]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - fs/binfmt_elf.c
elf: init pt_regs pointer later
[mirror_ubuntu-jammy-kernel.git] / fs / binfmt_elf.c
... / ...
CommitLineData
1/*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/fs.h>
15#include <linux/mm.h>
16#include <linux/mman.h>
17#include <linux/errno.h>
18#include <linux/signal.h>
19#include <linux/binfmts.h>
20#include <linux/string.h>
21#include <linux/file.h>
22#include <linux/slab.h>
23#include <linux/personality.h>
24#include <linux/elfcore.h>
25#include <linux/init.h>
26#include <linux/highuid.h>
27#include <linux/compiler.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
30#include <linux/vmalloc.h>
31#include <linux/security.h>
32#include <linux/random.h>
33#include <linux/elf.h>
34#include <linux/elf-randomize.h>
35#include <linux/utsname.h>
36#include <linux/coredump.h>
37#include <linux/sched.h>
38#include <linux/sched/coredump.h>
39#include <linux/sched/task_stack.h>
40#include <linux/sched/cputime.h>
41#include <linux/cred.h>
42#include <linux/dax.h>
43#include <linux/uaccess.h>
44#include <asm/param.h>
45#include <asm/page.h>
46
47#ifndef user_long_t
48#define user_long_t long
49#endif
50#ifndef user_siginfo_t
51#define user_siginfo_t siginfo_t
52#endif
53
54/* That's for binfmt_elf_fdpic to deal with */
55#ifndef elf_check_fdpic
56#define elf_check_fdpic(ex) false
57#endif
58
59static int load_elf_binary(struct linux_binprm *bprm);
60
61#ifdef CONFIG_USELIB
62static int load_elf_library(struct file *);
63#else
64#define load_elf_library NULL
65#endif
66
67/*
68 * If we don't support core dumping, then supply a NULL so we
69 * don't even try.
70 */
71#ifdef CONFIG_ELF_CORE
72static int elf_core_dump(struct coredump_params *cprm);
73#else
74#define elf_core_dump NULL
75#endif
76
77#if ELF_EXEC_PAGESIZE > PAGE_SIZE
78#define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
79#else
80#define ELF_MIN_ALIGN PAGE_SIZE
81#endif
82
83#ifndef ELF_CORE_EFLAGS
84#define ELF_CORE_EFLAGS 0
85#endif
86
87#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
88#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
89#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
90
91static struct linux_binfmt elf_format = {
92 .module = THIS_MODULE,
93 .load_binary = load_elf_binary,
94 .load_shlib = load_elf_library,
95 .core_dump = elf_core_dump,
96 .min_coredump = ELF_EXEC_PAGESIZE,
97};
98
99#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
100
101static int set_brk(unsigned long start, unsigned long end, int prot)
102{
103 start = ELF_PAGEALIGN(start);
104 end = ELF_PAGEALIGN(end);
105 if (end > start) {
106 /*
107 * Map the last of the bss segment.
108 * If the header is requesting these pages to be
109 * executable, honour that (ppc32 needs this).
110 */
111 int error = vm_brk_flags(start, end - start,
112 prot & PROT_EXEC ? VM_EXEC : 0);
113 if (error)
114 return error;
115 }
116 current->mm->start_brk = current->mm->brk = end;
117 return 0;
118}
119
120/* We need to explicitly zero any fractional pages
121 after the data section (i.e. bss). This would
122 contain the junk from the file that should not
123 be in memory
124 */
125static int padzero(unsigned long elf_bss)
126{
127 unsigned long nbyte;
128
129 nbyte = ELF_PAGEOFFSET(elf_bss);
130 if (nbyte) {
131 nbyte = ELF_MIN_ALIGN - nbyte;
132 if (clear_user((void __user *) elf_bss, nbyte))
133 return -EFAULT;
134 }
135 return 0;
136}
137
138/* Let's use some macros to make this stack manipulation a little clearer */
139#ifdef CONFIG_STACK_GROWSUP
140#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
141#define STACK_ROUND(sp, items) \
142 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
143#define STACK_ALLOC(sp, len) ({ \
144 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
145 old_sp; })
146#else
147#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
148#define STACK_ROUND(sp, items) \
149 (((unsigned long) (sp - items)) &~ 15UL)
150#define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
151#endif
152
153#ifndef ELF_BASE_PLATFORM
154/*
155 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
156 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
157 * will be copied to the user stack in the same manner as AT_PLATFORM.
158 */
159#define ELF_BASE_PLATFORM NULL
160#endif
161
162static int
163create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
164 unsigned long load_addr, unsigned long interp_load_addr)
165{
166 unsigned long p = bprm->p;
167 int argc = bprm->argc;
168 int envc = bprm->envc;
169 elf_addr_t __user *sp;
170 elf_addr_t __user *u_platform;
171 elf_addr_t __user *u_base_platform;
172 elf_addr_t __user *u_rand_bytes;
173 const char *k_platform = ELF_PLATFORM;
174 const char *k_base_platform = ELF_BASE_PLATFORM;
175 unsigned char k_rand_bytes[16];
176 int items;
177 elf_addr_t *elf_info;
178 int ei_index = 0;
179 const struct cred *cred = current_cred();
180 struct vm_area_struct *vma;
181
182 /*
183 * In some cases (e.g. Hyper-Threading), we want to avoid L1
184 * evictions by the processes running on the same package. One
185 * thing we can do is to shuffle the initial stack for them.
186 */
187
188 p = arch_align_stack(p);
189
190 /*
191 * If this architecture has a platform capability string, copy it
192 * to userspace. In some cases (Sparc), this info is impossible
193 * for userspace to get any other way, in others (i386) it is
194 * merely difficult.
195 */
196 u_platform = NULL;
197 if (k_platform) {
198 size_t len = strlen(k_platform) + 1;
199
200 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
201 if (__copy_to_user(u_platform, k_platform, len))
202 return -EFAULT;
203 }
204
205 /*
206 * If this architecture has a "base" platform capability
207 * string, copy it to userspace.
208 */
209 u_base_platform = NULL;
210 if (k_base_platform) {
211 size_t len = strlen(k_base_platform) + 1;
212
213 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
214 if (__copy_to_user(u_base_platform, k_base_platform, len))
215 return -EFAULT;
216 }
217
218 /*
219 * Generate 16 random bytes for userspace PRNG seeding.
220 */
221 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
222 u_rand_bytes = (elf_addr_t __user *)
223 STACK_ALLOC(p, sizeof(k_rand_bytes));
224 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
225 return -EFAULT;
226
227 /* Create the ELF interpreter info */
228 elf_info = (elf_addr_t *)current->mm->saved_auxv;
229 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
230#define NEW_AUX_ENT(id, val) \
231 do { \
232 elf_info[ei_index++] = id; \
233 elf_info[ei_index++] = val; \
234 } while (0)
235
236#ifdef ARCH_DLINFO
237 /*
238 * ARCH_DLINFO must come first so PPC can do its special alignment of
239 * AUXV.
240 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
241 * ARCH_DLINFO changes
242 */
243 ARCH_DLINFO;
244#endif
245 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
246 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
247 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
248 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
249 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
250 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
251 NEW_AUX_ENT(AT_BASE, interp_load_addr);
252 NEW_AUX_ENT(AT_FLAGS, 0);
253 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
254 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
255 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
256 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
257 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
258 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
259 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
260#ifdef ELF_HWCAP2
261 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
262#endif
263 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
264 if (k_platform) {
265 NEW_AUX_ENT(AT_PLATFORM,
266 (elf_addr_t)(unsigned long)u_platform);
267 }
268 if (k_base_platform) {
269 NEW_AUX_ENT(AT_BASE_PLATFORM,
270 (elf_addr_t)(unsigned long)u_base_platform);
271 }
272 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
273 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
274 }
275#undef NEW_AUX_ENT
276 /* AT_NULL is zero; clear the rest too */
277 memset(&elf_info[ei_index], 0,
278 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
279
280 /* And advance past the AT_NULL entry. */
281 ei_index += 2;
282
283 sp = STACK_ADD(p, ei_index);
284
285 items = (argc + 1) + (envc + 1) + 1;
286 bprm->p = STACK_ROUND(sp, items);
287
288 /* Point sp at the lowest address on the stack */
289#ifdef CONFIG_STACK_GROWSUP
290 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
291 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
292#else
293 sp = (elf_addr_t __user *)bprm->p;
294#endif
295
296
297 /*
298 * Grow the stack manually; some architectures have a limit on how
299 * far ahead a user-space access may be in order to grow the stack.
300 */
301 vma = find_extend_vma(current->mm, bprm->p);
302 if (!vma)
303 return -EFAULT;
304
305 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
306 if (__put_user(argc, sp++))
307 return -EFAULT;
308
309 /* Populate list of argv pointers back to argv strings. */
310 p = current->mm->arg_end = current->mm->arg_start;
311 while (argc-- > 0) {
312 size_t len;
313 if (__put_user((elf_addr_t)p, sp++))
314 return -EFAULT;
315 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
316 if (!len || len > MAX_ARG_STRLEN)
317 return -EINVAL;
318 p += len;
319 }
320 if (__put_user(0, sp++))
321 return -EFAULT;
322 current->mm->arg_end = p;
323
324 /* Populate list of envp pointers back to envp strings. */
325 current->mm->env_end = current->mm->env_start = p;
326 while (envc-- > 0) {
327 size_t len;
328 if (__put_user((elf_addr_t)p, sp++))
329 return -EFAULT;
330 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
331 if (!len || len > MAX_ARG_STRLEN)
332 return -EINVAL;
333 p += len;
334 }
335 if (__put_user(0, sp++))
336 return -EFAULT;
337 current->mm->env_end = p;
338
339 /* Put the elf_info on the stack in the right place. */
340 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
341 return -EFAULT;
342 return 0;
343}
344
345#ifndef elf_map
346
347static unsigned long elf_map(struct file *filep, unsigned long addr,
348 const struct elf_phdr *eppnt, int prot, int type,
349 unsigned long total_size)
350{
351 unsigned long map_addr;
352 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
353 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
354 addr = ELF_PAGESTART(addr);
355 size = ELF_PAGEALIGN(size);
356
357 /* mmap() will return -EINVAL if given a zero size, but a
358 * segment with zero filesize is perfectly valid */
359 if (!size)
360 return addr;
361
362 /*
363 * total_size is the size of the ELF (interpreter) image.
364 * The _first_ mmap needs to know the full size, otherwise
365 * randomization might put this image into an overlapping
366 * position with the ELF binary image. (since size < total_size)
367 * So we first map the 'big' image - and unmap the remainder at
368 * the end. (which unmap is needed for ELF images with holes.)
369 */
370 if (total_size) {
371 total_size = ELF_PAGEALIGN(total_size);
372 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
373 if (!BAD_ADDR(map_addr))
374 vm_munmap(map_addr+size, total_size-size);
375 } else
376 map_addr = vm_mmap(filep, addr, size, prot, type, off);
377
378 if ((type & MAP_FIXED_NOREPLACE) &&
379 PTR_ERR((void *)map_addr) == -EEXIST)
380 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
381 task_pid_nr(current), current->comm, (void *)addr);
382
383 return(map_addr);
384}
385
386#endif /* !elf_map */
387
388static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
389{
390 int i, first_idx = -1, last_idx = -1;
391
392 for (i = 0; i < nr; i++) {
393 if (cmds[i].p_type == PT_LOAD) {
394 last_idx = i;
395 if (first_idx == -1)
396 first_idx = i;
397 }
398 }
399 if (first_idx == -1)
400 return 0;
401
402 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
403 ELF_PAGESTART(cmds[first_idx].p_vaddr);
404}
405
406/**
407 * load_elf_phdrs() - load ELF program headers
408 * @elf_ex: ELF header of the binary whose program headers should be loaded
409 * @elf_file: the opened ELF binary file
410 *
411 * Loads ELF program headers from the binary file elf_file, which has the ELF
412 * header pointed to by elf_ex, into a newly allocated array. The caller is
413 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
414 */
415static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
416 struct file *elf_file)
417{
418 struct elf_phdr *elf_phdata = NULL;
419 int retval, err = -1;
420 loff_t pos = elf_ex->e_phoff;
421 unsigned int size;
422
423 /*
424 * If the size of this structure has changed, then punt, since
425 * we will be doing the wrong thing.
426 */
427 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
428 goto out;
429
430 /* Sanity check the number of program headers... */
431 /* ...and their total size. */
432 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
433 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
434 goto out;
435
436 elf_phdata = kmalloc(size, GFP_KERNEL);
437 if (!elf_phdata)
438 goto out;
439
440 /* Read in the program headers */
441 retval = kernel_read(elf_file, elf_phdata, size, &pos);
442 if (retval != size) {
443 err = (retval < 0) ? retval : -EIO;
444 goto out;
445 }
446
447 /* Success! */
448 err = 0;
449out:
450 if (err) {
451 kfree(elf_phdata);
452 elf_phdata = NULL;
453 }
454 return elf_phdata;
455}
456
457#ifndef CONFIG_ARCH_BINFMT_ELF_STATE
458
459/**
460 * struct arch_elf_state - arch-specific ELF loading state
461 *
462 * This structure is used to preserve architecture specific data during
463 * the loading of an ELF file, throughout the checking of architecture
464 * specific ELF headers & through to the point where the ELF load is
465 * known to be proceeding (ie. SET_PERSONALITY).
466 *
467 * This implementation is a dummy for architectures which require no
468 * specific state.
469 */
470struct arch_elf_state {
471};
472
473#define INIT_ARCH_ELF_STATE {}
474
475/**
476 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
477 * @ehdr: The main ELF header
478 * @phdr: The program header to check
479 * @elf: The open ELF file
480 * @is_interp: True if the phdr is from the interpreter of the ELF being
481 * loaded, else false.
482 * @state: Architecture-specific state preserved throughout the process
483 * of loading the ELF.
484 *
485 * Inspects the program header phdr to validate its correctness and/or
486 * suitability for the system. Called once per ELF program header in the
487 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
488 * interpreter.
489 *
490 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
491 * with that return code.
492 */
493static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
494 struct elf_phdr *phdr,
495 struct file *elf, bool is_interp,
496 struct arch_elf_state *state)
497{
498 /* Dummy implementation, always proceed */
499 return 0;
500}
501
502/**
503 * arch_check_elf() - check an ELF executable
504 * @ehdr: The main ELF header
505 * @has_interp: True if the ELF has an interpreter, else false.
506 * @interp_ehdr: The interpreter's ELF header
507 * @state: Architecture-specific state preserved throughout the process
508 * of loading the ELF.
509 *
510 * Provides a final opportunity for architecture code to reject the loading
511 * of the ELF & cause an exec syscall to return an error. This is called after
512 * all program headers to be checked by arch_elf_pt_proc have been.
513 *
514 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
515 * with that return code.
516 */
517static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
518 struct elfhdr *interp_ehdr,
519 struct arch_elf_state *state)
520{
521 /* Dummy implementation, always proceed */
522 return 0;
523}
524
525#endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
526
527static inline int make_prot(u32 p_flags)
528{
529 int prot = 0;
530
531 if (p_flags & PF_R)
532 prot |= PROT_READ;
533 if (p_flags & PF_W)
534 prot |= PROT_WRITE;
535 if (p_flags & PF_X)
536 prot |= PROT_EXEC;
537 return prot;
538}
539
540/* This is much more generalized than the library routine read function,
541 so we keep this separate. Technically the library read function
542 is only provided so that we can read a.out libraries that have
543 an ELF header */
544
545static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
546 struct file *interpreter, unsigned long *interp_map_addr,
547 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
548{
549 struct elf_phdr *eppnt;
550 unsigned long load_addr = 0;
551 int load_addr_set = 0;
552 unsigned long last_bss = 0, elf_bss = 0;
553 int bss_prot = 0;
554 unsigned long error = ~0UL;
555 unsigned long total_size;
556 int i;
557
558 /* First of all, some simple consistency checks */
559 if (interp_elf_ex->e_type != ET_EXEC &&
560 interp_elf_ex->e_type != ET_DYN)
561 goto out;
562 if (!elf_check_arch(interp_elf_ex) ||
563 elf_check_fdpic(interp_elf_ex))
564 goto out;
565 if (!interpreter->f_op->mmap)
566 goto out;
567
568 total_size = total_mapping_size(interp_elf_phdata,
569 interp_elf_ex->e_phnum);
570 if (!total_size) {
571 error = -EINVAL;
572 goto out;
573 }
574
575 eppnt = interp_elf_phdata;
576 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
577 if (eppnt->p_type == PT_LOAD) {
578 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
579 int elf_prot = make_prot(eppnt->p_flags);
580 unsigned long vaddr = 0;
581 unsigned long k, map_addr;
582
583 vaddr = eppnt->p_vaddr;
584 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
585 elf_type |= MAP_FIXED_NOREPLACE;
586 else if (no_base && interp_elf_ex->e_type == ET_DYN)
587 load_addr = -vaddr;
588
589 map_addr = elf_map(interpreter, load_addr + vaddr,
590 eppnt, elf_prot, elf_type, total_size);
591 total_size = 0;
592 if (!*interp_map_addr)
593 *interp_map_addr = map_addr;
594 error = map_addr;
595 if (BAD_ADDR(map_addr))
596 goto out;
597
598 if (!load_addr_set &&
599 interp_elf_ex->e_type == ET_DYN) {
600 load_addr = map_addr - ELF_PAGESTART(vaddr);
601 load_addr_set = 1;
602 }
603
604 /*
605 * Check to see if the section's size will overflow the
606 * allowed task size. Note that p_filesz must always be
607 * <= p_memsize so it's only necessary to check p_memsz.
608 */
609 k = load_addr + eppnt->p_vaddr;
610 if (BAD_ADDR(k) ||
611 eppnt->p_filesz > eppnt->p_memsz ||
612 eppnt->p_memsz > TASK_SIZE ||
613 TASK_SIZE - eppnt->p_memsz < k) {
614 error = -ENOMEM;
615 goto out;
616 }
617
618 /*
619 * Find the end of the file mapping for this phdr, and
620 * keep track of the largest address we see for this.
621 */
622 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
623 if (k > elf_bss)
624 elf_bss = k;
625
626 /*
627 * Do the same thing for the memory mapping - between
628 * elf_bss and last_bss is the bss section.
629 */
630 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
631 if (k > last_bss) {
632 last_bss = k;
633 bss_prot = elf_prot;
634 }
635 }
636 }
637
638 /*
639 * Now fill out the bss section: first pad the last page from
640 * the file up to the page boundary, and zero it from elf_bss
641 * up to the end of the page.
642 */
643 if (padzero(elf_bss)) {
644 error = -EFAULT;
645 goto out;
646 }
647 /*
648 * Next, align both the file and mem bss up to the page size,
649 * since this is where elf_bss was just zeroed up to, and where
650 * last_bss will end after the vm_brk_flags() below.
651 */
652 elf_bss = ELF_PAGEALIGN(elf_bss);
653 last_bss = ELF_PAGEALIGN(last_bss);
654 /* Finally, if there is still more bss to allocate, do it. */
655 if (last_bss > elf_bss) {
656 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
657 bss_prot & PROT_EXEC ? VM_EXEC : 0);
658 if (error)
659 goto out;
660 }
661
662 error = load_addr;
663out:
664 return error;
665}
666
667/*
668 * These are the functions used to load ELF style executables and shared
669 * libraries. There is no binary dependent code anywhere else.
670 */
671
672#ifndef STACK_RND_MASK
673#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
674#endif
675
676static unsigned long randomize_stack_top(unsigned long stack_top)
677{
678 unsigned long random_variable = 0;
679
680 if (current->flags & PF_RANDOMIZE) {
681 random_variable = get_random_long();
682 random_variable &= STACK_RND_MASK;
683 random_variable <<= PAGE_SHIFT;
684 }
685#ifdef CONFIG_STACK_GROWSUP
686 return PAGE_ALIGN(stack_top) + random_variable;
687#else
688 return PAGE_ALIGN(stack_top) - random_variable;
689#endif
690}
691
692static int load_elf_binary(struct linux_binprm *bprm)
693{
694 struct file *interpreter = NULL; /* to shut gcc up */
695 unsigned long load_addr = 0, load_bias = 0;
696 int load_addr_set = 0;
697 unsigned long error;
698 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
699 unsigned long elf_bss, elf_brk;
700 int bss_prot = 0;
701 int retval, i;
702 unsigned long elf_entry;
703 unsigned long interp_load_addr = 0;
704 unsigned long start_code, end_code, start_data, end_data;
705 unsigned long reloc_func_desc __maybe_unused = 0;
706 int executable_stack = EXSTACK_DEFAULT;
707 struct {
708 struct elfhdr elf_ex;
709 struct elfhdr interp_elf_ex;
710 } *loc;
711 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
712 struct pt_regs *regs;
713
714 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
715 if (!loc) {
716 retval = -ENOMEM;
717 goto out_ret;
718 }
719
720 /* Get the exec-header */
721 loc->elf_ex = *((struct elfhdr *)bprm->buf);
722
723 retval = -ENOEXEC;
724 /* First of all, some simple consistency checks */
725 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
726 goto out;
727
728 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
729 goto out;
730 if (!elf_check_arch(&loc->elf_ex))
731 goto out;
732 if (elf_check_fdpic(&loc->elf_ex))
733 goto out;
734 if (!bprm->file->f_op->mmap)
735 goto out;
736
737 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
738 if (!elf_phdata)
739 goto out;
740
741 elf_ppnt = elf_phdata;
742 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
743 char *elf_interpreter;
744 loff_t pos;
745
746 if (elf_ppnt->p_type != PT_INTERP)
747 continue;
748
749 /*
750 * This is the program interpreter used for shared libraries -
751 * for now assume that this is an a.out format binary.
752 */
753 retval = -ENOEXEC;
754 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
755 goto out_free_ph;
756
757 retval = -ENOMEM;
758 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
759 if (!elf_interpreter)
760 goto out_free_ph;
761
762 pos = elf_ppnt->p_offset;
763 retval = kernel_read(bprm->file, elf_interpreter,
764 elf_ppnt->p_filesz, &pos);
765 if (retval != elf_ppnt->p_filesz) {
766 if (retval >= 0)
767 retval = -EIO;
768 goto out_free_interp;
769 }
770 /* make sure path is NULL terminated */
771 retval = -ENOEXEC;
772 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
773 goto out_free_interp;
774
775 interpreter = open_exec(elf_interpreter);
776 kfree(elf_interpreter);
777 retval = PTR_ERR(interpreter);
778 if (IS_ERR(interpreter))
779 goto out_free_ph;
780
781 /*
782 * If the binary is not readable then enforce mm->dumpable = 0
783 * regardless of the interpreter's permissions.
784 */
785 would_dump(bprm, interpreter);
786
787 /* Get the exec headers */
788 pos = 0;
789 retval = kernel_read(interpreter, &loc->interp_elf_ex,
790 sizeof(loc->interp_elf_ex), &pos);
791 if (retval != sizeof(loc->interp_elf_ex)) {
792 if (retval >= 0)
793 retval = -EIO;
794 goto out_free_dentry;
795 }
796
797 break;
798
799out_free_interp:
800 kfree(elf_interpreter);
801 goto out_free_ph;
802 }
803
804 elf_ppnt = elf_phdata;
805 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
806 switch (elf_ppnt->p_type) {
807 case PT_GNU_STACK:
808 if (elf_ppnt->p_flags & PF_X)
809 executable_stack = EXSTACK_ENABLE_X;
810 else
811 executable_stack = EXSTACK_DISABLE_X;
812 break;
813
814 case PT_LOPROC ... PT_HIPROC:
815 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
816 bprm->file, false,
817 &arch_state);
818 if (retval)
819 goto out_free_dentry;
820 break;
821 }
822
823 /* Some simple consistency checks for the interpreter */
824 if (interpreter) {
825 retval = -ELIBBAD;
826 /* Not an ELF interpreter */
827 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
828 goto out_free_dentry;
829 /* Verify the interpreter has a valid arch */
830 if (!elf_check_arch(&loc->interp_elf_ex) ||
831 elf_check_fdpic(&loc->interp_elf_ex))
832 goto out_free_dentry;
833
834 /* Load the interpreter program headers */
835 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
836 interpreter);
837 if (!interp_elf_phdata)
838 goto out_free_dentry;
839
840 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
841 elf_ppnt = interp_elf_phdata;
842 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
843 switch (elf_ppnt->p_type) {
844 case PT_LOPROC ... PT_HIPROC:
845 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
846 elf_ppnt, interpreter,
847 true, &arch_state);
848 if (retval)
849 goto out_free_dentry;
850 break;
851 }
852 }
853
854 /*
855 * Allow arch code to reject the ELF at this point, whilst it's
856 * still possible to return an error to the code that invoked
857 * the exec syscall.
858 */
859 retval = arch_check_elf(&loc->elf_ex,
860 !!interpreter, &loc->interp_elf_ex,
861 &arch_state);
862 if (retval)
863 goto out_free_dentry;
864
865 /* Flush all traces of the currently running executable */
866 retval = flush_old_exec(bprm);
867 if (retval)
868 goto out_free_dentry;
869
870 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
871 may depend on the personality. */
872 SET_PERSONALITY2(loc->elf_ex, &arch_state);
873 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
874 current->personality |= READ_IMPLIES_EXEC;
875
876 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
877 current->flags |= PF_RANDOMIZE;
878
879 setup_new_exec(bprm);
880 install_exec_creds(bprm);
881
882 /* Do this so that we can load the interpreter, if need be. We will
883 change some of these later */
884 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
885 executable_stack);
886 if (retval < 0)
887 goto out_free_dentry;
888
889 elf_bss = 0;
890 elf_brk = 0;
891
892 start_code = ~0UL;
893 end_code = 0;
894 start_data = 0;
895 end_data = 0;
896
897 /* Now we do a little grungy work by mmapping the ELF image into
898 the correct location in memory. */
899 for(i = 0, elf_ppnt = elf_phdata;
900 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
901 int elf_prot, elf_flags, elf_fixed = MAP_FIXED_NOREPLACE;
902 unsigned long k, vaddr;
903 unsigned long total_size = 0;
904
905 if (elf_ppnt->p_type != PT_LOAD)
906 continue;
907
908 if (unlikely (elf_brk > elf_bss)) {
909 unsigned long nbyte;
910
911 /* There was a PT_LOAD segment with p_memsz > p_filesz
912 before this one. Map anonymous pages, if needed,
913 and clear the area. */
914 retval = set_brk(elf_bss + load_bias,
915 elf_brk + load_bias,
916 bss_prot);
917 if (retval)
918 goto out_free_dentry;
919 nbyte = ELF_PAGEOFFSET(elf_bss);
920 if (nbyte) {
921 nbyte = ELF_MIN_ALIGN - nbyte;
922 if (nbyte > elf_brk - elf_bss)
923 nbyte = elf_brk - elf_bss;
924 if (clear_user((void __user *)elf_bss +
925 load_bias, nbyte)) {
926 /*
927 * This bss-zeroing can fail if the ELF
928 * file specifies odd protections. So
929 * we don't check the return value
930 */
931 }
932 }
933
934 /*
935 * Some binaries have overlapping elf segments and then
936 * we have to forcefully map over an existing mapping
937 * e.g. over this newly established brk mapping.
938 */
939 elf_fixed = MAP_FIXED;
940 }
941
942 elf_prot = make_prot(elf_ppnt->p_flags);
943
944 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
945
946 vaddr = elf_ppnt->p_vaddr;
947 /*
948 * If we are loading ET_EXEC or we have already performed
949 * the ET_DYN load_addr calculations, proceed normally.
950 */
951 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
952 elf_flags |= elf_fixed;
953 } else if (loc->elf_ex.e_type == ET_DYN) {
954 /*
955 * This logic is run once for the first LOAD Program
956 * Header for ET_DYN binaries to calculate the
957 * randomization (load_bias) for all the LOAD
958 * Program Headers, and to calculate the entire
959 * size of the ELF mapping (total_size). (Note that
960 * load_addr_set is set to true later once the
961 * initial mapping is performed.)
962 *
963 * There are effectively two types of ET_DYN
964 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
965 * and loaders (ET_DYN without INTERP, since they
966 * _are_ the ELF interpreter). The loaders must
967 * be loaded away from programs since the program
968 * may otherwise collide with the loader (especially
969 * for ET_EXEC which does not have a randomized
970 * position). For example to handle invocations of
971 * "./ld.so someprog" to test out a new version of
972 * the loader, the subsequent program that the
973 * loader loads must avoid the loader itself, so
974 * they cannot share the same load range. Sufficient
975 * room for the brk must be allocated with the
976 * loader as well, since brk must be available with
977 * the loader.
978 *
979 * Therefore, programs are loaded offset from
980 * ELF_ET_DYN_BASE and loaders are loaded into the
981 * independently randomized mmap region (0 load_bias
982 * without MAP_FIXED).
983 */
984 if (interpreter) {
985 load_bias = ELF_ET_DYN_BASE;
986 if (current->flags & PF_RANDOMIZE)
987 load_bias += arch_mmap_rnd();
988 elf_flags |= elf_fixed;
989 } else
990 load_bias = 0;
991
992 /*
993 * Since load_bias is used for all subsequent loading
994 * calculations, we must lower it by the first vaddr
995 * so that the remaining calculations based on the
996 * ELF vaddrs will be correctly offset. The result
997 * is then page aligned.
998 */
999 load_bias = ELF_PAGESTART(load_bias - vaddr);
1000
1001 total_size = total_mapping_size(elf_phdata,
1002 loc->elf_ex.e_phnum);
1003 if (!total_size) {
1004 retval = -EINVAL;
1005 goto out_free_dentry;
1006 }
1007 }
1008
1009 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1010 elf_prot, elf_flags, total_size);
1011 if (BAD_ADDR(error)) {
1012 retval = IS_ERR((void *)error) ?
1013 PTR_ERR((void*)error) : -EINVAL;
1014 goto out_free_dentry;
1015 }
1016
1017 if (!load_addr_set) {
1018 load_addr_set = 1;
1019 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1020 if (loc->elf_ex.e_type == ET_DYN) {
1021 load_bias += error -
1022 ELF_PAGESTART(load_bias + vaddr);
1023 load_addr += load_bias;
1024 reloc_func_desc = load_bias;
1025 }
1026 }
1027 k = elf_ppnt->p_vaddr;
1028 if (k < start_code)
1029 start_code = k;
1030 if (start_data < k)
1031 start_data = k;
1032
1033 /*
1034 * Check to see if the section's size will overflow the
1035 * allowed task size. Note that p_filesz must always be
1036 * <= p_memsz so it is only necessary to check p_memsz.
1037 */
1038 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1039 elf_ppnt->p_memsz > TASK_SIZE ||
1040 TASK_SIZE - elf_ppnt->p_memsz < k) {
1041 /* set_brk can never work. Avoid overflows. */
1042 retval = -EINVAL;
1043 goto out_free_dentry;
1044 }
1045
1046 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1047
1048 if (k > elf_bss)
1049 elf_bss = k;
1050 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1051 end_code = k;
1052 if (end_data < k)
1053 end_data = k;
1054 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1055 if (k > elf_brk) {
1056 bss_prot = elf_prot;
1057 elf_brk = k;
1058 }
1059 }
1060
1061 loc->elf_ex.e_entry += load_bias;
1062 elf_bss += load_bias;
1063 elf_brk += load_bias;
1064 start_code += load_bias;
1065 end_code += load_bias;
1066 start_data += load_bias;
1067 end_data += load_bias;
1068
1069 /* Calling set_brk effectively mmaps the pages that we need
1070 * for the bss and break sections. We must do this before
1071 * mapping in the interpreter, to make sure it doesn't wind
1072 * up getting placed where the bss needs to go.
1073 */
1074 retval = set_brk(elf_bss, elf_brk, bss_prot);
1075 if (retval)
1076 goto out_free_dentry;
1077 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1078 retval = -EFAULT; /* Nobody gets to see this, but.. */
1079 goto out_free_dentry;
1080 }
1081
1082 if (interpreter) {
1083 unsigned long interp_map_addr = 0;
1084
1085 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1086 interpreter,
1087 &interp_map_addr,
1088 load_bias, interp_elf_phdata);
1089 if (!IS_ERR((void *)elf_entry)) {
1090 /*
1091 * load_elf_interp() returns relocation
1092 * adjustment
1093 */
1094 interp_load_addr = elf_entry;
1095 elf_entry += loc->interp_elf_ex.e_entry;
1096 }
1097 if (BAD_ADDR(elf_entry)) {
1098 retval = IS_ERR((void *)elf_entry) ?
1099 (int)elf_entry : -EINVAL;
1100 goto out_free_dentry;
1101 }
1102 reloc_func_desc = interp_load_addr;
1103
1104 allow_write_access(interpreter);
1105 fput(interpreter);
1106 } else {
1107 elf_entry = loc->elf_ex.e_entry;
1108 if (BAD_ADDR(elf_entry)) {
1109 retval = -EINVAL;
1110 goto out_free_dentry;
1111 }
1112 }
1113
1114 kfree(interp_elf_phdata);
1115 kfree(elf_phdata);
1116
1117 set_binfmt(&elf_format);
1118
1119#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1120 retval = arch_setup_additional_pages(bprm, !!interpreter);
1121 if (retval < 0)
1122 goto out;
1123#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1124
1125 retval = create_elf_tables(bprm, &loc->elf_ex,
1126 load_addr, interp_load_addr);
1127 if (retval < 0)
1128 goto out;
1129 /* N.B. passed_fileno might not be initialized? */
1130 current->mm->end_code = end_code;
1131 current->mm->start_code = start_code;
1132 current->mm->start_data = start_data;
1133 current->mm->end_data = end_data;
1134 current->mm->start_stack = bprm->p;
1135
1136 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1137 current->mm->brk = current->mm->start_brk =
1138 arch_randomize_brk(current->mm);
1139#ifdef compat_brk_randomized
1140 current->brk_randomized = 1;
1141#endif
1142 }
1143
1144 if (current->personality & MMAP_PAGE_ZERO) {
1145 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1146 and some applications "depend" upon this behavior.
1147 Since we do not have the power to recompile these, we
1148 emulate the SVr4 behavior. Sigh. */
1149 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1150 MAP_FIXED | MAP_PRIVATE, 0);
1151 }
1152
1153 regs = current_pt_regs();
1154#ifdef ELF_PLAT_INIT
1155 /*
1156 * The ABI may specify that certain registers be set up in special
1157 * ways (on i386 %edx is the address of a DT_FINI function, for
1158 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1159 * that the e_entry field is the address of the function descriptor
1160 * for the startup routine, rather than the address of the startup
1161 * routine itself. This macro performs whatever initialization to
1162 * the regs structure is required as well as any relocations to the
1163 * function descriptor entries when executing dynamically links apps.
1164 */
1165 ELF_PLAT_INIT(regs, reloc_func_desc);
1166#endif
1167
1168 finalize_exec(bprm);
1169 start_thread(regs, elf_entry, bprm->p);
1170 retval = 0;
1171out:
1172 kfree(loc);
1173out_ret:
1174 return retval;
1175
1176 /* error cleanup */
1177out_free_dentry:
1178 kfree(interp_elf_phdata);
1179 allow_write_access(interpreter);
1180 if (interpreter)
1181 fput(interpreter);
1182out_free_ph:
1183 kfree(elf_phdata);
1184 goto out;
1185}
1186
1187#ifdef CONFIG_USELIB
1188/* This is really simpleminded and specialized - we are loading an
1189 a.out library that is given an ELF header. */
1190static int load_elf_library(struct file *file)
1191{
1192 struct elf_phdr *elf_phdata;
1193 struct elf_phdr *eppnt;
1194 unsigned long elf_bss, bss, len;
1195 int retval, error, i, j;
1196 struct elfhdr elf_ex;
1197 loff_t pos = 0;
1198
1199 error = -ENOEXEC;
1200 retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1201 if (retval != sizeof(elf_ex))
1202 goto out;
1203
1204 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1205 goto out;
1206
1207 /* First of all, some simple consistency checks */
1208 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1209 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1210 goto out;
1211 if (elf_check_fdpic(&elf_ex))
1212 goto out;
1213
1214 /* Now read in all of the header information */
1215
1216 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1217 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1218
1219 error = -ENOMEM;
1220 elf_phdata = kmalloc(j, GFP_KERNEL);
1221 if (!elf_phdata)
1222 goto out;
1223
1224 eppnt = elf_phdata;
1225 error = -ENOEXEC;
1226 pos = elf_ex.e_phoff;
1227 retval = kernel_read(file, eppnt, j, &pos);
1228 if (retval != j)
1229 goto out_free_ph;
1230
1231 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1232 if ((eppnt + i)->p_type == PT_LOAD)
1233 j++;
1234 if (j != 1)
1235 goto out_free_ph;
1236
1237 while (eppnt->p_type != PT_LOAD)
1238 eppnt++;
1239
1240 /* Now use mmap to map the library into memory. */
1241 error = vm_mmap(file,
1242 ELF_PAGESTART(eppnt->p_vaddr),
1243 (eppnt->p_filesz +
1244 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1245 PROT_READ | PROT_WRITE | PROT_EXEC,
1246 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1247 (eppnt->p_offset -
1248 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1249 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1250 goto out_free_ph;
1251
1252 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1253 if (padzero(elf_bss)) {
1254 error = -EFAULT;
1255 goto out_free_ph;
1256 }
1257
1258 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1259 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1260 if (bss > len) {
1261 error = vm_brk(len, bss - len);
1262 if (error)
1263 goto out_free_ph;
1264 }
1265 error = 0;
1266
1267out_free_ph:
1268 kfree(elf_phdata);
1269out:
1270 return error;
1271}
1272#endif /* #ifdef CONFIG_USELIB */
1273
1274#ifdef CONFIG_ELF_CORE
1275/*
1276 * ELF core dumper
1277 *
1278 * Modelled on fs/exec.c:aout_core_dump()
1279 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1280 */
1281
1282/*
1283 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1284 * that are useful for post-mortem analysis are included in every core dump.
1285 * In that way we ensure that the core dump is fully interpretable later
1286 * without matching up the same kernel and hardware config to see what PC values
1287 * meant. These special mappings include - vDSO, vsyscall, and other
1288 * architecture specific mappings
1289 */
1290static bool always_dump_vma(struct vm_area_struct *vma)
1291{
1292 /* Any vsyscall mappings? */
1293 if (vma == get_gate_vma(vma->vm_mm))
1294 return true;
1295
1296 /*
1297 * Assume that all vmas with a .name op should always be dumped.
1298 * If this changes, a new vm_ops field can easily be added.
1299 */
1300 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1301 return true;
1302
1303 /*
1304 * arch_vma_name() returns non-NULL for special architecture mappings,
1305 * such as vDSO sections.
1306 */
1307 if (arch_vma_name(vma))
1308 return true;
1309
1310 return false;
1311}
1312
1313/*
1314 * Decide what to dump of a segment, part, all or none.
1315 */
1316static unsigned long vma_dump_size(struct vm_area_struct *vma,
1317 unsigned long mm_flags)
1318{
1319#define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1320
1321 /* always dump the vdso and vsyscall sections */
1322 if (always_dump_vma(vma))
1323 goto whole;
1324
1325 if (vma->vm_flags & VM_DONTDUMP)
1326 return 0;
1327
1328 /* support for DAX */
1329 if (vma_is_dax(vma)) {
1330 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1331 goto whole;
1332 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1333 goto whole;
1334 return 0;
1335 }
1336
1337 /* Hugetlb memory check */
1338 if (vma->vm_flags & VM_HUGETLB) {
1339 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1340 goto whole;
1341 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1342 goto whole;
1343 return 0;
1344 }
1345
1346 /* Do not dump I/O mapped devices or special mappings */
1347 if (vma->vm_flags & VM_IO)
1348 return 0;
1349
1350 /* By default, dump shared memory if mapped from an anonymous file. */
1351 if (vma->vm_flags & VM_SHARED) {
1352 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1353 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1354 goto whole;
1355 return 0;
1356 }
1357
1358 /* Dump segments that have been written to. */
1359 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1360 goto whole;
1361 if (vma->vm_file == NULL)
1362 return 0;
1363
1364 if (FILTER(MAPPED_PRIVATE))
1365 goto whole;
1366
1367 /*
1368 * If this looks like the beginning of a DSO or executable mapping,
1369 * check for an ELF header. If we find one, dump the first page to
1370 * aid in determining what was mapped here.
1371 */
1372 if (FILTER(ELF_HEADERS) &&
1373 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1374 u32 __user *header = (u32 __user *) vma->vm_start;
1375 u32 word;
1376 mm_segment_t fs = get_fs();
1377 /*
1378 * Doing it this way gets the constant folded by GCC.
1379 */
1380 union {
1381 u32 cmp;
1382 char elfmag[SELFMAG];
1383 } magic;
1384 BUILD_BUG_ON(SELFMAG != sizeof word);
1385 magic.elfmag[EI_MAG0] = ELFMAG0;
1386 magic.elfmag[EI_MAG1] = ELFMAG1;
1387 magic.elfmag[EI_MAG2] = ELFMAG2;
1388 magic.elfmag[EI_MAG3] = ELFMAG3;
1389 /*
1390 * Switch to the user "segment" for get_user(),
1391 * then put back what elf_core_dump() had in place.
1392 */
1393 set_fs(USER_DS);
1394 if (unlikely(get_user(word, header)))
1395 word = 0;
1396 set_fs(fs);
1397 if (word == magic.cmp)
1398 return PAGE_SIZE;
1399 }
1400
1401#undef FILTER
1402
1403 return 0;
1404
1405whole:
1406 return vma->vm_end - vma->vm_start;
1407}
1408
1409/* An ELF note in memory */
1410struct memelfnote
1411{
1412 const char *name;
1413 int type;
1414 unsigned int datasz;
1415 void *data;
1416};
1417
1418static int notesize(struct memelfnote *en)
1419{
1420 int sz;
1421
1422 sz = sizeof(struct elf_note);
1423 sz += roundup(strlen(en->name) + 1, 4);
1424 sz += roundup(en->datasz, 4);
1425
1426 return sz;
1427}
1428
1429static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1430{
1431 struct elf_note en;
1432 en.n_namesz = strlen(men->name) + 1;
1433 en.n_descsz = men->datasz;
1434 en.n_type = men->type;
1435
1436 return dump_emit(cprm, &en, sizeof(en)) &&
1437 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1438 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1439}
1440
1441static void fill_elf_header(struct elfhdr *elf, int segs,
1442 u16 machine, u32 flags)
1443{
1444 memset(elf, 0, sizeof(*elf));
1445
1446 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1447 elf->e_ident[EI_CLASS] = ELF_CLASS;
1448 elf->e_ident[EI_DATA] = ELF_DATA;
1449 elf->e_ident[EI_VERSION] = EV_CURRENT;
1450 elf->e_ident[EI_OSABI] = ELF_OSABI;
1451
1452 elf->e_type = ET_CORE;
1453 elf->e_machine = machine;
1454 elf->e_version = EV_CURRENT;
1455 elf->e_phoff = sizeof(struct elfhdr);
1456 elf->e_flags = flags;
1457 elf->e_ehsize = sizeof(struct elfhdr);
1458 elf->e_phentsize = sizeof(struct elf_phdr);
1459 elf->e_phnum = segs;
1460}
1461
1462static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1463{
1464 phdr->p_type = PT_NOTE;
1465 phdr->p_offset = offset;
1466 phdr->p_vaddr = 0;
1467 phdr->p_paddr = 0;
1468 phdr->p_filesz = sz;
1469 phdr->p_memsz = 0;
1470 phdr->p_flags = 0;
1471 phdr->p_align = 0;
1472}
1473
1474static void fill_note(struct memelfnote *note, const char *name, int type,
1475 unsigned int sz, void *data)
1476{
1477 note->name = name;
1478 note->type = type;
1479 note->datasz = sz;
1480 note->data = data;
1481}
1482
1483/*
1484 * fill up all the fields in prstatus from the given task struct, except
1485 * registers which need to be filled up separately.
1486 */
1487static void fill_prstatus(struct elf_prstatus *prstatus,
1488 struct task_struct *p, long signr)
1489{
1490 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1491 prstatus->pr_sigpend = p->pending.signal.sig[0];
1492 prstatus->pr_sighold = p->blocked.sig[0];
1493 rcu_read_lock();
1494 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1495 rcu_read_unlock();
1496 prstatus->pr_pid = task_pid_vnr(p);
1497 prstatus->pr_pgrp = task_pgrp_vnr(p);
1498 prstatus->pr_sid = task_session_vnr(p);
1499 if (thread_group_leader(p)) {
1500 struct task_cputime cputime;
1501
1502 /*
1503 * This is the record for the group leader. It shows the
1504 * group-wide total, not its individual thread total.
1505 */
1506 thread_group_cputime(p, &cputime);
1507 prstatus->pr_utime = ns_to_timeval(cputime.utime);
1508 prstatus->pr_stime = ns_to_timeval(cputime.stime);
1509 } else {
1510 u64 utime, stime;
1511
1512 task_cputime(p, &utime, &stime);
1513 prstatus->pr_utime = ns_to_timeval(utime);
1514 prstatus->pr_stime = ns_to_timeval(stime);
1515 }
1516
1517 prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1518 prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1519}
1520
1521static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1522 struct mm_struct *mm)
1523{
1524 const struct cred *cred;
1525 unsigned int i, len;
1526
1527 /* first copy the parameters from user space */
1528 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1529
1530 len = mm->arg_end - mm->arg_start;
1531 if (len >= ELF_PRARGSZ)
1532 len = ELF_PRARGSZ-1;
1533 if (copy_from_user(&psinfo->pr_psargs,
1534 (const char __user *)mm->arg_start, len))
1535 return -EFAULT;
1536 for(i = 0; i < len; i++)
1537 if (psinfo->pr_psargs[i] == 0)
1538 psinfo->pr_psargs[i] = ' ';
1539 psinfo->pr_psargs[len] = 0;
1540
1541 rcu_read_lock();
1542 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1543 rcu_read_unlock();
1544 psinfo->pr_pid = task_pid_vnr(p);
1545 psinfo->pr_pgrp = task_pgrp_vnr(p);
1546 psinfo->pr_sid = task_session_vnr(p);
1547
1548 i = p->state ? ffz(~p->state) + 1 : 0;
1549 psinfo->pr_state = i;
1550 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1551 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1552 psinfo->pr_nice = task_nice(p);
1553 psinfo->pr_flag = p->flags;
1554 rcu_read_lock();
1555 cred = __task_cred(p);
1556 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1557 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1558 rcu_read_unlock();
1559 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1560
1561 return 0;
1562}
1563
1564static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1565{
1566 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1567 int i = 0;
1568 do
1569 i += 2;
1570 while (auxv[i - 2] != AT_NULL);
1571 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1572}
1573
1574static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1575 const kernel_siginfo_t *siginfo)
1576{
1577 mm_segment_t old_fs = get_fs();
1578 set_fs(KERNEL_DS);
1579 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1580 set_fs(old_fs);
1581 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1582}
1583
1584#define MAX_FILE_NOTE_SIZE (4*1024*1024)
1585/*
1586 * Format of NT_FILE note:
1587 *
1588 * long count -- how many files are mapped
1589 * long page_size -- units for file_ofs
1590 * array of [COUNT] elements of
1591 * long start
1592 * long end
1593 * long file_ofs
1594 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1595 */
1596static int fill_files_note(struct memelfnote *note)
1597{
1598 struct vm_area_struct *vma;
1599 unsigned count, size, names_ofs, remaining, n;
1600 user_long_t *data;
1601 user_long_t *start_end_ofs;
1602 char *name_base, *name_curpos;
1603
1604 /* *Estimated* file count and total data size needed */
1605 count = current->mm->map_count;
1606 if (count > UINT_MAX / 64)
1607 return -EINVAL;
1608 size = count * 64;
1609
1610 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1611 alloc:
1612 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1613 return -EINVAL;
1614 size = round_up(size, PAGE_SIZE);
1615 data = kvmalloc(size, GFP_KERNEL);
1616 if (ZERO_OR_NULL_PTR(data))
1617 return -ENOMEM;
1618
1619 start_end_ofs = data + 2;
1620 name_base = name_curpos = ((char *)data) + names_ofs;
1621 remaining = size - names_ofs;
1622 count = 0;
1623 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1624 struct file *file;
1625 const char *filename;
1626
1627 file = vma->vm_file;
1628 if (!file)
1629 continue;
1630 filename = file_path(file, name_curpos, remaining);
1631 if (IS_ERR(filename)) {
1632 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1633 kvfree(data);
1634 size = size * 5 / 4;
1635 goto alloc;
1636 }
1637 continue;
1638 }
1639
1640 /* file_path() fills at the end, move name down */
1641 /* n = strlen(filename) + 1: */
1642 n = (name_curpos + remaining) - filename;
1643 remaining = filename - name_curpos;
1644 memmove(name_curpos, filename, n);
1645 name_curpos += n;
1646
1647 *start_end_ofs++ = vma->vm_start;
1648 *start_end_ofs++ = vma->vm_end;
1649 *start_end_ofs++ = vma->vm_pgoff;
1650 count++;
1651 }
1652
1653 /* Now we know exact count of files, can store it */
1654 data[0] = count;
1655 data[1] = PAGE_SIZE;
1656 /*
1657 * Count usually is less than current->mm->map_count,
1658 * we need to move filenames down.
1659 */
1660 n = current->mm->map_count - count;
1661 if (n != 0) {
1662 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1663 memmove(name_base - shift_bytes, name_base,
1664 name_curpos - name_base);
1665 name_curpos -= shift_bytes;
1666 }
1667
1668 size = name_curpos - (char *)data;
1669 fill_note(note, "CORE", NT_FILE, size, data);
1670 return 0;
1671}
1672
1673#ifdef CORE_DUMP_USE_REGSET
1674#include <linux/regset.h>
1675
1676struct elf_thread_core_info {
1677 struct elf_thread_core_info *next;
1678 struct task_struct *task;
1679 struct elf_prstatus prstatus;
1680 struct memelfnote notes[0];
1681};
1682
1683struct elf_note_info {
1684 struct elf_thread_core_info *thread;
1685 struct memelfnote psinfo;
1686 struct memelfnote signote;
1687 struct memelfnote auxv;
1688 struct memelfnote files;
1689 user_siginfo_t csigdata;
1690 size_t size;
1691 int thread_notes;
1692};
1693
1694/*
1695 * When a regset has a writeback hook, we call it on each thread before
1696 * dumping user memory. On register window machines, this makes sure the
1697 * user memory backing the register data is up to date before we read it.
1698 */
1699static void do_thread_regset_writeback(struct task_struct *task,
1700 const struct user_regset *regset)
1701{
1702 if (regset->writeback)
1703 regset->writeback(task, regset, 1);
1704}
1705
1706#ifndef PRSTATUS_SIZE
1707#define PRSTATUS_SIZE(S, R) sizeof(S)
1708#endif
1709
1710#ifndef SET_PR_FPVALID
1711#define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1712#endif
1713
1714static int fill_thread_core_info(struct elf_thread_core_info *t,
1715 const struct user_regset_view *view,
1716 long signr, size_t *total)
1717{
1718 unsigned int i;
1719 unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1720
1721 /*
1722 * NT_PRSTATUS is the one special case, because the regset data
1723 * goes into the pr_reg field inside the note contents, rather
1724 * than being the whole note contents. We fill the reset in here.
1725 * We assume that regset 0 is NT_PRSTATUS.
1726 */
1727 fill_prstatus(&t->prstatus, t->task, signr);
1728 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1729 &t->prstatus.pr_reg, NULL);
1730
1731 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1732 PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1733 *total += notesize(&t->notes[0]);
1734
1735 do_thread_regset_writeback(t->task, &view->regsets[0]);
1736
1737 /*
1738 * Each other regset might generate a note too. For each regset
1739 * that has no core_note_type or is inactive, we leave t->notes[i]
1740 * all zero and we'll know to skip writing it later.
1741 */
1742 for (i = 1; i < view->n; ++i) {
1743 const struct user_regset *regset = &view->regsets[i];
1744 do_thread_regset_writeback(t->task, regset);
1745 if (regset->core_note_type && regset->get &&
1746 (!regset->active || regset->active(t->task, regset) > 0)) {
1747 int ret;
1748 size_t size = regset_size(t->task, regset);
1749 void *data = kmalloc(size, GFP_KERNEL);
1750 if (unlikely(!data))
1751 return 0;
1752 ret = regset->get(t->task, regset,
1753 0, size, data, NULL);
1754 if (unlikely(ret))
1755 kfree(data);
1756 else {
1757 if (regset->core_note_type != NT_PRFPREG)
1758 fill_note(&t->notes[i], "LINUX",
1759 regset->core_note_type,
1760 size, data);
1761 else {
1762 SET_PR_FPVALID(&t->prstatus,
1763 1, regset0_size);
1764 fill_note(&t->notes[i], "CORE",
1765 NT_PRFPREG, size, data);
1766 }
1767 *total += notesize(&t->notes[i]);
1768 }
1769 }
1770 }
1771
1772 return 1;
1773}
1774
1775static int fill_note_info(struct elfhdr *elf, int phdrs,
1776 struct elf_note_info *info,
1777 const kernel_siginfo_t *siginfo, struct pt_regs *regs)
1778{
1779 struct task_struct *dump_task = current;
1780 const struct user_regset_view *view = task_user_regset_view(dump_task);
1781 struct elf_thread_core_info *t;
1782 struct elf_prpsinfo *psinfo;
1783 struct core_thread *ct;
1784 unsigned int i;
1785
1786 info->size = 0;
1787 info->thread = NULL;
1788
1789 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1790 if (psinfo == NULL) {
1791 info->psinfo.data = NULL; /* So we don't free this wrongly */
1792 return 0;
1793 }
1794
1795 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1796
1797 /*
1798 * Figure out how many notes we're going to need for each thread.
1799 */
1800 info->thread_notes = 0;
1801 for (i = 0; i < view->n; ++i)
1802 if (view->regsets[i].core_note_type != 0)
1803 ++info->thread_notes;
1804
1805 /*
1806 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1807 * since it is our one special case.
1808 */
1809 if (unlikely(info->thread_notes == 0) ||
1810 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1811 WARN_ON(1);
1812 return 0;
1813 }
1814
1815 /*
1816 * Initialize the ELF file header.
1817 */
1818 fill_elf_header(elf, phdrs,
1819 view->e_machine, view->e_flags);
1820
1821 /*
1822 * Allocate a structure for each thread.
1823 */
1824 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1825 t = kzalloc(offsetof(struct elf_thread_core_info,
1826 notes[info->thread_notes]),
1827 GFP_KERNEL);
1828 if (unlikely(!t))
1829 return 0;
1830
1831 t->task = ct->task;
1832 if (ct->task == dump_task || !info->thread) {
1833 t->next = info->thread;
1834 info->thread = t;
1835 } else {
1836 /*
1837 * Make sure to keep the original task at
1838 * the head of the list.
1839 */
1840 t->next = info->thread->next;
1841 info->thread->next = t;
1842 }
1843 }
1844
1845 /*
1846 * Now fill in each thread's information.
1847 */
1848 for (t = info->thread; t != NULL; t = t->next)
1849 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1850 return 0;
1851
1852 /*
1853 * Fill in the two process-wide notes.
1854 */
1855 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1856 info->size += notesize(&info->psinfo);
1857
1858 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1859 info->size += notesize(&info->signote);
1860
1861 fill_auxv_note(&info->auxv, current->mm);
1862 info->size += notesize(&info->auxv);
1863
1864 if (fill_files_note(&info->files) == 0)
1865 info->size += notesize(&info->files);
1866
1867 return 1;
1868}
1869
1870static size_t get_note_info_size(struct elf_note_info *info)
1871{
1872 return info->size;
1873}
1874
1875/*
1876 * Write all the notes for each thread. When writing the first thread, the
1877 * process-wide notes are interleaved after the first thread-specific note.
1878 */
1879static int write_note_info(struct elf_note_info *info,
1880 struct coredump_params *cprm)
1881{
1882 bool first = true;
1883 struct elf_thread_core_info *t = info->thread;
1884
1885 do {
1886 int i;
1887
1888 if (!writenote(&t->notes[0], cprm))
1889 return 0;
1890
1891 if (first && !writenote(&info->psinfo, cprm))
1892 return 0;
1893 if (first && !writenote(&info->signote, cprm))
1894 return 0;
1895 if (first && !writenote(&info->auxv, cprm))
1896 return 0;
1897 if (first && info->files.data &&
1898 !writenote(&info->files, cprm))
1899 return 0;
1900
1901 for (i = 1; i < info->thread_notes; ++i)
1902 if (t->notes[i].data &&
1903 !writenote(&t->notes[i], cprm))
1904 return 0;
1905
1906 first = false;
1907 t = t->next;
1908 } while (t);
1909
1910 return 1;
1911}
1912
1913static void free_note_info(struct elf_note_info *info)
1914{
1915 struct elf_thread_core_info *threads = info->thread;
1916 while (threads) {
1917 unsigned int i;
1918 struct elf_thread_core_info *t = threads;
1919 threads = t->next;
1920 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1921 for (i = 1; i < info->thread_notes; ++i)
1922 kfree(t->notes[i].data);
1923 kfree(t);
1924 }
1925 kfree(info->psinfo.data);
1926 kvfree(info->files.data);
1927}
1928
1929#else
1930
1931/* Here is the structure in which status of each thread is captured. */
1932struct elf_thread_status
1933{
1934 struct list_head list;
1935 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1936 elf_fpregset_t fpu; /* NT_PRFPREG */
1937 struct task_struct *thread;
1938#ifdef ELF_CORE_COPY_XFPREGS
1939 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1940#endif
1941 struct memelfnote notes[3];
1942 int num_notes;
1943};
1944
1945/*
1946 * In order to add the specific thread information for the elf file format,
1947 * we need to keep a linked list of every threads pr_status and then create
1948 * a single section for them in the final core file.
1949 */
1950static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1951{
1952 int sz = 0;
1953 struct task_struct *p = t->thread;
1954 t->num_notes = 0;
1955
1956 fill_prstatus(&t->prstatus, p, signr);
1957 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1958
1959 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1960 &(t->prstatus));
1961 t->num_notes++;
1962 sz += notesize(&t->notes[0]);
1963
1964 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1965 &t->fpu))) {
1966 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1967 &(t->fpu));
1968 t->num_notes++;
1969 sz += notesize(&t->notes[1]);
1970 }
1971
1972#ifdef ELF_CORE_COPY_XFPREGS
1973 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1974 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1975 sizeof(t->xfpu), &t->xfpu);
1976 t->num_notes++;
1977 sz += notesize(&t->notes[2]);
1978 }
1979#endif
1980 return sz;
1981}
1982
1983struct elf_note_info {
1984 struct memelfnote *notes;
1985 struct memelfnote *notes_files;
1986 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1987 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1988 struct list_head thread_list;
1989 elf_fpregset_t *fpu;
1990#ifdef ELF_CORE_COPY_XFPREGS
1991 elf_fpxregset_t *xfpu;
1992#endif
1993 user_siginfo_t csigdata;
1994 int thread_status_size;
1995 int numnote;
1996};
1997
1998static int elf_note_info_init(struct elf_note_info *info)
1999{
2000 memset(info, 0, sizeof(*info));
2001 INIT_LIST_HEAD(&info->thread_list);
2002
2003 /* Allocate space for ELF notes */
2004 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
2005 if (!info->notes)
2006 return 0;
2007 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2008 if (!info->psinfo)
2009 return 0;
2010 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2011 if (!info->prstatus)
2012 return 0;
2013 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2014 if (!info->fpu)
2015 return 0;
2016#ifdef ELF_CORE_COPY_XFPREGS
2017 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2018 if (!info->xfpu)
2019 return 0;
2020#endif
2021 return 1;
2022}
2023
2024static int fill_note_info(struct elfhdr *elf, int phdrs,
2025 struct elf_note_info *info,
2026 const kernel_siginfo_t *siginfo, struct pt_regs *regs)
2027{
2028 struct core_thread *ct;
2029 struct elf_thread_status *ets;
2030
2031 if (!elf_note_info_init(info))
2032 return 0;
2033
2034 for (ct = current->mm->core_state->dumper.next;
2035 ct; ct = ct->next) {
2036 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2037 if (!ets)
2038 return 0;
2039
2040 ets->thread = ct->task;
2041 list_add(&ets->list, &info->thread_list);
2042 }
2043
2044 list_for_each_entry(ets, &info->thread_list, list) {
2045 int sz;
2046
2047 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2048 info->thread_status_size += sz;
2049 }
2050 /* now collect the dump for the current */
2051 memset(info->prstatus, 0, sizeof(*info->prstatus));
2052 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2053 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2054
2055 /* Set up header */
2056 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2057
2058 /*
2059 * Set up the notes in similar form to SVR4 core dumps made
2060 * with info from their /proc.
2061 */
2062
2063 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2064 sizeof(*info->prstatus), info->prstatus);
2065 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2066 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2067 sizeof(*info->psinfo), info->psinfo);
2068
2069 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2070 fill_auxv_note(info->notes + 3, current->mm);
2071 info->numnote = 4;
2072
2073 if (fill_files_note(info->notes + info->numnote) == 0) {
2074 info->notes_files = info->notes + info->numnote;
2075 info->numnote++;
2076 }
2077
2078 /* Try to dump the FPU. */
2079 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2080 info->fpu);
2081 if (info->prstatus->pr_fpvalid)
2082 fill_note(info->notes + info->numnote++,
2083 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2084#ifdef ELF_CORE_COPY_XFPREGS
2085 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2086 fill_note(info->notes + info->numnote++,
2087 "LINUX", ELF_CORE_XFPREG_TYPE,
2088 sizeof(*info->xfpu), info->xfpu);
2089#endif
2090
2091 return 1;
2092}
2093
2094static size_t get_note_info_size(struct elf_note_info *info)
2095{
2096 int sz = 0;
2097 int i;
2098
2099 for (i = 0; i < info->numnote; i++)
2100 sz += notesize(info->notes + i);
2101
2102 sz += info->thread_status_size;
2103
2104 return sz;
2105}
2106
2107static int write_note_info(struct elf_note_info *info,
2108 struct coredump_params *cprm)
2109{
2110 struct elf_thread_status *ets;
2111 int i;
2112
2113 for (i = 0; i < info->numnote; i++)
2114 if (!writenote(info->notes + i, cprm))
2115 return 0;
2116
2117 /* write out the thread status notes section */
2118 list_for_each_entry(ets, &info->thread_list, list) {
2119 for (i = 0; i < ets->num_notes; i++)
2120 if (!writenote(&ets->notes[i], cprm))
2121 return 0;
2122 }
2123
2124 return 1;
2125}
2126
2127static void free_note_info(struct elf_note_info *info)
2128{
2129 while (!list_empty(&info->thread_list)) {
2130 struct list_head *tmp = info->thread_list.next;
2131 list_del(tmp);
2132 kfree(list_entry(tmp, struct elf_thread_status, list));
2133 }
2134
2135 /* Free data possibly allocated by fill_files_note(): */
2136 if (info->notes_files)
2137 kvfree(info->notes_files->data);
2138
2139 kfree(info->prstatus);
2140 kfree(info->psinfo);
2141 kfree(info->notes);
2142 kfree(info->fpu);
2143#ifdef ELF_CORE_COPY_XFPREGS
2144 kfree(info->xfpu);
2145#endif
2146}
2147
2148#endif
2149
2150static struct vm_area_struct *first_vma(struct task_struct *tsk,
2151 struct vm_area_struct *gate_vma)
2152{
2153 struct vm_area_struct *ret = tsk->mm->mmap;
2154
2155 if (ret)
2156 return ret;
2157 return gate_vma;
2158}
2159/*
2160 * Helper function for iterating across a vma list. It ensures that the caller
2161 * will visit `gate_vma' prior to terminating the search.
2162 */
2163static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2164 struct vm_area_struct *gate_vma)
2165{
2166 struct vm_area_struct *ret;
2167
2168 ret = this_vma->vm_next;
2169 if (ret)
2170 return ret;
2171 if (this_vma == gate_vma)
2172 return NULL;
2173 return gate_vma;
2174}
2175
2176static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2177 elf_addr_t e_shoff, int segs)
2178{
2179 elf->e_shoff = e_shoff;
2180 elf->e_shentsize = sizeof(*shdr4extnum);
2181 elf->e_shnum = 1;
2182 elf->e_shstrndx = SHN_UNDEF;
2183
2184 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2185
2186 shdr4extnum->sh_type = SHT_NULL;
2187 shdr4extnum->sh_size = elf->e_shnum;
2188 shdr4extnum->sh_link = elf->e_shstrndx;
2189 shdr4extnum->sh_info = segs;
2190}
2191
2192/*
2193 * Actual dumper
2194 *
2195 * This is a two-pass process; first we find the offsets of the bits,
2196 * and then they are actually written out. If we run out of core limit
2197 * we just truncate.
2198 */
2199static int elf_core_dump(struct coredump_params *cprm)
2200{
2201 int has_dumped = 0;
2202 mm_segment_t fs;
2203 int segs, i;
2204 size_t vma_data_size = 0;
2205 struct vm_area_struct *vma, *gate_vma;
2206 struct elfhdr *elf = NULL;
2207 loff_t offset = 0, dataoff;
2208 struct elf_note_info info = { };
2209 struct elf_phdr *phdr4note = NULL;
2210 struct elf_shdr *shdr4extnum = NULL;
2211 Elf_Half e_phnum;
2212 elf_addr_t e_shoff;
2213 elf_addr_t *vma_filesz = NULL;
2214
2215 /*
2216 * We no longer stop all VM operations.
2217 *
2218 * This is because those proceses that could possibly change map_count
2219 * or the mmap / vma pages are now blocked in do_exit on current
2220 * finishing this core dump.
2221 *
2222 * Only ptrace can touch these memory addresses, but it doesn't change
2223 * the map_count or the pages allocated. So no possibility of crashing
2224 * exists while dumping the mm->vm_next areas to the core file.
2225 */
2226
2227 /* alloc memory for large data structures: too large to be on stack */
2228 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2229 if (!elf)
2230 goto out;
2231 /*
2232 * The number of segs are recored into ELF header as 16bit value.
2233 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2234 */
2235 segs = current->mm->map_count;
2236 segs += elf_core_extra_phdrs();
2237
2238 gate_vma = get_gate_vma(current->mm);
2239 if (gate_vma != NULL)
2240 segs++;
2241
2242 /* for notes section */
2243 segs++;
2244
2245 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2246 * this, kernel supports extended numbering. Have a look at
2247 * include/linux/elf.h for further information. */
2248 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2249
2250 /*
2251 * Collect all the non-memory information about the process for the
2252 * notes. This also sets up the file header.
2253 */
2254 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2255 goto cleanup;
2256
2257 has_dumped = 1;
2258
2259 fs = get_fs();
2260 set_fs(KERNEL_DS);
2261
2262 offset += sizeof(*elf); /* Elf header */
2263 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2264
2265 /* Write notes phdr entry */
2266 {
2267 size_t sz = get_note_info_size(&info);
2268
2269 sz += elf_coredump_extra_notes_size();
2270
2271 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2272 if (!phdr4note)
2273 goto end_coredump;
2274
2275 fill_elf_note_phdr(phdr4note, sz, offset);
2276 offset += sz;
2277 }
2278
2279 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2280
2281 if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2282 goto end_coredump;
2283 vma_filesz = kvmalloc(array_size(sizeof(*vma_filesz), (segs - 1)),
2284 GFP_KERNEL);
2285 if (ZERO_OR_NULL_PTR(vma_filesz))
2286 goto end_coredump;
2287
2288 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2289 vma = next_vma(vma, gate_vma)) {
2290 unsigned long dump_size;
2291
2292 dump_size = vma_dump_size(vma, cprm->mm_flags);
2293 vma_filesz[i++] = dump_size;
2294 vma_data_size += dump_size;
2295 }
2296
2297 offset += vma_data_size;
2298 offset += elf_core_extra_data_size();
2299 e_shoff = offset;
2300
2301 if (e_phnum == PN_XNUM) {
2302 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2303 if (!shdr4extnum)
2304 goto end_coredump;
2305 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2306 }
2307
2308 offset = dataoff;
2309
2310 if (!dump_emit(cprm, elf, sizeof(*elf)))
2311 goto end_coredump;
2312
2313 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2314 goto end_coredump;
2315
2316 /* Write program headers for segments dump */
2317 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2318 vma = next_vma(vma, gate_vma)) {
2319 struct elf_phdr phdr;
2320
2321 phdr.p_type = PT_LOAD;
2322 phdr.p_offset = offset;
2323 phdr.p_vaddr = vma->vm_start;
2324 phdr.p_paddr = 0;
2325 phdr.p_filesz = vma_filesz[i++];
2326 phdr.p_memsz = vma->vm_end - vma->vm_start;
2327 offset += phdr.p_filesz;
2328 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2329 if (vma->vm_flags & VM_WRITE)
2330 phdr.p_flags |= PF_W;
2331 if (vma->vm_flags & VM_EXEC)
2332 phdr.p_flags |= PF_X;
2333 phdr.p_align = ELF_EXEC_PAGESIZE;
2334
2335 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2336 goto end_coredump;
2337 }
2338
2339 if (!elf_core_write_extra_phdrs(cprm, offset))
2340 goto end_coredump;
2341
2342 /* write out the notes section */
2343 if (!write_note_info(&info, cprm))
2344 goto end_coredump;
2345
2346 if (elf_coredump_extra_notes_write(cprm))
2347 goto end_coredump;
2348
2349 /* Align to page */
2350 if (!dump_skip(cprm, dataoff - cprm->pos))
2351 goto end_coredump;
2352
2353 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2354 vma = next_vma(vma, gate_vma)) {
2355 unsigned long addr;
2356 unsigned long end;
2357
2358 end = vma->vm_start + vma_filesz[i++];
2359
2360 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2361 struct page *page;
2362 int stop;
2363
2364 page = get_dump_page(addr);
2365 if (page) {
2366 void *kaddr = kmap(page);
2367 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2368 kunmap(page);
2369 put_page(page);
2370 } else
2371 stop = !dump_skip(cprm, PAGE_SIZE);
2372 if (stop)
2373 goto end_coredump;
2374 }
2375 }
2376 dump_truncate(cprm);
2377
2378 if (!elf_core_write_extra_data(cprm))
2379 goto end_coredump;
2380
2381 if (e_phnum == PN_XNUM) {
2382 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2383 goto end_coredump;
2384 }
2385
2386end_coredump:
2387 set_fs(fs);
2388
2389cleanup:
2390 free_note_info(&info);
2391 kfree(shdr4extnum);
2392 kvfree(vma_filesz);
2393 kfree(phdr4note);
2394 kfree(elf);
2395out:
2396 return has_dumped;
2397}
2398
2399#endif /* CONFIG_ELF_CORE */
2400
2401static int __init init_elf_binfmt(void)
2402{
2403 register_binfmt(&elf_format);
2404 return 0;
2405}
2406
2407static void __exit exit_elf_binfmt(void)
2408{
2409 /* Remove the COFF and ELF loaders. */
2410 unregister_binfmt(&elf_format);
2411}
2412
2413core_initcall(init_elf_binfmt);
2414module_exit(exit_elf_binfmt);
2415MODULE_LICENSE("GPL");