]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - drivers/rtc/rtc-ds1307.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / drivers / rtc / rtc-ds1307.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * rtc-ds1307.c - RTC driver for some mostly-compatible I2C chips.
4 *
5 * Copyright (C) 2005 James Chapman (ds1337 core)
6 * Copyright (C) 2006 David Brownell
7 * Copyright (C) 2009 Matthias Fuchs (rx8025 support)
8 * Copyright (C) 2012 Bertrand Achard (nvram access fixes)
9 */
10
11#include <linux/bcd.h>
12#include <linux/i2c.h>
13#include <linux/init.h>
14#include <linux/mod_devicetable.h>
15#include <linux/module.h>
16#include <linux/property.h>
17#include <linux/rtc/ds1307.h>
18#include <linux/rtc.h>
19#include <linux/slab.h>
20#include <linux/string.h>
21#include <linux/hwmon.h>
22#include <linux/hwmon-sysfs.h>
23#include <linux/clk-provider.h>
24#include <linux/regmap.h>
25#include <linux/watchdog.h>
26
27/*
28 * We can't determine type by probing, but if we expect pre-Linux code
29 * to have set the chip up as a clock (turning on the oscillator and
30 * setting the date and time), Linux can ignore the non-clock features.
31 * That's a natural job for a factory or repair bench.
32 */
33enum ds_type {
34 unknown_ds_type, /* always first and 0 */
35 ds_1307,
36 ds_1308,
37 ds_1337,
38 ds_1338,
39 ds_1339,
40 ds_1340,
41 ds_1341,
42 ds_1388,
43 ds_3231,
44 m41t0,
45 m41t00,
46 m41t11,
47 mcp794xx,
48 rx_8025,
49 rx_8130,
50 last_ds_type /* always last */
51 /* rs5c372 too? different address... */
52};
53
54/* RTC registers don't differ much, except for the century flag */
55#define DS1307_REG_SECS 0x00 /* 00-59 */
56# define DS1307_BIT_CH 0x80
57# define DS1340_BIT_nEOSC 0x80
58# define MCP794XX_BIT_ST 0x80
59#define DS1307_REG_MIN 0x01 /* 00-59 */
60# define M41T0_BIT_OF 0x80
61#define DS1307_REG_HOUR 0x02 /* 00-23, or 1-12{am,pm} */
62# define DS1307_BIT_12HR 0x40 /* in REG_HOUR */
63# define DS1307_BIT_PM 0x20 /* in REG_HOUR */
64# define DS1340_BIT_CENTURY_EN 0x80 /* in REG_HOUR */
65# define DS1340_BIT_CENTURY 0x40 /* in REG_HOUR */
66#define DS1307_REG_WDAY 0x03 /* 01-07 */
67# define MCP794XX_BIT_VBATEN 0x08
68#define DS1307_REG_MDAY 0x04 /* 01-31 */
69#define DS1307_REG_MONTH 0x05 /* 01-12 */
70# define DS1337_BIT_CENTURY 0x80 /* in REG_MONTH */
71#define DS1307_REG_YEAR 0x06 /* 00-99 */
72
73/*
74 * Other registers (control, status, alarms, trickle charge, NVRAM, etc)
75 * start at 7, and they differ a LOT. Only control and status matter for
76 * basic RTC date and time functionality; be careful using them.
77 */
78#define DS1307_REG_CONTROL 0x07 /* or ds1338 */
79# define DS1307_BIT_OUT 0x80
80# define DS1338_BIT_OSF 0x20
81# define DS1307_BIT_SQWE 0x10
82# define DS1307_BIT_RS1 0x02
83# define DS1307_BIT_RS0 0x01
84#define DS1337_REG_CONTROL 0x0e
85# define DS1337_BIT_nEOSC 0x80
86# define DS1339_BIT_BBSQI 0x20
87# define DS3231_BIT_BBSQW 0x40 /* same as BBSQI */
88# define DS1337_BIT_RS2 0x10
89# define DS1337_BIT_RS1 0x08
90# define DS1337_BIT_INTCN 0x04
91# define DS1337_BIT_A2IE 0x02
92# define DS1337_BIT_A1IE 0x01
93#define DS1340_REG_CONTROL 0x07
94# define DS1340_BIT_OUT 0x80
95# define DS1340_BIT_FT 0x40
96# define DS1340_BIT_CALIB_SIGN 0x20
97# define DS1340_M_CALIBRATION 0x1f
98#define DS1340_REG_FLAG 0x09
99# define DS1340_BIT_OSF 0x80
100#define DS1337_REG_STATUS 0x0f
101# define DS1337_BIT_OSF 0x80
102# define DS3231_BIT_EN32KHZ 0x08
103# define DS1337_BIT_A2I 0x02
104# define DS1337_BIT_A1I 0x01
105#define DS1339_REG_ALARM1_SECS 0x07
106
107#define DS13XX_TRICKLE_CHARGER_MAGIC 0xa0
108
109#define RX8025_REG_CTRL1 0x0e
110# define RX8025_BIT_2412 0x20
111#define RX8025_REG_CTRL2 0x0f
112# define RX8025_BIT_PON 0x10
113# define RX8025_BIT_VDET 0x40
114# define RX8025_BIT_XST 0x20
115
116#define RX8130_REG_ALARM_MIN 0x17
117#define RX8130_REG_ALARM_HOUR 0x18
118#define RX8130_REG_ALARM_WEEK_OR_DAY 0x19
119#define RX8130_REG_EXTENSION 0x1c
120#define RX8130_REG_EXTENSION_WADA BIT(3)
121#define RX8130_REG_FLAG 0x1d
122#define RX8130_REG_FLAG_VLF BIT(1)
123#define RX8130_REG_FLAG_AF BIT(3)
124#define RX8130_REG_CONTROL0 0x1e
125#define RX8130_REG_CONTROL0_AIE BIT(3)
126#define RX8130_REG_CONTROL1 0x1f
127#define RX8130_REG_CONTROL1_INIEN BIT(4)
128#define RX8130_REG_CONTROL1_CHGEN BIT(5)
129
130#define MCP794XX_REG_CONTROL 0x07
131# define MCP794XX_BIT_ALM0_EN 0x10
132# define MCP794XX_BIT_ALM1_EN 0x20
133#define MCP794XX_REG_ALARM0_BASE 0x0a
134#define MCP794XX_REG_ALARM0_CTRL 0x0d
135#define MCP794XX_REG_ALARM1_BASE 0x11
136#define MCP794XX_REG_ALARM1_CTRL 0x14
137# define MCP794XX_BIT_ALMX_IF BIT(3)
138# define MCP794XX_BIT_ALMX_C0 BIT(4)
139# define MCP794XX_BIT_ALMX_C1 BIT(5)
140# define MCP794XX_BIT_ALMX_C2 BIT(6)
141# define MCP794XX_BIT_ALMX_POL BIT(7)
142# define MCP794XX_MSK_ALMX_MATCH (MCP794XX_BIT_ALMX_C0 | \
143 MCP794XX_BIT_ALMX_C1 | \
144 MCP794XX_BIT_ALMX_C2)
145
146#define M41TXX_REG_CONTROL 0x07
147# define M41TXX_BIT_OUT BIT(7)
148# define M41TXX_BIT_FT BIT(6)
149# define M41TXX_BIT_CALIB_SIGN BIT(5)
150# define M41TXX_M_CALIBRATION GENMASK(4, 0)
151
152#define DS1388_REG_WDOG_HUN_SECS 0x08
153#define DS1388_REG_WDOG_SECS 0x09
154#define DS1388_REG_FLAG 0x0b
155# define DS1388_BIT_WF BIT(6)
156# define DS1388_BIT_OSF BIT(7)
157#define DS1388_REG_CONTROL 0x0c
158# define DS1388_BIT_RST BIT(0)
159# define DS1388_BIT_WDE BIT(1)
160# define DS1388_BIT_nEOSC BIT(7)
161
162/* negative offset step is -2.034ppm */
163#define M41TXX_NEG_OFFSET_STEP_PPB 2034
164/* positive offset step is +4.068ppm */
165#define M41TXX_POS_OFFSET_STEP_PPB 4068
166/* Min and max values supported with 'offset' interface by M41TXX */
167#define M41TXX_MIN_OFFSET ((-31) * M41TXX_NEG_OFFSET_STEP_PPB)
168#define M41TXX_MAX_OFFSET ((31) * M41TXX_POS_OFFSET_STEP_PPB)
169
170struct ds1307 {
171 enum ds_type type;
172 struct device *dev;
173 struct regmap *regmap;
174 const char *name;
175 struct rtc_device *rtc;
176#ifdef CONFIG_COMMON_CLK
177 struct clk_hw clks[2];
178#endif
179};
180
181struct chip_desc {
182 unsigned alarm:1;
183 u16 nvram_offset;
184 u16 nvram_size;
185 u8 offset; /* register's offset */
186 u8 century_reg;
187 u8 century_enable_bit;
188 u8 century_bit;
189 u8 bbsqi_bit;
190 irq_handler_t irq_handler;
191 const struct rtc_class_ops *rtc_ops;
192 u16 trickle_charger_reg;
193 u8 (*do_trickle_setup)(struct ds1307 *, u32,
194 bool);
195 /* Does the RTC require trickle-resistor-ohms to select the value of
196 * the resistor between Vcc and Vbackup?
197 */
198 bool requires_trickle_resistor;
199 /* Some RTC's batteries and supercaps were charged by default, others
200 * allow charging but were not configured previously to do so.
201 * Remember this behavior to stay backwards compatible.
202 */
203 bool charge_default;
204};
205
206static const struct chip_desc chips[last_ds_type];
207
208static int ds1307_get_time(struct device *dev, struct rtc_time *t)
209{
210 struct ds1307 *ds1307 = dev_get_drvdata(dev);
211 int tmp, ret;
212 const struct chip_desc *chip = &chips[ds1307->type];
213 u8 regs[7];
214
215 if (ds1307->type == rx_8130) {
216 unsigned int regflag;
217 ret = regmap_read(ds1307->regmap, RX8130_REG_FLAG, &regflag);
218 if (ret) {
219 dev_err(dev, "%s error %d\n", "read", ret);
220 return ret;
221 }
222
223 if (regflag & RX8130_REG_FLAG_VLF) {
224 dev_warn_once(dev, "oscillator failed, set time!\n");
225 return -EINVAL;
226 }
227 }
228
229 /* read the RTC date and time registers all at once */
230 ret = regmap_bulk_read(ds1307->regmap, chip->offset, regs,
231 sizeof(regs));
232 if (ret) {
233 dev_err(dev, "%s error %d\n", "read", ret);
234 return ret;
235 }
236
237 dev_dbg(dev, "%s: %7ph\n", "read", regs);
238
239 /* if oscillator fail bit is set, no data can be trusted */
240 if (ds1307->type == m41t0 &&
241 regs[DS1307_REG_MIN] & M41T0_BIT_OF) {
242 dev_warn_once(dev, "oscillator failed, set time!\n");
243 return -EINVAL;
244 }
245
246 tmp = regs[DS1307_REG_SECS];
247 switch (ds1307->type) {
248 case ds_1307:
249 case m41t0:
250 case m41t00:
251 case m41t11:
252 if (tmp & DS1307_BIT_CH)
253 return -EINVAL;
254 break;
255 case ds_1308:
256 case ds_1338:
257 if (tmp & DS1307_BIT_CH)
258 return -EINVAL;
259
260 ret = regmap_read(ds1307->regmap, DS1307_REG_CONTROL, &tmp);
261 if (ret)
262 return ret;
263 if (tmp & DS1338_BIT_OSF)
264 return -EINVAL;
265 break;
266 case ds_1340:
267 if (tmp & DS1340_BIT_nEOSC)
268 return -EINVAL;
269
270 ret = regmap_read(ds1307->regmap, DS1340_REG_FLAG, &tmp);
271 if (ret)
272 return ret;
273 if (tmp & DS1340_BIT_OSF)
274 return -EINVAL;
275 break;
276 case ds_1388:
277 ret = regmap_read(ds1307->regmap, DS1388_REG_FLAG, &tmp);
278 if (ret)
279 return ret;
280 if (tmp & DS1388_BIT_OSF)
281 return -EINVAL;
282 break;
283 case mcp794xx:
284 if (!(tmp & MCP794XX_BIT_ST))
285 return -EINVAL;
286
287 break;
288 default:
289 break;
290 }
291
292 t->tm_sec = bcd2bin(regs[DS1307_REG_SECS] & 0x7f);
293 t->tm_min = bcd2bin(regs[DS1307_REG_MIN] & 0x7f);
294 tmp = regs[DS1307_REG_HOUR] & 0x3f;
295 t->tm_hour = bcd2bin(tmp);
296 /* rx8130 is bit position, not BCD */
297 if (ds1307->type == rx_8130)
298 t->tm_wday = fls(regs[DS1307_REG_WDAY] & 0x7f);
299 else
300 t->tm_wday = bcd2bin(regs[DS1307_REG_WDAY] & 0x07) - 1;
301 t->tm_mday = bcd2bin(regs[DS1307_REG_MDAY] & 0x3f);
302 tmp = regs[DS1307_REG_MONTH] & 0x1f;
303 t->tm_mon = bcd2bin(tmp) - 1;
304 t->tm_year = bcd2bin(regs[DS1307_REG_YEAR]) + 100;
305
306 if (regs[chip->century_reg] & chip->century_bit &&
307 IS_ENABLED(CONFIG_RTC_DRV_DS1307_CENTURY))
308 t->tm_year += 100;
309
310 dev_dbg(dev, "%s secs=%d, mins=%d, "
311 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
312 "read", t->tm_sec, t->tm_min,
313 t->tm_hour, t->tm_mday,
314 t->tm_mon, t->tm_year, t->tm_wday);
315
316 return 0;
317}
318
319static int ds1307_set_time(struct device *dev, struct rtc_time *t)
320{
321 struct ds1307 *ds1307 = dev_get_drvdata(dev);
322 const struct chip_desc *chip = &chips[ds1307->type];
323 int result;
324 int tmp;
325 u8 regs[7];
326
327 dev_dbg(dev, "%s secs=%d, mins=%d, "
328 "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
329 "write", t->tm_sec, t->tm_min,
330 t->tm_hour, t->tm_mday,
331 t->tm_mon, t->tm_year, t->tm_wday);
332
333 if (t->tm_year < 100)
334 return -EINVAL;
335
336#ifdef CONFIG_RTC_DRV_DS1307_CENTURY
337 if (t->tm_year > (chip->century_bit ? 299 : 199))
338 return -EINVAL;
339#else
340 if (t->tm_year > 199)
341 return -EINVAL;
342#endif
343
344 regs[DS1307_REG_SECS] = bin2bcd(t->tm_sec);
345 regs[DS1307_REG_MIN] = bin2bcd(t->tm_min);
346 regs[DS1307_REG_HOUR] = bin2bcd(t->tm_hour);
347 /* rx8130 is bit position, not BCD */
348 if (ds1307->type == rx_8130)
349 regs[DS1307_REG_WDAY] = 1 << t->tm_wday;
350 else
351 regs[DS1307_REG_WDAY] = bin2bcd(t->tm_wday + 1);
352 regs[DS1307_REG_MDAY] = bin2bcd(t->tm_mday);
353 regs[DS1307_REG_MONTH] = bin2bcd(t->tm_mon + 1);
354
355 /* assume 20YY not 19YY */
356 tmp = t->tm_year - 100;
357 regs[DS1307_REG_YEAR] = bin2bcd(tmp);
358
359 if (chip->century_enable_bit)
360 regs[chip->century_reg] |= chip->century_enable_bit;
361 if (t->tm_year > 199 && chip->century_bit)
362 regs[chip->century_reg] |= chip->century_bit;
363
364 switch (ds1307->type) {
365 case ds_1308:
366 case ds_1338:
367 regmap_update_bits(ds1307->regmap, DS1307_REG_CONTROL,
368 DS1338_BIT_OSF, 0);
369 break;
370 case ds_1340:
371 regmap_update_bits(ds1307->regmap, DS1340_REG_FLAG,
372 DS1340_BIT_OSF, 0);
373 break;
374 case ds_1388:
375 regmap_update_bits(ds1307->regmap, DS1388_REG_FLAG,
376 DS1388_BIT_OSF, 0);
377 break;
378 case mcp794xx:
379 /*
380 * these bits were cleared when preparing the date/time
381 * values and need to be set again before writing the
382 * regsfer out to the device.
383 */
384 regs[DS1307_REG_SECS] |= MCP794XX_BIT_ST;
385 regs[DS1307_REG_WDAY] |= MCP794XX_BIT_VBATEN;
386 break;
387 default:
388 break;
389 }
390
391 dev_dbg(dev, "%s: %7ph\n", "write", regs);
392
393 result = regmap_bulk_write(ds1307->regmap, chip->offset, regs,
394 sizeof(regs));
395 if (result) {
396 dev_err(dev, "%s error %d\n", "write", result);
397 return result;
398 }
399
400 if (ds1307->type == rx_8130) {
401 /* clear Voltage Loss Flag as data is available now */
402 result = regmap_write(ds1307->regmap, RX8130_REG_FLAG,
403 ~(u8)RX8130_REG_FLAG_VLF);
404 if (result) {
405 dev_err(dev, "%s error %d\n", "write", result);
406 return result;
407 }
408 }
409
410 return 0;
411}
412
413static int ds1337_read_alarm(struct device *dev, struct rtc_wkalrm *t)
414{
415 struct ds1307 *ds1307 = dev_get_drvdata(dev);
416 int ret;
417 u8 regs[9];
418
419 /* read all ALARM1, ALARM2, and status registers at once */
420 ret = regmap_bulk_read(ds1307->regmap, DS1339_REG_ALARM1_SECS,
421 regs, sizeof(regs));
422 if (ret) {
423 dev_err(dev, "%s error %d\n", "alarm read", ret);
424 return ret;
425 }
426
427 dev_dbg(dev, "%s: %4ph, %3ph, %2ph\n", "alarm read",
428 &regs[0], &regs[4], &regs[7]);
429
430 /*
431 * report alarm time (ALARM1); assume 24 hour and day-of-month modes,
432 * and that all four fields are checked matches
433 */
434 t->time.tm_sec = bcd2bin(regs[0] & 0x7f);
435 t->time.tm_min = bcd2bin(regs[1] & 0x7f);
436 t->time.tm_hour = bcd2bin(regs[2] & 0x3f);
437 t->time.tm_mday = bcd2bin(regs[3] & 0x3f);
438
439 /* ... and status */
440 t->enabled = !!(regs[7] & DS1337_BIT_A1IE);
441 t->pending = !!(regs[8] & DS1337_BIT_A1I);
442
443 dev_dbg(dev, "%s secs=%d, mins=%d, "
444 "hours=%d, mday=%d, enabled=%d, pending=%d\n",
445 "alarm read", t->time.tm_sec, t->time.tm_min,
446 t->time.tm_hour, t->time.tm_mday,
447 t->enabled, t->pending);
448
449 return 0;
450}
451
452static int ds1337_set_alarm(struct device *dev, struct rtc_wkalrm *t)
453{
454 struct ds1307 *ds1307 = dev_get_drvdata(dev);
455 unsigned char regs[9];
456 u8 control, status;
457 int ret;
458
459 dev_dbg(dev, "%s secs=%d, mins=%d, "
460 "hours=%d, mday=%d, enabled=%d, pending=%d\n",
461 "alarm set", t->time.tm_sec, t->time.tm_min,
462 t->time.tm_hour, t->time.tm_mday,
463 t->enabled, t->pending);
464
465 /* read current status of both alarms and the chip */
466 ret = regmap_bulk_read(ds1307->regmap, DS1339_REG_ALARM1_SECS, regs,
467 sizeof(regs));
468 if (ret) {
469 dev_err(dev, "%s error %d\n", "alarm write", ret);
470 return ret;
471 }
472 control = regs[7];
473 status = regs[8];
474
475 dev_dbg(dev, "%s: %4ph, %3ph, %02x %02x\n", "alarm set (old status)",
476 &regs[0], &regs[4], control, status);
477
478 /* set ALARM1, using 24 hour and day-of-month modes */
479 regs[0] = bin2bcd(t->time.tm_sec);
480 regs[1] = bin2bcd(t->time.tm_min);
481 regs[2] = bin2bcd(t->time.tm_hour);
482 regs[3] = bin2bcd(t->time.tm_mday);
483
484 /* set ALARM2 to non-garbage */
485 regs[4] = 0;
486 regs[5] = 0;
487 regs[6] = 0;
488
489 /* disable alarms */
490 regs[7] = control & ~(DS1337_BIT_A1IE | DS1337_BIT_A2IE);
491 regs[8] = status & ~(DS1337_BIT_A1I | DS1337_BIT_A2I);
492
493 ret = regmap_bulk_write(ds1307->regmap, DS1339_REG_ALARM1_SECS, regs,
494 sizeof(regs));
495 if (ret) {
496 dev_err(dev, "can't set alarm time\n");
497 return ret;
498 }
499
500 /* optionally enable ALARM1 */
501 if (t->enabled) {
502 dev_dbg(dev, "alarm IRQ armed\n");
503 regs[7] |= DS1337_BIT_A1IE; /* only ALARM1 is used */
504 regmap_write(ds1307->regmap, DS1337_REG_CONTROL, regs[7]);
505 }
506
507 return 0;
508}
509
510static int ds1307_alarm_irq_enable(struct device *dev, unsigned int enabled)
511{
512 struct ds1307 *ds1307 = dev_get_drvdata(dev);
513
514 return regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
515 DS1337_BIT_A1IE,
516 enabled ? DS1337_BIT_A1IE : 0);
517}
518
519static u8 do_trickle_setup_ds1339(struct ds1307 *ds1307, u32 ohms, bool diode)
520{
521 u8 setup = (diode) ? DS1307_TRICKLE_CHARGER_DIODE :
522 DS1307_TRICKLE_CHARGER_NO_DIODE;
523
524 setup |= DS13XX_TRICKLE_CHARGER_MAGIC;
525
526 switch (ohms) {
527 case 250:
528 setup |= DS1307_TRICKLE_CHARGER_250_OHM;
529 break;
530 case 2000:
531 setup |= DS1307_TRICKLE_CHARGER_2K_OHM;
532 break;
533 case 4000:
534 setup |= DS1307_TRICKLE_CHARGER_4K_OHM;
535 break;
536 default:
537 dev_warn(ds1307->dev,
538 "Unsupported ohm value %u in dt\n", ohms);
539 return 0;
540 }
541 return setup;
542}
543
544static u8 do_trickle_setup_rx8130(struct ds1307 *ds1307, u32 ohms, bool diode)
545{
546 /* make sure that the backup battery is enabled */
547 u8 setup = RX8130_REG_CONTROL1_INIEN;
548 if (diode)
549 setup |= RX8130_REG_CONTROL1_CHGEN;
550
551 return setup;
552}
553
554static irqreturn_t rx8130_irq(int irq, void *dev_id)
555{
556 struct ds1307 *ds1307 = dev_id;
557 u8 ctl[3];
558 int ret;
559
560 rtc_lock(ds1307->rtc);
561
562 /* Read control registers. */
563 ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
564 sizeof(ctl));
565 if (ret < 0)
566 goto out;
567 if (!(ctl[1] & RX8130_REG_FLAG_AF))
568 goto out;
569 ctl[1] &= ~RX8130_REG_FLAG_AF;
570 ctl[2] &= ~RX8130_REG_CONTROL0_AIE;
571
572 ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
573 sizeof(ctl));
574 if (ret < 0)
575 goto out;
576
577 rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
578
579out:
580 rtc_unlock(ds1307->rtc);
581
582 return IRQ_HANDLED;
583}
584
585static int rx8130_read_alarm(struct device *dev, struct rtc_wkalrm *t)
586{
587 struct ds1307 *ds1307 = dev_get_drvdata(dev);
588 u8 ald[3], ctl[3];
589 int ret;
590
591 /* Read alarm registers. */
592 ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_ALARM_MIN, ald,
593 sizeof(ald));
594 if (ret < 0)
595 return ret;
596
597 /* Read control registers. */
598 ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
599 sizeof(ctl));
600 if (ret < 0)
601 return ret;
602
603 t->enabled = !!(ctl[2] & RX8130_REG_CONTROL0_AIE);
604 t->pending = !!(ctl[1] & RX8130_REG_FLAG_AF);
605
606 /* Report alarm 0 time assuming 24-hour and day-of-month modes. */
607 t->time.tm_sec = -1;
608 t->time.tm_min = bcd2bin(ald[0] & 0x7f);
609 t->time.tm_hour = bcd2bin(ald[1] & 0x7f);
610 t->time.tm_wday = -1;
611 t->time.tm_mday = bcd2bin(ald[2] & 0x7f);
612 t->time.tm_mon = -1;
613 t->time.tm_year = -1;
614 t->time.tm_yday = -1;
615 t->time.tm_isdst = -1;
616
617 dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d enabled=%d\n",
618 __func__, t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
619 t->time.tm_wday, t->time.tm_mday, t->time.tm_mon, t->enabled);
620
621 return 0;
622}
623
624static int rx8130_set_alarm(struct device *dev, struct rtc_wkalrm *t)
625{
626 struct ds1307 *ds1307 = dev_get_drvdata(dev);
627 u8 ald[3], ctl[3];
628 int ret;
629
630 dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
631 "enabled=%d pending=%d\n", __func__,
632 t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
633 t->time.tm_wday, t->time.tm_mday, t->time.tm_mon,
634 t->enabled, t->pending);
635
636 /* Read control registers. */
637 ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
638 sizeof(ctl));
639 if (ret < 0)
640 return ret;
641
642 ctl[0] &= RX8130_REG_EXTENSION_WADA;
643 ctl[1] &= ~RX8130_REG_FLAG_AF;
644 ctl[2] &= ~RX8130_REG_CONTROL0_AIE;
645
646 ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
647 sizeof(ctl));
648 if (ret < 0)
649 return ret;
650
651 /* Hardware alarm precision is 1 minute! */
652 ald[0] = bin2bcd(t->time.tm_min);
653 ald[1] = bin2bcd(t->time.tm_hour);
654 ald[2] = bin2bcd(t->time.tm_mday);
655
656 ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_ALARM_MIN, ald,
657 sizeof(ald));
658 if (ret < 0)
659 return ret;
660
661 if (!t->enabled)
662 return 0;
663
664 ctl[2] |= RX8130_REG_CONTROL0_AIE;
665
666 return regmap_write(ds1307->regmap, RX8130_REG_CONTROL0, ctl[2]);
667}
668
669static int rx8130_alarm_irq_enable(struct device *dev, unsigned int enabled)
670{
671 struct ds1307 *ds1307 = dev_get_drvdata(dev);
672 int ret, reg;
673
674 ret = regmap_read(ds1307->regmap, RX8130_REG_CONTROL0, &reg);
675 if (ret < 0)
676 return ret;
677
678 if (enabled)
679 reg |= RX8130_REG_CONTROL0_AIE;
680 else
681 reg &= ~RX8130_REG_CONTROL0_AIE;
682
683 return regmap_write(ds1307->regmap, RX8130_REG_CONTROL0, reg);
684}
685
686static irqreturn_t mcp794xx_irq(int irq, void *dev_id)
687{
688 struct ds1307 *ds1307 = dev_id;
689 struct mutex *lock = &ds1307->rtc->ops_lock;
690 int reg, ret;
691
692 mutex_lock(lock);
693
694 /* Check and clear alarm 0 interrupt flag. */
695 ret = regmap_read(ds1307->regmap, MCP794XX_REG_ALARM0_CTRL, &reg);
696 if (ret)
697 goto out;
698 if (!(reg & MCP794XX_BIT_ALMX_IF))
699 goto out;
700 reg &= ~MCP794XX_BIT_ALMX_IF;
701 ret = regmap_write(ds1307->regmap, MCP794XX_REG_ALARM0_CTRL, reg);
702 if (ret)
703 goto out;
704
705 /* Disable alarm 0. */
706 ret = regmap_update_bits(ds1307->regmap, MCP794XX_REG_CONTROL,
707 MCP794XX_BIT_ALM0_EN, 0);
708 if (ret)
709 goto out;
710
711 rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
712
713out:
714 mutex_unlock(lock);
715
716 return IRQ_HANDLED;
717}
718
719static int mcp794xx_read_alarm(struct device *dev, struct rtc_wkalrm *t)
720{
721 struct ds1307 *ds1307 = dev_get_drvdata(dev);
722 u8 regs[10];
723 int ret;
724
725 /* Read control and alarm 0 registers. */
726 ret = regmap_bulk_read(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
727 sizeof(regs));
728 if (ret)
729 return ret;
730
731 t->enabled = !!(regs[0] & MCP794XX_BIT_ALM0_EN);
732
733 /* Report alarm 0 time assuming 24-hour and day-of-month modes. */
734 t->time.tm_sec = bcd2bin(regs[3] & 0x7f);
735 t->time.tm_min = bcd2bin(regs[4] & 0x7f);
736 t->time.tm_hour = bcd2bin(regs[5] & 0x3f);
737 t->time.tm_wday = bcd2bin(regs[6] & 0x7) - 1;
738 t->time.tm_mday = bcd2bin(regs[7] & 0x3f);
739 t->time.tm_mon = bcd2bin(regs[8] & 0x1f) - 1;
740 t->time.tm_year = -1;
741 t->time.tm_yday = -1;
742 t->time.tm_isdst = -1;
743
744 dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
745 "enabled=%d polarity=%d irq=%d match=%lu\n", __func__,
746 t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
747 t->time.tm_wday, t->time.tm_mday, t->time.tm_mon, t->enabled,
748 !!(regs[6] & MCP794XX_BIT_ALMX_POL),
749 !!(regs[6] & MCP794XX_BIT_ALMX_IF),
750 (regs[6] & MCP794XX_MSK_ALMX_MATCH) >> 4);
751
752 return 0;
753}
754
755/*
756 * We may have a random RTC weekday, therefore calculate alarm weekday based
757 * on current weekday we read from the RTC timekeeping regs
758 */
759static int mcp794xx_alm_weekday(struct device *dev, struct rtc_time *tm_alarm)
760{
761 struct rtc_time tm_now;
762 int days_now, days_alarm, ret;
763
764 ret = ds1307_get_time(dev, &tm_now);
765 if (ret)
766 return ret;
767
768 days_now = div_s64(rtc_tm_to_time64(&tm_now), 24 * 60 * 60);
769 days_alarm = div_s64(rtc_tm_to_time64(tm_alarm), 24 * 60 * 60);
770
771 return (tm_now.tm_wday + days_alarm - days_now) % 7 + 1;
772}
773
774static int mcp794xx_set_alarm(struct device *dev, struct rtc_wkalrm *t)
775{
776 struct ds1307 *ds1307 = dev_get_drvdata(dev);
777 unsigned char regs[10];
778 int wday, ret;
779
780 wday = mcp794xx_alm_weekday(dev, &t->time);
781 if (wday < 0)
782 return wday;
783
784 dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
785 "enabled=%d pending=%d\n", __func__,
786 t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
787 t->time.tm_wday, t->time.tm_mday, t->time.tm_mon,
788 t->enabled, t->pending);
789
790 /* Read control and alarm 0 registers. */
791 ret = regmap_bulk_read(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
792 sizeof(regs));
793 if (ret)
794 return ret;
795
796 /* Set alarm 0, using 24-hour and day-of-month modes. */
797 regs[3] = bin2bcd(t->time.tm_sec);
798 regs[4] = bin2bcd(t->time.tm_min);
799 regs[5] = bin2bcd(t->time.tm_hour);
800 regs[6] = wday;
801 regs[7] = bin2bcd(t->time.tm_mday);
802 regs[8] = bin2bcd(t->time.tm_mon + 1);
803
804 /* Clear the alarm 0 interrupt flag. */
805 regs[6] &= ~MCP794XX_BIT_ALMX_IF;
806 /* Set alarm match: second, minute, hour, day, date, month. */
807 regs[6] |= MCP794XX_MSK_ALMX_MATCH;
808 /* Disable interrupt. We will not enable until completely programmed */
809 regs[0] &= ~MCP794XX_BIT_ALM0_EN;
810
811 ret = regmap_bulk_write(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
812 sizeof(regs));
813 if (ret)
814 return ret;
815
816 if (!t->enabled)
817 return 0;
818 regs[0] |= MCP794XX_BIT_ALM0_EN;
819 return regmap_write(ds1307->regmap, MCP794XX_REG_CONTROL, regs[0]);
820}
821
822static int mcp794xx_alarm_irq_enable(struct device *dev, unsigned int enabled)
823{
824 struct ds1307 *ds1307 = dev_get_drvdata(dev);
825
826 return regmap_update_bits(ds1307->regmap, MCP794XX_REG_CONTROL,
827 MCP794XX_BIT_ALM0_EN,
828 enabled ? MCP794XX_BIT_ALM0_EN : 0);
829}
830
831static int m41txx_rtc_read_offset(struct device *dev, long *offset)
832{
833 struct ds1307 *ds1307 = dev_get_drvdata(dev);
834 unsigned int ctrl_reg;
835 u8 val;
836
837 regmap_read(ds1307->regmap, M41TXX_REG_CONTROL, &ctrl_reg);
838
839 val = ctrl_reg & M41TXX_M_CALIBRATION;
840
841 /* check if positive */
842 if (ctrl_reg & M41TXX_BIT_CALIB_SIGN)
843 *offset = (val * M41TXX_POS_OFFSET_STEP_PPB);
844 else
845 *offset = -(val * M41TXX_NEG_OFFSET_STEP_PPB);
846
847 return 0;
848}
849
850static int m41txx_rtc_set_offset(struct device *dev, long offset)
851{
852 struct ds1307 *ds1307 = dev_get_drvdata(dev);
853 unsigned int ctrl_reg;
854
855 if ((offset < M41TXX_MIN_OFFSET) || (offset > M41TXX_MAX_OFFSET))
856 return -ERANGE;
857
858 if (offset >= 0) {
859 ctrl_reg = DIV_ROUND_CLOSEST(offset,
860 M41TXX_POS_OFFSET_STEP_PPB);
861 ctrl_reg |= M41TXX_BIT_CALIB_SIGN;
862 } else {
863 ctrl_reg = DIV_ROUND_CLOSEST(abs(offset),
864 M41TXX_NEG_OFFSET_STEP_PPB);
865 }
866
867 return regmap_update_bits(ds1307->regmap, M41TXX_REG_CONTROL,
868 M41TXX_M_CALIBRATION | M41TXX_BIT_CALIB_SIGN,
869 ctrl_reg);
870}
871
872#ifdef CONFIG_WATCHDOG_CORE
873static int ds1388_wdt_start(struct watchdog_device *wdt_dev)
874{
875 struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
876 u8 regs[2];
877 int ret;
878
879 ret = regmap_update_bits(ds1307->regmap, DS1388_REG_FLAG,
880 DS1388_BIT_WF, 0);
881 if (ret)
882 return ret;
883
884 ret = regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
885 DS1388_BIT_WDE | DS1388_BIT_RST, 0);
886 if (ret)
887 return ret;
888
889 /*
890 * watchdog timeouts are measured in seconds. So ignore hundredths of
891 * seconds field.
892 */
893 regs[0] = 0;
894 regs[1] = bin2bcd(wdt_dev->timeout);
895
896 ret = regmap_bulk_write(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
897 sizeof(regs));
898 if (ret)
899 return ret;
900
901 return regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
902 DS1388_BIT_WDE | DS1388_BIT_RST,
903 DS1388_BIT_WDE | DS1388_BIT_RST);
904}
905
906static int ds1388_wdt_stop(struct watchdog_device *wdt_dev)
907{
908 struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
909
910 return regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
911 DS1388_BIT_WDE | DS1388_BIT_RST, 0);
912}
913
914static int ds1388_wdt_ping(struct watchdog_device *wdt_dev)
915{
916 struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
917 u8 regs[2];
918
919 return regmap_bulk_read(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
920 sizeof(regs));
921}
922
923static int ds1388_wdt_set_timeout(struct watchdog_device *wdt_dev,
924 unsigned int val)
925{
926 struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
927 u8 regs[2];
928
929 wdt_dev->timeout = val;
930 regs[0] = 0;
931 regs[1] = bin2bcd(wdt_dev->timeout);
932
933 return regmap_bulk_write(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
934 sizeof(regs));
935}
936#endif
937
938static const struct rtc_class_ops rx8130_rtc_ops = {
939 .read_time = ds1307_get_time,
940 .set_time = ds1307_set_time,
941 .read_alarm = rx8130_read_alarm,
942 .set_alarm = rx8130_set_alarm,
943 .alarm_irq_enable = rx8130_alarm_irq_enable,
944};
945
946static const struct rtc_class_ops mcp794xx_rtc_ops = {
947 .read_time = ds1307_get_time,
948 .set_time = ds1307_set_time,
949 .read_alarm = mcp794xx_read_alarm,
950 .set_alarm = mcp794xx_set_alarm,
951 .alarm_irq_enable = mcp794xx_alarm_irq_enable,
952};
953
954static const struct rtc_class_ops m41txx_rtc_ops = {
955 .read_time = ds1307_get_time,
956 .set_time = ds1307_set_time,
957 .read_alarm = ds1337_read_alarm,
958 .set_alarm = ds1337_set_alarm,
959 .alarm_irq_enable = ds1307_alarm_irq_enable,
960 .read_offset = m41txx_rtc_read_offset,
961 .set_offset = m41txx_rtc_set_offset,
962};
963
964static const struct chip_desc chips[last_ds_type] = {
965 [ds_1307] = {
966 .nvram_offset = 8,
967 .nvram_size = 56,
968 },
969 [ds_1308] = {
970 .nvram_offset = 8,
971 .nvram_size = 56,
972 },
973 [ds_1337] = {
974 .alarm = 1,
975 .century_reg = DS1307_REG_MONTH,
976 .century_bit = DS1337_BIT_CENTURY,
977 },
978 [ds_1338] = {
979 .nvram_offset = 8,
980 .nvram_size = 56,
981 },
982 [ds_1339] = {
983 .alarm = 1,
984 .century_reg = DS1307_REG_MONTH,
985 .century_bit = DS1337_BIT_CENTURY,
986 .bbsqi_bit = DS1339_BIT_BBSQI,
987 .trickle_charger_reg = 0x10,
988 .do_trickle_setup = &do_trickle_setup_ds1339,
989 .requires_trickle_resistor = true,
990 .charge_default = true,
991 },
992 [ds_1340] = {
993 .century_reg = DS1307_REG_HOUR,
994 .century_enable_bit = DS1340_BIT_CENTURY_EN,
995 .century_bit = DS1340_BIT_CENTURY,
996 .do_trickle_setup = &do_trickle_setup_ds1339,
997 .trickle_charger_reg = 0x08,
998 .requires_trickle_resistor = true,
999 .charge_default = true,
1000 },
1001 [ds_1341] = {
1002 .century_reg = DS1307_REG_MONTH,
1003 .century_bit = DS1337_BIT_CENTURY,
1004 },
1005 [ds_1388] = {
1006 .offset = 1,
1007 .trickle_charger_reg = 0x0a,
1008 },
1009 [ds_3231] = {
1010 .alarm = 1,
1011 .century_reg = DS1307_REG_MONTH,
1012 .century_bit = DS1337_BIT_CENTURY,
1013 .bbsqi_bit = DS3231_BIT_BBSQW,
1014 },
1015 [rx_8130] = {
1016 .alarm = 1,
1017 /* this is battery backed SRAM */
1018 .nvram_offset = 0x20,
1019 .nvram_size = 4, /* 32bit (4 word x 8 bit) */
1020 .offset = 0x10,
1021 .irq_handler = rx8130_irq,
1022 .rtc_ops = &rx8130_rtc_ops,
1023 .trickle_charger_reg = RX8130_REG_CONTROL1,
1024 .do_trickle_setup = &do_trickle_setup_rx8130,
1025 },
1026 [m41t0] = {
1027 .rtc_ops = &m41txx_rtc_ops,
1028 },
1029 [m41t00] = {
1030 .rtc_ops = &m41txx_rtc_ops,
1031 },
1032 [m41t11] = {
1033 /* this is battery backed SRAM */
1034 .nvram_offset = 8,
1035 .nvram_size = 56,
1036 .rtc_ops = &m41txx_rtc_ops,
1037 },
1038 [mcp794xx] = {
1039 .alarm = 1,
1040 /* this is battery backed SRAM */
1041 .nvram_offset = 0x20,
1042 .nvram_size = 0x40,
1043 .irq_handler = mcp794xx_irq,
1044 .rtc_ops = &mcp794xx_rtc_ops,
1045 },
1046};
1047
1048static const struct i2c_device_id ds1307_id[] = {
1049 { "ds1307", ds_1307 },
1050 { "ds1308", ds_1308 },
1051 { "ds1337", ds_1337 },
1052 { "ds1338", ds_1338 },
1053 { "ds1339", ds_1339 },
1054 { "ds1388", ds_1388 },
1055 { "ds1340", ds_1340 },
1056 { "ds1341", ds_1341 },
1057 { "ds3231", ds_3231 },
1058 { "m41t0", m41t0 },
1059 { "m41t00", m41t00 },
1060 { "m41t11", m41t11 },
1061 { "mcp7940x", mcp794xx },
1062 { "mcp7941x", mcp794xx },
1063 { "pt7c4338", ds_1307 },
1064 { "rx8025", rx_8025 },
1065 { "isl12057", ds_1337 },
1066 { "rx8130", rx_8130 },
1067 { }
1068};
1069MODULE_DEVICE_TABLE(i2c, ds1307_id);
1070
1071static const struct of_device_id ds1307_of_match[] = {
1072 {
1073 .compatible = "dallas,ds1307",
1074 .data = (void *)ds_1307
1075 },
1076 {
1077 .compatible = "dallas,ds1308",
1078 .data = (void *)ds_1308
1079 },
1080 {
1081 .compatible = "dallas,ds1337",
1082 .data = (void *)ds_1337
1083 },
1084 {
1085 .compatible = "dallas,ds1338",
1086 .data = (void *)ds_1338
1087 },
1088 {
1089 .compatible = "dallas,ds1339",
1090 .data = (void *)ds_1339
1091 },
1092 {
1093 .compatible = "dallas,ds1388",
1094 .data = (void *)ds_1388
1095 },
1096 {
1097 .compatible = "dallas,ds1340",
1098 .data = (void *)ds_1340
1099 },
1100 {
1101 .compatible = "dallas,ds1341",
1102 .data = (void *)ds_1341
1103 },
1104 {
1105 .compatible = "maxim,ds3231",
1106 .data = (void *)ds_3231
1107 },
1108 {
1109 .compatible = "st,m41t0",
1110 .data = (void *)m41t0
1111 },
1112 {
1113 .compatible = "st,m41t00",
1114 .data = (void *)m41t00
1115 },
1116 {
1117 .compatible = "st,m41t11",
1118 .data = (void *)m41t11
1119 },
1120 {
1121 .compatible = "microchip,mcp7940x",
1122 .data = (void *)mcp794xx
1123 },
1124 {
1125 .compatible = "microchip,mcp7941x",
1126 .data = (void *)mcp794xx
1127 },
1128 {
1129 .compatible = "pericom,pt7c4338",
1130 .data = (void *)ds_1307
1131 },
1132 {
1133 .compatible = "epson,rx8025",
1134 .data = (void *)rx_8025
1135 },
1136 {
1137 .compatible = "isil,isl12057",
1138 .data = (void *)ds_1337
1139 },
1140 {
1141 .compatible = "epson,rx8130",
1142 .data = (void *)rx_8130
1143 },
1144 { }
1145};
1146MODULE_DEVICE_TABLE(of, ds1307_of_match);
1147
1148/*
1149 * The ds1337 and ds1339 both have two alarms, but we only use the first
1150 * one (with a "seconds" field). For ds1337 we expect nINTA is our alarm
1151 * signal; ds1339 chips have only one alarm signal.
1152 */
1153static irqreturn_t ds1307_irq(int irq, void *dev_id)
1154{
1155 struct ds1307 *ds1307 = dev_id;
1156 struct mutex *lock = &ds1307->rtc->ops_lock;
1157 int stat, ret;
1158
1159 mutex_lock(lock);
1160 ret = regmap_read(ds1307->regmap, DS1337_REG_STATUS, &stat);
1161 if (ret)
1162 goto out;
1163
1164 if (stat & DS1337_BIT_A1I) {
1165 stat &= ~DS1337_BIT_A1I;
1166 regmap_write(ds1307->regmap, DS1337_REG_STATUS, stat);
1167
1168 ret = regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
1169 DS1337_BIT_A1IE, 0);
1170 if (ret)
1171 goto out;
1172
1173 rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
1174 }
1175
1176out:
1177 mutex_unlock(lock);
1178
1179 return IRQ_HANDLED;
1180}
1181
1182/*----------------------------------------------------------------------*/
1183
1184static const struct rtc_class_ops ds13xx_rtc_ops = {
1185 .read_time = ds1307_get_time,
1186 .set_time = ds1307_set_time,
1187 .read_alarm = ds1337_read_alarm,
1188 .set_alarm = ds1337_set_alarm,
1189 .alarm_irq_enable = ds1307_alarm_irq_enable,
1190};
1191
1192static ssize_t frequency_test_store(struct device *dev,
1193 struct device_attribute *attr,
1194 const char *buf, size_t count)
1195{
1196 struct ds1307 *ds1307 = dev_get_drvdata(dev->parent);
1197 bool freq_test_en;
1198 int ret;
1199
1200 ret = kstrtobool(buf, &freq_test_en);
1201 if (ret) {
1202 dev_err(dev, "Failed to store RTC Frequency Test attribute\n");
1203 return ret;
1204 }
1205
1206 regmap_update_bits(ds1307->regmap, M41TXX_REG_CONTROL, M41TXX_BIT_FT,
1207 freq_test_en ? M41TXX_BIT_FT : 0);
1208
1209 return count;
1210}
1211
1212static ssize_t frequency_test_show(struct device *dev,
1213 struct device_attribute *attr,
1214 char *buf)
1215{
1216 struct ds1307 *ds1307 = dev_get_drvdata(dev->parent);
1217 unsigned int ctrl_reg;
1218
1219 regmap_read(ds1307->regmap, M41TXX_REG_CONTROL, &ctrl_reg);
1220
1221 return scnprintf(buf, PAGE_SIZE, (ctrl_reg & M41TXX_BIT_FT) ? "on\n" :
1222 "off\n");
1223}
1224
1225static DEVICE_ATTR_RW(frequency_test);
1226
1227static struct attribute *rtc_freq_test_attrs[] = {
1228 &dev_attr_frequency_test.attr,
1229 NULL,
1230};
1231
1232static const struct attribute_group rtc_freq_test_attr_group = {
1233 .attrs = rtc_freq_test_attrs,
1234};
1235
1236static int ds1307_add_frequency_test(struct ds1307 *ds1307)
1237{
1238 int err;
1239
1240 switch (ds1307->type) {
1241 case m41t0:
1242 case m41t00:
1243 case m41t11:
1244 err = rtc_add_group(ds1307->rtc, &rtc_freq_test_attr_group);
1245 if (err)
1246 return err;
1247 break;
1248 default:
1249 break;
1250 }
1251
1252 return 0;
1253}
1254
1255/*----------------------------------------------------------------------*/
1256
1257static int ds1307_nvram_read(void *priv, unsigned int offset, void *val,
1258 size_t bytes)
1259{
1260 struct ds1307 *ds1307 = priv;
1261 const struct chip_desc *chip = &chips[ds1307->type];
1262
1263 return regmap_bulk_read(ds1307->regmap, chip->nvram_offset + offset,
1264 val, bytes);
1265}
1266
1267static int ds1307_nvram_write(void *priv, unsigned int offset, void *val,
1268 size_t bytes)
1269{
1270 struct ds1307 *ds1307 = priv;
1271 const struct chip_desc *chip = &chips[ds1307->type];
1272
1273 return regmap_bulk_write(ds1307->regmap, chip->nvram_offset + offset,
1274 val, bytes);
1275}
1276
1277/*----------------------------------------------------------------------*/
1278
1279static u8 ds1307_trickle_init(struct ds1307 *ds1307,
1280 const struct chip_desc *chip)
1281{
1282 u32 ohms, chargeable;
1283 bool diode = chip->charge_default;
1284
1285 if (!chip->do_trickle_setup)
1286 return 0;
1287
1288 if (device_property_read_u32(ds1307->dev, "trickle-resistor-ohms",
1289 &ohms) && chip->requires_trickle_resistor)
1290 return 0;
1291
1292 /* aux-voltage-chargeable takes precedence over the deprecated
1293 * trickle-diode-disable
1294 */
1295 if (!device_property_read_u32(ds1307->dev, "aux-voltage-chargeable",
1296 &chargeable)) {
1297 switch (chargeable) {
1298 case 0:
1299 diode = false;
1300 break;
1301 case 1:
1302 diode = true;
1303 break;
1304 default:
1305 dev_warn(ds1307->dev,
1306 "unsupported aux-voltage-chargeable value\n");
1307 break;
1308 }
1309 } else if (device_property_read_bool(ds1307->dev,
1310 "trickle-diode-disable")) {
1311 diode = false;
1312 }
1313
1314 return chip->do_trickle_setup(ds1307, ohms, diode);
1315}
1316
1317/*----------------------------------------------------------------------*/
1318
1319#if IS_REACHABLE(CONFIG_HWMON)
1320
1321/*
1322 * Temperature sensor support for ds3231 devices.
1323 */
1324
1325#define DS3231_REG_TEMPERATURE 0x11
1326
1327/*
1328 * A user-initiated temperature conversion is not started by this function,
1329 * so the temperature is updated once every 64 seconds.
1330 */
1331static int ds3231_hwmon_read_temp(struct device *dev, s32 *mC)
1332{
1333 struct ds1307 *ds1307 = dev_get_drvdata(dev);
1334 u8 temp_buf[2];
1335 s16 temp;
1336 int ret;
1337
1338 ret = regmap_bulk_read(ds1307->regmap, DS3231_REG_TEMPERATURE,
1339 temp_buf, sizeof(temp_buf));
1340 if (ret)
1341 return ret;
1342 /*
1343 * Temperature is represented as a 10-bit code with a resolution of
1344 * 0.25 degree celsius and encoded in two's complement format.
1345 */
1346 temp = (temp_buf[0] << 8) | temp_buf[1];
1347 temp >>= 6;
1348 *mC = temp * 250;
1349
1350 return 0;
1351}
1352
1353static ssize_t ds3231_hwmon_show_temp(struct device *dev,
1354 struct device_attribute *attr, char *buf)
1355{
1356 int ret;
1357 s32 temp;
1358
1359 ret = ds3231_hwmon_read_temp(dev, &temp);
1360 if (ret)
1361 return ret;
1362
1363 return sprintf(buf, "%d\n", temp);
1364}
1365static SENSOR_DEVICE_ATTR(temp1_input, 0444, ds3231_hwmon_show_temp,
1366 NULL, 0);
1367
1368static struct attribute *ds3231_hwmon_attrs[] = {
1369 &sensor_dev_attr_temp1_input.dev_attr.attr,
1370 NULL,
1371};
1372ATTRIBUTE_GROUPS(ds3231_hwmon);
1373
1374static void ds1307_hwmon_register(struct ds1307 *ds1307)
1375{
1376 struct device *dev;
1377
1378 if (ds1307->type != ds_3231)
1379 return;
1380
1381 dev = devm_hwmon_device_register_with_groups(ds1307->dev, ds1307->name,
1382 ds1307,
1383 ds3231_hwmon_groups);
1384 if (IS_ERR(dev)) {
1385 dev_warn(ds1307->dev, "unable to register hwmon device %ld\n",
1386 PTR_ERR(dev));
1387 }
1388}
1389
1390#else
1391
1392static void ds1307_hwmon_register(struct ds1307 *ds1307)
1393{
1394}
1395
1396#endif /* CONFIG_RTC_DRV_DS1307_HWMON */
1397
1398/*----------------------------------------------------------------------*/
1399
1400/*
1401 * Square-wave output support for DS3231
1402 * Datasheet: https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
1403 */
1404#ifdef CONFIG_COMMON_CLK
1405
1406enum {
1407 DS3231_CLK_SQW = 0,
1408 DS3231_CLK_32KHZ,
1409};
1410
1411#define clk_sqw_to_ds1307(clk) \
1412 container_of(clk, struct ds1307, clks[DS3231_CLK_SQW])
1413#define clk_32khz_to_ds1307(clk) \
1414 container_of(clk, struct ds1307, clks[DS3231_CLK_32KHZ])
1415
1416static int ds3231_clk_sqw_rates[] = {
1417 1,
1418 1024,
1419 4096,
1420 8192,
1421};
1422
1423static int ds1337_write_control(struct ds1307 *ds1307, u8 mask, u8 value)
1424{
1425 struct mutex *lock = &ds1307->rtc->ops_lock;
1426 int ret;
1427
1428 mutex_lock(lock);
1429 ret = regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
1430 mask, value);
1431 mutex_unlock(lock);
1432
1433 return ret;
1434}
1435
1436static unsigned long ds3231_clk_sqw_recalc_rate(struct clk_hw *hw,
1437 unsigned long parent_rate)
1438{
1439 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1440 int control, ret;
1441 int rate_sel = 0;
1442
1443 ret = regmap_read(ds1307->regmap, DS1337_REG_CONTROL, &control);
1444 if (ret)
1445 return ret;
1446 if (control & DS1337_BIT_RS1)
1447 rate_sel += 1;
1448 if (control & DS1337_BIT_RS2)
1449 rate_sel += 2;
1450
1451 return ds3231_clk_sqw_rates[rate_sel];
1452}
1453
1454static long ds3231_clk_sqw_round_rate(struct clk_hw *hw, unsigned long rate,
1455 unsigned long *prate)
1456{
1457 int i;
1458
1459 for (i = ARRAY_SIZE(ds3231_clk_sqw_rates) - 1; i >= 0; i--) {
1460 if (ds3231_clk_sqw_rates[i] <= rate)
1461 return ds3231_clk_sqw_rates[i];
1462 }
1463
1464 return 0;
1465}
1466
1467static int ds3231_clk_sqw_set_rate(struct clk_hw *hw, unsigned long rate,
1468 unsigned long parent_rate)
1469{
1470 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1471 int control = 0;
1472 int rate_sel;
1473
1474 for (rate_sel = 0; rate_sel < ARRAY_SIZE(ds3231_clk_sqw_rates);
1475 rate_sel++) {
1476 if (ds3231_clk_sqw_rates[rate_sel] == rate)
1477 break;
1478 }
1479
1480 if (rate_sel == ARRAY_SIZE(ds3231_clk_sqw_rates))
1481 return -EINVAL;
1482
1483 if (rate_sel & 1)
1484 control |= DS1337_BIT_RS1;
1485 if (rate_sel & 2)
1486 control |= DS1337_BIT_RS2;
1487
1488 return ds1337_write_control(ds1307, DS1337_BIT_RS1 | DS1337_BIT_RS2,
1489 control);
1490}
1491
1492static int ds3231_clk_sqw_prepare(struct clk_hw *hw)
1493{
1494 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1495
1496 return ds1337_write_control(ds1307, DS1337_BIT_INTCN, 0);
1497}
1498
1499static void ds3231_clk_sqw_unprepare(struct clk_hw *hw)
1500{
1501 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1502
1503 ds1337_write_control(ds1307, DS1337_BIT_INTCN, DS1337_BIT_INTCN);
1504}
1505
1506static int ds3231_clk_sqw_is_prepared(struct clk_hw *hw)
1507{
1508 struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
1509 int control, ret;
1510
1511 ret = regmap_read(ds1307->regmap, DS1337_REG_CONTROL, &control);
1512 if (ret)
1513 return ret;
1514
1515 return !(control & DS1337_BIT_INTCN);
1516}
1517
1518static const struct clk_ops ds3231_clk_sqw_ops = {
1519 .prepare = ds3231_clk_sqw_prepare,
1520 .unprepare = ds3231_clk_sqw_unprepare,
1521 .is_prepared = ds3231_clk_sqw_is_prepared,
1522 .recalc_rate = ds3231_clk_sqw_recalc_rate,
1523 .round_rate = ds3231_clk_sqw_round_rate,
1524 .set_rate = ds3231_clk_sqw_set_rate,
1525};
1526
1527static unsigned long ds3231_clk_32khz_recalc_rate(struct clk_hw *hw,
1528 unsigned long parent_rate)
1529{
1530 return 32768;
1531}
1532
1533static int ds3231_clk_32khz_control(struct ds1307 *ds1307, bool enable)
1534{
1535 struct mutex *lock = &ds1307->rtc->ops_lock;
1536 int ret;
1537
1538 mutex_lock(lock);
1539 ret = regmap_update_bits(ds1307->regmap, DS1337_REG_STATUS,
1540 DS3231_BIT_EN32KHZ,
1541 enable ? DS3231_BIT_EN32KHZ : 0);
1542 mutex_unlock(lock);
1543
1544 return ret;
1545}
1546
1547static int ds3231_clk_32khz_prepare(struct clk_hw *hw)
1548{
1549 struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
1550
1551 return ds3231_clk_32khz_control(ds1307, true);
1552}
1553
1554static void ds3231_clk_32khz_unprepare(struct clk_hw *hw)
1555{
1556 struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
1557
1558 ds3231_clk_32khz_control(ds1307, false);
1559}
1560
1561static int ds3231_clk_32khz_is_prepared(struct clk_hw *hw)
1562{
1563 struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
1564 int status, ret;
1565
1566 ret = regmap_read(ds1307->regmap, DS1337_REG_STATUS, &status);
1567 if (ret)
1568 return ret;
1569
1570 return !!(status & DS3231_BIT_EN32KHZ);
1571}
1572
1573static const struct clk_ops ds3231_clk_32khz_ops = {
1574 .prepare = ds3231_clk_32khz_prepare,
1575 .unprepare = ds3231_clk_32khz_unprepare,
1576 .is_prepared = ds3231_clk_32khz_is_prepared,
1577 .recalc_rate = ds3231_clk_32khz_recalc_rate,
1578};
1579
1580static const char *ds3231_clks_names[] = {
1581 [DS3231_CLK_SQW] = "ds3231_clk_sqw",
1582 [DS3231_CLK_32KHZ] = "ds3231_clk_32khz",
1583};
1584
1585static struct clk_init_data ds3231_clks_init[] = {
1586 [DS3231_CLK_SQW] = {
1587 .ops = &ds3231_clk_sqw_ops,
1588 },
1589 [DS3231_CLK_32KHZ] = {
1590 .ops = &ds3231_clk_32khz_ops,
1591 },
1592};
1593
1594static int ds3231_clks_register(struct ds1307 *ds1307)
1595{
1596 struct device_node *node = ds1307->dev->of_node;
1597 struct clk_onecell_data *onecell;
1598 int i;
1599
1600 onecell = devm_kzalloc(ds1307->dev, sizeof(*onecell), GFP_KERNEL);
1601 if (!onecell)
1602 return -ENOMEM;
1603
1604 onecell->clk_num = ARRAY_SIZE(ds3231_clks_init);
1605 onecell->clks = devm_kcalloc(ds1307->dev, onecell->clk_num,
1606 sizeof(onecell->clks[0]), GFP_KERNEL);
1607 if (!onecell->clks)
1608 return -ENOMEM;
1609
1610 /* optional override of the clockname */
1611 device_property_read_string_array(ds1307->dev, "clock-output-names",
1612 ds3231_clks_names,
1613 ARRAY_SIZE(ds3231_clks_names));
1614
1615 for (i = 0; i < ARRAY_SIZE(ds3231_clks_init); i++) {
1616 struct clk_init_data init = ds3231_clks_init[i];
1617
1618 /*
1619 * Interrupt signal due to alarm conditions and square-wave
1620 * output share same pin, so don't initialize both.
1621 */
1622 if (i == DS3231_CLK_SQW && test_bit(RTC_FEATURE_ALARM, ds1307->rtc->features))
1623 continue;
1624
1625 init.name = ds3231_clks_names[i];
1626 ds1307->clks[i].init = &init;
1627
1628 onecell->clks[i] = devm_clk_register(ds1307->dev,
1629 &ds1307->clks[i]);
1630 if (IS_ERR(onecell->clks[i]))
1631 return PTR_ERR(onecell->clks[i]);
1632 }
1633
1634 if (node)
1635 of_clk_add_provider(node, of_clk_src_onecell_get, onecell);
1636
1637 return 0;
1638}
1639
1640static void ds1307_clks_register(struct ds1307 *ds1307)
1641{
1642 int ret;
1643
1644 if (ds1307->type != ds_3231)
1645 return;
1646
1647 ret = ds3231_clks_register(ds1307);
1648 if (ret) {
1649 dev_warn(ds1307->dev, "unable to register clock device %d\n",
1650 ret);
1651 }
1652}
1653
1654#else
1655
1656static void ds1307_clks_register(struct ds1307 *ds1307)
1657{
1658}
1659
1660#endif /* CONFIG_COMMON_CLK */
1661
1662#ifdef CONFIG_WATCHDOG_CORE
1663static const struct watchdog_info ds1388_wdt_info = {
1664 .options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING | WDIOF_MAGICCLOSE,
1665 .identity = "DS1388 watchdog",
1666};
1667
1668static const struct watchdog_ops ds1388_wdt_ops = {
1669 .owner = THIS_MODULE,
1670 .start = ds1388_wdt_start,
1671 .stop = ds1388_wdt_stop,
1672 .ping = ds1388_wdt_ping,
1673 .set_timeout = ds1388_wdt_set_timeout,
1674
1675};
1676
1677static void ds1307_wdt_register(struct ds1307 *ds1307)
1678{
1679 struct watchdog_device *wdt;
1680 int err;
1681 int val;
1682
1683 if (ds1307->type != ds_1388)
1684 return;
1685
1686 wdt = devm_kzalloc(ds1307->dev, sizeof(*wdt), GFP_KERNEL);
1687 if (!wdt)
1688 return;
1689
1690 err = regmap_read(ds1307->regmap, DS1388_REG_FLAG, &val);
1691 if (!err && val & DS1388_BIT_WF)
1692 wdt->bootstatus = WDIOF_CARDRESET;
1693
1694 wdt->info = &ds1388_wdt_info;
1695 wdt->ops = &ds1388_wdt_ops;
1696 wdt->timeout = 99;
1697 wdt->max_timeout = 99;
1698 wdt->min_timeout = 1;
1699
1700 watchdog_init_timeout(wdt, 0, ds1307->dev);
1701 watchdog_set_drvdata(wdt, ds1307);
1702 devm_watchdog_register_device(ds1307->dev, wdt);
1703}
1704#else
1705static void ds1307_wdt_register(struct ds1307 *ds1307)
1706{
1707}
1708#endif /* CONFIG_WATCHDOG_CORE */
1709
1710static const struct regmap_config regmap_config = {
1711 .reg_bits = 8,
1712 .val_bits = 8,
1713};
1714
1715static int ds1307_probe(struct i2c_client *client,
1716 const struct i2c_device_id *id)
1717{
1718 struct ds1307 *ds1307;
1719 const void *match;
1720 int err = -ENODEV;
1721 int tmp;
1722 const struct chip_desc *chip;
1723 bool want_irq;
1724 bool ds1307_can_wakeup_device = false;
1725 unsigned char regs[8];
1726 struct ds1307_platform_data *pdata = dev_get_platdata(&client->dev);
1727 u8 trickle_charger_setup = 0;
1728
1729 ds1307 = devm_kzalloc(&client->dev, sizeof(struct ds1307), GFP_KERNEL);
1730 if (!ds1307)
1731 return -ENOMEM;
1732
1733 dev_set_drvdata(&client->dev, ds1307);
1734 ds1307->dev = &client->dev;
1735 ds1307->name = client->name;
1736
1737 ds1307->regmap = devm_regmap_init_i2c(client, &regmap_config);
1738 if (IS_ERR(ds1307->regmap)) {
1739 dev_err(ds1307->dev, "regmap allocation failed\n");
1740 return PTR_ERR(ds1307->regmap);
1741 }
1742
1743 i2c_set_clientdata(client, ds1307);
1744
1745 match = device_get_match_data(&client->dev);
1746 if (match) {
1747 ds1307->type = (enum ds_type)match;
1748 chip = &chips[ds1307->type];
1749 } else if (id) {
1750 chip = &chips[id->driver_data];
1751 ds1307->type = id->driver_data;
1752 } else {
1753 return -ENODEV;
1754 }
1755
1756 want_irq = client->irq > 0 && chip->alarm;
1757
1758 if (!pdata)
1759 trickle_charger_setup = ds1307_trickle_init(ds1307, chip);
1760 else if (pdata->trickle_charger_setup)
1761 trickle_charger_setup = pdata->trickle_charger_setup;
1762
1763 if (trickle_charger_setup && chip->trickle_charger_reg) {
1764 dev_dbg(ds1307->dev,
1765 "writing trickle charger info 0x%x to 0x%x\n",
1766 trickle_charger_setup, chip->trickle_charger_reg);
1767 regmap_write(ds1307->regmap, chip->trickle_charger_reg,
1768 trickle_charger_setup);
1769 }
1770
1771/*
1772 * For devices with no IRQ directly connected to the SoC, the RTC chip
1773 * can be forced as a wakeup source by stating that explicitly in
1774 * the device's .dts file using the "wakeup-source" boolean property.
1775 * If the "wakeup-source" property is set, don't request an IRQ.
1776 * This will guarantee the 'wakealarm' sysfs entry is available on the device,
1777 * if supported by the RTC.
1778 */
1779 if (chip->alarm && device_property_read_bool(&client->dev, "wakeup-source"))
1780 ds1307_can_wakeup_device = true;
1781
1782 switch (ds1307->type) {
1783 case ds_1337:
1784 case ds_1339:
1785 case ds_1341:
1786 case ds_3231:
1787 /* get registers that the "rtc" read below won't read... */
1788 err = regmap_bulk_read(ds1307->regmap, DS1337_REG_CONTROL,
1789 regs, 2);
1790 if (err) {
1791 dev_dbg(ds1307->dev, "read error %d\n", err);
1792 goto exit;
1793 }
1794
1795 /* oscillator off? turn it on, so clock can tick. */
1796 if (regs[0] & DS1337_BIT_nEOSC)
1797 regs[0] &= ~DS1337_BIT_nEOSC;
1798
1799 /*
1800 * Using IRQ or defined as wakeup-source?
1801 * Disable the square wave and both alarms.
1802 * For some variants, be sure alarms can trigger when we're
1803 * running on Vbackup (BBSQI/BBSQW)
1804 */
1805 if (want_irq || ds1307_can_wakeup_device) {
1806 regs[0] |= DS1337_BIT_INTCN | chip->bbsqi_bit;
1807 regs[0] &= ~(DS1337_BIT_A2IE | DS1337_BIT_A1IE);
1808 }
1809
1810 regmap_write(ds1307->regmap, DS1337_REG_CONTROL,
1811 regs[0]);
1812
1813 /* oscillator fault? clear flag, and warn */
1814 if (regs[1] & DS1337_BIT_OSF) {
1815 regmap_write(ds1307->regmap, DS1337_REG_STATUS,
1816 regs[1] & ~DS1337_BIT_OSF);
1817 dev_warn(ds1307->dev, "SET TIME!\n");
1818 }
1819 break;
1820
1821 case rx_8025:
1822 err = regmap_bulk_read(ds1307->regmap,
1823 RX8025_REG_CTRL1 << 4 | 0x08, regs, 2);
1824 if (err) {
1825 dev_dbg(ds1307->dev, "read error %d\n", err);
1826 goto exit;
1827 }
1828
1829 /* oscillator off? turn it on, so clock can tick. */
1830 if (!(regs[1] & RX8025_BIT_XST)) {
1831 regs[1] |= RX8025_BIT_XST;
1832 regmap_write(ds1307->regmap,
1833 RX8025_REG_CTRL2 << 4 | 0x08,
1834 regs[1]);
1835 dev_warn(ds1307->dev,
1836 "oscillator stop detected - SET TIME!\n");
1837 }
1838
1839 if (regs[1] & RX8025_BIT_PON) {
1840 regs[1] &= ~RX8025_BIT_PON;
1841 regmap_write(ds1307->regmap,
1842 RX8025_REG_CTRL2 << 4 | 0x08,
1843 regs[1]);
1844 dev_warn(ds1307->dev, "power-on detected\n");
1845 }
1846
1847 if (regs[1] & RX8025_BIT_VDET) {
1848 regs[1] &= ~RX8025_BIT_VDET;
1849 regmap_write(ds1307->regmap,
1850 RX8025_REG_CTRL2 << 4 | 0x08,
1851 regs[1]);
1852 dev_warn(ds1307->dev, "voltage drop detected\n");
1853 }
1854
1855 /* make sure we are running in 24hour mode */
1856 if (!(regs[0] & RX8025_BIT_2412)) {
1857 u8 hour;
1858
1859 /* switch to 24 hour mode */
1860 regmap_write(ds1307->regmap,
1861 RX8025_REG_CTRL1 << 4 | 0x08,
1862 regs[0] | RX8025_BIT_2412);
1863
1864 err = regmap_bulk_read(ds1307->regmap,
1865 RX8025_REG_CTRL1 << 4 | 0x08,
1866 regs, 2);
1867 if (err) {
1868 dev_dbg(ds1307->dev, "read error %d\n", err);
1869 goto exit;
1870 }
1871
1872 /* correct hour */
1873 hour = bcd2bin(regs[DS1307_REG_HOUR]);
1874 if (hour == 12)
1875 hour = 0;
1876 if (regs[DS1307_REG_HOUR] & DS1307_BIT_PM)
1877 hour += 12;
1878
1879 regmap_write(ds1307->regmap,
1880 DS1307_REG_HOUR << 4 | 0x08, hour);
1881 }
1882 break;
1883 case ds_1388:
1884 err = regmap_read(ds1307->regmap, DS1388_REG_CONTROL, &tmp);
1885 if (err) {
1886 dev_dbg(ds1307->dev, "read error %d\n", err);
1887 goto exit;
1888 }
1889
1890 /* oscillator off? turn it on, so clock can tick. */
1891 if (tmp & DS1388_BIT_nEOSC) {
1892 tmp &= ~DS1388_BIT_nEOSC;
1893 regmap_write(ds1307->regmap, DS1388_REG_CONTROL, tmp);
1894 }
1895 break;
1896 default:
1897 break;
1898 }
1899
1900 /* read RTC registers */
1901 err = regmap_bulk_read(ds1307->regmap, chip->offset, regs,
1902 sizeof(regs));
1903 if (err) {
1904 dev_dbg(ds1307->dev, "read error %d\n", err);
1905 goto exit;
1906 }
1907
1908 if (ds1307->type == mcp794xx &&
1909 !(regs[DS1307_REG_WDAY] & MCP794XX_BIT_VBATEN)) {
1910 regmap_write(ds1307->regmap, DS1307_REG_WDAY,
1911 regs[DS1307_REG_WDAY] |
1912 MCP794XX_BIT_VBATEN);
1913 }
1914
1915 tmp = regs[DS1307_REG_HOUR];
1916 switch (ds1307->type) {
1917 case ds_1340:
1918 case m41t0:
1919 case m41t00:
1920 case m41t11:
1921 /*
1922 * NOTE: ignores century bits; fix before deploying
1923 * systems that will run through year 2100.
1924 */
1925 break;
1926 case rx_8025:
1927 break;
1928 default:
1929 if (!(tmp & DS1307_BIT_12HR))
1930 break;
1931
1932 /*
1933 * Be sure we're in 24 hour mode. Multi-master systems
1934 * take note...
1935 */
1936 tmp = bcd2bin(tmp & 0x1f);
1937 if (tmp == 12)
1938 tmp = 0;
1939 if (regs[DS1307_REG_HOUR] & DS1307_BIT_PM)
1940 tmp += 12;
1941 regmap_write(ds1307->regmap, chip->offset + DS1307_REG_HOUR,
1942 bin2bcd(tmp));
1943 }
1944
1945 ds1307->rtc = devm_rtc_allocate_device(ds1307->dev);
1946 if (IS_ERR(ds1307->rtc))
1947 return PTR_ERR(ds1307->rtc);
1948
1949 if (want_irq || ds1307_can_wakeup_device)
1950 device_set_wakeup_capable(ds1307->dev, true);
1951 else
1952 clear_bit(RTC_FEATURE_ALARM, ds1307->rtc->features);
1953
1954 if (ds1307_can_wakeup_device && !want_irq) {
1955 dev_info(ds1307->dev,
1956 "'wakeup-source' is set, request for an IRQ is disabled!\n");
1957 /* We cannot support UIE mode if we do not have an IRQ line */
1958 ds1307->rtc->uie_unsupported = 1;
1959 }
1960
1961 if (want_irq) {
1962 err = devm_request_threaded_irq(ds1307->dev, client->irq, NULL,
1963 chip->irq_handler ?: ds1307_irq,
1964 IRQF_SHARED | IRQF_ONESHOT,
1965 ds1307->name, ds1307);
1966 if (err) {
1967 client->irq = 0;
1968 device_set_wakeup_capable(ds1307->dev, false);
1969 clear_bit(RTC_FEATURE_ALARM, ds1307->rtc->features);
1970 dev_err(ds1307->dev, "unable to request IRQ!\n");
1971 } else {
1972 dev_dbg(ds1307->dev, "got IRQ %d\n", client->irq);
1973 }
1974 }
1975
1976 ds1307->rtc->ops = chip->rtc_ops ?: &ds13xx_rtc_ops;
1977 err = ds1307_add_frequency_test(ds1307);
1978 if (err)
1979 return err;
1980
1981 err = devm_rtc_register_device(ds1307->rtc);
1982 if (err)
1983 return err;
1984
1985 if (chip->nvram_size) {
1986 struct nvmem_config nvmem_cfg = {
1987 .name = "ds1307_nvram",
1988 .word_size = 1,
1989 .stride = 1,
1990 .size = chip->nvram_size,
1991 .reg_read = ds1307_nvram_read,
1992 .reg_write = ds1307_nvram_write,
1993 .priv = ds1307,
1994 };
1995
1996 devm_rtc_nvmem_register(ds1307->rtc, &nvmem_cfg);
1997 }
1998
1999 ds1307_hwmon_register(ds1307);
2000 ds1307_clks_register(ds1307);
2001 ds1307_wdt_register(ds1307);
2002
2003 return 0;
2004
2005exit:
2006 return err;
2007}
2008
2009static struct i2c_driver ds1307_driver = {
2010 .driver = {
2011 .name = "rtc-ds1307",
2012 .of_match_table = ds1307_of_match,
2013 },
2014 .probe = ds1307_probe,
2015 .id_table = ds1307_id,
2016};
2017
2018module_i2c_driver(ds1307_driver);
2019
2020MODULE_DESCRIPTION("RTC driver for DS1307 and similar chips");
2021MODULE_LICENSE("GPL");