]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> | |
3 | Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com> | |
4 | Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com> | |
5 | Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com> | |
6 | ||
7 | Based on the original rt2800pci.c and rt2800usb.c. | |
8 | Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com> | |
9 | Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org> | |
10 | Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com> | |
11 | Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de> | |
12 | Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com> | |
13 | Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com> | |
14 | <http://rt2x00.serialmonkey.com> | |
15 | ||
16 | This program is free software; you can redistribute it and/or modify | |
17 | it under the terms of the GNU General Public License as published by | |
18 | the Free Software Foundation; either version 2 of the License, or | |
19 | (at your option) any later version. | |
20 | ||
21 | This program is distributed in the hope that it will be useful, | |
22 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
23 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
24 | GNU General Public License for more details. | |
25 | ||
26 | You should have received a copy of the GNU General Public License | |
27 | along with this program; if not, write to the | |
28 | Free Software Foundation, Inc., | |
29 | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | |
30 | */ | |
31 | ||
32 | /* | |
33 | Module: rt2800lib | |
34 | Abstract: rt2800 generic device routines. | |
35 | */ | |
36 | ||
37 | #include <linux/crc-ccitt.h> | |
38 | #include <linux/kernel.h> | |
39 | #include <linux/module.h> | |
40 | #include <linux/slab.h> | |
41 | ||
42 | #include "rt2x00.h" | |
43 | #include "rt2800lib.h" | |
44 | #include "rt2800.h" | |
45 | ||
46 | /* | |
47 | * Register access. | |
48 | * All access to the CSR registers will go through the methods | |
49 | * rt2800_register_read and rt2800_register_write. | |
50 | * BBP and RF register require indirect register access, | |
51 | * and use the CSR registers BBPCSR and RFCSR to achieve this. | |
52 | * These indirect registers work with busy bits, | |
53 | * and we will try maximal REGISTER_BUSY_COUNT times to access | |
54 | * the register while taking a REGISTER_BUSY_DELAY us delay | |
55 | * between each attampt. When the busy bit is still set at that time, | |
56 | * the access attempt is considered to have failed, | |
57 | * and we will print an error. | |
58 | * The _lock versions must be used if you already hold the csr_mutex | |
59 | */ | |
60 | #define WAIT_FOR_BBP(__dev, __reg) \ | |
61 | rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg)) | |
62 | #define WAIT_FOR_RFCSR(__dev, __reg) \ | |
63 | rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg)) | |
64 | #define WAIT_FOR_RF(__dev, __reg) \ | |
65 | rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg)) | |
66 | #define WAIT_FOR_MCU(__dev, __reg) \ | |
67 | rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \ | |
68 | H2M_MAILBOX_CSR_OWNER, (__reg)) | |
69 | ||
70 | static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev) | |
71 | { | |
72 | /* check for rt2872 on SoC */ | |
73 | if (!rt2x00_is_soc(rt2x00dev) || | |
74 | !rt2x00_rt(rt2x00dev, RT2872)) | |
75 | return false; | |
76 | ||
77 | /* we know for sure that these rf chipsets are used on rt305x boards */ | |
78 | if (rt2x00_rf(rt2x00dev, RF3020) || | |
79 | rt2x00_rf(rt2x00dev, RF3021) || | |
80 | rt2x00_rf(rt2x00dev, RF3022)) | |
81 | return true; | |
82 | ||
83 | NOTICE(rt2x00dev, "Unknown RF chipset on rt305x\n"); | |
84 | return false; | |
85 | } | |
86 | ||
87 | static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev, | |
88 | const unsigned int word, const u8 value) | |
89 | { | |
90 | u32 reg; | |
91 | ||
92 | mutex_lock(&rt2x00dev->csr_mutex); | |
93 | ||
94 | /* | |
95 | * Wait until the BBP becomes available, afterwards we | |
96 | * can safely write the new data into the register. | |
97 | */ | |
98 | if (WAIT_FOR_BBP(rt2x00dev, ®)) { | |
99 | reg = 0; | |
100 | rt2x00_set_field32(®, BBP_CSR_CFG_VALUE, value); | |
101 | rt2x00_set_field32(®, BBP_CSR_CFG_REGNUM, word); | |
102 | rt2x00_set_field32(®, BBP_CSR_CFG_BUSY, 1); | |
103 | rt2x00_set_field32(®, BBP_CSR_CFG_READ_CONTROL, 0); | |
104 | rt2x00_set_field32(®, BBP_CSR_CFG_BBP_RW_MODE, 1); | |
105 | ||
106 | rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg); | |
107 | } | |
108 | ||
109 | mutex_unlock(&rt2x00dev->csr_mutex); | |
110 | } | |
111 | ||
112 | static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev, | |
113 | const unsigned int word, u8 *value) | |
114 | { | |
115 | u32 reg; | |
116 | ||
117 | mutex_lock(&rt2x00dev->csr_mutex); | |
118 | ||
119 | /* | |
120 | * Wait until the BBP becomes available, afterwards we | |
121 | * can safely write the read request into the register. | |
122 | * After the data has been written, we wait until hardware | |
123 | * returns the correct value, if at any time the register | |
124 | * doesn't become available in time, reg will be 0xffffffff | |
125 | * which means we return 0xff to the caller. | |
126 | */ | |
127 | if (WAIT_FOR_BBP(rt2x00dev, ®)) { | |
128 | reg = 0; | |
129 | rt2x00_set_field32(®, BBP_CSR_CFG_REGNUM, word); | |
130 | rt2x00_set_field32(®, BBP_CSR_CFG_BUSY, 1); | |
131 | rt2x00_set_field32(®, BBP_CSR_CFG_READ_CONTROL, 1); | |
132 | rt2x00_set_field32(®, BBP_CSR_CFG_BBP_RW_MODE, 1); | |
133 | ||
134 | rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg); | |
135 | ||
136 | WAIT_FOR_BBP(rt2x00dev, ®); | |
137 | } | |
138 | ||
139 | *value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE); | |
140 | ||
141 | mutex_unlock(&rt2x00dev->csr_mutex); | |
142 | } | |
143 | ||
144 | static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev, | |
145 | const unsigned int word, const u8 value) | |
146 | { | |
147 | u32 reg; | |
148 | ||
149 | mutex_lock(&rt2x00dev->csr_mutex); | |
150 | ||
151 | /* | |
152 | * Wait until the RFCSR becomes available, afterwards we | |
153 | * can safely write the new data into the register. | |
154 | */ | |
155 | if (WAIT_FOR_RFCSR(rt2x00dev, ®)) { | |
156 | reg = 0; | |
157 | rt2x00_set_field32(®, RF_CSR_CFG_DATA, value); | |
158 | rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word); | |
159 | rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 1); | |
160 | rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1); | |
161 | ||
162 | rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg); | |
163 | } | |
164 | ||
165 | mutex_unlock(&rt2x00dev->csr_mutex); | |
166 | } | |
167 | ||
168 | static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev, | |
169 | const unsigned int word, u8 *value) | |
170 | { | |
171 | u32 reg; | |
172 | ||
173 | mutex_lock(&rt2x00dev->csr_mutex); | |
174 | ||
175 | /* | |
176 | * Wait until the RFCSR becomes available, afterwards we | |
177 | * can safely write the read request into the register. | |
178 | * After the data has been written, we wait until hardware | |
179 | * returns the correct value, if at any time the register | |
180 | * doesn't become available in time, reg will be 0xffffffff | |
181 | * which means we return 0xff to the caller. | |
182 | */ | |
183 | if (WAIT_FOR_RFCSR(rt2x00dev, ®)) { | |
184 | reg = 0; | |
185 | rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word); | |
186 | rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 0); | |
187 | rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1); | |
188 | ||
189 | rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg); | |
190 | ||
191 | WAIT_FOR_RFCSR(rt2x00dev, ®); | |
192 | } | |
193 | ||
194 | *value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA); | |
195 | ||
196 | mutex_unlock(&rt2x00dev->csr_mutex); | |
197 | } | |
198 | ||
199 | static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev, | |
200 | const unsigned int word, const u32 value) | |
201 | { | |
202 | u32 reg; | |
203 | ||
204 | mutex_lock(&rt2x00dev->csr_mutex); | |
205 | ||
206 | /* | |
207 | * Wait until the RF becomes available, afterwards we | |
208 | * can safely write the new data into the register. | |
209 | */ | |
210 | if (WAIT_FOR_RF(rt2x00dev, ®)) { | |
211 | reg = 0; | |
212 | rt2x00_set_field32(®, RF_CSR_CFG0_REG_VALUE_BW, value); | |
213 | rt2x00_set_field32(®, RF_CSR_CFG0_STANDBYMODE, 0); | |
214 | rt2x00_set_field32(®, RF_CSR_CFG0_SEL, 0); | |
215 | rt2x00_set_field32(®, RF_CSR_CFG0_BUSY, 1); | |
216 | ||
217 | rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg); | |
218 | rt2x00_rf_write(rt2x00dev, word, value); | |
219 | } | |
220 | ||
221 | mutex_unlock(&rt2x00dev->csr_mutex); | |
222 | } | |
223 | ||
224 | void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev, | |
225 | const u8 command, const u8 token, | |
226 | const u8 arg0, const u8 arg1) | |
227 | { | |
228 | u32 reg; | |
229 | ||
230 | /* | |
231 | * SOC devices don't support MCU requests. | |
232 | */ | |
233 | if (rt2x00_is_soc(rt2x00dev)) | |
234 | return; | |
235 | ||
236 | mutex_lock(&rt2x00dev->csr_mutex); | |
237 | ||
238 | /* | |
239 | * Wait until the MCU becomes available, afterwards we | |
240 | * can safely write the new data into the register. | |
241 | */ | |
242 | if (WAIT_FOR_MCU(rt2x00dev, ®)) { | |
243 | rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1); | |
244 | rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token); | |
245 | rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0); | |
246 | rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1); | |
247 | rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg); | |
248 | ||
249 | reg = 0; | |
250 | rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command); | |
251 | rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg); | |
252 | } | |
253 | ||
254 | mutex_unlock(&rt2x00dev->csr_mutex); | |
255 | } | |
256 | EXPORT_SYMBOL_GPL(rt2800_mcu_request); | |
257 | ||
258 | int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev) | |
259 | { | |
260 | unsigned int i = 0; | |
261 | u32 reg; | |
262 | ||
263 | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | |
264 | rt2800_register_read(rt2x00dev, MAC_CSR0, ®); | |
265 | if (reg && reg != ~0) | |
266 | return 0; | |
267 | msleep(1); | |
268 | } | |
269 | ||
270 | ERROR(rt2x00dev, "Unstable hardware.\n"); | |
271 | return -EBUSY; | |
272 | } | |
273 | EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready); | |
274 | ||
275 | int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev) | |
276 | { | |
277 | unsigned int i; | |
278 | u32 reg; | |
279 | ||
280 | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | |
281 | rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); | |
282 | if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) && | |
283 | !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY)) | |
284 | return 0; | |
285 | ||
286 | msleep(1); | |
287 | } | |
288 | ||
289 | ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n"); | |
290 | return -EACCES; | |
291 | } | |
292 | EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready); | |
293 | ||
294 | static bool rt2800_check_firmware_crc(const u8 *data, const size_t len) | |
295 | { | |
296 | u16 fw_crc; | |
297 | u16 crc; | |
298 | ||
299 | /* | |
300 | * The last 2 bytes in the firmware array are the crc checksum itself, | |
301 | * this means that we should never pass those 2 bytes to the crc | |
302 | * algorithm. | |
303 | */ | |
304 | fw_crc = (data[len - 2] << 8 | data[len - 1]); | |
305 | ||
306 | /* | |
307 | * Use the crc ccitt algorithm. | |
308 | * This will return the same value as the legacy driver which | |
309 | * used bit ordering reversion on the both the firmware bytes | |
310 | * before input input as well as on the final output. | |
311 | * Obviously using crc ccitt directly is much more efficient. | |
312 | */ | |
313 | crc = crc_ccitt(~0, data, len - 2); | |
314 | ||
315 | /* | |
316 | * There is a small difference between the crc-itu-t + bitrev and | |
317 | * the crc-ccitt crc calculation. In the latter method the 2 bytes | |
318 | * will be swapped, use swab16 to convert the crc to the correct | |
319 | * value. | |
320 | */ | |
321 | crc = swab16(crc); | |
322 | ||
323 | return fw_crc == crc; | |
324 | } | |
325 | ||
326 | int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev, | |
327 | const u8 *data, const size_t len) | |
328 | { | |
329 | size_t offset = 0; | |
330 | size_t fw_len; | |
331 | bool multiple; | |
332 | ||
333 | /* | |
334 | * PCI(e) & SOC devices require firmware with a length | |
335 | * of 8kb. USB devices require firmware files with a length | |
336 | * of 4kb. Certain USB chipsets however require different firmware, | |
337 | * which Ralink only provides attached to the original firmware | |
338 | * file. Thus for USB devices, firmware files have a length | |
339 | * which is a multiple of 4kb. | |
340 | */ | |
341 | if (rt2x00_is_usb(rt2x00dev)) { | |
342 | fw_len = 4096; | |
343 | multiple = true; | |
344 | } else { | |
345 | fw_len = 8192; | |
346 | multiple = true; | |
347 | } | |
348 | ||
349 | /* | |
350 | * Validate the firmware length | |
351 | */ | |
352 | if (len != fw_len && (!multiple || (len % fw_len) != 0)) | |
353 | return FW_BAD_LENGTH; | |
354 | ||
355 | /* | |
356 | * Check if the chipset requires one of the upper parts | |
357 | * of the firmware. | |
358 | */ | |
359 | if (rt2x00_is_usb(rt2x00dev) && | |
360 | !rt2x00_rt(rt2x00dev, RT2860) && | |
361 | !rt2x00_rt(rt2x00dev, RT2872) && | |
362 | !rt2x00_rt(rt2x00dev, RT3070) && | |
363 | ((len / fw_len) == 1)) | |
364 | return FW_BAD_VERSION; | |
365 | ||
366 | /* | |
367 | * 8kb firmware files must be checked as if it were | |
368 | * 2 separate firmware files. | |
369 | */ | |
370 | while (offset < len) { | |
371 | if (!rt2800_check_firmware_crc(data + offset, fw_len)) | |
372 | return FW_BAD_CRC; | |
373 | ||
374 | offset += fw_len; | |
375 | } | |
376 | ||
377 | return FW_OK; | |
378 | } | |
379 | EXPORT_SYMBOL_GPL(rt2800_check_firmware); | |
380 | ||
381 | int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev, | |
382 | const u8 *data, const size_t len) | |
383 | { | |
384 | unsigned int i; | |
385 | u32 reg; | |
386 | ||
387 | /* | |
388 | * If driver doesn't wake up firmware here, | |
389 | * rt2800_load_firmware will hang forever when interface is up again. | |
390 | */ | |
391 | rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000); | |
392 | ||
393 | /* | |
394 | * Wait for stable hardware. | |
395 | */ | |
396 | if (rt2800_wait_csr_ready(rt2x00dev)) | |
397 | return -EBUSY; | |
398 | ||
399 | if (rt2x00_is_pci(rt2x00dev)) | |
400 | rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002); | |
401 | ||
402 | /* | |
403 | * Disable DMA, will be reenabled later when enabling | |
404 | * the radio. | |
405 | */ | |
406 | rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); | |
407 | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); | |
408 | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0); | |
409 | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); | |
410 | rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0); | |
411 | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); | |
412 | rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); | |
413 | ||
414 | /* | |
415 | * Write firmware to the device. | |
416 | */ | |
417 | rt2800_drv_write_firmware(rt2x00dev, data, len); | |
418 | ||
419 | /* | |
420 | * Wait for device to stabilize. | |
421 | */ | |
422 | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | |
423 | rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, ®); | |
424 | if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY)) | |
425 | break; | |
426 | msleep(1); | |
427 | } | |
428 | ||
429 | if (i == REGISTER_BUSY_COUNT) { | |
430 | ERROR(rt2x00dev, "PBF system register not ready.\n"); | |
431 | return -EBUSY; | |
432 | } | |
433 | ||
434 | /* | |
435 | * Initialize firmware. | |
436 | */ | |
437 | rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0); | |
438 | rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); | |
439 | msleep(1); | |
440 | ||
441 | return 0; | |
442 | } | |
443 | EXPORT_SYMBOL_GPL(rt2800_load_firmware); | |
444 | ||
445 | void rt2800_write_tx_data(struct queue_entry *entry, | |
446 | struct txentry_desc *txdesc) | |
447 | { | |
448 | __le32 *txwi = rt2800_drv_get_txwi(entry); | |
449 | u32 word; | |
450 | ||
451 | /* | |
452 | * Initialize TX Info descriptor | |
453 | */ | |
454 | rt2x00_desc_read(txwi, 0, &word); | |
455 | rt2x00_set_field32(&word, TXWI_W0_FRAG, | |
456 | test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); | |
457 | rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, | |
458 | test_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags)); | |
459 | rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0); | |
460 | rt2x00_set_field32(&word, TXWI_W0_TS, | |
461 | test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); | |
462 | rt2x00_set_field32(&word, TXWI_W0_AMPDU, | |
463 | test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags)); | |
464 | rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density); | |
465 | rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->txop); | |
466 | rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs); | |
467 | rt2x00_set_field32(&word, TXWI_W0_BW, | |
468 | test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags)); | |
469 | rt2x00_set_field32(&word, TXWI_W0_SHORT_GI, | |
470 | test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags)); | |
471 | rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc); | |
472 | rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode); | |
473 | rt2x00_desc_write(txwi, 0, word); | |
474 | ||
475 | rt2x00_desc_read(txwi, 1, &word); | |
476 | rt2x00_set_field32(&word, TXWI_W1_ACK, | |
477 | test_bit(ENTRY_TXD_ACK, &txdesc->flags)); | |
478 | rt2x00_set_field32(&word, TXWI_W1_NSEQ, | |
479 | test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); | |
480 | rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size); | |
481 | rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID, | |
482 | test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ? | |
483 | txdesc->key_idx : 0xff); | |
484 | rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT, | |
485 | txdesc->length); | |
486 | rt2x00_set_field32(&word, TXWI_W1_PACKETID, txdesc->qid + 1); | |
487 | rt2x00_desc_write(txwi, 1, word); | |
488 | ||
489 | /* | |
490 | * Always write 0 to IV/EIV fields, hardware will insert the IV | |
491 | * from the IVEIV register when TXD_W3_WIV is set to 0. | |
492 | * When TXD_W3_WIV is set to 1 it will use the IV data | |
493 | * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which | |
494 | * crypto entry in the registers should be used to encrypt the frame. | |
495 | */ | |
496 | _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */); | |
497 | _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */); | |
498 | } | |
499 | EXPORT_SYMBOL_GPL(rt2800_write_tx_data); | |
500 | ||
501 | static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxwi_w2) | |
502 | { | |
503 | int rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0); | |
504 | int rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1); | |
505 | int rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2); | |
506 | u16 eeprom; | |
507 | u8 offset0; | |
508 | u8 offset1; | |
509 | u8 offset2; | |
510 | ||
511 | if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) { | |
512 | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &eeprom); | |
513 | offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0); | |
514 | offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1); | |
515 | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom); | |
516 | offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2); | |
517 | } else { | |
518 | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &eeprom); | |
519 | offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0); | |
520 | offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1); | |
521 | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom); | |
522 | offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2); | |
523 | } | |
524 | ||
525 | /* | |
526 | * Convert the value from the descriptor into the RSSI value | |
527 | * If the value in the descriptor is 0, it is considered invalid | |
528 | * and the default (extremely low) rssi value is assumed | |
529 | */ | |
530 | rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128; | |
531 | rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128; | |
532 | rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128; | |
533 | ||
534 | /* | |
535 | * mac80211 only accepts a single RSSI value. Calculating the | |
536 | * average doesn't deliver a fair answer either since -60:-60 would | |
537 | * be considered equally good as -50:-70 while the second is the one | |
538 | * which gives less energy... | |
539 | */ | |
540 | rssi0 = max(rssi0, rssi1); | |
541 | return max(rssi0, rssi2); | |
542 | } | |
543 | ||
544 | void rt2800_process_rxwi(struct queue_entry *entry, | |
545 | struct rxdone_entry_desc *rxdesc) | |
546 | { | |
547 | __le32 *rxwi = (__le32 *) entry->skb->data; | |
548 | u32 word; | |
549 | ||
550 | rt2x00_desc_read(rxwi, 0, &word); | |
551 | ||
552 | rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF); | |
553 | rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT); | |
554 | ||
555 | rt2x00_desc_read(rxwi, 1, &word); | |
556 | ||
557 | if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI)) | |
558 | rxdesc->flags |= RX_FLAG_SHORT_GI; | |
559 | ||
560 | if (rt2x00_get_field32(word, RXWI_W1_BW)) | |
561 | rxdesc->flags |= RX_FLAG_40MHZ; | |
562 | ||
563 | /* | |
564 | * Detect RX rate, always use MCS as signal type. | |
565 | */ | |
566 | rxdesc->dev_flags |= RXDONE_SIGNAL_MCS; | |
567 | rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS); | |
568 | rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE); | |
569 | ||
570 | /* | |
571 | * Mask of 0x8 bit to remove the short preamble flag. | |
572 | */ | |
573 | if (rxdesc->rate_mode == RATE_MODE_CCK) | |
574 | rxdesc->signal &= ~0x8; | |
575 | ||
576 | rt2x00_desc_read(rxwi, 2, &word); | |
577 | ||
578 | /* | |
579 | * Convert descriptor AGC value to RSSI value. | |
580 | */ | |
581 | rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word); | |
582 | ||
583 | /* | |
584 | * Remove RXWI descriptor from start of buffer. | |
585 | */ | |
586 | skb_pull(entry->skb, RXWI_DESC_SIZE); | |
587 | } | |
588 | EXPORT_SYMBOL_GPL(rt2800_process_rxwi); | |
589 | ||
590 | static bool rt2800_txdone_entry_check(struct queue_entry *entry, u32 reg) | |
591 | { | |
592 | __le32 *txwi; | |
593 | u32 word; | |
594 | int wcid, ack, pid; | |
595 | int tx_wcid, tx_ack, tx_pid; | |
596 | ||
597 | wcid = rt2x00_get_field32(reg, TX_STA_FIFO_WCID); | |
598 | ack = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED); | |
599 | pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE); | |
600 | ||
601 | /* | |
602 | * This frames has returned with an IO error, | |
603 | * so the status report is not intended for this | |
604 | * frame. | |
605 | */ | |
606 | if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) { | |
607 | rt2x00lib_txdone_noinfo(entry, TXDONE_FAILURE); | |
608 | return false; | |
609 | } | |
610 | ||
611 | /* | |
612 | * Validate if this TX status report is intended for | |
613 | * this entry by comparing the WCID/ACK/PID fields. | |
614 | */ | |
615 | txwi = rt2800_drv_get_txwi(entry); | |
616 | ||
617 | rt2x00_desc_read(txwi, 1, &word); | |
618 | tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID); | |
619 | tx_ack = rt2x00_get_field32(word, TXWI_W1_ACK); | |
620 | tx_pid = rt2x00_get_field32(word, TXWI_W1_PACKETID); | |
621 | ||
622 | if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid)) { | |
623 | WARNING(entry->queue->rt2x00dev, | |
624 | "TX status report missed for queue %d entry %d\n", | |
625 | entry->queue->qid, entry->entry_idx); | |
626 | rt2x00lib_txdone_noinfo(entry, TXDONE_UNKNOWN); | |
627 | return false; | |
628 | } | |
629 | ||
630 | return true; | |
631 | } | |
632 | ||
633 | void rt2800_txdone_entry(struct queue_entry *entry, u32 status) | |
634 | { | |
635 | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | |
636 | struct txdone_entry_desc txdesc; | |
637 | u32 word; | |
638 | u16 mcs, real_mcs; | |
639 | __le32 *txwi; | |
640 | ||
641 | /* | |
642 | * Obtain the status about this packet. | |
643 | */ | |
644 | txdesc.flags = 0; | |
645 | txwi = rt2800_drv_get_txwi(entry); | |
646 | rt2x00_desc_read(txwi, 0, &word); | |
647 | mcs = rt2x00_get_field32(word, TXWI_W0_MCS); | |
648 | real_mcs = rt2x00_get_field32(status, TX_STA_FIFO_MCS); | |
649 | ||
650 | /* | |
651 | * Ralink has a retry mechanism using a global fallback | |
652 | * table. We setup this fallback table to try the immediate | |
653 | * lower rate for all rates. In the TX_STA_FIFO, the MCS field | |
654 | * always contains the MCS used for the last transmission, be | |
655 | * it successful or not. | |
656 | */ | |
657 | if (rt2x00_get_field32(status, TX_STA_FIFO_TX_SUCCESS)) { | |
658 | /* | |
659 | * Transmission succeeded. The number of retries is | |
660 | * mcs - real_mcs | |
661 | */ | |
662 | __set_bit(TXDONE_SUCCESS, &txdesc.flags); | |
663 | txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0); | |
664 | } else { | |
665 | /* | |
666 | * Transmission failed. The number of retries is | |
667 | * always 7 in this case (for a total number of 8 | |
668 | * frames sent). | |
669 | */ | |
670 | __set_bit(TXDONE_FAILURE, &txdesc.flags); | |
671 | txdesc.retry = rt2x00dev->long_retry; | |
672 | } | |
673 | ||
674 | /* | |
675 | * the frame was retried at least once | |
676 | * -> hw used fallback rates | |
677 | */ | |
678 | if (txdesc.retry) | |
679 | __set_bit(TXDONE_FALLBACK, &txdesc.flags); | |
680 | ||
681 | rt2x00lib_txdone(entry, &txdesc); | |
682 | } | |
683 | EXPORT_SYMBOL_GPL(rt2800_txdone_entry); | |
684 | ||
685 | void rt2800_txdone(struct rt2x00_dev *rt2x00dev) | |
686 | { | |
687 | struct data_queue *queue; | |
688 | struct queue_entry *entry; | |
689 | u32 reg; | |
690 | u8 pid; | |
691 | int i; | |
692 | ||
693 | /* | |
694 | * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO | |
695 | * at most X times and also stop processing once the TX_STA_FIFO_VALID | |
696 | * flag is not set anymore. | |
697 | * | |
698 | * The legacy drivers use X=TX_RING_SIZE but state in a comment | |
699 | * that the TX_STA_FIFO stack has a size of 16. We stick to our | |
700 | * tx ring size for now. | |
701 | */ | |
702 | for (i = 0; i < TX_ENTRIES; i++) { | |
703 | rt2800_register_read(rt2x00dev, TX_STA_FIFO, ®); | |
704 | if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID)) | |
705 | break; | |
706 | ||
707 | /* | |
708 | * Skip this entry when it contains an invalid | |
709 | * queue identication number. | |
710 | */ | |
711 | pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE) - 1; | |
712 | if (pid >= QID_RX) | |
713 | continue; | |
714 | ||
715 | queue = rt2x00queue_get_queue(rt2x00dev, pid); | |
716 | if (unlikely(!queue)) | |
717 | continue; | |
718 | ||
719 | /* | |
720 | * Inside each queue, we process each entry in a chronological | |
721 | * order. We first check that the queue is not empty. | |
722 | */ | |
723 | entry = NULL; | |
724 | while (!rt2x00queue_empty(queue)) { | |
725 | entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE); | |
726 | if (rt2800_txdone_entry_check(entry, reg)) | |
727 | break; | |
728 | } | |
729 | ||
730 | if (!entry || rt2x00queue_empty(queue)) | |
731 | break; | |
732 | ||
733 | rt2800_txdone_entry(entry, reg); | |
734 | } | |
735 | } | |
736 | EXPORT_SYMBOL_GPL(rt2800_txdone); | |
737 | ||
738 | void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc) | |
739 | { | |
740 | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | |
741 | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); | |
742 | unsigned int beacon_base; | |
743 | u32 reg; | |
744 | ||
745 | /* | |
746 | * Disable beaconing while we are reloading the beacon data, | |
747 | * otherwise we might be sending out invalid data. | |
748 | */ | |
749 | rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); | |
750 | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); | |
751 | rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); | |
752 | ||
753 | /* | |
754 | * Add space for the TXWI in front of the skb. | |
755 | */ | |
756 | skb_push(entry->skb, TXWI_DESC_SIZE); | |
757 | memset(entry->skb, 0, TXWI_DESC_SIZE); | |
758 | ||
759 | /* | |
760 | * Register descriptor details in skb frame descriptor. | |
761 | */ | |
762 | skbdesc->flags |= SKBDESC_DESC_IN_SKB; | |
763 | skbdesc->desc = entry->skb->data; | |
764 | skbdesc->desc_len = TXWI_DESC_SIZE; | |
765 | ||
766 | /* | |
767 | * Add the TXWI for the beacon to the skb. | |
768 | */ | |
769 | rt2800_write_tx_data(entry, txdesc); | |
770 | ||
771 | /* | |
772 | * Dump beacon to userspace through debugfs. | |
773 | */ | |
774 | rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); | |
775 | ||
776 | /* | |
777 | * Write entire beacon with TXWI to register. | |
778 | */ | |
779 | beacon_base = HW_BEACON_OFFSET(entry->entry_idx); | |
780 | rt2800_register_multiwrite(rt2x00dev, beacon_base, | |
781 | entry->skb->data, entry->skb->len); | |
782 | ||
783 | /* | |
784 | * Enable beaconing again. | |
785 | */ | |
786 | rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1); | |
787 | rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1); | |
788 | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1); | |
789 | rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); | |
790 | ||
791 | /* | |
792 | * Clean up beacon skb. | |
793 | */ | |
794 | dev_kfree_skb_any(entry->skb); | |
795 | entry->skb = NULL; | |
796 | } | |
797 | EXPORT_SYMBOL_GPL(rt2800_write_beacon); | |
798 | ||
799 | static void inline rt2800_clear_beacon(struct rt2x00_dev *rt2x00dev, | |
800 | unsigned int beacon_base) | |
801 | { | |
802 | int i; | |
803 | ||
804 | /* | |
805 | * For the Beacon base registers we only need to clear | |
806 | * the whole TXWI which (when set to 0) will invalidate | |
807 | * the entire beacon. | |
808 | */ | |
809 | for (i = 0; i < TXWI_DESC_SIZE; i += sizeof(__le32)) | |
810 | rt2800_register_write(rt2x00dev, beacon_base + i, 0); | |
811 | } | |
812 | ||
813 | #ifdef CONFIG_RT2X00_LIB_DEBUGFS | |
814 | const struct rt2x00debug rt2800_rt2x00debug = { | |
815 | .owner = THIS_MODULE, | |
816 | .csr = { | |
817 | .read = rt2800_register_read, | |
818 | .write = rt2800_register_write, | |
819 | .flags = RT2X00DEBUGFS_OFFSET, | |
820 | .word_base = CSR_REG_BASE, | |
821 | .word_size = sizeof(u32), | |
822 | .word_count = CSR_REG_SIZE / sizeof(u32), | |
823 | }, | |
824 | .eeprom = { | |
825 | .read = rt2x00_eeprom_read, | |
826 | .write = rt2x00_eeprom_write, | |
827 | .word_base = EEPROM_BASE, | |
828 | .word_size = sizeof(u16), | |
829 | .word_count = EEPROM_SIZE / sizeof(u16), | |
830 | }, | |
831 | .bbp = { | |
832 | .read = rt2800_bbp_read, | |
833 | .write = rt2800_bbp_write, | |
834 | .word_base = BBP_BASE, | |
835 | .word_size = sizeof(u8), | |
836 | .word_count = BBP_SIZE / sizeof(u8), | |
837 | }, | |
838 | .rf = { | |
839 | .read = rt2x00_rf_read, | |
840 | .write = rt2800_rf_write, | |
841 | .word_base = RF_BASE, | |
842 | .word_size = sizeof(u32), | |
843 | .word_count = RF_SIZE / sizeof(u32), | |
844 | }, | |
845 | }; | |
846 | EXPORT_SYMBOL_GPL(rt2800_rt2x00debug); | |
847 | #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ | |
848 | ||
849 | int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev) | |
850 | { | |
851 | u32 reg; | |
852 | ||
853 | rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, ®); | |
854 | return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2); | |
855 | } | |
856 | EXPORT_SYMBOL_GPL(rt2800_rfkill_poll); | |
857 | ||
858 | #ifdef CONFIG_RT2X00_LIB_LEDS | |
859 | static void rt2800_brightness_set(struct led_classdev *led_cdev, | |
860 | enum led_brightness brightness) | |
861 | { | |
862 | struct rt2x00_led *led = | |
863 | container_of(led_cdev, struct rt2x00_led, led_dev); | |
864 | unsigned int enabled = brightness != LED_OFF; | |
865 | unsigned int bg_mode = | |
866 | (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); | |
867 | unsigned int polarity = | |
868 | rt2x00_get_field16(led->rt2x00dev->led_mcu_reg, | |
869 | EEPROM_FREQ_LED_POLARITY); | |
870 | unsigned int ledmode = | |
871 | rt2x00_get_field16(led->rt2x00dev->led_mcu_reg, | |
872 | EEPROM_FREQ_LED_MODE); | |
873 | ||
874 | if (led->type == LED_TYPE_RADIO) { | |
875 | rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode, | |
876 | enabled ? 0x20 : 0); | |
877 | } else if (led->type == LED_TYPE_ASSOC) { | |
878 | rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode, | |
879 | enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20); | |
880 | } else if (led->type == LED_TYPE_QUALITY) { | |
881 | /* | |
882 | * The brightness is divided into 6 levels (0 - 5), | |
883 | * The specs tell us the following levels: | |
884 | * 0, 1 ,3, 7, 15, 31 | |
885 | * to determine the level in a simple way we can simply | |
886 | * work with bitshifting: | |
887 | * (1 << level) - 1 | |
888 | */ | |
889 | rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff, | |
890 | (1 << brightness / (LED_FULL / 6)) - 1, | |
891 | polarity); | |
892 | } | |
893 | } | |
894 | ||
895 | static int rt2800_blink_set(struct led_classdev *led_cdev, | |
896 | unsigned long *delay_on, unsigned long *delay_off) | |
897 | { | |
898 | struct rt2x00_led *led = | |
899 | container_of(led_cdev, struct rt2x00_led, led_dev); | |
900 | u32 reg; | |
901 | ||
902 | rt2800_register_read(led->rt2x00dev, LED_CFG, ®); | |
903 | rt2x00_set_field32(®, LED_CFG_ON_PERIOD, *delay_on); | |
904 | rt2x00_set_field32(®, LED_CFG_OFF_PERIOD, *delay_off); | |
905 | rt2800_register_write(led->rt2x00dev, LED_CFG, reg); | |
906 | ||
907 | return 0; | |
908 | } | |
909 | ||
910 | static void rt2800_init_led(struct rt2x00_dev *rt2x00dev, | |
911 | struct rt2x00_led *led, enum led_type type) | |
912 | { | |
913 | led->rt2x00dev = rt2x00dev; | |
914 | led->type = type; | |
915 | led->led_dev.brightness_set = rt2800_brightness_set; | |
916 | led->led_dev.blink_set = rt2800_blink_set; | |
917 | led->flags = LED_INITIALIZED; | |
918 | } | |
919 | #endif /* CONFIG_RT2X00_LIB_LEDS */ | |
920 | ||
921 | /* | |
922 | * Configuration handlers. | |
923 | */ | |
924 | static void rt2800_config_wcid_attr(struct rt2x00_dev *rt2x00dev, | |
925 | struct rt2x00lib_crypto *crypto, | |
926 | struct ieee80211_key_conf *key) | |
927 | { | |
928 | struct mac_wcid_entry wcid_entry; | |
929 | struct mac_iveiv_entry iveiv_entry; | |
930 | u32 offset; | |
931 | u32 reg; | |
932 | ||
933 | offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx); | |
934 | ||
935 | if (crypto->cmd == SET_KEY) { | |
936 | rt2800_register_read(rt2x00dev, offset, ®); | |
937 | rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_KEYTAB, | |
938 | !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)); | |
939 | /* | |
940 | * Both the cipher as the BSS Idx numbers are split in a main | |
941 | * value of 3 bits, and a extended field for adding one additional | |
942 | * bit to the value. | |
943 | */ | |
944 | rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER, | |
945 | (crypto->cipher & 0x7)); | |
946 | rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER_EXT, | |
947 | (crypto->cipher & 0x8) >> 3); | |
948 | rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_BSS_IDX, | |
949 | (crypto->bssidx & 0x7)); | |
950 | rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT, | |
951 | (crypto->bssidx & 0x8) >> 3); | |
952 | rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher); | |
953 | rt2800_register_write(rt2x00dev, offset, reg); | |
954 | } else { | |
955 | rt2800_register_write(rt2x00dev, offset, 0); | |
956 | } | |
957 | ||
958 | offset = MAC_IVEIV_ENTRY(key->hw_key_idx); | |
959 | ||
960 | memset(&iveiv_entry, 0, sizeof(iveiv_entry)); | |
961 | if ((crypto->cipher == CIPHER_TKIP) || | |
962 | (crypto->cipher == CIPHER_TKIP_NO_MIC) || | |
963 | (crypto->cipher == CIPHER_AES)) | |
964 | iveiv_entry.iv[3] |= 0x20; | |
965 | iveiv_entry.iv[3] |= key->keyidx << 6; | |
966 | rt2800_register_multiwrite(rt2x00dev, offset, | |
967 | &iveiv_entry, sizeof(iveiv_entry)); | |
968 | ||
969 | offset = MAC_WCID_ENTRY(key->hw_key_idx); | |
970 | ||
971 | memset(&wcid_entry, 0, sizeof(wcid_entry)); | |
972 | if (crypto->cmd == SET_KEY) | |
973 | memcpy(&wcid_entry, crypto->address, ETH_ALEN); | |
974 | rt2800_register_multiwrite(rt2x00dev, offset, | |
975 | &wcid_entry, sizeof(wcid_entry)); | |
976 | } | |
977 | ||
978 | int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev, | |
979 | struct rt2x00lib_crypto *crypto, | |
980 | struct ieee80211_key_conf *key) | |
981 | { | |
982 | struct hw_key_entry key_entry; | |
983 | struct rt2x00_field32 field; | |
984 | u32 offset; | |
985 | u32 reg; | |
986 | ||
987 | if (crypto->cmd == SET_KEY) { | |
988 | key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx; | |
989 | ||
990 | memcpy(key_entry.key, crypto->key, | |
991 | sizeof(key_entry.key)); | |
992 | memcpy(key_entry.tx_mic, crypto->tx_mic, | |
993 | sizeof(key_entry.tx_mic)); | |
994 | memcpy(key_entry.rx_mic, crypto->rx_mic, | |
995 | sizeof(key_entry.rx_mic)); | |
996 | ||
997 | offset = SHARED_KEY_ENTRY(key->hw_key_idx); | |
998 | rt2800_register_multiwrite(rt2x00dev, offset, | |
999 | &key_entry, sizeof(key_entry)); | |
1000 | } | |
1001 | ||
1002 | /* | |
1003 | * The cipher types are stored over multiple registers | |
1004 | * starting with SHARED_KEY_MODE_BASE each word will have | |
1005 | * 32 bits and contains the cipher types for 2 bssidx each. | |
1006 | * Using the correct defines correctly will cause overhead, | |
1007 | * so just calculate the correct offset. | |
1008 | */ | |
1009 | field.bit_offset = 4 * (key->hw_key_idx % 8); | |
1010 | field.bit_mask = 0x7 << field.bit_offset; | |
1011 | ||
1012 | offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8); | |
1013 | ||
1014 | rt2800_register_read(rt2x00dev, offset, ®); | |
1015 | rt2x00_set_field32(®, field, | |
1016 | (crypto->cmd == SET_KEY) * crypto->cipher); | |
1017 | rt2800_register_write(rt2x00dev, offset, reg); | |
1018 | ||
1019 | /* | |
1020 | * Update WCID information | |
1021 | */ | |
1022 | rt2800_config_wcid_attr(rt2x00dev, crypto, key); | |
1023 | ||
1024 | return 0; | |
1025 | } | |
1026 | EXPORT_SYMBOL_GPL(rt2800_config_shared_key); | |
1027 | ||
1028 | int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev, | |
1029 | struct rt2x00lib_crypto *crypto, | |
1030 | struct ieee80211_key_conf *key) | |
1031 | { | |
1032 | struct hw_key_entry key_entry; | |
1033 | u32 offset; | |
1034 | ||
1035 | if (crypto->cmd == SET_KEY) { | |
1036 | /* | |
1037 | * 1 pairwise key is possible per AID, this means that the AID | |
1038 | * equals our hw_key_idx. Make sure the WCID starts _after_ the | |
1039 | * last possible shared key entry. | |
1040 | * | |
1041 | * Since parts of the pairwise key table might be shared with | |
1042 | * the beacon frame buffers 6 & 7 we should only write into the | |
1043 | * first 222 entries. | |
1044 | */ | |
1045 | if (crypto->aid > (222 - 32)) | |
1046 | return -ENOSPC; | |
1047 | ||
1048 | key->hw_key_idx = 32 + crypto->aid; | |
1049 | ||
1050 | memcpy(key_entry.key, crypto->key, | |
1051 | sizeof(key_entry.key)); | |
1052 | memcpy(key_entry.tx_mic, crypto->tx_mic, | |
1053 | sizeof(key_entry.tx_mic)); | |
1054 | memcpy(key_entry.rx_mic, crypto->rx_mic, | |
1055 | sizeof(key_entry.rx_mic)); | |
1056 | ||
1057 | offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx); | |
1058 | rt2800_register_multiwrite(rt2x00dev, offset, | |
1059 | &key_entry, sizeof(key_entry)); | |
1060 | } | |
1061 | ||
1062 | /* | |
1063 | * Update WCID information | |
1064 | */ | |
1065 | rt2800_config_wcid_attr(rt2x00dev, crypto, key); | |
1066 | ||
1067 | return 0; | |
1068 | } | |
1069 | EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key); | |
1070 | ||
1071 | void rt2800_config_filter(struct rt2x00_dev *rt2x00dev, | |
1072 | const unsigned int filter_flags) | |
1073 | { | |
1074 | u32 reg; | |
1075 | ||
1076 | /* | |
1077 | * Start configuration steps. | |
1078 | * Note that the version error will always be dropped | |
1079 | * and broadcast frames will always be accepted since | |
1080 | * there is no filter for it at this time. | |
1081 | */ | |
1082 | rt2800_register_read(rt2x00dev, RX_FILTER_CFG, ®); | |
1083 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CRC_ERROR, | |
1084 | !(filter_flags & FIF_FCSFAIL)); | |
1085 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PHY_ERROR, | |
1086 | !(filter_flags & FIF_PLCPFAIL)); | |
1087 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_NOT_TO_ME, | |
1088 | !(filter_flags & FIF_PROMISC_IN_BSS)); | |
1089 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0); | |
1090 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_VER_ERROR, 1); | |
1091 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_MULTICAST, | |
1092 | !(filter_flags & FIF_ALLMULTI)); | |
1093 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BROADCAST, 0); | |
1094 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_DUPLICATE, 1); | |
1095 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CF_END_ACK, | |
1096 | !(filter_flags & FIF_CONTROL)); | |
1097 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CF_END, | |
1098 | !(filter_flags & FIF_CONTROL)); | |
1099 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_ACK, | |
1100 | !(filter_flags & FIF_CONTROL)); | |
1101 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CTS, | |
1102 | !(filter_flags & FIF_CONTROL)); | |
1103 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_RTS, | |
1104 | !(filter_flags & FIF_CONTROL)); | |
1105 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PSPOLL, | |
1106 | !(filter_flags & FIF_PSPOLL)); | |
1107 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BA, 1); | |
1108 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BAR, 0); | |
1109 | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CNTL, | |
1110 | !(filter_flags & FIF_CONTROL)); | |
1111 | rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg); | |
1112 | } | |
1113 | EXPORT_SYMBOL_GPL(rt2800_config_filter); | |
1114 | ||
1115 | void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf, | |
1116 | struct rt2x00intf_conf *conf, const unsigned int flags) | |
1117 | { | |
1118 | u32 reg; | |
1119 | ||
1120 | if (flags & CONFIG_UPDATE_TYPE) { | |
1121 | /* | |
1122 | * Clear current synchronisation setup. | |
1123 | */ | |
1124 | rt2800_clear_beacon(rt2x00dev, | |
1125 | HW_BEACON_OFFSET(intf->beacon->entry_idx)); | |
1126 | /* | |
1127 | * Enable synchronisation. | |
1128 | */ | |
1129 | rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); | |
1130 | rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1); | |
1131 | rt2x00_set_field32(®, BCN_TIME_CFG_TSF_SYNC, conf->sync); | |
1132 | rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, | |
1133 | (conf->sync == TSF_SYNC_ADHOC || | |
1134 | conf->sync == TSF_SYNC_AP_NONE)); | |
1135 | rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); | |
1136 | ||
1137 | /* | |
1138 | * Enable pre tbtt interrupt for beaconing modes | |
1139 | */ | |
1140 | rt2800_register_read(rt2x00dev, INT_TIMER_EN, ®); | |
1141 | rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, | |
1142 | (conf->sync == TSF_SYNC_AP_NONE)); | |
1143 | rt2800_register_write(rt2x00dev, INT_TIMER_EN, reg); | |
1144 | ||
1145 | } | |
1146 | ||
1147 | if (flags & CONFIG_UPDATE_MAC) { | |
1148 | if (!is_zero_ether_addr((const u8 *)conf->mac)) { | |
1149 | reg = le32_to_cpu(conf->mac[1]); | |
1150 | rt2x00_set_field32(®, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff); | |
1151 | conf->mac[1] = cpu_to_le32(reg); | |
1152 | } | |
1153 | ||
1154 | rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0, | |
1155 | conf->mac, sizeof(conf->mac)); | |
1156 | } | |
1157 | ||
1158 | if (flags & CONFIG_UPDATE_BSSID) { | |
1159 | if (!is_zero_ether_addr((const u8 *)conf->bssid)) { | |
1160 | reg = le32_to_cpu(conf->bssid[1]); | |
1161 | rt2x00_set_field32(®, MAC_BSSID_DW1_BSS_ID_MASK, 3); | |
1162 | rt2x00_set_field32(®, MAC_BSSID_DW1_BSS_BCN_NUM, 7); | |
1163 | conf->bssid[1] = cpu_to_le32(reg); | |
1164 | } | |
1165 | ||
1166 | rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0, | |
1167 | conf->bssid, sizeof(conf->bssid)); | |
1168 | } | |
1169 | } | |
1170 | EXPORT_SYMBOL_GPL(rt2800_config_intf); | |
1171 | ||
1172 | static void rt2800_config_ht_opmode(struct rt2x00_dev *rt2x00dev, | |
1173 | struct rt2x00lib_erp *erp) | |
1174 | { | |
1175 | bool any_sta_nongf = !!(erp->ht_opmode & | |
1176 | IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT); | |
1177 | u8 protection = erp->ht_opmode & IEEE80211_HT_OP_MODE_PROTECTION; | |
1178 | u8 mm20_mode, mm40_mode, gf20_mode, gf40_mode; | |
1179 | u16 mm20_rate, mm40_rate, gf20_rate, gf40_rate; | |
1180 | u32 reg; | |
1181 | ||
1182 | /* default protection rate for HT20: OFDM 24M */ | |
1183 | mm20_rate = gf20_rate = 0x4004; | |
1184 | ||
1185 | /* default protection rate for HT40: duplicate OFDM 24M */ | |
1186 | mm40_rate = gf40_rate = 0x4084; | |
1187 | ||
1188 | switch (protection) { | |
1189 | case IEEE80211_HT_OP_MODE_PROTECTION_NONE: | |
1190 | /* | |
1191 | * All STAs in this BSS are HT20/40 but there might be | |
1192 | * STAs not supporting greenfield mode. | |
1193 | * => Disable protection for HT transmissions. | |
1194 | */ | |
1195 | mm20_mode = mm40_mode = gf20_mode = gf40_mode = 0; | |
1196 | ||
1197 | break; | |
1198 | case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ: | |
1199 | /* | |
1200 | * All STAs in this BSS are HT20 or HT20/40 but there | |
1201 | * might be STAs not supporting greenfield mode. | |
1202 | * => Protect all HT40 transmissions. | |
1203 | */ | |
1204 | mm20_mode = gf20_mode = 0; | |
1205 | mm40_mode = gf40_mode = 2; | |
1206 | ||
1207 | break; | |
1208 | case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER: | |
1209 | /* | |
1210 | * Nonmember protection: | |
1211 | * According to 802.11n we _should_ protect all | |
1212 | * HT transmissions (but we don't have to). | |
1213 | * | |
1214 | * But if cts_protection is enabled we _shall_ protect | |
1215 | * all HT transmissions using a CCK rate. | |
1216 | * | |
1217 | * And if any station is non GF we _shall_ protect | |
1218 | * GF transmissions. | |
1219 | * | |
1220 | * We decide to protect everything | |
1221 | * -> fall through to mixed mode. | |
1222 | */ | |
1223 | case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED: | |
1224 | /* | |
1225 | * Legacy STAs are present | |
1226 | * => Protect all HT transmissions. | |
1227 | */ | |
1228 | mm20_mode = mm40_mode = gf20_mode = gf40_mode = 2; | |
1229 | ||
1230 | /* | |
1231 | * If erp protection is needed we have to protect HT | |
1232 | * transmissions with CCK 11M long preamble. | |
1233 | */ | |
1234 | if (erp->cts_protection) { | |
1235 | /* don't duplicate RTS/CTS in CCK mode */ | |
1236 | mm20_rate = mm40_rate = 0x0003; | |
1237 | gf20_rate = gf40_rate = 0x0003; | |
1238 | } | |
1239 | break; | |
1240 | }; | |
1241 | ||
1242 | /* check for STAs not supporting greenfield mode */ | |
1243 | if (any_sta_nongf) | |
1244 | gf20_mode = gf40_mode = 2; | |
1245 | ||
1246 | /* Update HT protection config */ | |
1247 | rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®); | |
1248 | rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_RATE, mm20_rate); | |
1249 | rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_CTRL, mm20_mode); | |
1250 | rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg); | |
1251 | ||
1252 | rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®); | |
1253 | rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_RATE, mm40_rate); | |
1254 | rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_CTRL, mm40_mode); | |
1255 | rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg); | |
1256 | ||
1257 | rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®); | |
1258 | rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_RATE, gf20_rate); | |
1259 | rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_CTRL, gf20_mode); | |
1260 | rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg); | |
1261 | ||
1262 | rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®); | |
1263 | rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_RATE, gf40_rate); | |
1264 | rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_CTRL, gf40_mode); | |
1265 | rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg); | |
1266 | } | |
1267 | ||
1268 | void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp, | |
1269 | u32 changed) | |
1270 | { | |
1271 | u32 reg; | |
1272 | ||
1273 | if (changed & BSS_CHANGED_ERP_PREAMBLE) { | |
1274 | rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, ®); | |
1275 | rt2x00_set_field32(®, AUTO_RSP_CFG_BAC_ACK_POLICY, | |
1276 | !!erp->short_preamble); | |
1277 | rt2x00_set_field32(®, AUTO_RSP_CFG_AR_PREAMBLE, | |
1278 | !!erp->short_preamble); | |
1279 | rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg); | |
1280 | } | |
1281 | ||
1282 | if (changed & BSS_CHANGED_ERP_CTS_PROT) { | |
1283 | rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®); | |
1284 | rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL, | |
1285 | erp->cts_protection ? 2 : 0); | |
1286 | rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg); | |
1287 | } | |
1288 | ||
1289 | if (changed & BSS_CHANGED_BASIC_RATES) { | |
1290 | rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, | |
1291 | erp->basic_rates); | |
1292 | rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003); | |
1293 | } | |
1294 | ||
1295 | if (changed & BSS_CHANGED_ERP_SLOT) { | |
1296 | rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, ®); | |
1297 | rt2x00_set_field32(®, BKOFF_SLOT_CFG_SLOT_TIME, | |
1298 | erp->slot_time); | |
1299 | rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg); | |
1300 | ||
1301 | rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, ®); | |
1302 | rt2x00_set_field32(®, XIFS_TIME_CFG_EIFS, erp->eifs); | |
1303 | rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg); | |
1304 | } | |
1305 | ||
1306 | if (changed & BSS_CHANGED_BEACON_INT) { | |
1307 | rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); | |
1308 | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, | |
1309 | erp->beacon_int * 16); | |
1310 | rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); | |
1311 | } | |
1312 | ||
1313 | if (changed & BSS_CHANGED_HT) | |
1314 | rt2800_config_ht_opmode(rt2x00dev, erp); | |
1315 | } | |
1316 | EXPORT_SYMBOL_GPL(rt2800_config_erp); | |
1317 | ||
1318 | void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) | |
1319 | { | |
1320 | u8 r1; | |
1321 | u8 r3; | |
1322 | ||
1323 | rt2800_bbp_read(rt2x00dev, 1, &r1); | |
1324 | rt2800_bbp_read(rt2x00dev, 3, &r3); | |
1325 | ||
1326 | /* | |
1327 | * Configure the TX antenna. | |
1328 | */ | |
1329 | switch ((int)ant->tx) { | |
1330 | case 1: | |
1331 | rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0); | |
1332 | break; | |
1333 | case 2: | |
1334 | rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2); | |
1335 | break; | |
1336 | case 3: | |
1337 | rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0); | |
1338 | break; | |
1339 | } | |
1340 | ||
1341 | /* | |
1342 | * Configure the RX antenna. | |
1343 | */ | |
1344 | switch ((int)ant->rx) { | |
1345 | case 1: | |
1346 | rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0); | |
1347 | break; | |
1348 | case 2: | |
1349 | rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1); | |
1350 | break; | |
1351 | case 3: | |
1352 | rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2); | |
1353 | break; | |
1354 | } | |
1355 | ||
1356 | rt2800_bbp_write(rt2x00dev, 3, r3); | |
1357 | rt2800_bbp_write(rt2x00dev, 1, r1); | |
1358 | } | |
1359 | EXPORT_SYMBOL_GPL(rt2800_config_ant); | |
1360 | ||
1361 | static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev, | |
1362 | struct rt2x00lib_conf *libconf) | |
1363 | { | |
1364 | u16 eeprom; | |
1365 | short lna_gain; | |
1366 | ||
1367 | if (libconf->rf.channel <= 14) { | |
1368 | rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom); | |
1369 | lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG); | |
1370 | } else if (libconf->rf.channel <= 64) { | |
1371 | rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom); | |
1372 | lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0); | |
1373 | } else if (libconf->rf.channel <= 128) { | |
1374 | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom); | |
1375 | lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1); | |
1376 | } else { | |
1377 | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom); | |
1378 | lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2); | |
1379 | } | |
1380 | ||
1381 | rt2x00dev->lna_gain = lna_gain; | |
1382 | } | |
1383 | ||
1384 | static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev, | |
1385 | struct ieee80211_conf *conf, | |
1386 | struct rf_channel *rf, | |
1387 | struct channel_info *info) | |
1388 | { | |
1389 | rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); | |
1390 | ||
1391 | if (rt2x00dev->default_ant.tx == 1) | |
1392 | rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1); | |
1393 | ||
1394 | if (rt2x00dev->default_ant.rx == 1) { | |
1395 | rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1); | |
1396 | rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1); | |
1397 | } else if (rt2x00dev->default_ant.rx == 2) | |
1398 | rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1); | |
1399 | ||
1400 | if (rf->channel > 14) { | |
1401 | /* | |
1402 | * When TX power is below 0, we should increase it by 7 to | |
1403 | * make it a positive value (Minumum value is -7). | |
1404 | * However this means that values between 0 and 7 have | |
1405 | * double meaning, and we should set a 7DBm boost flag. | |
1406 | */ | |
1407 | rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST, | |
1408 | (info->default_power1 >= 0)); | |
1409 | ||
1410 | if (info->default_power1 < 0) | |
1411 | info->default_power1 += 7; | |
1412 | ||
1413 | rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, info->default_power1); | |
1414 | ||
1415 | rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST, | |
1416 | (info->default_power2 >= 0)); | |
1417 | ||
1418 | if (info->default_power2 < 0) | |
1419 | info->default_power2 += 7; | |
1420 | ||
1421 | rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, info->default_power2); | |
1422 | } else { | |
1423 | rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, info->default_power1); | |
1424 | rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, info->default_power2); | |
1425 | } | |
1426 | ||
1427 | rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf)); | |
1428 | ||
1429 | rt2800_rf_write(rt2x00dev, 1, rf->rf1); | |
1430 | rt2800_rf_write(rt2x00dev, 2, rf->rf2); | |
1431 | rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); | |
1432 | rt2800_rf_write(rt2x00dev, 4, rf->rf4); | |
1433 | ||
1434 | udelay(200); | |
1435 | ||
1436 | rt2800_rf_write(rt2x00dev, 1, rf->rf1); | |
1437 | rt2800_rf_write(rt2x00dev, 2, rf->rf2); | |
1438 | rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); | |
1439 | rt2800_rf_write(rt2x00dev, 4, rf->rf4); | |
1440 | ||
1441 | udelay(200); | |
1442 | ||
1443 | rt2800_rf_write(rt2x00dev, 1, rf->rf1); | |
1444 | rt2800_rf_write(rt2x00dev, 2, rf->rf2); | |
1445 | rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); | |
1446 | rt2800_rf_write(rt2x00dev, 4, rf->rf4); | |
1447 | } | |
1448 | ||
1449 | static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev, | |
1450 | struct ieee80211_conf *conf, | |
1451 | struct rf_channel *rf, | |
1452 | struct channel_info *info) | |
1453 | { | |
1454 | u8 rfcsr; | |
1455 | ||
1456 | rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1); | |
1457 | rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3); | |
1458 | ||
1459 | rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr); | |
1460 | rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2); | |
1461 | rt2800_rfcsr_write(rt2x00dev, 6, rfcsr); | |
1462 | ||
1463 | rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr); | |
1464 | rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, info->default_power1); | |
1465 | rt2800_rfcsr_write(rt2x00dev, 12, rfcsr); | |
1466 | ||
1467 | rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr); | |
1468 | rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, info->default_power2); | |
1469 | rt2800_rfcsr_write(rt2x00dev, 13, rfcsr); | |
1470 | ||
1471 | rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr); | |
1472 | rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset); | |
1473 | rt2800_rfcsr_write(rt2x00dev, 23, rfcsr); | |
1474 | ||
1475 | rt2800_rfcsr_write(rt2x00dev, 24, | |
1476 | rt2x00dev->calibration[conf_is_ht40(conf)]); | |
1477 | ||
1478 | rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr); | |
1479 | rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1); | |
1480 | rt2800_rfcsr_write(rt2x00dev, 7, rfcsr); | |
1481 | } | |
1482 | ||
1483 | static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev, | |
1484 | struct ieee80211_conf *conf, | |
1485 | struct rf_channel *rf, | |
1486 | struct channel_info *info) | |
1487 | { | |
1488 | u32 reg; | |
1489 | unsigned int tx_pin; | |
1490 | u8 bbp; | |
1491 | ||
1492 | if (rf->channel <= 14) { | |
1493 | info->default_power1 = TXPOWER_G_TO_DEV(info->default_power1); | |
1494 | info->default_power2 = TXPOWER_G_TO_DEV(info->default_power2); | |
1495 | } else { | |
1496 | info->default_power1 = TXPOWER_A_TO_DEV(info->default_power1); | |
1497 | info->default_power2 = TXPOWER_A_TO_DEV(info->default_power2); | |
1498 | } | |
1499 | ||
1500 | if (rt2x00_rf(rt2x00dev, RF2020) || | |
1501 | rt2x00_rf(rt2x00dev, RF3020) || | |
1502 | rt2x00_rf(rt2x00dev, RF3021) || | |
1503 | rt2x00_rf(rt2x00dev, RF3022) || | |
1504 | rt2x00_rf(rt2x00dev, RF3052)) | |
1505 | rt2800_config_channel_rf3xxx(rt2x00dev, conf, rf, info); | |
1506 | else | |
1507 | rt2800_config_channel_rf2xxx(rt2x00dev, conf, rf, info); | |
1508 | ||
1509 | /* | |
1510 | * Change BBP settings | |
1511 | */ | |
1512 | rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain); | |
1513 | rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain); | |
1514 | rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain); | |
1515 | rt2800_bbp_write(rt2x00dev, 86, 0); | |
1516 | ||
1517 | if (rf->channel <= 14) { | |
1518 | if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) { | |
1519 | rt2800_bbp_write(rt2x00dev, 82, 0x62); | |
1520 | rt2800_bbp_write(rt2x00dev, 75, 0x46); | |
1521 | } else { | |
1522 | rt2800_bbp_write(rt2x00dev, 82, 0x84); | |
1523 | rt2800_bbp_write(rt2x00dev, 75, 0x50); | |
1524 | } | |
1525 | } else { | |
1526 | rt2800_bbp_write(rt2x00dev, 82, 0xf2); | |
1527 | ||
1528 | if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) | |
1529 | rt2800_bbp_write(rt2x00dev, 75, 0x46); | |
1530 | else | |
1531 | rt2800_bbp_write(rt2x00dev, 75, 0x50); | |
1532 | } | |
1533 | ||
1534 | rt2800_register_read(rt2x00dev, TX_BAND_CFG, ®); | |
1535 | rt2x00_set_field32(®, TX_BAND_CFG_HT40_MINUS, conf_is_ht40_minus(conf)); | |
1536 | rt2x00_set_field32(®, TX_BAND_CFG_A, rf->channel > 14); | |
1537 | rt2x00_set_field32(®, TX_BAND_CFG_BG, rf->channel <= 14); | |
1538 | rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg); | |
1539 | ||
1540 | tx_pin = 0; | |
1541 | ||
1542 | /* Turn on unused PA or LNA when not using 1T or 1R */ | |
1543 | if (rt2x00dev->default_ant.tx != 1) { | |
1544 | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1); | |
1545 | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1); | |
1546 | } | |
1547 | ||
1548 | /* Turn on unused PA or LNA when not using 1T or 1R */ | |
1549 | if (rt2x00dev->default_ant.rx != 1) { | |
1550 | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1); | |
1551 | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1); | |
1552 | } | |
1553 | ||
1554 | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1); | |
1555 | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1); | |
1556 | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1); | |
1557 | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1); | |
1558 | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, rf->channel <= 14); | |
1559 | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14); | |
1560 | ||
1561 | rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin); | |
1562 | ||
1563 | rt2800_bbp_read(rt2x00dev, 4, &bbp); | |
1564 | rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf)); | |
1565 | rt2800_bbp_write(rt2x00dev, 4, bbp); | |
1566 | ||
1567 | rt2800_bbp_read(rt2x00dev, 3, &bbp); | |
1568 | rt2x00_set_field8(&bbp, BBP3_HT40_MINUS, conf_is_ht40_minus(conf)); | |
1569 | rt2800_bbp_write(rt2x00dev, 3, bbp); | |
1570 | ||
1571 | if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) { | |
1572 | if (conf_is_ht40(conf)) { | |
1573 | rt2800_bbp_write(rt2x00dev, 69, 0x1a); | |
1574 | rt2800_bbp_write(rt2x00dev, 70, 0x0a); | |
1575 | rt2800_bbp_write(rt2x00dev, 73, 0x16); | |
1576 | } else { | |
1577 | rt2800_bbp_write(rt2x00dev, 69, 0x16); | |
1578 | rt2800_bbp_write(rt2x00dev, 70, 0x08); | |
1579 | rt2800_bbp_write(rt2x00dev, 73, 0x11); | |
1580 | } | |
1581 | } | |
1582 | ||
1583 | msleep(1); | |
1584 | } | |
1585 | ||
1586 | static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev, | |
1587 | const int max_txpower) | |
1588 | { | |
1589 | u8 txpower; | |
1590 | u8 max_value = (u8)max_txpower; | |
1591 | u16 eeprom; | |
1592 | int i; | |
1593 | u32 reg; | |
1594 | u8 r1; | |
1595 | u32 offset; | |
1596 | ||
1597 | /* | |
1598 | * set to normal tx power mode: +/- 0dBm | |
1599 | */ | |
1600 | rt2800_bbp_read(rt2x00dev, 1, &r1); | |
1601 | rt2x00_set_field8(&r1, BBP1_TX_POWER, 0); | |
1602 | rt2800_bbp_write(rt2x00dev, 1, r1); | |
1603 | ||
1604 | /* | |
1605 | * The eeprom contains the tx power values for each rate. These | |
1606 | * values map to 100% tx power. Each 16bit word contains four tx | |
1607 | * power values and the order is the same as used in the TX_PWR_CFG | |
1608 | * registers. | |
1609 | */ | |
1610 | offset = TX_PWR_CFG_0; | |
1611 | ||
1612 | for (i = 0; i < EEPROM_TXPOWER_BYRATE_SIZE; i += 2) { | |
1613 | /* just to be safe */ | |
1614 | if (offset > TX_PWR_CFG_4) | |
1615 | break; | |
1616 | ||
1617 | rt2800_register_read(rt2x00dev, offset, ®); | |
1618 | ||
1619 | /* read the next four txpower values */ | |
1620 | rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i, | |
1621 | &eeprom); | |
1622 | ||
1623 | /* TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS, | |
1624 | * TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12, | |
1625 | * TX_PWR_CFG_4: unknown */ | |
1626 | txpower = rt2x00_get_field16(eeprom, | |
1627 | EEPROM_TXPOWER_BYRATE_RATE0); | |
1628 | rt2x00_set_field32(®, TX_PWR_CFG_RATE0, | |
1629 | min(txpower, max_value)); | |
1630 | ||
1631 | /* TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS, | |
1632 | * TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13, | |
1633 | * TX_PWR_CFG_4: unknown */ | |
1634 | txpower = rt2x00_get_field16(eeprom, | |
1635 | EEPROM_TXPOWER_BYRATE_RATE1); | |
1636 | rt2x00_set_field32(®, TX_PWR_CFG_RATE1, | |
1637 | min(txpower, max_value)); | |
1638 | ||
1639 | /* TX_PWR_CFG_0: 55MBS, TX_PWR_CFG_1: 48MBS, | |
1640 | * TX_PWR_CFG_2: MCS6, TX_PWR_CFG_3: MCS14, | |
1641 | * TX_PWR_CFG_4: unknown */ | |
1642 | txpower = rt2x00_get_field16(eeprom, | |
1643 | EEPROM_TXPOWER_BYRATE_RATE2); | |
1644 | rt2x00_set_field32(®, TX_PWR_CFG_RATE2, | |
1645 | min(txpower, max_value)); | |
1646 | ||
1647 | /* TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS, | |
1648 | * TX_PWR_CFG_2: MCS7, TX_PWR_CFG_3: MCS15, | |
1649 | * TX_PWR_CFG_4: unknown */ | |
1650 | txpower = rt2x00_get_field16(eeprom, | |
1651 | EEPROM_TXPOWER_BYRATE_RATE3); | |
1652 | rt2x00_set_field32(®, TX_PWR_CFG_RATE3, | |
1653 | min(txpower, max_value)); | |
1654 | ||
1655 | /* read the next four txpower values */ | |
1656 | rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i + 1, | |
1657 | &eeprom); | |
1658 | ||
1659 | /* TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0, | |
1660 | * TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown, | |
1661 | * TX_PWR_CFG_4: unknown */ | |
1662 | txpower = rt2x00_get_field16(eeprom, | |
1663 | EEPROM_TXPOWER_BYRATE_RATE0); | |
1664 | rt2x00_set_field32(®, TX_PWR_CFG_RATE4, | |
1665 | min(txpower, max_value)); | |
1666 | ||
1667 | /* TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1, | |
1668 | * TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown, | |
1669 | * TX_PWR_CFG_4: unknown */ | |
1670 | txpower = rt2x00_get_field16(eeprom, | |
1671 | EEPROM_TXPOWER_BYRATE_RATE1); | |
1672 | rt2x00_set_field32(®, TX_PWR_CFG_RATE5, | |
1673 | min(txpower, max_value)); | |
1674 | ||
1675 | /* TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2, | |
1676 | * TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown, | |
1677 | * TX_PWR_CFG_4: unknown */ | |
1678 | txpower = rt2x00_get_field16(eeprom, | |
1679 | EEPROM_TXPOWER_BYRATE_RATE2); | |
1680 | rt2x00_set_field32(®, TX_PWR_CFG_RATE6, | |
1681 | min(txpower, max_value)); | |
1682 | ||
1683 | /* TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3, | |
1684 | * TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown, | |
1685 | * TX_PWR_CFG_4: unknown */ | |
1686 | txpower = rt2x00_get_field16(eeprom, | |
1687 | EEPROM_TXPOWER_BYRATE_RATE3); | |
1688 | rt2x00_set_field32(®, TX_PWR_CFG_RATE7, | |
1689 | min(txpower, max_value)); | |
1690 | ||
1691 | rt2800_register_write(rt2x00dev, offset, reg); | |
1692 | ||
1693 | /* next TX_PWR_CFG register */ | |
1694 | offset += 4; | |
1695 | } | |
1696 | } | |
1697 | ||
1698 | static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev, | |
1699 | struct rt2x00lib_conf *libconf) | |
1700 | { | |
1701 | u32 reg; | |
1702 | ||
1703 | rt2800_register_read(rt2x00dev, TX_RTY_CFG, ®); | |
1704 | rt2x00_set_field32(®, TX_RTY_CFG_SHORT_RTY_LIMIT, | |
1705 | libconf->conf->short_frame_max_tx_count); | |
1706 | rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_LIMIT, | |
1707 | libconf->conf->long_frame_max_tx_count); | |
1708 | rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg); | |
1709 | } | |
1710 | ||
1711 | static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev, | |
1712 | struct rt2x00lib_conf *libconf) | |
1713 | { | |
1714 | enum dev_state state = | |
1715 | (libconf->conf->flags & IEEE80211_CONF_PS) ? | |
1716 | STATE_SLEEP : STATE_AWAKE; | |
1717 | u32 reg; | |
1718 | ||
1719 | if (state == STATE_SLEEP) { | |
1720 | rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0); | |
1721 | ||
1722 | rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®); | |
1723 | rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5); | |
1724 | rt2x00_set_field32(®, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, | |
1725 | libconf->conf->listen_interval - 1); | |
1726 | rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 1); | |
1727 | rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg); | |
1728 | ||
1729 | rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); | |
1730 | } else { | |
1731 | rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®); | |
1732 | rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0); | |
1733 | rt2x00_set_field32(®, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0); | |
1734 | rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 0); | |
1735 | rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg); | |
1736 | ||
1737 | rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); | |
1738 | } | |
1739 | } | |
1740 | ||
1741 | void rt2800_config(struct rt2x00_dev *rt2x00dev, | |
1742 | struct rt2x00lib_conf *libconf, | |
1743 | const unsigned int flags) | |
1744 | { | |
1745 | /* Always recalculate LNA gain before changing configuration */ | |
1746 | rt2800_config_lna_gain(rt2x00dev, libconf); | |
1747 | ||
1748 | if (flags & IEEE80211_CONF_CHANGE_CHANNEL) | |
1749 | rt2800_config_channel(rt2x00dev, libconf->conf, | |
1750 | &libconf->rf, &libconf->channel); | |
1751 | if (flags & IEEE80211_CONF_CHANGE_POWER) | |
1752 | rt2800_config_txpower(rt2x00dev, libconf->conf->power_level); | |
1753 | if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) | |
1754 | rt2800_config_retry_limit(rt2x00dev, libconf); | |
1755 | if (flags & IEEE80211_CONF_CHANGE_PS) | |
1756 | rt2800_config_ps(rt2x00dev, libconf); | |
1757 | } | |
1758 | EXPORT_SYMBOL_GPL(rt2800_config); | |
1759 | ||
1760 | /* | |
1761 | * Link tuning | |
1762 | */ | |
1763 | void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) | |
1764 | { | |
1765 | u32 reg; | |
1766 | ||
1767 | /* | |
1768 | * Update FCS error count from register. | |
1769 | */ | |
1770 | rt2800_register_read(rt2x00dev, RX_STA_CNT0, ®); | |
1771 | qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR); | |
1772 | } | |
1773 | EXPORT_SYMBOL_GPL(rt2800_link_stats); | |
1774 | ||
1775 | static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev) | |
1776 | { | |
1777 | if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) { | |
1778 | if (rt2x00_rt(rt2x00dev, RT3070) || | |
1779 | rt2x00_rt(rt2x00dev, RT3071) || | |
1780 | rt2x00_rt(rt2x00dev, RT3090) || | |
1781 | rt2x00_rt(rt2x00dev, RT3390)) | |
1782 | return 0x1c + (2 * rt2x00dev->lna_gain); | |
1783 | else | |
1784 | return 0x2e + rt2x00dev->lna_gain; | |
1785 | } | |
1786 | ||
1787 | if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags)) | |
1788 | return 0x32 + (rt2x00dev->lna_gain * 5) / 3; | |
1789 | else | |
1790 | return 0x3a + (rt2x00dev->lna_gain * 5) / 3; | |
1791 | } | |
1792 | ||
1793 | static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev, | |
1794 | struct link_qual *qual, u8 vgc_level) | |
1795 | { | |
1796 | if (qual->vgc_level != vgc_level) { | |
1797 | rt2800_bbp_write(rt2x00dev, 66, vgc_level); | |
1798 | qual->vgc_level = vgc_level; | |
1799 | qual->vgc_level_reg = vgc_level; | |
1800 | } | |
1801 | } | |
1802 | ||
1803 | void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) | |
1804 | { | |
1805 | rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev)); | |
1806 | } | |
1807 | EXPORT_SYMBOL_GPL(rt2800_reset_tuner); | |
1808 | ||
1809 | void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual, | |
1810 | const u32 count) | |
1811 | { | |
1812 | if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) | |
1813 | return; | |
1814 | ||
1815 | /* | |
1816 | * When RSSI is better then -80 increase VGC level with 0x10 | |
1817 | */ | |
1818 | rt2800_set_vgc(rt2x00dev, qual, | |
1819 | rt2800_get_default_vgc(rt2x00dev) + | |
1820 | ((qual->rssi > -80) * 0x10)); | |
1821 | } | |
1822 | EXPORT_SYMBOL_GPL(rt2800_link_tuner); | |
1823 | ||
1824 | /* | |
1825 | * Initialization functions. | |
1826 | */ | |
1827 | static int rt2800_init_registers(struct rt2x00_dev *rt2x00dev) | |
1828 | { | |
1829 | u32 reg; | |
1830 | u16 eeprom; | |
1831 | unsigned int i; | |
1832 | int ret; | |
1833 | ||
1834 | rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); | |
1835 | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); | |
1836 | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0); | |
1837 | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); | |
1838 | rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0); | |
1839 | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); | |
1840 | rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); | |
1841 | ||
1842 | ret = rt2800_drv_init_registers(rt2x00dev); | |
1843 | if (ret) | |
1844 | return ret; | |
1845 | ||
1846 | rt2800_register_read(rt2x00dev, BCN_OFFSET0, ®); | |
1847 | rt2x00_set_field32(®, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */ | |
1848 | rt2x00_set_field32(®, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */ | |
1849 | rt2x00_set_field32(®, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */ | |
1850 | rt2x00_set_field32(®, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */ | |
1851 | rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg); | |
1852 | ||
1853 | rt2800_register_read(rt2x00dev, BCN_OFFSET1, ®); | |
1854 | rt2x00_set_field32(®, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */ | |
1855 | rt2x00_set_field32(®, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */ | |
1856 | rt2x00_set_field32(®, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */ | |
1857 | rt2x00_set_field32(®, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */ | |
1858 | rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg); | |
1859 | ||
1860 | rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f); | |
1861 | rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003); | |
1862 | ||
1863 | rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000); | |
1864 | ||
1865 | rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); | |
1866 | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, 1600); | |
1867 | rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0); | |
1868 | rt2x00_set_field32(®, BCN_TIME_CFG_TSF_SYNC, 0); | |
1869 | rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0); | |
1870 | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); | |
1871 | rt2x00_set_field32(®, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0); | |
1872 | rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); | |
1873 | ||
1874 | rt2800_config_filter(rt2x00dev, FIF_ALLMULTI); | |
1875 | ||
1876 | rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, ®); | |
1877 | rt2x00_set_field32(®, BKOFF_SLOT_CFG_SLOT_TIME, 9); | |
1878 | rt2x00_set_field32(®, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2); | |
1879 | rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg); | |
1880 | ||
1881 | if (rt2x00_rt(rt2x00dev, RT3071) || | |
1882 | rt2x00_rt(rt2x00dev, RT3090) || | |
1883 | rt2x00_rt(rt2x00dev, RT3390)) { | |
1884 | rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400); | |
1885 | rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000); | |
1886 | if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) || | |
1887 | rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) || | |
1888 | rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) { | |
1889 | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); | |
1890 | if (rt2x00_get_field16(eeprom, EEPROM_NIC_DAC_TEST)) | |
1891 | rt2800_register_write(rt2x00dev, TX_SW_CFG2, | |
1892 | 0x0000002c); | |
1893 | else | |
1894 | rt2800_register_write(rt2x00dev, TX_SW_CFG2, | |
1895 | 0x0000000f); | |
1896 | } else { | |
1897 | rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000); | |
1898 | } | |
1899 | } else if (rt2x00_rt(rt2x00dev, RT3070)) { | |
1900 | rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400); | |
1901 | ||
1902 | if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) { | |
1903 | rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000); | |
1904 | rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000002c); | |
1905 | } else { | |
1906 | rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606); | |
1907 | rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000); | |
1908 | } | |
1909 | } else if (rt2800_is_305x_soc(rt2x00dev)) { | |
1910 | rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400); | |
1911 | rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000); | |
1912 | rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000001f); | |
1913 | } else { | |
1914 | rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000); | |
1915 | rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606); | |
1916 | } | |
1917 | ||
1918 | rt2800_register_read(rt2x00dev, TX_LINK_CFG, ®); | |
1919 | rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32); | |
1920 | rt2x00_set_field32(®, TX_LINK_CFG_MFB_ENABLE, 0); | |
1921 | rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0); | |
1922 | rt2x00_set_field32(®, TX_LINK_CFG_TX_MRQ_EN, 0); | |
1923 | rt2x00_set_field32(®, TX_LINK_CFG_TX_RDG_EN, 0); | |
1924 | rt2x00_set_field32(®, TX_LINK_CFG_TX_CF_ACK_EN, 1); | |
1925 | rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFB, 0); | |
1926 | rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFS, 0); | |
1927 | rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg); | |
1928 | ||
1929 | rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, ®); | |
1930 | rt2x00_set_field32(®, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9); | |
1931 | rt2x00_set_field32(®, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 32); | |
1932 | rt2x00_set_field32(®, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10); | |
1933 | rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg); | |
1934 | ||
1935 | rt2800_register_read(rt2x00dev, MAX_LEN_CFG, ®); | |
1936 | rt2x00_set_field32(®, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE); | |
1937 | if (rt2x00_rt_rev_gte(rt2x00dev, RT2872, REV_RT2872E) || | |
1938 | rt2x00_rt(rt2x00dev, RT2883) || | |
1939 | rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070E)) | |
1940 | rt2x00_set_field32(®, MAX_LEN_CFG_MAX_PSDU, 2); | |
1941 | else | |
1942 | rt2x00_set_field32(®, MAX_LEN_CFG_MAX_PSDU, 1); | |
1943 | rt2x00_set_field32(®, MAX_LEN_CFG_MIN_PSDU, 0); | |
1944 | rt2x00_set_field32(®, MAX_LEN_CFG_MIN_MPDU, 0); | |
1945 | rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg); | |
1946 | ||
1947 | rt2800_register_read(rt2x00dev, LED_CFG, ®); | |
1948 | rt2x00_set_field32(®, LED_CFG_ON_PERIOD, 70); | |
1949 | rt2x00_set_field32(®, LED_CFG_OFF_PERIOD, 30); | |
1950 | rt2x00_set_field32(®, LED_CFG_SLOW_BLINK_PERIOD, 3); | |
1951 | rt2x00_set_field32(®, LED_CFG_R_LED_MODE, 3); | |
1952 | rt2x00_set_field32(®, LED_CFG_G_LED_MODE, 3); | |
1953 | rt2x00_set_field32(®, LED_CFG_Y_LED_MODE, 3); | |
1954 | rt2x00_set_field32(®, LED_CFG_LED_POLAR, 1); | |
1955 | rt2800_register_write(rt2x00dev, LED_CFG, reg); | |
1956 | ||
1957 | rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f); | |
1958 | ||
1959 | rt2800_register_read(rt2x00dev, TX_RTY_CFG, ®); | |
1960 | rt2x00_set_field32(®, TX_RTY_CFG_SHORT_RTY_LIMIT, 15); | |
1961 | rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_LIMIT, 31); | |
1962 | rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_THRE, 2000); | |
1963 | rt2x00_set_field32(®, TX_RTY_CFG_NON_AGG_RTY_MODE, 0); | |
1964 | rt2x00_set_field32(®, TX_RTY_CFG_AGG_RTY_MODE, 0); | |
1965 | rt2x00_set_field32(®, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1); | |
1966 | rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg); | |
1967 | ||
1968 | rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, ®); | |
1969 | rt2x00_set_field32(®, AUTO_RSP_CFG_AUTORESPONDER, 1); | |
1970 | rt2x00_set_field32(®, AUTO_RSP_CFG_BAC_ACK_POLICY, 1); | |
1971 | rt2x00_set_field32(®, AUTO_RSP_CFG_CTS_40_MMODE, 0); | |
1972 | rt2x00_set_field32(®, AUTO_RSP_CFG_CTS_40_MREF, 0); | |
1973 | rt2x00_set_field32(®, AUTO_RSP_CFG_AR_PREAMBLE, 1); | |
1974 | rt2x00_set_field32(®, AUTO_RSP_CFG_DUAL_CTS_EN, 0); | |
1975 | rt2x00_set_field32(®, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0); | |
1976 | rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg); | |
1977 | ||
1978 | rt2800_register_read(rt2x00dev, CCK_PROT_CFG, ®); | |
1979 | rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_RATE, 3); | |
1980 | rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_CTRL, 0); | |
1981 | rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_NAV, 1); | |
1982 | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1); | |
1983 | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | |
1984 | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1); | |
1985 | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 0); | |
1986 | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1); | |
1987 | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 0); | |
1988 | rt2x00_set_field32(®, CCK_PROT_CFG_RTS_TH_EN, 1); | |
1989 | rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg); | |
1990 | ||
1991 | rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®); | |
1992 | rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_RATE, 3); | |
1993 | rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL, 0); | |
1994 | rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_NAV, 1); | |
1995 | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1); | |
1996 | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | |
1997 | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1); | |
1998 | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 0); | |
1999 | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1); | |
2000 | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 0); | |
2001 | rt2x00_set_field32(®, OFDM_PROT_CFG_RTS_TH_EN, 1); | |
2002 | rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg); | |
2003 | ||
2004 | rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®); | |
2005 | rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_RATE, 0x4004); | |
2006 | rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_CTRL, 0); | |
2007 | rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_NAV, 1); | |
2008 | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1); | |
2009 | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | |
2010 | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1); | |
2011 | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0); | |
2012 | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1); | |
2013 | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0); | |
2014 | rt2x00_set_field32(®, MM20_PROT_CFG_RTS_TH_EN, 0); | |
2015 | rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg); | |
2016 | ||
2017 | rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®); | |
2018 | rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_RATE, 0x4084); | |
2019 | rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_CTRL, 0); | |
2020 | rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_NAV, 1); | |
2021 | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1); | |
2022 | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | |
2023 | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1); | |
2024 | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1); | |
2025 | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1); | |
2026 | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1); | |
2027 | rt2x00_set_field32(®, MM40_PROT_CFG_RTS_TH_EN, 0); | |
2028 | rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg); | |
2029 | ||
2030 | rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®); | |
2031 | rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_RATE, 0x4004); | |
2032 | rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_CTRL, 0); | |
2033 | rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_NAV, 1); | |
2034 | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1); | |
2035 | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | |
2036 | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1); | |
2037 | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0); | |
2038 | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1); | |
2039 | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0); | |
2040 | rt2x00_set_field32(®, GF20_PROT_CFG_RTS_TH_EN, 0); | |
2041 | rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg); | |
2042 | ||
2043 | rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®); | |
2044 | rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_RATE, 0x4084); | |
2045 | rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_CTRL, 0); | |
2046 | rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_NAV, 1); | |
2047 | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1); | |
2048 | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | |
2049 | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1); | |
2050 | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1); | |
2051 | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1); | |
2052 | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1); | |
2053 | rt2x00_set_field32(®, GF40_PROT_CFG_RTS_TH_EN, 0); | |
2054 | rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg); | |
2055 | ||
2056 | if (rt2x00_is_usb(rt2x00dev)) { | |
2057 | rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006); | |
2058 | ||
2059 | rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); | |
2060 | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); | |
2061 | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0); | |
2062 | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); | |
2063 | rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0); | |
2064 | rt2x00_set_field32(®, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3); | |
2065 | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0); | |
2066 | rt2x00_set_field32(®, WPDMA_GLO_CFG_BIG_ENDIAN, 0); | |
2067 | rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0); | |
2068 | rt2x00_set_field32(®, WPDMA_GLO_CFG_HDR_SEG_LEN, 0); | |
2069 | rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); | |
2070 | } | |
2071 | ||
2072 | rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, 0x0000583f); | |
2073 | rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002); | |
2074 | ||
2075 | rt2800_register_read(rt2x00dev, TX_RTS_CFG, ®); | |
2076 | rt2x00_set_field32(®, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32); | |
2077 | rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES, | |
2078 | IEEE80211_MAX_RTS_THRESHOLD); | |
2079 | rt2x00_set_field32(®, TX_RTS_CFG_RTS_FBK_EN, 0); | |
2080 | rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg); | |
2081 | ||
2082 | rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca); | |
2083 | ||
2084 | /* | |
2085 | * Usually the CCK SIFS time should be set to 10 and the OFDM SIFS | |
2086 | * time should be set to 16. However, the original Ralink driver uses | |
2087 | * 16 for both and indeed using a value of 10 for CCK SIFS results in | |
2088 | * connection problems with 11g + CTS protection. Hence, use the same | |
2089 | * defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS. | |
2090 | */ | |
2091 | rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, ®); | |
2092 | rt2x00_set_field32(®, XIFS_TIME_CFG_CCKM_SIFS_TIME, 16); | |
2093 | rt2x00_set_field32(®, XIFS_TIME_CFG_OFDM_SIFS_TIME, 16); | |
2094 | rt2x00_set_field32(®, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4); | |
2095 | rt2x00_set_field32(®, XIFS_TIME_CFG_EIFS, 314); | |
2096 | rt2x00_set_field32(®, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1); | |
2097 | rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg); | |
2098 | ||
2099 | rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003); | |
2100 | ||
2101 | /* | |
2102 | * ASIC will keep garbage value after boot, clear encryption keys. | |
2103 | */ | |
2104 | for (i = 0; i < 4; i++) | |
2105 | rt2800_register_write(rt2x00dev, | |
2106 | SHARED_KEY_MODE_ENTRY(i), 0); | |
2107 | ||
2108 | for (i = 0; i < 256; i++) { | |
2109 | u32 wcid[2] = { 0xffffffff, 0x00ffffff }; | |
2110 | rt2800_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i), | |
2111 | wcid, sizeof(wcid)); | |
2112 | ||
2113 | rt2800_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 1); | |
2114 | rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0); | |
2115 | } | |
2116 | ||
2117 | /* | |
2118 | * Clear all beacons | |
2119 | */ | |
2120 | rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE0); | |
2121 | rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE1); | |
2122 | rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE2); | |
2123 | rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE3); | |
2124 | rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE4); | |
2125 | rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE5); | |
2126 | rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE6); | |
2127 | rt2800_clear_beacon(rt2x00dev, HW_BEACON_BASE7); | |
2128 | ||
2129 | if (rt2x00_is_usb(rt2x00dev)) { | |
2130 | rt2800_register_read(rt2x00dev, US_CYC_CNT, ®); | |
2131 | rt2x00_set_field32(®, US_CYC_CNT_CLOCK_CYCLE, 30); | |
2132 | rt2800_register_write(rt2x00dev, US_CYC_CNT, reg); | |
2133 | } | |
2134 | ||
2135 | rt2800_register_read(rt2x00dev, HT_FBK_CFG0, ®); | |
2136 | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS0FBK, 0); | |
2137 | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS1FBK, 0); | |
2138 | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS2FBK, 1); | |
2139 | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS3FBK, 2); | |
2140 | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS4FBK, 3); | |
2141 | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS5FBK, 4); | |
2142 | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS6FBK, 5); | |
2143 | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS7FBK, 6); | |
2144 | rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg); | |
2145 | ||
2146 | rt2800_register_read(rt2x00dev, HT_FBK_CFG1, ®); | |
2147 | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS8FBK, 8); | |
2148 | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS9FBK, 8); | |
2149 | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS10FBK, 9); | |
2150 | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS11FBK, 10); | |
2151 | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS12FBK, 11); | |
2152 | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS13FBK, 12); | |
2153 | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS14FBK, 13); | |
2154 | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS15FBK, 14); | |
2155 | rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg); | |
2156 | ||
2157 | rt2800_register_read(rt2x00dev, LG_FBK_CFG0, ®); | |
2158 | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS0FBK, 8); | |
2159 | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS1FBK, 8); | |
2160 | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS2FBK, 9); | |
2161 | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS3FBK, 10); | |
2162 | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS4FBK, 11); | |
2163 | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS5FBK, 12); | |
2164 | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS6FBK, 13); | |
2165 | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS7FBK, 14); | |
2166 | rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg); | |
2167 | ||
2168 | rt2800_register_read(rt2x00dev, LG_FBK_CFG1, ®); | |
2169 | rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS0FBK, 0); | |
2170 | rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS1FBK, 0); | |
2171 | rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS2FBK, 1); | |
2172 | rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS3FBK, 2); | |
2173 | rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg); | |
2174 | ||
2175 | /* | |
2176 | * Do not force the BA window size, we use the TXWI to set it | |
2177 | */ | |
2178 | rt2800_register_read(rt2x00dev, AMPDU_BA_WINSIZE, ®); | |
2179 | rt2x00_set_field32(®, AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE, 0); | |
2180 | rt2x00_set_field32(®, AMPDU_BA_WINSIZE_FORCE_WINSIZE, 0); | |
2181 | rt2800_register_write(rt2x00dev, AMPDU_BA_WINSIZE, reg); | |
2182 | ||
2183 | /* | |
2184 | * We must clear the error counters. | |
2185 | * These registers are cleared on read, | |
2186 | * so we may pass a useless variable to store the value. | |
2187 | */ | |
2188 | rt2800_register_read(rt2x00dev, RX_STA_CNT0, ®); | |
2189 | rt2800_register_read(rt2x00dev, RX_STA_CNT1, ®); | |
2190 | rt2800_register_read(rt2x00dev, RX_STA_CNT2, ®); | |
2191 | rt2800_register_read(rt2x00dev, TX_STA_CNT0, ®); | |
2192 | rt2800_register_read(rt2x00dev, TX_STA_CNT1, ®); | |
2193 | rt2800_register_read(rt2x00dev, TX_STA_CNT2, ®); | |
2194 | ||
2195 | /* | |
2196 | * Setup leadtime for pre tbtt interrupt to 6ms | |
2197 | */ | |
2198 | rt2800_register_read(rt2x00dev, INT_TIMER_CFG, ®); | |
2199 | rt2x00_set_field32(®, INT_TIMER_CFG_PRE_TBTT_TIMER, 6 << 4); | |
2200 | rt2800_register_write(rt2x00dev, INT_TIMER_CFG, reg); | |
2201 | ||
2202 | return 0; | |
2203 | } | |
2204 | ||
2205 | static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev) | |
2206 | { | |
2207 | unsigned int i; | |
2208 | u32 reg; | |
2209 | ||
2210 | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | |
2211 | rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, ®); | |
2212 | if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY)) | |
2213 | return 0; | |
2214 | ||
2215 | udelay(REGISTER_BUSY_DELAY); | |
2216 | } | |
2217 | ||
2218 | ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n"); | |
2219 | return -EACCES; | |
2220 | } | |
2221 | ||
2222 | static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) | |
2223 | { | |
2224 | unsigned int i; | |
2225 | u8 value; | |
2226 | ||
2227 | /* | |
2228 | * BBP was enabled after firmware was loaded, | |
2229 | * but we need to reactivate it now. | |
2230 | */ | |
2231 | rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0); | |
2232 | rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); | |
2233 | msleep(1); | |
2234 | ||
2235 | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | |
2236 | rt2800_bbp_read(rt2x00dev, 0, &value); | |
2237 | if ((value != 0xff) && (value != 0x00)) | |
2238 | return 0; | |
2239 | udelay(REGISTER_BUSY_DELAY); | |
2240 | } | |
2241 | ||
2242 | ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); | |
2243 | return -EACCES; | |
2244 | } | |
2245 | ||
2246 | static int rt2800_init_bbp(struct rt2x00_dev *rt2x00dev) | |
2247 | { | |
2248 | unsigned int i; | |
2249 | u16 eeprom; | |
2250 | u8 reg_id; | |
2251 | u8 value; | |
2252 | ||
2253 | if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev) || | |
2254 | rt2800_wait_bbp_ready(rt2x00dev))) | |
2255 | return -EACCES; | |
2256 | ||
2257 | if (rt2800_is_305x_soc(rt2x00dev)) | |
2258 | rt2800_bbp_write(rt2x00dev, 31, 0x08); | |
2259 | ||
2260 | rt2800_bbp_write(rt2x00dev, 65, 0x2c); | |
2261 | rt2800_bbp_write(rt2x00dev, 66, 0x38); | |
2262 | ||
2263 | if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) { | |
2264 | rt2800_bbp_write(rt2x00dev, 69, 0x16); | |
2265 | rt2800_bbp_write(rt2x00dev, 73, 0x12); | |
2266 | } else { | |
2267 | rt2800_bbp_write(rt2x00dev, 69, 0x12); | |
2268 | rt2800_bbp_write(rt2x00dev, 73, 0x10); | |
2269 | } | |
2270 | ||
2271 | rt2800_bbp_write(rt2x00dev, 70, 0x0a); | |
2272 | ||
2273 | if (rt2x00_rt(rt2x00dev, RT3070) || | |
2274 | rt2x00_rt(rt2x00dev, RT3071) || | |
2275 | rt2x00_rt(rt2x00dev, RT3090) || | |
2276 | rt2x00_rt(rt2x00dev, RT3390)) { | |
2277 | rt2800_bbp_write(rt2x00dev, 79, 0x13); | |
2278 | rt2800_bbp_write(rt2x00dev, 80, 0x05); | |
2279 | rt2800_bbp_write(rt2x00dev, 81, 0x33); | |
2280 | } else if (rt2800_is_305x_soc(rt2x00dev)) { | |
2281 | rt2800_bbp_write(rt2x00dev, 78, 0x0e); | |
2282 | rt2800_bbp_write(rt2x00dev, 80, 0x08); | |
2283 | } else { | |
2284 | rt2800_bbp_write(rt2x00dev, 81, 0x37); | |
2285 | } | |
2286 | ||
2287 | rt2800_bbp_write(rt2x00dev, 82, 0x62); | |
2288 | rt2800_bbp_write(rt2x00dev, 83, 0x6a); | |
2289 | ||
2290 | if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860D)) | |
2291 | rt2800_bbp_write(rt2x00dev, 84, 0x19); | |
2292 | else | |
2293 | rt2800_bbp_write(rt2x00dev, 84, 0x99); | |
2294 | ||
2295 | rt2800_bbp_write(rt2x00dev, 86, 0x00); | |
2296 | rt2800_bbp_write(rt2x00dev, 91, 0x04); | |
2297 | rt2800_bbp_write(rt2x00dev, 92, 0x00); | |
2298 | ||
2299 | if (rt2x00_rt_rev_gte(rt2x00dev, RT3070, REV_RT3070F) || | |
2300 | rt2x00_rt_rev_gte(rt2x00dev, RT3071, REV_RT3071E) || | |
2301 | rt2x00_rt_rev_gte(rt2x00dev, RT3090, REV_RT3090E) || | |
2302 | rt2x00_rt_rev_gte(rt2x00dev, RT3390, REV_RT3390E) || | |
2303 | rt2800_is_305x_soc(rt2x00dev)) | |
2304 | rt2800_bbp_write(rt2x00dev, 103, 0xc0); | |
2305 | else | |
2306 | rt2800_bbp_write(rt2x00dev, 103, 0x00); | |
2307 | ||
2308 | if (rt2800_is_305x_soc(rt2x00dev)) | |
2309 | rt2800_bbp_write(rt2x00dev, 105, 0x01); | |
2310 | else | |
2311 | rt2800_bbp_write(rt2x00dev, 105, 0x05); | |
2312 | rt2800_bbp_write(rt2x00dev, 106, 0x35); | |
2313 | ||
2314 | if (rt2x00_rt(rt2x00dev, RT3071) || | |
2315 | rt2x00_rt(rt2x00dev, RT3090) || | |
2316 | rt2x00_rt(rt2x00dev, RT3390)) { | |
2317 | rt2800_bbp_read(rt2x00dev, 138, &value); | |
2318 | ||
2319 | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); | |
2320 | if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) == 1) | |
2321 | value |= 0x20; | |
2322 | if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH) == 1) | |
2323 | value &= ~0x02; | |
2324 | ||
2325 | rt2800_bbp_write(rt2x00dev, 138, value); | |
2326 | } | |
2327 | ||
2328 | ||
2329 | for (i = 0; i < EEPROM_BBP_SIZE; i++) { | |
2330 | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); | |
2331 | ||
2332 | if (eeprom != 0xffff && eeprom != 0x0000) { | |
2333 | reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); | |
2334 | value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); | |
2335 | rt2800_bbp_write(rt2x00dev, reg_id, value); | |
2336 | } | |
2337 | } | |
2338 | ||
2339 | return 0; | |
2340 | } | |
2341 | ||
2342 | static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev, | |
2343 | bool bw40, u8 rfcsr24, u8 filter_target) | |
2344 | { | |
2345 | unsigned int i; | |
2346 | u8 bbp; | |
2347 | u8 rfcsr; | |
2348 | u8 passband; | |
2349 | u8 stopband; | |
2350 | u8 overtuned = 0; | |
2351 | ||
2352 | rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24); | |
2353 | ||
2354 | rt2800_bbp_read(rt2x00dev, 4, &bbp); | |
2355 | rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40); | |
2356 | rt2800_bbp_write(rt2x00dev, 4, bbp); | |
2357 | ||
2358 | rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr); | |
2359 | rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1); | |
2360 | rt2800_rfcsr_write(rt2x00dev, 22, rfcsr); | |
2361 | ||
2362 | /* | |
2363 | * Set power & frequency of passband test tone | |
2364 | */ | |
2365 | rt2800_bbp_write(rt2x00dev, 24, 0); | |
2366 | ||
2367 | for (i = 0; i < 100; i++) { | |
2368 | rt2800_bbp_write(rt2x00dev, 25, 0x90); | |
2369 | msleep(1); | |
2370 | ||
2371 | rt2800_bbp_read(rt2x00dev, 55, &passband); | |
2372 | if (passband) | |
2373 | break; | |
2374 | } | |
2375 | ||
2376 | /* | |
2377 | * Set power & frequency of stopband test tone | |
2378 | */ | |
2379 | rt2800_bbp_write(rt2x00dev, 24, 0x06); | |
2380 | ||
2381 | for (i = 0; i < 100; i++) { | |
2382 | rt2800_bbp_write(rt2x00dev, 25, 0x90); | |
2383 | msleep(1); | |
2384 | ||
2385 | rt2800_bbp_read(rt2x00dev, 55, &stopband); | |
2386 | ||
2387 | if ((passband - stopband) <= filter_target) { | |
2388 | rfcsr24++; | |
2389 | overtuned += ((passband - stopband) == filter_target); | |
2390 | } else | |
2391 | break; | |
2392 | ||
2393 | rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24); | |
2394 | } | |
2395 | ||
2396 | rfcsr24 -= !!overtuned; | |
2397 | ||
2398 | rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24); | |
2399 | return rfcsr24; | |
2400 | } | |
2401 | ||
2402 | static int rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev) | |
2403 | { | |
2404 | u8 rfcsr; | |
2405 | u8 bbp; | |
2406 | u32 reg; | |
2407 | u16 eeprom; | |
2408 | ||
2409 | if (!rt2x00_rt(rt2x00dev, RT3070) && | |
2410 | !rt2x00_rt(rt2x00dev, RT3071) && | |
2411 | !rt2x00_rt(rt2x00dev, RT3090) && | |
2412 | !rt2x00_rt(rt2x00dev, RT3390) && | |
2413 | !rt2800_is_305x_soc(rt2x00dev)) | |
2414 | return 0; | |
2415 | ||
2416 | /* | |
2417 | * Init RF calibration. | |
2418 | */ | |
2419 | rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr); | |
2420 | rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1); | |
2421 | rt2800_rfcsr_write(rt2x00dev, 30, rfcsr); | |
2422 | msleep(1); | |
2423 | rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0); | |
2424 | rt2800_rfcsr_write(rt2x00dev, 30, rfcsr); | |
2425 | ||
2426 | if (rt2x00_rt(rt2x00dev, RT3070) || | |
2427 | rt2x00_rt(rt2x00dev, RT3071) || | |
2428 | rt2x00_rt(rt2x00dev, RT3090)) { | |
2429 | rt2800_rfcsr_write(rt2x00dev, 4, 0x40); | |
2430 | rt2800_rfcsr_write(rt2x00dev, 5, 0x03); | |
2431 | rt2800_rfcsr_write(rt2x00dev, 6, 0x02); | |
2432 | rt2800_rfcsr_write(rt2x00dev, 7, 0x70); | |
2433 | rt2800_rfcsr_write(rt2x00dev, 9, 0x0f); | |
2434 | rt2800_rfcsr_write(rt2x00dev, 10, 0x41); | |
2435 | rt2800_rfcsr_write(rt2x00dev, 11, 0x21); | |
2436 | rt2800_rfcsr_write(rt2x00dev, 12, 0x7b); | |
2437 | rt2800_rfcsr_write(rt2x00dev, 14, 0x90); | |
2438 | rt2800_rfcsr_write(rt2x00dev, 15, 0x58); | |
2439 | rt2800_rfcsr_write(rt2x00dev, 16, 0xb3); | |
2440 | rt2800_rfcsr_write(rt2x00dev, 17, 0x92); | |
2441 | rt2800_rfcsr_write(rt2x00dev, 18, 0x2c); | |
2442 | rt2800_rfcsr_write(rt2x00dev, 19, 0x02); | |
2443 | rt2800_rfcsr_write(rt2x00dev, 20, 0xba); | |
2444 | rt2800_rfcsr_write(rt2x00dev, 21, 0xdb); | |
2445 | rt2800_rfcsr_write(rt2x00dev, 24, 0x16); | |
2446 | rt2800_rfcsr_write(rt2x00dev, 25, 0x01); | |
2447 | rt2800_rfcsr_write(rt2x00dev, 29, 0x1f); | |
2448 | } else if (rt2x00_rt(rt2x00dev, RT3390)) { | |
2449 | rt2800_rfcsr_write(rt2x00dev, 0, 0xa0); | |
2450 | rt2800_rfcsr_write(rt2x00dev, 1, 0xe1); | |
2451 | rt2800_rfcsr_write(rt2x00dev, 2, 0xf1); | |
2452 | rt2800_rfcsr_write(rt2x00dev, 3, 0x62); | |
2453 | rt2800_rfcsr_write(rt2x00dev, 4, 0x40); | |
2454 | rt2800_rfcsr_write(rt2x00dev, 5, 0x8b); | |
2455 | rt2800_rfcsr_write(rt2x00dev, 6, 0x42); | |
2456 | rt2800_rfcsr_write(rt2x00dev, 7, 0x34); | |
2457 | rt2800_rfcsr_write(rt2x00dev, 8, 0x00); | |
2458 | rt2800_rfcsr_write(rt2x00dev, 9, 0xc0); | |
2459 | rt2800_rfcsr_write(rt2x00dev, 10, 0x61); | |
2460 | rt2800_rfcsr_write(rt2x00dev, 11, 0x21); | |
2461 | rt2800_rfcsr_write(rt2x00dev, 12, 0x3b); | |
2462 | rt2800_rfcsr_write(rt2x00dev, 13, 0xe0); | |
2463 | rt2800_rfcsr_write(rt2x00dev, 14, 0x90); | |
2464 | rt2800_rfcsr_write(rt2x00dev, 15, 0x53); | |
2465 | rt2800_rfcsr_write(rt2x00dev, 16, 0xe0); | |
2466 | rt2800_rfcsr_write(rt2x00dev, 17, 0x94); | |
2467 | rt2800_rfcsr_write(rt2x00dev, 18, 0x5c); | |
2468 | rt2800_rfcsr_write(rt2x00dev, 19, 0x4a); | |
2469 | rt2800_rfcsr_write(rt2x00dev, 20, 0xb2); | |
2470 | rt2800_rfcsr_write(rt2x00dev, 21, 0xf6); | |
2471 | rt2800_rfcsr_write(rt2x00dev, 22, 0x00); | |
2472 | rt2800_rfcsr_write(rt2x00dev, 23, 0x14); | |
2473 | rt2800_rfcsr_write(rt2x00dev, 24, 0x08); | |
2474 | rt2800_rfcsr_write(rt2x00dev, 25, 0x3d); | |
2475 | rt2800_rfcsr_write(rt2x00dev, 26, 0x85); | |
2476 | rt2800_rfcsr_write(rt2x00dev, 27, 0x00); | |
2477 | rt2800_rfcsr_write(rt2x00dev, 28, 0x41); | |
2478 | rt2800_rfcsr_write(rt2x00dev, 29, 0x8f); | |
2479 | rt2800_rfcsr_write(rt2x00dev, 30, 0x20); | |
2480 | rt2800_rfcsr_write(rt2x00dev, 31, 0x0f); | |
2481 | } else if (rt2800_is_305x_soc(rt2x00dev)) { | |
2482 | rt2800_rfcsr_write(rt2x00dev, 0, 0x50); | |
2483 | rt2800_rfcsr_write(rt2x00dev, 1, 0x01); | |
2484 | rt2800_rfcsr_write(rt2x00dev, 2, 0xf7); | |
2485 | rt2800_rfcsr_write(rt2x00dev, 3, 0x75); | |
2486 | rt2800_rfcsr_write(rt2x00dev, 4, 0x40); | |
2487 | rt2800_rfcsr_write(rt2x00dev, 5, 0x03); | |
2488 | rt2800_rfcsr_write(rt2x00dev, 6, 0x02); | |
2489 | rt2800_rfcsr_write(rt2x00dev, 7, 0x50); | |
2490 | rt2800_rfcsr_write(rt2x00dev, 8, 0x39); | |
2491 | rt2800_rfcsr_write(rt2x00dev, 9, 0x0f); | |
2492 | rt2800_rfcsr_write(rt2x00dev, 10, 0x60); | |
2493 | rt2800_rfcsr_write(rt2x00dev, 11, 0x21); | |
2494 | rt2800_rfcsr_write(rt2x00dev, 12, 0x75); | |
2495 | rt2800_rfcsr_write(rt2x00dev, 13, 0x75); | |
2496 | rt2800_rfcsr_write(rt2x00dev, 14, 0x90); | |
2497 | rt2800_rfcsr_write(rt2x00dev, 15, 0x58); | |
2498 | rt2800_rfcsr_write(rt2x00dev, 16, 0xb3); | |
2499 | rt2800_rfcsr_write(rt2x00dev, 17, 0x92); | |
2500 | rt2800_rfcsr_write(rt2x00dev, 18, 0x2c); | |
2501 | rt2800_rfcsr_write(rt2x00dev, 19, 0x02); | |
2502 | rt2800_rfcsr_write(rt2x00dev, 20, 0xba); | |
2503 | rt2800_rfcsr_write(rt2x00dev, 21, 0xdb); | |
2504 | rt2800_rfcsr_write(rt2x00dev, 22, 0x00); | |
2505 | rt2800_rfcsr_write(rt2x00dev, 23, 0x31); | |
2506 | rt2800_rfcsr_write(rt2x00dev, 24, 0x08); | |
2507 | rt2800_rfcsr_write(rt2x00dev, 25, 0x01); | |
2508 | rt2800_rfcsr_write(rt2x00dev, 26, 0x25); | |
2509 | rt2800_rfcsr_write(rt2x00dev, 27, 0x23); | |
2510 | rt2800_rfcsr_write(rt2x00dev, 28, 0x13); | |
2511 | rt2800_rfcsr_write(rt2x00dev, 29, 0x83); | |
2512 | rt2800_rfcsr_write(rt2x00dev, 30, 0x00); | |
2513 | rt2800_rfcsr_write(rt2x00dev, 31, 0x00); | |
2514 | return 0; | |
2515 | } | |
2516 | ||
2517 | if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) { | |
2518 | rt2800_register_read(rt2x00dev, LDO_CFG0, ®); | |
2519 | rt2x00_set_field32(®, LDO_CFG0_BGSEL, 1); | |
2520 | rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 3); | |
2521 | rt2800_register_write(rt2x00dev, LDO_CFG0, reg); | |
2522 | } else if (rt2x00_rt(rt2x00dev, RT3071) || | |
2523 | rt2x00_rt(rt2x00dev, RT3090)) { | |
2524 | rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr); | |
2525 | rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1); | |
2526 | rt2800_rfcsr_write(rt2x00dev, 6, rfcsr); | |
2527 | ||
2528 | rt2800_rfcsr_write(rt2x00dev, 31, 0x14); | |
2529 | ||
2530 | rt2800_register_read(rt2x00dev, LDO_CFG0, ®); | |
2531 | rt2x00_set_field32(®, LDO_CFG0_BGSEL, 1); | |
2532 | if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) || | |
2533 | rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E)) { | |
2534 | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); | |
2535 | if (rt2x00_get_field16(eeprom, EEPROM_NIC_DAC_TEST)) | |
2536 | rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 3); | |
2537 | else | |
2538 | rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 0); | |
2539 | } | |
2540 | rt2800_register_write(rt2x00dev, LDO_CFG0, reg); | |
2541 | } else if (rt2x00_rt(rt2x00dev, RT3390)) { | |
2542 | rt2800_register_read(rt2x00dev, GPIO_SWITCH, ®); | |
2543 | rt2x00_set_field32(®, GPIO_SWITCH_5, 0); | |
2544 | rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg); | |
2545 | } | |
2546 | ||
2547 | /* | |
2548 | * Set RX Filter calibration for 20MHz and 40MHz | |
2549 | */ | |
2550 | if (rt2x00_rt(rt2x00dev, RT3070)) { | |
2551 | rt2x00dev->calibration[0] = | |
2552 | rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x16); | |
2553 | rt2x00dev->calibration[1] = | |
2554 | rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x19); | |
2555 | } else if (rt2x00_rt(rt2x00dev, RT3071) || | |
2556 | rt2x00_rt(rt2x00dev, RT3090) || | |
2557 | rt2x00_rt(rt2x00dev, RT3390)) { | |
2558 | rt2x00dev->calibration[0] = | |
2559 | rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x13); | |
2560 | rt2x00dev->calibration[1] = | |
2561 | rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x15); | |
2562 | } | |
2563 | ||
2564 | /* | |
2565 | * Set back to initial state | |
2566 | */ | |
2567 | rt2800_bbp_write(rt2x00dev, 24, 0); | |
2568 | ||
2569 | rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr); | |
2570 | rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0); | |
2571 | rt2800_rfcsr_write(rt2x00dev, 22, rfcsr); | |
2572 | ||
2573 | /* | |
2574 | * set BBP back to BW20 | |
2575 | */ | |
2576 | rt2800_bbp_read(rt2x00dev, 4, &bbp); | |
2577 | rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0); | |
2578 | rt2800_bbp_write(rt2x00dev, 4, bbp); | |
2579 | ||
2580 | if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) || | |
2581 | rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) || | |
2582 | rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) || | |
2583 | rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) | |
2584 | rt2800_rfcsr_write(rt2x00dev, 27, 0x03); | |
2585 | ||
2586 | rt2800_register_read(rt2x00dev, OPT_14_CSR, ®); | |
2587 | rt2x00_set_field32(®, OPT_14_CSR_BIT0, 1); | |
2588 | rt2800_register_write(rt2x00dev, OPT_14_CSR, reg); | |
2589 | ||
2590 | rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr); | |
2591 | rt2x00_set_field8(&rfcsr, RFCSR17_TX_LO1_EN, 0); | |
2592 | if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) || | |
2593 | rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) || | |
2594 | rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) { | |
2595 | if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) | |
2596 | rt2x00_set_field8(&rfcsr, RFCSR17_R, 1); | |
2597 | } | |
2598 | rt2x00_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_BG, &eeprom); | |
2599 | if (rt2x00_get_field16(eeprom, EEPROM_TXMIXER_GAIN_BG_VAL) >= 1) | |
2600 | rt2x00_set_field8(&rfcsr, RFCSR17_TXMIXER_GAIN, | |
2601 | rt2x00_get_field16(eeprom, | |
2602 | EEPROM_TXMIXER_GAIN_BG_VAL)); | |
2603 | rt2800_rfcsr_write(rt2x00dev, 17, rfcsr); | |
2604 | ||
2605 | if (rt2x00_rt(rt2x00dev, RT3090)) { | |
2606 | rt2800_bbp_read(rt2x00dev, 138, &bbp); | |
2607 | ||
2608 | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); | |
2609 | if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH) == 1) | |
2610 | rt2x00_set_field8(&bbp, BBP138_RX_ADC1, 0); | |
2611 | if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) == 1) | |
2612 | rt2x00_set_field8(&bbp, BBP138_TX_DAC1, 1); | |
2613 | ||
2614 | rt2800_bbp_write(rt2x00dev, 138, bbp); | |
2615 | } | |
2616 | ||
2617 | if (rt2x00_rt(rt2x00dev, RT3071) || | |
2618 | rt2x00_rt(rt2x00dev, RT3090) || | |
2619 | rt2x00_rt(rt2x00dev, RT3390)) { | |
2620 | rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr); | |
2621 | rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1); | |
2622 | rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0); | |
2623 | rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0); | |
2624 | rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1); | |
2625 | rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1); | |
2626 | rt2800_rfcsr_write(rt2x00dev, 1, rfcsr); | |
2627 | ||
2628 | rt2800_rfcsr_read(rt2x00dev, 15, &rfcsr); | |
2629 | rt2x00_set_field8(&rfcsr, RFCSR15_TX_LO2_EN, 0); | |
2630 | rt2800_rfcsr_write(rt2x00dev, 15, rfcsr); | |
2631 | ||
2632 | rt2800_rfcsr_read(rt2x00dev, 20, &rfcsr); | |
2633 | rt2x00_set_field8(&rfcsr, RFCSR20_RX_LO1_EN, 0); | |
2634 | rt2800_rfcsr_write(rt2x00dev, 20, rfcsr); | |
2635 | ||
2636 | rt2800_rfcsr_read(rt2x00dev, 21, &rfcsr); | |
2637 | rt2x00_set_field8(&rfcsr, RFCSR21_RX_LO2_EN, 0); | |
2638 | rt2800_rfcsr_write(rt2x00dev, 21, rfcsr); | |
2639 | } | |
2640 | ||
2641 | if (rt2x00_rt(rt2x00dev, RT3070) || rt2x00_rt(rt2x00dev, RT3071)) { | |
2642 | rt2800_rfcsr_read(rt2x00dev, 27, &rfcsr); | |
2643 | if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) || | |
2644 | rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E)) | |
2645 | rt2x00_set_field8(&rfcsr, RFCSR27_R1, 3); | |
2646 | else | |
2647 | rt2x00_set_field8(&rfcsr, RFCSR27_R1, 0); | |
2648 | rt2x00_set_field8(&rfcsr, RFCSR27_R2, 0); | |
2649 | rt2x00_set_field8(&rfcsr, RFCSR27_R3, 0); | |
2650 | rt2x00_set_field8(&rfcsr, RFCSR27_R4, 0); | |
2651 | rt2800_rfcsr_write(rt2x00dev, 27, rfcsr); | |
2652 | } | |
2653 | ||
2654 | return 0; | |
2655 | } | |
2656 | ||
2657 | int rt2800_enable_radio(struct rt2x00_dev *rt2x00dev) | |
2658 | { | |
2659 | u32 reg; | |
2660 | u16 word; | |
2661 | ||
2662 | /* | |
2663 | * Initialize all registers. | |
2664 | */ | |
2665 | if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) || | |
2666 | rt2800_init_registers(rt2x00dev) || | |
2667 | rt2800_init_bbp(rt2x00dev) || | |
2668 | rt2800_init_rfcsr(rt2x00dev))) | |
2669 | return -EIO; | |
2670 | ||
2671 | /* | |
2672 | * Send signal to firmware during boot time. | |
2673 | */ | |
2674 | rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0); | |
2675 | ||
2676 | if (rt2x00_is_usb(rt2x00dev) && | |
2677 | (rt2x00_rt(rt2x00dev, RT3070) || | |
2678 | rt2x00_rt(rt2x00dev, RT3071) || | |
2679 | rt2x00_rt(rt2x00dev, RT3572))) { | |
2680 | udelay(200); | |
2681 | rt2800_mcu_request(rt2x00dev, MCU_CURRENT, 0, 0, 0); | |
2682 | udelay(10); | |
2683 | } | |
2684 | ||
2685 | /* | |
2686 | * Enable RX. | |
2687 | */ | |
2688 | rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); | |
2689 | rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1); | |
2690 | rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0); | |
2691 | rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); | |
2692 | ||
2693 | udelay(50); | |
2694 | ||
2695 | rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); | |
2696 | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1); | |
2697 | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1); | |
2698 | rt2x00_set_field32(®, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2); | |
2699 | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); | |
2700 | rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); | |
2701 | ||
2702 | rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); | |
2703 | rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1); | |
2704 | rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1); | |
2705 | rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); | |
2706 | ||
2707 | /* | |
2708 | * Initialize LED control | |
2709 | */ | |
2710 | rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word); | |
2711 | rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff, | |
2712 | word & 0xff, (word >> 8) & 0xff); | |
2713 | ||
2714 | rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word); | |
2715 | rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff, | |
2716 | word & 0xff, (word >> 8) & 0xff); | |
2717 | ||
2718 | rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word); | |
2719 | rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff, | |
2720 | word & 0xff, (word >> 8) & 0xff); | |
2721 | ||
2722 | return 0; | |
2723 | } | |
2724 | EXPORT_SYMBOL_GPL(rt2800_enable_radio); | |
2725 | ||
2726 | void rt2800_disable_radio(struct rt2x00_dev *rt2x00dev) | |
2727 | { | |
2728 | u32 reg; | |
2729 | ||
2730 | rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); | |
2731 | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); | |
2732 | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0); | |
2733 | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); | |
2734 | rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0); | |
2735 | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); | |
2736 | rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); | |
2737 | ||
2738 | /* Wait for DMA, ignore error */ | |
2739 | rt2800_wait_wpdma_ready(rt2x00dev); | |
2740 | ||
2741 | rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); | |
2742 | rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 0); | |
2743 | rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0); | |
2744 | rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); | |
2745 | ||
2746 | rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0); | |
2747 | rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0); | |
2748 | } | |
2749 | EXPORT_SYMBOL_GPL(rt2800_disable_radio); | |
2750 | ||
2751 | int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev) | |
2752 | { | |
2753 | u32 reg; | |
2754 | ||
2755 | rt2800_register_read(rt2x00dev, EFUSE_CTRL, ®); | |
2756 | ||
2757 | return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT); | |
2758 | } | |
2759 | EXPORT_SYMBOL_GPL(rt2800_efuse_detect); | |
2760 | ||
2761 | static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i) | |
2762 | { | |
2763 | u32 reg; | |
2764 | ||
2765 | mutex_lock(&rt2x00dev->csr_mutex); | |
2766 | ||
2767 | rt2800_register_read_lock(rt2x00dev, EFUSE_CTRL, ®); | |
2768 | rt2x00_set_field32(®, EFUSE_CTRL_ADDRESS_IN, i); | |
2769 | rt2x00_set_field32(®, EFUSE_CTRL_MODE, 0); | |
2770 | rt2x00_set_field32(®, EFUSE_CTRL_KICK, 1); | |
2771 | rt2800_register_write_lock(rt2x00dev, EFUSE_CTRL, reg); | |
2772 | ||
2773 | /* Wait until the EEPROM has been loaded */ | |
2774 | rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, ®); | |
2775 | ||
2776 | /* Apparently the data is read from end to start */ | |
2777 | rt2800_register_read_lock(rt2x00dev, EFUSE_DATA3, | |
2778 | (u32 *)&rt2x00dev->eeprom[i]); | |
2779 | rt2800_register_read_lock(rt2x00dev, EFUSE_DATA2, | |
2780 | (u32 *)&rt2x00dev->eeprom[i + 2]); | |
2781 | rt2800_register_read_lock(rt2x00dev, EFUSE_DATA1, | |
2782 | (u32 *)&rt2x00dev->eeprom[i + 4]); | |
2783 | rt2800_register_read_lock(rt2x00dev, EFUSE_DATA0, | |
2784 | (u32 *)&rt2x00dev->eeprom[i + 6]); | |
2785 | ||
2786 | mutex_unlock(&rt2x00dev->csr_mutex); | |
2787 | } | |
2788 | ||
2789 | void rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) | |
2790 | { | |
2791 | unsigned int i; | |
2792 | ||
2793 | for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8) | |
2794 | rt2800_efuse_read(rt2x00dev, i); | |
2795 | } | |
2796 | EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse); | |
2797 | ||
2798 | int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev) | |
2799 | { | |
2800 | u16 word; | |
2801 | u8 *mac; | |
2802 | u8 default_lna_gain; | |
2803 | ||
2804 | /* | |
2805 | * Start validation of the data that has been read. | |
2806 | */ | |
2807 | mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); | |
2808 | if (!is_valid_ether_addr(mac)) { | |
2809 | random_ether_addr(mac); | |
2810 | EEPROM(rt2x00dev, "MAC: %pM\n", mac); | |
2811 | } | |
2812 | ||
2813 | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); | |
2814 | if (word == 0xffff) { | |
2815 | rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2); | |
2816 | rt2x00_set_field16(&word, EEPROM_ANTENNA_TXPATH, 1); | |
2817 | rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820); | |
2818 | rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); | |
2819 | EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); | |
2820 | } else if (rt2x00_rt(rt2x00dev, RT2860) || | |
2821 | rt2x00_rt(rt2x00dev, RT2872)) { | |
2822 | /* | |
2823 | * There is a max of 2 RX streams for RT28x0 series | |
2824 | */ | |
2825 | if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2) | |
2826 | rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2); | |
2827 | rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); | |
2828 | } | |
2829 | ||
2830 | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); | |
2831 | if (word == 0xffff) { | |
2832 | rt2x00_set_field16(&word, EEPROM_NIC_HW_RADIO, 0); | |
2833 | rt2x00_set_field16(&word, EEPROM_NIC_DYNAMIC_TX_AGC, 0); | |
2834 | rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0); | |
2835 | rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0); | |
2836 | rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); | |
2837 | rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_BG, 0); | |
2838 | rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_A, 0); | |
2839 | rt2x00_set_field16(&word, EEPROM_NIC_WPS_PBC, 0); | |
2840 | rt2x00_set_field16(&word, EEPROM_NIC_BW40M_BG, 0); | |
2841 | rt2x00_set_field16(&word, EEPROM_NIC_BW40M_A, 0); | |
2842 | rt2x00_set_field16(&word, EEPROM_NIC_ANT_DIVERSITY, 0); | |
2843 | rt2x00_set_field16(&word, EEPROM_NIC_DAC_TEST, 0); | |
2844 | rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); | |
2845 | EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); | |
2846 | } | |
2847 | ||
2848 | rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); | |
2849 | if ((word & 0x00ff) == 0x00ff) { | |
2850 | rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); | |
2851 | rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); | |
2852 | EEPROM(rt2x00dev, "Freq: 0x%04x\n", word); | |
2853 | } | |
2854 | if ((word & 0xff00) == 0xff00) { | |
2855 | rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE, | |
2856 | LED_MODE_TXRX_ACTIVITY); | |
2857 | rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0); | |
2858 | rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); | |
2859 | rt2x00_eeprom_write(rt2x00dev, EEPROM_LED1, 0x5555); | |
2860 | rt2x00_eeprom_write(rt2x00dev, EEPROM_LED2, 0x2221); | |
2861 | rt2x00_eeprom_write(rt2x00dev, EEPROM_LED3, 0xa9f8); | |
2862 | EEPROM(rt2x00dev, "Led Mode: 0x%04x\n", word); | |
2863 | } | |
2864 | ||
2865 | /* | |
2866 | * During the LNA validation we are going to use | |
2867 | * lna0 as correct value. Note that EEPROM_LNA | |
2868 | * is never validated. | |
2869 | */ | |
2870 | rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word); | |
2871 | default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0); | |
2872 | ||
2873 | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word); | |
2874 | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10) | |
2875 | rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0); | |
2876 | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10) | |
2877 | rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0); | |
2878 | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word); | |
2879 | ||
2880 | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word); | |
2881 | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10) | |
2882 | rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0); | |
2883 | if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 || | |
2884 | rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff) | |
2885 | rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1, | |
2886 | default_lna_gain); | |
2887 | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word); | |
2888 | ||
2889 | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word); | |
2890 | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10) | |
2891 | rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0); | |
2892 | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10) | |
2893 | rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0); | |
2894 | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word); | |
2895 | ||
2896 | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word); | |
2897 | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10) | |
2898 | rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0); | |
2899 | if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 || | |
2900 | rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff) | |
2901 | rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2, | |
2902 | default_lna_gain); | |
2903 | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word); | |
2904 | ||
2905 | rt2x00_eeprom_read(rt2x00dev, EEPROM_MAX_TX_POWER, &word); | |
2906 | if (rt2x00_get_field16(word, EEPROM_MAX_TX_POWER_24GHZ) == 0xff) | |
2907 | rt2x00_set_field16(&word, EEPROM_MAX_TX_POWER_24GHZ, MAX_G_TXPOWER); | |
2908 | if (rt2x00_get_field16(word, EEPROM_MAX_TX_POWER_5GHZ) == 0xff) | |
2909 | rt2x00_set_field16(&word, EEPROM_MAX_TX_POWER_5GHZ, MAX_A_TXPOWER); | |
2910 | rt2x00_eeprom_write(rt2x00dev, EEPROM_MAX_TX_POWER, word); | |
2911 | ||
2912 | return 0; | |
2913 | } | |
2914 | EXPORT_SYMBOL_GPL(rt2800_validate_eeprom); | |
2915 | ||
2916 | int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev) | |
2917 | { | |
2918 | u32 reg; | |
2919 | u16 value; | |
2920 | u16 eeprom; | |
2921 | ||
2922 | /* | |
2923 | * Read EEPROM word for configuration. | |
2924 | */ | |
2925 | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); | |
2926 | ||
2927 | /* | |
2928 | * Identify RF chipset. | |
2929 | */ | |
2930 | value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); | |
2931 | rt2800_register_read(rt2x00dev, MAC_CSR0, ®); | |
2932 | ||
2933 | rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET), | |
2934 | value, rt2x00_get_field32(reg, MAC_CSR0_REVISION)); | |
2935 | ||
2936 | if (!rt2x00_rt(rt2x00dev, RT2860) && | |
2937 | !rt2x00_rt(rt2x00dev, RT2872) && | |
2938 | !rt2x00_rt(rt2x00dev, RT2883) && | |
2939 | !rt2x00_rt(rt2x00dev, RT3070) && | |
2940 | !rt2x00_rt(rt2x00dev, RT3071) && | |
2941 | !rt2x00_rt(rt2x00dev, RT3090) && | |
2942 | !rt2x00_rt(rt2x00dev, RT3390) && | |
2943 | !rt2x00_rt(rt2x00dev, RT3572)) { | |
2944 | ERROR(rt2x00dev, "Invalid RT chipset detected.\n"); | |
2945 | return -ENODEV; | |
2946 | } | |
2947 | ||
2948 | if (!rt2x00_rf(rt2x00dev, RF2820) && | |
2949 | !rt2x00_rf(rt2x00dev, RF2850) && | |
2950 | !rt2x00_rf(rt2x00dev, RF2720) && | |
2951 | !rt2x00_rf(rt2x00dev, RF2750) && | |
2952 | !rt2x00_rf(rt2x00dev, RF3020) && | |
2953 | !rt2x00_rf(rt2x00dev, RF2020) && | |
2954 | !rt2x00_rf(rt2x00dev, RF3021) && | |
2955 | !rt2x00_rf(rt2x00dev, RF3022) && | |
2956 | !rt2x00_rf(rt2x00dev, RF3052)) { | |
2957 | ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); | |
2958 | return -ENODEV; | |
2959 | } | |
2960 | ||
2961 | /* | |
2962 | * Identify default antenna configuration. | |
2963 | */ | |
2964 | rt2x00dev->default_ant.tx = | |
2965 | rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH); | |
2966 | rt2x00dev->default_ant.rx = | |
2967 | rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH); | |
2968 | ||
2969 | /* | |
2970 | * Read frequency offset and RF programming sequence. | |
2971 | */ | |
2972 | rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); | |
2973 | rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); | |
2974 | ||
2975 | /* | |
2976 | * Read external LNA informations. | |
2977 | */ | |
2978 | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); | |
2979 | ||
2980 | if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A)) | |
2981 | __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags); | |
2982 | if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG)) | |
2983 | __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags); | |
2984 | ||
2985 | /* | |
2986 | * Detect if this device has an hardware controlled radio. | |
2987 | */ | |
2988 | if (rt2x00_get_field16(eeprom, EEPROM_NIC_HW_RADIO)) | |
2989 | __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags); | |
2990 | ||
2991 | /* | |
2992 | * Store led settings, for correct led behaviour. | |
2993 | */ | |
2994 | #ifdef CONFIG_RT2X00_LIB_LEDS | |
2995 | rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); | |
2996 | rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); | |
2997 | rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY); | |
2998 | ||
2999 | rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg); | |
3000 | #endif /* CONFIG_RT2X00_LIB_LEDS */ | |
3001 | ||
3002 | return 0; | |
3003 | } | |
3004 | EXPORT_SYMBOL_GPL(rt2800_init_eeprom); | |
3005 | ||
3006 | /* | |
3007 | * RF value list for rt28xx | |
3008 | * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750) | |
3009 | */ | |
3010 | static const struct rf_channel rf_vals[] = { | |
3011 | { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b }, | |
3012 | { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f }, | |
3013 | { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b }, | |
3014 | { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f }, | |
3015 | { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b }, | |
3016 | { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f }, | |
3017 | { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b }, | |
3018 | { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f }, | |
3019 | { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b }, | |
3020 | { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f }, | |
3021 | { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b }, | |
3022 | { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f }, | |
3023 | { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b }, | |
3024 | { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 }, | |
3025 | ||
3026 | /* 802.11 UNI / HyperLan 2 */ | |
3027 | { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 }, | |
3028 | { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 }, | |
3029 | { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 }, | |
3030 | { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 }, | |
3031 | { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b }, | |
3032 | { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b }, | |
3033 | { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 }, | |
3034 | { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 }, | |
3035 | { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b }, | |
3036 | { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 }, | |
3037 | { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 }, | |
3038 | { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 }, | |
3039 | ||
3040 | /* 802.11 HyperLan 2 */ | |
3041 | { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 }, | |
3042 | { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 }, | |
3043 | { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 }, | |
3044 | { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 }, | |
3045 | { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 }, | |
3046 | { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b }, | |
3047 | { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 }, | |
3048 | { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 }, | |
3049 | { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 }, | |
3050 | { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 }, | |
3051 | { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b }, | |
3052 | { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 }, | |
3053 | { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b }, | |
3054 | { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 }, | |
3055 | { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b }, | |
3056 | { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 }, | |
3057 | ||
3058 | /* 802.11 UNII */ | |
3059 | { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 }, | |
3060 | { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 }, | |
3061 | { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f }, | |
3062 | { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f }, | |
3063 | { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 }, | |
3064 | { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 }, | |
3065 | { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 }, | |
3066 | { 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f }, | |
3067 | { 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 }, | |
3068 | { 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 }, | |
3069 | { 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f }, | |
3070 | ||
3071 | /* 802.11 Japan */ | |
3072 | { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b }, | |
3073 | { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 }, | |
3074 | { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b }, | |
3075 | { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 }, | |
3076 | { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 }, | |
3077 | { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b }, | |
3078 | { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 }, | |
3079 | }; | |
3080 | ||
3081 | /* | |
3082 | * RF value list for rt3xxx | |
3083 | * Supports: 2.4 GHz (all) & 5.2 GHz (RF3052) | |
3084 | */ | |
3085 | static const struct rf_channel rf_vals_3x[] = { | |
3086 | {1, 241, 2, 2 }, | |
3087 | {2, 241, 2, 7 }, | |
3088 | {3, 242, 2, 2 }, | |
3089 | {4, 242, 2, 7 }, | |
3090 | {5, 243, 2, 2 }, | |
3091 | {6, 243, 2, 7 }, | |
3092 | {7, 244, 2, 2 }, | |
3093 | {8, 244, 2, 7 }, | |
3094 | {9, 245, 2, 2 }, | |
3095 | {10, 245, 2, 7 }, | |
3096 | {11, 246, 2, 2 }, | |
3097 | {12, 246, 2, 7 }, | |
3098 | {13, 247, 2, 2 }, | |
3099 | {14, 248, 2, 4 }, | |
3100 | ||
3101 | /* 802.11 UNI / HyperLan 2 */ | |
3102 | {36, 0x56, 0, 4}, | |
3103 | {38, 0x56, 0, 6}, | |
3104 | {40, 0x56, 0, 8}, | |
3105 | {44, 0x57, 0, 0}, | |
3106 | {46, 0x57, 0, 2}, | |
3107 | {48, 0x57, 0, 4}, | |
3108 | {52, 0x57, 0, 8}, | |
3109 | {54, 0x57, 0, 10}, | |
3110 | {56, 0x58, 0, 0}, | |
3111 | {60, 0x58, 0, 4}, | |
3112 | {62, 0x58, 0, 6}, | |
3113 | {64, 0x58, 0, 8}, | |
3114 | ||
3115 | /* 802.11 HyperLan 2 */ | |
3116 | {100, 0x5b, 0, 8}, | |
3117 | {102, 0x5b, 0, 10}, | |
3118 | {104, 0x5c, 0, 0}, | |
3119 | {108, 0x5c, 0, 4}, | |
3120 | {110, 0x5c, 0, 6}, | |
3121 | {112, 0x5c, 0, 8}, | |
3122 | {116, 0x5d, 0, 0}, | |
3123 | {118, 0x5d, 0, 2}, | |
3124 | {120, 0x5d, 0, 4}, | |
3125 | {124, 0x5d, 0, 8}, | |
3126 | {126, 0x5d, 0, 10}, | |
3127 | {128, 0x5e, 0, 0}, | |
3128 | {132, 0x5e, 0, 4}, | |
3129 | {134, 0x5e, 0, 6}, | |
3130 | {136, 0x5e, 0, 8}, | |
3131 | {140, 0x5f, 0, 0}, | |
3132 | ||
3133 | /* 802.11 UNII */ | |
3134 | {149, 0x5f, 0, 9}, | |
3135 | {151, 0x5f, 0, 11}, | |
3136 | {153, 0x60, 0, 1}, | |
3137 | {157, 0x60, 0, 5}, | |
3138 | {159, 0x60, 0, 7}, | |
3139 | {161, 0x60, 0, 9}, | |
3140 | {165, 0x61, 0, 1}, | |
3141 | {167, 0x61, 0, 3}, | |
3142 | {169, 0x61, 0, 5}, | |
3143 | {171, 0x61, 0, 7}, | |
3144 | {173, 0x61, 0, 9}, | |
3145 | }; | |
3146 | ||
3147 | int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev) | |
3148 | { | |
3149 | struct hw_mode_spec *spec = &rt2x00dev->spec; | |
3150 | struct channel_info *info; | |
3151 | char *default_power1; | |
3152 | char *default_power2; | |
3153 | unsigned int i; | |
3154 | unsigned short max_power; | |
3155 | u16 eeprom; | |
3156 | ||
3157 | /* | |
3158 | * Disable powersaving as default on PCI devices. | |
3159 | */ | |
3160 | if (rt2x00_is_pci(rt2x00dev) || rt2x00_is_soc(rt2x00dev)) | |
3161 | rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; | |
3162 | ||
3163 | /* | |
3164 | * Initialize all hw fields. | |
3165 | */ | |
3166 | rt2x00dev->hw->flags = | |
3167 | IEEE80211_HW_SIGNAL_DBM | | |
3168 | IEEE80211_HW_SUPPORTS_PS | | |
3169 | IEEE80211_HW_PS_NULLFUNC_STACK | | |
3170 | IEEE80211_HW_AMPDU_AGGREGATION; | |
3171 | /* | |
3172 | * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING for USB devices | |
3173 | * unless we are capable of sending the buffered frames out after the | |
3174 | * DTIM transmission using rt2x00lib_beacondone. This will send out | |
3175 | * multicast and broadcast traffic immediately instead of buffering it | |
3176 | * infinitly and thus dropping it after some time. | |
3177 | */ | |
3178 | if (!rt2x00_is_usb(rt2x00dev)) | |
3179 | rt2x00dev->hw->flags |= | |
3180 | IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING; | |
3181 | ||
3182 | SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); | |
3183 | SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, | |
3184 | rt2x00_eeprom_addr(rt2x00dev, | |
3185 | EEPROM_MAC_ADDR_0)); | |
3186 | ||
3187 | /* | |
3188 | * As rt2800 has a global fallback table we cannot specify | |
3189 | * more then one tx rate per frame but since the hw will | |
3190 | * try several rates (based on the fallback table) we should | |
3191 | * initialize max_report_rates to the maximum number of rates | |
3192 | * we are going to try. Otherwise mac80211 will truncate our | |
3193 | * reported tx rates and the rc algortihm will end up with | |
3194 | * incorrect data. | |
3195 | */ | |
3196 | rt2x00dev->hw->max_rates = 1; | |
3197 | rt2x00dev->hw->max_report_rates = 7; | |
3198 | rt2x00dev->hw->max_rate_tries = 1; | |
3199 | ||
3200 | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); | |
3201 | ||
3202 | /* | |
3203 | * Initialize hw_mode information. | |
3204 | */ | |
3205 | spec->supported_bands = SUPPORT_BAND_2GHZ; | |
3206 | spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; | |
3207 | ||
3208 | if (rt2x00_rf(rt2x00dev, RF2820) || | |
3209 | rt2x00_rf(rt2x00dev, RF2720)) { | |
3210 | spec->num_channels = 14; | |
3211 | spec->channels = rf_vals; | |
3212 | } else if (rt2x00_rf(rt2x00dev, RF2850) || | |
3213 | rt2x00_rf(rt2x00dev, RF2750)) { | |
3214 | spec->supported_bands |= SUPPORT_BAND_5GHZ; | |
3215 | spec->num_channels = ARRAY_SIZE(rf_vals); | |
3216 | spec->channels = rf_vals; | |
3217 | } else if (rt2x00_rf(rt2x00dev, RF3020) || | |
3218 | rt2x00_rf(rt2x00dev, RF2020) || | |
3219 | rt2x00_rf(rt2x00dev, RF3021) || | |
3220 | rt2x00_rf(rt2x00dev, RF3022)) { | |
3221 | spec->num_channels = 14; | |
3222 | spec->channels = rf_vals_3x; | |
3223 | } else if (rt2x00_rf(rt2x00dev, RF3052)) { | |
3224 | spec->supported_bands |= SUPPORT_BAND_5GHZ; | |
3225 | spec->num_channels = ARRAY_SIZE(rf_vals_3x); | |
3226 | spec->channels = rf_vals_3x; | |
3227 | } | |
3228 | ||
3229 | /* | |
3230 | * Initialize HT information. | |
3231 | */ | |
3232 | if (!rt2x00_rf(rt2x00dev, RF2020)) | |
3233 | spec->ht.ht_supported = true; | |
3234 | else | |
3235 | spec->ht.ht_supported = false; | |
3236 | ||
3237 | spec->ht.cap = | |
3238 | IEEE80211_HT_CAP_SUP_WIDTH_20_40 | | |
3239 | IEEE80211_HT_CAP_GRN_FLD | | |
3240 | IEEE80211_HT_CAP_SGI_20 | | |
3241 | IEEE80211_HT_CAP_SGI_40; | |
3242 | ||
3243 | if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) >= 2) | |
3244 | spec->ht.cap |= IEEE80211_HT_CAP_TX_STBC; | |
3245 | ||
3246 | spec->ht.cap |= | |
3247 | rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH) << | |
3248 | IEEE80211_HT_CAP_RX_STBC_SHIFT; | |
3249 | ||
3250 | spec->ht.ampdu_factor = 3; | |
3251 | spec->ht.ampdu_density = 4; | |
3252 | spec->ht.mcs.tx_params = | |
3253 | IEEE80211_HT_MCS_TX_DEFINED | | |
3254 | IEEE80211_HT_MCS_TX_RX_DIFF | | |
3255 | ((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) << | |
3256 | IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT); | |
3257 | ||
3258 | switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) { | |
3259 | case 3: | |
3260 | spec->ht.mcs.rx_mask[2] = 0xff; | |
3261 | case 2: | |
3262 | spec->ht.mcs.rx_mask[1] = 0xff; | |
3263 | case 1: | |
3264 | spec->ht.mcs.rx_mask[0] = 0xff; | |
3265 | spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */ | |
3266 | break; | |
3267 | } | |
3268 | ||
3269 | /* | |
3270 | * Create channel information array | |
3271 | */ | |
3272 | info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL); | |
3273 | if (!info) | |
3274 | return -ENOMEM; | |
3275 | ||
3276 | spec->channels_info = info; | |
3277 | ||
3278 | rt2x00_eeprom_read(rt2x00dev, EEPROM_MAX_TX_POWER, &eeprom); | |
3279 | max_power = rt2x00_get_field16(eeprom, EEPROM_MAX_TX_POWER_24GHZ); | |
3280 | default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1); | |
3281 | default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2); | |
3282 | ||
3283 | for (i = 0; i < 14; i++) { | |
3284 | info[i].max_power = max_power; | |
3285 | info[i].default_power1 = TXPOWER_G_FROM_DEV(default_power1[i]); | |
3286 | info[i].default_power2 = TXPOWER_G_FROM_DEV(default_power2[i]); | |
3287 | } | |
3288 | ||
3289 | if (spec->num_channels > 14) { | |
3290 | max_power = rt2x00_get_field16(eeprom, EEPROM_MAX_TX_POWER_5GHZ); | |
3291 | default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1); | |
3292 | default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2); | |
3293 | ||
3294 | for (i = 14; i < spec->num_channels; i++) { | |
3295 | info[i].max_power = max_power; | |
3296 | info[i].default_power1 = TXPOWER_A_FROM_DEV(default_power1[i]); | |
3297 | info[i].default_power2 = TXPOWER_A_FROM_DEV(default_power2[i]); | |
3298 | } | |
3299 | } | |
3300 | ||
3301 | return 0; | |
3302 | } | |
3303 | EXPORT_SYMBOL_GPL(rt2800_probe_hw_mode); | |
3304 | ||
3305 | /* | |
3306 | * IEEE80211 stack callback functions. | |
3307 | */ | |
3308 | void rt2800_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx, u32 *iv32, | |
3309 | u16 *iv16) | |
3310 | { | |
3311 | struct rt2x00_dev *rt2x00dev = hw->priv; | |
3312 | struct mac_iveiv_entry iveiv_entry; | |
3313 | u32 offset; | |
3314 | ||
3315 | offset = MAC_IVEIV_ENTRY(hw_key_idx); | |
3316 | rt2800_register_multiread(rt2x00dev, offset, | |
3317 | &iveiv_entry, sizeof(iveiv_entry)); | |
3318 | ||
3319 | memcpy(iv16, &iveiv_entry.iv[0], sizeof(*iv16)); | |
3320 | memcpy(iv32, &iveiv_entry.iv[4], sizeof(*iv32)); | |
3321 | } | |
3322 | EXPORT_SYMBOL_GPL(rt2800_get_tkip_seq); | |
3323 | ||
3324 | int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value) | |
3325 | { | |
3326 | struct rt2x00_dev *rt2x00dev = hw->priv; | |
3327 | u32 reg; | |
3328 | bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD); | |
3329 | ||
3330 | rt2800_register_read(rt2x00dev, TX_RTS_CFG, ®); | |
3331 | rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES, value); | |
3332 | rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg); | |
3333 | ||
3334 | rt2800_register_read(rt2x00dev, CCK_PROT_CFG, ®); | |
3335 | rt2x00_set_field32(®, CCK_PROT_CFG_RTS_TH_EN, enabled); | |
3336 | rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg); | |
3337 | ||
3338 | rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®); | |
3339 | rt2x00_set_field32(®, OFDM_PROT_CFG_RTS_TH_EN, enabled); | |
3340 | rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg); | |
3341 | ||
3342 | rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®); | |
3343 | rt2x00_set_field32(®, MM20_PROT_CFG_RTS_TH_EN, enabled); | |
3344 | rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg); | |
3345 | ||
3346 | rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®); | |
3347 | rt2x00_set_field32(®, MM40_PROT_CFG_RTS_TH_EN, enabled); | |
3348 | rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg); | |
3349 | ||
3350 | rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®); | |
3351 | rt2x00_set_field32(®, GF20_PROT_CFG_RTS_TH_EN, enabled); | |
3352 | rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg); | |
3353 | ||
3354 | rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®); | |
3355 | rt2x00_set_field32(®, GF40_PROT_CFG_RTS_TH_EN, enabled); | |
3356 | rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg); | |
3357 | ||
3358 | return 0; | |
3359 | } | |
3360 | EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold); | |
3361 | ||
3362 | int rt2800_conf_tx(struct ieee80211_hw *hw, u16 queue_idx, | |
3363 | const struct ieee80211_tx_queue_params *params) | |
3364 | { | |
3365 | struct rt2x00_dev *rt2x00dev = hw->priv; | |
3366 | struct data_queue *queue; | |
3367 | struct rt2x00_field32 field; | |
3368 | int retval; | |
3369 | u32 reg; | |
3370 | u32 offset; | |
3371 | ||
3372 | /* | |
3373 | * First pass the configuration through rt2x00lib, that will | |
3374 | * update the queue settings and validate the input. After that | |
3375 | * we are free to update the registers based on the value | |
3376 | * in the queue parameter. | |
3377 | */ | |
3378 | retval = rt2x00mac_conf_tx(hw, queue_idx, params); | |
3379 | if (retval) | |
3380 | return retval; | |
3381 | ||
3382 | /* | |
3383 | * We only need to perform additional register initialization | |
3384 | * for WMM queues/ | |
3385 | */ | |
3386 | if (queue_idx >= 4) | |
3387 | return 0; | |
3388 | ||
3389 | queue = rt2x00queue_get_queue(rt2x00dev, queue_idx); | |
3390 | ||
3391 | /* Update WMM TXOP register */ | |
3392 | offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2))); | |
3393 | field.bit_offset = (queue_idx & 1) * 16; | |
3394 | field.bit_mask = 0xffff << field.bit_offset; | |
3395 | ||
3396 | rt2800_register_read(rt2x00dev, offset, ®); | |
3397 | rt2x00_set_field32(®, field, queue->txop); | |
3398 | rt2800_register_write(rt2x00dev, offset, reg); | |
3399 | ||
3400 | /* Update WMM registers */ | |
3401 | field.bit_offset = queue_idx * 4; | |
3402 | field.bit_mask = 0xf << field.bit_offset; | |
3403 | ||
3404 | rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, ®); | |
3405 | rt2x00_set_field32(®, field, queue->aifs); | |
3406 | rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg); | |
3407 | ||
3408 | rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, ®); | |
3409 | rt2x00_set_field32(®, field, queue->cw_min); | |
3410 | rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg); | |
3411 | ||
3412 | rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, ®); | |
3413 | rt2x00_set_field32(®, field, queue->cw_max); | |
3414 | rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg); | |
3415 | ||
3416 | /* Update EDCA registers */ | |
3417 | offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx); | |
3418 | ||
3419 | rt2800_register_read(rt2x00dev, offset, ®); | |
3420 | rt2x00_set_field32(®, EDCA_AC0_CFG_TX_OP, queue->txop); | |
3421 | rt2x00_set_field32(®, EDCA_AC0_CFG_AIFSN, queue->aifs); | |
3422 | rt2x00_set_field32(®, EDCA_AC0_CFG_CWMIN, queue->cw_min); | |
3423 | rt2x00_set_field32(®, EDCA_AC0_CFG_CWMAX, queue->cw_max); | |
3424 | rt2800_register_write(rt2x00dev, offset, reg); | |
3425 | ||
3426 | return 0; | |
3427 | } | |
3428 | EXPORT_SYMBOL_GPL(rt2800_conf_tx); | |
3429 | ||
3430 | u64 rt2800_get_tsf(struct ieee80211_hw *hw) | |
3431 | { | |
3432 | struct rt2x00_dev *rt2x00dev = hw->priv; | |
3433 | u64 tsf; | |
3434 | u32 reg; | |
3435 | ||
3436 | rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, ®); | |
3437 | tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32; | |
3438 | rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, ®); | |
3439 | tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD); | |
3440 | ||
3441 | return tsf; | |
3442 | } | |
3443 | EXPORT_SYMBOL_GPL(rt2800_get_tsf); | |
3444 | ||
3445 | int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, | |
3446 | enum ieee80211_ampdu_mlme_action action, | |
3447 | struct ieee80211_sta *sta, u16 tid, u16 *ssn) | |
3448 | { | |
3449 | int ret = 0; | |
3450 | ||
3451 | switch (action) { | |
3452 | case IEEE80211_AMPDU_RX_START: | |
3453 | case IEEE80211_AMPDU_RX_STOP: | |
3454 | /* we don't support RX aggregation yet */ | |
3455 | ret = -ENOTSUPP; | |
3456 | break; | |
3457 | case IEEE80211_AMPDU_TX_START: | |
3458 | ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid); | |
3459 | break; | |
3460 | case IEEE80211_AMPDU_TX_STOP: | |
3461 | ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); | |
3462 | break; | |
3463 | case IEEE80211_AMPDU_TX_OPERATIONAL: | |
3464 | break; | |
3465 | default: | |
3466 | WARNING((struct rt2x00_dev *)hw->priv, "Unknown AMPDU action\n"); | |
3467 | } | |
3468 | ||
3469 | return ret; | |
3470 | } | |
3471 | EXPORT_SYMBOL_GPL(rt2800_ampdu_action); | |
3472 | ||
3473 | MODULE_AUTHOR(DRV_PROJECT ", Bartlomiej Zolnierkiewicz"); | |
3474 | MODULE_VERSION(DRV_VERSION); | |
3475 | MODULE_DESCRIPTION("Ralink RT2800 library"); | |
3476 | MODULE_LICENSE("GPL"); |