]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - drivers/nvme/host/pci.c
blktrace: fix integer parse
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
... / ...
CommitLineData
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/aer.h>
16#include <linux/bitops.h>
17#include <linux/blkdev.h>
18#include <linux/blk-mq.h>
19#include <linux/blk-mq-pci.h>
20#include <linux/cpu.h>
21#include <linux/delay.h>
22#include <linux/dmi.h>
23#include <linux/errno.h>
24#include <linux/fs.h>
25#include <linux/genhd.h>
26#include <linux/hdreg.h>
27#include <linux/idr.h>
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
32#include <linux/kernel.h>
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/moduleparam.h>
36#include <linux/mutex.h>
37#include <linux/pci.h>
38#include <linux/poison.h>
39#include <linux/ptrace.h>
40#include <linux/sched.h>
41#include <linux/slab.h>
42#include <linux/t10-pi.h>
43#include <linux/timer.h>
44#include <linux/types.h>
45#include <linux/io-64-nonatomic-lo-hi.h>
46#include <asm/unaligned.h>
47#include <linux/sed-opal.h>
48
49#include "nvme.h"
50
51#define NVME_Q_DEPTH 1024
52#define NVME_AQ_DEPTH 256
53#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
54#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
55
56/*
57 * We handle AEN commands ourselves and don't even let the
58 * block layer know about them.
59 */
60#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
61
62static int use_threaded_interrupts;
63module_param(use_threaded_interrupts, int, 0);
64
65static bool use_cmb_sqes = true;
66module_param(use_cmb_sqes, bool, 0644);
67MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
68
69static struct workqueue_struct *nvme_workq;
70
71struct nvme_dev;
72struct nvme_queue;
73
74static int nvme_reset(struct nvme_dev *dev);
75static void nvme_process_cq(struct nvme_queue *nvmeq);
76static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
77
78/*
79 * Represents an NVM Express device. Each nvme_dev is a PCI function.
80 */
81struct nvme_dev {
82 struct nvme_queue **queues;
83 struct blk_mq_tag_set tagset;
84 struct blk_mq_tag_set admin_tagset;
85 u32 __iomem *dbs;
86 struct device *dev;
87 struct dma_pool *prp_page_pool;
88 struct dma_pool *prp_small_pool;
89 unsigned queue_count;
90 unsigned online_queues;
91 unsigned max_qid;
92 int q_depth;
93 u32 db_stride;
94 void __iomem *bar;
95 struct work_struct reset_work;
96 struct work_struct remove_work;
97 struct timer_list watchdog_timer;
98 struct mutex shutdown_lock;
99 bool subsystem;
100 void __iomem *cmb;
101 dma_addr_t cmb_dma_addr;
102 u64 cmb_size;
103 u32 cmbsz;
104 u32 cmbloc;
105 struct nvme_ctrl ctrl;
106 struct completion ioq_wait;
107 u32 *dbbuf_dbs;
108 dma_addr_t dbbuf_dbs_dma_addr;
109 u32 *dbbuf_eis;
110 dma_addr_t dbbuf_eis_dma_addr;
111};
112
113static inline unsigned int sq_idx(unsigned int qid, u32 stride)
114{
115 return qid * 2 * stride;
116}
117
118static inline unsigned int cq_idx(unsigned int qid, u32 stride)
119{
120 return (qid * 2 + 1) * stride;
121}
122
123static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
124{
125 return container_of(ctrl, struct nvme_dev, ctrl);
126}
127
128/*
129 * An NVM Express queue. Each device has at least two (one for admin
130 * commands and one for I/O commands).
131 */
132struct nvme_queue {
133 struct device *q_dmadev;
134 struct nvme_dev *dev;
135 char irqname[24]; /* nvme4294967295-65535\0 */
136 spinlock_t q_lock;
137 struct nvme_command *sq_cmds;
138 struct nvme_command __iomem *sq_cmds_io;
139 volatile struct nvme_completion *cqes;
140 struct blk_mq_tags **tags;
141 dma_addr_t sq_dma_addr;
142 dma_addr_t cq_dma_addr;
143 u32 __iomem *q_db;
144 u16 q_depth;
145 s16 cq_vector;
146 u16 sq_tail;
147 u16 cq_head;
148 u16 qid;
149 u8 cq_phase;
150 u8 cqe_seen;
151 u32 *dbbuf_sq_db;
152 u32 *dbbuf_cq_db;
153 u32 *dbbuf_sq_ei;
154 u32 *dbbuf_cq_ei;
155};
156
157/*
158 * The nvme_iod describes the data in an I/O, including the list of PRP
159 * entries. You can't see it in this data structure because C doesn't let
160 * me express that. Use nvme_init_iod to ensure there's enough space
161 * allocated to store the PRP list.
162 */
163struct nvme_iod {
164 struct nvme_request req;
165 struct nvme_queue *nvmeq;
166 int aborted;
167 int npages; /* In the PRP list. 0 means small pool in use */
168 int nents; /* Used in scatterlist */
169 int length; /* Of data, in bytes */
170 dma_addr_t first_dma;
171 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
172 struct scatterlist *sg;
173 struct scatterlist inline_sg[0];
174};
175
176/*
177 * Check we didin't inadvertently grow the command struct
178 */
179static inline void _nvme_check_size(void)
180{
181 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
182 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
183 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
185 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
186 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
187 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
188 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
189 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
190 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
191 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
192 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
193 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
194}
195
196static inline unsigned int nvme_dbbuf_size(u32 stride)
197{
198 return ((num_possible_cpus() + 1) * 8 * stride);
199}
200
201static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
202{
203 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
204
205 if (dev->dbbuf_dbs)
206 return 0;
207
208 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
209 &dev->dbbuf_dbs_dma_addr,
210 GFP_KERNEL);
211 if (!dev->dbbuf_dbs)
212 return -ENOMEM;
213 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
214 &dev->dbbuf_eis_dma_addr,
215 GFP_KERNEL);
216 if (!dev->dbbuf_eis) {
217 dma_free_coherent(dev->dev, mem_size,
218 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
219 dev->dbbuf_dbs = NULL;
220 return -ENOMEM;
221 }
222
223 return 0;
224}
225
226static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
227{
228 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
229
230 if (dev->dbbuf_dbs) {
231 dma_free_coherent(dev->dev, mem_size,
232 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233 dev->dbbuf_dbs = NULL;
234 }
235 if (dev->dbbuf_eis) {
236 dma_free_coherent(dev->dev, mem_size,
237 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
238 dev->dbbuf_eis = NULL;
239 }
240}
241
242static void nvme_dbbuf_init(struct nvme_dev *dev,
243 struct nvme_queue *nvmeq, int qid)
244{
245 if (!dev->dbbuf_dbs || !qid)
246 return;
247
248 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
249 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
250 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
251 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
252}
253
254static void nvme_dbbuf_set(struct nvme_dev *dev)
255{
256 struct nvme_command c;
257
258 if (!dev->dbbuf_dbs)
259 return;
260
261 memset(&c, 0, sizeof(c));
262 c.dbbuf.opcode = nvme_admin_dbbuf;
263 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
264 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
265
266 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
267 dev_warn(dev->dev, "unable to set dbbuf\n");
268 /* Free memory and continue on */
269 nvme_dbbuf_dma_free(dev);
270 }
271}
272
273static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
274{
275 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
276}
277
278/* Update dbbuf and return true if an MMIO is required */
279static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
280 volatile u32 *dbbuf_ei)
281{
282 if (dbbuf_db) {
283 u16 old_value;
284
285 /*
286 * Ensure that the queue is written before updating
287 * the doorbell in memory
288 */
289 wmb();
290
291 old_value = *dbbuf_db;
292 *dbbuf_db = value;
293
294 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
295 return false;
296 }
297
298 return true;
299}
300
301/*
302 * Max size of iod being embedded in the request payload
303 */
304#define NVME_INT_PAGES 2
305#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
306
307/*
308 * Will slightly overestimate the number of pages needed. This is OK
309 * as it only leads to a small amount of wasted memory for the lifetime of
310 * the I/O.
311 */
312static int nvme_npages(unsigned size, struct nvme_dev *dev)
313{
314 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
315 dev->ctrl.page_size);
316 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
317}
318
319static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
320 unsigned int size, unsigned int nseg)
321{
322 return sizeof(__le64 *) * nvme_npages(size, dev) +
323 sizeof(struct scatterlist) * nseg;
324}
325
326static unsigned int nvme_cmd_size(struct nvme_dev *dev)
327{
328 return sizeof(struct nvme_iod) +
329 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
330}
331
332static int nvmeq_irq(struct nvme_queue *nvmeq)
333{
334 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
335}
336
337static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
338 unsigned int hctx_idx)
339{
340 struct nvme_dev *dev = data;
341 struct nvme_queue *nvmeq = dev->queues[0];
342
343 WARN_ON(hctx_idx != 0);
344 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
345 WARN_ON(nvmeq->tags);
346
347 hctx->driver_data = nvmeq;
348 nvmeq->tags = &dev->admin_tagset.tags[0];
349 return 0;
350}
351
352static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
353{
354 struct nvme_queue *nvmeq = hctx->driver_data;
355
356 nvmeq->tags = NULL;
357}
358
359static int nvme_admin_init_request(struct blk_mq_tag_set *set,
360 struct request *req, unsigned int hctx_idx,
361 unsigned int numa_node)
362{
363 struct nvme_dev *dev = set->driver_data;
364 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
365 struct nvme_queue *nvmeq = dev->queues[0];
366
367 BUG_ON(!nvmeq);
368 iod->nvmeq = nvmeq;
369 return 0;
370}
371
372static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
373 unsigned int hctx_idx)
374{
375 struct nvme_dev *dev = data;
376 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
377
378 if (!nvmeq->tags)
379 nvmeq->tags = &dev->tagset.tags[hctx_idx];
380
381 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
382 hctx->driver_data = nvmeq;
383 return 0;
384}
385
386static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
387 unsigned int hctx_idx, unsigned int numa_node)
388{
389 struct nvme_dev *dev = set->driver_data;
390 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
391 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
392
393 BUG_ON(!nvmeq);
394 iod->nvmeq = nvmeq;
395 return 0;
396}
397
398static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
399{
400 struct nvme_dev *dev = set->driver_data;
401
402 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
403}
404
405/**
406 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
407 * @nvmeq: The queue to use
408 * @cmd: The command to send
409 *
410 * Safe to use from interrupt context
411 */
412static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
413 struct nvme_command *cmd)
414{
415 u16 tail = nvmeq->sq_tail;
416
417 if (nvmeq->sq_cmds_io)
418 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
419 else
420 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
421
422 if (++tail == nvmeq->q_depth)
423 tail = 0;
424 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
425 nvmeq->dbbuf_sq_ei))
426 writel(tail, nvmeq->q_db);
427 nvmeq->sq_tail = tail;
428}
429
430static __le64 **iod_list(struct request *req)
431{
432 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
433 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
434}
435
436static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
437{
438 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
439 int nseg = blk_rq_nr_phys_segments(rq);
440 unsigned int size = blk_rq_payload_bytes(rq);
441
442 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
443 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
444 if (!iod->sg)
445 return BLK_MQ_RQ_QUEUE_BUSY;
446 } else {
447 iod->sg = iod->inline_sg;
448 }
449
450 iod->aborted = 0;
451 iod->npages = -1;
452 iod->nents = 0;
453 iod->length = size;
454
455 return BLK_MQ_RQ_QUEUE_OK;
456}
457
458static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
459{
460 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
461 const int last_prp = dev->ctrl.page_size / 8 - 1;
462 int i;
463 __le64 **list = iod_list(req);
464 dma_addr_t prp_dma = iod->first_dma;
465
466 if (iod->npages == 0)
467 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
468 for (i = 0; i < iod->npages; i++) {
469 __le64 *prp_list = list[i];
470 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
471 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
472 prp_dma = next_prp_dma;
473 }
474
475 if (iod->sg != iod->inline_sg)
476 kfree(iod->sg);
477}
478
479#ifdef CONFIG_BLK_DEV_INTEGRITY
480static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
481{
482 if (be32_to_cpu(pi->ref_tag) == v)
483 pi->ref_tag = cpu_to_be32(p);
484}
485
486static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
487{
488 if (be32_to_cpu(pi->ref_tag) == p)
489 pi->ref_tag = cpu_to_be32(v);
490}
491
492/**
493 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
494 *
495 * The virtual start sector is the one that was originally submitted by the
496 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
497 * start sector may be different. Remap protection information to match the
498 * physical LBA on writes, and back to the original seed on reads.
499 *
500 * Type 0 and 3 do not have a ref tag, so no remapping required.
501 */
502static void nvme_dif_remap(struct request *req,
503 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
504{
505 struct nvme_ns *ns = req->rq_disk->private_data;
506 struct bio_integrity_payload *bip;
507 struct t10_pi_tuple *pi;
508 void *p, *pmap;
509 u32 i, nlb, ts, phys, virt;
510
511 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
512 return;
513
514 bip = bio_integrity(req->bio);
515 if (!bip)
516 return;
517
518 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
519
520 p = pmap;
521 virt = bip_get_seed(bip);
522 phys = nvme_block_nr(ns, blk_rq_pos(req));
523 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
524 ts = ns->disk->queue->integrity.tuple_size;
525
526 for (i = 0; i < nlb; i++, virt++, phys++) {
527 pi = (struct t10_pi_tuple *)p;
528 dif_swap(phys, virt, pi);
529 p += ts;
530 }
531 kunmap_atomic(pmap);
532}
533#else /* CONFIG_BLK_DEV_INTEGRITY */
534static void nvme_dif_remap(struct request *req,
535 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
536{
537}
538static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
539{
540}
541static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
542{
543}
544#endif
545
546static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
547{
548 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
549 struct dma_pool *pool;
550 int length = blk_rq_payload_bytes(req);
551 struct scatterlist *sg = iod->sg;
552 int dma_len = sg_dma_len(sg);
553 u64 dma_addr = sg_dma_address(sg);
554 u32 page_size = dev->ctrl.page_size;
555 int offset = dma_addr & (page_size - 1);
556 __le64 *prp_list;
557 __le64 **list = iod_list(req);
558 dma_addr_t prp_dma;
559 int nprps, i;
560
561 length -= (page_size - offset);
562 if (length <= 0)
563 return true;
564
565 dma_len -= (page_size - offset);
566 if (dma_len) {
567 dma_addr += (page_size - offset);
568 } else {
569 sg = sg_next(sg);
570 dma_addr = sg_dma_address(sg);
571 dma_len = sg_dma_len(sg);
572 }
573
574 if (length <= page_size) {
575 iod->first_dma = dma_addr;
576 return true;
577 }
578
579 nprps = DIV_ROUND_UP(length, page_size);
580 if (nprps <= (256 / 8)) {
581 pool = dev->prp_small_pool;
582 iod->npages = 0;
583 } else {
584 pool = dev->prp_page_pool;
585 iod->npages = 1;
586 }
587
588 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
589 if (!prp_list) {
590 iod->first_dma = dma_addr;
591 iod->npages = -1;
592 return false;
593 }
594 list[0] = prp_list;
595 iod->first_dma = prp_dma;
596 i = 0;
597 for (;;) {
598 if (i == page_size >> 3) {
599 __le64 *old_prp_list = prp_list;
600 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
601 if (!prp_list)
602 return false;
603 list[iod->npages++] = prp_list;
604 prp_list[0] = old_prp_list[i - 1];
605 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
606 i = 1;
607 }
608 prp_list[i++] = cpu_to_le64(dma_addr);
609 dma_len -= page_size;
610 dma_addr += page_size;
611 length -= page_size;
612 if (length <= 0)
613 break;
614 if (dma_len > 0)
615 continue;
616 BUG_ON(dma_len < 0);
617 sg = sg_next(sg);
618 dma_addr = sg_dma_address(sg);
619 dma_len = sg_dma_len(sg);
620 }
621
622 return true;
623}
624
625static int nvme_map_data(struct nvme_dev *dev, struct request *req,
626 struct nvme_command *cmnd)
627{
628 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
629 struct request_queue *q = req->q;
630 enum dma_data_direction dma_dir = rq_data_dir(req) ?
631 DMA_TO_DEVICE : DMA_FROM_DEVICE;
632 int ret = BLK_MQ_RQ_QUEUE_ERROR;
633
634 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
635 iod->nents = blk_rq_map_sg(q, req, iod->sg);
636 if (!iod->nents)
637 goto out;
638
639 ret = BLK_MQ_RQ_QUEUE_BUSY;
640 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
641 DMA_ATTR_NO_WARN))
642 goto out;
643
644 if (!nvme_setup_prps(dev, req))
645 goto out_unmap;
646
647 ret = BLK_MQ_RQ_QUEUE_ERROR;
648 if (blk_integrity_rq(req)) {
649 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
650 goto out_unmap;
651
652 sg_init_table(&iod->meta_sg, 1);
653 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
654 goto out_unmap;
655
656 if (rq_data_dir(req))
657 nvme_dif_remap(req, nvme_dif_prep);
658
659 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
660 goto out_unmap;
661 }
662
663 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
664 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
665 if (blk_integrity_rq(req))
666 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
667 return BLK_MQ_RQ_QUEUE_OK;
668
669out_unmap:
670 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
671out:
672 return ret;
673}
674
675static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
676{
677 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
678 enum dma_data_direction dma_dir = rq_data_dir(req) ?
679 DMA_TO_DEVICE : DMA_FROM_DEVICE;
680
681 if (iod->nents) {
682 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
683 if (blk_integrity_rq(req)) {
684 if (!rq_data_dir(req))
685 nvme_dif_remap(req, nvme_dif_complete);
686 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
687 }
688 }
689
690 nvme_cleanup_cmd(req);
691 nvme_free_iod(dev, req);
692}
693
694/*
695 * NOTE: ns is NULL when called on the admin queue.
696 */
697static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
698 const struct blk_mq_queue_data *bd)
699{
700 struct nvme_ns *ns = hctx->queue->queuedata;
701 struct nvme_queue *nvmeq = hctx->driver_data;
702 struct nvme_dev *dev = nvmeq->dev;
703 struct request *req = bd->rq;
704 struct nvme_command cmnd;
705 int ret = BLK_MQ_RQ_QUEUE_OK;
706
707 /*
708 * If formated with metadata, require the block layer provide a buffer
709 * unless this namespace is formated such that the metadata can be
710 * stripped/generated by the controller with PRACT=1.
711 */
712 if (ns && ns->ms && !blk_integrity_rq(req)) {
713 if (!(ns->pi_type && ns->ms == 8) &&
714 !blk_rq_is_passthrough(req)) {
715 blk_mq_end_request(req, -EFAULT);
716 return BLK_MQ_RQ_QUEUE_OK;
717 }
718 }
719
720 ret = nvme_setup_cmd(ns, req, &cmnd);
721 if (ret != BLK_MQ_RQ_QUEUE_OK)
722 return ret;
723
724 ret = nvme_init_iod(req, dev);
725 if (ret != BLK_MQ_RQ_QUEUE_OK)
726 goto out_free_cmd;
727
728 if (blk_rq_nr_phys_segments(req))
729 ret = nvme_map_data(dev, req, &cmnd);
730
731 if (ret != BLK_MQ_RQ_QUEUE_OK)
732 goto out_cleanup_iod;
733
734 blk_mq_start_request(req);
735
736 spin_lock_irq(&nvmeq->q_lock);
737 if (unlikely(nvmeq->cq_vector < 0)) {
738 ret = BLK_MQ_RQ_QUEUE_ERROR;
739 spin_unlock_irq(&nvmeq->q_lock);
740 goto out_cleanup_iod;
741 }
742 __nvme_submit_cmd(nvmeq, &cmnd);
743 nvme_process_cq(nvmeq);
744 spin_unlock_irq(&nvmeq->q_lock);
745 return BLK_MQ_RQ_QUEUE_OK;
746out_cleanup_iod:
747 nvme_free_iod(dev, req);
748out_free_cmd:
749 nvme_cleanup_cmd(req);
750 return ret;
751}
752
753static void nvme_pci_complete_rq(struct request *req)
754{
755 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
756
757 nvme_unmap_data(iod->nvmeq->dev, req);
758 nvme_complete_rq(req);
759}
760
761/* We read the CQE phase first to check if the rest of the entry is valid */
762static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
763 u16 phase)
764{
765 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
766}
767
768static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
769{
770 u16 head, phase;
771
772 head = nvmeq->cq_head;
773 phase = nvmeq->cq_phase;
774
775 while (nvme_cqe_valid(nvmeq, head, phase)) {
776 struct nvme_completion cqe = nvmeq->cqes[head];
777 struct request *req;
778
779 if (++head == nvmeq->q_depth) {
780 head = 0;
781 phase = !phase;
782 }
783
784 if (tag && *tag == cqe.command_id)
785 *tag = -1;
786
787 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
788 dev_warn(nvmeq->dev->ctrl.device,
789 "invalid id %d completed on queue %d\n",
790 cqe.command_id, le16_to_cpu(cqe.sq_id));
791 continue;
792 }
793
794 /*
795 * AEN requests are special as they don't time out and can
796 * survive any kind of queue freeze and often don't respond to
797 * aborts. We don't even bother to allocate a struct request
798 * for them but rather special case them here.
799 */
800 if (unlikely(nvmeq->qid == 0 &&
801 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
802 nvme_complete_async_event(&nvmeq->dev->ctrl,
803 cqe.status, &cqe.result);
804 continue;
805 }
806
807 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
808 nvme_end_request(req, cqe.status, cqe.result);
809 }
810
811 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
812 return;
813
814 if (likely(nvmeq->cq_vector >= 0))
815 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
816 nvmeq->dbbuf_cq_ei))
817 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
818 nvmeq->cq_head = head;
819 nvmeq->cq_phase = phase;
820
821 nvmeq->cqe_seen = 1;
822}
823
824static void nvme_process_cq(struct nvme_queue *nvmeq)
825{
826 __nvme_process_cq(nvmeq, NULL);
827}
828
829static irqreturn_t nvme_irq(int irq, void *data)
830{
831 irqreturn_t result;
832 struct nvme_queue *nvmeq = data;
833 spin_lock(&nvmeq->q_lock);
834 nvme_process_cq(nvmeq);
835 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
836 nvmeq->cqe_seen = 0;
837 spin_unlock(&nvmeq->q_lock);
838 return result;
839}
840
841static irqreturn_t nvme_irq_check(int irq, void *data)
842{
843 struct nvme_queue *nvmeq = data;
844 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
845 return IRQ_WAKE_THREAD;
846 return IRQ_NONE;
847}
848
849static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
850{
851 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
852 spin_lock_irq(&nvmeq->q_lock);
853 __nvme_process_cq(nvmeq, &tag);
854 spin_unlock_irq(&nvmeq->q_lock);
855
856 if (tag == -1)
857 return 1;
858 }
859
860 return 0;
861}
862
863static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
864{
865 struct nvme_queue *nvmeq = hctx->driver_data;
866
867 return __nvme_poll(nvmeq, tag);
868}
869
870static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
871{
872 struct nvme_dev *dev = to_nvme_dev(ctrl);
873 struct nvme_queue *nvmeq = dev->queues[0];
874 struct nvme_command c;
875
876 memset(&c, 0, sizeof(c));
877 c.common.opcode = nvme_admin_async_event;
878 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
879
880 spin_lock_irq(&nvmeq->q_lock);
881 __nvme_submit_cmd(nvmeq, &c);
882 spin_unlock_irq(&nvmeq->q_lock);
883}
884
885static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
886{
887 struct nvme_command c;
888
889 memset(&c, 0, sizeof(c));
890 c.delete_queue.opcode = opcode;
891 c.delete_queue.qid = cpu_to_le16(id);
892
893 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
894}
895
896static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
897 struct nvme_queue *nvmeq)
898{
899 struct nvme_command c;
900 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
901
902 /*
903 * Note: we (ab)use the fact the the prp fields survive if no data
904 * is attached to the request.
905 */
906 memset(&c, 0, sizeof(c));
907 c.create_cq.opcode = nvme_admin_create_cq;
908 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
909 c.create_cq.cqid = cpu_to_le16(qid);
910 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
911 c.create_cq.cq_flags = cpu_to_le16(flags);
912 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
913
914 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
915}
916
917static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
918 struct nvme_queue *nvmeq)
919{
920 struct nvme_command c;
921 int flags = NVME_QUEUE_PHYS_CONTIG;
922
923 /*
924 * Note: we (ab)use the fact the the prp fields survive if no data
925 * is attached to the request.
926 */
927 memset(&c, 0, sizeof(c));
928 c.create_sq.opcode = nvme_admin_create_sq;
929 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
930 c.create_sq.sqid = cpu_to_le16(qid);
931 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
932 c.create_sq.sq_flags = cpu_to_le16(flags);
933 c.create_sq.cqid = cpu_to_le16(qid);
934
935 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
936}
937
938static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
939{
940 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
941}
942
943static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
944{
945 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
946}
947
948static void abort_endio(struct request *req, int error)
949{
950 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
951 struct nvme_queue *nvmeq = iod->nvmeq;
952
953 dev_warn(nvmeq->dev->ctrl.device,
954 "Abort status: 0x%x", nvme_req(req)->status);
955 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
956 blk_mq_free_request(req);
957}
958
959static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
960{
961 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
962 struct nvme_queue *nvmeq = iod->nvmeq;
963 struct nvme_dev *dev = nvmeq->dev;
964 struct request *abort_req;
965 struct nvme_command cmd;
966
967 /*
968 * Did we miss an interrupt?
969 */
970 if (__nvme_poll(nvmeq, req->tag)) {
971 dev_warn(dev->ctrl.device,
972 "I/O %d QID %d timeout, completion polled\n",
973 req->tag, nvmeq->qid);
974 return BLK_EH_HANDLED;
975 }
976
977 /*
978 * Shutdown immediately if controller times out while starting. The
979 * reset work will see the pci device disabled when it gets the forced
980 * cancellation error. All outstanding requests are completed on
981 * shutdown, so we return BLK_EH_HANDLED.
982 */
983 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
984 dev_warn(dev->ctrl.device,
985 "I/O %d QID %d timeout, disable controller\n",
986 req->tag, nvmeq->qid);
987 nvme_dev_disable(dev, false);
988 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
989 return BLK_EH_HANDLED;
990 }
991
992 /*
993 * Shutdown the controller immediately and schedule a reset if the
994 * command was already aborted once before and still hasn't been
995 * returned to the driver, or if this is the admin queue.
996 */
997 if (!nvmeq->qid || iod->aborted) {
998 dev_warn(dev->ctrl.device,
999 "I/O %d QID %d timeout, reset controller\n",
1000 req->tag, nvmeq->qid);
1001 nvme_dev_disable(dev, false);
1002 nvme_reset(dev);
1003
1004 /*
1005 * Mark the request as handled, since the inline shutdown
1006 * forces all outstanding requests to complete.
1007 */
1008 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1009 return BLK_EH_HANDLED;
1010 }
1011
1012 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1013 atomic_inc(&dev->ctrl.abort_limit);
1014 return BLK_EH_RESET_TIMER;
1015 }
1016 iod->aborted = 1;
1017
1018 memset(&cmd, 0, sizeof(cmd));
1019 cmd.abort.opcode = nvme_admin_abort_cmd;
1020 cmd.abort.cid = req->tag;
1021 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1022
1023 dev_warn(nvmeq->dev->ctrl.device,
1024 "I/O %d QID %d timeout, aborting\n",
1025 req->tag, nvmeq->qid);
1026
1027 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1028 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1029 if (IS_ERR(abort_req)) {
1030 atomic_inc(&dev->ctrl.abort_limit);
1031 return BLK_EH_RESET_TIMER;
1032 }
1033
1034 abort_req->timeout = ADMIN_TIMEOUT;
1035 abort_req->end_io_data = NULL;
1036 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1037
1038 /*
1039 * The aborted req will be completed on receiving the abort req.
1040 * We enable the timer again. If hit twice, it'll cause a device reset,
1041 * as the device then is in a faulty state.
1042 */
1043 return BLK_EH_RESET_TIMER;
1044}
1045
1046static void nvme_free_queue(struct nvme_queue *nvmeq)
1047{
1048 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1049 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1050 if (nvmeq->sq_cmds)
1051 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1052 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1053 kfree(nvmeq);
1054}
1055
1056static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1057{
1058 int i;
1059
1060 for (i = dev->queue_count - 1; i >= lowest; i--) {
1061 struct nvme_queue *nvmeq = dev->queues[i];
1062 dev->queue_count--;
1063 dev->queues[i] = NULL;
1064 nvme_free_queue(nvmeq);
1065 }
1066}
1067
1068/**
1069 * nvme_suspend_queue - put queue into suspended state
1070 * @nvmeq - queue to suspend
1071 */
1072static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1073{
1074 int vector;
1075
1076 spin_lock_irq(&nvmeq->q_lock);
1077 if (nvmeq->cq_vector == -1) {
1078 spin_unlock_irq(&nvmeq->q_lock);
1079 return 1;
1080 }
1081 vector = nvmeq_irq(nvmeq);
1082 nvmeq->dev->online_queues--;
1083 nvmeq->cq_vector = -1;
1084 spin_unlock_irq(&nvmeq->q_lock);
1085
1086 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1087 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1088
1089 free_irq(vector, nvmeq);
1090
1091 return 0;
1092}
1093
1094static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1095{
1096 struct nvme_queue *nvmeq = dev->queues[0];
1097
1098 if (!nvmeq)
1099 return;
1100 if (nvme_suspend_queue(nvmeq))
1101 return;
1102
1103 if (shutdown)
1104 nvme_shutdown_ctrl(&dev->ctrl);
1105 else
1106 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1107 dev->bar + NVME_REG_CAP));
1108
1109 spin_lock_irq(&nvmeq->q_lock);
1110 nvme_process_cq(nvmeq);
1111 spin_unlock_irq(&nvmeq->q_lock);
1112}
1113
1114static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1115 int entry_size)
1116{
1117 int q_depth = dev->q_depth;
1118 unsigned q_size_aligned = roundup(q_depth * entry_size,
1119 dev->ctrl.page_size);
1120
1121 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1122 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1123 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1124 q_depth = div_u64(mem_per_q, entry_size);
1125
1126 /*
1127 * Ensure the reduced q_depth is above some threshold where it
1128 * would be better to map queues in system memory with the
1129 * original depth
1130 */
1131 if (q_depth < 64)
1132 return -ENOMEM;
1133 }
1134
1135 return q_depth;
1136}
1137
1138static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1139 int qid, int depth)
1140{
1141 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1142 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1143 dev->ctrl.page_size);
1144 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1145 nvmeq->sq_cmds_io = dev->cmb + offset;
1146 } else {
1147 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1148 &nvmeq->sq_dma_addr, GFP_KERNEL);
1149 if (!nvmeq->sq_cmds)
1150 return -ENOMEM;
1151 }
1152
1153 return 0;
1154}
1155
1156static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1157 int depth, int node)
1158{
1159 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1160 node);
1161 if (!nvmeq)
1162 return NULL;
1163
1164 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1165 &nvmeq->cq_dma_addr, GFP_KERNEL);
1166 if (!nvmeq->cqes)
1167 goto free_nvmeq;
1168
1169 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1170 goto free_cqdma;
1171
1172 nvmeq->q_dmadev = dev->dev;
1173 nvmeq->dev = dev;
1174 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1175 dev->ctrl.instance, qid);
1176 spin_lock_init(&nvmeq->q_lock);
1177 nvmeq->cq_head = 0;
1178 nvmeq->cq_phase = 1;
1179 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1180 nvmeq->q_depth = depth;
1181 nvmeq->qid = qid;
1182 nvmeq->cq_vector = -1;
1183 dev->queues[qid] = nvmeq;
1184 dev->queue_count++;
1185
1186 return nvmeq;
1187
1188 free_cqdma:
1189 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1190 nvmeq->cq_dma_addr);
1191 free_nvmeq:
1192 kfree(nvmeq);
1193 return NULL;
1194}
1195
1196static int queue_request_irq(struct nvme_queue *nvmeq)
1197{
1198 if (use_threaded_interrupts)
1199 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1200 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1201 else
1202 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1203 nvmeq->irqname, nvmeq);
1204}
1205
1206static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1207{
1208 struct nvme_dev *dev = nvmeq->dev;
1209
1210 spin_lock_irq(&nvmeq->q_lock);
1211 nvmeq->sq_tail = 0;
1212 nvmeq->cq_head = 0;
1213 nvmeq->cq_phase = 1;
1214 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1215 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1216 nvme_dbbuf_init(dev, nvmeq, qid);
1217 dev->online_queues++;
1218 spin_unlock_irq(&nvmeq->q_lock);
1219}
1220
1221static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1222{
1223 struct nvme_dev *dev = nvmeq->dev;
1224 int result;
1225
1226 nvmeq->cq_vector = qid - 1;
1227 result = adapter_alloc_cq(dev, qid, nvmeq);
1228 if (result < 0)
1229 return result;
1230
1231 result = adapter_alloc_sq(dev, qid, nvmeq);
1232 if (result < 0)
1233 goto release_cq;
1234
1235 result = queue_request_irq(nvmeq);
1236 if (result < 0)
1237 goto release_sq;
1238
1239 nvme_init_queue(nvmeq, qid);
1240 return result;
1241
1242 release_sq:
1243 adapter_delete_sq(dev, qid);
1244 release_cq:
1245 adapter_delete_cq(dev, qid);
1246 return result;
1247}
1248
1249static const struct blk_mq_ops nvme_mq_admin_ops = {
1250 .queue_rq = nvme_queue_rq,
1251 .complete = nvme_pci_complete_rq,
1252 .init_hctx = nvme_admin_init_hctx,
1253 .exit_hctx = nvme_admin_exit_hctx,
1254 .init_request = nvme_admin_init_request,
1255 .timeout = nvme_timeout,
1256};
1257
1258static const struct blk_mq_ops nvme_mq_ops = {
1259 .queue_rq = nvme_queue_rq,
1260 .complete = nvme_pci_complete_rq,
1261 .init_hctx = nvme_init_hctx,
1262 .init_request = nvme_init_request,
1263 .map_queues = nvme_pci_map_queues,
1264 .timeout = nvme_timeout,
1265 .poll = nvme_poll,
1266};
1267
1268static void nvme_dev_remove_admin(struct nvme_dev *dev)
1269{
1270 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1271 /*
1272 * If the controller was reset during removal, it's possible
1273 * user requests may be waiting on a stopped queue. Start the
1274 * queue to flush these to completion.
1275 */
1276 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1277 blk_cleanup_queue(dev->ctrl.admin_q);
1278 blk_mq_free_tag_set(&dev->admin_tagset);
1279 }
1280}
1281
1282static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1283{
1284 if (!dev->ctrl.admin_q) {
1285 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1286 dev->admin_tagset.nr_hw_queues = 1;
1287
1288 /*
1289 * Subtract one to leave an empty queue entry for 'Full Queue'
1290 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1291 */
1292 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1293 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1294 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1295 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1296 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1297 dev->admin_tagset.driver_data = dev;
1298
1299 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1300 return -ENOMEM;
1301
1302 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1303 if (IS_ERR(dev->ctrl.admin_q)) {
1304 blk_mq_free_tag_set(&dev->admin_tagset);
1305 return -ENOMEM;
1306 }
1307 if (!blk_get_queue(dev->ctrl.admin_q)) {
1308 nvme_dev_remove_admin(dev);
1309 dev->ctrl.admin_q = NULL;
1310 return -ENODEV;
1311 }
1312 } else
1313 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1314
1315 return 0;
1316}
1317
1318static int nvme_configure_admin_queue(struct nvme_dev *dev)
1319{
1320 int result;
1321 u32 aqa;
1322 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1323 struct nvme_queue *nvmeq;
1324
1325 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1326 NVME_CAP_NSSRC(cap) : 0;
1327
1328 if (dev->subsystem &&
1329 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1330 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1331
1332 result = nvme_disable_ctrl(&dev->ctrl, cap);
1333 if (result < 0)
1334 return result;
1335
1336 nvmeq = dev->queues[0];
1337 if (!nvmeq) {
1338 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1339 dev_to_node(dev->dev));
1340 if (!nvmeq)
1341 return -ENOMEM;
1342 }
1343
1344 aqa = nvmeq->q_depth - 1;
1345 aqa |= aqa << 16;
1346
1347 writel(aqa, dev->bar + NVME_REG_AQA);
1348 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1349 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1350
1351 result = nvme_enable_ctrl(&dev->ctrl, cap);
1352 if (result)
1353 return result;
1354
1355 nvmeq->cq_vector = 0;
1356 result = queue_request_irq(nvmeq);
1357 if (result) {
1358 nvmeq->cq_vector = -1;
1359 return result;
1360 }
1361
1362 return result;
1363}
1364
1365static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1366{
1367
1368 /* If true, indicates loss of adapter communication, possibly by a
1369 * NVMe Subsystem reset.
1370 */
1371 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1372
1373 /* If there is a reset ongoing, we shouldn't reset again. */
1374 if (work_busy(&dev->reset_work))
1375 return false;
1376
1377 /* We shouldn't reset unless the controller is on fatal error state
1378 * _or_ if we lost the communication with it.
1379 */
1380 if (!(csts & NVME_CSTS_CFS) && !nssro)
1381 return false;
1382
1383 /* If PCI error recovery process is happening, we cannot reset or
1384 * the recovery mechanism will surely fail.
1385 */
1386 if (pci_channel_offline(to_pci_dev(dev->dev)))
1387 return false;
1388
1389 return true;
1390}
1391
1392static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1393{
1394 /* Read a config register to help see what died. */
1395 u16 pci_status;
1396 int result;
1397
1398 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1399 &pci_status);
1400 if (result == PCIBIOS_SUCCESSFUL)
1401 dev_warn(dev->dev,
1402 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1403 csts, pci_status);
1404 else
1405 dev_warn(dev->dev,
1406 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1407 csts, result);
1408}
1409
1410static void nvme_watchdog_timer(unsigned long data)
1411{
1412 struct nvme_dev *dev = (struct nvme_dev *)data;
1413 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1414
1415 /* Skip controllers under certain specific conditions. */
1416 if (nvme_should_reset(dev, csts)) {
1417 if (!nvme_reset(dev))
1418 nvme_warn_reset(dev, csts);
1419 return;
1420 }
1421
1422 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1423}
1424
1425static int nvme_create_io_queues(struct nvme_dev *dev)
1426{
1427 unsigned i, max;
1428 int ret = 0;
1429
1430 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1431 /* vector == qid - 1, match nvme_create_queue */
1432 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1433 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1434 ret = -ENOMEM;
1435 break;
1436 }
1437 }
1438
1439 max = min(dev->max_qid, dev->queue_count - 1);
1440 for (i = dev->online_queues; i <= max; i++) {
1441 ret = nvme_create_queue(dev->queues[i], i);
1442 if (ret)
1443 break;
1444 }
1445
1446 /*
1447 * Ignore failing Create SQ/CQ commands, we can continue with less
1448 * than the desired aount of queues, and even a controller without
1449 * I/O queues an still be used to issue admin commands. This might
1450 * be useful to upgrade a buggy firmware for example.
1451 */
1452 return ret >= 0 ? 0 : ret;
1453}
1454
1455static ssize_t nvme_cmb_show(struct device *dev,
1456 struct device_attribute *attr,
1457 char *buf)
1458{
1459 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1460
1461 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1462 ndev->cmbloc, ndev->cmbsz);
1463}
1464static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1465
1466static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1467{
1468 u64 szu, size, offset;
1469 resource_size_t bar_size;
1470 struct pci_dev *pdev = to_pci_dev(dev->dev);
1471 void __iomem *cmb;
1472 dma_addr_t dma_addr;
1473
1474 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1475 if (!(NVME_CMB_SZ(dev->cmbsz)))
1476 return NULL;
1477 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1478
1479 if (!use_cmb_sqes)
1480 return NULL;
1481
1482 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1483 size = szu * NVME_CMB_SZ(dev->cmbsz);
1484 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1485 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1486
1487 if (offset > bar_size)
1488 return NULL;
1489
1490 /*
1491 * Controllers may support a CMB size larger than their BAR,
1492 * for example, due to being behind a bridge. Reduce the CMB to
1493 * the reported size of the BAR
1494 */
1495 if (size > bar_size - offset)
1496 size = bar_size - offset;
1497
1498 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1499 cmb = ioremap_wc(dma_addr, size);
1500 if (!cmb)
1501 return NULL;
1502
1503 dev->cmb_dma_addr = dma_addr;
1504 dev->cmb_size = size;
1505 return cmb;
1506}
1507
1508static inline void nvme_release_cmb(struct nvme_dev *dev)
1509{
1510 if (dev->cmb) {
1511 iounmap(dev->cmb);
1512 dev->cmb = NULL;
1513 }
1514}
1515
1516static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1517{
1518 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1519}
1520
1521static int nvme_setup_io_queues(struct nvme_dev *dev)
1522{
1523 struct nvme_queue *adminq = dev->queues[0];
1524 struct pci_dev *pdev = to_pci_dev(dev->dev);
1525 int result, nr_io_queues, size;
1526
1527 nr_io_queues = num_online_cpus();
1528 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1529 if (result < 0)
1530 return result;
1531
1532 if (nr_io_queues == 0)
1533 return 0;
1534
1535 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1536 result = nvme_cmb_qdepth(dev, nr_io_queues,
1537 sizeof(struct nvme_command));
1538 if (result > 0)
1539 dev->q_depth = result;
1540 else
1541 nvme_release_cmb(dev);
1542 }
1543
1544 size = db_bar_size(dev, nr_io_queues);
1545 if (size > 8192) {
1546 iounmap(dev->bar);
1547 do {
1548 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1549 if (dev->bar)
1550 break;
1551 if (!--nr_io_queues)
1552 return -ENOMEM;
1553 size = db_bar_size(dev, nr_io_queues);
1554 } while (1);
1555 dev->dbs = dev->bar + 4096;
1556 adminq->q_db = dev->dbs;
1557 }
1558
1559 /* Deregister the admin queue's interrupt */
1560 free_irq(pci_irq_vector(pdev, 0), adminq);
1561
1562 /*
1563 * If we enable msix early due to not intx, disable it again before
1564 * setting up the full range we need.
1565 */
1566 pci_free_irq_vectors(pdev);
1567 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1568 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1569 if (nr_io_queues <= 0)
1570 return -EIO;
1571 dev->max_qid = nr_io_queues;
1572
1573 /*
1574 * Should investigate if there's a performance win from allocating
1575 * more queues than interrupt vectors; it might allow the submission
1576 * path to scale better, even if the receive path is limited by the
1577 * number of interrupts.
1578 */
1579
1580 result = queue_request_irq(adminq);
1581 if (result) {
1582 adminq->cq_vector = -1;
1583 return result;
1584 }
1585 return nvme_create_io_queues(dev);
1586}
1587
1588static void nvme_del_queue_end(struct request *req, int error)
1589{
1590 struct nvme_queue *nvmeq = req->end_io_data;
1591
1592 blk_mq_free_request(req);
1593 complete(&nvmeq->dev->ioq_wait);
1594}
1595
1596static void nvme_del_cq_end(struct request *req, int error)
1597{
1598 struct nvme_queue *nvmeq = req->end_io_data;
1599
1600 if (!error) {
1601 unsigned long flags;
1602
1603 /*
1604 * We might be called with the AQ q_lock held
1605 * and the I/O queue q_lock should always
1606 * nest inside the AQ one.
1607 */
1608 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1609 SINGLE_DEPTH_NESTING);
1610 nvme_process_cq(nvmeq);
1611 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1612 }
1613
1614 nvme_del_queue_end(req, error);
1615}
1616
1617static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1618{
1619 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1620 struct request *req;
1621 struct nvme_command cmd;
1622
1623 memset(&cmd, 0, sizeof(cmd));
1624 cmd.delete_queue.opcode = opcode;
1625 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1626
1627 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1628 if (IS_ERR(req))
1629 return PTR_ERR(req);
1630
1631 req->timeout = ADMIN_TIMEOUT;
1632 req->end_io_data = nvmeq;
1633
1634 blk_execute_rq_nowait(q, NULL, req, false,
1635 opcode == nvme_admin_delete_cq ?
1636 nvme_del_cq_end : nvme_del_queue_end);
1637 return 0;
1638}
1639
1640static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1641{
1642 int pass;
1643 unsigned long timeout;
1644 u8 opcode = nvme_admin_delete_sq;
1645
1646 for (pass = 0; pass < 2; pass++) {
1647 int sent = 0, i = queues;
1648
1649 reinit_completion(&dev->ioq_wait);
1650 retry:
1651 timeout = ADMIN_TIMEOUT;
1652 for (; i > 0; i--, sent++)
1653 if (nvme_delete_queue(dev->queues[i], opcode))
1654 break;
1655
1656 while (sent--) {
1657 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1658 if (timeout == 0)
1659 return;
1660 if (i)
1661 goto retry;
1662 }
1663 opcode = nvme_admin_delete_cq;
1664 }
1665}
1666
1667/*
1668 * Return: error value if an error occurred setting up the queues or calling
1669 * Identify Device. 0 if these succeeded, even if adding some of the
1670 * namespaces failed. At the moment, these failures are silent. TBD which
1671 * failures should be reported.
1672 */
1673static int nvme_dev_add(struct nvme_dev *dev)
1674{
1675 if (!dev->ctrl.tagset) {
1676 dev->tagset.ops = &nvme_mq_ops;
1677 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1678 dev->tagset.timeout = NVME_IO_TIMEOUT;
1679 dev->tagset.numa_node = dev_to_node(dev->dev);
1680 dev->tagset.queue_depth =
1681 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1682 dev->tagset.cmd_size = nvme_cmd_size(dev);
1683 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1684 dev->tagset.driver_data = dev;
1685
1686 if (blk_mq_alloc_tag_set(&dev->tagset))
1687 return 0;
1688 dev->ctrl.tagset = &dev->tagset;
1689
1690 nvme_dbbuf_set(dev);
1691 } else {
1692 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1693
1694 /* Free previously allocated queues that are no longer usable */
1695 nvme_free_queues(dev, dev->online_queues);
1696 }
1697
1698 return 0;
1699}
1700
1701static int nvme_pci_enable(struct nvme_dev *dev)
1702{
1703 u64 cap;
1704 int result = -ENOMEM;
1705 struct pci_dev *pdev = to_pci_dev(dev->dev);
1706
1707 if (pci_enable_device_mem(pdev))
1708 return result;
1709
1710 pci_set_master(pdev);
1711
1712 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1713 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1714 goto disable;
1715
1716 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1717 result = -ENODEV;
1718 goto disable;
1719 }
1720
1721 /*
1722 * Some devices and/or platforms don't advertise or work with INTx
1723 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1724 * adjust this later.
1725 */
1726 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1727 if (result < 0)
1728 return result;
1729
1730 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1731
1732 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1733 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1734 dev->dbs = dev->bar + 4096;
1735
1736 /*
1737 * Temporary fix for the Apple controller found in the MacBook8,1 and
1738 * some MacBook7,1 to avoid controller resets and data loss.
1739 */
1740 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1741 dev->q_depth = 2;
1742 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1743 "queue depth=%u to work around controller resets\n",
1744 dev->q_depth);
1745 }
1746
1747 /*
1748 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1749 * populate sysfs if a CMB is implemented. Note that we add the
1750 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1751 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1752 * NULL as final argument to sysfs_add_file_to_group.
1753 */
1754
1755 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1756 dev->cmb = nvme_map_cmb(dev);
1757
1758 if (dev->cmbsz) {
1759 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1760 &dev_attr_cmb.attr, NULL))
1761 dev_warn(dev->dev,
1762 "failed to add sysfs attribute for CMB\n");
1763 }
1764 }
1765
1766 pci_enable_pcie_error_reporting(pdev);
1767 pci_save_state(pdev);
1768 return 0;
1769
1770 disable:
1771 pci_disable_device(pdev);
1772 return result;
1773}
1774
1775static void nvme_dev_unmap(struct nvme_dev *dev)
1776{
1777 if (dev->bar)
1778 iounmap(dev->bar);
1779 pci_release_mem_regions(to_pci_dev(dev->dev));
1780}
1781
1782static void nvme_pci_disable(struct nvme_dev *dev)
1783{
1784 struct pci_dev *pdev = to_pci_dev(dev->dev);
1785
1786 pci_free_irq_vectors(pdev);
1787
1788 if (pci_is_enabled(pdev)) {
1789 pci_disable_pcie_error_reporting(pdev);
1790 pci_disable_device(pdev);
1791 }
1792}
1793
1794static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1795{
1796 int i, queues;
1797 bool dead = true;
1798 struct pci_dev *pdev = to_pci_dev(dev->dev);
1799
1800 del_timer_sync(&dev->watchdog_timer);
1801
1802 mutex_lock(&dev->shutdown_lock);
1803 if (pci_is_enabled(pdev)) {
1804 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1805
1806 if (dev->ctrl.state == NVME_CTRL_LIVE)
1807 nvme_start_freeze(&dev->ctrl);
1808 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1809 pdev->error_state != pci_channel_io_normal);
1810 }
1811
1812 /*
1813 * Give the controller a chance to complete all entered requests if
1814 * doing a safe shutdown.
1815 */
1816 if (!dead && shutdown)
1817 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1818 nvme_stop_queues(&dev->ctrl);
1819
1820 queues = dev->online_queues - 1;
1821 for (i = dev->queue_count - 1; i > 0; i--)
1822 nvme_suspend_queue(dev->queues[i]);
1823
1824 if (dead) {
1825 /* A device might become IO incapable very soon during
1826 * probe, before the admin queue is configured. Thus,
1827 * queue_count can be 0 here.
1828 */
1829 if (dev->queue_count)
1830 nvme_suspend_queue(dev->queues[0]);
1831 } else {
1832 nvme_disable_io_queues(dev, queues);
1833 nvme_disable_admin_queue(dev, shutdown);
1834 }
1835 nvme_pci_disable(dev);
1836
1837 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1838 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1839
1840 /*
1841 * The driver will not be starting up queues again if shutting down so
1842 * must flush all entered requests to their failed completion to avoid
1843 * deadlocking blk-mq hot-cpu notifier.
1844 */
1845 if (shutdown)
1846 nvme_start_queues(&dev->ctrl);
1847 mutex_unlock(&dev->shutdown_lock);
1848}
1849
1850static int nvme_setup_prp_pools(struct nvme_dev *dev)
1851{
1852 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1853 PAGE_SIZE, PAGE_SIZE, 0);
1854 if (!dev->prp_page_pool)
1855 return -ENOMEM;
1856
1857 /* Optimisation for I/Os between 4k and 128k */
1858 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1859 256, 256, 0);
1860 if (!dev->prp_small_pool) {
1861 dma_pool_destroy(dev->prp_page_pool);
1862 return -ENOMEM;
1863 }
1864 return 0;
1865}
1866
1867static void nvme_release_prp_pools(struct nvme_dev *dev)
1868{
1869 dma_pool_destroy(dev->prp_page_pool);
1870 dma_pool_destroy(dev->prp_small_pool);
1871}
1872
1873static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1874{
1875 struct nvme_dev *dev = to_nvme_dev(ctrl);
1876
1877 nvme_dbbuf_dma_free(dev);
1878 put_device(dev->dev);
1879 if (dev->tagset.tags)
1880 blk_mq_free_tag_set(&dev->tagset);
1881 if (dev->ctrl.admin_q)
1882 blk_put_queue(dev->ctrl.admin_q);
1883 kfree(dev->queues);
1884 free_opal_dev(dev->ctrl.opal_dev);
1885 kfree(dev);
1886}
1887
1888static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1889{
1890 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1891
1892 kref_get(&dev->ctrl.kref);
1893 nvme_dev_disable(dev, false);
1894 if (!schedule_work(&dev->remove_work))
1895 nvme_put_ctrl(&dev->ctrl);
1896}
1897
1898static void nvme_reset_work(struct work_struct *work)
1899{
1900 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1901 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
1902 int result = -ENODEV;
1903
1904 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1905 goto out;
1906
1907 /*
1908 * If we're called to reset a live controller first shut it down before
1909 * moving on.
1910 */
1911 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1912 nvme_dev_disable(dev, false);
1913
1914 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1915 goto out;
1916
1917 result = nvme_pci_enable(dev);
1918 if (result)
1919 goto out;
1920
1921 result = nvme_configure_admin_queue(dev);
1922 if (result)
1923 goto out;
1924
1925 nvme_init_queue(dev->queues[0], 0);
1926 result = nvme_alloc_admin_tags(dev);
1927 if (result)
1928 goto out;
1929
1930 result = nvme_init_identify(&dev->ctrl);
1931 if (result)
1932 goto out;
1933
1934 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
1935 if (!dev->ctrl.opal_dev)
1936 dev->ctrl.opal_dev =
1937 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1938 else if (was_suspend)
1939 opal_unlock_from_suspend(dev->ctrl.opal_dev);
1940 } else {
1941 free_opal_dev(dev->ctrl.opal_dev);
1942 dev->ctrl.opal_dev = NULL;
1943 }
1944
1945 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
1946 result = nvme_dbbuf_dma_alloc(dev);
1947 if (result)
1948 dev_warn(dev->dev,
1949 "unable to allocate dma for dbbuf\n");
1950 }
1951
1952 result = nvme_setup_io_queues(dev);
1953 if (result)
1954 goto out;
1955
1956 /*
1957 * A controller that can not execute IO typically requires user
1958 * intervention to correct. For such degraded controllers, the driver
1959 * should not submit commands the user did not request, so skip
1960 * registering for asynchronous event notification on this condition.
1961 */
1962 if (dev->online_queues > 1)
1963 nvme_queue_async_events(&dev->ctrl);
1964
1965 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1966
1967 /*
1968 * Keep the controller around but remove all namespaces if we don't have
1969 * any working I/O queue.
1970 */
1971 if (dev->online_queues < 2) {
1972 dev_warn(dev->ctrl.device, "IO queues not created\n");
1973 nvme_kill_queues(&dev->ctrl);
1974 nvme_remove_namespaces(&dev->ctrl);
1975 } else {
1976 nvme_start_queues(&dev->ctrl);
1977 nvme_wait_freeze(&dev->ctrl);
1978 nvme_dev_add(dev);
1979 nvme_unfreeze(&dev->ctrl);
1980 }
1981
1982 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1983 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1984 goto out;
1985 }
1986
1987 if (dev->online_queues > 1)
1988 nvme_queue_scan(&dev->ctrl);
1989 return;
1990
1991 out:
1992 nvme_remove_dead_ctrl(dev, result);
1993}
1994
1995static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1996{
1997 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1998 struct pci_dev *pdev = to_pci_dev(dev->dev);
1999
2000 nvme_kill_queues(&dev->ctrl);
2001 if (pci_get_drvdata(pdev))
2002 device_release_driver(&pdev->dev);
2003 nvme_put_ctrl(&dev->ctrl);
2004}
2005
2006static int nvme_reset(struct nvme_dev *dev)
2007{
2008 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2009 return -ENODEV;
2010 if (work_busy(&dev->reset_work))
2011 return -ENODEV;
2012 if (!queue_work(nvme_workq, &dev->reset_work))
2013 return -EBUSY;
2014 return 0;
2015}
2016
2017static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2018{
2019 *val = readl(to_nvme_dev(ctrl)->bar + off);
2020 return 0;
2021}
2022
2023static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2024{
2025 writel(val, to_nvme_dev(ctrl)->bar + off);
2026 return 0;
2027}
2028
2029static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2030{
2031 *val = readq(to_nvme_dev(ctrl)->bar + off);
2032 return 0;
2033}
2034
2035static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2036{
2037 struct nvme_dev *dev = to_nvme_dev(ctrl);
2038 int ret = nvme_reset(dev);
2039
2040 if (!ret)
2041 flush_work(&dev->reset_work);
2042 return ret;
2043}
2044
2045static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2046 .name = "pcie",
2047 .module = THIS_MODULE,
2048 .reg_read32 = nvme_pci_reg_read32,
2049 .reg_write32 = nvme_pci_reg_write32,
2050 .reg_read64 = nvme_pci_reg_read64,
2051 .reset_ctrl = nvme_pci_reset_ctrl,
2052 .free_ctrl = nvme_pci_free_ctrl,
2053 .submit_async_event = nvme_pci_submit_async_event,
2054};
2055
2056static int nvme_dev_map(struct nvme_dev *dev)
2057{
2058 struct pci_dev *pdev = to_pci_dev(dev->dev);
2059
2060 if (pci_request_mem_regions(pdev, "nvme"))
2061 return -ENODEV;
2062
2063 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2064 if (!dev->bar)
2065 goto release;
2066
2067 return 0;
2068 release:
2069 pci_release_mem_regions(pdev);
2070 return -ENODEV;
2071}
2072
2073static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2074{
2075 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2076 /*
2077 * Several Samsung devices seem to drop off the PCIe bus
2078 * randomly when APST is on and uses the deepest sleep state.
2079 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2080 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2081 * 950 PRO 256GB", but it seems to be restricted to two Dell
2082 * laptops.
2083 */
2084 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2085 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2086 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2087 return NVME_QUIRK_NO_DEEPEST_PS;
2088 }
2089
2090 return 0;
2091}
2092
2093static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2094{
2095 int node, result = -ENOMEM;
2096 struct nvme_dev *dev;
2097 unsigned long quirks = id->driver_data;
2098
2099 node = dev_to_node(&pdev->dev);
2100 if (node == NUMA_NO_NODE)
2101 set_dev_node(&pdev->dev, first_memory_node);
2102
2103 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2104 if (!dev)
2105 return -ENOMEM;
2106 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2107 GFP_KERNEL, node);
2108 if (!dev->queues)
2109 goto free;
2110
2111 dev->dev = get_device(&pdev->dev);
2112 pci_set_drvdata(pdev, dev);
2113
2114 result = nvme_dev_map(dev);
2115 if (result)
2116 goto free;
2117
2118 INIT_WORK(&dev->reset_work, nvme_reset_work);
2119 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2120 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2121 (unsigned long)dev);
2122 mutex_init(&dev->shutdown_lock);
2123 init_completion(&dev->ioq_wait);
2124
2125 result = nvme_setup_prp_pools(dev);
2126 if (result)
2127 goto put_pci;
2128
2129 quirks |= check_dell_samsung_bug(pdev);
2130
2131 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2132 quirks);
2133 if (result)
2134 goto release_pools;
2135
2136 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2137
2138 queue_work(nvme_workq, &dev->reset_work);
2139 return 0;
2140
2141 release_pools:
2142 nvme_release_prp_pools(dev);
2143 put_pci:
2144 put_device(dev->dev);
2145 nvme_dev_unmap(dev);
2146 free:
2147 kfree(dev->queues);
2148 kfree(dev);
2149 return result;
2150}
2151
2152static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2153{
2154 struct nvme_dev *dev = pci_get_drvdata(pdev);
2155
2156 if (prepare)
2157 nvme_dev_disable(dev, false);
2158 else
2159 nvme_reset(dev);
2160}
2161
2162static void nvme_shutdown(struct pci_dev *pdev)
2163{
2164 struct nvme_dev *dev = pci_get_drvdata(pdev);
2165 nvme_dev_disable(dev, true);
2166}
2167
2168/*
2169 * The driver's remove may be called on a device in a partially initialized
2170 * state. This function must not have any dependencies on the device state in
2171 * order to proceed.
2172 */
2173static void nvme_remove(struct pci_dev *pdev)
2174{
2175 struct nvme_dev *dev = pci_get_drvdata(pdev);
2176
2177 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2178
2179 pci_set_drvdata(pdev, NULL);
2180
2181 if (!pci_device_is_present(pdev)) {
2182 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2183 nvme_dev_disable(dev, false);
2184 }
2185
2186 flush_work(&dev->reset_work);
2187 nvme_uninit_ctrl(&dev->ctrl);
2188 nvme_dev_disable(dev, true);
2189 nvme_dev_remove_admin(dev);
2190 nvme_free_queues(dev, 0);
2191 nvme_release_cmb(dev);
2192 nvme_release_prp_pools(dev);
2193 nvme_dev_unmap(dev);
2194 nvme_put_ctrl(&dev->ctrl);
2195}
2196
2197static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2198{
2199 int ret = 0;
2200
2201 if (numvfs == 0) {
2202 if (pci_vfs_assigned(pdev)) {
2203 dev_warn(&pdev->dev,
2204 "Cannot disable SR-IOV VFs while assigned\n");
2205 return -EPERM;
2206 }
2207 pci_disable_sriov(pdev);
2208 return 0;
2209 }
2210
2211 ret = pci_enable_sriov(pdev, numvfs);
2212 return ret ? ret : numvfs;
2213}
2214
2215#ifdef CONFIG_PM_SLEEP
2216static int nvme_suspend(struct device *dev)
2217{
2218 struct pci_dev *pdev = to_pci_dev(dev);
2219 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2220
2221 nvme_dev_disable(ndev, true);
2222 return 0;
2223}
2224
2225static int nvme_resume(struct device *dev)
2226{
2227 struct pci_dev *pdev = to_pci_dev(dev);
2228 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2229
2230 nvme_reset(ndev);
2231 return 0;
2232}
2233#endif
2234
2235static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2236
2237static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2238 pci_channel_state_t state)
2239{
2240 struct nvme_dev *dev = pci_get_drvdata(pdev);
2241
2242 /*
2243 * A frozen channel requires a reset. When detected, this method will
2244 * shutdown the controller to quiesce. The controller will be restarted
2245 * after the slot reset through driver's slot_reset callback.
2246 */
2247 switch (state) {
2248 case pci_channel_io_normal:
2249 return PCI_ERS_RESULT_CAN_RECOVER;
2250 case pci_channel_io_frozen:
2251 dev_warn(dev->ctrl.device,
2252 "frozen state error detected, reset controller\n");
2253 nvme_dev_disable(dev, false);
2254 return PCI_ERS_RESULT_NEED_RESET;
2255 case pci_channel_io_perm_failure:
2256 dev_warn(dev->ctrl.device,
2257 "failure state error detected, request disconnect\n");
2258 return PCI_ERS_RESULT_DISCONNECT;
2259 }
2260 return PCI_ERS_RESULT_NEED_RESET;
2261}
2262
2263static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2264{
2265 struct nvme_dev *dev = pci_get_drvdata(pdev);
2266
2267 dev_info(dev->ctrl.device, "restart after slot reset\n");
2268 pci_restore_state(pdev);
2269 nvme_reset(dev);
2270 return PCI_ERS_RESULT_RECOVERED;
2271}
2272
2273static void nvme_error_resume(struct pci_dev *pdev)
2274{
2275 pci_cleanup_aer_uncorrect_error_status(pdev);
2276}
2277
2278static const struct pci_error_handlers nvme_err_handler = {
2279 .error_detected = nvme_error_detected,
2280 .slot_reset = nvme_slot_reset,
2281 .resume = nvme_error_resume,
2282 .reset_notify = nvme_reset_notify,
2283};
2284
2285static const struct pci_device_id nvme_id_table[] = {
2286 { PCI_VDEVICE(INTEL, 0x0953),
2287 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2288 NVME_QUIRK_DEALLOCATE_ZEROES, },
2289 { PCI_VDEVICE(INTEL, 0x0a53),
2290 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2291 NVME_QUIRK_DEALLOCATE_ZEROES, },
2292 { PCI_VDEVICE(INTEL, 0x0a54),
2293 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2294 NVME_QUIRK_DEALLOCATE_ZEROES, },
2295 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2296 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2297 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2298 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2299 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2300 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2301 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2302 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2303 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2304 { 0, }
2305};
2306MODULE_DEVICE_TABLE(pci, nvme_id_table);
2307
2308static struct pci_driver nvme_driver = {
2309 .name = "nvme",
2310 .id_table = nvme_id_table,
2311 .probe = nvme_probe,
2312 .remove = nvme_remove,
2313 .shutdown = nvme_shutdown,
2314 .driver = {
2315 .pm = &nvme_dev_pm_ops,
2316 },
2317 .sriov_configure = nvme_pci_sriov_configure,
2318 .err_handler = &nvme_err_handler,
2319};
2320
2321static int __init nvme_init(void)
2322{
2323 int result;
2324
2325 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2326 if (!nvme_workq)
2327 return -ENOMEM;
2328
2329 result = pci_register_driver(&nvme_driver);
2330 if (result)
2331 destroy_workqueue(nvme_workq);
2332 return result;
2333}
2334
2335static void __exit nvme_exit(void)
2336{
2337 pci_unregister_driver(&nvme_driver);
2338 destroy_workqueue(nvme_workq);
2339 _nvme_check_size();
2340}
2341
2342MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2343MODULE_LICENSE("GPL");
2344MODULE_VERSION("1.0");
2345module_init(nvme_init);
2346module_exit(nvme_exit);