]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - drivers/nvme/host/pci.c
block: merge: get the 1st and last bvec via helpers
[mirror_ubuntu-bionic-kernel.git] / drivers / nvme / host / pci.c
... / ...
CommitLineData
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/aer.h>
16#include <linux/bitops.h>
17#include <linux/blkdev.h>
18#include <linux/blk-mq.h>
19#include <linux/cpu.h>
20#include <linux/delay.h>
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
24#include <linux/hdreg.h>
25#include <linux/idr.h>
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
30#include <linux/kthread.h>
31#include <linux/kernel.h>
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
35#include <linux/mutex.h>
36#include <linux/pci.h>
37#include <linux/poison.h>
38#include <linux/ptrace.h>
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/t10-pi.h>
42#include <linux/types.h>
43#include <linux/io-64-nonatomic-lo-hi.h>
44#include <asm/unaligned.h>
45
46#include "nvme.h"
47
48#define NVME_Q_DEPTH 1024
49#define NVME_AQ_DEPTH 256
50#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
52
53/*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57#define NVME_NR_AEN_COMMANDS 1
58#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
59
60unsigned char admin_timeout = 60;
61module_param(admin_timeout, byte, 0644);
62MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
63
64unsigned char nvme_io_timeout = 30;
65module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
66MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
67
68unsigned char shutdown_timeout = 5;
69module_param(shutdown_timeout, byte, 0644);
70MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
71
72static int use_threaded_interrupts;
73module_param(use_threaded_interrupts, int, 0);
74
75static bool use_cmb_sqes = true;
76module_param(use_cmb_sqes, bool, 0644);
77MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78
79static LIST_HEAD(dev_list);
80static struct task_struct *nvme_thread;
81static struct workqueue_struct *nvme_workq;
82static wait_queue_head_t nvme_kthread_wait;
83
84struct nvme_dev;
85struct nvme_queue;
86
87static int nvme_reset(struct nvme_dev *dev);
88static void nvme_process_cq(struct nvme_queue *nvmeq);
89static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
90static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
91
92/*
93 * Represents an NVM Express device. Each nvme_dev is a PCI function.
94 */
95struct nvme_dev {
96 struct list_head node;
97 struct nvme_queue **queues;
98 struct blk_mq_tag_set tagset;
99 struct blk_mq_tag_set admin_tagset;
100 u32 __iomem *dbs;
101 struct device *dev;
102 struct dma_pool *prp_page_pool;
103 struct dma_pool *prp_small_pool;
104 unsigned queue_count;
105 unsigned online_queues;
106 unsigned max_qid;
107 int q_depth;
108 u32 db_stride;
109 struct msix_entry *entry;
110 void __iomem *bar;
111 struct work_struct reset_work;
112 struct work_struct scan_work;
113 struct work_struct remove_work;
114 struct mutex shutdown_lock;
115 bool subsystem;
116 void __iomem *cmb;
117 dma_addr_t cmb_dma_addr;
118 u64 cmb_size;
119 u32 cmbsz;
120 unsigned long flags;
121
122#define NVME_CTRL_RESETTING 0
123
124 struct nvme_ctrl ctrl;
125 struct completion ioq_wait;
126};
127
128static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
129{
130 return container_of(ctrl, struct nvme_dev, ctrl);
131}
132
133/*
134 * An NVM Express queue. Each device has at least two (one for admin
135 * commands and one for I/O commands).
136 */
137struct nvme_queue {
138 struct device *q_dmadev;
139 struct nvme_dev *dev;
140 char irqname[24]; /* nvme4294967295-65535\0 */
141 spinlock_t q_lock;
142 struct nvme_command *sq_cmds;
143 struct nvme_command __iomem *sq_cmds_io;
144 volatile struct nvme_completion *cqes;
145 struct blk_mq_tags **tags;
146 dma_addr_t sq_dma_addr;
147 dma_addr_t cq_dma_addr;
148 u32 __iomem *q_db;
149 u16 q_depth;
150 s16 cq_vector;
151 u16 sq_head;
152 u16 sq_tail;
153 u16 cq_head;
154 u16 qid;
155 u8 cq_phase;
156 u8 cqe_seen;
157};
158
159/*
160 * The nvme_iod describes the data in an I/O, including the list of PRP
161 * entries. You can't see it in this data structure because C doesn't let
162 * me express that. Use nvme_init_iod to ensure there's enough space
163 * allocated to store the PRP list.
164 */
165struct nvme_iod {
166 struct nvme_queue *nvmeq;
167 int aborted;
168 int npages; /* In the PRP list. 0 means small pool in use */
169 int nents; /* Used in scatterlist */
170 int length; /* Of data, in bytes */
171 dma_addr_t first_dma;
172 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
173 struct scatterlist *sg;
174 struct scatterlist inline_sg[0];
175};
176
177/*
178 * Check we didin't inadvertently grow the command struct
179 */
180static inline void _nvme_check_size(void)
181{
182 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
183 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
185 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
186 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
187 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
188 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
189 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
190 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
191 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
192 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
193 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
194}
195
196/*
197 * Max size of iod being embedded in the request payload
198 */
199#define NVME_INT_PAGES 2
200#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
201
202/*
203 * Will slightly overestimate the number of pages needed. This is OK
204 * as it only leads to a small amount of wasted memory for the lifetime of
205 * the I/O.
206 */
207static int nvme_npages(unsigned size, struct nvme_dev *dev)
208{
209 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
210 dev->ctrl.page_size);
211 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
212}
213
214static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
215 unsigned int size, unsigned int nseg)
216{
217 return sizeof(__le64 *) * nvme_npages(size, dev) +
218 sizeof(struct scatterlist) * nseg;
219}
220
221static unsigned int nvme_cmd_size(struct nvme_dev *dev)
222{
223 return sizeof(struct nvme_iod) +
224 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
225}
226
227static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
228 unsigned int hctx_idx)
229{
230 struct nvme_dev *dev = data;
231 struct nvme_queue *nvmeq = dev->queues[0];
232
233 WARN_ON(hctx_idx != 0);
234 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
235 WARN_ON(nvmeq->tags);
236
237 hctx->driver_data = nvmeq;
238 nvmeq->tags = &dev->admin_tagset.tags[0];
239 return 0;
240}
241
242static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
243{
244 struct nvme_queue *nvmeq = hctx->driver_data;
245
246 nvmeq->tags = NULL;
247}
248
249static int nvme_admin_init_request(void *data, struct request *req,
250 unsigned int hctx_idx, unsigned int rq_idx,
251 unsigned int numa_node)
252{
253 struct nvme_dev *dev = data;
254 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
255 struct nvme_queue *nvmeq = dev->queues[0];
256
257 BUG_ON(!nvmeq);
258 iod->nvmeq = nvmeq;
259 return 0;
260}
261
262static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
263 unsigned int hctx_idx)
264{
265 struct nvme_dev *dev = data;
266 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267
268 if (!nvmeq->tags)
269 nvmeq->tags = &dev->tagset.tags[hctx_idx];
270
271 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
272 hctx->driver_data = nvmeq;
273 return 0;
274}
275
276static int nvme_init_request(void *data, struct request *req,
277 unsigned int hctx_idx, unsigned int rq_idx,
278 unsigned int numa_node)
279{
280 struct nvme_dev *dev = data;
281 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
282 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
283
284 BUG_ON(!nvmeq);
285 iod->nvmeq = nvmeq;
286 return 0;
287}
288
289static void nvme_complete_async_event(struct nvme_dev *dev,
290 struct nvme_completion *cqe)
291{
292 u16 status = le16_to_cpu(cqe->status) >> 1;
293 u32 result = le32_to_cpu(cqe->result);
294
295 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
296 ++dev->ctrl.event_limit;
297 if (status != NVME_SC_SUCCESS)
298 return;
299
300 switch (result & 0xff07) {
301 case NVME_AER_NOTICE_NS_CHANGED:
302 dev_info(dev->dev, "rescanning\n");
303 queue_work(nvme_workq, &dev->scan_work);
304 default:
305 dev_warn(dev->dev, "async event result %08x\n", result);
306 }
307}
308
309/**
310 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
311 * @nvmeq: The queue to use
312 * @cmd: The command to send
313 *
314 * Safe to use from interrupt context
315 */
316static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
317 struct nvme_command *cmd)
318{
319 u16 tail = nvmeq->sq_tail;
320
321 if (nvmeq->sq_cmds_io)
322 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
323 else
324 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
325
326 if (++tail == nvmeq->q_depth)
327 tail = 0;
328 writel(tail, nvmeq->q_db);
329 nvmeq->sq_tail = tail;
330}
331
332static __le64 **iod_list(struct request *req)
333{
334 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
335 return (__le64 **)(iod->sg + req->nr_phys_segments);
336}
337
338static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
339{
340 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
341 int nseg = rq->nr_phys_segments;
342 unsigned size;
343
344 if (rq->cmd_flags & REQ_DISCARD)
345 size = sizeof(struct nvme_dsm_range);
346 else
347 size = blk_rq_bytes(rq);
348
349 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
350 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
351 if (!iod->sg)
352 return BLK_MQ_RQ_QUEUE_BUSY;
353 } else {
354 iod->sg = iod->inline_sg;
355 }
356
357 iod->aborted = 0;
358 iod->npages = -1;
359 iod->nents = 0;
360 iod->length = size;
361 return 0;
362}
363
364static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
365{
366 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
367 const int last_prp = dev->ctrl.page_size / 8 - 1;
368 int i;
369 __le64 **list = iod_list(req);
370 dma_addr_t prp_dma = iod->first_dma;
371
372 if (iod->npages == 0)
373 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
374 for (i = 0; i < iod->npages; i++) {
375 __le64 *prp_list = list[i];
376 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
377 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
378 prp_dma = next_prp_dma;
379 }
380
381 if (iod->sg != iod->inline_sg)
382 kfree(iod->sg);
383}
384
385#ifdef CONFIG_BLK_DEV_INTEGRITY
386static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
387{
388 if (be32_to_cpu(pi->ref_tag) == v)
389 pi->ref_tag = cpu_to_be32(p);
390}
391
392static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
393{
394 if (be32_to_cpu(pi->ref_tag) == p)
395 pi->ref_tag = cpu_to_be32(v);
396}
397
398/**
399 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
400 *
401 * The virtual start sector is the one that was originally submitted by the
402 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
403 * start sector may be different. Remap protection information to match the
404 * physical LBA on writes, and back to the original seed on reads.
405 *
406 * Type 0 and 3 do not have a ref tag, so no remapping required.
407 */
408static void nvme_dif_remap(struct request *req,
409 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
410{
411 struct nvme_ns *ns = req->rq_disk->private_data;
412 struct bio_integrity_payload *bip;
413 struct t10_pi_tuple *pi;
414 void *p, *pmap;
415 u32 i, nlb, ts, phys, virt;
416
417 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
418 return;
419
420 bip = bio_integrity(req->bio);
421 if (!bip)
422 return;
423
424 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
425
426 p = pmap;
427 virt = bip_get_seed(bip);
428 phys = nvme_block_nr(ns, blk_rq_pos(req));
429 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
430 ts = ns->disk->queue->integrity.tuple_size;
431
432 for (i = 0; i < nlb; i++, virt++, phys++) {
433 pi = (struct t10_pi_tuple *)p;
434 dif_swap(phys, virt, pi);
435 p += ts;
436 }
437 kunmap_atomic(pmap);
438}
439#else /* CONFIG_BLK_DEV_INTEGRITY */
440static void nvme_dif_remap(struct request *req,
441 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
442{
443}
444static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
445{
446}
447static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
448{
449}
450#endif
451
452static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
453 int total_len)
454{
455 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
456 struct dma_pool *pool;
457 int length = total_len;
458 struct scatterlist *sg = iod->sg;
459 int dma_len = sg_dma_len(sg);
460 u64 dma_addr = sg_dma_address(sg);
461 u32 page_size = dev->ctrl.page_size;
462 int offset = dma_addr & (page_size - 1);
463 __le64 *prp_list;
464 __le64 **list = iod_list(req);
465 dma_addr_t prp_dma;
466 int nprps, i;
467
468 length -= (page_size - offset);
469 if (length <= 0)
470 return true;
471
472 dma_len -= (page_size - offset);
473 if (dma_len) {
474 dma_addr += (page_size - offset);
475 } else {
476 sg = sg_next(sg);
477 dma_addr = sg_dma_address(sg);
478 dma_len = sg_dma_len(sg);
479 }
480
481 if (length <= page_size) {
482 iod->first_dma = dma_addr;
483 return true;
484 }
485
486 nprps = DIV_ROUND_UP(length, page_size);
487 if (nprps <= (256 / 8)) {
488 pool = dev->prp_small_pool;
489 iod->npages = 0;
490 } else {
491 pool = dev->prp_page_pool;
492 iod->npages = 1;
493 }
494
495 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
496 if (!prp_list) {
497 iod->first_dma = dma_addr;
498 iod->npages = -1;
499 return false;
500 }
501 list[0] = prp_list;
502 iod->first_dma = prp_dma;
503 i = 0;
504 for (;;) {
505 if (i == page_size >> 3) {
506 __le64 *old_prp_list = prp_list;
507 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
508 if (!prp_list)
509 return false;
510 list[iod->npages++] = prp_list;
511 prp_list[0] = old_prp_list[i - 1];
512 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
513 i = 1;
514 }
515 prp_list[i++] = cpu_to_le64(dma_addr);
516 dma_len -= page_size;
517 dma_addr += page_size;
518 length -= page_size;
519 if (length <= 0)
520 break;
521 if (dma_len > 0)
522 continue;
523 BUG_ON(dma_len < 0);
524 sg = sg_next(sg);
525 dma_addr = sg_dma_address(sg);
526 dma_len = sg_dma_len(sg);
527 }
528
529 return true;
530}
531
532static int nvme_map_data(struct nvme_dev *dev, struct request *req,
533 struct nvme_command *cmnd)
534{
535 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
536 struct request_queue *q = req->q;
537 enum dma_data_direction dma_dir = rq_data_dir(req) ?
538 DMA_TO_DEVICE : DMA_FROM_DEVICE;
539 int ret = BLK_MQ_RQ_QUEUE_ERROR;
540
541 sg_init_table(iod->sg, req->nr_phys_segments);
542 iod->nents = blk_rq_map_sg(q, req, iod->sg);
543 if (!iod->nents)
544 goto out;
545
546 ret = BLK_MQ_RQ_QUEUE_BUSY;
547 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
548 goto out;
549
550 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
551 goto out_unmap;
552
553 ret = BLK_MQ_RQ_QUEUE_ERROR;
554 if (blk_integrity_rq(req)) {
555 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
556 goto out_unmap;
557
558 sg_init_table(&iod->meta_sg, 1);
559 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
560 goto out_unmap;
561
562 if (rq_data_dir(req))
563 nvme_dif_remap(req, nvme_dif_prep);
564
565 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
566 goto out_unmap;
567 }
568
569 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
570 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
571 if (blk_integrity_rq(req))
572 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
573 return BLK_MQ_RQ_QUEUE_OK;
574
575out_unmap:
576 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
577out:
578 return ret;
579}
580
581static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
582{
583 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
584 enum dma_data_direction dma_dir = rq_data_dir(req) ?
585 DMA_TO_DEVICE : DMA_FROM_DEVICE;
586
587 if (iod->nents) {
588 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
589 if (blk_integrity_rq(req)) {
590 if (!rq_data_dir(req))
591 nvme_dif_remap(req, nvme_dif_complete);
592 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
593 }
594 }
595
596 nvme_free_iod(dev, req);
597}
598
599/*
600 * We reuse the small pool to allocate the 16-byte range here as it is not
601 * worth having a special pool for these or additional cases to handle freeing
602 * the iod.
603 */
604static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
605 struct request *req, struct nvme_command *cmnd)
606{
607 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
608 struct nvme_dsm_range *range;
609
610 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
611 &iod->first_dma);
612 if (!range)
613 return BLK_MQ_RQ_QUEUE_BUSY;
614 iod_list(req)[0] = (__le64 *)range;
615 iod->npages = 0;
616
617 range->cattr = cpu_to_le32(0);
618 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
619 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
620
621 memset(cmnd, 0, sizeof(*cmnd));
622 cmnd->dsm.opcode = nvme_cmd_dsm;
623 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
624 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
625 cmnd->dsm.nr = 0;
626 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
627 return BLK_MQ_RQ_QUEUE_OK;
628}
629
630/*
631 * NOTE: ns is NULL when called on the admin queue.
632 */
633static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
634 const struct blk_mq_queue_data *bd)
635{
636 struct nvme_ns *ns = hctx->queue->queuedata;
637 struct nvme_queue *nvmeq = hctx->driver_data;
638 struct nvme_dev *dev = nvmeq->dev;
639 struct request *req = bd->rq;
640 struct nvme_command cmnd;
641 int ret = BLK_MQ_RQ_QUEUE_OK;
642
643 /*
644 * If formated with metadata, require the block layer provide a buffer
645 * unless this namespace is formated such that the metadata can be
646 * stripped/generated by the controller with PRACT=1.
647 */
648 if (ns && ns->ms && !blk_integrity_rq(req)) {
649 if (!(ns->pi_type && ns->ms == 8) &&
650 req->cmd_type != REQ_TYPE_DRV_PRIV) {
651 blk_mq_end_request(req, -EFAULT);
652 return BLK_MQ_RQ_QUEUE_OK;
653 }
654 }
655
656 ret = nvme_init_iod(req, dev);
657 if (ret)
658 return ret;
659
660 if (req->cmd_flags & REQ_DISCARD) {
661 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
662 } else {
663 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
664 memcpy(&cmnd, req->cmd, sizeof(cmnd));
665 else if (req->cmd_flags & REQ_FLUSH)
666 nvme_setup_flush(ns, &cmnd);
667 else
668 nvme_setup_rw(ns, req, &cmnd);
669
670 if (req->nr_phys_segments)
671 ret = nvme_map_data(dev, req, &cmnd);
672 }
673
674 if (ret)
675 goto out;
676
677 cmnd.common.command_id = req->tag;
678 blk_mq_start_request(req);
679
680 spin_lock_irq(&nvmeq->q_lock);
681 if (unlikely(nvmeq->cq_vector < 0)) {
682 ret = BLK_MQ_RQ_QUEUE_BUSY;
683 spin_unlock_irq(&nvmeq->q_lock);
684 goto out;
685 }
686 __nvme_submit_cmd(nvmeq, &cmnd);
687 nvme_process_cq(nvmeq);
688 spin_unlock_irq(&nvmeq->q_lock);
689 return BLK_MQ_RQ_QUEUE_OK;
690out:
691 nvme_free_iod(dev, req);
692 return ret;
693}
694
695static void nvme_complete_rq(struct request *req)
696{
697 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
698 struct nvme_dev *dev = iod->nvmeq->dev;
699 int error = 0;
700
701 nvme_unmap_data(dev, req);
702
703 if (unlikely(req->errors)) {
704 if (nvme_req_needs_retry(req, req->errors)) {
705 nvme_requeue_req(req);
706 return;
707 }
708
709 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
710 error = req->errors;
711 else
712 error = nvme_error_status(req->errors);
713 }
714
715 if (unlikely(iod->aborted)) {
716 dev_warn(dev->dev,
717 "completing aborted command with status: %04x\n",
718 req->errors);
719 }
720
721 blk_mq_end_request(req, error);
722}
723
724static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
725{
726 u16 head, phase;
727
728 head = nvmeq->cq_head;
729 phase = nvmeq->cq_phase;
730
731 for (;;) {
732 struct nvme_completion cqe = nvmeq->cqes[head];
733 u16 status = le16_to_cpu(cqe.status);
734 struct request *req;
735
736 if ((status & 1) != phase)
737 break;
738 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
739 if (++head == nvmeq->q_depth) {
740 head = 0;
741 phase = !phase;
742 }
743
744 if (tag && *tag == cqe.command_id)
745 *tag = -1;
746
747 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
748 dev_warn(nvmeq->q_dmadev,
749 "invalid id %d completed on queue %d\n",
750 cqe.command_id, le16_to_cpu(cqe.sq_id));
751 continue;
752 }
753
754 /*
755 * AEN requests are special as they don't time out and can
756 * survive any kind of queue freeze and often don't respond to
757 * aborts. We don't even bother to allocate a struct request
758 * for them but rather special case them here.
759 */
760 if (unlikely(nvmeq->qid == 0 &&
761 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
762 nvme_complete_async_event(nvmeq->dev, &cqe);
763 continue;
764 }
765
766 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
767 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
768 u32 result = le32_to_cpu(cqe.result);
769 req->special = (void *)(uintptr_t)result;
770 }
771 blk_mq_complete_request(req, status >> 1);
772
773 }
774
775 /* If the controller ignores the cq head doorbell and continuously
776 * writes to the queue, it is theoretically possible to wrap around
777 * the queue twice and mistakenly return IRQ_NONE. Linux only
778 * requires that 0.1% of your interrupts are handled, so this isn't
779 * a big problem.
780 */
781 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
782 return;
783
784 if (likely(nvmeq->cq_vector >= 0))
785 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
786 nvmeq->cq_head = head;
787 nvmeq->cq_phase = phase;
788
789 nvmeq->cqe_seen = 1;
790}
791
792static void nvme_process_cq(struct nvme_queue *nvmeq)
793{
794 __nvme_process_cq(nvmeq, NULL);
795}
796
797static irqreturn_t nvme_irq(int irq, void *data)
798{
799 irqreturn_t result;
800 struct nvme_queue *nvmeq = data;
801 spin_lock(&nvmeq->q_lock);
802 nvme_process_cq(nvmeq);
803 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
804 nvmeq->cqe_seen = 0;
805 spin_unlock(&nvmeq->q_lock);
806 return result;
807}
808
809static irqreturn_t nvme_irq_check(int irq, void *data)
810{
811 struct nvme_queue *nvmeq = data;
812 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
813 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
814 return IRQ_NONE;
815 return IRQ_WAKE_THREAD;
816}
817
818static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
819{
820 struct nvme_queue *nvmeq = hctx->driver_data;
821
822 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
823 nvmeq->cq_phase) {
824 spin_lock_irq(&nvmeq->q_lock);
825 __nvme_process_cq(nvmeq, &tag);
826 spin_unlock_irq(&nvmeq->q_lock);
827
828 if (tag == -1)
829 return 1;
830 }
831
832 return 0;
833}
834
835static void nvme_submit_async_event(struct nvme_dev *dev)
836{
837 struct nvme_command c;
838
839 memset(&c, 0, sizeof(c));
840 c.common.opcode = nvme_admin_async_event;
841 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit;
842
843 __nvme_submit_cmd(dev->queues[0], &c);
844}
845
846static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
847{
848 struct nvme_command c;
849
850 memset(&c, 0, sizeof(c));
851 c.delete_queue.opcode = opcode;
852 c.delete_queue.qid = cpu_to_le16(id);
853
854 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
855}
856
857static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
858 struct nvme_queue *nvmeq)
859{
860 struct nvme_command c;
861 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
862
863 /*
864 * Note: we (ab)use the fact the the prp fields survive if no data
865 * is attached to the request.
866 */
867 memset(&c, 0, sizeof(c));
868 c.create_cq.opcode = nvme_admin_create_cq;
869 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
870 c.create_cq.cqid = cpu_to_le16(qid);
871 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
872 c.create_cq.cq_flags = cpu_to_le16(flags);
873 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
874
875 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
876}
877
878static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
879 struct nvme_queue *nvmeq)
880{
881 struct nvme_command c;
882 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
883
884 /*
885 * Note: we (ab)use the fact the the prp fields survive if no data
886 * is attached to the request.
887 */
888 memset(&c, 0, sizeof(c));
889 c.create_sq.opcode = nvme_admin_create_sq;
890 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
891 c.create_sq.sqid = cpu_to_le16(qid);
892 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
893 c.create_sq.sq_flags = cpu_to_le16(flags);
894 c.create_sq.cqid = cpu_to_le16(qid);
895
896 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
897}
898
899static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
900{
901 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
902}
903
904static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
905{
906 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
907}
908
909static void abort_endio(struct request *req, int error)
910{
911 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
912 struct nvme_queue *nvmeq = iod->nvmeq;
913 u32 result = (u32)(uintptr_t)req->special;
914 u16 status = req->errors;
915
916 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
917 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
918
919 blk_mq_free_request(req);
920}
921
922static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
923{
924 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
925 struct nvme_queue *nvmeq = iod->nvmeq;
926 struct nvme_dev *dev = nvmeq->dev;
927 struct request *abort_req;
928 struct nvme_command cmd;
929
930 /*
931 * Shutdown immediately if controller times out while starting. The
932 * reset work will see the pci device disabled when it gets the forced
933 * cancellation error. All outstanding requests are completed on
934 * shutdown, so we return BLK_EH_HANDLED.
935 */
936 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
937 dev_warn(dev->dev,
938 "I/O %d QID %d timeout, disable controller\n",
939 req->tag, nvmeq->qid);
940 nvme_dev_disable(dev, false);
941 req->errors = NVME_SC_CANCELLED;
942 return BLK_EH_HANDLED;
943 }
944
945 /*
946 * Shutdown the controller immediately and schedule a reset if the
947 * command was already aborted once before and still hasn't been
948 * returned to the driver, or if this is the admin queue.
949 */
950 if (!nvmeq->qid || iod->aborted) {
951 dev_warn(dev->dev,
952 "I/O %d QID %d timeout, reset controller\n",
953 req->tag, nvmeq->qid);
954 nvme_dev_disable(dev, false);
955 queue_work(nvme_workq, &dev->reset_work);
956
957 /*
958 * Mark the request as handled, since the inline shutdown
959 * forces all outstanding requests to complete.
960 */
961 req->errors = NVME_SC_CANCELLED;
962 return BLK_EH_HANDLED;
963 }
964
965 iod->aborted = 1;
966
967 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
968 atomic_inc(&dev->ctrl.abort_limit);
969 return BLK_EH_RESET_TIMER;
970 }
971
972 memset(&cmd, 0, sizeof(cmd));
973 cmd.abort.opcode = nvme_admin_abort_cmd;
974 cmd.abort.cid = req->tag;
975 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
976
977 dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
978 req->tag, nvmeq->qid);
979
980 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
981 BLK_MQ_REQ_NOWAIT);
982 if (IS_ERR(abort_req)) {
983 atomic_inc(&dev->ctrl.abort_limit);
984 return BLK_EH_RESET_TIMER;
985 }
986
987 abort_req->timeout = ADMIN_TIMEOUT;
988 abort_req->end_io_data = NULL;
989 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
990
991 /*
992 * The aborted req will be completed on receiving the abort req.
993 * We enable the timer again. If hit twice, it'll cause a device reset,
994 * as the device then is in a faulty state.
995 */
996 return BLK_EH_RESET_TIMER;
997}
998
999static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1000{
1001 struct nvme_queue *nvmeq = data;
1002 int status;
1003
1004 if (!blk_mq_request_started(req))
1005 return;
1006
1007 dev_dbg_ratelimited(nvmeq->q_dmadev,
1008 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
1009
1010 status = NVME_SC_ABORT_REQ;
1011 if (blk_queue_dying(req->q))
1012 status |= NVME_SC_DNR;
1013 blk_mq_complete_request(req, status);
1014}
1015
1016static void nvme_free_queue(struct nvme_queue *nvmeq)
1017{
1018 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1019 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1020 if (nvmeq->sq_cmds)
1021 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1022 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1023 kfree(nvmeq);
1024}
1025
1026static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1027{
1028 int i;
1029
1030 for (i = dev->queue_count - 1; i >= lowest; i--) {
1031 struct nvme_queue *nvmeq = dev->queues[i];
1032 dev->queue_count--;
1033 dev->queues[i] = NULL;
1034 nvme_free_queue(nvmeq);
1035 }
1036}
1037
1038/**
1039 * nvme_suspend_queue - put queue into suspended state
1040 * @nvmeq - queue to suspend
1041 */
1042static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1043{
1044 int vector;
1045
1046 spin_lock_irq(&nvmeq->q_lock);
1047 if (nvmeq->cq_vector == -1) {
1048 spin_unlock_irq(&nvmeq->q_lock);
1049 return 1;
1050 }
1051 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1052 nvmeq->dev->online_queues--;
1053 nvmeq->cq_vector = -1;
1054 spin_unlock_irq(&nvmeq->q_lock);
1055
1056 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1057 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1058
1059 irq_set_affinity_hint(vector, NULL);
1060 free_irq(vector, nvmeq);
1061
1062 return 0;
1063}
1064
1065static void nvme_clear_queue(struct nvme_queue *nvmeq)
1066{
1067 spin_lock_irq(&nvmeq->q_lock);
1068 if (nvmeq->tags && *nvmeq->tags)
1069 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1070 spin_unlock_irq(&nvmeq->q_lock);
1071}
1072
1073static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1074{
1075 struct nvme_queue *nvmeq = dev->queues[0];
1076
1077 if (!nvmeq)
1078 return;
1079 if (nvme_suspend_queue(nvmeq))
1080 return;
1081
1082 if (shutdown)
1083 nvme_shutdown_ctrl(&dev->ctrl);
1084 else
1085 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1086 dev->bar + NVME_REG_CAP));
1087
1088 spin_lock_irq(&nvmeq->q_lock);
1089 nvme_process_cq(nvmeq);
1090 spin_unlock_irq(&nvmeq->q_lock);
1091}
1092
1093static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1094 int entry_size)
1095{
1096 int q_depth = dev->q_depth;
1097 unsigned q_size_aligned = roundup(q_depth * entry_size,
1098 dev->ctrl.page_size);
1099
1100 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1101 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1102 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1103 q_depth = div_u64(mem_per_q, entry_size);
1104
1105 /*
1106 * Ensure the reduced q_depth is above some threshold where it
1107 * would be better to map queues in system memory with the
1108 * original depth
1109 */
1110 if (q_depth < 64)
1111 return -ENOMEM;
1112 }
1113
1114 return q_depth;
1115}
1116
1117static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1118 int qid, int depth)
1119{
1120 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1121 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1122 dev->ctrl.page_size);
1123 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1124 nvmeq->sq_cmds_io = dev->cmb + offset;
1125 } else {
1126 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1127 &nvmeq->sq_dma_addr, GFP_KERNEL);
1128 if (!nvmeq->sq_cmds)
1129 return -ENOMEM;
1130 }
1131
1132 return 0;
1133}
1134
1135static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1136 int depth)
1137{
1138 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1139 if (!nvmeq)
1140 return NULL;
1141
1142 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1143 &nvmeq->cq_dma_addr, GFP_KERNEL);
1144 if (!nvmeq->cqes)
1145 goto free_nvmeq;
1146
1147 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1148 goto free_cqdma;
1149
1150 nvmeq->q_dmadev = dev->dev;
1151 nvmeq->dev = dev;
1152 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1153 dev->ctrl.instance, qid);
1154 spin_lock_init(&nvmeq->q_lock);
1155 nvmeq->cq_head = 0;
1156 nvmeq->cq_phase = 1;
1157 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1158 nvmeq->q_depth = depth;
1159 nvmeq->qid = qid;
1160 nvmeq->cq_vector = -1;
1161 dev->queues[qid] = nvmeq;
1162
1163 /* make sure queue descriptor is set before queue count, for kthread */
1164 mb();
1165 dev->queue_count++;
1166
1167 return nvmeq;
1168
1169 free_cqdma:
1170 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1171 nvmeq->cq_dma_addr);
1172 free_nvmeq:
1173 kfree(nvmeq);
1174 return NULL;
1175}
1176
1177static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1178 const char *name)
1179{
1180 if (use_threaded_interrupts)
1181 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1182 nvme_irq_check, nvme_irq, IRQF_SHARED,
1183 name, nvmeq);
1184 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1185 IRQF_SHARED, name, nvmeq);
1186}
1187
1188static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1189{
1190 struct nvme_dev *dev = nvmeq->dev;
1191
1192 spin_lock_irq(&nvmeq->q_lock);
1193 nvmeq->sq_tail = 0;
1194 nvmeq->cq_head = 0;
1195 nvmeq->cq_phase = 1;
1196 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1197 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1198 dev->online_queues++;
1199 spin_unlock_irq(&nvmeq->q_lock);
1200}
1201
1202static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1203{
1204 struct nvme_dev *dev = nvmeq->dev;
1205 int result;
1206
1207 nvmeq->cq_vector = qid - 1;
1208 result = adapter_alloc_cq(dev, qid, nvmeq);
1209 if (result < 0)
1210 return result;
1211
1212 result = adapter_alloc_sq(dev, qid, nvmeq);
1213 if (result < 0)
1214 goto release_cq;
1215
1216 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1217 if (result < 0)
1218 goto release_sq;
1219
1220 nvme_init_queue(nvmeq, qid);
1221 return result;
1222
1223 release_sq:
1224 adapter_delete_sq(dev, qid);
1225 release_cq:
1226 adapter_delete_cq(dev, qid);
1227 return result;
1228}
1229
1230static struct blk_mq_ops nvme_mq_admin_ops = {
1231 .queue_rq = nvme_queue_rq,
1232 .complete = nvme_complete_rq,
1233 .map_queue = blk_mq_map_queue,
1234 .init_hctx = nvme_admin_init_hctx,
1235 .exit_hctx = nvme_admin_exit_hctx,
1236 .init_request = nvme_admin_init_request,
1237 .timeout = nvme_timeout,
1238};
1239
1240static struct blk_mq_ops nvme_mq_ops = {
1241 .queue_rq = nvme_queue_rq,
1242 .complete = nvme_complete_rq,
1243 .map_queue = blk_mq_map_queue,
1244 .init_hctx = nvme_init_hctx,
1245 .init_request = nvme_init_request,
1246 .timeout = nvme_timeout,
1247 .poll = nvme_poll,
1248};
1249
1250static void nvme_dev_remove_admin(struct nvme_dev *dev)
1251{
1252 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1253 blk_cleanup_queue(dev->ctrl.admin_q);
1254 blk_mq_free_tag_set(&dev->admin_tagset);
1255 }
1256}
1257
1258static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1259{
1260 if (!dev->ctrl.admin_q) {
1261 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1262 dev->admin_tagset.nr_hw_queues = 1;
1263
1264 /*
1265 * Subtract one to leave an empty queue entry for 'Full Queue'
1266 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1267 */
1268 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1269 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1270 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1271 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1272 dev->admin_tagset.driver_data = dev;
1273
1274 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1275 return -ENOMEM;
1276
1277 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1278 if (IS_ERR(dev->ctrl.admin_q)) {
1279 blk_mq_free_tag_set(&dev->admin_tagset);
1280 return -ENOMEM;
1281 }
1282 if (!blk_get_queue(dev->ctrl.admin_q)) {
1283 nvme_dev_remove_admin(dev);
1284 dev->ctrl.admin_q = NULL;
1285 return -ENODEV;
1286 }
1287 } else
1288 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1289
1290 return 0;
1291}
1292
1293static int nvme_configure_admin_queue(struct nvme_dev *dev)
1294{
1295 int result;
1296 u32 aqa;
1297 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1298 struct nvme_queue *nvmeq;
1299
1300 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1301 NVME_CAP_NSSRC(cap) : 0;
1302
1303 if (dev->subsystem &&
1304 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1305 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1306
1307 result = nvme_disable_ctrl(&dev->ctrl, cap);
1308 if (result < 0)
1309 return result;
1310
1311 nvmeq = dev->queues[0];
1312 if (!nvmeq) {
1313 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1314 if (!nvmeq)
1315 return -ENOMEM;
1316 }
1317
1318 aqa = nvmeq->q_depth - 1;
1319 aqa |= aqa << 16;
1320
1321 writel(aqa, dev->bar + NVME_REG_AQA);
1322 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1323 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1324
1325 result = nvme_enable_ctrl(&dev->ctrl, cap);
1326 if (result)
1327 goto free_nvmeq;
1328
1329 nvmeq->cq_vector = 0;
1330 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1331 if (result) {
1332 nvmeq->cq_vector = -1;
1333 goto free_nvmeq;
1334 }
1335
1336 return result;
1337
1338 free_nvmeq:
1339 nvme_free_queues(dev, 0);
1340 return result;
1341}
1342
1343static int nvme_kthread(void *data)
1344{
1345 struct nvme_dev *dev, *next;
1346
1347 while (!kthread_should_stop()) {
1348 set_current_state(TASK_INTERRUPTIBLE);
1349 spin_lock(&dev_list_lock);
1350 list_for_each_entry_safe(dev, next, &dev_list, node) {
1351 int i;
1352 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1353
1354 /*
1355 * Skip controllers currently under reset.
1356 */
1357 if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1358 continue;
1359
1360 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1361 csts & NVME_CSTS_CFS) {
1362 if (queue_work(nvme_workq, &dev->reset_work)) {
1363 dev_warn(dev->dev,
1364 "Failed status: %x, reset controller\n",
1365 readl(dev->bar + NVME_REG_CSTS));
1366 }
1367 continue;
1368 }
1369 for (i = 0; i < dev->queue_count; i++) {
1370 struct nvme_queue *nvmeq = dev->queues[i];
1371 if (!nvmeq)
1372 continue;
1373 spin_lock_irq(&nvmeq->q_lock);
1374 nvme_process_cq(nvmeq);
1375
1376 while (i == 0 && dev->ctrl.event_limit > 0)
1377 nvme_submit_async_event(dev);
1378 spin_unlock_irq(&nvmeq->q_lock);
1379 }
1380 }
1381 spin_unlock(&dev_list_lock);
1382 schedule_timeout(round_jiffies_relative(HZ));
1383 }
1384 return 0;
1385}
1386
1387static int nvme_create_io_queues(struct nvme_dev *dev)
1388{
1389 unsigned i;
1390 int ret = 0;
1391
1392 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1393 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1394 ret = -ENOMEM;
1395 break;
1396 }
1397 }
1398
1399 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1400 ret = nvme_create_queue(dev->queues[i], i);
1401 if (ret) {
1402 nvme_free_queues(dev, i);
1403 break;
1404 }
1405 }
1406
1407 /*
1408 * Ignore failing Create SQ/CQ commands, we can continue with less
1409 * than the desired aount of queues, and even a controller without
1410 * I/O queues an still be used to issue admin commands. This might
1411 * be useful to upgrade a buggy firmware for example.
1412 */
1413 return ret >= 0 ? 0 : ret;
1414}
1415
1416static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1417{
1418 u64 szu, size, offset;
1419 u32 cmbloc;
1420 resource_size_t bar_size;
1421 struct pci_dev *pdev = to_pci_dev(dev->dev);
1422 void __iomem *cmb;
1423 dma_addr_t dma_addr;
1424
1425 if (!use_cmb_sqes)
1426 return NULL;
1427
1428 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1429 if (!(NVME_CMB_SZ(dev->cmbsz)))
1430 return NULL;
1431
1432 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1433
1434 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1435 size = szu * NVME_CMB_SZ(dev->cmbsz);
1436 offset = szu * NVME_CMB_OFST(cmbloc);
1437 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1438
1439 if (offset > bar_size)
1440 return NULL;
1441
1442 /*
1443 * Controllers may support a CMB size larger than their BAR,
1444 * for example, due to being behind a bridge. Reduce the CMB to
1445 * the reported size of the BAR
1446 */
1447 if (size > bar_size - offset)
1448 size = bar_size - offset;
1449
1450 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1451 cmb = ioremap_wc(dma_addr, size);
1452 if (!cmb)
1453 return NULL;
1454
1455 dev->cmb_dma_addr = dma_addr;
1456 dev->cmb_size = size;
1457 return cmb;
1458}
1459
1460static inline void nvme_release_cmb(struct nvme_dev *dev)
1461{
1462 if (dev->cmb) {
1463 iounmap(dev->cmb);
1464 dev->cmb = NULL;
1465 }
1466}
1467
1468static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1469{
1470 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1471}
1472
1473static int nvme_setup_io_queues(struct nvme_dev *dev)
1474{
1475 struct nvme_queue *adminq = dev->queues[0];
1476 struct pci_dev *pdev = to_pci_dev(dev->dev);
1477 int result, i, vecs, nr_io_queues, size;
1478
1479 nr_io_queues = num_possible_cpus();
1480 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1481 if (result < 0)
1482 return result;
1483
1484 /*
1485 * Degraded controllers might return an error when setting the queue
1486 * count. We still want to be able to bring them online and offer
1487 * access to the admin queue, as that might be only way to fix them up.
1488 */
1489 if (result > 0) {
1490 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1491 nr_io_queues = 0;
1492 result = 0;
1493 }
1494
1495 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1496 result = nvme_cmb_qdepth(dev, nr_io_queues,
1497 sizeof(struct nvme_command));
1498 if (result > 0)
1499 dev->q_depth = result;
1500 else
1501 nvme_release_cmb(dev);
1502 }
1503
1504 size = db_bar_size(dev, nr_io_queues);
1505 if (size > 8192) {
1506 iounmap(dev->bar);
1507 do {
1508 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1509 if (dev->bar)
1510 break;
1511 if (!--nr_io_queues)
1512 return -ENOMEM;
1513 size = db_bar_size(dev, nr_io_queues);
1514 } while (1);
1515 dev->dbs = dev->bar + 4096;
1516 adminq->q_db = dev->dbs;
1517 }
1518
1519 /* Deregister the admin queue's interrupt */
1520 free_irq(dev->entry[0].vector, adminq);
1521
1522 /*
1523 * If we enable msix early due to not intx, disable it again before
1524 * setting up the full range we need.
1525 */
1526 if (!pdev->irq)
1527 pci_disable_msix(pdev);
1528
1529 for (i = 0; i < nr_io_queues; i++)
1530 dev->entry[i].entry = i;
1531 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1532 if (vecs < 0) {
1533 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1534 if (vecs < 0) {
1535 vecs = 1;
1536 } else {
1537 for (i = 0; i < vecs; i++)
1538 dev->entry[i].vector = i + pdev->irq;
1539 }
1540 }
1541
1542 /*
1543 * Should investigate if there's a performance win from allocating
1544 * more queues than interrupt vectors; it might allow the submission
1545 * path to scale better, even if the receive path is limited by the
1546 * number of interrupts.
1547 */
1548 nr_io_queues = vecs;
1549 dev->max_qid = nr_io_queues;
1550
1551 result = queue_request_irq(dev, adminq, adminq->irqname);
1552 if (result) {
1553 adminq->cq_vector = -1;
1554 goto free_queues;
1555 }
1556
1557 /* Free previously allocated queues that are no longer usable */
1558 nvme_free_queues(dev, nr_io_queues + 1);
1559 return nvme_create_io_queues(dev);
1560
1561 free_queues:
1562 nvme_free_queues(dev, 1);
1563 return result;
1564}
1565
1566static void nvme_set_irq_hints(struct nvme_dev *dev)
1567{
1568 struct nvme_queue *nvmeq;
1569 int i;
1570
1571 for (i = 0; i < dev->online_queues; i++) {
1572 nvmeq = dev->queues[i];
1573
1574 if (!nvmeq->tags || !(*nvmeq->tags))
1575 continue;
1576
1577 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1578 blk_mq_tags_cpumask(*nvmeq->tags));
1579 }
1580}
1581
1582static void nvme_dev_scan(struct work_struct *work)
1583{
1584 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1585
1586 if (!dev->tagset.tags)
1587 return;
1588 nvme_scan_namespaces(&dev->ctrl);
1589 nvme_set_irq_hints(dev);
1590}
1591
1592static void nvme_del_queue_end(struct request *req, int error)
1593{
1594 struct nvme_queue *nvmeq = req->end_io_data;
1595
1596 blk_mq_free_request(req);
1597 complete(&nvmeq->dev->ioq_wait);
1598}
1599
1600static void nvme_del_cq_end(struct request *req, int error)
1601{
1602 struct nvme_queue *nvmeq = req->end_io_data;
1603
1604 if (!error) {
1605 unsigned long flags;
1606
1607 spin_lock_irqsave(&nvmeq->q_lock, flags);
1608 nvme_process_cq(nvmeq);
1609 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1610 }
1611
1612 nvme_del_queue_end(req, error);
1613}
1614
1615static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1616{
1617 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1618 struct request *req;
1619 struct nvme_command cmd;
1620
1621 memset(&cmd, 0, sizeof(cmd));
1622 cmd.delete_queue.opcode = opcode;
1623 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1624
1625 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1626 if (IS_ERR(req))
1627 return PTR_ERR(req);
1628
1629 req->timeout = ADMIN_TIMEOUT;
1630 req->end_io_data = nvmeq;
1631
1632 blk_execute_rq_nowait(q, NULL, req, false,
1633 opcode == nvme_admin_delete_cq ?
1634 nvme_del_cq_end : nvme_del_queue_end);
1635 return 0;
1636}
1637
1638static void nvme_disable_io_queues(struct nvme_dev *dev)
1639{
1640 int pass;
1641 unsigned long timeout;
1642 u8 opcode = nvme_admin_delete_sq;
1643
1644 for (pass = 0; pass < 2; pass++) {
1645 int sent = 0, i = dev->queue_count - 1;
1646
1647 reinit_completion(&dev->ioq_wait);
1648 retry:
1649 timeout = ADMIN_TIMEOUT;
1650 for (; i > 0; i--) {
1651 struct nvme_queue *nvmeq = dev->queues[i];
1652
1653 if (!pass)
1654 nvme_suspend_queue(nvmeq);
1655 if (nvme_delete_queue(nvmeq, opcode))
1656 break;
1657 ++sent;
1658 }
1659 while (sent--) {
1660 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1661 if (timeout == 0)
1662 return;
1663 if (i)
1664 goto retry;
1665 }
1666 opcode = nvme_admin_delete_cq;
1667 }
1668}
1669
1670/*
1671 * Return: error value if an error occurred setting up the queues or calling
1672 * Identify Device. 0 if these succeeded, even if adding some of the
1673 * namespaces failed. At the moment, these failures are silent. TBD which
1674 * failures should be reported.
1675 */
1676static int nvme_dev_add(struct nvme_dev *dev)
1677{
1678 if (!dev->ctrl.tagset) {
1679 dev->tagset.ops = &nvme_mq_ops;
1680 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1681 dev->tagset.timeout = NVME_IO_TIMEOUT;
1682 dev->tagset.numa_node = dev_to_node(dev->dev);
1683 dev->tagset.queue_depth =
1684 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1685 dev->tagset.cmd_size = nvme_cmd_size(dev);
1686 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1687 dev->tagset.driver_data = dev;
1688
1689 if (blk_mq_alloc_tag_set(&dev->tagset))
1690 return 0;
1691 dev->ctrl.tagset = &dev->tagset;
1692 }
1693 queue_work(nvme_workq, &dev->scan_work);
1694 return 0;
1695}
1696
1697static int nvme_dev_map(struct nvme_dev *dev)
1698{
1699 u64 cap;
1700 int bars, result = -ENOMEM;
1701 struct pci_dev *pdev = to_pci_dev(dev->dev);
1702
1703 if (pci_enable_device_mem(pdev))
1704 return result;
1705
1706 dev->entry[0].vector = pdev->irq;
1707 pci_set_master(pdev);
1708 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1709 if (!bars)
1710 goto disable_pci;
1711
1712 if (pci_request_selected_regions(pdev, bars, "nvme"))
1713 goto disable_pci;
1714
1715 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1716 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1717 goto disable;
1718
1719 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1720 if (!dev->bar)
1721 goto disable;
1722
1723 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1724 result = -ENODEV;
1725 goto unmap;
1726 }
1727
1728 /*
1729 * Some devices don't advertse INTx interrupts, pre-enable a single
1730 * MSIX vec for setup. We'll adjust this later.
1731 */
1732 if (!pdev->irq) {
1733 result = pci_enable_msix(pdev, dev->entry, 1);
1734 if (result < 0)
1735 goto unmap;
1736 }
1737
1738 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1739
1740 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1741 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1742 dev->dbs = dev->bar + 4096;
1743
1744 /*
1745 * Temporary fix for the Apple controller found in the MacBook8,1 and
1746 * some MacBook7,1 to avoid controller resets and data loss.
1747 */
1748 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1749 dev->q_depth = 2;
1750 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1751 "queue depth=%u to work around controller resets\n",
1752 dev->q_depth);
1753 }
1754
1755 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1756 dev->cmb = nvme_map_cmb(dev);
1757
1758 pci_enable_pcie_error_reporting(pdev);
1759 pci_save_state(pdev);
1760 return 0;
1761
1762 unmap:
1763 iounmap(dev->bar);
1764 dev->bar = NULL;
1765 disable:
1766 pci_release_regions(pdev);
1767 disable_pci:
1768 pci_disable_device(pdev);
1769 return result;
1770}
1771
1772static void nvme_dev_unmap(struct nvme_dev *dev)
1773{
1774 struct pci_dev *pdev = to_pci_dev(dev->dev);
1775
1776 if (pdev->msi_enabled)
1777 pci_disable_msi(pdev);
1778 else if (pdev->msix_enabled)
1779 pci_disable_msix(pdev);
1780
1781 if (dev->bar) {
1782 iounmap(dev->bar);
1783 dev->bar = NULL;
1784 pci_release_regions(pdev);
1785 }
1786
1787 if (pci_is_enabled(pdev)) {
1788 pci_disable_pcie_error_reporting(pdev);
1789 pci_disable_device(pdev);
1790 }
1791}
1792
1793static int nvme_dev_list_add(struct nvme_dev *dev)
1794{
1795 bool start_thread = false;
1796
1797 spin_lock(&dev_list_lock);
1798 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1799 start_thread = true;
1800 nvme_thread = NULL;
1801 }
1802 list_add(&dev->node, &dev_list);
1803 spin_unlock(&dev_list_lock);
1804
1805 if (start_thread) {
1806 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1807 wake_up_all(&nvme_kthread_wait);
1808 } else
1809 wait_event_killable(nvme_kthread_wait, nvme_thread);
1810
1811 if (IS_ERR_OR_NULL(nvme_thread))
1812 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
1813
1814 return 0;
1815}
1816
1817/*
1818* Remove the node from the device list and check
1819* for whether or not we need to stop the nvme_thread.
1820*/
1821static void nvme_dev_list_remove(struct nvme_dev *dev)
1822{
1823 struct task_struct *tmp = NULL;
1824
1825 spin_lock(&dev_list_lock);
1826 list_del_init(&dev->node);
1827 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
1828 tmp = nvme_thread;
1829 nvme_thread = NULL;
1830 }
1831 spin_unlock(&dev_list_lock);
1832
1833 if (tmp)
1834 kthread_stop(tmp);
1835}
1836
1837static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1838{
1839 int i;
1840 u32 csts = -1;
1841
1842 nvme_dev_list_remove(dev);
1843
1844 mutex_lock(&dev->shutdown_lock);
1845 if (dev->bar) {
1846 nvme_stop_queues(&dev->ctrl);
1847 csts = readl(dev->bar + NVME_REG_CSTS);
1848 }
1849 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1850 for (i = dev->queue_count - 1; i >= 0; i--) {
1851 struct nvme_queue *nvmeq = dev->queues[i];
1852 nvme_suspend_queue(nvmeq);
1853 }
1854 } else {
1855 nvme_disable_io_queues(dev);
1856 nvme_disable_admin_queue(dev, shutdown);
1857 }
1858 nvme_dev_unmap(dev);
1859
1860 for (i = dev->queue_count - 1; i >= 0; i--)
1861 nvme_clear_queue(dev->queues[i]);
1862 mutex_unlock(&dev->shutdown_lock);
1863}
1864
1865static int nvme_setup_prp_pools(struct nvme_dev *dev)
1866{
1867 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1868 PAGE_SIZE, PAGE_SIZE, 0);
1869 if (!dev->prp_page_pool)
1870 return -ENOMEM;
1871
1872 /* Optimisation for I/Os between 4k and 128k */
1873 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1874 256, 256, 0);
1875 if (!dev->prp_small_pool) {
1876 dma_pool_destroy(dev->prp_page_pool);
1877 return -ENOMEM;
1878 }
1879 return 0;
1880}
1881
1882static void nvme_release_prp_pools(struct nvme_dev *dev)
1883{
1884 dma_pool_destroy(dev->prp_page_pool);
1885 dma_pool_destroy(dev->prp_small_pool);
1886}
1887
1888static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1889{
1890 struct nvme_dev *dev = to_nvme_dev(ctrl);
1891
1892 put_device(dev->dev);
1893 if (dev->tagset.tags)
1894 blk_mq_free_tag_set(&dev->tagset);
1895 if (dev->ctrl.admin_q)
1896 blk_put_queue(dev->ctrl.admin_q);
1897 kfree(dev->queues);
1898 kfree(dev->entry);
1899 kfree(dev);
1900}
1901
1902static void nvme_reset_work(struct work_struct *work)
1903{
1904 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1905 int result;
1906
1907 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1908 goto out;
1909
1910 /*
1911 * If we're called to reset a live controller first shut it down before
1912 * moving on.
1913 */
1914 if (dev->bar)
1915 nvme_dev_disable(dev, false);
1916
1917 set_bit(NVME_CTRL_RESETTING, &dev->flags);
1918
1919 result = nvme_dev_map(dev);
1920 if (result)
1921 goto out;
1922
1923 result = nvme_configure_admin_queue(dev);
1924 if (result)
1925 goto unmap;
1926
1927 nvme_init_queue(dev->queues[0], 0);
1928 result = nvme_alloc_admin_tags(dev);
1929 if (result)
1930 goto disable;
1931
1932 result = nvme_init_identify(&dev->ctrl);
1933 if (result)
1934 goto free_tags;
1935
1936 result = nvme_setup_io_queues(dev);
1937 if (result)
1938 goto free_tags;
1939
1940 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1941
1942 result = nvme_dev_list_add(dev);
1943 if (result)
1944 goto remove;
1945
1946 /*
1947 * Keep the controller around but remove all namespaces if we don't have
1948 * any working I/O queue.
1949 */
1950 if (dev->online_queues < 2) {
1951 dev_warn(dev->dev, "IO queues not created\n");
1952 nvme_remove_namespaces(&dev->ctrl);
1953 } else {
1954 nvme_start_queues(&dev->ctrl);
1955 nvme_dev_add(dev);
1956 }
1957
1958 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
1959 return;
1960
1961 remove:
1962 nvme_dev_list_remove(dev);
1963 free_tags:
1964 nvme_dev_remove_admin(dev);
1965 blk_put_queue(dev->ctrl.admin_q);
1966 dev->ctrl.admin_q = NULL;
1967 dev->queues[0]->tags = NULL;
1968 disable:
1969 nvme_disable_admin_queue(dev, false);
1970 unmap:
1971 nvme_dev_unmap(dev);
1972 out:
1973 nvme_remove_dead_ctrl(dev);
1974}
1975
1976static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1977{
1978 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1979 struct pci_dev *pdev = to_pci_dev(dev->dev);
1980
1981 if (pci_get_drvdata(pdev))
1982 pci_stop_and_remove_bus_device_locked(pdev);
1983 nvme_put_ctrl(&dev->ctrl);
1984}
1985
1986static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
1987{
1988 dev_warn(dev->dev, "Removing after probe failure\n");
1989 kref_get(&dev->ctrl.kref);
1990 if (!schedule_work(&dev->remove_work))
1991 nvme_put_ctrl(&dev->ctrl);
1992}
1993
1994static int nvme_reset(struct nvme_dev *dev)
1995{
1996 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1997 return -ENODEV;
1998
1999 if (!queue_work(nvme_workq, &dev->reset_work))
2000 return -EBUSY;
2001
2002 flush_work(&dev->reset_work);
2003 return 0;
2004}
2005
2006static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2007{
2008 *val = readl(to_nvme_dev(ctrl)->bar + off);
2009 return 0;
2010}
2011
2012static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2013{
2014 writel(val, to_nvme_dev(ctrl)->bar + off);
2015 return 0;
2016}
2017
2018static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2019{
2020 *val = readq(to_nvme_dev(ctrl)->bar + off);
2021 return 0;
2022}
2023
2024static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2025{
2026 struct nvme_dev *dev = to_nvme_dev(ctrl);
2027
2028 return !dev->bar || dev->online_queues < 2;
2029}
2030
2031static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2032{
2033 return nvme_reset(to_nvme_dev(ctrl));
2034}
2035
2036static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2037 .reg_read32 = nvme_pci_reg_read32,
2038 .reg_write32 = nvme_pci_reg_write32,
2039 .reg_read64 = nvme_pci_reg_read64,
2040 .io_incapable = nvme_pci_io_incapable,
2041 .reset_ctrl = nvme_pci_reset_ctrl,
2042 .free_ctrl = nvme_pci_free_ctrl,
2043};
2044
2045static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2046{
2047 int node, result = -ENOMEM;
2048 struct nvme_dev *dev;
2049
2050 node = dev_to_node(&pdev->dev);
2051 if (node == NUMA_NO_NODE)
2052 set_dev_node(&pdev->dev, 0);
2053
2054 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2055 if (!dev)
2056 return -ENOMEM;
2057 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2058 GFP_KERNEL, node);
2059 if (!dev->entry)
2060 goto free;
2061 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2062 GFP_KERNEL, node);
2063 if (!dev->queues)
2064 goto free;
2065
2066 dev->dev = get_device(&pdev->dev);
2067 pci_set_drvdata(pdev, dev);
2068
2069 INIT_LIST_HEAD(&dev->node);
2070 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2071 INIT_WORK(&dev->reset_work, nvme_reset_work);
2072 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2073 mutex_init(&dev->shutdown_lock);
2074 init_completion(&dev->ioq_wait);
2075
2076 result = nvme_setup_prp_pools(dev);
2077 if (result)
2078 goto put_pci;
2079
2080 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2081 id->driver_data);
2082 if (result)
2083 goto release_pools;
2084
2085 queue_work(nvme_workq, &dev->reset_work);
2086 return 0;
2087
2088 release_pools:
2089 nvme_release_prp_pools(dev);
2090 put_pci:
2091 put_device(dev->dev);
2092 free:
2093 kfree(dev->queues);
2094 kfree(dev->entry);
2095 kfree(dev);
2096 return result;
2097}
2098
2099static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2100{
2101 struct nvme_dev *dev = pci_get_drvdata(pdev);
2102
2103 if (prepare)
2104 nvme_dev_disable(dev, false);
2105 else
2106 queue_work(nvme_workq, &dev->reset_work);
2107}
2108
2109static void nvme_shutdown(struct pci_dev *pdev)
2110{
2111 struct nvme_dev *dev = pci_get_drvdata(pdev);
2112 nvme_dev_disable(dev, true);
2113}
2114
2115static void nvme_remove(struct pci_dev *pdev)
2116{
2117 struct nvme_dev *dev = pci_get_drvdata(pdev);
2118
2119 pci_set_drvdata(pdev, NULL);
2120 flush_work(&dev->scan_work);
2121 nvme_remove_namespaces(&dev->ctrl);
2122 nvme_uninit_ctrl(&dev->ctrl);
2123 nvme_dev_disable(dev, true);
2124 flush_work(&dev->reset_work);
2125 nvme_dev_remove_admin(dev);
2126 nvme_free_queues(dev, 0);
2127 nvme_release_cmb(dev);
2128 nvme_release_prp_pools(dev);
2129 nvme_put_ctrl(&dev->ctrl);
2130}
2131
2132#ifdef CONFIG_PM_SLEEP
2133static int nvme_suspend(struct device *dev)
2134{
2135 struct pci_dev *pdev = to_pci_dev(dev);
2136 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2137
2138 nvme_dev_disable(ndev, true);
2139 return 0;
2140}
2141
2142static int nvme_resume(struct device *dev)
2143{
2144 struct pci_dev *pdev = to_pci_dev(dev);
2145 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2146
2147 queue_work(nvme_workq, &ndev->reset_work);
2148 return 0;
2149}
2150#endif
2151
2152static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2153
2154static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2155 pci_channel_state_t state)
2156{
2157 struct nvme_dev *dev = pci_get_drvdata(pdev);
2158
2159 /*
2160 * A frozen channel requires a reset. When detected, this method will
2161 * shutdown the controller to quiesce. The controller will be restarted
2162 * after the slot reset through driver's slot_reset callback.
2163 */
2164 dev_warn(&pdev->dev, "error detected: state:%d\n", state);
2165 switch (state) {
2166 case pci_channel_io_normal:
2167 return PCI_ERS_RESULT_CAN_RECOVER;
2168 case pci_channel_io_frozen:
2169 nvme_dev_disable(dev, false);
2170 return PCI_ERS_RESULT_NEED_RESET;
2171 case pci_channel_io_perm_failure:
2172 return PCI_ERS_RESULT_DISCONNECT;
2173 }
2174 return PCI_ERS_RESULT_NEED_RESET;
2175}
2176
2177static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2178{
2179 struct nvme_dev *dev = pci_get_drvdata(pdev);
2180
2181 dev_info(&pdev->dev, "restart after slot reset\n");
2182 pci_restore_state(pdev);
2183 queue_work(nvme_workq, &dev->reset_work);
2184 return PCI_ERS_RESULT_RECOVERED;
2185}
2186
2187static void nvme_error_resume(struct pci_dev *pdev)
2188{
2189 pci_cleanup_aer_uncorrect_error_status(pdev);
2190}
2191
2192static const struct pci_error_handlers nvme_err_handler = {
2193 .error_detected = nvme_error_detected,
2194 .slot_reset = nvme_slot_reset,
2195 .resume = nvme_error_resume,
2196 .reset_notify = nvme_reset_notify,
2197};
2198
2199/* Move to pci_ids.h later */
2200#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2201
2202static const struct pci_device_id nvme_id_table[] = {
2203 { PCI_VDEVICE(INTEL, 0x0953),
2204 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2205 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2206 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2207 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2208 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2209 { 0, }
2210};
2211MODULE_DEVICE_TABLE(pci, nvme_id_table);
2212
2213static struct pci_driver nvme_driver = {
2214 .name = "nvme",
2215 .id_table = nvme_id_table,
2216 .probe = nvme_probe,
2217 .remove = nvme_remove,
2218 .shutdown = nvme_shutdown,
2219 .driver = {
2220 .pm = &nvme_dev_pm_ops,
2221 },
2222 .err_handler = &nvme_err_handler,
2223};
2224
2225static int __init nvme_init(void)
2226{
2227 int result;
2228
2229 init_waitqueue_head(&nvme_kthread_wait);
2230
2231 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2232 if (!nvme_workq)
2233 return -ENOMEM;
2234
2235 result = nvme_core_init();
2236 if (result < 0)
2237 goto kill_workq;
2238
2239 result = pci_register_driver(&nvme_driver);
2240 if (result)
2241 goto core_exit;
2242 return 0;
2243
2244 core_exit:
2245 nvme_core_exit();
2246 kill_workq:
2247 destroy_workqueue(nvme_workq);
2248 return result;
2249}
2250
2251static void __exit nvme_exit(void)
2252{
2253 pci_unregister_driver(&nvme_driver);
2254 nvme_core_exit();
2255 destroy_workqueue(nvme_workq);
2256 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2257 _nvme_check_size();
2258}
2259
2260MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2261MODULE_LICENSE("GPL");
2262MODULE_VERSION("1.0");
2263module_init(nvme_init);
2264module_exit(nvme_exit);