]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - fs/block_dev.c
block cfq: compensate preempted queue even if it has no slice assigned
[mirror_ubuntu-zesty-kernel.git] / fs / block_dev.c
... / ...
CommitLineData
1/*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8#include <linux/init.h>
9#include <linux/mm.h>
10#include <linux/fcntl.h>
11#include <linux/slab.h>
12#include <linux/kmod.h>
13#include <linux/major.h>
14#include <linux/device_cgroup.h>
15#include <linux/highmem.h>
16#include <linux/blkdev.h>
17#include <linux/module.h>
18#include <linux/blkpg.h>
19#include <linux/buffer_head.h>
20#include <linux/pagevec.h>
21#include <linux/writeback.h>
22#include <linux/mpage.h>
23#include <linux/mount.h>
24#include <linux/uio.h>
25#include <linux/namei.h>
26#include <linux/log2.h>
27#include <linux/kmemleak.h>
28#include <asm/uaccess.h>
29#include "internal.h"
30
31struct bdev_inode {
32 struct block_device bdev;
33 struct inode vfs_inode;
34};
35
36static const struct address_space_operations def_blk_aops;
37
38static inline struct bdev_inode *BDEV_I(struct inode *inode)
39{
40 return container_of(inode, struct bdev_inode, vfs_inode);
41}
42
43inline struct block_device *I_BDEV(struct inode *inode)
44{
45 return &BDEV_I(inode)->bdev;
46}
47
48EXPORT_SYMBOL(I_BDEV);
49
50/*
51 * move the inode from it's current bdi to the a new bdi. if the inode is dirty
52 * we need to move it onto the dirty list of @dst so that the inode is always
53 * on the right list.
54 */
55static void bdev_inode_switch_bdi(struct inode *inode,
56 struct backing_dev_info *dst)
57{
58 spin_lock(&inode_lock);
59 inode->i_data.backing_dev_info = dst;
60 if (inode->i_state & I_DIRTY)
61 list_move(&inode->i_wb_list, &dst->wb.b_dirty);
62 spin_unlock(&inode_lock);
63}
64
65static sector_t max_block(struct block_device *bdev)
66{
67 sector_t retval = ~((sector_t)0);
68 loff_t sz = i_size_read(bdev->bd_inode);
69
70 if (sz) {
71 unsigned int size = block_size(bdev);
72 unsigned int sizebits = blksize_bits(size);
73 retval = (sz >> sizebits);
74 }
75 return retval;
76}
77
78/* Kill _all_ buffers and pagecache , dirty or not.. */
79static void kill_bdev(struct block_device *bdev)
80{
81 if (bdev->bd_inode->i_mapping->nrpages == 0)
82 return;
83 invalidate_bh_lrus();
84 truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
85}
86
87int set_blocksize(struct block_device *bdev, int size)
88{
89 /* Size must be a power of two, and between 512 and PAGE_SIZE */
90 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
91 return -EINVAL;
92
93 /* Size cannot be smaller than the size supported by the device */
94 if (size < bdev_logical_block_size(bdev))
95 return -EINVAL;
96
97 /* Don't change the size if it is same as current */
98 if (bdev->bd_block_size != size) {
99 sync_blockdev(bdev);
100 bdev->bd_block_size = size;
101 bdev->bd_inode->i_blkbits = blksize_bits(size);
102 kill_bdev(bdev);
103 }
104 return 0;
105}
106
107EXPORT_SYMBOL(set_blocksize);
108
109int sb_set_blocksize(struct super_block *sb, int size)
110{
111 if (set_blocksize(sb->s_bdev, size))
112 return 0;
113 /* If we get here, we know size is power of two
114 * and it's value is between 512 and PAGE_SIZE */
115 sb->s_blocksize = size;
116 sb->s_blocksize_bits = blksize_bits(size);
117 return sb->s_blocksize;
118}
119
120EXPORT_SYMBOL(sb_set_blocksize);
121
122int sb_min_blocksize(struct super_block *sb, int size)
123{
124 int minsize = bdev_logical_block_size(sb->s_bdev);
125 if (size < minsize)
126 size = minsize;
127 return sb_set_blocksize(sb, size);
128}
129
130EXPORT_SYMBOL(sb_min_blocksize);
131
132static int
133blkdev_get_block(struct inode *inode, sector_t iblock,
134 struct buffer_head *bh, int create)
135{
136 if (iblock >= max_block(I_BDEV(inode))) {
137 if (create)
138 return -EIO;
139
140 /*
141 * for reads, we're just trying to fill a partial page.
142 * return a hole, they will have to call get_block again
143 * before they can fill it, and they will get -EIO at that
144 * time
145 */
146 return 0;
147 }
148 bh->b_bdev = I_BDEV(inode);
149 bh->b_blocknr = iblock;
150 set_buffer_mapped(bh);
151 return 0;
152}
153
154static int
155blkdev_get_blocks(struct inode *inode, sector_t iblock,
156 struct buffer_head *bh, int create)
157{
158 sector_t end_block = max_block(I_BDEV(inode));
159 unsigned long max_blocks = bh->b_size >> inode->i_blkbits;
160
161 if ((iblock + max_blocks) > end_block) {
162 max_blocks = end_block - iblock;
163 if ((long)max_blocks <= 0) {
164 if (create)
165 return -EIO; /* write fully beyond EOF */
166 /*
167 * It is a read which is fully beyond EOF. We return
168 * a !buffer_mapped buffer
169 */
170 max_blocks = 0;
171 }
172 }
173
174 bh->b_bdev = I_BDEV(inode);
175 bh->b_blocknr = iblock;
176 bh->b_size = max_blocks << inode->i_blkbits;
177 if (max_blocks)
178 set_buffer_mapped(bh);
179 return 0;
180}
181
182static ssize_t
183blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
184 loff_t offset, unsigned long nr_segs)
185{
186 struct file *file = iocb->ki_filp;
187 struct inode *inode = file->f_mapping->host;
188
189 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iov, offset,
190 nr_segs, blkdev_get_blocks, NULL, NULL, 0);
191}
192
193int __sync_blockdev(struct block_device *bdev, int wait)
194{
195 if (!bdev)
196 return 0;
197 if (!wait)
198 return filemap_flush(bdev->bd_inode->i_mapping);
199 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
200}
201
202/*
203 * Write out and wait upon all the dirty data associated with a block
204 * device via its mapping. Does not take the superblock lock.
205 */
206int sync_blockdev(struct block_device *bdev)
207{
208 return __sync_blockdev(bdev, 1);
209}
210EXPORT_SYMBOL(sync_blockdev);
211
212/*
213 * Write out and wait upon all dirty data associated with this
214 * device. Filesystem data as well as the underlying block
215 * device. Takes the superblock lock.
216 */
217int fsync_bdev(struct block_device *bdev)
218{
219 struct super_block *sb = get_super(bdev);
220 if (sb) {
221 int res = sync_filesystem(sb);
222 drop_super(sb);
223 return res;
224 }
225 return sync_blockdev(bdev);
226}
227EXPORT_SYMBOL(fsync_bdev);
228
229/**
230 * freeze_bdev -- lock a filesystem and force it into a consistent state
231 * @bdev: blockdevice to lock
232 *
233 * If a superblock is found on this device, we take the s_umount semaphore
234 * on it to make sure nobody unmounts until the snapshot creation is done.
235 * The reference counter (bd_fsfreeze_count) guarantees that only the last
236 * unfreeze process can unfreeze the frozen filesystem actually when multiple
237 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
238 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
239 * actually.
240 */
241struct super_block *freeze_bdev(struct block_device *bdev)
242{
243 struct super_block *sb;
244 int error = 0;
245
246 mutex_lock(&bdev->bd_fsfreeze_mutex);
247 if (++bdev->bd_fsfreeze_count > 1) {
248 /*
249 * We don't even need to grab a reference - the first call
250 * to freeze_bdev grab an active reference and only the last
251 * thaw_bdev drops it.
252 */
253 sb = get_super(bdev);
254 drop_super(sb);
255 mutex_unlock(&bdev->bd_fsfreeze_mutex);
256 return sb;
257 }
258
259 sb = get_active_super(bdev);
260 if (!sb)
261 goto out;
262 error = freeze_super(sb);
263 if (error) {
264 deactivate_super(sb);
265 bdev->bd_fsfreeze_count--;
266 mutex_unlock(&bdev->bd_fsfreeze_mutex);
267 return ERR_PTR(error);
268 }
269 deactivate_super(sb);
270 out:
271 sync_blockdev(bdev);
272 mutex_unlock(&bdev->bd_fsfreeze_mutex);
273 return sb; /* thaw_bdev releases s->s_umount */
274}
275EXPORT_SYMBOL(freeze_bdev);
276
277/**
278 * thaw_bdev -- unlock filesystem
279 * @bdev: blockdevice to unlock
280 * @sb: associated superblock
281 *
282 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
283 */
284int thaw_bdev(struct block_device *bdev, struct super_block *sb)
285{
286 int error = -EINVAL;
287
288 mutex_lock(&bdev->bd_fsfreeze_mutex);
289 if (!bdev->bd_fsfreeze_count)
290 goto out;
291
292 error = 0;
293 if (--bdev->bd_fsfreeze_count > 0)
294 goto out;
295
296 if (!sb)
297 goto out;
298
299 error = thaw_super(sb);
300 if (error) {
301 bdev->bd_fsfreeze_count++;
302 mutex_unlock(&bdev->bd_fsfreeze_mutex);
303 return error;
304 }
305out:
306 mutex_unlock(&bdev->bd_fsfreeze_mutex);
307 return 0;
308}
309EXPORT_SYMBOL(thaw_bdev);
310
311static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
312{
313 return block_write_full_page(page, blkdev_get_block, wbc);
314}
315
316static int blkdev_readpage(struct file * file, struct page * page)
317{
318 return block_read_full_page(page, blkdev_get_block);
319}
320
321static int blkdev_write_begin(struct file *file, struct address_space *mapping,
322 loff_t pos, unsigned len, unsigned flags,
323 struct page **pagep, void **fsdata)
324{
325 return block_write_begin(mapping, pos, len, flags, pagep,
326 blkdev_get_block);
327}
328
329static int blkdev_write_end(struct file *file, struct address_space *mapping,
330 loff_t pos, unsigned len, unsigned copied,
331 struct page *page, void *fsdata)
332{
333 int ret;
334 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
335
336 unlock_page(page);
337 page_cache_release(page);
338
339 return ret;
340}
341
342/*
343 * private llseek:
344 * for a block special file file->f_path.dentry->d_inode->i_size is zero
345 * so we compute the size by hand (just as in block_read/write above)
346 */
347static loff_t block_llseek(struct file *file, loff_t offset, int origin)
348{
349 struct inode *bd_inode = file->f_mapping->host;
350 loff_t size;
351 loff_t retval;
352
353 mutex_lock(&bd_inode->i_mutex);
354 size = i_size_read(bd_inode);
355
356 switch (origin) {
357 case 2:
358 offset += size;
359 break;
360 case 1:
361 offset += file->f_pos;
362 }
363 retval = -EINVAL;
364 if (offset >= 0 && offset <= size) {
365 if (offset != file->f_pos) {
366 file->f_pos = offset;
367 }
368 retval = offset;
369 }
370 mutex_unlock(&bd_inode->i_mutex);
371 return retval;
372}
373
374int blkdev_fsync(struct file *filp, int datasync)
375{
376 struct inode *bd_inode = filp->f_mapping->host;
377 struct block_device *bdev = I_BDEV(bd_inode);
378 int error;
379
380 /*
381 * There is no need to serialise calls to blkdev_issue_flush with
382 * i_mutex and doing so causes performance issues with concurrent
383 * O_SYNC writers to a block device.
384 */
385 mutex_unlock(&bd_inode->i_mutex);
386
387 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
388 if (error == -EOPNOTSUPP)
389 error = 0;
390
391 mutex_lock(&bd_inode->i_mutex);
392
393 return error;
394}
395EXPORT_SYMBOL(blkdev_fsync);
396
397/*
398 * pseudo-fs
399 */
400
401static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
402static struct kmem_cache * bdev_cachep __read_mostly;
403
404static struct inode *bdev_alloc_inode(struct super_block *sb)
405{
406 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
407 if (!ei)
408 return NULL;
409 return &ei->vfs_inode;
410}
411
412static void bdev_i_callback(struct rcu_head *head)
413{
414 struct inode *inode = container_of(head, struct inode, i_rcu);
415 struct bdev_inode *bdi = BDEV_I(inode);
416
417 INIT_LIST_HEAD(&inode->i_dentry);
418 kmem_cache_free(bdev_cachep, bdi);
419}
420
421static void bdev_destroy_inode(struct inode *inode)
422{
423 call_rcu(&inode->i_rcu, bdev_i_callback);
424}
425
426static void init_once(void *foo)
427{
428 struct bdev_inode *ei = (struct bdev_inode *) foo;
429 struct block_device *bdev = &ei->bdev;
430
431 memset(bdev, 0, sizeof(*bdev));
432 mutex_init(&bdev->bd_mutex);
433 INIT_LIST_HEAD(&bdev->bd_inodes);
434 INIT_LIST_HEAD(&bdev->bd_list);
435 inode_init_once(&ei->vfs_inode);
436 /* Initialize mutex for freeze. */
437 mutex_init(&bdev->bd_fsfreeze_mutex);
438}
439
440static inline void __bd_forget(struct inode *inode)
441{
442 list_del_init(&inode->i_devices);
443 inode->i_bdev = NULL;
444 inode->i_mapping = &inode->i_data;
445}
446
447static void bdev_evict_inode(struct inode *inode)
448{
449 struct block_device *bdev = &BDEV_I(inode)->bdev;
450 struct list_head *p;
451 truncate_inode_pages(&inode->i_data, 0);
452 invalidate_inode_buffers(inode); /* is it needed here? */
453 end_writeback(inode);
454 spin_lock(&bdev_lock);
455 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
456 __bd_forget(list_entry(p, struct inode, i_devices));
457 }
458 list_del_init(&bdev->bd_list);
459 spin_unlock(&bdev_lock);
460}
461
462static const struct super_operations bdev_sops = {
463 .statfs = simple_statfs,
464 .alloc_inode = bdev_alloc_inode,
465 .destroy_inode = bdev_destroy_inode,
466 .drop_inode = generic_delete_inode,
467 .evict_inode = bdev_evict_inode,
468};
469
470static struct dentry *bd_mount(struct file_system_type *fs_type,
471 int flags, const char *dev_name, void *data)
472{
473 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, 0x62646576);
474}
475
476static struct file_system_type bd_type = {
477 .name = "bdev",
478 .mount = bd_mount,
479 .kill_sb = kill_anon_super,
480};
481
482struct super_block *blockdev_superblock __read_mostly;
483
484void __init bdev_cache_init(void)
485{
486 int err;
487 struct vfsmount *bd_mnt;
488
489 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
490 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
491 SLAB_MEM_SPREAD|SLAB_PANIC),
492 init_once);
493 err = register_filesystem(&bd_type);
494 if (err)
495 panic("Cannot register bdev pseudo-fs");
496 bd_mnt = kern_mount(&bd_type);
497 if (IS_ERR(bd_mnt))
498 panic("Cannot create bdev pseudo-fs");
499 /*
500 * This vfsmount structure is only used to obtain the
501 * blockdev_superblock, so tell kmemleak not to report it.
502 */
503 kmemleak_not_leak(bd_mnt);
504 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
505}
506
507/*
508 * Most likely _very_ bad one - but then it's hardly critical for small
509 * /dev and can be fixed when somebody will need really large one.
510 * Keep in mind that it will be fed through icache hash function too.
511 */
512static inline unsigned long hash(dev_t dev)
513{
514 return MAJOR(dev)+MINOR(dev);
515}
516
517static int bdev_test(struct inode *inode, void *data)
518{
519 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
520}
521
522static int bdev_set(struct inode *inode, void *data)
523{
524 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
525 return 0;
526}
527
528static LIST_HEAD(all_bdevs);
529
530struct block_device *bdget(dev_t dev)
531{
532 struct block_device *bdev;
533 struct inode *inode;
534
535 inode = iget5_locked(blockdev_superblock, hash(dev),
536 bdev_test, bdev_set, &dev);
537
538 if (!inode)
539 return NULL;
540
541 bdev = &BDEV_I(inode)->bdev;
542
543 if (inode->i_state & I_NEW) {
544 bdev->bd_contains = NULL;
545 bdev->bd_inode = inode;
546 bdev->bd_block_size = (1 << inode->i_blkbits);
547 bdev->bd_part_count = 0;
548 bdev->bd_invalidated = 0;
549 inode->i_mode = S_IFBLK;
550 inode->i_rdev = dev;
551 inode->i_bdev = bdev;
552 inode->i_data.a_ops = &def_blk_aops;
553 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
554 inode->i_data.backing_dev_info = &default_backing_dev_info;
555 spin_lock(&bdev_lock);
556 list_add(&bdev->bd_list, &all_bdevs);
557 spin_unlock(&bdev_lock);
558 unlock_new_inode(inode);
559 }
560 return bdev;
561}
562
563EXPORT_SYMBOL(bdget);
564
565/**
566 * bdgrab -- Grab a reference to an already referenced block device
567 * @bdev: Block device to grab a reference to.
568 */
569struct block_device *bdgrab(struct block_device *bdev)
570{
571 ihold(bdev->bd_inode);
572 return bdev;
573}
574
575long nr_blockdev_pages(void)
576{
577 struct block_device *bdev;
578 long ret = 0;
579 spin_lock(&bdev_lock);
580 list_for_each_entry(bdev, &all_bdevs, bd_list) {
581 ret += bdev->bd_inode->i_mapping->nrpages;
582 }
583 spin_unlock(&bdev_lock);
584 return ret;
585}
586
587void bdput(struct block_device *bdev)
588{
589 iput(bdev->bd_inode);
590}
591
592EXPORT_SYMBOL(bdput);
593
594static struct block_device *bd_acquire(struct inode *inode)
595{
596 struct block_device *bdev;
597
598 spin_lock(&bdev_lock);
599 bdev = inode->i_bdev;
600 if (bdev) {
601 ihold(bdev->bd_inode);
602 spin_unlock(&bdev_lock);
603 return bdev;
604 }
605 spin_unlock(&bdev_lock);
606
607 bdev = bdget(inode->i_rdev);
608 if (bdev) {
609 spin_lock(&bdev_lock);
610 if (!inode->i_bdev) {
611 /*
612 * We take an additional reference to bd_inode,
613 * and it's released in clear_inode() of inode.
614 * So, we can access it via ->i_mapping always
615 * without igrab().
616 */
617 ihold(bdev->bd_inode);
618 inode->i_bdev = bdev;
619 inode->i_mapping = bdev->bd_inode->i_mapping;
620 list_add(&inode->i_devices, &bdev->bd_inodes);
621 }
622 spin_unlock(&bdev_lock);
623 }
624 return bdev;
625}
626
627/* Call when you free inode */
628
629void bd_forget(struct inode *inode)
630{
631 struct block_device *bdev = NULL;
632
633 spin_lock(&bdev_lock);
634 if (inode->i_bdev) {
635 if (!sb_is_blkdev_sb(inode->i_sb))
636 bdev = inode->i_bdev;
637 __bd_forget(inode);
638 }
639 spin_unlock(&bdev_lock);
640
641 if (bdev)
642 iput(bdev->bd_inode);
643}
644
645/**
646 * bd_may_claim - test whether a block device can be claimed
647 * @bdev: block device of interest
648 * @whole: whole block device containing @bdev, may equal @bdev
649 * @holder: holder trying to claim @bdev
650 *
651 * Test whther @bdev can be claimed by @holder.
652 *
653 * CONTEXT:
654 * spin_lock(&bdev_lock).
655 *
656 * RETURNS:
657 * %true if @bdev can be claimed, %false otherwise.
658 */
659static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
660 void *holder)
661{
662 if (bdev->bd_holder == holder)
663 return true; /* already a holder */
664 else if (bdev->bd_holder != NULL)
665 return false; /* held by someone else */
666 else if (bdev->bd_contains == bdev)
667 return true; /* is a whole device which isn't held */
668
669 else if (whole->bd_holder == bd_may_claim)
670 return true; /* is a partition of a device that is being partitioned */
671 else if (whole->bd_holder != NULL)
672 return false; /* is a partition of a held device */
673 else
674 return true; /* is a partition of an un-held device */
675}
676
677/**
678 * bd_prepare_to_claim - prepare to claim a block device
679 * @bdev: block device of interest
680 * @whole: the whole device containing @bdev, may equal @bdev
681 * @holder: holder trying to claim @bdev
682 *
683 * Prepare to claim @bdev. This function fails if @bdev is already
684 * claimed by another holder and waits if another claiming is in
685 * progress. This function doesn't actually claim. On successful
686 * return, the caller has ownership of bd_claiming and bd_holder[s].
687 *
688 * CONTEXT:
689 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
690 * it multiple times.
691 *
692 * RETURNS:
693 * 0 if @bdev can be claimed, -EBUSY otherwise.
694 */
695static int bd_prepare_to_claim(struct block_device *bdev,
696 struct block_device *whole, void *holder)
697{
698retry:
699 /* if someone else claimed, fail */
700 if (!bd_may_claim(bdev, whole, holder))
701 return -EBUSY;
702
703 /* if claiming is already in progress, wait for it to finish */
704 if (whole->bd_claiming) {
705 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
706 DEFINE_WAIT(wait);
707
708 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
709 spin_unlock(&bdev_lock);
710 schedule();
711 finish_wait(wq, &wait);
712 spin_lock(&bdev_lock);
713 goto retry;
714 }
715
716 /* yay, all mine */
717 return 0;
718}
719
720/**
721 * bd_start_claiming - start claiming a block device
722 * @bdev: block device of interest
723 * @holder: holder trying to claim @bdev
724 *
725 * @bdev is about to be opened exclusively. Check @bdev can be opened
726 * exclusively and mark that an exclusive open is in progress. Each
727 * successful call to this function must be matched with a call to
728 * either bd_finish_claiming() or bd_abort_claiming() (which do not
729 * fail).
730 *
731 * This function is used to gain exclusive access to the block device
732 * without actually causing other exclusive open attempts to fail. It
733 * should be used when the open sequence itself requires exclusive
734 * access but may subsequently fail.
735 *
736 * CONTEXT:
737 * Might sleep.
738 *
739 * RETURNS:
740 * Pointer to the block device containing @bdev on success, ERR_PTR()
741 * value on failure.
742 */
743static struct block_device *bd_start_claiming(struct block_device *bdev,
744 void *holder)
745{
746 struct gendisk *disk;
747 struct block_device *whole;
748 int partno, err;
749
750 might_sleep();
751
752 /*
753 * @bdev might not have been initialized properly yet, look up
754 * and grab the outer block device the hard way.
755 */
756 disk = get_gendisk(bdev->bd_dev, &partno);
757 if (!disk)
758 return ERR_PTR(-ENXIO);
759
760 whole = bdget_disk(disk, 0);
761 module_put(disk->fops->owner);
762 put_disk(disk);
763 if (!whole)
764 return ERR_PTR(-ENOMEM);
765
766 /* prepare to claim, if successful, mark claiming in progress */
767 spin_lock(&bdev_lock);
768
769 err = bd_prepare_to_claim(bdev, whole, holder);
770 if (err == 0) {
771 whole->bd_claiming = holder;
772 spin_unlock(&bdev_lock);
773 return whole;
774 } else {
775 spin_unlock(&bdev_lock);
776 bdput(whole);
777 return ERR_PTR(err);
778 }
779}
780
781#ifdef CONFIG_SYSFS
782static int add_symlink(struct kobject *from, struct kobject *to)
783{
784 return sysfs_create_link(from, to, kobject_name(to));
785}
786
787static void del_symlink(struct kobject *from, struct kobject *to)
788{
789 sysfs_remove_link(from, kobject_name(to));
790}
791
792/**
793 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
794 * @bdev: the claimed slave bdev
795 * @disk: the holding disk
796 *
797 * This functions creates the following sysfs symlinks.
798 *
799 * - from "slaves" directory of the holder @disk to the claimed @bdev
800 * - from "holders" directory of the @bdev to the holder @disk
801 *
802 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
803 * passed to bd_link_disk_holder(), then:
804 *
805 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
806 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
807 *
808 * The caller must have claimed @bdev before calling this function and
809 * ensure that both @bdev and @disk are valid during the creation and
810 * lifetime of these symlinks.
811 *
812 * CONTEXT:
813 * Might sleep.
814 *
815 * RETURNS:
816 * 0 on success, -errno on failure.
817 */
818int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
819{
820 int ret = 0;
821
822 mutex_lock(&bdev->bd_mutex);
823
824 WARN_ON_ONCE(!bdev->bd_holder || bdev->bd_holder_disk);
825
826 /* FIXME: remove the following once add_disk() handles errors */
827 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
828 goto out_unlock;
829
830 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
831 if (ret)
832 goto out_unlock;
833
834 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
835 if (ret) {
836 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
837 goto out_unlock;
838 }
839
840 bdev->bd_holder_disk = disk;
841out_unlock:
842 mutex_unlock(&bdev->bd_mutex);
843 return ret;
844}
845EXPORT_SYMBOL_GPL(bd_link_disk_holder);
846
847static void bd_unlink_disk_holder(struct block_device *bdev)
848{
849 struct gendisk *disk = bdev->bd_holder_disk;
850
851 bdev->bd_holder_disk = NULL;
852 if (!disk)
853 return;
854
855 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
856 del_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
857}
858#else
859static inline void bd_unlink_disk_holder(struct block_device *bdev)
860{ }
861#endif
862
863/**
864 * flush_disk - invalidates all buffer-cache entries on a disk
865 *
866 * @bdev: struct block device to be flushed
867 *
868 * Invalidates all buffer-cache entries on a disk. It should be called
869 * when a disk has been changed -- either by a media change or online
870 * resize.
871 */
872static void flush_disk(struct block_device *bdev)
873{
874 if (__invalidate_device(bdev)) {
875 char name[BDEVNAME_SIZE] = "";
876
877 if (bdev->bd_disk)
878 disk_name(bdev->bd_disk, 0, name);
879 printk(KERN_WARNING "VFS: busy inodes on changed media or "
880 "resized disk %s\n", name);
881 }
882
883 if (!bdev->bd_disk)
884 return;
885 if (disk_partitionable(bdev->bd_disk))
886 bdev->bd_invalidated = 1;
887}
888
889/**
890 * check_disk_size_change - checks for disk size change and adjusts bdev size.
891 * @disk: struct gendisk to check
892 * @bdev: struct bdev to adjust.
893 *
894 * This routine checks to see if the bdev size does not match the disk size
895 * and adjusts it if it differs.
896 */
897void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
898{
899 loff_t disk_size, bdev_size;
900
901 disk_size = (loff_t)get_capacity(disk) << 9;
902 bdev_size = i_size_read(bdev->bd_inode);
903 if (disk_size != bdev_size) {
904 char name[BDEVNAME_SIZE];
905
906 disk_name(disk, 0, name);
907 printk(KERN_INFO
908 "%s: detected capacity change from %lld to %lld\n",
909 name, bdev_size, disk_size);
910 i_size_write(bdev->bd_inode, disk_size);
911 flush_disk(bdev);
912 }
913}
914EXPORT_SYMBOL(check_disk_size_change);
915
916/**
917 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
918 * @disk: struct gendisk to be revalidated
919 *
920 * This routine is a wrapper for lower-level driver's revalidate_disk
921 * call-backs. It is used to do common pre and post operations needed
922 * for all revalidate_disk operations.
923 */
924int revalidate_disk(struct gendisk *disk)
925{
926 struct block_device *bdev;
927 int ret = 0;
928
929 if (disk->fops->revalidate_disk)
930 ret = disk->fops->revalidate_disk(disk);
931
932 bdev = bdget_disk(disk, 0);
933 if (!bdev)
934 return ret;
935
936 mutex_lock(&bdev->bd_mutex);
937 check_disk_size_change(disk, bdev);
938 mutex_unlock(&bdev->bd_mutex);
939 bdput(bdev);
940 return ret;
941}
942EXPORT_SYMBOL(revalidate_disk);
943
944/*
945 * This routine checks whether a removable media has been changed,
946 * and invalidates all buffer-cache-entries in that case. This
947 * is a relatively slow routine, so we have to try to minimize using
948 * it. Thus it is called only upon a 'mount' or 'open'. This
949 * is the best way of combining speed and utility, I think.
950 * People changing diskettes in the middle of an operation deserve
951 * to lose :-)
952 */
953int check_disk_change(struct block_device *bdev)
954{
955 struct gendisk *disk = bdev->bd_disk;
956 const struct block_device_operations *bdops = disk->fops;
957 unsigned int events;
958
959 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
960 DISK_EVENT_EJECT_REQUEST);
961 if (!(events & DISK_EVENT_MEDIA_CHANGE))
962 return 0;
963
964 flush_disk(bdev);
965 if (bdops->revalidate_disk)
966 bdops->revalidate_disk(bdev->bd_disk);
967 return 1;
968}
969
970EXPORT_SYMBOL(check_disk_change);
971
972void bd_set_size(struct block_device *bdev, loff_t size)
973{
974 unsigned bsize = bdev_logical_block_size(bdev);
975
976 bdev->bd_inode->i_size = size;
977 while (bsize < PAGE_CACHE_SIZE) {
978 if (size & bsize)
979 break;
980 bsize <<= 1;
981 }
982 bdev->bd_block_size = bsize;
983 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
984}
985EXPORT_SYMBOL(bd_set_size);
986
987static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
988
989/*
990 * bd_mutex locking:
991 *
992 * mutex_lock(part->bd_mutex)
993 * mutex_lock_nested(whole->bd_mutex, 1)
994 */
995
996static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
997{
998 struct gendisk *disk;
999 int ret;
1000 int partno;
1001 int perm = 0;
1002
1003 if (mode & FMODE_READ)
1004 perm |= MAY_READ;
1005 if (mode & FMODE_WRITE)
1006 perm |= MAY_WRITE;
1007 /*
1008 * hooks: /n/, see "layering violations".
1009 */
1010 if (!for_part) {
1011 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1012 if (ret != 0) {
1013 bdput(bdev);
1014 return ret;
1015 }
1016 }
1017
1018 restart:
1019
1020 ret = -ENXIO;
1021 disk = get_gendisk(bdev->bd_dev, &partno);
1022 if (!disk)
1023 goto out;
1024
1025 mutex_lock_nested(&bdev->bd_mutex, for_part);
1026 if (!bdev->bd_openers) {
1027 bdev->bd_disk = disk;
1028 bdev->bd_contains = bdev;
1029 if (!partno) {
1030 struct backing_dev_info *bdi;
1031
1032 ret = -ENXIO;
1033 bdev->bd_part = disk_get_part(disk, partno);
1034 if (!bdev->bd_part)
1035 goto out_clear;
1036
1037 if (disk->fops->open) {
1038 ret = disk->fops->open(bdev, mode);
1039 if (ret == -ERESTARTSYS) {
1040 /* Lost a race with 'disk' being
1041 * deleted, try again.
1042 * See md.c
1043 */
1044 disk_put_part(bdev->bd_part);
1045 bdev->bd_part = NULL;
1046 module_put(disk->fops->owner);
1047 put_disk(disk);
1048 bdev->bd_disk = NULL;
1049 mutex_unlock(&bdev->bd_mutex);
1050 goto restart;
1051 }
1052 if (ret)
1053 goto out_clear;
1054 }
1055 if (!bdev->bd_openers) {
1056 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1057 bdi = blk_get_backing_dev_info(bdev);
1058 if (bdi == NULL)
1059 bdi = &default_backing_dev_info;
1060 bdev_inode_switch_bdi(bdev->bd_inode, bdi);
1061 }
1062 if (bdev->bd_invalidated)
1063 rescan_partitions(disk, bdev);
1064 } else {
1065 struct block_device *whole;
1066 whole = bdget_disk(disk, 0);
1067 ret = -ENOMEM;
1068 if (!whole)
1069 goto out_clear;
1070 BUG_ON(for_part);
1071 ret = __blkdev_get(whole, mode, 1);
1072 if (ret)
1073 goto out_clear;
1074 bdev->bd_contains = whole;
1075 bdev_inode_switch_bdi(bdev->bd_inode,
1076 whole->bd_inode->i_data.backing_dev_info);
1077 bdev->bd_part = disk_get_part(disk, partno);
1078 if (!(disk->flags & GENHD_FL_UP) ||
1079 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1080 ret = -ENXIO;
1081 goto out_clear;
1082 }
1083 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1084 }
1085 } else {
1086 module_put(disk->fops->owner);
1087 put_disk(disk);
1088 disk = NULL;
1089 if (bdev->bd_contains == bdev) {
1090 if (bdev->bd_disk->fops->open) {
1091 ret = bdev->bd_disk->fops->open(bdev, mode);
1092 if (ret)
1093 goto out_unlock_bdev;
1094 }
1095 if (bdev->bd_invalidated)
1096 rescan_partitions(bdev->bd_disk, bdev);
1097 }
1098 }
1099 bdev->bd_openers++;
1100 if (for_part)
1101 bdev->bd_part_count++;
1102 mutex_unlock(&bdev->bd_mutex);
1103 return 0;
1104
1105 out_clear:
1106 disk_put_part(bdev->bd_part);
1107 bdev->bd_disk = NULL;
1108 bdev->bd_part = NULL;
1109 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info);
1110 if (bdev != bdev->bd_contains)
1111 __blkdev_put(bdev->bd_contains, mode, 1);
1112 bdev->bd_contains = NULL;
1113 out_unlock_bdev:
1114 mutex_unlock(&bdev->bd_mutex);
1115 out:
1116 if (disk)
1117 module_put(disk->fops->owner);
1118 put_disk(disk);
1119 bdput(bdev);
1120
1121 return ret;
1122}
1123
1124/**
1125 * blkdev_get - open a block device
1126 * @bdev: block_device to open
1127 * @mode: FMODE_* mask
1128 * @holder: exclusive holder identifier
1129 *
1130 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1131 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1132 * @holder is invalid. Exclusive opens may nest for the same @holder.
1133 *
1134 * On success, the reference count of @bdev is unchanged. On failure,
1135 * @bdev is put.
1136 *
1137 * CONTEXT:
1138 * Might sleep.
1139 *
1140 * RETURNS:
1141 * 0 on success, -errno on failure.
1142 */
1143int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1144{
1145 struct block_device *whole = NULL;
1146 int res;
1147
1148 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1149
1150 if ((mode & FMODE_EXCL) && holder) {
1151 whole = bd_start_claiming(bdev, holder);
1152 if (IS_ERR(whole)) {
1153 bdput(bdev);
1154 return PTR_ERR(whole);
1155 }
1156 }
1157
1158 res = __blkdev_get(bdev, mode, 0);
1159
1160 /* __blkdev_get() may alter read only status, check it afterwards */
1161 if (!res && (mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1162 __blkdev_put(bdev, mode, 0);
1163 res = -EACCES;
1164 }
1165
1166 if (whole) {
1167 /* finish claiming */
1168 mutex_lock(&bdev->bd_mutex);
1169 spin_lock(&bdev_lock);
1170
1171 if (!res) {
1172 BUG_ON(!bd_may_claim(bdev, whole, holder));
1173 /*
1174 * Note that for a whole device bd_holders
1175 * will be incremented twice, and bd_holder
1176 * will be set to bd_may_claim before being
1177 * set to holder
1178 */
1179 whole->bd_holders++;
1180 whole->bd_holder = bd_may_claim;
1181 bdev->bd_holders++;
1182 bdev->bd_holder = holder;
1183 }
1184
1185 /* tell others that we're done */
1186 BUG_ON(whole->bd_claiming != holder);
1187 whole->bd_claiming = NULL;
1188 wake_up_bit(&whole->bd_claiming, 0);
1189
1190 spin_unlock(&bdev_lock);
1191
1192 /*
1193 * Block event polling for write claims. Any write
1194 * holder makes the write_holder state stick until all
1195 * are released. This is good enough and tracking
1196 * individual writeable reference is too fragile given
1197 * the way @mode is used in blkdev_get/put().
1198 */
1199 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder) {
1200 bdev->bd_write_holder = true;
1201 disk_block_events(bdev->bd_disk);
1202 }
1203
1204 mutex_unlock(&bdev->bd_mutex);
1205 bdput(whole);
1206 }
1207
1208 return res;
1209}
1210EXPORT_SYMBOL(blkdev_get);
1211
1212/**
1213 * blkdev_get_by_path - open a block device by name
1214 * @path: path to the block device to open
1215 * @mode: FMODE_* mask
1216 * @holder: exclusive holder identifier
1217 *
1218 * Open the blockdevice described by the device file at @path. @mode
1219 * and @holder are identical to blkdev_get().
1220 *
1221 * On success, the returned block_device has reference count of one.
1222 *
1223 * CONTEXT:
1224 * Might sleep.
1225 *
1226 * RETURNS:
1227 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1228 */
1229struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1230 void *holder)
1231{
1232 struct block_device *bdev;
1233 int err;
1234
1235 bdev = lookup_bdev(path);
1236 if (IS_ERR(bdev))
1237 return bdev;
1238
1239 err = blkdev_get(bdev, mode, holder);
1240 if (err)
1241 return ERR_PTR(err);
1242
1243 return bdev;
1244}
1245EXPORT_SYMBOL(blkdev_get_by_path);
1246
1247/**
1248 * blkdev_get_by_dev - open a block device by device number
1249 * @dev: device number of block device to open
1250 * @mode: FMODE_* mask
1251 * @holder: exclusive holder identifier
1252 *
1253 * Open the blockdevice described by device number @dev. @mode and
1254 * @holder are identical to blkdev_get().
1255 *
1256 * Use it ONLY if you really do not have anything better - i.e. when
1257 * you are behind a truly sucky interface and all you are given is a
1258 * device number. _Never_ to be used for internal purposes. If you
1259 * ever need it - reconsider your API.
1260 *
1261 * On success, the returned block_device has reference count of one.
1262 *
1263 * CONTEXT:
1264 * Might sleep.
1265 *
1266 * RETURNS:
1267 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1268 */
1269struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1270{
1271 struct block_device *bdev;
1272 int err;
1273
1274 bdev = bdget(dev);
1275 if (!bdev)
1276 return ERR_PTR(-ENOMEM);
1277
1278 err = blkdev_get(bdev, mode, holder);
1279 if (err)
1280 return ERR_PTR(err);
1281
1282 return bdev;
1283}
1284EXPORT_SYMBOL(blkdev_get_by_dev);
1285
1286static int blkdev_open(struct inode * inode, struct file * filp)
1287{
1288 struct block_device *bdev;
1289
1290 /*
1291 * Preserve backwards compatibility and allow large file access
1292 * even if userspace doesn't ask for it explicitly. Some mkfs
1293 * binary needs it. We might want to drop this workaround
1294 * during an unstable branch.
1295 */
1296 filp->f_flags |= O_LARGEFILE;
1297
1298 if (filp->f_flags & O_NDELAY)
1299 filp->f_mode |= FMODE_NDELAY;
1300 if (filp->f_flags & O_EXCL)
1301 filp->f_mode |= FMODE_EXCL;
1302 if ((filp->f_flags & O_ACCMODE) == 3)
1303 filp->f_mode |= FMODE_WRITE_IOCTL;
1304
1305 bdev = bd_acquire(inode);
1306 if (bdev == NULL)
1307 return -ENOMEM;
1308
1309 filp->f_mapping = bdev->bd_inode->i_mapping;
1310
1311 return blkdev_get(bdev, filp->f_mode, filp);
1312}
1313
1314static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1315{
1316 int ret = 0;
1317 struct gendisk *disk = bdev->bd_disk;
1318 struct block_device *victim = NULL;
1319
1320 mutex_lock_nested(&bdev->bd_mutex, for_part);
1321 if (for_part)
1322 bdev->bd_part_count--;
1323
1324 if (!--bdev->bd_openers) {
1325 WARN_ON_ONCE(bdev->bd_holders);
1326 sync_blockdev(bdev);
1327 kill_bdev(bdev);
1328 }
1329 if (bdev->bd_contains == bdev) {
1330 if (disk->fops->release)
1331 ret = disk->fops->release(disk, mode);
1332 }
1333 if (!bdev->bd_openers) {
1334 struct module *owner = disk->fops->owner;
1335
1336 put_disk(disk);
1337 module_put(owner);
1338 disk_put_part(bdev->bd_part);
1339 bdev->bd_part = NULL;
1340 bdev->bd_disk = NULL;
1341 bdev_inode_switch_bdi(bdev->bd_inode,
1342 &default_backing_dev_info);
1343 if (bdev != bdev->bd_contains)
1344 victim = bdev->bd_contains;
1345 bdev->bd_contains = NULL;
1346 }
1347 mutex_unlock(&bdev->bd_mutex);
1348 bdput(bdev);
1349 if (victim)
1350 __blkdev_put(victim, mode, 1);
1351 return ret;
1352}
1353
1354int blkdev_put(struct block_device *bdev, fmode_t mode)
1355{
1356 if (mode & FMODE_EXCL) {
1357 bool bdev_free;
1358
1359 /*
1360 * Release a claim on the device. The holder fields
1361 * are protected with bdev_lock. bd_mutex is to
1362 * synchronize disk_holder unlinking.
1363 */
1364 mutex_lock(&bdev->bd_mutex);
1365 spin_lock(&bdev_lock);
1366
1367 WARN_ON_ONCE(--bdev->bd_holders < 0);
1368 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1369
1370 /* bd_contains might point to self, check in a separate step */
1371 if ((bdev_free = !bdev->bd_holders))
1372 bdev->bd_holder = NULL;
1373 if (!bdev->bd_contains->bd_holders)
1374 bdev->bd_contains->bd_holder = NULL;
1375
1376 spin_unlock(&bdev_lock);
1377
1378 /*
1379 * If this was the last claim, remove holder link and
1380 * unblock evpoll if it was a write holder.
1381 */
1382 if (bdev_free) {
1383 bd_unlink_disk_holder(bdev);
1384 if (bdev->bd_write_holder) {
1385 disk_unblock_events(bdev->bd_disk);
1386 bdev->bd_write_holder = false;
1387 } else
1388 disk_check_events(bdev->bd_disk);
1389 }
1390
1391 mutex_unlock(&bdev->bd_mutex);
1392 } else
1393 disk_check_events(bdev->bd_disk);
1394
1395 return __blkdev_put(bdev, mode, 0);
1396}
1397EXPORT_SYMBOL(blkdev_put);
1398
1399static int blkdev_close(struct inode * inode, struct file * filp)
1400{
1401 struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1402
1403 return blkdev_put(bdev, filp->f_mode);
1404}
1405
1406static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1407{
1408 struct block_device *bdev = I_BDEV(file->f_mapping->host);
1409 fmode_t mode = file->f_mode;
1410
1411 /*
1412 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1413 * to updated it before every ioctl.
1414 */
1415 if (file->f_flags & O_NDELAY)
1416 mode |= FMODE_NDELAY;
1417 else
1418 mode &= ~FMODE_NDELAY;
1419
1420 return blkdev_ioctl(bdev, mode, cmd, arg);
1421}
1422
1423/*
1424 * Write data to the block device. Only intended for the block device itself
1425 * and the raw driver which basically is a fake block device.
1426 *
1427 * Does not take i_mutex for the write and thus is not for general purpose
1428 * use.
1429 */
1430ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov,
1431 unsigned long nr_segs, loff_t pos)
1432{
1433 struct file *file = iocb->ki_filp;
1434 ssize_t ret;
1435
1436 BUG_ON(iocb->ki_pos != pos);
1437
1438 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1439 if (ret > 0 || ret == -EIOCBQUEUED) {
1440 ssize_t err;
1441
1442 err = generic_write_sync(file, pos, ret);
1443 if (err < 0 && ret > 0)
1444 ret = err;
1445 }
1446 return ret;
1447}
1448EXPORT_SYMBOL_GPL(blkdev_aio_write);
1449
1450/*
1451 * Try to release a page associated with block device when the system
1452 * is under memory pressure.
1453 */
1454static int blkdev_releasepage(struct page *page, gfp_t wait)
1455{
1456 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1457
1458 if (super && super->s_op->bdev_try_to_free_page)
1459 return super->s_op->bdev_try_to_free_page(super, page, wait);
1460
1461 return try_to_free_buffers(page);
1462}
1463
1464static const struct address_space_operations def_blk_aops = {
1465 .readpage = blkdev_readpage,
1466 .writepage = blkdev_writepage,
1467 .sync_page = block_sync_page,
1468 .write_begin = blkdev_write_begin,
1469 .write_end = blkdev_write_end,
1470 .writepages = generic_writepages,
1471 .releasepage = blkdev_releasepage,
1472 .direct_IO = blkdev_direct_IO,
1473};
1474
1475const struct file_operations def_blk_fops = {
1476 .open = blkdev_open,
1477 .release = blkdev_close,
1478 .llseek = block_llseek,
1479 .read = do_sync_read,
1480 .write = do_sync_write,
1481 .aio_read = generic_file_aio_read,
1482 .aio_write = blkdev_aio_write,
1483 .mmap = generic_file_mmap,
1484 .fsync = blkdev_fsync,
1485 .unlocked_ioctl = block_ioctl,
1486#ifdef CONFIG_COMPAT
1487 .compat_ioctl = compat_blkdev_ioctl,
1488#endif
1489 .splice_read = generic_file_splice_read,
1490 .splice_write = generic_file_splice_write,
1491};
1492
1493int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1494{
1495 int res;
1496 mm_segment_t old_fs = get_fs();
1497 set_fs(KERNEL_DS);
1498 res = blkdev_ioctl(bdev, 0, cmd, arg);
1499 set_fs(old_fs);
1500 return res;
1501}
1502
1503EXPORT_SYMBOL(ioctl_by_bdev);
1504
1505/**
1506 * lookup_bdev - lookup a struct block_device by name
1507 * @pathname: special file representing the block device
1508 *
1509 * Get a reference to the blockdevice at @pathname in the current
1510 * namespace if possible and return it. Return ERR_PTR(error)
1511 * otherwise.
1512 */
1513struct block_device *lookup_bdev(const char *pathname)
1514{
1515 struct block_device *bdev;
1516 struct inode *inode;
1517 struct path path;
1518 int error;
1519
1520 if (!pathname || !*pathname)
1521 return ERR_PTR(-EINVAL);
1522
1523 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1524 if (error)
1525 return ERR_PTR(error);
1526
1527 inode = path.dentry->d_inode;
1528 error = -ENOTBLK;
1529 if (!S_ISBLK(inode->i_mode))
1530 goto fail;
1531 error = -EACCES;
1532 if (path.mnt->mnt_flags & MNT_NODEV)
1533 goto fail;
1534 error = -ENOMEM;
1535 bdev = bd_acquire(inode);
1536 if (!bdev)
1537 goto fail;
1538out:
1539 path_put(&path);
1540 return bdev;
1541fail:
1542 bdev = ERR_PTR(error);
1543 goto out;
1544}
1545EXPORT_SYMBOL(lookup_bdev);
1546
1547int __invalidate_device(struct block_device *bdev)
1548{
1549 struct super_block *sb = get_super(bdev);
1550 int res = 0;
1551
1552 if (sb) {
1553 /*
1554 * no need to lock the super, get_super holds the
1555 * read mutex so the filesystem cannot go away
1556 * under us (->put_super runs with the write lock
1557 * hold).
1558 */
1559 shrink_dcache_sb(sb);
1560 res = invalidate_inodes(sb);
1561 drop_super(sb);
1562 }
1563 invalidate_bdev(bdev);
1564 return res;
1565}
1566EXPORT_SYMBOL(__invalidate_device);