]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - drivers/spi/spi-adi-v3.c
spi: convert spi-bfin-v3.c to a multiplatform driver
[mirror_ubuntu-bionic-kernel.git] / drivers / spi / spi-adi-v3.c
... / ...
CommitLineData
1/*
2 * Analog Devices SPI3 controller driver
3 *
4 * Copyright (c) 2014 Analog Devices Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16#include <linux/delay.h>
17#include <linux/device.h>
18#include <linux/dma-mapping.h>
19#include <linux/errno.h>
20#include <linux/gpio.h>
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
24#include <linux/ioport.h>
25#include <linux/module.h>
26#include <linux/platform_device.h>
27#include <linux/slab.h>
28#include <linux/spi/spi.h>
29#include <linux/spi/adi_spi3.h>
30#include <linux/types.h>
31
32#include <asm/dma.h>
33#include <asm/portmux.h>
34
35enum adi_spi_state {
36 START_STATE,
37 RUNNING_STATE,
38 DONE_STATE,
39 ERROR_STATE
40};
41
42struct adi_spi_master;
43
44struct adi_spi_transfer_ops {
45 void (*write) (struct adi_spi_master *);
46 void (*read) (struct adi_spi_master *);
47 void (*duplex) (struct adi_spi_master *);
48};
49
50/* runtime info for spi master */
51struct adi_spi_master {
52 /* SPI framework hookup */
53 struct spi_master *master;
54
55 /* Regs base of SPI controller */
56 struct adi_spi_regs __iomem *regs;
57
58 /* Pin request list */
59 u16 *pin_req;
60
61 /* Message Transfer pump */
62 struct tasklet_struct pump_transfers;
63
64 /* Current message transfer state info */
65 struct spi_message *cur_msg;
66 struct spi_transfer *cur_transfer;
67 struct adi_spi_device *cur_chip;
68 unsigned transfer_len;
69
70 /* transfer buffer */
71 void *tx;
72 void *tx_end;
73 void *rx;
74 void *rx_end;
75
76 /* dma info */
77 unsigned int tx_dma;
78 unsigned int rx_dma;
79 dma_addr_t tx_dma_addr;
80 dma_addr_t rx_dma_addr;
81 unsigned long dummy_buffer; /* used in unidirectional transfer */
82 unsigned long tx_dma_size;
83 unsigned long rx_dma_size;
84 int tx_num;
85 int rx_num;
86
87 /* store register value for suspend/resume */
88 u32 control;
89 u32 ssel;
90
91 unsigned long sclk;
92 enum adi_spi_state state;
93
94 const struct adi_spi_transfer_ops *ops;
95};
96
97struct adi_spi_device {
98 u32 control;
99 u32 clock;
100 u32 ssel;
101
102 u8 cs;
103 u16 cs_chg_udelay; /* Some devices require > 255usec delay */
104 u32 cs_gpio;
105 u32 tx_dummy_val; /* tx value for rx only transfer */
106 bool enable_dma;
107 const struct adi_spi_transfer_ops *ops;
108};
109
110static void adi_spi_enable(struct adi_spi_master *drv_data)
111{
112 u32 ctl;
113
114 ctl = ioread32(&drv_data->regs->control);
115 ctl |= SPI_CTL_EN;
116 iowrite32(ctl, &drv_data->regs->control);
117}
118
119static void adi_spi_disable(struct adi_spi_master *drv_data)
120{
121 u32 ctl;
122
123 ctl = ioread32(&drv_data->regs->control);
124 ctl &= ~SPI_CTL_EN;
125 iowrite32(ctl, &drv_data->regs->control);
126}
127
128/* Caculate the SPI_CLOCK register value based on input HZ */
129static u32 hz_to_spi_clock(u32 sclk, u32 speed_hz)
130{
131 u32 spi_clock = sclk / speed_hz;
132
133 if (spi_clock)
134 spi_clock--;
135 return spi_clock;
136}
137
138static int adi_spi_flush(struct adi_spi_master *drv_data)
139{
140 unsigned long limit = loops_per_jiffy << 1;
141
142 /* wait for stop and clear stat */
143 while (!(ioread32(&drv_data->regs->status) & SPI_STAT_SPIF) && --limit)
144 cpu_relax();
145
146 iowrite32(0xFFFFFFFF, &drv_data->regs->status);
147
148 return limit;
149}
150
151/* Chip select operation functions for cs_change flag */
152static void adi_spi_cs_active(struct adi_spi_master *drv_data, struct adi_spi_device *chip)
153{
154 if (likely(chip->cs < MAX_CTRL_CS)) {
155 u32 reg;
156 reg = ioread32(&drv_data->regs->ssel);
157 reg &= ~chip->ssel;
158 iowrite32(reg, &drv_data->regs->ssel);
159 } else {
160 gpio_set_value(chip->cs_gpio, 0);
161 }
162}
163
164static void adi_spi_cs_deactive(struct adi_spi_master *drv_data,
165 struct adi_spi_device *chip)
166{
167 if (likely(chip->cs < MAX_CTRL_CS)) {
168 u32 reg;
169 reg = ioread32(&drv_data->regs->ssel);
170 reg |= chip->ssel;
171 iowrite32(reg, &drv_data->regs->ssel);
172 } else {
173 gpio_set_value(chip->cs_gpio, 1);
174 }
175
176 /* Move delay here for consistency */
177 if (chip->cs_chg_udelay)
178 udelay(chip->cs_chg_udelay);
179}
180
181/* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
182static inline void adi_spi_cs_enable(struct adi_spi_master *drv_data,
183 struct adi_spi_device *chip)
184{
185 if (chip->cs < MAX_CTRL_CS) {
186 u32 reg;
187 reg = ioread32(&drv_data->regs->ssel);
188 reg |= chip->ssel >> 8;
189 iowrite32(reg, &drv_data->regs->ssel);
190 }
191}
192
193static inline void adi_spi_cs_disable(struct adi_spi_master *drv_data,
194 struct adi_spi_device *chip)
195{
196 if (chip->cs < MAX_CTRL_CS) {
197 u32 reg;
198 reg = ioread32(&drv_data->regs->ssel);
199 reg &= ~(chip->ssel >> 8);
200 iowrite32(reg, &drv_data->regs->ssel);
201 }
202}
203
204/* stop controller and re-config current chip*/
205static void adi_spi_restore_state(struct adi_spi_master *drv_data)
206{
207 struct adi_spi_device *chip = drv_data->cur_chip;
208
209 /* Clear status and disable clock */
210 iowrite32(0xFFFFFFFF, &drv_data->regs->status);
211 iowrite32(0x0, &drv_data->regs->rx_control);
212 iowrite32(0x0, &drv_data->regs->tx_control);
213 adi_spi_disable(drv_data);
214
215 /* Load the registers */
216 iowrite32(chip->control, &drv_data->regs->control);
217 iowrite32(chip->clock, &drv_data->regs->clock);
218
219 adi_spi_enable(drv_data);
220 drv_data->tx_num = drv_data->rx_num = 0;
221 /* we always choose tx transfer initiate */
222 iowrite32(SPI_RXCTL_REN, &drv_data->regs->rx_control);
223 iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI, &drv_data->regs->tx_control);
224 adi_spi_cs_active(drv_data, chip);
225}
226
227/* discard invalid rx data and empty rfifo */
228static inline void dummy_read(struct adi_spi_master *drv_data)
229{
230 while (!(ioread32(&drv_data->regs->status) & SPI_STAT_RFE))
231 ioread32(&drv_data->regs->rfifo);
232}
233
234static void adi_spi_u8_write(struct adi_spi_master *drv_data)
235{
236 dummy_read(drv_data);
237 while (drv_data->tx < drv_data->tx_end) {
238 iowrite32(*(u8 *)(drv_data->tx++), &drv_data->regs->tfifo);
239 while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
240 cpu_relax();
241 ioread32(&drv_data->regs->rfifo);
242 }
243}
244
245static void adi_spi_u8_read(struct adi_spi_master *drv_data)
246{
247 u32 tx_val = drv_data->cur_chip->tx_dummy_val;
248
249 dummy_read(drv_data);
250 while (drv_data->rx < drv_data->rx_end) {
251 iowrite32(tx_val, &drv_data->regs->tfifo);
252 while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
253 cpu_relax();
254 *(u8 *)(drv_data->rx++) = ioread32(&drv_data->regs->rfifo);
255 }
256}
257
258static void adi_spi_u8_duplex(struct adi_spi_master *drv_data)
259{
260 dummy_read(drv_data);
261 while (drv_data->rx < drv_data->rx_end) {
262 iowrite32(*(u8 *)(drv_data->tx++), &drv_data->regs->tfifo);
263 while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
264 cpu_relax();
265 *(u8 *)(drv_data->rx++) = ioread32(&drv_data->regs->rfifo);
266 }
267}
268
269static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u8 = {
270 .write = adi_spi_u8_write,
271 .read = adi_spi_u8_read,
272 .duplex = adi_spi_u8_duplex,
273};
274
275static void adi_spi_u16_write(struct adi_spi_master *drv_data)
276{
277 dummy_read(drv_data);
278 while (drv_data->tx < drv_data->tx_end) {
279 iowrite32(*(u16 *)drv_data->tx, &drv_data->regs->tfifo);
280 drv_data->tx += 2;
281 while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
282 cpu_relax();
283 ioread32(&drv_data->regs->rfifo);
284 }
285}
286
287static void adi_spi_u16_read(struct adi_spi_master *drv_data)
288{
289 u32 tx_val = drv_data->cur_chip->tx_dummy_val;
290
291 dummy_read(drv_data);
292 while (drv_data->rx < drv_data->rx_end) {
293 iowrite32(tx_val, &drv_data->regs->tfifo);
294 while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
295 cpu_relax();
296 *(u16 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
297 drv_data->rx += 2;
298 }
299}
300
301static void adi_spi_u16_duplex(struct adi_spi_master *drv_data)
302{
303 dummy_read(drv_data);
304 while (drv_data->rx < drv_data->rx_end) {
305 iowrite32(*(u16 *)drv_data->tx, &drv_data->regs->tfifo);
306 drv_data->tx += 2;
307 while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
308 cpu_relax();
309 *(u16 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
310 drv_data->rx += 2;
311 }
312}
313
314static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u16 = {
315 .write = adi_spi_u16_write,
316 .read = adi_spi_u16_read,
317 .duplex = adi_spi_u16_duplex,
318};
319
320static void adi_spi_u32_write(struct adi_spi_master *drv_data)
321{
322 dummy_read(drv_data);
323 while (drv_data->tx < drv_data->tx_end) {
324 iowrite32(*(u32 *)drv_data->tx, &drv_data->regs->tfifo);
325 drv_data->tx += 4;
326 while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
327 cpu_relax();
328 ioread32(&drv_data->regs->rfifo);
329 }
330}
331
332static void adi_spi_u32_read(struct adi_spi_master *drv_data)
333{
334 u32 tx_val = drv_data->cur_chip->tx_dummy_val;
335
336 dummy_read(drv_data);
337 while (drv_data->rx < drv_data->rx_end) {
338 iowrite32(tx_val, &drv_data->regs->tfifo);
339 while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
340 cpu_relax();
341 *(u32 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
342 drv_data->rx += 4;
343 }
344}
345
346static void adi_spi_u32_duplex(struct adi_spi_master *drv_data)
347{
348 dummy_read(drv_data);
349 while (drv_data->rx < drv_data->rx_end) {
350 iowrite32(*(u32 *)drv_data->tx, &drv_data->regs->tfifo);
351 drv_data->tx += 4;
352 while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
353 cpu_relax();
354 *(u32 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
355 drv_data->rx += 4;
356 }
357}
358
359static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u32 = {
360 .write = adi_spi_u32_write,
361 .read = adi_spi_u32_read,
362 .duplex = adi_spi_u32_duplex,
363};
364
365
366/* test if there is more transfer to be done */
367static void adi_spi_next_transfer(struct adi_spi_master *drv)
368{
369 struct spi_message *msg = drv->cur_msg;
370 struct spi_transfer *t = drv->cur_transfer;
371
372 /* Move to next transfer */
373 if (t->transfer_list.next != &msg->transfers) {
374 drv->cur_transfer = list_entry(t->transfer_list.next,
375 struct spi_transfer, transfer_list);
376 drv->state = RUNNING_STATE;
377 } else {
378 drv->state = DONE_STATE;
379 drv->cur_transfer = NULL;
380 }
381}
382
383static void adi_spi_giveback(struct adi_spi_master *drv_data)
384{
385 struct adi_spi_device *chip = drv_data->cur_chip;
386
387 adi_spi_cs_deactive(drv_data, chip);
388 spi_finalize_current_message(drv_data->master);
389}
390
391static int adi_spi_setup_transfer(struct adi_spi_master *drv)
392{
393 struct spi_transfer *t = drv->cur_transfer;
394 u32 cr, cr_width;
395
396 if (t->tx_buf) {
397 drv->tx = (void *)t->tx_buf;
398 drv->tx_end = drv->tx + t->len;
399 } else {
400 drv->tx = NULL;
401 }
402
403 if (t->rx_buf) {
404 drv->rx = t->rx_buf;
405 drv->rx_end = drv->rx + t->len;
406 } else {
407 drv->rx = NULL;
408 }
409
410 drv->transfer_len = t->len;
411
412 /* bits per word setup */
413 switch (t->bits_per_word) {
414 case 8:
415 cr_width = SPI_CTL_SIZE08;
416 drv->ops = &adi_spi_transfer_ops_u8;
417 break;
418 case 16:
419 cr_width = SPI_CTL_SIZE16;
420 drv->ops = &adi_spi_transfer_ops_u16;
421 break;
422 case 32:
423 cr_width = SPI_CTL_SIZE32;
424 drv->ops = &adi_spi_transfer_ops_u32;
425 break;
426 default:
427 return -EINVAL;
428 }
429 cr = ioread32(&drv->regs->control) & ~SPI_CTL_SIZE;
430 cr |= cr_width;
431 iowrite32(cr, &drv->regs->control);
432
433 /* speed setup */
434 iowrite32(hz_to_spi_clock(drv->sclk, t->speed_hz), &drv->regs->clock);
435 return 0;
436}
437
438static int adi_spi_dma_xfer(struct adi_spi_master *drv_data)
439{
440 struct spi_transfer *t = drv_data->cur_transfer;
441 struct spi_message *msg = drv_data->cur_msg;
442 struct adi_spi_device *chip = drv_data->cur_chip;
443 u32 dma_config;
444 unsigned long word_count, word_size;
445 void *tx_buf, *rx_buf;
446
447 switch (t->bits_per_word) {
448 case 8:
449 dma_config = WDSIZE_8 | PSIZE_8;
450 word_count = drv_data->transfer_len;
451 word_size = 1;
452 break;
453 case 16:
454 dma_config = WDSIZE_16 | PSIZE_16;
455 word_count = drv_data->transfer_len / 2;
456 word_size = 2;
457 break;
458 default:
459 dma_config = WDSIZE_32 | PSIZE_32;
460 word_count = drv_data->transfer_len / 4;
461 word_size = 4;
462 break;
463 }
464
465 if (!drv_data->rx) {
466 tx_buf = drv_data->tx;
467 rx_buf = &drv_data->dummy_buffer;
468 drv_data->tx_dma_size = drv_data->transfer_len;
469 drv_data->rx_dma_size = sizeof(drv_data->dummy_buffer);
470 set_dma_x_modify(drv_data->tx_dma, word_size);
471 set_dma_x_modify(drv_data->rx_dma, 0);
472 } else if (!drv_data->tx) {
473 drv_data->dummy_buffer = chip->tx_dummy_val;
474 tx_buf = &drv_data->dummy_buffer;
475 rx_buf = drv_data->rx;
476 drv_data->tx_dma_size = sizeof(drv_data->dummy_buffer);
477 drv_data->rx_dma_size = drv_data->transfer_len;
478 set_dma_x_modify(drv_data->tx_dma, 0);
479 set_dma_x_modify(drv_data->rx_dma, word_size);
480 } else {
481 tx_buf = drv_data->tx;
482 rx_buf = drv_data->rx;
483 drv_data->tx_dma_size = drv_data->rx_dma_size
484 = drv_data->transfer_len;
485 set_dma_x_modify(drv_data->tx_dma, word_size);
486 set_dma_x_modify(drv_data->rx_dma, word_size);
487 }
488
489 drv_data->tx_dma_addr = dma_map_single(&msg->spi->dev,
490 (void *)tx_buf,
491 drv_data->tx_dma_size,
492 DMA_TO_DEVICE);
493 if (dma_mapping_error(&msg->spi->dev,
494 drv_data->tx_dma_addr))
495 return -ENOMEM;
496
497 drv_data->rx_dma_addr = dma_map_single(&msg->spi->dev,
498 (void *)rx_buf,
499 drv_data->rx_dma_size,
500 DMA_FROM_DEVICE);
501 if (dma_mapping_error(&msg->spi->dev,
502 drv_data->rx_dma_addr)) {
503 dma_unmap_single(&msg->spi->dev,
504 drv_data->tx_dma_addr,
505 drv_data->tx_dma_size,
506 DMA_TO_DEVICE);
507 return -ENOMEM;
508 }
509
510 dummy_read(drv_data);
511 set_dma_x_count(drv_data->tx_dma, word_count);
512 set_dma_x_count(drv_data->rx_dma, word_count);
513 set_dma_start_addr(drv_data->tx_dma, drv_data->tx_dma_addr);
514 set_dma_start_addr(drv_data->rx_dma, drv_data->rx_dma_addr);
515 dma_config |= DMAFLOW_STOP | RESTART | DI_EN;
516 set_dma_config(drv_data->tx_dma, dma_config);
517 set_dma_config(drv_data->rx_dma, dma_config | WNR);
518 enable_dma(drv_data->tx_dma);
519 enable_dma(drv_data->rx_dma);
520
521 iowrite32(SPI_RXCTL_REN | SPI_RXCTL_RDR_NE,
522 &drv_data->regs->rx_control);
523 iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI | SPI_TXCTL_TDR_NF,
524 &drv_data->regs->tx_control);
525
526 return 0;
527}
528
529static int adi_spi_pio_xfer(struct adi_spi_master *drv_data)
530{
531 struct spi_message *msg = drv_data->cur_msg;
532
533 if (!drv_data->rx) {
534 /* write only half duplex */
535 drv_data->ops->write(drv_data);
536 if (drv_data->tx != drv_data->tx_end)
537 return -EIO;
538 } else if (!drv_data->tx) {
539 /* read only half duplex */
540 drv_data->ops->read(drv_data);
541 if (drv_data->rx != drv_data->rx_end)
542 return -EIO;
543 } else {
544 /* full duplex mode */
545 drv_data->ops->duplex(drv_data);
546 if (drv_data->tx != drv_data->tx_end)
547 return -EIO;
548 }
549
550 if (!adi_spi_flush(drv_data))
551 return -EIO;
552 msg->actual_length += drv_data->transfer_len;
553 tasklet_schedule(&drv_data->pump_transfers);
554 return 0;
555}
556
557static void adi_spi_pump_transfers(unsigned long data)
558{
559 struct adi_spi_master *drv_data = (struct adi_spi_master *)data;
560 struct spi_message *msg = NULL;
561 struct spi_transfer *t = NULL;
562 struct adi_spi_device *chip = NULL;
563 int ret;
564
565 /* Get current state information */
566 msg = drv_data->cur_msg;
567 t = drv_data->cur_transfer;
568 chip = drv_data->cur_chip;
569
570 /* Handle for abort */
571 if (drv_data->state == ERROR_STATE) {
572 msg->status = -EIO;
573 adi_spi_giveback(drv_data);
574 return;
575 }
576
577 if (drv_data->state == RUNNING_STATE) {
578 if (t->delay_usecs)
579 udelay(t->delay_usecs);
580 if (t->cs_change)
581 adi_spi_cs_deactive(drv_data, chip);
582 adi_spi_next_transfer(drv_data);
583 t = drv_data->cur_transfer;
584 }
585 /* Handle end of message */
586 if (drv_data->state == DONE_STATE) {
587 msg->status = 0;
588 adi_spi_giveback(drv_data);
589 return;
590 }
591
592 if ((t->len == 0) || (t->tx_buf == NULL && t->rx_buf == NULL)) {
593 /* Schedule next transfer tasklet */
594 tasklet_schedule(&drv_data->pump_transfers);
595 return;
596 }
597
598 ret = adi_spi_setup_transfer(drv_data);
599 if (ret) {
600 msg->status = ret;
601 adi_spi_giveback(drv_data);
602 }
603
604 iowrite32(0xFFFFFFFF, &drv_data->regs->status);
605 adi_spi_cs_active(drv_data, chip);
606 drv_data->state = RUNNING_STATE;
607
608 if (chip->enable_dma)
609 ret = adi_spi_dma_xfer(drv_data);
610 else
611 ret = adi_spi_pio_xfer(drv_data);
612 if (ret) {
613 msg->status = ret;
614 adi_spi_giveback(drv_data);
615 }
616}
617
618static int adi_spi_transfer_one_message(struct spi_master *master,
619 struct spi_message *m)
620{
621 struct adi_spi_master *drv_data = spi_master_get_devdata(master);
622
623 drv_data->cur_msg = m;
624 drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
625 adi_spi_restore_state(drv_data);
626
627 drv_data->state = START_STATE;
628 drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
629 struct spi_transfer, transfer_list);
630
631 tasklet_schedule(&drv_data->pump_transfers);
632 return 0;
633}
634
635#define MAX_SPI_SSEL 7
636
637static const u16 ssel[][MAX_SPI_SSEL] = {
638 {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
639 P_SPI0_SSEL4, P_SPI0_SSEL5,
640 P_SPI0_SSEL6, P_SPI0_SSEL7},
641
642 {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
643 P_SPI1_SSEL4, P_SPI1_SSEL5,
644 P_SPI1_SSEL6, P_SPI1_SSEL7},
645
646 {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
647 P_SPI2_SSEL4, P_SPI2_SSEL5,
648 P_SPI2_SSEL6, P_SPI2_SSEL7},
649};
650
651static int adi_spi_setup(struct spi_device *spi)
652{
653 struct adi_spi_master *drv_data = spi_master_get_devdata(spi->master);
654 struct adi_spi_device *chip = spi_get_ctldata(spi);
655 u32 ctl_reg = SPI_CTL_ODM | SPI_CTL_PSSE;
656 int ret = -EINVAL;
657
658 if (!chip) {
659 struct adi_spi3_chip *chip_info = spi->controller_data;
660
661 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
662 if (!chip) {
663 dev_err(&spi->dev, "can not allocate chip data\n");
664 return -ENOMEM;
665 }
666 if (chip_info) {
667 if (chip_info->control & ~ctl_reg) {
668 dev_err(&spi->dev,
669 "do not set bits that the SPI framework manages\n");
670 goto error;
671 }
672 chip->control = chip_info->control;
673 chip->cs_chg_udelay = chip_info->cs_chg_udelay;
674 chip->tx_dummy_val = chip_info->tx_dummy_val;
675 chip->enable_dma = chip_info->enable_dma;
676 }
677 chip->cs = spi->chip_select;
678
679 if (chip->cs < MAX_CTRL_CS) {
680 chip->ssel = (1 << chip->cs) << 8;
681 ret = peripheral_request(ssel[spi->master->bus_num]
682 [chip->cs-1], dev_name(&spi->dev));
683 if (ret) {
684 dev_err(&spi->dev, "peripheral_request() error\n");
685 goto error;
686 }
687 } else {
688 chip->cs_gpio = chip->cs - MAX_CTRL_CS;
689 ret = gpio_request_one(chip->cs_gpio, GPIOF_OUT_INIT_HIGH,
690 dev_name(&spi->dev));
691 if (ret) {
692 dev_err(&spi->dev, "gpio_request_one() error\n");
693 goto error;
694 }
695 }
696 spi_set_ctldata(spi, chip);
697 }
698
699 /* force a default base state */
700 chip->control &= ctl_reg;
701
702 if (spi->mode & SPI_CPOL)
703 chip->control |= SPI_CTL_CPOL;
704 if (spi->mode & SPI_CPHA)
705 chip->control |= SPI_CTL_CPHA;
706 if (spi->mode & SPI_LSB_FIRST)
707 chip->control |= SPI_CTL_LSBF;
708 chip->control |= SPI_CTL_MSTR;
709 /* we choose software to controll cs */
710 chip->control &= ~SPI_CTL_ASSEL;
711
712 chip->clock = hz_to_spi_clock(drv_data->sclk, spi->max_speed_hz);
713
714 adi_spi_cs_enable(drv_data, chip);
715 adi_spi_cs_deactive(drv_data, chip);
716
717 return 0;
718error:
719 if (chip) {
720 kfree(chip);
721 spi_set_ctldata(spi, NULL);
722 }
723
724 return ret;
725}
726
727static void adi_spi_cleanup(struct spi_device *spi)
728{
729 struct adi_spi_device *chip = spi_get_ctldata(spi);
730 struct adi_spi_master *drv_data = spi_master_get_devdata(spi->master);
731
732 if (!chip)
733 return;
734
735 if (chip->cs < MAX_CTRL_CS) {
736 peripheral_free(ssel[spi->master->bus_num]
737 [chip->cs-1]);
738 adi_spi_cs_disable(drv_data, chip);
739 } else {
740 gpio_free(chip->cs_gpio);
741 }
742
743 kfree(chip);
744 spi_set_ctldata(spi, NULL);
745}
746
747static irqreturn_t adi_spi_tx_dma_isr(int irq, void *dev_id)
748{
749 struct adi_spi_master *drv_data = dev_id;
750 u32 dma_stat = get_dma_curr_irqstat(drv_data->tx_dma);
751 u32 tx_ctl;
752
753 clear_dma_irqstat(drv_data->tx_dma);
754 if (dma_stat & DMA_DONE) {
755 drv_data->tx_num++;
756 } else {
757 dev_err(&drv_data->master->dev,
758 "spi tx dma error: %d\n", dma_stat);
759 if (drv_data->tx)
760 drv_data->state = ERROR_STATE;
761 }
762 tx_ctl = ioread32(&drv_data->regs->tx_control);
763 tx_ctl &= ~SPI_TXCTL_TDR_NF;
764 iowrite32(tx_ctl, &drv_data->regs->tx_control);
765 return IRQ_HANDLED;
766}
767
768static irqreturn_t adi_spi_rx_dma_isr(int irq, void *dev_id)
769{
770 struct adi_spi_master *drv_data = dev_id;
771 struct spi_message *msg = drv_data->cur_msg;
772 u32 dma_stat = get_dma_curr_irqstat(drv_data->rx_dma);
773
774 clear_dma_irqstat(drv_data->rx_dma);
775 if (dma_stat & DMA_DONE) {
776 drv_data->rx_num++;
777 /* we may fail on tx dma */
778 if (drv_data->state != ERROR_STATE)
779 msg->actual_length += drv_data->transfer_len;
780 } else {
781 drv_data->state = ERROR_STATE;
782 dev_err(&drv_data->master->dev,
783 "spi rx dma error: %d\n", dma_stat);
784 }
785 iowrite32(0, &drv_data->regs->tx_control);
786 iowrite32(0, &drv_data->regs->rx_control);
787 if (drv_data->rx_num != drv_data->tx_num)
788 dev_dbg(&drv_data->master->dev,
789 "dma interrupt missing: tx=%d,rx=%d\n",
790 drv_data->tx_num, drv_data->rx_num);
791 tasklet_schedule(&drv_data->pump_transfers);
792 return IRQ_HANDLED;
793}
794
795static int adi_spi_probe(struct platform_device *pdev)
796{
797 struct device *dev = &pdev->dev;
798 struct adi_spi3_master *info = dev_get_platdata(dev);
799 struct spi_master *master;
800 struct adi_spi_master *drv_data;
801 struct resource *mem, *res;
802 unsigned int tx_dma, rx_dma;
803 unsigned long sclk;
804 int ret;
805
806 if (!info) {
807 dev_err(dev, "platform data missing!\n");
808 return -ENODEV;
809 }
810
811 sclk = get_sclk1();
812 if (!sclk) {
813 dev_err(dev, "can not get sclk1\n");
814 return -ENXIO;
815 }
816
817 res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
818 if (!res) {
819 dev_err(dev, "can not get tx dma resource\n");
820 return -ENXIO;
821 }
822 tx_dma = res->start;
823
824 res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
825 if (!res) {
826 dev_err(dev, "can not get rx dma resource\n");
827 return -ENXIO;
828 }
829 rx_dma = res->start;
830
831 /* allocate master with space for drv_data */
832 master = spi_alloc_master(dev, sizeof(*drv_data));
833 if (!master) {
834 dev_err(dev, "can not alloc spi_master\n");
835 return -ENOMEM;
836 }
837 platform_set_drvdata(pdev, master);
838
839 /* the mode bits supported by this driver */
840 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
841
842 master->bus_num = pdev->id;
843 master->num_chipselect = info->num_chipselect;
844 master->cleanup = adi_spi_cleanup;
845 master->setup = adi_spi_setup;
846 master->transfer_one_message = adi_spi_transfer_one_message;
847 master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
848 SPI_BPW_MASK(8);
849
850 drv_data = spi_master_get_devdata(master);
851 drv_data->master = master;
852 drv_data->tx_dma = tx_dma;
853 drv_data->rx_dma = rx_dma;
854 drv_data->pin_req = info->pin_req;
855 drv_data->sclk = sclk;
856
857 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
858 drv_data->regs = devm_ioremap_resource(dev, mem);
859 if (IS_ERR(drv_data->regs)) {
860 ret = PTR_ERR(drv_data->regs);
861 goto err_put_master;
862 }
863
864 /* request tx and rx dma */
865 ret = request_dma(tx_dma, "SPI_TX_DMA");
866 if (ret) {
867 dev_err(dev, "can not request SPI TX DMA channel\n");
868 goto err_put_master;
869 }
870 set_dma_callback(tx_dma, adi_spi_tx_dma_isr, drv_data);
871
872 ret = request_dma(rx_dma, "SPI_RX_DMA");
873 if (ret) {
874 dev_err(dev, "can not request SPI RX DMA channel\n");
875 goto err_free_tx_dma;
876 }
877 set_dma_callback(drv_data->rx_dma, adi_spi_rx_dma_isr, drv_data);
878
879 /* request CLK, MOSI and MISO */
880 ret = peripheral_request_list(drv_data->pin_req, "adi-spi3");
881 if (ret < 0) {
882 dev_err(dev, "can not request spi pins\n");
883 goto err_free_rx_dma;
884 }
885
886 iowrite32(SPI_CTL_MSTR | SPI_CTL_CPHA, &drv_data->regs->control);
887 iowrite32(0x0000FE00, &drv_data->regs->ssel);
888 iowrite32(0x0, &drv_data->regs->delay);
889
890 tasklet_init(&drv_data->pump_transfers,
891 adi_spi_pump_transfers, (unsigned long)drv_data);
892 /* register with the SPI framework */
893 ret = devm_spi_register_master(dev, master);
894 if (ret) {
895 dev_err(dev, "can not register spi master\n");
896 goto err_free_peripheral;
897 }
898
899 return ret;
900
901err_free_peripheral:
902 peripheral_free_list(drv_data->pin_req);
903err_free_rx_dma:
904 free_dma(rx_dma);
905err_free_tx_dma:
906 free_dma(tx_dma);
907err_put_master:
908 spi_master_put(master);
909
910 return ret;
911}
912
913static int adi_spi_remove(struct platform_device *pdev)
914{
915 struct spi_master *master = platform_get_drvdata(pdev);
916 struct adi_spi_master *drv_data = spi_master_get_devdata(master);
917
918 adi_spi_disable(drv_data);
919 peripheral_free_list(drv_data->pin_req);
920 free_dma(drv_data->rx_dma);
921 free_dma(drv_data->tx_dma);
922 return 0;
923}
924
925#ifdef CONFIG_PM
926static int adi_spi_suspend(struct device *dev)
927{
928 struct spi_master *master = dev_get_drvdata(dev);
929 struct adi_spi_master *drv_data = spi_master_get_devdata(master);
930
931 spi_master_suspend(master);
932
933 drv_data->control = ioread32(&drv_data->regs->control);
934 drv_data->ssel = ioread32(&drv_data->regs->ssel);
935
936 iowrite32(SPI_CTL_MSTR | SPI_CTL_CPHA, &drv_data->regs->control);
937 iowrite32(0x0000FE00, &drv_data->regs->ssel);
938 dma_disable_irq(drv_data->rx_dma);
939 dma_disable_irq(drv_data->tx_dma);
940
941 return 0;
942}
943
944static int adi_spi_resume(struct device *dev)
945{
946 struct spi_master *master = dev_get_drvdata(dev);
947 struct adi_spi_master *drv_data = spi_master_get_devdata(master);
948 int ret = 0;
949
950 /* bootrom may modify spi and dma status when resume in spi boot mode */
951 disable_dma(drv_data->rx_dma);
952
953 dma_enable_irq(drv_data->rx_dma);
954 dma_enable_irq(drv_data->tx_dma);
955 iowrite32(drv_data->control, &drv_data->regs->control);
956 iowrite32(drv_data->ssel, &drv_data->regs->ssel);
957
958 ret = spi_master_resume(master);
959 if (ret) {
960 free_dma(drv_data->rx_dma);
961 free_dma(drv_data->tx_dma);
962 }
963
964 return ret;
965}
966#endif
967static const struct dev_pm_ops adi_spi_pm_ops = {
968 SET_SYSTEM_SLEEP_PM_OPS(adi_spi_suspend, adi_spi_resume)
969};
970
971MODULE_ALIAS("platform:adi-spi3");
972static struct platform_driver adi_spi_driver = {
973 .driver = {
974 .name = "adi-spi3",
975 .owner = THIS_MODULE,
976 .pm = &adi_spi_pm_ops,
977 },
978 .remove = adi_spi_remove,
979};
980
981module_platform_driver_probe(adi_spi_driver, adi_spi_probe);
982
983MODULE_DESCRIPTION("Analog Devices SPI3 controller driver");
984MODULE_AUTHOR("Scott Jiang <Scott.Jiang.Linux@gmail.com>");
985MODULE_LICENSE("GPL v2");