 14) { /* 802.11a */ | |
7906 | ipw_rt->rt_chbitmask = | |
7907 | cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ)); | |
7908 | } else if (antennaAndPhy & 32) { /* 802.11b */ | |
7909 | ipw_rt->rt_chbitmask = | |
7910 | cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ)); | |
7911 | } else { /* 802.11g */ | |
7912 | ipw_rt->rt_chbitmask = | |
7913 | cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ); | |
7914 | } | |
7915 | ||
7916 | /* set the rate in multiples of 500k/s */ | |
7917 | switch (pktrate) { | |
7918 | case IPW_TX_RATE_1MB: | |
7919 | ipw_rt->rt_rate = 2; | |
7920 | break; | |
7921 | case IPW_TX_RATE_2MB: | |
7922 | ipw_rt->rt_rate = 4; | |
7923 | break; | |
7924 | case IPW_TX_RATE_5MB: | |
7925 | ipw_rt->rt_rate = 10; | |
7926 | break; | |
7927 | case IPW_TX_RATE_6MB: | |
7928 | ipw_rt->rt_rate = 12; | |
7929 | break; | |
7930 | case IPW_TX_RATE_9MB: | |
7931 | ipw_rt->rt_rate = 18; | |
7932 | break; | |
7933 | case IPW_TX_RATE_11MB: | |
7934 | ipw_rt->rt_rate = 22; | |
7935 | break; | |
7936 | case IPW_TX_RATE_12MB: | |
7937 | ipw_rt->rt_rate = 24; | |
7938 | break; | |
7939 | case IPW_TX_RATE_18MB: | |
7940 | ipw_rt->rt_rate = 36; | |
7941 | break; | |
7942 | case IPW_TX_RATE_24MB: | |
7943 | ipw_rt->rt_rate = 48; | |
7944 | break; | |
7945 | case IPW_TX_RATE_36MB: | |
7946 | ipw_rt->rt_rate = 72; | |
7947 | break; | |
7948 | case IPW_TX_RATE_48MB: | |
7949 | ipw_rt->rt_rate = 96; | |
7950 | break; | |
7951 | case IPW_TX_RATE_54MB: | |
7952 | ipw_rt->rt_rate = 108; | |
7953 | break; | |
7954 | default: | |
7955 | ipw_rt->rt_rate = 0; | |
7956 | break; | |
7957 | } | |
7958 | ||
7959 | /* antenna number */ | |
7960 | ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */ | |
7961 | ||
7962 | /* set the preamble flag if we have it */ | |
7963 | if ((antennaAndPhy & 64)) | |
7964 | ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; | |
7965 | ||
7966 | /* Set the size of the skb to the size of the frame */ | |
7967 | skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr)); | |
7968 | ||
7969 | IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); | |
7970 | ||
7971 | if (!libipw_rx(priv->ieee, rxb->skb, stats)) | |
7972 | dev->stats.rx_errors++; | |
7973 | else { /* libipw_rx succeeded, so it now owns the SKB */ | |
7974 | rxb->skb = NULL; | |
7975 | /* no LED during capture */ | |
7976 | } | |
7977 | } | |
7978 | #endif | |
7979 | ||
7980 | #ifdef CONFIG_IPW2200_PROMISCUOUS | |
7981 | #define libipw_is_probe_response(fc) \ | |
7982 | ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \ | |
7983 | (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP ) | |
7984 | ||
7985 | #define libipw_is_management(fc) \ | |
7986 | ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) | |
7987 | ||
7988 | #define libipw_is_control(fc) \ | |
7989 | ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) | |
7990 | ||
7991 | #define libipw_is_data(fc) \ | |
7992 | ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) | |
7993 | ||
7994 | #define libipw_is_assoc_request(fc) \ | |
7995 | ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ) | |
7996 | ||
7997 | #define libipw_is_reassoc_request(fc) \ | |
7998 | ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ) | |
7999 | ||
8000 | static void ipw_handle_promiscuous_rx(struct ipw_priv *priv, | |
8001 | struct ipw_rx_mem_buffer *rxb, | |
8002 | struct libipw_rx_stats *stats) | |
8003 | { | |
8004 | struct net_device *dev = priv->prom_net_dev; | |
8005 | struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; | |
8006 | struct ipw_rx_frame *frame = &pkt->u.frame; | |
8007 | struct ipw_rt_hdr *ipw_rt; | |
8008 | ||
8009 | /* First cache any information we need before we overwrite | |
8010 | * the information provided in the skb from the hardware */ | |
8011 | struct ieee80211_hdr *hdr; | |
8012 | u16 channel = frame->received_channel; | |
8013 | u8 phy_flags = frame->antennaAndPhy; | |
8014 | s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM; | |
8015 | s8 noise = (s8) le16_to_cpu(frame->noise); | |
8016 | u8 rate = frame->rate; | |
8017 | short len = le16_to_cpu(pkt->u.frame.length); | |
8018 | struct sk_buff *skb; | |
8019 | int hdr_only = 0; | |
8020 | u16 filter = priv->prom_priv->filter; | |
8021 | ||
8022 | /* If the filter is set to not include Rx frames then return */ | |
8023 | if (filter & IPW_PROM_NO_RX) | |
8024 | return; | |
8025 | ||
8026 | /* We received data from the HW, so stop the watchdog */ | |
8027 | dev->trans_start = jiffies; | |
8028 | ||
8029 | if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) { | |
8030 | dev->stats.rx_errors++; | |
8031 | IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); | |
8032 | return; | |
8033 | } | |
8034 | ||
8035 | /* We only process data packets if the interface is open */ | |
8036 | if (unlikely(!netif_running(dev))) { | |
8037 | dev->stats.rx_dropped++; | |
8038 | IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); | |
8039 | return; | |
8040 | } | |
8041 | ||
8042 | /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use | |
8043 | * that now */ | |
8044 | if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) { | |
8045 | /* FIXME: Should alloc bigger skb instead */ | |
8046 | dev->stats.rx_dropped++; | |
8047 | IPW_DEBUG_DROP("Dropping too large packet in monitor\n"); | |
8048 | return; | |
8049 | } | |
8050 | ||
8051 | hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE; | |
8052 | if (libipw_is_management(le16_to_cpu(hdr->frame_control))) { | |
8053 | if (filter & IPW_PROM_NO_MGMT) | |
8054 | return; | |
8055 | if (filter & IPW_PROM_MGMT_HEADER_ONLY) | |
8056 | hdr_only = 1; | |
8057 | } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) { | |
8058 | if (filter & IPW_PROM_NO_CTL) | |
8059 | return; | |
8060 | if (filter & IPW_PROM_CTL_HEADER_ONLY) | |
8061 | hdr_only = 1; | |
8062 | } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) { | |
8063 | if (filter & IPW_PROM_NO_DATA) | |
8064 | return; | |
8065 | if (filter & IPW_PROM_DATA_HEADER_ONLY) | |
8066 | hdr_only = 1; | |
8067 | } | |
8068 | ||
8069 | /* Copy the SKB since this is for the promiscuous side */ | |
8070 | skb = skb_copy(rxb->skb, GFP_ATOMIC); | |
8071 | if (skb == NULL) { | |
8072 | IPW_ERROR("skb_clone failed for promiscuous copy.\n"); | |
8073 | return; | |
8074 | } | |
8075 | ||
8076 | /* copy the frame data to write after where the radiotap header goes */ | |
8077 | ipw_rt = (void *)skb->data; | |
8078 | ||
8079 | if (hdr_only) | |
8080 | len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control)); | |
8081 | ||
8082 | memcpy(ipw_rt->payload, hdr, len); | |
8083 | ||
8084 | ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; | |
8085 | ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */ | |
8086 | ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */ | |
8087 | ||
8088 | /* Set the size of the skb to the size of the frame */ | |
8089 | skb_put(skb, sizeof(*ipw_rt) + len); | |
8090 | ||
8091 | /* Big bitfield of all the fields we provide in radiotap */ | |
8092 | ipw_rt->rt_hdr.it_present = cpu_to_le32( | |
8093 | (1 << IEEE80211_RADIOTAP_TSFT) | | |
8094 | (1 << IEEE80211_RADIOTAP_FLAGS) | | |
8095 | (1 << IEEE80211_RADIOTAP_RATE) | | |
8096 | (1 << IEEE80211_RADIOTAP_CHANNEL) | | |
8097 | (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | | |
8098 | (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) | | |
8099 | (1 << IEEE80211_RADIOTAP_ANTENNA)); | |
8100 | ||
8101 | /* Zero the flags, we'll add to them as we go */ | |
8102 | ipw_rt->rt_flags = 0; | |
8103 | ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 | | |
8104 | frame->parent_tsf[2] << 16 | | |
8105 | frame->parent_tsf[1] << 8 | | |
8106 | frame->parent_tsf[0]); | |
8107 | ||
8108 | /* Convert to DBM */ | |
8109 | ipw_rt->rt_dbmsignal = signal; | |
8110 | ipw_rt->rt_dbmnoise = noise; | |
8111 | ||
8112 | /* Convert the channel data and set the flags */ | |
8113 | ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel)); | |
8114 | if (channel > 14) { /* 802.11a */ | |
8115 | ipw_rt->rt_chbitmask = | |
8116 | cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ)); | |
8117 | } else if (phy_flags & (1 << 5)) { /* 802.11b */ | |
8118 | ipw_rt->rt_chbitmask = | |
8119 | cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ)); | |
8120 | } else { /* 802.11g */ | |
8121 | ipw_rt->rt_chbitmask = | |
8122 | cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ); | |
8123 | } | |
8124 | ||
8125 | /* set the rate in multiples of 500k/s */ | |
8126 | switch (rate) { | |
8127 | case IPW_TX_RATE_1MB: | |
8128 | ipw_rt->rt_rate = 2; | |
8129 | break; | |
8130 | case IPW_TX_RATE_2MB: | |
8131 | ipw_rt->rt_rate = 4; | |
8132 | break; | |
8133 | case IPW_TX_RATE_5MB: | |
8134 | ipw_rt->rt_rate = 10; | |
8135 | break; | |
8136 | case IPW_TX_RATE_6MB: | |
8137 | ipw_rt->rt_rate = 12; | |
8138 | break; | |
8139 | case IPW_TX_RATE_9MB: | |
8140 | ipw_rt->rt_rate = 18; | |
8141 | break; | |
8142 | case IPW_TX_RATE_11MB: | |
8143 | ipw_rt->rt_rate = 22; | |
8144 | break; | |
8145 | case IPW_TX_RATE_12MB: | |
8146 | ipw_rt->rt_rate = 24; | |
8147 | break; | |
8148 | case IPW_TX_RATE_18MB: | |
8149 | ipw_rt->rt_rate = 36; | |
8150 | break; | |
8151 | case IPW_TX_RATE_24MB: | |
8152 | ipw_rt->rt_rate = 48; | |
8153 | break; | |
8154 | case IPW_TX_RATE_36MB: | |
8155 | ipw_rt->rt_rate = 72; | |
8156 | break; | |
8157 | case IPW_TX_RATE_48MB: | |
8158 | ipw_rt->rt_rate = 96; | |
8159 | break; | |
8160 | case IPW_TX_RATE_54MB: | |
8161 | ipw_rt->rt_rate = 108; | |
8162 | break; | |
8163 | default: | |
8164 | ipw_rt->rt_rate = 0; | |
8165 | break; | |
8166 | } | |
8167 | ||
8168 | /* antenna number */ | |
8169 | ipw_rt->rt_antenna = (phy_flags & 3); | |
8170 | ||
8171 | /* set the preamble flag if we have it */ | |
8172 | if (phy_flags & (1 << 6)) | |
8173 | ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; | |
8174 | ||
8175 | IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len); | |
8176 | ||
8177 | if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) { | |
8178 | dev->stats.rx_errors++; | |
8179 | dev_kfree_skb_any(skb); | |
8180 | } | |
8181 | } | |
8182 | #endif | |
8183 | ||
8184 | static int is_network_packet(struct ipw_priv *priv, | |
8185 | struct libipw_hdr_4addr *header) | |
8186 | { | |
8187 | /* Filter incoming packets to determine if they are targetted toward | |
8188 | * this network, discarding packets coming from ourselves */ | |
8189 | switch (priv->ieee->iw_mode) { | |
8190 | case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */ | |
8191 | /* packets from our adapter are dropped (echo) */ | |
8192 | if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN)) | |
8193 | return 0; | |
8194 | ||
8195 | /* {broad,multi}cast packets to our BSSID go through */ | |
8196 | if (is_multicast_ether_addr(header->addr1)) | |
8197 | return !memcmp(header->addr3, priv->bssid, ETH_ALEN); | |
8198 | ||
8199 | /* packets to our adapter go through */ | |
8200 | return !memcmp(header->addr1, priv->net_dev->dev_addr, | |
8201 | ETH_ALEN); | |
8202 | ||
8203 | case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */ | |
8204 | /* packets from our adapter are dropped (echo) */ | |
8205 | if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN)) | |
8206 | return 0; | |
8207 | ||
8208 | /* {broad,multi}cast packets to our BSS go through */ | |
8209 | if (is_multicast_ether_addr(header->addr1)) | |
8210 | return !memcmp(header->addr2, priv->bssid, ETH_ALEN); | |
8211 | ||
8212 | /* packets to our adapter go through */ | |
8213 | return !memcmp(header->addr1, priv->net_dev->dev_addr, | |
8214 | ETH_ALEN); | |
8215 | } | |
8216 | ||
8217 | return 1; | |
8218 | } | |
8219 | ||
8220 | #define IPW_PACKET_RETRY_TIME HZ | |
8221 | ||
8222 | static int is_duplicate_packet(struct ipw_priv *priv, | |
8223 | struct libipw_hdr_4addr *header) | |
8224 | { | |
8225 | u16 sc = le16_to_cpu(header->seq_ctl); | |
8226 | u16 seq = WLAN_GET_SEQ_SEQ(sc); | |
8227 | u16 frag = WLAN_GET_SEQ_FRAG(sc); | |
8228 | u16 *last_seq, *last_frag; | |
8229 | unsigned long *last_time; | |
8230 | ||
8231 | switch (priv->ieee->iw_mode) { | |
8232 | case IW_MODE_ADHOC: | |
8233 | { | |
8234 | struct list_head *p; | |
8235 | struct ipw_ibss_seq *entry = NULL; | |
8236 | u8 *mac = header->addr2; | |
8237 | int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE; | |
8238 | ||
8239 | __list_for_each(p, &priv->ibss_mac_hash[index]) { | |
8240 | entry = | |
8241 | list_entry(p, struct ipw_ibss_seq, list); | |
8242 | if (!memcmp(entry->mac, mac, ETH_ALEN)) | |
8243 | break; | |
8244 | } | |
8245 | if (p == &priv->ibss_mac_hash[index]) { | |
8246 | entry = kmalloc(sizeof(*entry), GFP_ATOMIC); | |
8247 | if (!entry) { | |
8248 | IPW_ERROR | |
8249 | ("Cannot malloc new mac entry\n"); | |
8250 | return 0; | |
8251 | } | |
8252 | memcpy(entry->mac, mac, ETH_ALEN); | |
8253 | entry->seq_num = seq; | |
8254 | entry->frag_num = frag; | |
8255 | entry->packet_time = jiffies; | |
8256 | list_add(&entry->list, | |
8257 | &priv->ibss_mac_hash[index]); | |
8258 | return 0; | |
8259 | } | |
8260 | last_seq = &entry->seq_num; | |
8261 | last_frag = &entry->frag_num; | |
8262 | last_time = &entry->packet_time; | |
8263 | break; | |
8264 | } | |
8265 | case IW_MODE_INFRA: | |
8266 | last_seq = &priv->last_seq_num; | |
8267 | last_frag = &priv->last_frag_num; | |
8268 | last_time = &priv->last_packet_time; | |
8269 | break; | |
8270 | default: | |
8271 | return 0; | |
8272 | } | |
8273 | if ((*last_seq == seq) && | |
8274 | time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) { | |
8275 | if (*last_frag == frag) | |
8276 | goto drop; | |
8277 | if (*last_frag + 1 != frag) | |
8278 | /* out-of-order fragment */ | |
8279 | goto drop; | |
8280 | } else | |
8281 | *last_seq = seq; | |
8282 | ||
8283 | *last_frag = frag; | |
8284 | *last_time = jiffies; | |
8285 | return 0; | |
8286 | ||
8287 | drop: | |
8288 | /* Comment this line now since we observed the card receives | |
8289 | * duplicate packets but the FCTL_RETRY bit is not set in the | |
8290 | * IBSS mode with fragmentation enabled. | |
8291 | BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */ | |
8292 | return 1; | |
8293 | } | |
8294 | ||
8295 | static void ipw_handle_mgmt_packet(struct ipw_priv *priv, | |
8296 | struct ipw_rx_mem_buffer *rxb, | |
8297 | struct libipw_rx_stats *stats) | |
8298 | { | |
8299 | struct sk_buff *skb = rxb->skb; | |
8300 | struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data; | |
8301 | struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *) | |
8302 | (skb->data + IPW_RX_FRAME_SIZE); | |
8303 | ||
8304 | libipw_rx_mgt(priv->ieee, header, stats); | |
8305 | ||
8306 | if (priv->ieee->iw_mode == IW_MODE_ADHOC && | |
8307 | ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) == | |
8308 | IEEE80211_STYPE_PROBE_RESP) || | |
8309 | (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) == | |
8310 | IEEE80211_STYPE_BEACON))) { | |
8311 | if (!memcmp(header->addr3, priv->bssid, ETH_ALEN)) | |
8312 | ipw_add_station(priv, header->addr2); | |
8313 | } | |
8314 | ||
8315 | if (priv->config & CFG_NET_STATS) { | |
8316 | IPW_DEBUG_HC("sending stat packet\n"); | |
8317 | ||
8318 | /* Set the size of the skb to the size of the full | |
8319 | * ipw header and 802.11 frame */ | |
8320 | skb_put(skb, le16_to_cpu(pkt->u.frame.length) + | |
8321 | IPW_RX_FRAME_SIZE); | |
8322 | ||
8323 | /* Advance past the ipw packet header to the 802.11 frame */ | |
8324 | skb_pull(skb, IPW_RX_FRAME_SIZE); | |
8325 | ||
8326 | /* Push the libipw_rx_stats before the 802.11 frame */ | |
8327 | memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats)); | |
8328 | ||
8329 | skb->dev = priv->ieee->dev; | |
8330 | ||
8331 | /* Point raw at the libipw_stats */ | |
8332 | skb_reset_mac_header(skb); | |
8333 | ||
8334 | skb->pkt_type = PACKET_OTHERHOST; | |
8335 | skb->protocol = cpu_to_be16(ETH_P_80211_STATS); | |
8336 | memset(skb->cb, 0, sizeof(rxb->skb->cb)); | |
8337 | netif_rx(skb); | |
8338 | rxb->skb = NULL; | |
8339 | } | |
8340 | } | |
8341 | ||
8342 | /* | |
8343 | * Main entry function for recieving a packet with 80211 headers. This | |
8344 | * should be called when ever the FW has notified us that there is a new | |
8345 | * skb in the recieve queue. | |
8346 | */ | |
8347 | static void ipw_rx(struct ipw_priv *priv) | |
8348 | { | |
8349 | struct ipw_rx_mem_buffer *rxb; | |
8350 | struct ipw_rx_packet *pkt; | |
8351 | struct libipw_hdr_4addr *header; | |
8352 | u32 r, w, i; | |
8353 | u8 network_packet; | |
8354 | u8 fill_rx = 0; | |
8355 | ||
8356 | r = ipw_read32(priv, IPW_RX_READ_INDEX); | |
8357 | w = ipw_read32(priv, IPW_RX_WRITE_INDEX); | |
8358 | i = priv->rxq->read; | |
8359 | ||
8360 | if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2)) | |
8361 | fill_rx = 1; | |
8362 | ||
8363 | while (i != r) { | |
8364 | rxb = priv->rxq->queue[i]; | |
8365 | if (unlikely(rxb == NULL)) { | |
8366 | printk(KERN_CRIT "Queue not allocated!\n"); | |
8367 | break; | |
8368 | } | |
8369 | priv->rxq->queue[i] = NULL; | |
8370 | ||
8371 | pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr, | |
8372 | IPW_RX_BUF_SIZE, | |
8373 | PCI_DMA_FROMDEVICE); | |
8374 | ||
8375 | pkt = (struct ipw_rx_packet *)rxb->skb->data; | |
8376 | IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n", | |
8377 | pkt->header.message_type, | |
8378 | pkt->header.rx_seq_num, pkt->header.control_bits); | |
8379 | ||
8380 | switch (pkt->header.message_type) { | |
8381 | case RX_FRAME_TYPE: /* 802.11 frame */ { | |
8382 | struct libipw_rx_stats stats = { | |
8383 | .rssi = pkt->u.frame.rssi_dbm - | |
8384 | IPW_RSSI_TO_DBM, | |
8385 | .signal = | |
8386 | pkt->u.frame.rssi_dbm - | |
8387 | IPW_RSSI_TO_DBM + 0x100, | |
8388 | .noise = | |
8389 | le16_to_cpu(pkt->u.frame.noise), | |
8390 | .rate = pkt->u.frame.rate, | |
8391 | .mac_time = jiffies, | |
8392 | .received_channel = | |
8393 | pkt->u.frame.received_channel, | |
8394 | .freq = | |
8395 | (pkt->u.frame. | |
8396 | control & (1 << 0)) ? | |
8397 | LIBIPW_24GHZ_BAND : | |
8398 | LIBIPW_52GHZ_BAND, | |
8399 | .len = le16_to_cpu(pkt->u.frame.length), | |
8400 | }; | |
8401 | ||
8402 | if (stats.rssi != 0) | |
8403 | stats.mask |= LIBIPW_STATMASK_RSSI; | |
8404 | if (stats.signal != 0) | |
8405 | stats.mask |= LIBIPW_STATMASK_SIGNAL; | |
8406 | if (stats.noise != 0) | |
8407 | stats.mask |= LIBIPW_STATMASK_NOISE; | |
8408 | if (stats.rate != 0) | |
8409 | stats.mask |= LIBIPW_STATMASK_RATE; | |
8410 | ||
8411 | priv->rx_packets++; | |
8412 | ||
8413 | #ifdef CONFIG_IPW2200_PROMISCUOUS | |
8414 | if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) | |
8415 | ipw_handle_promiscuous_rx(priv, rxb, &stats); | |
8416 | #endif | |
8417 | ||
8418 | #ifdef CONFIG_IPW2200_MONITOR | |
8419 | if (priv->ieee->iw_mode == IW_MODE_MONITOR) { | |
8420 | #ifdef CONFIG_IPW2200_RADIOTAP | |
8421 | ||
8422 | ipw_handle_data_packet_monitor(priv, | |
8423 | rxb, | |
8424 | &stats); | |
8425 | #else | |
8426 | ipw_handle_data_packet(priv, rxb, | |
8427 | &stats); | |
8428 | #endif | |
8429 | break; | |
8430 | } | |
8431 | #endif | |
8432 | ||
8433 | header = | |
8434 | (struct libipw_hdr_4addr *)(rxb->skb-> | |
8435 | data + | |
8436 | IPW_RX_FRAME_SIZE); | |
8437 | /* TODO: Check Ad-Hoc dest/source and make sure | |
8438 | * that we are actually parsing these packets | |
8439 | * correctly -- we should probably use the | |
8440 | * frame control of the packet and disregard | |
8441 | * the current iw_mode */ | |
8442 | ||
8443 | network_packet = | |
8444 | is_network_packet(priv, header); | |
8445 | if (network_packet && priv->assoc_network) { | |
8446 | priv->assoc_network->stats.rssi = | |
8447 | stats.rssi; | |
8448 | priv->exp_avg_rssi = | |
8449 | exponential_average(priv->exp_avg_rssi, | |
8450 | stats.rssi, DEPTH_RSSI); | |
8451 | } | |
8452 | ||
8453 | IPW_DEBUG_RX("Frame: len=%u\n", | |
8454 | le16_to_cpu(pkt->u.frame.length)); | |
8455 | ||
8456 | if (le16_to_cpu(pkt->u.frame.length) < | |
8457 | libipw_get_hdrlen(le16_to_cpu( | |
8458 | header->frame_ctl))) { | |
8459 | IPW_DEBUG_DROP | |
8460 | ("Received packet is too small. " | |
8461 | "Dropping.\n"); | |
8462 | priv->net_dev->stats.rx_errors++; | |
8463 | priv->wstats.discard.misc++; | |
8464 | break; | |
8465 | } | |
8466 | ||
8467 | switch (WLAN_FC_GET_TYPE | |
8468 | (le16_to_cpu(header->frame_ctl))) { | |
8469 | ||
8470 | case IEEE80211_FTYPE_MGMT: | |
8471 | ipw_handle_mgmt_packet(priv, rxb, | |
8472 | &stats); | |
8473 | break; | |
8474 | ||
8475 | case IEEE80211_FTYPE_CTL: | |
8476 | break; | |
8477 | ||
8478 | case IEEE80211_FTYPE_DATA: | |
8479 | if (unlikely(!network_packet || | |
8480 | is_duplicate_packet(priv, | |
8481 | header))) | |
8482 | { | |
8483 | IPW_DEBUG_DROP("Dropping: " | |
8484 | "%pM, " | |
8485 | "%pM, " | |
8486 | "%pM\n", | |
8487 | header->addr1, | |
8488 | header->addr2, | |
8489 | header->addr3); | |
8490 | break; | |
8491 | } | |
8492 | ||
8493 | ipw_handle_data_packet(priv, rxb, | |
8494 | &stats); | |
8495 | ||
8496 | break; | |
8497 | } | |
8498 | break; | |
8499 | } | |
8500 | ||
8501 | case RX_HOST_NOTIFICATION_TYPE:{ | |
8502 | IPW_DEBUG_RX | |
8503 | ("Notification: subtype=%02X flags=%02X size=%d\n", | |
8504 | pkt->u.notification.subtype, | |
8505 | pkt->u.notification.flags, | |
8506 | le16_to_cpu(pkt->u.notification.size)); | |
8507 | ipw_rx_notification(priv, &pkt->u.notification); | |
8508 | break; | |
8509 | } | |
8510 | ||
8511 | default: | |
8512 | IPW_DEBUG_RX("Bad Rx packet of type %d\n", | |
8513 | pkt->header.message_type); | |
8514 | break; | |
8515 | } | |
8516 | ||
8517 | /* For now we just don't re-use anything. We can tweak this | |
8518 | * later to try and re-use notification packets and SKBs that | |
8519 | * fail to Rx correctly */ | |
8520 | if (rxb->skb != NULL) { | |
8521 | dev_kfree_skb_any(rxb->skb); | |
8522 | rxb->skb = NULL; | |
8523 | } | |
8524 | ||
8525 | pci_unmap_single(priv->pci_dev, rxb->dma_addr, | |
8526 | IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); | |
8527 | list_add_tail(&rxb->list, &priv->rxq->rx_used); | |
8528 | ||
8529 | i = (i + 1) % RX_QUEUE_SIZE; | |
8530 | ||
8531 | /* If there are a lot of unsued frames, restock the Rx queue | |
8532 | * so the ucode won't assert */ | |
8533 | if (fill_rx) { | |
8534 | priv->rxq->read = i; | |
8535 | ipw_rx_queue_replenish(priv); | |
8536 | } | |
8537 | } | |
8538 | ||
8539 | /* Backtrack one entry */ | |
8540 | priv->rxq->read = i; | |
8541 | ipw_rx_queue_restock(priv); | |
8542 | } | |
8543 | ||
8544 | #define DEFAULT_RTS_THRESHOLD 2304U | |
8545 | #define MIN_RTS_THRESHOLD 1U | |
8546 | #define MAX_RTS_THRESHOLD 2304U | |
8547 | #define DEFAULT_BEACON_INTERVAL 100U | |
8548 | #define DEFAULT_SHORT_RETRY_LIMIT 7U | |
8549 | #define DEFAULT_LONG_RETRY_LIMIT 4U | |
8550 | ||
8551 | /** | |
8552 | * ipw_sw_reset | |
8553 | * @option: options to control different reset behaviour | |
8554 | * 0 = reset everything except the 'disable' module_param | |
8555 | * 1 = reset everything and print out driver info (for probe only) | |
8556 | * 2 = reset everything | |
8557 | */ | |
8558 | static int ipw_sw_reset(struct ipw_priv *priv, int option) | |
8559 | { | |
8560 | int band, modulation; | |
8561 | int old_mode = priv->ieee->iw_mode; | |
8562 | ||
8563 | /* Initialize module parameter values here */ | |
8564 | priv->config = 0; | |
8565 | ||
8566 | /* We default to disabling the LED code as right now it causes | |
8567 | * too many systems to lock up... */ | |
8568 | if (!led_support) | |
8569 | priv->config |= CFG_NO_LED; | |
8570 | ||
8571 | if (associate) | |
8572 | priv->config |= CFG_ASSOCIATE; | |
8573 | else | |
8574 | IPW_DEBUG_INFO("Auto associate disabled.\n"); | |
8575 | ||
8576 | if (auto_create) | |
8577 | priv->config |= CFG_ADHOC_CREATE; | |
8578 | else | |
8579 | IPW_DEBUG_INFO("Auto adhoc creation disabled.\n"); | |
8580 | ||
8581 | priv->config &= ~CFG_STATIC_ESSID; | |
8582 | priv->essid_len = 0; | |
8583 | memset(priv->essid, 0, IW_ESSID_MAX_SIZE); | |
8584 | ||
8585 | if (disable && option) { | |
8586 | priv->status |= STATUS_RF_KILL_SW; | |
8587 | IPW_DEBUG_INFO("Radio disabled.\n"); | |
8588 | } | |
8589 | ||
8590 | if (default_channel != 0) { | |
8591 | priv->config |= CFG_STATIC_CHANNEL; | |
8592 | priv->channel = default_channel; | |
8593 | IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel); | |
8594 | /* TODO: Validate that provided channel is in range */ | |
8595 | } | |
8596 | #ifdef CONFIG_IPW2200_QOS | |
8597 | ipw_qos_init(priv, qos_enable, qos_burst_enable, | |
8598 | burst_duration_CCK, burst_duration_OFDM); | |
8599 | #endif /* CONFIG_IPW2200_QOS */ | |
8600 | ||
8601 | switch (network_mode) { | |
8602 | case 1: | |
8603 | priv->ieee->iw_mode = IW_MODE_ADHOC; | |
8604 | priv->net_dev->type = ARPHRD_ETHER; | |
8605 | ||
8606 | break; | |
8607 | #ifdef CONFIG_IPW2200_MONITOR | |
8608 | case 2: | |
8609 | priv->ieee->iw_mode = IW_MODE_MONITOR; | |
8610 | #ifdef CONFIG_IPW2200_RADIOTAP | |
8611 | priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; | |
8612 | #else | |
8613 | priv->net_dev->type = ARPHRD_IEEE80211; | |
8614 | #endif | |
8615 | break; | |
8616 | #endif | |
8617 | default: | |
8618 | case 0: | |
8619 | priv->net_dev->type = ARPHRD_ETHER; | |
8620 | priv->ieee->iw_mode = IW_MODE_INFRA; | |
8621 | break; | |
8622 | } | |
8623 | ||
8624 | if (hwcrypto) { | |
8625 | priv->ieee->host_encrypt = 0; | |
8626 | priv->ieee->host_encrypt_msdu = 0; | |
8627 | priv->ieee->host_decrypt = 0; | |
8628 | priv->ieee->host_mc_decrypt = 0; | |
8629 | } | |
8630 | IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off"); | |
8631 | ||
8632 | /* IPW2200/2915 is abled to do hardware fragmentation. */ | |
8633 | priv->ieee->host_open_frag = 0; | |
8634 | ||
8635 | if ((priv->pci_dev->device == 0x4223) || | |
8636 | (priv->pci_dev->device == 0x4224)) { | |
8637 | if (option == 1) | |
8638 | printk(KERN_INFO DRV_NAME | |
8639 | ": Detected Intel PRO/Wireless 2915ABG Network " | |
8640 | "Connection\n"); | |
8641 | priv->ieee->abg_true = 1; | |
8642 | band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND; | |
8643 | modulation = LIBIPW_OFDM_MODULATION | | |
8644 | LIBIPW_CCK_MODULATION; | |
8645 | priv->adapter = IPW_2915ABG; | |
8646 | priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B; | |
8647 | } else { | |
8648 | if (option == 1) | |
8649 | printk(KERN_INFO DRV_NAME | |
8650 | ": Detected Intel PRO/Wireless 2200BG Network " | |
8651 | "Connection\n"); | |
8652 | ||
8653 | priv->ieee->abg_true = 0; | |
8654 | band = LIBIPW_24GHZ_BAND; | |
8655 | modulation = LIBIPW_OFDM_MODULATION | | |
8656 | LIBIPW_CCK_MODULATION; | |
8657 | priv->adapter = IPW_2200BG; | |
8658 | priv->ieee->mode = IEEE_G | IEEE_B; | |
8659 | } | |
8660 | ||
8661 | priv->ieee->freq_band = band; | |
8662 | priv->ieee->modulation = modulation; | |
8663 | ||
8664 | priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK; | |
8665 | ||
8666 | priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT; | |
8667 | priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT; | |
8668 | ||
8669 | priv->rts_threshold = DEFAULT_RTS_THRESHOLD; | |
8670 | priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT; | |
8671 | priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT; | |
8672 | ||
8673 | /* If power management is turned on, default to AC mode */ | |
8674 | priv->power_mode = IPW_POWER_AC; | |
8675 | priv->tx_power = IPW_TX_POWER_DEFAULT; | |
8676 | ||
8677 | return old_mode == priv->ieee->iw_mode; | |
8678 | } | |
8679 | ||
8680 | /* | |
8681 | * This file defines the Wireless Extension handlers. It does not | |
8682 | * define any methods of hardware manipulation and relies on the | |
8683 | * functions defined in ipw_main to provide the HW interaction. | |
8684 | * | |
8685 | * The exception to this is the use of the ipw_get_ordinal() | |
8686 | * function used to poll the hardware vs. making unecessary calls. | |
8687 | * | |
8688 | */ | |
8689 | ||
8690 | static int ipw_set_channel(struct ipw_priv *priv, u8 channel) | |
8691 | { | |
8692 | if (channel == 0) { | |
8693 | IPW_DEBUG_INFO("Setting channel to ANY (0)\n"); | |
8694 | priv->config &= ~CFG_STATIC_CHANNEL; | |
8695 | IPW_DEBUG_ASSOC("Attempting to associate with new " | |
8696 | "parameters.\n"); | |
8697 | ipw_associate(priv); | |
8698 | return 0; | |
8699 | } | |
8700 | ||
8701 | priv->config |= CFG_STATIC_CHANNEL; | |
8702 | ||
8703 | if (priv->channel == channel) { | |
8704 | IPW_DEBUG_INFO("Request to set channel to current value (%d)\n", | |
8705 | channel); | |
8706 | return 0; | |
8707 | } | |
8708 | ||
8709 | IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel); | |
8710 | priv->channel = channel; | |
8711 | ||
8712 | #ifdef CONFIG_IPW2200_MONITOR | |
8713 | if (priv->ieee->iw_mode == IW_MODE_MONITOR) { | |
8714 | int i; | |
8715 | if (priv->status & STATUS_SCANNING) { | |
8716 | IPW_DEBUG_SCAN("Scan abort triggered due to " | |
8717 | "channel change.\n"); | |
8718 | ipw_abort_scan(priv); | |
8719 | } | |
8720 | ||
8721 | for (i = 1000; i && (priv->status & STATUS_SCANNING); i--) | |
8722 | udelay(10); | |
8723 | ||
8724 | if (priv->status & STATUS_SCANNING) | |
8725 | IPW_DEBUG_SCAN("Still scanning...\n"); | |
8726 | else | |
8727 | IPW_DEBUG_SCAN("Took %dms to abort current scan\n", | |
8728 | 1000 - i); | |
8729 | ||
8730 | return 0; | |
8731 | } | |
8732 | #endif /* CONFIG_IPW2200_MONITOR */ | |
8733 | ||
8734 | /* Network configuration changed -- force [re]association */ | |
8735 | IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n"); | |
8736 | if (!ipw_disassociate(priv)) | |
8737 | ipw_associate(priv); | |
8738 | ||
8739 | return 0; | |
8740 | } | |
8741 | ||
8742 | static int ipw_wx_set_freq(struct net_device *dev, | |
8743 | struct iw_request_info *info, | |
8744 | union iwreq_data *wrqu, char *extra) | |
8745 | { | |
8746 | struct ipw_priv *priv = libipw_priv(dev); | |
8747 | const struct libipw_geo *geo = libipw_get_geo(priv->ieee); | |
8748 | struct iw_freq *fwrq = &wrqu->freq; | |
8749 | int ret = 0, i; | |
8750 | u8 channel, flags; | |
8751 | int band; | |
8752 | ||
8753 | if (fwrq->m == 0) { | |
8754 | IPW_DEBUG_WX("SET Freq/Channel -> any\n"); | |
8755 | mutex_lock(&priv->mutex); | |
8756 | ret = ipw_set_channel(priv, 0); | |
8757 | mutex_unlock(&priv->mutex); | |
8758 | return ret; | |
8759 | } | |
8760 | /* if setting by freq convert to channel */ | |
8761 | if (fwrq->e == 1) { | |
8762 | channel = libipw_freq_to_channel(priv->ieee, fwrq->m); | |
8763 | if (channel == 0) | |
8764 | return -EINVAL; | |
8765 | } else | |
8766 | channel = fwrq->m; | |
8767 | ||
8768 | if (!(band = libipw_is_valid_channel(priv->ieee, channel))) | |
8769 | return -EINVAL; | |
8770 | ||
8771 | if (priv->ieee->iw_mode == IW_MODE_ADHOC) { | |
8772 | i = libipw_channel_to_index(priv->ieee, channel); | |
8773 | if (i == -1) | |
8774 | return -EINVAL; | |
8775 | ||
8776 | flags = (band == LIBIPW_24GHZ_BAND) ? | |
8777 | geo->bg[i].flags : geo->a[i].flags; | |
8778 | if (flags & LIBIPW_CH_PASSIVE_ONLY) { | |
8779 | IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n"); | |
8780 | return -EINVAL; | |
8781 | } | |
8782 | } | |
8783 | ||
8784 | IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m); | |
8785 | mutex_lock(&priv->mutex); | |
8786 | ret = ipw_set_channel(priv, channel); | |
8787 | mutex_unlock(&priv->mutex); | |
8788 | return ret; | |
8789 | } | |
8790 | ||
8791 | static int ipw_wx_get_freq(struct net_device *dev, | |
8792 | struct iw_request_info *info, | |
8793 | union iwreq_data *wrqu, char *extra) | |
8794 | { | |
8795 | struct ipw_priv *priv = libipw_priv(dev); | |
8796 | ||
8797 | wrqu->freq.e = 0; | |
8798 | ||
8799 | /* If we are associated, trying to associate, or have a statically | |
8800 | * configured CHANNEL then return that; otherwise return ANY */ | |
8801 | mutex_lock(&priv->mutex); | |
8802 | if (priv->config & CFG_STATIC_CHANNEL || | |
8803 | priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) { | |
8804 | int i; | |
8805 | ||
8806 | i = libipw_channel_to_index(priv->ieee, priv->channel); | |
8807 | BUG_ON(i == -1); | |
8808 | wrqu->freq.e = 1; | |
8809 | ||
8810 | switch (libipw_is_valid_channel(priv->ieee, priv->channel)) { | |
8811 | case LIBIPW_52GHZ_BAND: | |
8812 | wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000; | |
8813 | break; | |
8814 | ||
8815 | case LIBIPW_24GHZ_BAND: | |
8816 | wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000; | |
8817 | break; | |
8818 | ||
8819 | default: | |
8820 | BUG(); | |
8821 | } | |
8822 | } else | |
8823 | wrqu->freq.m = 0; | |
8824 | ||
8825 | mutex_unlock(&priv->mutex); | |
8826 | IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel); | |
8827 | return 0; | |
8828 | } | |
8829 | ||
8830 | static int ipw_wx_set_mode(struct net_device *dev, | |
8831 | struct iw_request_info *info, | |
8832 | union iwreq_data *wrqu, char *extra) | |
8833 | { | |
8834 | struct ipw_priv *priv = libipw_priv(dev); | |
8835 | int err = 0; | |
8836 | ||
8837 | IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode); | |
8838 | ||
8839 | switch (wrqu->mode) { | |
8840 | #ifdef CONFIG_IPW2200_MONITOR | |
8841 | case IW_MODE_MONITOR: | |
8842 | #endif | |
8843 | case IW_MODE_ADHOC: | |
8844 | case IW_MODE_INFRA: | |
8845 | break; | |
8846 | case IW_MODE_AUTO: | |
8847 | wrqu->mode = IW_MODE_INFRA; | |
8848 | break; | |
8849 | default: | |
8850 | return -EINVAL; | |
8851 | } | |
8852 | if (wrqu->mode == priv->ieee->iw_mode) | |
8853 | return 0; | |
8854 | ||
8855 | mutex_lock(&priv->mutex); | |
8856 | ||
8857 | ipw_sw_reset(priv, 0); | |
8858 | ||
8859 | #ifdef CONFIG_IPW2200_MONITOR | |
8860 | if (priv->ieee->iw_mode == IW_MODE_MONITOR) | |
8861 | priv->net_dev->type = ARPHRD_ETHER; | |
8862 | ||
8863 | if (wrqu->mode == IW_MODE_MONITOR) | |
8864 | #ifdef CONFIG_IPW2200_RADIOTAP | |
8865 | priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; | |
8866 | #else | |
8867 | priv->net_dev->type = ARPHRD_IEEE80211; | |
8868 | #endif | |
8869 | #endif /* CONFIG_IPW2200_MONITOR */ | |
8870 | ||
8871 | /* Free the existing firmware and reset the fw_loaded | |
8872 | * flag so ipw_load() will bring in the new firmware */ | |
8873 | free_firmware(); | |
8874 | ||
8875 | priv->ieee->iw_mode = wrqu->mode; | |
8876 | ||
8877 | schedule_work(&priv->adapter_restart); | |
8878 | mutex_unlock(&priv->mutex); | |
8879 | return err; | |
8880 | } | |
8881 | ||
8882 | static int ipw_wx_get_mode(struct net_device *dev, | |
8883 | struct iw_request_info *info, | |
8884 | union iwreq_data *wrqu, char *extra) | |
8885 | { | |
8886 | struct ipw_priv *priv = libipw_priv(dev); | |
8887 | mutex_lock(&priv->mutex); | |
8888 | wrqu->mode = priv->ieee->iw_mode; | |
8889 | IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode); | |
8890 | mutex_unlock(&priv->mutex); | |
8891 | return 0; | |
8892 | } | |
8893 | ||
8894 | /* Values are in microsecond */ | |
8895 | static const s32 timeout_duration[] = { | |
8896 | 350000, | |
8897 | 250000, | |
8898 | 75000, | |
8899 | 37000, | |
8900 | 25000, | |
8901 | }; | |
8902 | ||
8903 | static const s32 period_duration[] = { | |
8904 | 400000, | |
8905 | 700000, | |
8906 | 1000000, | |
8907 | 1000000, | |
8908 | 1000000 | |
8909 | }; | |
8910 | ||
8911 | static int ipw_wx_get_range(struct net_device *dev, | |
8912 | struct iw_request_info *info, | |
8913 | union iwreq_data *wrqu, char *extra) | |
8914 | { | |
8915 | struct ipw_priv *priv = libipw_priv(dev); | |
8916 | struct iw_range *range = (struct iw_range *)extra; | |
8917 | const struct libipw_geo *geo = libipw_get_geo(priv->ieee); | |
8918 | int i = 0, j; | |
8919 | ||
8920 | wrqu->data.length = sizeof(*range); | |
8921 | memset(range, 0, sizeof(*range)); | |
8922 | ||
8923 | /* 54Mbs == ~27 Mb/s real (802.11g) */ | |
8924 | range->throughput = 27 * 1000 * 1000; | |
8925 | ||
8926 | range->max_qual.qual = 100; | |
8927 | /* TODO: Find real max RSSI and stick here */ | |
8928 | range->max_qual.level = 0; | |
8929 | range->max_qual.noise = 0; | |
8930 | range->max_qual.updated = 7; /* Updated all three */ | |
8931 | ||
8932 | range->avg_qual.qual = 70; | |
8933 | /* TODO: Find real 'good' to 'bad' threshold value for RSSI */ | |
8934 | range->avg_qual.level = 0; /* FIXME to real average level */ | |
8935 | range->avg_qual.noise = 0; | |
8936 | range->avg_qual.updated = 7; /* Updated all three */ | |
8937 | mutex_lock(&priv->mutex); | |
8938 | range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES); | |
8939 | ||
8940 | for (i = 0; i < range->num_bitrates; i++) | |
8941 | range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) * | |
8942 | 500000; | |
8943 | ||
8944 | range->max_rts = DEFAULT_RTS_THRESHOLD; | |
8945 | range->min_frag = MIN_FRAG_THRESHOLD; | |
8946 | range->max_frag = MAX_FRAG_THRESHOLD; | |
8947 | ||
8948 | range->encoding_size[0] = 5; | |
8949 | range->encoding_size[1] = 13; | |
8950 | range->num_encoding_sizes = 2; | |
8951 | range->max_encoding_tokens = WEP_KEYS; | |
8952 | ||
8953 | /* Set the Wireless Extension versions */ | |
8954 | range->we_version_compiled = WIRELESS_EXT; | |
8955 | range->we_version_source = 18; | |
8956 | ||
8957 | i = 0; | |
8958 | if (priv->ieee->mode & (IEEE_B | IEEE_G)) { | |
8959 | for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) { | |
8960 | if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && | |
8961 | (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY)) | |
8962 | continue; | |
8963 | ||
8964 | range->freq[i].i = geo->bg[j].channel; | |
8965 | range->freq[i].m = geo->bg[j].freq * 100000; | |
8966 | range->freq[i].e = 1; | |
8967 | i++; | |
8968 | } | |
8969 | } | |
8970 | ||
8971 | if (priv->ieee->mode & IEEE_A) { | |
8972 | for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) { | |
8973 | if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && | |
8974 | (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY)) | |
8975 | continue; | |
8976 | ||
8977 | range->freq[i].i = geo->a[j].channel; | |
8978 | range->freq[i].m = geo->a[j].freq * 100000; | |
8979 | range->freq[i].e = 1; | |
8980 | i++; | |
8981 | } | |
8982 | } | |
8983 | ||
8984 | range->num_channels = i; | |
8985 | range->num_frequency = i; | |
8986 | ||
8987 | mutex_unlock(&priv->mutex); | |
8988 | ||
8989 | /* Event capability (kernel + driver) */ | |
8990 | range->event_capa[0] = (IW_EVENT_CAPA_K_0 | | |
8991 | IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) | | |
8992 | IW_EVENT_CAPA_MASK(SIOCGIWAP) | | |
8993 | IW_EVENT_CAPA_MASK(SIOCGIWSCAN)); | |
8994 | range->event_capa[1] = IW_EVENT_CAPA_K_1; | |
8995 | ||
8996 | range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 | | |
8997 | IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP; | |
8998 | ||
8999 | range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE; | |
9000 | ||
9001 | IPW_DEBUG_WX("GET Range\n"); | |
9002 | return 0; | |
9003 | } | |
9004 | ||
9005 | static int ipw_wx_set_wap(struct net_device *dev, | |
9006 | struct iw_request_info *info, | |
9007 | union iwreq_data *wrqu, char *extra) | |
9008 | { | |
9009 | struct ipw_priv *priv = libipw_priv(dev); | |
9010 | ||
9011 | static const unsigned char any[] = { | |
9012 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff | |
9013 | }; | |
9014 | static const unsigned char off[] = { | |
9015 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 | |
9016 | }; | |
9017 | ||
9018 | if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) | |
9019 | return -EINVAL; | |
9020 | mutex_lock(&priv->mutex); | |
9021 | if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) || | |
9022 | !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) { | |
9023 | /* we disable mandatory BSSID association */ | |
9024 | IPW_DEBUG_WX("Setting AP BSSID to ANY\n"); | |
9025 | priv->config &= ~CFG_STATIC_BSSID; | |
9026 | IPW_DEBUG_ASSOC("Attempting to associate with new " | |
9027 | "parameters.\n"); | |
9028 | ipw_associate(priv); | |
9029 | mutex_unlock(&priv->mutex); | |
9030 | return 0; | |
9031 | } | |
9032 | ||
9033 | priv->config |= CFG_STATIC_BSSID; | |
9034 | if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) { | |
9035 | IPW_DEBUG_WX("BSSID set to current BSSID.\n"); | |
9036 | mutex_unlock(&priv->mutex); | |
9037 | return 0; | |
9038 | } | |
9039 | ||
9040 | IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n", | |
9041 | wrqu->ap_addr.sa_data); | |
9042 | ||
9043 | memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN); | |
9044 | ||
9045 | /* Network configuration changed -- force [re]association */ | |
9046 | IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n"); | |
9047 | if (!ipw_disassociate(priv)) | |
9048 | ipw_associate(priv); | |
9049 | ||
9050 | mutex_unlock(&priv->mutex); | |
9051 | return 0; | |
9052 | } | |
9053 | ||
9054 | static int ipw_wx_get_wap(struct net_device *dev, | |
9055 | struct iw_request_info *info, | |
9056 | union iwreq_data *wrqu, char *extra) | |
9057 | { | |
9058 | struct ipw_priv *priv = libipw_priv(dev); | |
9059 | ||
9060 | /* If we are associated, trying to associate, or have a statically | |
9061 | * configured BSSID then return that; otherwise return ANY */ | |
9062 | mutex_lock(&priv->mutex); | |
9063 | if (priv->config & CFG_STATIC_BSSID || | |
9064 | priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { | |
9065 | wrqu->ap_addr.sa_family = ARPHRD_ETHER; | |
9066 | memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN); | |
9067 | } else | |
9068 | memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN); | |
9069 | ||
9070 | IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", | |
9071 | wrqu->ap_addr.sa_data); | |
9072 | mutex_unlock(&priv->mutex); | |
9073 | return 0; | |
9074 | } | |
9075 | ||
9076 | static int ipw_wx_set_essid(struct net_device *dev, | |
9077 | struct iw_request_info *info, | |
9078 | union iwreq_data *wrqu, char *extra) | |
9079 | { | |
9080 | struct ipw_priv *priv = libipw_priv(dev); | |
9081 | int length; | |
9082 | DECLARE_SSID_BUF(ssid); | |
9083 | ||
9084 | mutex_lock(&priv->mutex); | |
9085 | ||
9086 | if (!wrqu->essid.flags) | |
9087 | { | |
9088 | IPW_DEBUG_WX("Setting ESSID to ANY\n"); | |
9089 | ipw_disassociate(priv); | |
9090 | priv->config &= ~CFG_STATIC_ESSID; | |
9091 | ipw_associate(priv); | |
9092 | mutex_unlock(&priv->mutex); | |
9093 | return 0; | |
9094 | } | |
9095 | ||
9096 | length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE); | |
9097 | ||
9098 | priv->config |= CFG_STATIC_ESSID; | |
9099 | ||
9100 | if (priv->essid_len == length && !memcmp(priv->essid, extra, length) | |
9101 | && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) { | |
9102 | IPW_DEBUG_WX("ESSID set to current ESSID.\n"); | |
9103 | mutex_unlock(&priv->mutex); | |
9104 | return 0; | |
9105 | } | |
9106 | ||
9107 | IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", | |
9108 | print_ssid(ssid, extra, length), length); | |
9109 | ||
9110 | priv->essid_len = length; | |
9111 | memcpy(priv->essid, extra, priv->essid_len); | |
9112 | ||
9113 | /* Network configuration changed -- force [re]association */ | |
9114 | IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n"); | |
9115 | if (!ipw_disassociate(priv)) | |
9116 | ipw_associate(priv); | |
9117 | ||
9118 | mutex_unlock(&priv->mutex); | |
9119 | return 0; | |
9120 | } | |
9121 | ||
9122 | static int ipw_wx_get_essid(struct net_device *dev, | |
9123 | struct iw_request_info *info, | |
9124 | union iwreq_data *wrqu, char *extra) | |
9125 | { | |
9126 | struct ipw_priv *priv = libipw_priv(dev); | |
9127 | DECLARE_SSID_BUF(ssid); | |
9128 | ||
9129 | /* If we are associated, trying to associate, or have a statically | |
9130 | * configured ESSID then return that; otherwise return ANY */ | |
9131 | mutex_lock(&priv->mutex); | |
9132 | if (priv->config & CFG_STATIC_ESSID || | |
9133 | priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { | |
9134 | IPW_DEBUG_WX("Getting essid: '%s'\n", | |
9135 | print_ssid(ssid, priv->essid, priv->essid_len)); | |
9136 | memcpy(extra, priv->essid, priv->essid_len); | |
9137 | wrqu->essid.length = priv->essid_len; | |
9138 | wrqu->essid.flags = 1; /* active */ | |
9139 | } else { | |
9140 | IPW_DEBUG_WX("Getting essid: ANY\n"); | |
9141 | wrqu->essid.length = 0; | |
9142 | wrqu->essid.flags = 0; /* active */ | |
9143 | } | |
9144 | mutex_unlock(&priv->mutex); | |
9145 | return 0; | |
9146 | } | |
9147 | ||
9148 | static int ipw_wx_set_nick(struct net_device *dev, | |
9149 | struct iw_request_info *info, | |
9150 | union iwreq_data *wrqu, char *extra) | |
9151 | { | |
9152 | struct ipw_priv *priv = libipw_priv(dev); | |
9153 | ||
9154 | IPW_DEBUG_WX("Setting nick to '%s'\n", extra); | |
9155 | if (wrqu->data.length > IW_ESSID_MAX_SIZE) | |
9156 | return -E2BIG; | |
9157 | mutex_lock(&priv->mutex); | |
9158 | wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick)); | |
9159 | memset(priv->nick, 0, sizeof(priv->nick)); | |
9160 | memcpy(priv->nick, extra, wrqu->data.length); | |
9161 | IPW_DEBUG_TRACE("<<\n"); | |
9162 | mutex_unlock(&priv->mutex); | |
9163 | return 0; | |
9164 | ||
9165 | } | |
9166 | ||
9167 | static int ipw_wx_get_nick(struct net_device *dev, | |
9168 | struct iw_request_info *info, | |
9169 | union iwreq_data *wrqu, char *extra) | |
9170 | { | |
9171 | struct ipw_priv *priv = libipw_priv(dev); | |
9172 | IPW_DEBUG_WX("Getting nick\n"); | |
9173 | mutex_lock(&priv->mutex); | |
9174 | wrqu->data.length = strlen(priv->nick); | |
9175 | memcpy(extra, priv->nick, wrqu->data.length); | |
9176 | wrqu->data.flags = 1; /* active */ | |
9177 | mutex_unlock(&priv->mutex); | |
9178 | return 0; | |
9179 | } | |
9180 | ||
9181 | static int ipw_wx_set_sens(struct net_device *dev, | |
9182 | struct iw_request_info *info, | |
9183 | union iwreq_data *wrqu, char *extra) | |
9184 | { | |
9185 | struct ipw_priv *priv = libipw_priv(dev); | |
9186 | int err = 0; | |
9187 | ||
9188 | IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value); | |
9189 | IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value); | |
9190 | mutex_lock(&priv->mutex); | |
9191 | ||
9192 | if (wrqu->sens.fixed == 0) | |
9193 | { | |
9194 | priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT; | |
9195 | priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT; | |
9196 | goto out; | |
9197 | } | |
9198 | if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) || | |
9199 | (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) { | |
9200 | err = -EINVAL; | |
9201 | goto out; | |
9202 | } | |
9203 | ||
9204 | priv->roaming_threshold = wrqu->sens.value; | |
9205 | priv->disassociate_threshold = 3*wrqu->sens.value; | |
9206 | out: | |
9207 | mutex_unlock(&priv->mutex); | |
9208 | return err; | |
9209 | } | |
9210 | ||
9211 | static int ipw_wx_get_sens(struct net_device *dev, | |
9212 | struct iw_request_info *info, | |
9213 | union iwreq_data *wrqu, char *extra) | |
9214 | { | |
9215 | struct ipw_priv *priv = libipw_priv(dev); | |
9216 | mutex_lock(&priv->mutex); | |
9217 | wrqu->sens.fixed = 1; | |
9218 | wrqu->sens.value = priv->roaming_threshold; | |
9219 | mutex_unlock(&priv->mutex); | |
9220 | ||
9221 | IPW_DEBUG_WX("GET roaming threshold -> %s %d\n", | |
9222 | wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value); | |
9223 | ||
9224 | return 0; | |
9225 | } | |
9226 | ||
9227 | static int ipw_wx_set_rate(struct net_device *dev, | |
9228 | struct iw_request_info *info, | |
9229 | union iwreq_data *wrqu, char *extra) | |
9230 | { | |
9231 | /* TODO: We should use semaphores or locks for access to priv */ | |
9232 | struct ipw_priv *priv = libipw_priv(dev); | |
9233 | u32 target_rate = wrqu->bitrate.value; | |
9234 | u32 fixed, mask; | |
9235 | ||
9236 | /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */ | |
9237 | /* value = X, fixed = 1 means only rate X */ | |
9238 | /* value = X, fixed = 0 means all rates lower equal X */ | |
9239 | ||
9240 | if (target_rate == -1) { | |
9241 | fixed = 0; | |
9242 | mask = LIBIPW_DEFAULT_RATES_MASK; | |
9243 | /* Now we should reassociate */ | |
9244 | goto apply; | |
9245 | } | |
9246 | ||
9247 | mask = 0; | |
9248 | fixed = wrqu->bitrate.fixed; | |
9249 | ||
9250 | if (target_rate == 1000000 || !fixed) | |
9251 | mask |= LIBIPW_CCK_RATE_1MB_MASK; | |
9252 | if (target_rate == 1000000) | |
9253 | goto apply; | |
9254 | ||
9255 | if (target_rate == 2000000 || !fixed) | |
9256 | mask |= LIBIPW_CCK_RATE_2MB_MASK; | |
9257 | if (target_rate == 2000000) | |
9258 | goto apply; | |
9259 | ||
9260 | if (target_rate == 5500000 || !fixed) | |
9261 | mask |= LIBIPW_CCK_RATE_5MB_MASK; | |
9262 | if (target_rate == 5500000) | |
9263 | goto apply; | |
9264 | ||
9265 | if (target_rate == 6000000 || !fixed) | |
9266 | mask |= LIBIPW_OFDM_RATE_6MB_MASK; | |
9267 | if (target_rate == 6000000) | |
9268 | goto apply; | |
9269 | ||
9270 | if (target_rate == 9000000 || !fixed) | |
9271 | mask |= LIBIPW_OFDM_RATE_9MB_MASK; | |
9272 | if (target_rate == 9000000) | |
9273 | goto apply; | |
9274 | ||
9275 | if (target_rate == 11000000 || !fixed) | |
9276 | mask |= LIBIPW_CCK_RATE_11MB_MASK; | |
9277 | if (target_rate == 11000000) | |
9278 | goto apply; | |
9279 | ||
9280 | if (target_rate == 12000000 || !fixed) | |
9281 | mask |= LIBIPW_OFDM_RATE_12MB_MASK; | |
9282 | if (target_rate == 12000000) | |
9283 | goto apply; | |
9284 | ||
9285 | if (target_rate == 18000000 || !fixed) | |
9286 | mask |= LIBIPW_OFDM_RATE_18MB_MASK; | |
9287 | if (target_rate == 18000000) | |
9288 | goto apply; | |
9289 | ||
9290 | if (target_rate == 24000000 || !fixed) | |
9291 | mask |= LIBIPW_OFDM_RATE_24MB_MASK; | |
9292 | if (target_rate == 24000000) | |
9293 | goto apply; | |
9294 | ||
9295 | if (target_rate == 36000000 || !fixed) | |
9296 | mask |= LIBIPW_OFDM_RATE_36MB_MASK; | |
9297 | if (target_rate == 36000000) | |
9298 | goto apply; | |
9299 | ||
9300 | if (target_rate == 48000000 || !fixed) | |
9301 | mask |= LIBIPW_OFDM_RATE_48MB_MASK; | |
9302 | if (target_rate == 48000000) | |
9303 | goto apply; | |
9304 | ||
9305 | if (target_rate == 54000000 || !fixed) | |
9306 | mask |= LIBIPW_OFDM_RATE_54MB_MASK; | |
9307 | if (target_rate == 54000000) | |
9308 | goto apply; | |
9309 | ||
9310 | IPW_DEBUG_WX("invalid rate specified, returning error\n"); | |
9311 | return -EINVAL; | |
9312 | ||
9313 | apply: | |
9314 | IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n", | |
9315 | mask, fixed ? "fixed" : "sub-rates"); | |
9316 | mutex_lock(&priv->mutex); | |
9317 | if (mask == LIBIPW_DEFAULT_RATES_MASK) { | |
9318 | priv->config &= ~CFG_FIXED_RATE; | |
9319 | ipw_set_fixed_rate(priv, priv->ieee->mode); | |
9320 | } else | |
9321 | priv->config |= CFG_FIXED_RATE; | |
9322 | ||
9323 | if (priv->rates_mask == mask) { | |
9324 | IPW_DEBUG_WX("Mask set to current mask.\n"); | |
9325 | mutex_unlock(&priv->mutex); | |
9326 | return 0; | |
9327 | } | |
9328 | ||
9329 | priv->rates_mask = mask; | |
9330 | ||
9331 | /* Network configuration changed -- force [re]association */ | |
9332 | IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n"); | |
9333 | if (!ipw_disassociate(priv)) | |
9334 | ipw_associate(priv); | |
9335 | ||
9336 | mutex_unlock(&priv->mutex); | |
9337 | return 0; | |
9338 | } | |
9339 | ||
9340 | static int ipw_wx_get_rate(struct net_device *dev, | |
9341 | struct iw_request_info *info, | |
9342 | union iwreq_data *wrqu, char *extra) | |
9343 | { | |
9344 | struct ipw_priv *priv = libipw_priv(dev); | |
9345 | mutex_lock(&priv->mutex); | |
9346 | wrqu->bitrate.value = priv->last_rate; | |
9347 | wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0; | |
9348 | mutex_unlock(&priv->mutex); | |
9349 | IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value); | |
9350 | return 0; | |
9351 | } | |
9352 | ||
9353 | static int ipw_wx_set_rts(struct net_device *dev, | |
9354 | struct iw_request_info *info, | |
9355 | union iwreq_data *wrqu, char *extra) | |
9356 | { | |
9357 | struct ipw_priv *priv = libipw_priv(dev); | |
9358 | mutex_lock(&priv->mutex); | |
9359 | if (wrqu->rts.disabled || !wrqu->rts.fixed) | |
9360 | priv->rts_threshold = DEFAULT_RTS_THRESHOLD; | |
9361 | else { | |
9362 | if (wrqu->rts.value < MIN_RTS_THRESHOLD || | |
9363 | wrqu->rts.value > MAX_RTS_THRESHOLD) { | |
9364 | mutex_unlock(&priv->mutex); | |
9365 | return -EINVAL; | |
9366 | } | |
9367 | priv->rts_threshold = wrqu->rts.value; | |
9368 | } | |
9369 | ||
9370 | ipw_send_rts_threshold(priv, priv->rts_threshold); | |
9371 | mutex_unlock(&priv->mutex); | |
9372 | IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold); | |
9373 | return 0; | |
9374 | } | |
9375 | ||
9376 | static int ipw_wx_get_rts(struct net_device *dev, | |
9377 | struct iw_request_info *info, | |
9378 | union iwreq_data *wrqu, char *extra) | |
9379 | { | |
9380 | struct ipw_priv *priv = libipw_priv(dev); | |
9381 | mutex_lock(&priv->mutex); | |
9382 | wrqu->rts.value = priv->rts_threshold; | |
9383 | wrqu->rts.fixed = 0; /* no auto select */ | |
9384 | wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD); | |
9385 | mutex_unlock(&priv->mutex); | |
9386 | IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value); | |
9387 | return 0; | |
9388 | } | |
9389 | ||
9390 | static int ipw_wx_set_txpow(struct net_device *dev, | |
9391 | struct iw_request_info *info, | |
9392 | union iwreq_data *wrqu, char *extra) | |
9393 | { | |
9394 | struct ipw_priv *priv = libipw_priv(dev); | |
9395 | int err = 0; | |
9396 | ||
9397 | mutex_lock(&priv->mutex); | |
9398 | if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) { | |
9399 | err = -EINPROGRESS; | |
9400 | goto out; | |
9401 | } | |
9402 | ||
9403 | if (!wrqu->power.fixed) | |
9404 | wrqu->power.value = IPW_TX_POWER_DEFAULT; | |
9405 | ||
9406 | if (wrqu->power.flags != IW_TXPOW_DBM) { | |
9407 | err = -EINVAL; | |
9408 | goto out; | |
9409 | } | |
9410 | ||
9411 | if ((wrqu->power.value > IPW_TX_POWER_MAX) || | |
9412 | (wrqu->power.value < IPW_TX_POWER_MIN)) { | |
9413 | err = -EINVAL; | |
9414 | goto out; | |
9415 | } | |
9416 | ||
9417 | priv->tx_power = wrqu->power.value; | |
9418 | err = ipw_set_tx_power(priv); | |
9419 | out: | |
9420 | mutex_unlock(&priv->mutex); | |
9421 | return err; | |
9422 | } | |
9423 | ||
9424 | static int ipw_wx_get_txpow(struct net_device *dev, | |
9425 | struct iw_request_info *info, | |
9426 | union iwreq_data *wrqu, char *extra) | |
9427 | { | |
9428 | struct ipw_priv *priv = libipw_priv(dev); | |
9429 | mutex_lock(&priv->mutex); | |
9430 | wrqu->power.value = priv->tx_power; | |
9431 | wrqu->power.fixed = 1; | |
9432 | wrqu->power.flags = IW_TXPOW_DBM; | |
9433 | wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; | |
9434 | mutex_unlock(&priv->mutex); | |
9435 | ||
9436 | IPW_DEBUG_WX("GET TX Power -> %s %d\n", | |
9437 | wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value); | |
9438 | ||
9439 | return 0; | |
9440 | } | |
9441 | ||
9442 | static int ipw_wx_set_frag(struct net_device *dev, | |
9443 | struct iw_request_info *info, | |
9444 | union iwreq_data *wrqu, char *extra) | |
9445 | { | |
9446 | struct ipw_priv *priv = libipw_priv(dev); | |
9447 | mutex_lock(&priv->mutex); | |
9448 | if (wrqu->frag.disabled || !wrqu->frag.fixed) | |
9449 | priv->ieee->fts = DEFAULT_FTS; | |
9450 | else { | |
9451 | if (wrqu->frag.value < MIN_FRAG_THRESHOLD || | |
9452 | wrqu->frag.value > MAX_FRAG_THRESHOLD) { | |
9453 | mutex_unlock(&priv->mutex); | |
9454 | return -EINVAL; | |
9455 | } | |
9456 | ||
9457 | priv->ieee->fts = wrqu->frag.value & ~0x1; | |
9458 | } | |
9459 | ||
9460 | ipw_send_frag_threshold(priv, wrqu->frag.value); | |
9461 | mutex_unlock(&priv->mutex); | |
9462 | IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value); | |
9463 | return 0; | |
9464 | } | |
9465 | ||
9466 | static int ipw_wx_get_frag(struct net_device *dev, | |
9467 | struct iw_request_info *info, | |
9468 | union iwreq_data *wrqu, char *extra) | |
9469 | { | |
9470 | struct ipw_priv *priv = libipw_priv(dev); | |
9471 | mutex_lock(&priv->mutex); | |
9472 | wrqu->frag.value = priv->ieee->fts; | |
9473 | wrqu->frag.fixed = 0; /* no auto select */ | |
9474 | wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS); | |
9475 | mutex_unlock(&priv->mutex); | |
9476 | IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value); | |
9477 | ||
9478 | return 0; | |
9479 | } | |
9480 | ||
9481 | static int ipw_wx_set_retry(struct net_device *dev, | |
9482 | struct iw_request_info *info, | |
9483 | union iwreq_data *wrqu, char *extra) | |
9484 | { | |
9485 | struct ipw_priv *priv = libipw_priv(dev); | |
9486 | ||
9487 | if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled) | |
9488 | return -EINVAL; | |
9489 | ||
9490 | if (!(wrqu->retry.flags & IW_RETRY_LIMIT)) | |
9491 | return 0; | |
9492 | ||
9493 | if (wrqu->retry.value < 0 || wrqu->retry.value >= 255) | |
9494 | return -EINVAL; | |
9495 | ||
9496 | mutex_lock(&priv->mutex); | |
9497 | if (wrqu->retry.flags & IW_RETRY_SHORT) | |
9498 | priv->short_retry_limit = (u8) wrqu->retry.value; | |
9499 | else if (wrqu->retry.flags & IW_RETRY_LONG) | |
9500 | priv->long_retry_limit = (u8) wrqu->retry.value; | |
9501 | else { | |
9502 | priv->short_retry_limit = (u8) wrqu->retry.value; | |
9503 | priv->long_retry_limit = (u8) wrqu->retry.value; | |
9504 | } | |
9505 | ||
9506 | ipw_send_retry_limit(priv, priv->short_retry_limit, | |
9507 | priv->long_retry_limit); | |
9508 | mutex_unlock(&priv->mutex); | |
9509 | IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n", | |
9510 | priv->short_retry_limit, priv->long_retry_limit); | |
9511 | return 0; | |
9512 | } | |
9513 | ||
9514 | static int ipw_wx_get_retry(struct net_device *dev, | |
9515 | struct iw_request_info *info, | |
9516 | union iwreq_data *wrqu, char *extra) | |
9517 | { | |
9518 | struct ipw_priv *priv = libipw_priv(dev); | |
9519 | ||
9520 | mutex_lock(&priv->mutex); | |
9521 | wrqu->retry.disabled = 0; | |
9522 | ||
9523 | if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) { | |
9524 | mutex_unlock(&priv->mutex); | |
9525 | return -EINVAL; | |
9526 | } | |
9527 | ||
9528 | if (wrqu->retry.flags & IW_RETRY_LONG) { | |
9529 | wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG; | |
9530 | wrqu->retry.value = priv->long_retry_limit; | |
9531 | } else if (wrqu->retry.flags & IW_RETRY_SHORT) { | |
9532 | wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT; | |
9533 | wrqu->retry.value = priv->short_retry_limit; | |
9534 | } else { | |
9535 | wrqu->retry.flags = IW_RETRY_LIMIT; | |
9536 | wrqu->retry.value = priv->short_retry_limit; | |
9537 | } | |
9538 | mutex_unlock(&priv->mutex); | |
9539 | ||
9540 | IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value); | |
9541 | ||
9542 | return 0; | |
9543 | } | |
9544 | ||
9545 | static int ipw_wx_set_scan(struct net_device *dev, | |
9546 | struct iw_request_info *info, | |
9547 | union iwreq_data *wrqu, char *extra) | |
9548 | { | |
9549 | struct ipw_priv *priv = libipw_priv(dev); | |
9550 | struct iw_scan_req *req = (struct iw_scan_req *)extra; | |
9551 | struct delayed_work *work = NULL; | |
9552 | ||
9553 | mutex_lock(&priv->mutex); | |
9554 | ||
9555 | priv->user_requested_scan = 1; | |
9556 | ||
9557 | if (wrqu->data.length == sizeof(struct iw_scan_req)) { | |
9558 | if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { | |
9559 | int len = min((int)req->essid_len, | |
9560 | (int)sizeof(priv->direct_scan_ssid)); | |
9561 | memcpy(priv->direct_scan_ssid, req->essid, len); | |
9562 | priv->direct_scan_ssid_len = len; | |
9563 | work = &priv->request_direct_scan; | |
9564 | } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) { | |
9565 | work = &priv->request_passive_scan; | |
9566 | } | |
9567 | } else { | |
9568 | /* Normal active broadcast scan */ | |
9569 | work = &priv->request_scan; | |
9570 | } | |
9571 | ||
9572 | mutex_unlock(&priv->mutex); | |
9573 | ||
9574 | IPW_DEBUG_WX("Start scan\n"); | |
9575 | ||
9576 | schedule_delayed_work(work, 0); | |
9577 | ||
9578 | return 0; | |
9579 | } | |
9580 | ||
9581 | static int ipw_wx_get_scan(struct net_device *dev, | |
9582 | struct iw_request_info *info, | |
9583 | union iwreq_data *wrqu, char *extra) | |
9584 | { | |
9585 | struct ipw_priv *priv = libipw_priv(dev); | |
9586 | return libipw_wx_get_scan(priv->ieee, info, wrqu, extra); | |
9587 | } | |
9588 | ||
9589 | static int ipw_wx_set_encode(struct net_device *dev, | |
9590 | struct iw_request_info *info, | |
9591 | union iwreq_data *wrqu, char *key) | |
9592 | { | |
9593 | struct ipw_priv *priv = libipw_priv(dev); | |
9594 | int ret; | |
9595 | u32 cap = priv->capability; | |
9596 | ||
9597 | mutex_lock(&priv->mutex); | |
9598 | ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key); | |
9599 | ||
9600 | /* In IBSS mode, we need to notify the firmware to update | |
9601 | * the beacon info after we changed the capability. */ | |
9602 | if (cap != priv->capability && | |
9603 | priv->ieee->iw_mode == IW_MODE_ADHOC && | |
9604 | priv->status & STATUS_ASSOCIATED) | |
9605 | ipw_disassociate(priv); | |
9606 | ||
9607 | mutex_unlock(&priv->mutex); | |
9608 | return ret; | |
9609 | } | |
9610 | ||
9611 | static int ipw_wx_get_encode(struct net_device *dev, | |
9612 | struct iw_request_info *info, | |
9613 | union iwreq_data *wrqu, char *key) | |
9614 | { | |
9615 | struct ipw_priv *priv = libipw_priv(dev); | |
9616 | return libipw_wx_get_encode(priv->ieee, info, wrqu, key); | |
9617 | } | |
9618 | ||
9619 | static int ipw_wx_set_power(struct net_device *dev, | |
9620 | struct iw_request_info *info, | |
9621 | union iwreq_data *wrqu, char *extra) | |
9622 | { | |
9623 | struct ipw_priv *priv = libipw_priv(dev); | |
9624 | int err; | |
9625 | mutex_lock(&priv->mutex); | |
9626 | if (wrqu->power.disabled) { | |
9627 | priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); | |
9628 | err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM); | |
9629 | if (err) { | |
9630 | IPW_DEBUG_WX("failed setting power mode.\n"); | |
9631 | mutex_unlock(&priv->mutex); | |
9632 | return err; | |
9633 | } | |
9634 | IPW_DEBUG_WX("SET Power Management Mode -> off\n"); | |
9635 | mutex_unlock(&priv->mutex); | |
9636 | return 0; | |
9637 | } | |
9638 | ||
9639 | switch (wrqu->power.flags & IW_POWER_MODE) { | |
9640 | case IW_POWER_ON: /* If not specified */ | |
9641 | case IW_POWER_MODE: /* If set all mask */ | |
9642 | case IW_POWER_ALL_R: /* If explicitly state all */ | |
9643 | break; | |
9644 | default: /* Otherwise we don't support it */ | |
9645 | IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", | |
9646 | wrqu->power.flags); | |
9647 | mutex_unlock(&priv->mutex); | |
9648 | return -EOPNOTSUPP; | |
9649 | } | |
9650 | ||
9651 | /* If the user hasn't specified a power management mode yet, default | |
9652 | * to BATTERY */ | |
9653 | if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC) | |
9654 | priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY; | |
9655 | else | |
9656 | priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; | |
9657 | ||
9658 | err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); | |
9659 | if (err) { | |
9660 | IPW_DEBUG_WX("failed setting power mode.\n"); | |
9661 | mutex_unlock(&priv->mutex); | |
9662 | return err; | |
9663 | } | |
9664 | ||
9665 | IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode); | |
9666 | mutex_unlock(&priv->mutex); | |
9667 | return 0; | |
9668 | } | |
9669 | ||
9670 | static int ipw_wx_get_power(struct net_device *dev, | |
9671 | struct iw_request_info *info, | |
9672 | union iwreq_data *wrqu, char *extra) | |
9673 | { | |
9674 | struct ipw_priv *priv = libipw_priv(dev); | |
9675 | mutex_lock(&priv->mutex); | |
9676 | if (!(priv->power_mode & IPW_POWER_ENABLED)) | |
9677 | wrqu->power.disabled = 1; | |
9678 | else | |
9679 | wrqu->power.disabled = 0; | |
9680 | ||
9681 | mutex_unlock(&priv->mutex); | |
9682 | IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); | |
9683 | ||
9684 | return 0; | |
9685 | } | |
9686 | ||
9687 | static int ipw_wx_set_powermode(struct net_device *dev, | |
9688 | struct iw_request_info *info, | |
9689 | union iwreq_data *wrqu, char *extra) | |
9690 | { | |
9691 | struct ipw_priv *priv = libipw_priv(dev); | |
9692 | int mode = *(int *)extra; | |
9693 | int err; | |
9694 | ||
9695 | mutex_lock(&priv->mutex); | |
9696 | if ((mode < 1) || (mode > IPW_POWER_LIMIT)) | |
9697 | mode = IPW_POWER_AC; | |
9698 | ||
9699 | if (IPW_POWER_LEVEL(priv->power_mode) != mode) { | |
9700 | err = ipw_send_power_mode(priv, mode); | |
9701 | if (err) { | |
9702 | IPW_DEBUG_WX("failed setting power mode.\n"); | |
9703 | mutex_unlock(&priv->mutex); | |
9704 | return err; | |
9705 | } | |
9706 | priv->power_mode = IPW_POWER_ENABLED | mode; | |
9707 | } | |
9708 | mutex_unlock(&priv->mutex); | |
9709 | return 0; | |
9710 | } | |
9711 | ||
9712 | #define MAX_WX_STRING 80 | |
9713 | static int ipw_wx_get_powermode(struct net_device *dev, | |
9714 | struct iw_request_info *info, | |
9715 | union iwreq_data *wrqu, char *extra) | |
9716 | { | |
9717 | struct ipw_priv *priv = libipw_priv(dev); | |
9718 | int level = IPW_POWER_LEVEL(priv->power_mode); | |
9719 | char *p = extra; | |
9720 | ||
9721 | p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level); | |
9722 | ||
9723 | switch (level) { | |
9724 | case IPW_POWER_AC: | |
9725 | p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)"); | |
9726 | break; | |
9727 | case IPW_POWER_BATTERY: | |
9728 | p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)"); | |
9729 | break; | |
9730 | default: | |
9731 | p += snprintf(p, MAX_WX_STRING - (p - extra), | |
9732 | "(Timeout %dms, Period %dms)", | |
9733 | timeout_duration[level - 1] / 1000, | |
9734 | period_duration[level - 1] / 1000); | |
9735 | } | |
9736 | ||
9737 | if (!(priv->power_mode & IPW_POWER_ENABLED)) | |
9738 | p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF"); | |
9739 | ||
9740 | wrqu->data.length = p - extra + 1; | |
9741 | ||
9742 | return 0; | |
9743 | } | |
9744 | ||
9745 | static int ipw_wx_set_wireless_mode(struct net_device *dev, | |
9746 | struct iw_request_info *info, | |
9747 | union iwreq_data *wrqu, char *extra) | |
9748 | { | |
9749 | struct ipw_priv *priv = libipw_priv(dev); | |
9750 | int mode = *(int *)extra; | |
9751 | u8 band = 0, modulation = 0; | |
9752 | ||
9753 | if (mode == 0 || mode & ~IEEE_MODE_MASK) { | |
9754 | IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode); | |
9755 | return -EINVAL; | |
9756 | } | |
9757 | mutex_lock(&priv->mutex); | |
9758 | if (priv->adapter == IPW_2915ABG) { | |
9759 | priv->ieee->abg_true = 1; | |
9760 | if (mode & IEEE_A) { | |
9761 | band |= LIBIPW_52GHZ_BAND; | |
9762 | modulation |= LIBIPW_OFDM_MODULATION; | |
9763 | } else | |
9764 | priv->ieee->abg_true = 0; | |
9765 | } else { | |
9766 | if (mode & IEEE_A) { | |
9767 | IPW_WARNING("Attempt to set 2200BG into " | |
9768 | "802.11a mode\n"); | |
9769 | mutex_unlock(&priv->mutex); | |
9770 | return -EINVAL; | |
9771 | } | |
9772 | ||
9773 | priv->ieee->abg_true = 0; | |
9774 | } | |
9775 | ||
9776 | if (mode & IEEE_B) { | |
9777 | band |= LIBIPW_24GHZ_BAND; | |
9778 | modulation |= LIBIPW_CCK_MODULATION; | |
9779 | } else | |
9780 | priv->ieee->abg_true = 0; | |
9781 | ||
9782 | if (mode & IEEE_G) { | |
9783 | band |= LIBIPW_24GHZ_BAND; | |
9784 | modulation |= LIBIPW_OFDM_MODULATION; | |
9785 | } else | |
9786 | priv->ieee->abg_true = 0; | |
9787 | ||
9788 | priv->ieee->mode = mode; | |
9789 | priv->ieee->freq_band = band; | |
9790 | priv->ieee->modulation = modulation; | |
9791 | init_supported_rates(priv, &priv->rates); | |
9792 | ||
9793 | /* Network configuration changed -- force [re]association */ | |
9794 | IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n"); | |
9795 | if (!ipw_disassociate(priv)) { | |
9796 | ipw_send_supported_rates(priv, &priv->rates); | |
9797 | ipw_associate(priv); | |
9798 | } | |
9799 | ||
9800 | /* Update the band LEDs */ | |
9801 | ipw_led_band_on(priv); | |
9802 | ||
9803 | IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n", | |
9804 | mode & IEEE_A ? 'a' : '.', | |
9805 | mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.'); | |
9806 | mutex_unlock(&priv->mutex); | |
9807 | return 0; | |
9808 | } | |
9809 | ||
9810 | static int ipw_wx_get_wireless_mode(struct net_device *dev, | |
9811 | struct iw_request_info *info, | |
9812 | union iwreq_data *wrqu, char *extra) | |
9813 | { | |
9814 | struct ipw_priv *priv = libipw_priv(dev); | |
9815 | mutex_lock(&priv->mutex); | |
9816 | switch (priv->ieee->mode) { | |
9817 | case IEEE_A: | |
9818 | strncpy(extra, "802.11a (1)", MAX_WX_STRING); | |
9819 | break; | |
9820 | case IEEE_B: | |
9821 | strncpy(extra, "802.11b (2)", MAX_WX_STRING); | |
9822 | break; | |
9823 | case IEEE_A | IEEE_B: | |
9824 | strncpy(extra, "802.11ab (3)", MAX_WX_STRING); | |
9825 | break; | |
9826 | case IEEE_G: | |
9827 | strncpy(extra, "802.11g (4)", MAX_WX_STRING); | |
9828 | break; | |
9829 | case IEEE_A | IEEE_G: | |
9830 | strncpy(extra, "802.11ag (5)", MAX_WX_STRING); | |
9831 | break; | |
9832 | case IEEE_B | IEEE_G: | |
9833 | strncpy(extra, "802.11bg (6)", MAX_WX_STRING); | |
9834 | break; | |
9835 | case IEEE_A | IEEE_B | IEEE_G: | |
9836 | strncpy(extra, "802.11abg (7)", MAX_WX_STRING); | |
9837 | break; | |
9838 | default: | |
9839 | strncpy(extra, "unknown", MAX_WX_STRING); | |
9840 | break; | |
9841 | } | |
9842 | ||
9843 | IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra); | |
9844 | ||
9845 | wrqu->data.length = strlen(extra) + 1; | |
9846 | mutex_unlock(&priv->mutex); | |
9847 | ||
9848 | return 0; | |
9849 | } | |
9850 | ||
9851 | static int ipw_wx_set_preamble(struct net_device *dev, | |
9852 | struct iw_request_info *info, | |
9853 | union iwreq_data *wrqu, char *extra) | |
9854 | { | |
9855 | struct ipw_priv *priv = libipw_priv(dev); | |
9856 | int mode = *(int *)extra; | |
9857 | mutex_lock(&priv->mutex); | |
9858 | /* Switching from SHORT -> LONG requires a disassociation */ | |
9859 | if (mode == 1) { | |
9860 | if (!(priv->config & CFG_PREAMBLE_LONG)) { | |
9861 | priv->config |= CFG_PREAMBLE_LONG; | |
9862 | ||
9863 | /* Network configuration changed -- force [re]association */ | |
9864 | IPW_DEBUG_ASSOC | |
9865 | ("[re]association triggered due to preamble change.\n"); | |
9866 | if (!ipw_disassociate(priv)) | |
9867 | ipw_associate(priv); | |
9868 | } | |
9869 | goto done; | |
9870 | } | |
9871 | ||
9872 | if (mode == 0) { | |
9873 | priv->config &= ~CFG_PREAMBLE_LONG; | |
9874 | goto done; | |
9875 | } | |
9876 | mutex_unlock(&priv->mutex); | |
9877 | return -EINVAL; | |
9878 | ||
9879 | done: | |
9880 | mutex_unlock(&priv->mutex); | |
9881 | return 0; | |
9882 | } | |
9883 | ||
9884 | static int ipw_wx_get_preamble(struct net_device *dev, | |
9885 | struct iw_request_info *info, | |
9886 | union iwreq_data *wrqu, char *extra) | |
9887 | { | |
9888 | struct ipw_priv *priv = libipw_priv(dev); | |
9889 | mutex_lock(&priv->mutex); | |
9890 | if (priv->config & CFG_PREAMBLE_LONG) | |
9891 | snprintf(wrqu->name, IFNAMSIZ, "long (1)"); | |
9892 | else | |
9893 | snprintf(wrqu->name, IFNAMSIZ, "auto (0)"); | |
9894 | mutex_unlock(&priv->mutex); | |
9895 | return 0; | |
9896 | } | |
9897 | ||
9898 | #ifdef CONFIG_IPW2200_MONITOR | |
9899 | static int ipw_wx_set_monitor(struct net_device *dev, | |
9900 | struct iw_request_info *info, | |
9901 | union iwreq_data *wrqu, char *extra) | |
9902 | { | |
9903 | struct ipw_priv *priv = libipw_priv(dev); | |
9904 | int *parms = (int *)extra; | |
9905 | int enable = (parms[0] > 0); | |
9906 | mutex_lock(&priv->mutex); | |
9907 | IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]); | |
9908 | if (enable) { | |
9909 | if (priv->ieee->iw_mode != IW_MODE_MONITOR) { | |
9910 | #ifdef CONFIG_IPW2200_RADIOTAP | |
9911 | priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP; | |
9912 | #else | |
9913 | priv->net_dev->type = ARPHRD_IEEE80211; | |
9914 | #endif | |
9915 | schedule_work(&priv->adapter_restart); | |
9916 | } | |
9917 | ||
9918 | ipw_set_channel(priv, parms[1]); | |
9919 | } else { | |
9920 | if (priv->ieee->iw_mode != IW_MODE_MONITOR) { | |
9921 | mutex_unlock(&priv->mutex); | |
9922 | return 0; | |
9923 | } | |
9924 | priv->net_dev->type = ARPHRD_ETHER; | |
9925 | schedule_work(&priv->adapter_restart); | |
9926 | } | |
9927 | mutex_unlock(&priv->mutex); | |
9928 | return 0; | |
9929 | } | |
9930 | ||
9931 | #endif /* CONFIG_IPW2200_MONITOR */ | |
9932 | ||
9933 | static int ipw_wx_reset(struct net_device *dev, | |
9934 | struct iw_request_info *info, | |
9935 | union iwreq_data *wrqu, char *extra) | |
9936 | { | |
9937 | struct ipw_priv *priv = libipw_priv(dev); | |
9938 | IPW_DEBUG_WX("RESET\n"); | |
9939 | schedule_work(&priv->adapter_restart); | |
9940 | return 0; | |
9941 | } | |
9942 | ||
9943 | static int ipw_wx_sw_reset(struct net_device *dev, | |
9944 | struct iw_request_info *info, | |
9945 | union iwreq_data *wrqu, char *extra) | |
9946 | { | |
9947 | struct ipw_priv *priv = libipw_priv(dev); | |
9948 | union iwreq_data wrqu_sec = { | |
9949 | .encoding = { | |
9950 | .flags = IW_ENCODE_DISABLED, | |
9951 | }, | |
9952 | }; | |
9953 | int ret; | |
9954 | ||
9955 | IPW_DEBUG_WX("SW_RESET\n"); | |
9956 | ||
9957 | mutex_lock(&priv->mutex); | |
9958 | ||
9959 | ret = ipw_sw_reset(priv, 2); | |
9960 | if (!ret) { | |
9961 | free_firmware(); | |
9962 | ipw_adapter_restart(priv); | |
9963 | } | |
9964 | ||
9965 | /* The SW reset bit might have been toggled on by the 'disable' | |
9966 | * module parameter, so take appropriate action */ | |
9967 | ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW); | |
9968 | ||
9969 | mutex_unlock(&priv->mutex); | |
9970 | libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL); | |
9971 | mutex_lock(&priv->mutex); | |
9972 | ||
9973 | if (!(priv->status & STATUS_RF_KILL_MASK)) { | |
9974 | /* Configuration likely changed -- force [re]association */ | |
9975 | IPW_DEBUG_ASSOC("[re]association triggered due to sw " | |
9976 | "reset.\n"); | |
9977 | if (!ipw_disassociate(priv)) | |
9978 | ipw_associate(priv); | |
9979 | } | |
9980 | ||
9981 | mutex_unlock(&priv->mutex); | |
9982 | ||
9983 | return 0; | |
9984 | } | |
9985 | ||
9986 | /* Rebase the WE IOCTLs to zero for the handler array */ | |
9987 | static iw_handler ipw_wx_handlers[] = { | |
9988 | IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname), | |
9989 | IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq), | |
9990 | IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq), | |
9991 | IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode), | |
9992 | IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode), | |
9993 | IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens), | |
9994 | IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens), | |
9995 | IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range), | |
9996 | IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap), | |
9997 | IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap), | |
9998 | IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan), | |
9999 | IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan), | |
10000 | IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid), | |
10001 | IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid), | |
10002 | IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick), | |
10003 | IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick), | |
10004 | IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate), | |
10005 | IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate), | |
10006 | IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts), | |
10007 | IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts), | |
10008 | IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag), | |
10009 | IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag), | |
10010 | IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow), | |
10011 | IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow), | |
10012 | IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry), | |
10013 | IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry), | |
10014 | IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode), | |
10015 | IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode), | |
10016 | IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power), | |
10017 | IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power), | |
10018 | IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy), | |
10019 | IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy), | |
10020 | IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy), | |
10021 | IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy), | |
10022 | IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie), | |
10023 | IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie), | |
10024 | IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme), | |
10025 | IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth), | |
10026 | IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth), | |
10027 | IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext), | |
10028 | IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext), | |
10029 | }; | |
10030 | ||
10031 | enum { | |
10032 | IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV, | |
10033 | IPW_PRIV_GET_POWER, | |
10034 | IPW_PRIV_SET_MODE, | |
10035 | IPW_PRIV_GET_MODE, | |
10036 | IPW_PRIV_SET_PREAMBLE, | |
10037 | IPW_PRIV_GET_PREAMBLE, | |
10038 | IPW_PRIV_RESET, | |
10039 | IPW_PRIV_SW_RESET, | |
10040 | #ifdef CONFIG_IPW2200_MONITOR | |
10041 | IPW_PRIV_SET_MONITOR, | |
10042 | #endif | |
10043 | }; | |
10044 | ||
10045 | static struct iw_priv_args ipw_priv_args[] = { | |
10046 | { | |
10047 | .cmd = IPW_PRIV_SET_POWER, | |
10048 | .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, | |
10049 | .name = "set_power"}, | |
10050 | { | |
10051 | .cmd = IPW_PRIV_GET_POWER, | |
10052 | .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, | |
10053 | .name = "get_power"}, | |
10054 | { | |
10055 | .cmd = IPW_PRIV_SET_MODE, | |
10056 | .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, | |
10057 | .name = "set_mode"}, | |
10058 | { | |
10059 | .cmd = IPW_PRIV_GET_MODE, | |
10060 | .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, | |
10061 | .name = "get_mode"}, | |
10062 | { | |
10063 | .cmd = IPW_PRIV_SET_PREAMBLE, | |
10064 | .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, | |
10065 | .name = "set_preamble"}, | |
10066 | { | |
10067 | .cmd = IPW_PRIV_GET_PREAMBLE, | |
10068 | .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, | |
10069 | .name = "get_preamble"}, | |
10070 | { | |
10071 | IPW_PRIV_RESET, | |
10072 | IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"}, | |
10073 | { | |
10074 | IPW_PRIV_SW_RESET, | |
10075 | IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"}, | |
10076 | #ifdef CONFIG_IPW2200_MONITOR | |
10077 | { | |
10078 | IPW_PRIV_SET_MONITOR, | |
10079 | IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"}, | |
10080 | #endif /* CONFIG_IPW2200_MONITOR */ | |
10081 | }; | |
10082 | ||
10083 | static iw_handler ipw_priv_handler[] = { | |
10084 | ipw_wx_set_powermode, | |
10085 | ipw_wx_get_powermode, | |
10086 | ipw_wx_set_wireless_mode, | |
10087 | ipw_wx_get_wireless_mode, | |
10088 | ipw_wx_set_preamble, | |
10089 | ipw_wx_get_preamble, | |
10090 | ipw_wx_reset, | |
10091 | ipw_wx_sw_reset, | |
10092 | #ifdef CONFIG_IPW2200_MONITOR | |
10093 | ipw_wx_set_monitor, | |
10094 | #endif | |
10095 | }; | |
10096 | ||
10097 | static struct iw_handler_def ipw_wx_handler_def = { | |
10098 | .standard = ipw_wx_handlers, | |
10099 | .num_standard = ARRAY_SIZE(ipw_wx_handlers), | |
10100 | .num_private = ARRAY_SIZE(ipw_priv_handler), | |
10101 | .num_private_args = ARRAY_SIZE(ipw_priv_args), | |
10102 | .private = ipw_priv_handler, | |
10103 | .private_args = ipw_priv_args, | |
10104 | .get_wireless_stats = ipw_get_wireless_stats, | |
10105 | }; | |
10106 | ||
10107 | /* | |
10108 | * Get wireless statistics. | |
10109 | * Called by /proc/net/wireless | |
10110 | * Also called by SIOCGIWSTATS | |
10111 | */ | |
10112 | static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev) | |
10113 | { | |
10114 | struct ipw_priv *priv = libipw_priv(dev); | |
10115 | struct iw_statistics *wstats; | |
10116 | ||
10117 | wstats = &priv->wstats; | |
10118 | ||
10119 | /* if hw is disabled, then ipw_get_ordinal() can't be called. | |
10120 | * netdev->get_wireless_stats seems to be called before fw is | |
10121 | * initialized. STATUS_ASSOCIATED will only be set if the hw is up | |
10122 | * and associated; if not associcated, the values are all meaningless | |
10123 | * anyway, so set them all to NULL and INVALID */ | |
10124 | if (!(priv->status & STATUS_ASSOCIATED)) { | |
10125 | wstats->miss.beacon = 0; | |
10126 | wstats->discard.retries = 0; | |
10127 | wstats->qual.qual = 0; | |
10128 | wstats->qual.level = 0; | |
10129 | wstats->qual.noise = 0; | |
10130 | wstats->qual.updated = 7; | |
10131 | wstats->qual.updated |= IW_QUAL_NOISE_INVALID | | |
10132 | IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; | |
10133 | return wstats; | |
10134 | } | |
10135 | ||
10136 | wstats->qual.qual = priv->quality; | |
10137 | wstats->qual.level = priv->exp_avg_rssi; | |
10138 | wstats->qual.noise = priv->exp_avg_noise; | |
10139 | wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED | | |
10140 | IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM; | |
10141 | ||
10142 | wstats->miss.beacon = average_value(&priv->average_missed_beacons); | |
10143 | wstats->discard.retries = priv->last_tx_failures; | |
10144 | wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable; | |
10145 | ||
10146 | /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len)) | |
10147 | goto fail_get_ordinal; | |
10148 | wstats->discard.retries += tx_retry; */ | |
10149 | ||
10150 | return wstats; | |
10151 | } | |
10152 | ||
10153 | /* net device stuff */ | |
10154 | ||
10155 | static void init_sys_config(struct ipw_sys_config *sys_config) | |
10156 | { | |
10157 | memset(sys_config, 0, sizeof(struct ipw_sys_config)); | |
10158 | sys_config->bt_coexistence = 0; | |
10159 | sys_config->answer_broadcast_ssid_probe = 0; | |
10160 | sys_config->accept_all_data_frames = 0; | |
10161 | sys_config->accept_non_directed_frames = 1; | |
10162 | sys_config->exclude_unicast_unencrypted = 0; | |
10163 | sys_config->disable_unicast_decryption = 1; | |
10164 | sys_config->exclude_multicast_unencrypted = 0; | |
10165 | sys_config->disable_multicast_decryption = 1; | |
10166 | if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B) | |
10167 | antenna = CFG_SYS_ANTENNA_BOTH; | |
10168 | sys_config->antenna_diversity = antenna; | |
10169 | sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */ | |
10170 | sys_config->dot11g_auto_detection = 0; | |
10171 | sys_config->enable_cts_to_self = 0; | |
10172 | sys_config->bt_coexist_collision_thr = 0; | |
10173 | sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */ | |
10174 | sys_config->silence_threshold = 0x1e; | |
10175 | } | |
10176 | ||
10177 | static int ipw_net_open(struct net_device *dev) | |
10178 | { | |
10179 | IPW_DEBUG_INFO("dev->open\n"); | |
10180 | netif_start_queue(dev); | |
10181 | return 0; | |
10182 | } | |
10183 | ||
10184 | static int ipw_net_stop(struct net_device *dev) | |
10185 | { | |
10186 | IPW_DEBUG_INFO("dev->close\n"); | |
10187 | netif_stop_queue(dev); | |
10188 | return 0; | |
10189 | } | |
10190 | ||
10191 | /* | |
10192 | todo: | |
10193 | ||
10194 | modify to send one tfd per fragment instead of using chunking. otherwise | |
10195 | we need to heavily modify the libipw_skb_to_txb. | |
10196 | */ | |
10197 | ||
10198 | static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb, | |
10199 | int pri) | |
10200 | { | |
10201 | struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *) | |
10202 | txb->fragments[0]->data; | |
10203 | int i = 0; | |
10204 | struct tfd_frame *tfd; | |
10205 | #ifdef CONFIG_IPW2200_QOS | |
10206 | int tx_id = ipw_get_tx_queue_number(priv, pri); | |
10207 | struct clx2_tx_queue *txq = &priv->txq[tx_id]; | |
10208 | #else | |
10209 | struct clx2_tx_queue *txq = &priv->txq[0]; | |
10210 | #endif | |
10211 | struct clx2_queue *q = &txq->q; | |
10212 | u8 id, hdr_len, unicast; | |
10213 | int fc; | |
10214 | ||
10215 | if (!(priv->status & STATUS_ASSOCIATED)) | |
10216 | goto drop; | |
10217 | ||
10218 | hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl)); | |
10219 | switch (priv->ieee->iw_mode) { | |
10220 | case IW_MODE_ADHOC: | |
10221 | unicast = !is_multicast_ether_addr(hdr->addr1); | |
10222 | id = ipw_find_station(priv, hdr->addr1); | |
10223 | if (id == IPW_INVALID_STATION) { | |
10224 | id = ipw_add_station(priv, hdr->addr1); | |
10225 | if (id == IPW_INVALID_STATION) { | |
10226 | IPW_WARNING("Attempt to send data to " | |
10227 | "invalid cell: %pM\n", | |
10228 | hdr->addr1); | |
10229 | goto drop; | |
10230 | } | |
10231 | } | |
10232 | break; | |
10233 | ||
10234 | case IW_MODE_INFRA: | |
10235 | default: | |
10236 | unicast = !is_multicast_ether_addr(hdr->addr3); | |
10237 | id = 0; | |
10238 | break; | |
10239 | } | |
10240 | ||
10241 | tfd = &txq->bd[q->first_empty]; | |
10242 | txq->txb[q->first_empty] = txb; | |
10243 | memset(tfd, 0, sizeof(*tfd)); | |
10244 | tfd->u.data.station_number = id; | |
10245 | ||
10246 | tfd->control_flags.message_type = TX_FRAME_TYPE; | |
10247 | tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; | |
10248 | ||
10249 | tfd->u.data.cmd_id = DINO_CMD_TX; | |
10250 | tfd->u.data.len = cpu_to_le16(txb->payload_size); | |
10251 | ||
10252 | if (priv->assoc_request.ieee_mode == IPW_B_MODE) | |
10253 | tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK; | |
10254 | else | |
10255 | tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM; | |
10256 | ||
10257 | if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE) | |
10258 | tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE; | |
10259 | ||
10260 | fc = le16_to_cpu(hdr->frame_ctl); | |
10261 | hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS); | |
10262 | ||
10263 | memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len); | |
10264 | ||
10265 | if (likely(unicast)) | |
10266 | tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD; | |
10267 | ||
10268 | if (txb->encrypted && !priv->ieee->host_encrypt) { | |
10269 | switch (priv->ieee->sec.level) { | |
10270 | case SEC_LEVEL_3: | |
10271 | tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= | |
10272 | cpu_to_le16(IEEE80211_FCTL_PROTECTED); | |
10273 | /* XXX: ACK flag must be set for CCMP even if it | |
10274 | * is a multicast/broadcast packet, because CCMP | |
10275 | * group communication encrypted by GTK is | |
10276 | * actually done by the AP. */ | |
10277 | if (!unicast) | |
10278 | tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD; | |
10279 | ||
10280 | tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP; | |
10281 | tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM; | |
10282 | tfd->u.data.key_index = 0; | |
10283 | tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE; | |
10284 | break; | |
10285 | case SEC_LEVEL_2: | |
10286 | tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= | |
10287 | cpu_to_le16(IEEE80211_FCTL_PROTECTED); | |
10288 | tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP; | |
10289 | tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP; | |
10290 | tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE; | |
10291 | break; | |
10292 | case SEC_LEVEL_1: | |
10293 | tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |= | |
10294 | cpu_to_le16(IEEE80211_FCTL_PROTECTED); | |
10295 | tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx; | |
10296 | if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <= | |
10297 | 40) | |
10298 | tfd->u.data.key_index |= DCT_WEP_KEY_64Bit; | |
10299 | else | |
10300 | tfd->u.data.key_index |= DCT_WEP_KEY_128Bit; | |
10301 | break; | |
10302 | case SEC_LEVEL_0: | |
10303 | break; | |
10304 | default: | |
10305 | printk(KERN_ERR "Unknown security level %d\n", | |
10306 | priv->ieee->sec.level); | |
10307 | break; | |
10308 | } | |
10309 | } else | |
10310 | /* No hardware encryption */ | |
10311 | tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP; | |
10312 | ||
10313 | #ifdef CONFIG_IPW2200_QOS | |
10314 | if (fc & IEEE80211_STYPE_QOS_DATA) | |
10315 | ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data)); | |
10316 | #endif /* CONFIG_IPW2200_QOS */ | |
10317 | ||
10318 | /* payload */ | |
10319 | tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2), | |
10320 | txb->nr_frags)); | |
10321 | IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n", | |
10322 | txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks)); | |
10323 | for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) { | |
10324 | IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n", | |
10325 | i, le32_to_cpu(tfd->u.data.num_chunks), | |
10326 | txb->fragments[i]->len - hdr_len); | |
10327 | IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n", | |
10328 | i, tfd->u.data.num_chunks, | |
10329 | txb->fragments[i]->len - hdr_len); | |
10330 | printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len, | |
10331 | txb->fragments[i]->len - hdr_len); | |
10332 | ||
10333 | tfd->u.data.chunk_ptr[i] = | |
10334 | cpu_to_le32(pci_map_single | |
10335 | (priv->pci_dev, | |
10336 | txb->fragments[i]->data + hdr_len, | |
10337 | txb->fragments[i]->len - hdr_len, | |
10338 | PCI_DMA_TODEVICE)); | |
10339 | tfd->u.data.chunk_len[i] = | |
10340 | cpu_to_le16(txb->fragments[i]->len - hdr_len); | |
10341 | } | |
10342 | ||
10343 | if (i != txb->nr_frags) { | |
10344 | struct sk_buff *skb; | |
10345 | u16 remaining_bytes = 0; | |
10346 | int j; | |
10347 | ||
10348 | for (j = i; j < txb->nr_frags; j++) | |
10349 | remaining_bytes += txb->fragments[j]->len - hdr_len; | |
10350 | ||
10351 | printk(KERN_INFO "Trying to reallocate for %d bytes\n", | |
10352 | remaining_bytes); | |
10353 | skb = alloc_skb(remaining_bytes, GFP_ATOMIC); | |
10354 | if (skb != NULL) { | |
10355 | tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes); | |
10356 | for (j = i; j < txb->nr_frags; j++) { | |
10357 | int size = txb->fragments[j]->len - hdr_len; | |
10358 | ||
10359 | printk(KERN_INFO "Adding frag %d %d...\n", | |
10360 | j, size); | |
10361 | memcpy(skb_put(skb, size), | |
10362 | txb->fragments[j]->data + hdr_len, size); | |
10363 | } | |
10364 | dev_kfree_skb_any(txb->fragments[i]); | |
10365 | txb->fragments[i] = skb; | |
10366 | tfd->u.data.chunk_ptr[i] = | |
10367 | cpu_to_le32(pci_map_single | |
10368 | (priv->pci_dev, skb->data, | |
10369 | remaining_bytes, | |
10370 | PCI_DMA_TODEVICE)); | |
10371 | ||
10372 | le32_add_cpu(&tfd->u.data.num_chunks, 1); | |
10373 | } | |
10374 | } | |
10375 | ||
10376 | /* kick DMA */ | |
10377 | q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); | |
10378 | ipw_write32(priv, q->reg_w, q->first_empty); | |
10379 | ||
10380 | if (ipw_tx_queue_space(q) < q->high_mark) | |
10381 | netif_stop_queue(priv->net_dev); | |
10382 | ||
10383 | return NETDEV_TX_OK; | |
10384 | ||
10385 | drop: | |
10386 | IPW_DEBUG_DROP("Silently dropping Tx packet.\n"); | |
10387 | libipw_txb_free(txb); | |
10388 | return NETDEV_TX_OK; | |
10389 | } | |
10390 | ||
10391 | static int ipw_net_is_queue_full(struct net_device *dev, int pri) | |
10392 | { | |
10393 | struct ipw_priv *priv = libipw_priv(dev); | |
10394 | #ifdef CONFIG_IPW2200_QOS | |
10395 | int tx_id = ipw_get_tx_queue_number(priv, pri); | |
10396 | struct clx2_tx_queue *txq = &priv->txq[tx_id]; | |
10397 | #else | |
10398 | struct clx2_tx_queue *txq = &priv->txq[0]; | |
10399 | #endif /* CONFIG_IPW2200_QOS */ | |
10400 | ||
10401 | if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark) | |
10402 | return 1; | |
10403 | ||
10404 | return 0; | |
10405 | } | |
10406 | ||
10407 | #ifdef CONFIG_IPW2200_PROMISCUOUS | |
10408 | static void ipw_handle_promiscuous_tx(struct ipw_priv *priv, | |
10409 | struct libipw_txb *txb) | |
10410 | { | |
10411 | struct libipw_rx_stats dummystats; | |
10412 | struct ieee80211_hdr *hdr; | |
10413 | u8 n; | |
10414 | u16 filter = priv->prom_priv->filter; | |
10415 | int hdr_only = 0; | |
10416 | ||
10417 | if (filter & IPW_PROM_NO_TX) | |
10418 | return; | |
10419 | ||
10420 | memset(&dummystats, 0, sizeof(dummystats)); | |
10421 | ||
10422 | /* Filtering of fragment chains is done agains the first fragment */ | |
10423 | hdr = (void *)txb->fragments[0]->data; | |
10424 | if (libipw_is_management(le16_to_cpu(hdr->frame_control))) { | |
10425 | if (filter & IPW_PROM_NO_MGMT) | |
10426 | return; | |
10427 | if (filter & IPW_PROM_MGMT_HEADER_ONLY) | |
10428 | hdr_only = 1; | |
10429 | } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) { | |
10430 | if (filter & IPW_PROM_NO_CTL) | |
10431 | return; | |
10432 | if (filter & IPW_PROM_CTL_HEADER_ONLY) | |
10433 | hdr_only = 1; | |
10434 | } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) { | |
10435 | if (filter & IPW_PROM_NO_DATA) | |
10436 | return; | |
10437 | if (filter & IPW_PROM_DATA_HEADER_ONLY) | |
10438 | hdr_only = 1; | |
10439 | } | |
10440 | ||
10441 | for(n=0; n<txb->nr_frags; ++n) { | |
10442 | struct sk_buff *src = txb->fragments[n]; | |
10443 | struct sk_buff *dst; | |
10444 | struct ieee80211_radiotap_header *rt_hdr; | |
10445 | int len; | |
10446 | ||
10447 | if (hdr_only) { | |
10448 | hdr = (void *)src->data; | |
10449 | len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control)); | |
10450 | } else | |
10451 | len = src->len; | |
10452 | ||
10453 | dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC); | |
10454 | if (!dst) | |
10455 | continue; | |
10456 | ||
10457 | rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr)); | |
10458 | ||
10459 | rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION; | |
10460 | rt_hdr->it_pad = 0; | |
10461 | rt_hdr->it_present = 0; /* after all, it's just an idea */ | |
10462 | rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL); | |
10463 | ||
10464 | *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16( | |
10465 | ieee80211chan2mhz(priv->channel)); | |
10466 | if (priv->channel > 14) /* 802.11a */ | |
10467 | *(__le16*)skb_put(dst, sizeof(u16)) = | |
10468 | cpu_to_le16(IEEE80211_CHAN_OFDM | | |
10469 | IEEE80211_CHAN_5GHZ); | |
10470 | else if (priv->ieee->mode == IEEE_B) /* 802.11b */ | |
10471 | *(__le16*)skb_put(dst, sizeof(u16)) = | |
10472 | cpu_to_le16(IEEE80211_CHAN_CCK | | |
10473 | IEEE80211_CHAN_2GHZ); | |
10474 | else /* 802.11g */ | |
10475 | *(__le16*)skb_put(dst, sizeof(u16)) = | |
10476 | cpu_to_le16(IEEE80211_CHAN_OFDM | | |
10477 | IEEE80211_CHAN_2GHZ); | |
10478 | ||
10479 | rt_hdr->it_len = cpu_to_le16(dst->len); | |
10480 | ||
10481 | skb_copy_from_linear_data(src, skb_put(dst, len), len); | |
10482 | ||
10483 | if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats)) | |
10484 | dev_kfree_skb_any(dst); | |
10485 | } | |
10486 | } | |
10487 | #endif | |
10488 | ||
10489 | static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb, | |
10490 | struct net_device *dev, int pri) | |
10491 | { | |
10492 | struct ipw_priv *priv = libipw_priv(dev); | |
10493 | unsigned long flags; | |
10494 | netdev_tx_t ret; | |
10495 | ||
10496 | IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size); | |
10497 | spin_lock_irqsave(&priv->lock, flags); | |
10498 | ||
10499 | #ifdef CONFIG_IPW2200_PROMISCUOUS | |
10500 | if (rtap_iface && netif_running(priv->prom_net_dev)) | |
10501 | ipw_handle_promiscuous_tx(priv, txb); | |
10502 | #endif | |
10503 | ||
10504 | ret = ipw_tx_skb(priv, txb, pri); | |
10505 | if (ret == NETDEV_TX_OK) | |
10506 | __ipw_led_activity_on(priv); | |
10507 | spin_unlock_irqrestore(&priv->lock, flags); | |
10508 | ||
10509 | return ret; | |
10510 | } | |
10511 | ||
10512 | static void ipw_net_set_multicast_list(struct net_device *dev) | |
10513 | { | |
10514 | ||
10515 | } | |
10516 | ||
10517 | static int ipw_net_set_mac_address(struct net_device *dev, void *p) | |
10518 | { | |
10519 | struct ipw_priv *priv = libipw_priv(dev); | |
10520 | struct sockaddr *addr = p; | |
10521 | ||
10522 | if (!is_valid_ether_addr(addr->sa_data)) | |
10523 | return -EADDRNOTAVAIL; | |
10524 | mutex_lock(&priv->mutex); | |
10525 | priv->config |= CFG_CUSTOM_MAC; | |
10526 | memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); | |
10527 | printk(KERN_INFO "%s: Setting MAC to %pM\n", | |
10528 | priv->net_dev->name, priv->mac_addr); | |
10529 | schedule_work(&priv->adapter_restart); | |
10530 | mutex_unlock(&priv->mutex); | |
10531 | return 0; | |
10532 | } | |
10533 | ||
10534 | static void ipw_ethtool_get_drvinfo(struct net_device *dev, | |
10535 | struct ethtool_drvinfo *info) | |
10536 | { | |
10537 | struct ipw_priv *p = libipw_priv(dev); | |
10538 | char vers[64]; | |
10539 | char date[32]; | |
10540 | u32 len; | |
10541 | ||
10542 | strcpy(info->driver, DRV_NAME); | |
10543 | strcpy(info->version, DRV_VERSION); | |
10544 | ||
10545 | len = sizeof(vers); | |
10546 | ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len); | |
10547 | len = sizeof(date); | |
10548 | ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len); | |
10549 | ||
10550 | snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)", | |
10551 | vers, date); | |
10552 | strcpy(info->bus_info, pci_name(p->pci_dev)); | |
10553 | info->eedump_len = IPW_EEPROM_IMAGE_SIZE; | |
10554 | } | |
10555 | ||
10556 | static u32 ipw_ethtool_get_link(struct net_device *dev) | |
10557 | { | |
10558 | struct ipw_priv *priv = libipw_priv(dev); | |
10559 | return (priv->status & STATUS_ASSOCIATED) != 0; | |
10560 | } | |
10561 | ||
10562 | static int ipw_ethtool_get_eeprom_len(struct net_device *dev) | |
10563 | { | |
10564 | return IPW_EEPROM_IMAGE_SIZE; | |
10565 | } | |
10566 | ||
10567 | static int ipw_ethtool_get_eeprom(struct net_device *dev, | |
10568 | struct ethtool_eeprom *eeprom, u8 * bytes) | |
10569 | { | |
10570 | struct ipw_priv *p = libipw_priv(dev); | |
10571 | ||
10572 | if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE) | |
10573 | return -EINVAL; | |
10574 | mutex_lock(&p->mutex); | |
10575 | memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len); | |
10576 | mutex_unlock(&p->mutex); | |
10577 | return 0; | |
10578 | } | |
10579 | ||
10580 | static int ipw_ethtool_set_eeprom(struct net_device *dev, | |
10581 | struct ethtool_eeprom *eeprom, u8 * bytes) | |
10582 | { | |
10583 | struct ipw_priv *p = libipw_priv(dev); | |
10584 | int i; | |
10585 | ||
10586 | if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE) | |
10587 | return -EINVAL; | |
10588 | mutex_lock(&p->mutex); | |
10589 | memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len); | |
10590 | for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++) | |
10591 | ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]); | |
10592 | mutex_unlock(&p->mutex); | |
10593 | return 0; | |
10594 | } | |
10595 | ||
10596 | static const struct ethtool_ops ipw_ethtool_ops = { | |
10597 | .get_link = ipw_ethtool_get_link, | |
10598 | .get_drvinfo = ipw_ethtool_get_drvinfo, | |
10599 | .get_eeprom_len = ipw_ethtool_get_eeprom_len, | |
10600 | .get_eeprom = ipw_ethtool_get_eeprom, | |
10601 | .set_eeprom = ipw_ethtool_set_eeprom, | |
10602 | }; | |
10603 | ||
10604 | static irqreturn_t ipw_isr(int irq, void *data) | |
10605 | { | |
10606 | struct ipw_priv *priv = data; | |
10607 | u32 inta, inta_mask; | |
10608 | ||
10609 | if (!priv) | |
10610 | return IRQ_NONE; | |
10611 | ||
10612 | spin_lock(&priv->irq_lock); | |
10613 | ||
10614 | if (!(priv->status & STATUS_INT_ENABLED)) { | |
10615 | /* IRQ is disabled */ | |
10616 | goto none; | |
10617 | } | |
10618 | ||
10619 | inta = ipw_read32(priv, IPW_INTA_RW); | |
10620 | inta_mask = ipw_read32(priv, IPW_INTA_MASK_R); | |
10621 | ||
10622 | if (inta == 0xFFFFFFFF) { | |
10623 | /* Hardware disappeared */ | |
10624 | IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n"); | |
10625 | goto none; | |
10626 | } | |
10627 | ||
10628 | if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) { | |
10629 | /* Shared interrupt */ | |
10630 | goto none; | |
10631 | } | |
10632 | ||
10633 | /* tell the device to stop sending interrupts */ | |
10634 | __ipw_disable_interrupts(priv); | |
10635 | ||
10636 | /* ack current interrupts */ | |
10637 | inta &= (IPW_INTA_MASK_ALL & inta_mask); | |
10638 | ipw_write32(priv, IPW_INTA_RW, inta); | |
10639 | ||
10640 | /* Cache INTA value for our tasklet */ | |
10641 | priv->isr_inta = inta; | |
10642 | ||
10643 | tasklet_schedule(&priv->irq_tasklet); | |
10644 | ||
10645 | spin_unlock(&priv->irq_lock); | |
10646 | ||
10647 | return IRQ_HANDLED; | |
10648 | none: | |
10649 | spin_unlock(&priv->irq_lock); | |
10650 | return IRQ_NONE; | |
10651 | } | |
10652 | ||
10653 | static void ipw_rf_kill(void *adapter) | |
10654 | { | |
10655 | struct ipw_priv *priv = adapter; | |
10656 | unsigned long flags; | |
10657 | ||
10658 | spin_lock_irqsave(&priv->lock, flags); | |
10659 | ||
10660 | if (rf_kill_active(priv)) { | |
10661 | IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); | |
10662 | schedule_delayed_work(&priv->rf_kill, 2 * HZ); | |
10663 | goto exit_unlock; | |
10664 | } | |
10665 | ||
10666 | /* RF Kill is now disabled, so bring the device back up */ | |
10667 | ||
10668 | if (!(priv->status & STATUS_RF_KILL_MASK)) { | |
10669 | IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " | |
10670 | "device\n"); | |
10671 | ||
10672 | /* we can not do an adapter restart while inside an irq lock */ | |
10673 | schedule_work(&priv->adapter_restart); | |
10674 | } else | |
10675 | IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " | |
10676 | "enabled\n"); | |
10677 | ||
10678 | exit_unlock: | |
10679 | spin_unlock_irqrestore(&priv->lock, flags); | |
10680 | } | |
10681 | ||
10682 | static void ipw_bg_rf_kill(struct work_struct *work) | |
10683 | { | |
10684 | struct ipw_priv *priv = | |
10685 | container_of(work, struct ipw_priv, rf_kill.work); | |
10686 | mutex_lock(&priv->mutex); | |
10687 | ipw_rf_kill(priv); | |
10688 | mutex_unlock(&priv->mutex); | |
10689 | } | |
10690 | ||
10691 | static void ipw_link_up(struct ipw_priv *priv) | |
10692 | { | |
10693 | priv->last_seq_num = -1; | |
10694 | priv->last_frag_num = -1; | |
10695 | priv->last_packet_time = 0; | |
10696 | ||
10697 | netif_carrier_on(priv->net_dev); | |
10698 | ||
10699 | cancel_delayed_work(&priv->request_scan); | |
10700 | cancel_delayed_work(&priv->request_direct_scan); | |
10701 | cancel_delayed_work(&priv->request_passive_scan); | |
10702 | cancel_delayed_work(&priv->scan_event); | |
10703 | ipw_reset_stats(priv); | |
10704 | /* Ensure the rate is updated immediately */ | |
10705 | priv->last_rate = ipw_get_current_rate(priv); | |
10706 | ipw_gather_stats(priv); | |
10707 | ipw_led_link_up(priv); | |
10708 | notify_wx_assoc_event(priv); | |
10709 | ||
10710 | if (priv->config & CFG_BACKGROUND_SCAN) | |
10711 | schedule_delayed_work(&priv->request_scan, HZ); | |
10712 | } | |
10713 | ||
10714 | static void ipw_bg_link_up(struct work_struct *work) | |
10715 | { | |
10716 | struct ipw_priv *priv = | |
10717 | container_of(work, struct ipw_priv, link_up); | |
10718 | mutex_lock(&priv->mutex); | |
10719 | ipw_link_up(priv); | |
10720 | mutex_unlock(&priv->mutex); | |
10721 | } | |
10722 | ||
10723 | static void ipw_link_down(struct ipw_priv *priv) | |
10724 | { | |
10725 | ipw_led_link_down(priv); | |
10726 | netif_carrier_off(priv->net_dev); | |
10727 | notify_wx_assoc_event(priv); | |
10728 | ||
10729 | /* Cancel any queued work ... */ | |
10730 | cancel_delayed_work(&priv->request_scan); | |
10731 | cancel_delayed_work(&priv->request_direct_scan); | |
10732 | cancel_delayed_work(&priv->request_passive_scan); | |
10733 | cancel_delayed_work(&priv->adhoc_check); | |
10734 | cancel_delayed_work(&priv->gather_stats); | |
10735 | ||
10736 | ipw_reset_stats(priv); | |
10737 | ||
10738 | if (!(priv->status & STATUS_EXIT_PENDING)) { | |
10739 | /* Queue up another scan... */ | |
10740 | schedule_delayed_work(&priv->request_scan, 0); | |
10741 | } else | |
10742 | cancel_delayed_work(&priv->scan_event); | |
10743 | } | |
10744 | ||
10745 | static void ipw_bg_link_down(struct work_struct *work) | |
10746 | { | |
10747 | struct ipw_priv *priv = | |
10748 | container_of(work, struct ipw_priv, link_down); | |
10749 | mutex_lock(&priv->mutex); | |
10750 | ipw_link_down(priv); | |
10751 | mutex_unlock(&priv->mutex); | |
10752 | } | |
10753 | ||
10754 | static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv) | |
10755 | { | |
10756 | int ret = 0; | |
10757 | ||
10758 | init_waitqueue_head(&priv->wait_command_queue); | |
10759 | init_waitqueue_head(&priv->wait_state); | |
10760 | ||
10761 | INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check); | |
10762 | INIT_WORK(&priv->associate, ipw_bg_associate); | |
10763 | INIT_WORK(&priv->disassociate, ipw_bg_disassociate); | |
10764 | INIT_WORK(&priv->system_config, ipw_system_config); | |
10765 | INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish); | |
10766 | INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart); | |
10767 | INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill); | |
10768 | INIT_WORK(&priv->up, ipw_bg_up); | |
10769 | INIT_WORK(&priv->down, ipw_bg_down); | |
10770 | INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan); | |
10771 | INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan); | |
10772 | INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan); | |
10773 | INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event); | |
10774 | INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats); | |
10775 | INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan); | |
10776 | INIT_WORK(&priv->roam, ipw_bg_roam); | |
10777 | INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check); | |
10778 | INIT_WORK(&priv->link_up, ipw_bg_link_up); | |
10779 | INIT_WORK(&priv->link_down, ipw_bg_link_down); | |
10780 | INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on); | |
10781 | INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off); | |
10782 | INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off); | |
10783 | INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network); | |
10784 | ||
10785 | #ifdef CONFIG_IPW2200_QOS | |
10786 | INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate); | |
10787 | #endif /* CONFIG_IPW2200_QOS */ | |
10788 | ||
10789 | tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long)) | |
10790 | ipw_irq_tasklet, (unsigned long)priv); | |
10791 | ||
10792 | return ret; | |
10793 | } | |
10794 | ||
10795 | static void shim__set_security(struct net_device *dev, | |
10796 | struct libipw_security *sec) | |
10797 | { | |
10798 | struct ipw_priv *priv = libipw_priv(dev); | |
10799 | int i; | |
10800 | for (i = 0; i < 4; i++) { | |
10801 | if (sec->flags & (1 << i)) { | |
10802 | priv->ieee->sec.encode_alg[i] = sec->encode_alg[i]; | |
10803 | priv->ieee->sec.key_sizes[i] = sec->key_sizes[i]; | |
10804 | if (sec->key_sizes[i] == 0) | |
10805 | priv->ieee->sec.flags &= ~(1 << i); | |
10806 | else { | |
10807 | memcpy(priv->ieee->sec.keys[i], sec->keys[i], | |
10808 | sec->key_sizes[i]); | |
10809 | priv->ieee->sec.flags |= (1 << i); | |
10810 | } | |
10811 | priv->status |= STATUS_SECURITY_UPDATED; | |
10812 | } else if (sec->level != SEC_LEVEL_1) | |
10813 | priv->ieee->sec.flags &= ~(1 << i); | |
10814 | } | |
10815 | ||
10816 | if (sec->flags & SEC_ACTIVE_KEY) { | |
10817 | if (sec->active_key <= 3) { | |
10818 | priv->ieee->sec.active_key = sec->active_key; | |
10819 | priv->ieee->sec.flags |= SEC_ACTIVE_KEY; | |
10820 | } else | |
10821 | priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY; | |
10822 | priv->status |= STATUS_SECURITY_UPDATED; | |
10823 | } else | |
10824 | priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY; | |
10825 | ||
10826 | if ((sec->flags & SEC_AUTH_MODE) && | |
10827 | (priv->ieee->sec.auth_mode != sec->auth_mode)) { | |
10828 | priv->ieee->sec.auth_mode = sec->auth_mode; | |
10829 | priv->ieee->sec.flags |= SEC_AUTH_MODE; | |
10830 | if (sec->auth_mode == WLAN_AUTH_SHARED_KEY) | |
10831 | priv->capability |= CAP_SHARED_KEY; | |
10832 | else | |
10833 | priv->capability &= ~CAP_SHARED_KEY; | |
10834 | priv->status |= STATUS_SECURITY_UPDATED; | |
10835 | } | |
10836 | ||
10837 | if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) { | |
10838 | priv->ieee->sec.flags |= SEC_ENABLED; | |
10839 | priv->ieee->sec.enabled = sec->enabled; | |
10840 | priv->status |= STATUS_SECURITY_UPDATED; | |
10841 | if (sec->enabled) | |
10842 | priv->capability |= CAP_PRIVACY_ON; | |
10843 | else | |
10844 | priv->capability &= ~CAP_PRIVACY_ON; | |
10845 | } | |
10846 | ||
10847 | if (sec->flags & SEC_ENCRYPT) | |
10848 | priv->ieee->sec.encrypt = sec->encrypt; | |
10849 | ||
10850 | if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) { | |
10851 | priv->ieee->sec.level = sec->level; | |
10852 | priv->ieee->sec.flags |= SEC_LEVEL; | |
10853 | priv->status |= STATUS_SECURITY_UPDATED; | |
10854 | } | |
10855 | ||
10856 | if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT)) | |
10857 | ipw_set_hwcrypto_keys(priv); | |
10858 | ||
10859 | /* To match current functionality of ipw2100 (which works well w/ | |
10860 | * various supplicants, we don't force a disassociate if the | |
10861 | * privacy capability changes ... */ | |
10862 | #if 0 | |
10863 | if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) && | |
10864 | (((priv->assoc_request.capability & | |
10865 | cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) || | |
10866 | (!(priv->assoc_request.capability & | |
10867 | cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) { | |
10868 | IPW_DEBUG_ASSOC("Disassociating due to capability " | |
10869 | "change.\n"); | |
10870 | ipw_disassociate(priv); | |
10871 | } | |
10872 | #endif | |
10873 | } | |
10874 | ||
10875 | static int init_supported_rates(struct ipw_priv *priv, | |
10876 | struct ipw_supported_rates *rates) | |
10877 | { | |
10878 | /* TODO: Mask out rates based on priv->rates_mask */ | |
10879 | ||
10880 | memset(rates, 0, sizeof(*rates)); | |
10881 | /* configure supported rates */ | |
10882 | switch (priv->ieee->freq_band) { | |
10883 | case LIBIPW_52GHZ_BAND: | |
10884 | rates->ieee_mode = IPW_A_MODE; | |
10885 | rates->purpose = IPW_RATE_CAPABILITIES; | |
10886 | ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION, | |
10887 | LIBIPW_OFDM_DEFAULT_RATES_MASK); | |
10888 | break; | |
10889 | ||
10890 | default: /* Mixed or 2.4Ghz */ | |
10891 | rates->ieee_mode = IPW_G_MODE; | |
10892 | rates->purpose = IPW_RATE_CAPABILITIES; | |
10893 | ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION, | |
10894 | LIBIPW_CCK_DEFAULT_RATES_MASK); | |
10895 | if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) { | |
10896 | ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION, | |
10897 | LIBIPW_OFDM_DEFAULT_RATES_MASK); | |
10898 | } | |
10899 | break; | |
10900 | } | |
10901 | ||
10902 | return 0; | |
10903 | } | |
10904 | ||
10905 | static int ipw_config(struct ipw_priv *priv) | |
10906 | { | |
10907 | /* This is only called from ipw_up, which resets/reloads the firmware | |
10908 | so, we don't need to first disable the card before we configure | |
10909 | it */ | |
10910 | if (ipw_set_tx_power(priv)) | |
10911 | goto error; | |
10912 | ||
10913 | /* initialize adapter address */ | |
10914 | if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr)) | |
10915 | goto error; | |
10916 | ||
10917 | /* set basic system config settings */ | |
10918 | init_sys_config(&priv->sys_config); | |
10919 | ||
10920 | /* Support Bluetooth if we have BT h/w on board, and user wants to. | |
10921 | * Does not support BT priority yet (don't abort or defer our Tx) */ | |
10922 | if (bt_coexist) { | |
10923 | unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY]; | |
10924 | ||
10925 | if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG) | |
10926 | priv->sys_config.bt_coexistence | |
10927 | |= CFG_BT_COEXISTENCE_SIGNAL_CHNL; | |
10928 | if (bt_caps & EEPROM_SKU_CAP_BT_OOB) | |
10929 | priv->sys_config.bt_coexistence | |
10930 | |= CFG_BT_COEXISTENCE_OOB; | |
10931 | } | |
10932 | ||
10933 | #ifdef CONFIG_IPW2200_PROMISCUOUS | |
10934 | if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) { | |
10935 | priv->sys_config.accept_all_data_frames = 1; | |
10936 | priv->sys_config.accept_non_directed_frames = 1; | |
10937 | priv->sys_config.accept_all_mgmt_bcpr = 1; | |
10938 | priv->sys_config.accept_all_mgmt_frames = 1; | |
10939 | } | |
10940 | #endif | |
10941 | ||
10942 | if (priv->ieee->iw_mode == IW_MODE_ADHOC) | |
10943 | priv->sys_config.answer_broadcast_ssid_probe = 1; | |
10944 | else | |
10945 | priv->sys_config.answer_broadcast_ssid_probe = 0; | |
10946 | ||
10947 | if (ipw_send_system_config(priv)) | |
10948 | goto error; | |
10949 | ||
10950 | init_supported_rates(priv, &priv->rates); | |
10951 | if (ipw_send_supported_rates(priv, &priv->rates)) | |
10952 | goto error; | |
10953 | ||
10954 | /* Set request-to-send threshold */ | |
10955 | if (priv->rts_threshold) { | |
10956 | if (ipw_send_rts_threshold(priv, priv->rts_threshold)) | |
10957 | goto error; | |
10958 | } | |
10959 | #ifdef CONFIG_IPW2200_QOS | |
10960 | IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n"); | |
10961 | ipw_qos_activate(priv, NULL); | |
10962 | #endif /* CONFIG_IPW2200_QOS */ | |
10963 | ||
10964 | if (ipw_set_random_seed(priv)) | |
10965 | goto error; | |
10966 | ||
10967 | /* final state transition to the RUN state */ | |
10968 | if (ipw_send_host_complete(priv)) | |
10969 | goto error; | |
10970 | ||
10971 | priv->status |= STATUS_INIT; | |
10972 | ||
10973 | ipw_led_init(priv); | |
10974 | ipw_led_radio_on(priv); | |
10975 | priv->notif_missed_beacons = 0; | |
10976 | ||
10977 | /* Set hardware WEP key if it is configured. */ | |
10978 | if ((priv->capability & CAP_PRIVACY_ON) && | |
10979 | (priv->ieee->sec.level == SEC_LEVEL_1) && | |
10980 | !(priv->ieee->host_encrypt || priv->ieee->host_decrypt)) | |
10981 | ipw_set_hwcrypto_keys(priv); | |
10982 | ||
10983 | return 0; | |
10984 | ||
10985 | error: | |
10986 | return -EIO; | |
10987 | } | |
10988 | ||
10989 | /* | |
10990 | * NOTE: | |
10991 | * | |
10992 | * These tables have been tested in conjunction with the | |
10993 | * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters. | |
10994 | * | |
10995 | * Altering this values, using it on other hardware, or in geographies | |
10996 | * not intended for resale of the above mentioned Intel adapters has | |
10997 | * not been tested. | |
10998 | * | |
10999 | * Remember to update the table in README.ipw2200 when changing this | |
11000 | * table. | |
11001 | * | |
11002 | */ | |
11003 | static const struct libipw_geo ipw_geos[] = { | |
11004 | { /* Restricted */ | |
11005 | "---", | |
11006 | .bg_channels = 11, | |
11007 | .bg = {{2412, 1}, {2417, 2}, {2422, 3}, | |
11008 | {2427, 4}, {2432, 5}, {2437, 6}, | |
11009 | {2442, 7}, {2447, 8}, {2452, 9}, | |
11010 | {2457, 10}, {2462, 11}}, | |
11011 | }, | |
11012 | ||
11013 | { /* Custom US/Canada */ | |
11014 | "ZZF", | |
11015 | .bg_channels = 11, | |
11016 | .bg = {{2412, 1}, {2417, 2}, {2422, 3}, | |
11017 | {2427, 4}, {2432, 5}, {2437, 6}, | |
11018 | {2442, 7}, {2447, 8}, {2452, 9}, | |
11019 | {2457, 10}, {2462, 11}}, | |
11020 | .a_channels = 8, | |
11021 | .a = {{5180, 36}, | |
11022 | {5200, 40}, | |
11023 | {5220, 44}, | |
11024 | {5240, 48}, | |
11025 | {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, | |
11026 | {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, | |
11027 | {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, | |
11028 | {5320, 64, LIBIPW_CH_PASSIVE_ONLY}}, | |
11029 | }, | |
11030 | ||
11031 | { /* Rest of World */ | |
11032 | "ZZD", | |
11033 | .bg_channels = 13, | |
11034 | .bg = {{2412, 1}, {2417, 2}, {2422, 3}, | |
11035 | {2427, 4}, {2432, 5}, {2437, 6}, | |
11036 | {2442, 7}, {2447, 8}, {2452, 9}, | |
11037 | {2457, 10}, {2462, 11}, {2467, 12}, | |
11038 | {2472, 13}}, | |
11039 | }, | |
11040 | ||
11041 | { /* Custom USA & Europe & High */ | |
11042 | "ZZA", | |
11043 | .bg_channels = 11, | |
11044 | .bg = {{2412, 1}, {2417, 2}, {2422, 3}, | |
11045 | {2427, 4}, {2432, 5}, {2437, 6}, | |
11046 | {2442, 7}, {2447, 8}, {2452, 9}, | |
11047 | {2457, 10}, {2462, 11}}, | |
11048 | .a_channels = 13, | |
11049 | .a = {{5180, 36}, | |
11050 | {5200, 40}, | |
11051 | {5220, 44}, | |
11052 | {5240, 48}, | |
11053 | {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, | |
11054 | {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, | |
11055 | {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, | |
11056 | {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, | |
11057 | {5745, 149}, | |
11058 | {5765, 153}, | |
11059 | {5785, 157}, | |
11060 | {5805, 161}, | |
11061 | {5825, 165}}, | |
11062 | }, | |
11063 | ||
11064 | { /* Custom NA & Europe */ | |
11065 | "ZZB", | |
11066 | .bg_channels = 11, | |
11067 | .bg = {{2412, 1}, {2417, 2}, {2422, 3}, | |
11068 | {2427, 4}, {2432, 5}, {2437, 6}, | |
11069 | {2442, 7}, {2447, 8}, {2452, 9}, | |
11070 | {2457, 10}, {2462, 11}}, | |
11071 | .a_channels = 13, | |
11072 | .a = {{5180, 36}, | |
11073 | {5200, 40}, | |
11074 | {5220, 44}, | |
11075 | {5240, 48}, | |
11076 | {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, | |
11077 | {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, | |
11078 | {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, | |
11079 | {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, | |
11080 | {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, | |
11081 | {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, | |
11082 | {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, | |
11083 | {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, | |
11084 | {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, | |
11085 | }, | |
11086 | ||
11087 | { /* Custom Japan */ | |
11088 | "ZZC", | |
11089 | .bg_channels = 11, | |
11090 | .bg = {{2412, 1}, {2417, 2}, {2422, 3}, | |
11091 | {2427, 4}, {2432, 5}, {2437, 6}, | |
11092 | {2442, 7}, {2447, 8}, {2452, 9}, | |
11093 | {2457, 10}, {2462, 11}}, | |
11094 | .a_channels = 4, | |
11095 | .a = {{5170, 34}, {5190, 38}, | |
11096 | {5210, 42}, {5230, 46}}, | |
11097 | }, | |
11098 | ||
11099 | { /* Custom */ | |
11100 | "ZZM", | |
11101 | .bg_channels = 11, | |
11102 | .bg = {{2412, 1}, {2417, 2}, {2422, 3}, | |
11103 | {2427, 4}, {2432, 5}, {2437, 6}, | |
11104 | {2442, 7}, {2447, 8}, {2452, 9}, | |
11105 | {2457, 10}, {2462, 11}}, | |
11106 | }, | |
11107 | ||
11108 | { /* Europe */ | |
11109 | "ZZE", | |
11110 | .bg_channels = 13, | |
11111 | .bg = {{2412, 1}, {2417, 2}, {2422, 3}, | |
11112 | {2427, 4}, {2432, 5}, {2437, 6}, | |
11113 | {2442, 7}, {2447, 8}, {2452, 9}, | |
11114 | {2457, 10}, {2462, 11}, {2467, 12}, | |
11115 | {2472, 13}}, | |
11116 | .a_channels = 19, | |
11117 | .a = {{5180, 36}, | |
11118 | {5200, 40}, | |
11119 | {5220, 44}, | |
11120 | {5240, 48}, | |
11121 | {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, | |
11122 | {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, | |
11123 | {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, | |
11124 | {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, | |
11125 | {5500, 100, LIBIPW_CH_PASSIVE_ONLY}, | |
11126 | {5520, 104, LIBIPW_CH_PASSIVE_ONLY}, | |
11127 | {5540, 108, LIBIPW_CH_PASSIVE_ONLY}, | |
11128 | {5560, 112, LIBIPW_CH_PASSIVE_ONLY}, | |
11129 | {5580, 116, LIBIPW_CH_PASSIVE_ONLY}, | |
11130 | {5600, 120, LIBIPW_CH_PASSIVE_ONLY}, | |
11131 | {5620, 124, LIBIPW_CH_PASSIVE_ONLY}, | |
11132 | {5640, 128, LIBIPW_CH_PASSIVE_ONLY}, | |
11133 | {5660, 132, LIBIPW_CH_PASSIVE_ONLY}, | |
11134 | {5680, 136, LIBIPW_CH_PASSIVE_ONLY}, | |
11135 | {5700, 140, LIBIPW_CH_PASSIVE_ONLY}}, | |
11136 | }, | |
11137 | ||
11138 | { /* Custom Japan */ | |
11139 | "ZZJ", | |
11140 | .bg_channels = 14, | |
11141 | .bg = {{2412, 1}, {2417, 2}, {2422, 3}, | |
11142 | {2427, 4}, {2432, 5}, {2437, 6}, | |
11143 | {2442, 7}, {2447, 8}, {2452, 9}, | |
11144 | {2457, 10}, {2462, 11}, {2467, 12}, | |
11145 | {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}}, | |
11146 | .a_channels = 4, | |
11147 | .a = {{5170, 34}, {5190, 38}, | |
11148 | {5210, 42}, {5230, 46}}, | |
11149 | }, | |
11150 | ||
11151 | { /* Rest of World */ | |
11152 | "ZZR", | |
11153 | .bg_channels = 14, | |
11154 | .bg = {{2412, 1}, {2417, 2}, {2422, 3}, | |
11155 | {2427, 4}, {2432, 5}, {2437, 6}, | |
11156 | {2442, 7}, {2447, 8}, {2452, 9}, | |
11157 | {2457, 10}, {2462, 11}, {2467, 12}, | |
11158 | {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY | | |
11159 | LIBIPW_CH_PASSIVE_ONLY}}, | |
11160 | }, | |
11161 | ||
11162 | { /* High Band */ | |
11163 | "ZZH", | |
11164 | .bg_channels = 13, | |
11165 | .bg = {{2412, 1}, {2417, 2}, {2422, 3}, | |
11166 | {2427, 4}, {2432, 5}, {2437, 6}, | |
11167 | {2442, 7}, {2447, 8}, {2452, 9}, | |
11168 | {2457, 10}, {2462, 11}, | |
11169 | {2467, 12, LIBIPW_CH_PASSIVE_ONLY}, | |
11170 | {2472, 13, LIBIPW_CH_PASSIVE_ONLY}}, | |
11171 | .a_channels = 4, | |
11172 | .a = {{5745, 149}, {5765, 153}, | |
11173 | {5785, 157}, {5805, 161}}, | |
11174 | }, | |
11175 | ||
11176 | { /* Custom Europe */ | |
11177 | "ZZG", | |
11178 | .bg_channels = 13, | |
11179 | .bg = {{2412, 1}, {2417, 2}, {2422, 3}, | |
11180 | {2427, 4}, {2432, 5}, {2437, 6}, | |
11181 | {2442, 7}, {2447, 8}, {2452, 9}, | |
11182 | {2457, 10}, {2462, 11}, | |
11183 | {2467, 12}, {2472, 13}}, | |
11184 | .a_channels = 4, | |
11185 | .a = {{5180, 36}, {5200, 40}, | |
11186 | {5220, 44}, {5240, 48}}, | |
11187 | }, | |
11188 | ||
11189 | { /* Europe */ | |
11190 | "ZZK", | |
11191 | .bg_channels = 13, | |
11192 | .bg = {{2412, 1}, {2417, 2}, {2422, 3}, | |
11193 | {2427, 4}, {2432, 5}, {2437, 6}, | |
11194 | {2442, 7}, {2447, 8}, {2452, 9}, | |
11195 | {2457, 10}, {2462, 11}, | |
11196 | {2467, 12, LIBIPW_CH_PASSIVE_ONLY}, | |
11197 | {2472, 13, LIBIPW_CH_PASSIVE_ONLY}}, | |
11198 | .a_channels = 24, | |
11199 | .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY}, | |
11200 | {5200, 40, LIBIPW_CH_PASSIVE_ONLY}, | |
11201 | {5220, 44, LIBIPW_CH_PASSIVE_ONLY}, | |
11202 | {5240, 48, LIBIPW_CH_PASSIVE_ONLY}, | |
11203 | {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, | |
11204 | {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, | |
11205 | {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, | |
11206 | {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, | |
11207 | {5500, 100, LIBIPW_CH_PASSIVE_ONLY}, | |
11208 | {5520, 104, LIBIPW_CH_PASSIVE_ONLY}, | |
11209 | {5540, 108, LIBIPW_CH_PASSIVE_ONLY}, | |
11210 | {5560, 112, LIBIPW_CH_PASSIVE_ONLY}, | |
11211 | {5580, 116, LIBIPW_CH_PASSIVE_ONLY}, | |
11212 | {5600, 120, LIBIPW_CH_PASSIVE_ONLY}, | |
11213 | {5620, 124, LIBIPW_CH_PASSIVE_ONLY}, | |
11214 | {5640, 128, LIBIPW_CH_PASSIVE_ONLY}, | |
11215 | {5660, 132, LIBIPW_CH_PASSIVE_ONLY}, | |
11216 | {5680, 136, LIBIPW_CH_PASSIVE_ONLY}, | |
11217 | {5700, 140, LIBIPW_CH_PASSIVE_ONLY}, | |
11218 | {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, | |
11219 | {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, | |
11220 | {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, | |
11221 | {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, | |
11222 | {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, | |
11223 | }, | |
11224 | ||
11225 | { /* Europe */ | |
11226 | "ZZL", | |
11227 | .bg_channels = 11, | |
11228 | .bg = {{2412, 1}, {2417, 2}, {2422, 3}, | |
11229 | {2427, 4}, {2432, 5}, {2437, 6}, | |
11230 | {2442, 7}, {2447, 8}, {2452, 9}, | |
11231 | {2457, 10}, {2462, 11}}, | |
11232 | .a_channels = 13, | |
11233 | .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY}, | |
11234 | {5200, 40, LIBIPW_CH_PASSIVE_ONLY}, | |
11235 | {5220, 44, LIBIPW_CH_PASSIVE_ONLY}, | |
11236 | {5240, 48, LIBIPW_CH_PASSIVE_ONLY}, | |
11237 | {5260, 52, LIBIPW_CH_PASSIVE_ONLY}, | |
11238 | {5280, 56, LIBIPW_CH_PASSIVE_ONLY}, | |
11239 | {5300, 60, LIBIPW_CH_PASSIVE_ONLY}, | |
11240 | {5320, 64, LIBIPW_CH_PASSIVE_ONLY}, | |
11241 | {5745, 149, LIBIPW_CH_PASSIVE_ONLY}, | |
11242 | {5765, 153, LIBIPW_CH_PASSIVE_ONLY}, | |
11243 | {5785, 157, LIBIPW_CH_PASSIVE_ONLY}, | |
11244 | {5805, 161, LIBIPW_CH_PASSIVE_ONLY}, | |
11245 | {5825, 165, LIBIPW_CH_PASSIVE_ONLY}}, | |
11246 | } | |
11247 | }; | |
11248 | ||
11249 | #define MAX_HW_RESTARTS 5 | |
11250 | static int ipw_up(struct ipw_priv *priv) | |
11251 | { | |
11252 | int rc, i, j; | |
11253 | ||
11254 | /* Age scan list entries found before suspend */ | |
11255 | if (priv->suspend_time) { | |
11256 | libipw_networks_age(priv->ieee, priv->suspend_time); | |
11257 | priv->suspend_time = 0; | |
11258 | } | |
11259 | ||
11260 | if (priv->status & STATUS_EXIT_PENDING) | |
11261 | return -EIO; | |
11262 | ||
11263 | if (cmdlog && !priv->cmdlog) { | |
11264 | priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog), | |
11265 | GFP_KERNEL); | |
11266 | if (priv->cmdlog == NULL) { | |
11267 | IPW_ERROR("Error allocating %d command log entries.\n", | |
11268 | cmdlog); | |
11269 | return -ENOMEM; | |
11270 | } else { | |
11271 | priv->cmdlog_len = cmdlog; | |
11272 | } | |
11273 | } | |
11274 | ||
11275 | for (i = 0; i < MAX_HW_RESTARTS; i++) { | |
11276 | /* Load the microcode, firmware, and eeprom. | |
11277 | * Also start the clocks. */ | |
11278 | rc = ipw_load(priv); | |
11279 | if (rc) { | |
11280 | IPW_ERROR("Unable to load firmware: %d\n", rc); | |
11281 | return rc; | |
11282 | } | |
11283 | ||
11284 | ipw_init_ordinals(priv); | |
11285 | if (!(priv->config & CFG_CUSTOM_MAC)) | |
11286 | eeprom_parse_mac(priv, priv->mac_addr); | |
11287 | memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN); | |
11288 | memcpy(priv->net_dev->perm_addr, priv->mac_addr, ETH_ALEN); | |
11289 | ||
11290 | for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) { | |
11291 | if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE], | |
11292 | ipw_geos[j].name, 3)) | |
11293 | break; | |
11294 | } | |
11295 | if (j == ARRAY_SIZE(ipw_geos)) { | |
11296 | IPW_WARNING("SKU [%c%c%c] not recognized.\n", | |
11297 | priv->eeprom[EEPROM_COUNTRY_CODE + 0], | |
11298 | priv->eeprom[EEPROM_COUNTRY_CODE + 1], | |
11299 | priv->eeprom[EEPROM_COUNTRY_CODE + 2]); | |
11300 | j = 0; | |
11301 | } | |
11302 | if (libipw_set_geo(priv->ieee, &ipw_geos[j])) { | |
11303 | IPW_WARNING("Could not set geography."); | |
11304 | return 0; | |
11305 | } | |
11306 | ||
11307 | if (priv->status & STATUS_RF_KILL_SW) { | |
11308 | IPW_WARNING("Radio disabled by module parameter.\n"); | |
11309 | return 0; | |
11310 | } else if (rf_kill_active(priv)) { | |
11311 | IPW_WARNING("Radio Frequency Kill Switch is On:\n" | |
11312 | "Kill switch must be turned off for " | |
11313 | "wireless networking to work.\n"); | |
11314 | schedule_delayed_work(&priv->rf_kill, 2 * HZ); | |
11315 | return 0; | |
11316 | } | |
11317 | ||
11318 | rc = ipw_config(priv); | |
11319 | if (!rc) { | |
11320 | IPW_DEBUG_INFO("Configured device on count %i\n", i); | |
11321 | ||
11322 | /* If configure to try and auto-associate, kick | |
11323 | * off a scan. */ | |
11324 | schedule_delayed_work(&priv->request_scan, 0); | |
11325 | ||
11326 | return 0; | |
11327 | } | |
11328 | ||
11329 | IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc); | |
11330 | IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n", | |
11331 | i, MAX_HW_RESTARTS); | |
11332 | ||
11333 | /* We had an error bringing up the hardware, so take it | |
11334 | * all the way back down so we can try again */ | |
11335 | ipw_down(priv); | |
11336 | } | |
11337 | ||
11338 | /* tried to restart and config the device for as long as our | |
11339 | * patience could withstand */ | |
11340 | IPW_ERROR("Unable to initialize device after %d attempts.\n", i); | |
11341 | ||
11342 | return -EIO; | |
11343 | } | |
11344 | ||
11345 | static void ipw_bg_up(struct work_struct *work) | |
11346 | { | |
11347 | struct ipw_priv *priv = | |
11348 | container_of(work, struct ipw_priv, up); | |
11349 | mutex_lock(&priv->mutex); | |
11350 | ipw_up(priv); | |
11351 | mutex_unlock(&priv->mutex); | |
11352 | } | |
11353 | ||
11354 | static void ipw_deinit(struct ipw_priv *priv) | |
11355 | { | |
11356 | int i; | |
11357 | ||
11358 | if (priv->status & STATUS_SCANNING) { | |
11359 | IPW_DEBUG_INFO("Aborting scan during shutdown.\n"); | |
11360 | ipw_abort_scan(priv); | |
11361 | } | |
11362 | ||
11363 | if (priv->status & STATUS_ASSOCIATED) { | |
11364 | IPW_DEBUG_INFO("Disassociating during shutdown.\n"); | |
11365 | ipw_disassociate(priv); | |
11366 | } | |
11367 | ||
11368 | ipw_led_shutdown(priv); | |
11369 | ||
11370 | /* Wait up to 1s for status to change to not scanning and not | |
11371 | * associated (disassociation can take a while for a ful 802.11 | |
11372 | * exchange */ | |
11373 | for (i = 1000; i && (priv->status & | |
11374 | (STATUS_DISASSOCIATING | | |
11375 | STATUS_ASSOCIATED | STATUS_SCANNING)); i--) | |
11376 | udelay(10); | |
11377 | ||
11378 | if (priv->status & (STATUS_DISASSOCIATING | | |
11379 | STATUS_ASSOCIATED | STATUS_SCANNING)) | |
11380 | IPW_DEBUG_INFO("Still associated or scanning...\n"); | |
11381 | else | |
11382 | IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i); | |
11383 | ||
11384 | /* Attempt to disable the card */ | |
11385 | ipw_send_card_disable(priv, 0); | |
11386 | ||
11387 | priv->status &= ~STATUS_INIT; | |
11388 | } | |
11389 | ||
11390 | static void ipw_down(struct ipw_priv *priv) | |
11391 | { | |
11392 | int exit_pending = priv->status & STATUS_EXIT_PENDING; | |
11393 | ||
11394 | priv->status |= STATUS_EXIT_PENDING; | |
11395 | ||
11396 | if (ipw_is_init(priv)) | |
11397 | ipw_deinit(priv); | |
11398 | ||
11399 | /* Wipe out the EXIT_PENDING status bit if we are not actually | |
11400 | * exiting the module */ | |
11401 | if (!exit_pending) | |
11402 | priv->status &= ~STATUS_EXIT_PENDING; | |
11403 | ||
11404 | /* tell the device to stop sending interrupts */ | |
11405 | ipw_disable_interrupts(priv); | |
11406 | ||
11407 | /* Clear all bits but the RF Kill */ | |
11408 | priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING; | |
11409 | netif_carrier_off(priv->net_dev); | |
11410 | ||
11411 | ipw_stop_nic(priv); | |
11412 | ||
11413 | ipw_led_radio_off(priv); | |
11414 | } | |
11415 | ||
11416 | static void ipw_bg_down(struct work_struct *work) | |
11417 | { | |
11418 | struct ipw_priv *priv = | |
11419 | container_of(work, struct ipw_priv, down); | |
11420 | mutex_lock(&priv->mutex); | |
11421 | ipw_down(priv); | |
11422 | mutex_unlock(&priv->mutex); | |
11423 | } | |
11424 | ||
11425 | /* Called by register_netdev() */ | |
11426 | static int ipw_net_init(struct net_device *dev) | |
11427 | { | |
11428 | int i, rc = 0; | |
11429 | struct ipw_priv *priv = libipw_priv(dev); | |
11430 | const struct libipw_geo *geo = libipw_get_geo(priv->ieee); | |
11431 | struct wireless_dev *wdev = &priv->ieee->wdev; | |
11432 | mutex_lock(&priv->mutex); | |
11433 | ||
11434 | if (ipw_up(priv)) { | |
11435 | rc = -EIO; | |
11436 | goto out; | |
11437 | } | |
11438 | ||
11439 | memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN); | |
11440 | ||
11441 | /* fill-out priv->ieee->bg_band */ | |
11442 | if (geo->bg_channels) { | |
11443 | struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band; | |
11444 | ||
11445 | bg_band->band = IEEE80211_BAND_2GHZ; | |
11446 | bg_band->n_channels = geo->bg_channels; | |
11447 | bg_band->channels = kcalloc(geo->bg_channels, | |
11448 | sizeof(struct ieee80211_channel), | |
11449 | GFP_KERNEL); | |
11450 | if (!bg_band->channels) { | |
11451 | rc = -ENOMEM; | |
11452 | goto out; | |
11453 | } | |
11454 | /* translate geo->bg to bg_band.channels */ | |
11455 | for (i = 0; i < geo->bg_channels; i++) { | |
11456 | bg_band->channels[i].band = IEEE80211_BAND_2GHZ; | |
11457 | bg_band->channels[i].center_freq = geo->bg[i].freq; | |
11458 | bg_band->channels[i].hw_value = geo->bg[i].channel; | |
11459 | bg_band->channels[i].max_power = geo->bg[i].max_power; | |
11460 | if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) | |
11461 | bg_band->channels[i].flags |= | |
11462 | IEEE80211_CHAN_PASSIVE_SCAN; | |
11463 | if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS) | |
11464 | bg_band->channels[i].flags |= | |
11465 | IEEE80211_CHAN_NO_IBSS; | |
11466 | if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT) | |
11467 | bg_band->channels[i].flags |= | |
11468 | IEEE80211_CHAN_RADAR; | |
11469 | /* No equivalent for LIBIPW_CH_80211H_RULES, | |
11470 | LIBIPW_CH_UNIFORM_SPREADING, or | |
11471 | LIBIPW_CH_B_ONLY... */ | |
11472 | } | |
11473 | /* point at bitrate info */ | |
11474 | bg_band->bitrates = ipw2200_bg_rates; | |
11475 | bg_band->n_bitrates = ipw2200_num_bg_rates; | |
11476 | ||
11477 | wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band; | |
11478 | } | |
11479 | ||
11480 | /* fill-out priv->ieee->a_band */ | |
11481 | if (geo->a_channels) { | |
11482 | struct ieee80211_supported_band *a_band = &priv->ieee->a_band; | |
11483 | ||
11484 | a_band->band = IEEE80211_BAND_5GHZ; | |
11485 | a_band->n_channels = geo->a_channels; | |
11486 | a_band->channels = kcalloc(geo->a_channels, | |
11487 | sizeof(struct ieee80211_channel), | |
11488 | GFP_KERNEL); | |
11489 | if (!a_band->channels) { | |
11490 | rc = -ENOMEM; | |
11491 | goto out; | |
11492 | } | |
11493 | /* translate geo->bg to a_band.channels */ | |
11494 | for (i = 0; i < geo->a_channels; i++) { | |
11495 | a_band->channels[i].band = IEEE80211_BAND_2GHZ; | |
11496 | a_band->channels[i].center_freq = geo->a[i].freq; | |
11497 | a_band->channels[i].hw_value = geo->a[i].channel; | |
11498 | a_band->channels[i].max_power = geo->a[i].max_power; | |
11499 | if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) | |
11500 | a_band->channels[i].flags |= | |
11501 | IEEE80211_CHAN_PASSIVE_SCAN; | |
11502 | if (geo->a[i].flags & LIBIPW_CH_NO_IBSS) | |
11503 | a_band->channels[i].flags |= | |
11504 | IEEE80211_CHAN_NO_IBSS; | |
11505 | if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT) | |
11506 | a_band->channels[i].flags |= | |
11507 | IEEE80211_CHAN_RADAR; | |
11508 | /* No equivalent for LIBIPW_CH_80211H_RULES, | |
11509 | LIBIPW_CH_UNIFORM_SPREADING, or | |
11510 | LIBIPW_CH_B_ONLY... */ | |
11511 | } | |
11512 | /* point at bitrate info */ | |
11513 | a_band->bitrates = ipw2200_a_rates; | |
11514 | a_band->n_bitrates = ipw2200_num_a_rates; | |
11515 | ||
11516 | wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band; | |
11517 | } | |
11518 | ||
11519 | set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev); | |
11520 | ||
11521 | /* With that information in place, we can now register the wiphy... */ | |
11522 | if (wiphy_register(wdev->wiphy)) { | |
11523 | rc = -EIO; | |
11524 | goto out; | |
11525 | } | |
11526 | ||
11527 | out: | |
11528 | mutex_unlock(&priv->mutex); | |
11529 | return rc; | |
11530 | } | |
11531 | ||
11532 | /* PCI driver stuff */ | |
11533 | static DEFINE_PCI_DEVICE_TABLE(card_ids) = { | |
11534 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0}, | |
11535 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0}, | |
11536 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0}, | |
11537 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0}, | |
11538 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0}, | |
11539 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0}, | |
11540 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0}, | |
11541 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0}, | |
11542 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0}, | |
11543 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0}, | |
11544 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0}, | |
11545 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0}, | |
11546 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0}, | |
11547 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0}, | |
11548 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0}, | |
11549 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0}, | |
11550 | {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0}, | |
11551 | {PCI_VDEVICE(INTEL, 0x104f), 0}, | |
11552 | {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */ | |
11553 | {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */ | |
11554 | {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */ | |
11555 | {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */ | |
11556 | ||
11557 | /* required last entry */ | |
11558 | {0,} | |
11559 | }; | |
11560 | ||
11561 | MODULE_DEVICE_TABLE(pci, card_ids); | |
11562 | ||
11563 | static struct attribute *ipw_sysfs_entries[] = { | |
11564 | &dev_attr_rf_kill.attr, | |
11565 | &dev_attr_direct_dword.attr, | |
11566 | &dev_attr_indirect_byte.attr, | |
11567 | &dev_attr_indirect_dword.attr, | |
11568 | &dev_attr_mem_gpio_reg.attr, | |
11569 | &dev_attr_command_event_reg.attr, | |
11570 | &dev_attr_nic_type.attr, | |
11571 | &dev_attr_status.attr, | |
11572 | &dev_attr_cfg.attr, | |
11573 | &dev_attr_error.attr, | |
11574 | &dev_attr_event_log.attr, | |
11575 | &dev_attr_cmd_log.attr, | |
11576 | &dev_attr_eeprom_delay.attr, | |
11577 | &dev_attr_ucode_version.attr, | |
11578 | &dev_attr_rtc.attr, | |
11579 | &dev_attr_scan_age.attr, | |
11580 | &dev_attr_led.attr, | |
11581 | &dev_attr_speed_scan.attr, | |
11582 | &dev_attr_net_stats.attr, | |
11583 | &dev_attr_channels.attr, | |
11584 | #ifdef CONFIG_IPW2200_PROMISCUOUS | |
11585 | &dev_attr_rtap_iface.attr, | |
11586 | &dev_attr_rtap_filter.attr, | |
11587 | #endif | |
11588 | NULL | |
11589 | }; | |
11590 | ||
11591 | static struct attribute_group ipw_attribute_group = { | |
11592 | .name = NULL, /* put in device directory */ | |
11593 | .attrs = ipw_sysfs_entries, | |
11594 | }; | |
11595 | ||
11596 | #ifdef CONFIG_IPW2200_PROMISCUOUS | |
11597 | static int ipw_prom_open(struct net_device *dev) | |
11598 | { | |
11599 | struct ipw_prom_priv *prom_priv = libipw_priv(dev); | |
11600 | struct ipw_priv *priv = prom_priv->priv; | |
11601 | ||
11602 | IPW_DEBUG_INFO("prom dev->open\n"); | |
11603 | netif_carrier_off(dev); | |
11604 | ||
11605 | if (priv->ieee->iw_mode != IW_MODE_MONITOR) { | |
11606 | priv->sys_config.accept_all_data_frames = 1; | |
11607 | priv->sys_config.accept_non_directed_frames = 1; | |
11608 | priv->sys_config.accept_all_mgmt_bcpr = 1; | |
11609 | priv->sys_config.accept_all_mgmt_frames = 1; | |
11610 | ||
11611 | ipw_send_system_config(priv); | |
11612 | } | |
11613 | ||
11614 | return 0; | |
11615 | } | |
11616 | ||
11617 | static int ipw_prom_stop(struct net_device *dev) | |
11618 | { | |
11619 | struct ipw_prom_priv *prom_priv = libipw_priv(dev); | |
11620 | struct ipw_priv *priv = prom_priv->priv; | |
11621 | ||
11622 | IPW_DEBUG_INFO("prom dev->stop\n"); | |
11623 | ||
11624 | if (priv->ieee->iw_mode != IW_MODE_MONITOR) { | |
11625 | priv->sys_config.accept_all_data_frames = 0; | |
11626 | priv->sys_config.accept_non_directed_frames = 0; | |
11627 | priv->sys_config.accept_all_mgmt_bcpr = 0; | |
11628 | priv->sys_config.accept_all_mgmt_frames = 0; | |
11629 | ||
11630 | ipw_send_system_config(priv); | |
11631 | } | |
11632 | ||
11633 | return 0; | |
11634 | } | |
11635 | ||
11636 | static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb, | |
11637 | struct net_device *dev) | |
11638 | { | |
11639 | IPW_DEBUG_INFO("prom dev->xmit\n"); | |
11640 | dev_kfree_skb(skb); | |
11641 | return NETDEV_TX_OK; | |
11642 | } | |
11643 | ||
11644 | static const struct net_device_ops ipw_prom_netdev_ops = { | |
11645 | .ndo_open = ipw_prom_open, | |
11646 | .ndo_stop = ipw_prom_stop, | |
11647 | .ndo_start_xmit = ipw_prom_hard_start_xmit, | |
11648 | .ndo_change_mtu = libipw_change_mtu, | |
11649 | .ndo_set_mac_address = eth_mac_addr, | |
11650 | .ndo_validate_addr = eth_validate_addr, | |
11651 | }; | |
11652 | ||
11653 | static int ipw_prom_alloc(struct ipw_priv *priv) | |
11654 | { | |
11655 | int rc = 0; | |
11656 | ||
11657 | if (priv->prom_net_dev) | |
11658 | return -EPERM; | |
11659 | ||
11660 | priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1); | |
11661 | if (priv->prom_net_dev == NULL) | |
11662 | return -ENOMEM; | |
11663 | ||
11664 | priv->prom_priv = libipw_priv(priv->prom_net_dev); | |
11665 | priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev); | |
11666 | priv->prom_priv->priv = priv; | |
11667 | ||
11668 | strcpy(priv->prom_net_dev->name, "rtap%d"); | |
11669 | memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN); | |
11670 | ||
11671 | priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP; | |
11672 | priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops; | |
11673 | ||
11674 | priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR; | |
11675 | SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev); | |
11676 | ||
11677 | rc = register_netdev(priv->prom_net_dev); | |
11678 | if (rc) { | |
11679 | free_libipw(priv->prom_net_dev, 1); | |
11680 | priv->prom_net_dev = NULL; | |
11681 | return rc; | |
11682 | } | |
11683 | ||
11684 | return 0; | |
11685 | } | |
11686 | ||
11687 | static void ipw_prom_free(struct ipw_priv *priv) | |
11688 | { | |
11689 | if (!priv->prom_net_dev) | |
11690 | return; | |
11691 | ||
11692 | unregister_netdev(priv->prom_net_dev); | |
11693 | free_libipw(priv->prom_net_dev, 1); | |
11694 | ||
11695 | priv->prom_net_dev = NULL; | |
11696 | } | |
11697 | ||
11698 | #endif | |
11699 | ||
11700 | static const struct net_device_ops ipw_netdev_ops = { | |
11701 | .ndo_init = ipw_net_init, | |
11702 | .ndo_open = ipw_net_open, | |
11703 | .ndo_stop = ipw_net_stop, | |
11704 | .ndo_set_multicast_list = ipw_net_set_multicast_list, | |
11705 | .ndo_set_mac_address = ipw_net_set_mac_address, | |
11706 | .ndo_start_xmit = libipw_xmit, | |
11707 | .ndo_change_mtu = libipw_change_mtu, | |
11708 | .ndo_validate_addr = eth_validate_addr, | |
11709 | }; | |
11710 | ||
11711 | static int __devinit ipw_pci_probe(struct pci_dev *pdev, | |
11712 | const struct pci_device_id *ent) | |
11713 | { | |
11714 | int err = 0; | |
11715 | struct net_device *net_dev; | |
11716 | void __iomem *base; | |
11717 | u32 length, val; | |
11718 | struct ipw_priv *priv; | |
11719 | int i; | |
11720 | ||
11721 | net_dev = alloc_libipw(sizeof(struct ipw_priv), 0); | |
11722 | if (net_dev == NULL) { | |
11723 | err = -ENOMEM; | |
11724 | goto out; | |
11725 | } | |
11726 | ||
11727 | priv = libipw_priv(net_dev); | |
11728 | priv->ieee = netdev_priv(net_dev); | |
11729 | ||
11730 | priv->net_dev = net_dev; | |
11731 | priv->pci_dev = pdev; | |
11732 | ipw_debug_level = debug; | |
11733 | spin_lock_init(&priv->irq_lock); | |
11734 | spin_lock_init(&priv->lock); | |
11735 | for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) | |
11736 | INIT_LIST_HEAD(&priv->ibss_mac_hash[i]); | |
11737 | ||
11738 | mutex_init(&priv->mutex); | |
11739 | if (pci_enable_device(pdev)) { | |
11740 | err = -ENODEV; | |
11741 | goto out_free_libipw; | |
11742 | } | |
11743 | ||
11744 | pci_set_master(pdev); | |
11745 | ||
11746 | err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); | |
11747 | if (!err) | |
11748 | err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); | |
11749 | if (err) { | |
11750 | printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n"); | |
11751 | goto out_pci_disable_device; | |
11752 | } | |
11753 | ||
11754 | pci_set_drvdata(pdev, priv); | |
11755 | ||
11756 | err = pci_request_regions(pdev, DRV_NAME); | |
11757 | if (err) | |
11758 | goto out_pci_disable_device; | |
11759 | ||
11760 | /* We disable the RETRY_TIMEOUT register (0x41) to keep | |
11761 | * PCI Tx retries from interfering with C3 CPU state */ | |
11762 | pci_read_config_dword(pdev, 0x40, &val); | |
11763 | if ((val & 0x0000ff00) != 0) | |
11764 | pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); | |
11765 | ||
11766 | length = pci_resource_len(pdev, 0); | |
11767 | priv->hw_len = length; | |
11768 | ||
11769 | base = pci_ioremap_bar(pdev, 0); | |
11770 | if (!base) { | |
11771 | err = -ENODEV; | |
11772 | goto out_pci_release_regions; | |
11773 | } | |
11774 | ||
11775 | priv->hw_base = base; | |
11776 | IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length); | |
11777 | IPW_DEBUG_INFO("pci_resource_base = %p\n", base); | |
11778 | ||
11779 | err = ipw_setup_deferred_work(priv); | |
11780 | if (err) { | |
11781 | IPW_ERROR("Unable to setup deferred work\n"); | |
11782 | goto out_iounmap; | |
11783 | } | |
11784 | ||
11785 | ipw_sw_reset(priv, 1); | |
11786 | ||
11787 | err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv); | |
11788 | if (err) { | |
11789 | IPW_ERROR("Error allocating IRQ %d\n", pdev->irq); | |
11790 | goto out_iounmap; | |
11791 | } | |
11792 | ||
11793 | SET_NETDEV_DEV(net_dev, &pdev->dev); | |
11794 | ||
11795 | mutex_lock(&priv->mutex); | |
11796 | ||
11797 | priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit; | |
11798 | priv->ieee->set_security = shim__set_security; | |
11799 | priv->ieee->is_queue_full = ipw_net_is_queue_full; | |
11800 | ||
11801 | #ifdef CONFIG_IPW2200_QOS | |
11802 | priv->ieee->is_qos_active = ipw_is_qos_active; | |
11803 | priv->ieee->handle_probe_response = ipw_handle_beacon; | |
11804 | priv->ieee->handle_beacon = ipw_handle_probe_response; | |
11805 | priv->ieee->handle_assoc_response = ipw_handle_assoc_response; | |
11806 | #endif /* CONFIG_IPW2200_QOS */ | |
11807 | ||
11808 | priv->ieee->perfect_rssi = -20; | |
11809 | priv->ieee->worst_rssi = -85; | |
11810 | ||
11811 | net_dev->netdev_ops = &ipw_netdev_ops; | |
11812 | priv->wireless_data.spy_data = &priv->ieee->spy_data; | |
11813 | net_dev->wireless_data = &priv->wireless_data; | |
11814 | net_dev->wireless_handlers = &ipw_wx_handler_def; | |
11815 | net_dev->ethtool_ops = &ipw_ethtool_ops; | |
11816 | net_dev->irq = pdev->irq; | |
11817 | net_dev->base_addr = (unsigned long)priv->hw_base; | |
11818 | net_dev->mem_start = pci_resource_start(pdev, 0); | |
11819 | net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1; | |
11820 | ||
11821 | err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group); | |
11822 | if (err) { | |
11823 | IPW_ERROR("failed to create sysfs device attributes\n"); | |
11824 | mutex_unlock(&priv->mutex); | |
11825 | goto out_release_irq; | |
11826 | } | |
11827 | ||
11828 | mutex_unlock(&priv->mutex); | |
11829 | err = register_netdev(net_dev); | |
11830 | if (err) { | |
11831 | IPW_ERROR("failed to register network device\n"); | |
11832 | goto out_remove_sysfs; | |
11833 | } | |
11834 | ||
11835 | #ifdef CONFIG_IPW2200_PROMISCUOUS | |
11836 | if (rtap_iface) { | |
11837 | err = ipw_prom_alloc(priv); | |
11838 | if (err) { | |
11839 | IPW_ERROR("Failed to register promiscuous network " | |
11840 | "device (error %d).\n", err); | |
11841 | unregister_netdev(priv->net_dev); | |
11842 | goto out_remove_sysfs; | |
11843 | } | |
11844 | } | |
11845 | #endif | |
11846 | ||
11847 | printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg " | |
11848 | "channels, %d 802.11a channels)\n", | |
11849 | priv->ieee->geo.name, priv->ieee->geo.bg_channels, | |
11850 | priv->ieee->geo.a_channels); | |
11851 | ||
11852 | return 0; | |
11853 | ||
11854 | out_remove_sysfs: | |
11855 | sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); | |
11856 | out_release_irq: | |
11857 | free_irq(pdev->irq, priv); | |
11858 | out_iounmap: | |
11859 | iounmap(priv->hw_base); | |
11860 | out_pci_release_regions: | |
11861 | pci_release_regions(pdev); | |
11862 | out_pci_disable_device: | |
11863 | pci_disable_device(pdev); | |
11864 | pci_set_drvdata(pdev, NULL); | |
11865 | out_free_libipw: | |
11866 | free_libipw(priv->net_dev, 0); | |
11867 | out: | |
11868 | return err; | |
11869 | } | |
11870 | ||
11871 | static void __devexit ipw_pci_remove(struct pci_dev *pdev) | |
11872 | { | |
11873 | struct ipw_priv *priv = pci_get_drvdata(pdev); | |
11874 | struct list_head *p, *q; | |
11875 | int i; | |
11876 | ||
11877 | if (!priv) | |
11878 | return; | |
11879 | ||
11880 | mutex_lock(&priv->mutex); | |
11881 | ||
11882 | priv->status |= STATUS_EXIT_PENDING; | |
11883 | ipw_down(priv); | |
11884 | sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); | |
11885 | ||
11886 | mutex_unlock(&priv->mutex); | |
11887 | ||
11888 | unregister_netdev(priv->net_dev); | |
11889 | ||
11890 | if (priv->rxq) { | |
11891 | ipw_rx_queue_free(priv, priv->rxq); | |
11892 | priv->rxq = NULL; | |
11893 | } | |
11894 | ipw_tx_queue_free(priv); | |
11895 | ||
11896 | if (priv->cmdlog) { | |
11897 | kfree(priv->cmdlog); | |
11898 | priv->cmdlog = NULL; | |
11899 | } | |
11900 | ||
11901 | /* make sure all works are inactive */ | |
11902 | cancel_delayed_work_sync(&priv->adhoc_check); | |
11903 | cancel_work_sync(&priv->associate); | |
11904 | cancel_work_sync(&priv->disassociate); | |
11905 | cancel_work_sync(&priv->system_config); | |
11906 | cancel_work_sync(&priv->rx_replenish); | |
11907 | cancel_work_sync(&priv->adapter_restart); | |
11908 | cancel_delayed_work_sync(&priv->rf_kill); | |
11909 | cancel_work_sync(&priv->up); | |
11910 | cancel_work_sync(&priv->down); | |
11911 | cancel_delayed_work_sync(&priv->request_scan); | |
11912 | cancel_delayed_work_sync(&priv->request_direct_scan); | |
11913 | cancel_delayed_work_sync(&priv->request_passive_scan); | |
11914 | cancel_delayed_work_sync(&priv->scan_event); | |
11915 | cancel_delayed_work_sync(&priv->gather_stats); | |
11916 | cancel_work_sync(&priv->abort_scan); | |
11917 | cancel_work_sync(&priv->roam); | |
11918 | cancel_delayed_work_sync(&priv->scan_check); | |
11919 | cancel_work_sync(&priv->link_up); | |
11920 | cancel_work_sync(&priv->link_down); | |
11921 | cancel_delayed_work_sync(&priv->led_link_on); | |
11922 | cancel_delayed_work_sync(&priv->led_link_off); | |
11923 | cancel_delayed_work_sync(&priv->led_act_off); | |
11924 | cancel_work_sync(&priv->merge_networks); | |
11925 | ||
11926 | /* Free MAC hash list for ADHOC */ | |
11927 | for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) { | |
11928 | list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) { | |
11929 | list_del(p); | |
11930 | kfree(list_entry(p, struct ipw_ibss_seq, list)); | |
11931 | } | |
11932 | } | |
11933 | ||
11934 | kfree(priv->error); | |
11935 | priv->error = NULL; | |
11936 | ||
11937 | #ifdef CONFIG_IPW2200_PROMISCUOUS | |
11938 | ipw_prom_free(priv); | |
11939 | #endif | |
11940 | ||
11941 | free_irq(pdev->irq, priv); | |
11942 | iounmap(priv->hw_base); | |
11943 | pci_release_regions(pdev); | |
11944 | pci_disable_device(pdev); | |
11945 | pci_set_drvdata(pdev, NULL); | |
11946 | /* wiphy_unregister needs to be here, before free_libipw */ | |
11947 | wiphy_unregister(priv->ieee->wdev.wiphy); | |
11948 | kfree(priv->ieee->a_band.channels); | |
11949 | kfree(priv->ieee->bg_band.channels); | |
11950 | free_libipw(priv->net_dev, 0); | |
11951 | free_firmware(); | |
11952 | } | |
11953 | ||
11954 | #ifdef CONFIG_PM | |
11955 | static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state) | |
11956 | { | |
11957 | struct ipw_priv *priv = pci_get_drvdata(pdev); | |
11958 | struct net_device *dev = priv->net_dev; | |
11959 | ||
11960 | printk(KERN_INFO "%s: Going into suspend...\n", dev->name); | |
11961 | ||
11962 | /* Take down the device; powers it off, etc. */ | |
11963 | ipw_down(priv); | |
11964 | ||
11965 | /* Remove the PRESENT state of the device */ | |
11966 | netif_device_detach(dev); | |
11967 | ||
11968 | pci_save_state(pdev); | |
11969 | pci_disable_device(pdev); | |
11970 | pci_set_power_state(pdev, pci_choose_state(pdev, state)); | |
11971 | ||
11972 | priv->suspend_at = get_seconds(); | |
11973 | ||
11974 | return 0; | |
11975 | } | |
11976 | ||
11977 | static int ipw_pci_resume(struct pci_dev *pdev) | |
11978 | { | |
11979 | struct ipw_priv *priv = pci_get_drvdata(pdev); | |
11980 | struct net_device *dev = priv->net_dev; | |
11981 | int err; | |
11982 | u32 val; | |
11983 | ||
11984 | printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name); | |
11985 | ||
11986 | pci_set_power_state(pdev, PCI_D0); | |
11987 | err = pci_enable_device(pdev); | |
11988 | if (err) { | |
11989 | printk(KERN_ERR "%s: pci_enable_device failed on resume\n", | |
11990 | dev->name); | |
11991 | return err; | |
11992 | } | |
11993 | pci_restore_state(pdev); | |
11994 | ||
11995 | /* | |
11996 | * Suspend/Resume resets the PCI configuration space, so we have to | |
11997 | * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries | |
11998 | * from interfering with C3 CPU state. pci_restore_state won't help | |
11999 | * here since it only restores the first 64 bytes pci config header. | |
12000 | */ | |
12001 | pci_read_config_dword(pdev, 0x40, &val); | |
12002 | if ((val & 0x0000ff00) != 0) | |
12003 | pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); | |
12004 | ||
12005 | /* Set the device back into the PRESENT state; this will also wake | |
12006 | * the queue of needed */ | |
12007 | netif_device_attach(dev); | |
12008 | ||
12009 | priv->suspend_time = get_seconds() - priv->suspend_at; | |
12010 | ||
12011 | /* Bring the device back up */ | |
12012 | schedule_work(&priv->up); | |
12013 | ||
12014 | return 0; | |
12015 | } | |
12016 | #endif | |
12017 | ||
12018 | static void ipw_pci_shutdown(struct pci_dev *pdev) | |
12019 | { | |
12020 | struct ipw_priv *priv = pci_get_drvdata(pdev); | |
12021 | ||
12022 | /* Take down the device; powers it off, etc. */ | |
12023 | ipw_down(priv); | |
12024 | ||
12025 | pci_disable_device(pdev); | |
12026 | } | |
12027 | ||
12028 | /* driver initialization stuff */ | |
12029 | static struct pci_driver ipw_driver = { | |
12030 | .name = DRV_NAME, | |
12031 | .id_table = card_ids, | |
12032 | .probe = ipw_pci_probe, | |
12033 | .remove = __devexit_p(ipw_pci_remove), | |
12034 | #ifdef CONFIG_PM | |
12035 | .suspend = ipw_pci_suspend, | |
12036 | .resume = ipw_pci_resume, | |
12037 | #endif | |
12038 | .shutdown = ipw_pci_shutdown, | |
12039 | }; | |
12040 | ||
12041 | static int __init ipw_init(void) | |
12042 | { | |
12043 | int ret; | |
12044 | ||
12045 | printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n"); | |
12046 | printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n"); | |
12047 | ||
12048 | ret = pci_register_driver(&ipw_driver); | |
12049 | if (ret) { | |
12050 | IPW_ERROR("Unable to initialize PCI module\n"); | |
12051 | return ret; | |
12052 | } | |
12053 | ||
12054 | ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level); | |
12055 | if (ret) { | |
12056 | IPW_ERROR("Unable to create driver sysfs file\n"); | |
12057 | pci_unregister_driver(&ipw_driver); | |
12058 | return ret; | |
12059 | } | |
12060 | ||
12061 | return ret; | |
12062 | } | |
12063 | ||
12064 | static void __exit ipw_exit(void) | |
12065 | { | |
12066 | driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level); | |
12067 | pci_unregister_driver(&ipw_driver); | |
12068 | } | |
12069 | ||
12070 | module_param(disable, int, 0444); | |
12071 | MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); | |
12072 | ||
12073 | module_param(associate, int, 0444); | |
12074 | MODULE_PARM_DESC(associate, "auto associate when scanning (default off)"); | |
12075 | ||
12076 | module_param(auto_create, int, 0444); | |
12077 | MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)"); | |
12078 | ||
12079 | module_param_named(led, led_support, int, 0444); | |
12080 | MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)"); | |
12081 | ||
12082 | module_param(debug, int, 0444); | |
12083 | MODULE_PARM_DESC(debug, "debug output mask"); | |
12084 | ||
12085 | module_param_named(channel, default_channel, int, 0444); | |
12086 | MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])"); | |
12087 | ||
12088 | #ifdef CONFIG_IPW2200_PROMISCUOUS | |
12089 | module_param(rtap_iface, int, 0444); | |
12090 | MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)"); | |
12091 | #endif | |
12092 | ||
12093 | #ifdef CONFIG_IPW2200_QOS | |
12094 | module_param(qos_enable, int, 0444); | |
12095 | MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis"); | |
12096 | ||
12097 | module_param(qos_burst_enable, int, 0444); | |
12098 | MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode"); | |
12099 | ||
12100 | module_param(qos_no_ack_mask, int, 0444); | |
12101 | MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack"); | |
12102 | ||
12103 | module_param(burst_duration_CCK, int, 0444); | |
12104 | MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value"); | |
12105 | ||
12106 | module_param(burst_duration_OFDM, int, 0444); | |
12107 | MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value"); | |
12108 | #endif /* CONFIG_IPW2200_QOS */ | |
12109 | ||
12110 | #ifdef CONFIG_IPW2200_MONITOR | |
12111 | module_param_named(mode, network_mode, int, 0444); | |
12112 | MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); | |
12113 | #else | |
12114 | module_param_named(mode, network_mode, int, 0444); | |
12115 | MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)"); | |
12116 | #endif | |
12117 | ||
12118 | module_param(bt_coexist, int, 0444); | |
12119 | MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)"); | |
12120 | ||
12121 | module_param(hwcrypto, int, 0444); | |
12122 | MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)"); | |
12123 | ||
12124 | module_param(cmdlog, int, 0444); | |
12125 | MODULE_PARM_DESC(cmdlog, | |
12126 | "allocate a ring buffer for logging firmware commands"); | |
12127 | ||
12128 | module_param(roaming, int, 0444); | |
12129 | MODULE_PARM_DESC(roaming, "enable roaming support (default on)"); | |
12130 | ||
12131 | module_param(antenna, int, 0444); | |
12132 | MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)"); | |
12133 | ||
12134 | module_exit(ipw_exit); | |
12135 | module_init(ipw_init); |