]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - fs/btrfs/disk-io.c
Merge tag 'timers_urgent_for_v5.11_rc5' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / disk-io.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/blkdev.h>
8#include <linux/radix-tree.h>
9#include <linux/writeback.h>
10#include <linux/workqueue.h>
11#include <linux/kthread.h>
12#include <linux/slab.h>
13#include <linux/migrate.h>
14#include <linux/ratelimit.h>
15#include <linux/uuid.h>
16#include <linux/semaphore.h>
17#include <linux/error-injection.h>
18#include <linux/crc32c.h>
19#include <linux/sched/mm.h>
20#include <asm/unaligned.h>
21#include <crypto/hash.h>
22#include "ctree.h"
23#include "disk-io.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "volumes.h"
27#include "print-tree.h"
28#include "locking.h"
29#include "tree-log.h"
30#include "free-space-cache.h"
31#include "free-space-tree.h"
32#include "check-integrity.h"
33#include "rcu-string.h"
34#include "dev-replace.h"
35#include "raid56.h"
36#include "sysfs.h"
37#include "qgroup.h"
38#include "compression.h"
39#include "tree-checker.h"
40#include "ref-verify.h"
41#include "block-group.h"
42#include "discard.h"
43#include "space-info.h"
44#include "zoned.h"
45
46#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
52
53static void end_workqueue_fn(struct btrfs_work *work);
54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_fs_info *fs_info);
57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 struct extent_io_tree *pinned_extents);
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66/*
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71struct btrfs_end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 blk_status_t status;
77 enum btrfs_wq_endio_type metadata;
78 struct btrfs_work work;
79};
80
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
88 SLAB_MEM_SPREAD,
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
95void __cold btrfs_end_io_wq_exit(void)
96{
97 kmem_cache_destroy(btrfs_end_io_wq_cache);
98}
99
100static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101{
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
104}
105
106/*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
111struct async_submit_bio {
112 struct inode *inode;
113 struct bio *bio;
114 extent_submit_bio_start_t *submit_bio_start;
115 int mirror_num;
116
117 /* Optional parameter for submit_bio_start used by direct io */
118 u64 dio_file_offset;
119 struct btrfs_work work;
120 blk_status_t status;
121};
122
123/*
124 * Lockdep class keys for extent_buffer->lock's in this root. For a given
125 * eb, the lockdep key is determined by the btrfs_root it belongs to and
126 * the level the eb occupies in the tree.
127 *
128 * Different roots are used for different purposes and may nest inside each
129 * other and they require separate keysets. As lockdep keys should be
130 * static, assign keysets according to the purpose of the root as indicated
131 * by btrfs_root->root_key.objectid. This ensures that all special purpose
132 * roots have separate keysets.
133 *
134 * Lock-nesting across peer nodes is always done with the immediate parent
135 * node locked thus preventing deadlock. As lockdep doesn't know this, use
136 * subclass to avoid triggering lockdep warning in such cases.
137 *
138 * The key is set by the readpage_end_io_hook after the buffer has passed
139 * csum validation but before the pages are unlocked. It is also set by
140 * btrfs_init_new_buffer on freshly allocated blocks.
141 *
142 * We also add a check to make sure the highest level of the tree is the
143 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
144 * needs update as well.
145 */
146#ifdef CONFIG_DEBUG_LOCK_ALLOC
147# if BTRFS_MAX_LEVEL != 8
148# error
149# endif
150
151#define DEFINE_LEVEL(stem, level) \
152 .names[level] = "btrfs-" stem "-0" #level,
153
154#define DEFINE_NAME(stem) \
155 DEFINE_LEVEL(stem, 0) \
156 DEFINE_LEVEL(stem, 1) \
157 DEFINE_LEVEL(stem, 2) \
158 DEFINE_LEVEL(stem, 3) \
159 DEFINE_LEVEL(stem, 4) \
160 DEFINE_LEVEL(stem, 5) \
161 DEFINE_LEVEL(stem, 6) \
162 DEFINE_LEVEL(stem, 7)
163
164static struct btrfs_lockdep_keyset {
165 u64 id; /* root objectid */
166 /* Longest entry: btrfs-free-space-00 */
167 char names[BTRFS_MAX_LEVEL][20];
168 struct lock_class_key keys[BTRFS_MAX_LEVEL];
169} btrfs_lockdep_keysets[] = {
170 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
171 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
172 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
173 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
174 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
175 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
176 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
177 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
178 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
179 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
180 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
181 { .id = 0, DEFINE_NAME("tree") },
182};
183
184#undef DEFINE_LEVEL
185#undef DEFINE_NAME
186
187void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
188 int level)
189{
190 struct btrfs_lockdep_keyset *ks;
191
192 BUG_ON(level >= ARRAY_SIZE(ks->keys));
193
194 /* find the matching keyset, id 0 is the default entry */
195 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
196 if (ks->id == objectid)
197 break;
198
199 lockdep_set_class_and_name(&eb->lock,
200 &ks->keys[level], ks->names[level]);
201}
202
203#endif
204
205/*
206 * Compute the csum of a btree block and store the result to provided buffer.
207 */
208static void csum_tree_block(struct extent_buffer *buf, u8 *result)
209{
210 struct btrfs_fs_info *fs_info = buf->fs_info;
211 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
212 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
214 char *kaddr;
215 int i;
216
217 shash->tfm = fs_info->csum_shash;
218 crypto_shash_init(shash);
219 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221 first_page_part - BTRFS_CSUM_SIZE);
222
223 for (i = 1; i < num_pages; i++) {
224 kaddr = page_address(buf->pages[i]);
225 crypto_shash_update(shash, kaddr, PAGE_SIZE);
226 }
227 memset(result, 0, BTRFS_CSUM_SIZE);
228 crypto_shash_final(shash, result);
229}
230
231/*
232 * we can't consider a given block up to date unless the transid of the
233 * block matches the transid in the parent node's pointer. This is how we
234 * detect blocks that either didn't get written at all or got written
235 * in the wrong place.
236 */
237static int verify_parent_transid(struct extent_io_tree *io_tree,
238 struct extent_buffer *eb, u64 parent_transid,
239 int atomic)
240{
241 struct extent_state *cached_state = NULL;
242 int ret;
243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
248 if (atomic)
249 return -EAGAIN;
250
251 if (need_lock)
252 btrfs_tree_read_lock(eb);
253
254 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
255 &cached_state);
256 if (extent_buffer_uptodate(eb) &&
257 btrfs_header_generation(eb) == parent_transid) {
258 ret = 0;
259 goto out;
260 }
261 btrfs_err_rl(eb->fs_info,
262 "parent transid verify failed on %llu wanted %llu found %llu",
263 eb->start,
264 parent_transid, btrfs_header_generation(eb));
265 ret = 1;
266
267 /*
268 * Things reading via commit roots that don't have normal protection,
269 * like send, can have a really old block in cache that may point at a
270 * block that has been freed and re-allocated. So don't clear uptodate
271 * if we find an eb that is under IO (dirty/writeback) because we could
272 * end up reading in the stale data and then writing it back out and
273 * making everybody very sad.
274 */
275 if (!extent_buffer_under_io(eb))
276 clear_extent_buffer_uptodate(eb);
277out:
278 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
279 &cached_state);
280 if (need_lock)
281 btrfs_tree_read_unlock(eb);
282 return ret;
283}
284
285static bool btrfs_supported_super_csum(u16 csum_type)
286{
287 switch (csum_type) {
288 case BTRFS_CSUM_TYPE_CRC32:
289 case BTRFS_CSUM_TYPE_XXHASH:
290 case BTRFS_CSUM_TYPE_SHA256:
291 case BTRFS_CSUM_TYPE_BLAKE2:
292 return true;
293 default:
294 return false;
295 }
296}
297
298/*
299 * Return 0 if the superblock checksum type matches the checksum value of that
300 * algorithm. Pass the raw disk superblock data.
301 */
302static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
303 char *raw_disk_sb)
304{
305 struct btrfs_super_block *disk_sb =
306 (struct btrfs_super_block *)raw_disk_sb;
307 char result[BTRFS_CSUM_SIZE];
308 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
309
310 shash->tfm = fs_info->csum_shash;
311
312 /*
313 * The super_block structure does not span the whole
314 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
315 * filled with zeros and is included in the checksum.
316 */
317 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
318 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
319
320 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
321 return 1;
322
323 return 0;
324}
325
326int btrfs_verify_level_key(struct extent_buffer *eb, int level,
327 struct btrfs_key *first_key, u64 parent_transid)
328{
329 struct btrfs_fs_info *fs_info = eb->fs_info;
330 int found_level;
331 struct btrfs_key found_key;
332 int ret;
333
334 found_level = btrfs_header_level(eb);
335 if (found_level != level) {
336 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
337 KERN_ERR "BTRFS: tree level check failed\n");
338 btrfs_err(fs_info,
339"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
340 eb->start, level, found_level);
341 return -EIO;
342 }
343
344 if (!first_key)
345 return 0;
346
347 /*
348 * For live tree block (new tree blocks in current transaction),
349 * we need proper lock context to avoid race, which is impossible here.
350 * So we only checks tree blocks which is read from disk, whose
351 * generation <= fs_info->last_trans_committed.
352 */
353 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
354 return 0;
355
356 /* We have @first_key, so this @eb must have at least one item */
357 if (btrfs_header_nritems(eb) == 0) {
358 btrfs_err(fs_info,
359 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
360 eb->start);
361 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
362 return -EUCLEAN;
363 }
364
365 if (found_level)
366 btrfs_node_key_to_cpu(eb, &found_key, 0);
367 else
368 btrfs_item_key_to_cpu(eb, &found_key, 0);
369 ret = btrfs_comp_cpu_keys(first_key, &found_key);
370
371 if (ret) {
372 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
373 KERN_ERR "BTRFS: tree first key check failed\n");
374 btrfs_err(fs_info,
375"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
376 eb->start, parent_transid, first_key->objectid,
377 first_key->type, first_key->offset,
378 found_key.objectid, found_key.type,
379 found_key.offset);
380 }
381 return ret;
382}
383
384/*
385 * helper to read a given tree block, doing retries as required when
386 * the checksums don't match and we have alternate mirrors to try.
387 *
388 * @parent_transid: expected transid, skip check if 0
389 * @level: expected level, mandatory check
390 * @first_key: expected key of first slot, skip check if NULL
391 */
392static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
393 u64 parent_transid, int level,
394 struct btrfs_key *first_key)
395{
396 struct btrfs_fs_info *fs_info = eb->fs_info;
397 struct extent_io_tree *io_tree;
398 int failed = 0;
399 int ret;
400 int num_copies = 0;
401 int mirror_num = 0;
402 int failed_mirror = 0;
403
404 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
405 while (1) {
406 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
407 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
408 if (!ret) {
409 if (verify_parent_transid(io_tree, eb,
410 parent_transid, 0))
411 ret = -EIO;
412 else if (btrfs_verify_level_key(eb, level,
413 first_key, parent_transid))
414 ret = -EUCLEAN;
415 else
416 break;
417 }
418
419 num_copies = btrfs_num_copies(fs_info,
420 eb->start, eb->len);
421 if (num_copies == 1)
422 break;
423
424 if (!failed_mirror) {
425 failed = 1;
426 failed_mirror = eb->read_mirror;
427 }
428
429 mirror_num++;
430 if (mirror_num == failed_mirror)
431 mirror_num++;
432
433 if (mirror_num > num_copies)
434 break;
435 }
436
437 if (failed && !ret && failed_mirror)
438 btrfs_repair_eb_io_failure(eb, failed_mirror);
439
440 return ret;
441}
442
443/*
444 * Checksum a dirty tree block before IO. This has extra checks to make sure
445 * we only fill in the checksum field in the first page of a multi-page block.
446 * For subpage extent buffers we need bvec to also read the offset in the page.
447 */
448static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
449{
450 struct page *page = bvec->bv_page;
451 u64 start = page_offset(page);
452 u64 found_start;
453 u8 result[BTRFS_CSUM_SIZE];
454 struct extent_buffer *eb;
455 int ret;
456
457 eb = (struct extent_buffer *)page->private;
458 if (page != eb->pages[0])
459 return 0;
460
461 found_start = btrfs_header_bytenr(eb);
462 /*
463 * Please do not consolidate these warnings into a single if.
464 * It is useful to know what went wrong.
465 */
466 if (WARN_ON(found_start != start))
467 return -EUCLEAN;
468 if (WARN_ON(!PageUptodate(page)))
469 return -EUCLEAN;
470
471 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
472 offsetof(struct btrfs_header, fsid),
473 BTRFS_FSID_SIZE) == 0);
474
475 csum_tree_block(eb, result);
476
477 if (btrfs_header_level(eb))
478 ret = btrfs_check_node(eb);
479 else
480 ret = btrfs_check_leaf_full(eb);
481
482 if (ret < 0) {
483 btrfs_print_tree(eb, 0);
484 btrfs_err(fs_info,
485 "block=%llu write time tree block corruption detected",
486 eb->start);
487 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
488 return ret;
489 }
490 write_extent_buffer(eb, result, 0, fs_info->csum_size);
491
492 return 0;
493}
494
495static int check_tree_block_fsid(struct extent_buffer *eb)
496{
497 struct btrfs_fs_info *fs_info = eb->fs_info;
498 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
499 u8 fsid[BTRFS_FSID_SIZE];
500 u8 *metadata_uuid;
501
502 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
503 BTRFS_FSID_SIZE);
504 /*
505 * Checking the incompat flag is only valid for the current fs. For
506 * seed devices it's forbidden to have their uuid changed so reading
507 * ->fsid in this case is fine
508 */
509 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
510 metadata_uuid = fs_devices->metadata_uuid;
511 else
512 metadata_uuid = fs_devices->fsid;
513
514 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
515 return 0;
516
517 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
518 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
519 return 0;
520
521 return 1;
522}
523
524/* Do basic extent buffer checks at read time */
525static int validate_extent_buffer(struct extent_buffer *eb)
526{
527 struct btrfs_fs_info *fs_info = eb->fs_info;
528 u64 found_start;
529 const u32 csum_size = fs_info->csum_size;
530 u8 found_level;
531 u8 result[BTRFS_CSUM_SIZE];
532 int ret = 0;
533
534 found_start = btrfs_header_bytenr(eb);
535 if (found_start != eb->start) {
536 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
537 eb->start, found_start);
538 ret = -EIO;
539 goto out;
540 }
541 if (check_tree_block_fsid(eb)) {
542 btrfs_err_rl(fs_info, "bad fsid on block %llu",
543 eb->start);
544 ret = -EIO;
545 goto out;
546 }
547 found_level = btrfs_header_level(eb);
548 if (found_level >= BTRFS_MAX_LEVEL) {
549 btrfs_err(fs_info, "bad tree block level %d on %llu",
550 (int)btrfs_header_level(eb), eb->start);
551 ret = -EIO;
552 goto out;
553 }
554
555 csum_tree_block(eb, result);
556
557 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
558 u8 val[BTRFS_CSUM_SIZE] = { 0 };
559
560 read_extent_buffer(eb, &val, 0, csum_size);
561 btrfs_warn_rl(fs_info,
562 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
563 fs_info->sb->s_id, eb->start,
564 CSUM_FMT_VALUE(csum_size, val),
565 CSUM_FMT_VALUE(csum_size, result),
566 btrfs_header_level(eb));
567 ret = -EUCLEAN;
568 goto out;
569 }
570
571 /*
572 * If this is a leaf block and it is corrupt, set the corrupt bit so
573 * that we don't try and read the other copies of this block, just
574 * return -EIO.
575 */
576 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
577 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
578 ret = -EIO;
579 }
580
581 if (found_level > 0 && btrfs_check_node(eb))
582 ret = -EIO;
583
584 if (!ret)
585 set_extent_buffer_uptodate(eb);
586 else
587 btrfs_err(fs_info,
588 "block=%llu read time tree block corruption detected",
589 eb->start);
590out:
591 return ret;
592}
593
594int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
595 struct page *page, u64 start, u64 end,
596 int mirror)
597{
598 struct extent_buffer *eb;
599 int ret = 0;
600 int reads_done;
601
602 ASSERT(page->private);
603 eb = (struct extent_buffer *)page->private;
604
605 /*
606 * The pending IO might have been the only thing that kept this buffer
607 * in memory. Make sure we have a ref for all this other checks
608 */
609 atomic_inc(&eb->refs);
610
611 reads_done = atomic_dec_and_test(&eb->io_pages);
612 if (!reads_done)
613 goto err;
614
615 eb->read_mirror = mirror;
616 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
617 ret = -EIO;
618 goto err;
619 }
620 ret = validate_extent_buffer(eb);
621err:
622 if (reads_done &&
623 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
624 btree_readahead_hook(eb, ret);
625
626 if (ret) {
627 /*
628 * our io error hook is going to dec the io pages
629 * again, we have to make sure it has something
630 * to decrement
631 */
632 atomic_inc(&eb->io_pages);
633 clear_extent_buffer_uptodate(eb);
634 }
635 free_extent_buffer(eb);
636
637 return ret;
638}
639
640static void end_workqueue_bio(struct bio *bio)
641{
642 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
643 struct btrfs_fs_info *fs_info;
644 struct btrfs_workqueue *wq;
645
646 fs_info = end_io_wq->info;
647 end_io_wq->status = bio->bi_status;
648
649 if (bio_op(bio) == REQ_OP_WRITE) {
650 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
651 wq = fs_info->endio_meta_write_workers;
652 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
653 wq = fs_info->endio_freespace_worker;
654 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
655 wq = fs_info->endio_raid56_workers;
656 else
657 wq = fs_info->endio_write_workers;
658 } else {
659 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
660 wq = fs_info->endio_raid56_workers;
661 else if (end_io_wq->metadata)
662 wq = fs_info->endio_meta_workers;
663 else
664 wq = fs_info->endio_workers;
665 }
666
667 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
668 btrfs_queue_work(wq, &end_io_wq->work);
669}
670
671blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
672 enum btrfs_wq_endio_type metadata)
673{
674 struct btrfs_end_io_wq *end_io_wq;
675
676 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
677 if (!end_io_wq)
678 return BLK_STS_RESOURCE;
679
680 end_io_wq->private = bio->bi_private;
681 end_io_wq->end_io = bio->bi_end_io;
682 end_io_wq->info = info;
683 end_io_wq->status = 0;
684 end_io_wq->bio = bio;
685 end_io_wq->metadata = metadata;
686
687 bio->bi_private = end_io_wq;
688 bio->bi_end_io = end_workqueue_bio;
689 return 0;
690}
691
692static void run_one_async_start(struct btrfs_work *work)
693{
694 struct async_submit_bio *async;
695 blk_status_t ret;
696
697 async = container_of(work, struct async_submit_bio, work);
698 ret = async->submit_bio_start(async->inode, async->bio,
699 async->dio_file_offset);
700 if (ret)
701 async->status = ret;
702}
703
704/*
705 * In order to insert checksums into the metadata in large chunks, we wait
706 * until bio submission time. All the pages in the bio are checksummed and
707 * sums are attached onto the ordered extent record.
708 *
709 * At IO completion time the csums attached on the ordered extent record are
710 * inserted into the tree.
711 */
712static void run_one_async_done(struct btrfs_work *work)
713{
714 struct async_submit_bio *async;
715 struct inode *inode;
716 blk_status_t ret;
717
718 async = container_of(work, struct async_submit_bio, work);
719 inode = async->inode;
720
721 /* If an error occurred we just want to clean up the bio and move on */
722 if (async->status) {
723 async->bio->bi_status = async->status;
724 bio_endio(async->bio);
725 return;
726 }
727
728 /*
729 * All of the bios that pass through here are from async helpers.
730 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
731 * This changes nothing when cgroups aren't in use.
732 */
733 async->bio->bi_opf |= REQ_CGROUP_PUNT;
734 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
735 if (ret) {
736 async->bio->bi_status = ret;
737 bio_endio(async->bio);
738 }
739}
740
741static void run_one_async_free(struct btrfs_work *work)
742{
743 struct async_submit_bio *async;
744
745 async = container_of(work, struct async_submit_bio, work);
746 kfree(async);
747}
748
749blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
750 int mirror_num, unsigned long bio_flags,
751 u64 dio_file_offset,
752 extent_submit_bio_start_t *submit_bio_start)
753{
754 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
755 struct async_submit_bio *async;
756
757 async = kmalloc(sizeof(*async), GFP_NOFS);
758 if (!async)
759 return BLK_STS_RESOURCE;
760
761 async->inode = inode;
762 async->bio = bio;
763 async->mirror_num = mirror_num;
764 async->submit_bio_start = submit_bio_start;
765
766 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
767 run_one_async_free);
768
769 async->dio_file_offset = dio_file_offset;
770
771 async->status = 0;
772
773 if (op_is_sync(bio->bi_opf))
774 btrfs_set_work_high_priority(&async->work);
775
776 btrfs_queue_work(fs_info->workers, &async->work);
777 return 0;
778}
779
780static blk_status_t btree_csum_one_bio(struct bio *bio)
781{
782 struct bio_vec *bvec;
783 struct btrfs_root *root;
784 int ret = 0;
785 struct bvec_iter_all iter_all;
786
787 ASSERT(!bio_flagged(bio, BIO_CLONED));
788 bio_for_each_segment_all(bvec, bio, iter_all) {
789 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
790 ret = csum_dirty_buffer(root->fs_info, bvec);
791 if (ret)
792 break;
793 }
794
795 return errno_to_blk_status(ret);
796}
797
798static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
799 u64 dio_file_offset)
800{
801 /*
802 * when we're called for a write, we're already in the async
803 * submission context. Just jump into btrfs_map_bio
804 */
805 return btree_csum_one_bio(bio);
806}
807
808static int check_async_write(struct btrfs_fs_info *fs_info,
809 struct btrfs_inode *bi)
810{
811 if (atomic_read(&bi->sync_writers))
812 return 0;
813 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
814 return 0;
815 return 1;
816}
817
818blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
819 int mirror_num, unsigned long bio_flags)
820{
821 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
822 int async = check_async_write(fs_info, BTRFS_I(inode));
823 blk_status_t ret;
824
825 if (bio_op(bio) != REQ_OP_WRITE) {
826 /*
827 * called for a read, do the setup so that checksum validation
828 * can happen in the async kernel threads
829 */
830 ret = btrfs_bio_wq_end_io(fs_info, bio,
831 BTRFS_WQ_ENDIO_METADATA);
832 if (ret)
833 goto out_w_error;
834 ret = btrfs_map_bio(fs_info, bio, mirror_num);
835 } else if (!async) {
836 ret = btree_csum_one_bio(bio);
837 if (ret)
838 goto out_w_error;
839 ret = btrfs_map_bio(fs_info, bio, mirror_num);
840 } else {
841 /*
842 * kthread helpers are used to submit writes so that
843 * checksumming can happen in parallel across all CPUs
844 */
845 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
846 0, btree_submit_bio_start);
847 }
848
849 if (ret)
850 goto out_w_error;
851 return 0;
852
853out_w_error:
854 bio->bi_status = ret;
855 bio_endio(bio);
856 return ret;
857}
858
859#ifdef CONFIG_MIGRATION
860static int btree_migratepage(struct address_space *mapping,
861 struct page *newpage, struct page *page,
862 enum migrate_mode mode)
863{
864 /*
865 * we can't safely write a btree page from here,
866 * we haven't done the locking hook
867 */
868 if (PageDirty(page))
869 return -EAGAIN;
870 /*
871 * Buffers may be managed in a filesystem specific way.
872 * We must have no buffers or drop them.
873 */
874 if (page_has_private(page) &&
875 !try_to_release_page(page, GFP_KERNEL))
876 return -EAGAIN;
877 return migrate_page(mapping, newpage, page, mode);
878}
879#endif
880
881
882static int btree_writepages(struct address_space *mapping,
883 struct writeback_control *wbc)
884{
885 struct btrfs_fs_info *fs_info;
886 int ret;
887
888 if (wbc->sync_mode == WB_SYNC_NONE) {
889
890 if (wbc->for_kupdate)
891 return 0;
892
893 fs_info = BTRFS_I(mapping->host)->root->fs_info;
894 /* this is a bit racy, but that's ok */
895 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
896 BTRFS_DIRTY_METADATA_THRESH,
897 fs_info->dirty_metadata_batch);
898 if (ret < 0)
899 return 0;
900 }
901 return btree_write_cache_pages(mapping, wbc);
902}
903
904static int btree_releasepage(struct page *page, gfp_t gfp_flags)
905{
906 if (PageWriteback(page) || PageDirty(page))
907 return 0;
908
909 return try_release_extent_buffer(page);
910}
911
912static void btree_invalidatepage(struct page *page, unsigned int offset,
913 unsigned int length)
914{
915 struct extent_io_tree *tree;
916 tree = &BTRFS_I(page->mapping->host)->io_tree;
917 extent_invalidatepage(tree, page, offset);
918 btree_releasepage(page, GFP_NOFS);
919 if (PagePrivate(page)) {
920 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
921 "page private not zero on page %llu",
922 (unsigned long long)page_offset(page));
923 detach_page_private(page);
924 }
925}
926
927static int btree_set_page_dirty(struct page *page)
928{
929#ifdef DEBUG
930 struct extent_buffer *eb;
931
932 BUG_ON(!PagePrivate(page));
933 eb = (struct extent_buffer *)page->private;
934 BUG_ON(!eb);
935 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
936 BUG_ON(!atomic_read(&eb->refs));
937 btrfs_assert_tree_locked(eb);
938#endif
939 return __set_page_dirty_nobuffers(page);
940}
941
942static const struct address_space_operations btree_aops = {
943 .writepages = btree_writepages,
944 .releasepage = btree_releasepage,
945 .invalidatepage = btree_invalidatepage,
946#ifdef CONFIG_MIGRATION
947 .migratepage = btree_migratepage,
948#endif
949 .set_page_dirty = btree_set_page_dirty,
950};
951
952struct extent_buffer *btrfs_find_create_tree_block(
953 struct btrfs_fs_info *fs_info,
954 u64 bytenr, u64 owner_root,
955 int level)
956{
957 if (btrfs_is_testing(fs_info))
958 return alloc_test_extent_buffer(fs_info, bytenr);
959 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
960}
961
962/*
963 * Read tree block at logical address @bytenr and do variant basic but critical
964 * verification.
965 *
966 * @owner_root: the objectid of the root owner for this block.
967 * @parent_transid: expected transid of this tree block, skip check if 0
968 * @level: expected level, mandatory check
969 * @first_key: expected key in slot 0, skip check if NULL
970 */
971struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
972 u64 owner_root, u64 parent_transid,
973 int level, struct btrfs_key *first_key)
974{
975 struct extent_buffer *buf = NULL;
976 int ret;
977
978 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
979 if (IS_ERR(buf))
980 return buf;
981
982 ret = btree_read_extent_buffer_pages(buf, parent_transid,
983 level, first_key);
984 if (ret) {
985 free_extent_buffer_stale(buf);
986 return ERR_PTR(ret);
987 }
988 return buf;
989
990}
991
992void btrfs_clean_tree_block(struct extent_buffer *buf)
993{
994 struct btrfs_fs_info *fs_info = buf->fs_info;
995 if (btrfs_header_generation(buf) ==
996 fs_info->running_transaction->transid) {
997 btrfs_assert_tree_locked(buf);
998
999 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1000 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1001 -buf->len,
1002 fs_info->dirty_metadata_batch);
1003 clear_extent_buffer_dirty(buf);
1004 }
1005 }
1006}
1007
1008static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1009 u64 objectid)
1010{
1011 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1012 root->fs_info = fs_info;
1013 root->node = NULL;
1014 root->commit_root = NULL;
1015 root->state = 0;
1016 root->orphan_cleanup_state = 0;
1017
1018 root->last_trans = 0;
1019 root->highest_objectid = 0;
1020 root->nr_delalloc_inodes = 0;
1021 root->nr_ordered_extents = 0;
1022 root->inode_tree = RB_ROOT;
1023 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1024 root->block_rsv = NULL;
1025
1026 INIT_LIST_HEAD(&root->dirty_list);
1027 INIT_LIST_HEAD(&root->root_list);
1028 INIT_LIST_HEAD(&root->delalloc_inodes);
1029 INIT_LIST_HEAD(&root->delalloc_root);
1030 INIT_LIST_HEAD(&root->ordered_extents);
1031 INIT_LIST_HEAD(&root->ordered_root);
1032 INIT_LIST_HEAD(&root->reloc_dirty_list);
1033 INIT_LIST_HEAD(&root->logged_list[0]);
1034 INIT_LIST_HEAD(&root->logged_list[1]);
1035 spin_lock_init(&root->inode_lock);
1036 spin_lock_init(&root->delalloc_lock);
1037 spin_lock_init(&root->ordered_extent_lock);
1038 spin_lock_init(&root->accounting_lock);
1039 spin_lock_init(&root->log_extents_lock[0]);
1040 spin_lock_init(&root->log_extents_lock[1]);
1041 spin_lock_init(&root->qgroup_meta_rsv_lock);
1042 mutex_init(&root->objectid_mutex);
1043 mutex_init(&root->log_mutex);
1044 mutex_init(&root->ordered_extent_mutex);
1045 mutex_init(&root->delalloc_mutex);
1046 init_waitqueue_head(&root->qgroup_flush_wait);
1047 init_waitqueue_head(&root->log_writer_wait);
1048 init_waitqueue_head(&root->log_commit_wait[0]);
1049 init_waitqueue_head(&root->log_commit_wait[1]);
1050 INIT_LIST_HEAD(&root->log_ctxs[0]);
1051 INIT_LIST_HEAD(&root->log_ctxs[1]);
1052 atomic_set(&root->log_commit[0], 0);
1053 atomic_set(&root->log_commit[1], 0);
1054 atomic_set(&root->log_writers, 0);
1055 atomic_set(&root->log_batch, 0);
1056 refcount_set(&root->refs, 1);
1057 atomic_set(&root->snapshot_force_cow, 0);
1058 atomic_set(&root->nr_swapfiles, 0);
1059 root->log_transid = 0;
1060 root->log_transid_committed = -1;
1061 root->last_log_commit = 0;
1062 if (!dummy) {
1063 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1064 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1065 extent_io_tree_init(fs_info, &root->log_csum_range,
1066 IO_TREE_LOG_CSUM_RANGE, NULL);
1067 }
1068
1069 memset(&root->root_key, 0, sizeof(root->root_key));
1070 memset(&root->root_item, 0, sizeof(root->root_item));
1071 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1072 root->root_key.objectid = objectid;
1073 root->anon_dev = 0;
1074
1075 spin_lock_init(&root->root_item_lock);
1076 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1077#ifdef CONFIG_BTRFS_DEBUG
1078 INIT_LIST_HEAD(&root->leak_list);
1079 spin_lock(&fs_info->fs_roots_radix_lock);
1080 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1081 spin_unlock(&fs_info->fs_roots_radix_lock);
1082#endif
1083}
1084
1085static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1086 u64 objectid, gfp_t flags)
1087{
1088 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1089 if (root)
1090 __setup_root(root, fs_info, objectid);
1091 return root;
1092}
1093
1094#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1095/* Should only be used by the testing infrastructure */
1096struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1097{
1098 struct btrfs_root *root;
1099
1100 if (!fs_info)
1101 return ERR_PTR(-EINVAL);
1102
1103 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1104 if (!root)
1105 return ERR_PTR(-ENOMEM);
1106
1107 /* We don't use the stripesize in selftest, set it as sectorsize */
1108 root->alloc_bytenr = 0;
1109
1110 return root;
1111}
1112#endif
1113
1114struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1115 u64 objectid)
1116{
1117 struct btrfs_fs_info *fs_info = trans->fs_info;
1118 struct extent_buffer *leaf;
1119 struct btrfs_root *tree_root = fs_info->tree_root;
1120 struct btrfs_root *root;
1121 struct btrfs_key key;
1122 unsigned int nofs_flag;
1123 int ret = 0;
1124
1125 /*
1126 * We're holding a transaction handle, so use a NOFS memory allocation
1127 * context to avoid deadlock if reclaim happens.
1128 */
1129 nofs_flag = memalloc_nofs_save();
1130 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1131 memalloc_nofs_restore(nofs_flag);
1132 if (!root)
1133 return ERR_PTR(-ENOMEM);
1134
1135 root->root_key.objectid = objectid;
1136 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1137 root->root_key.offset = 0;
1138
1139 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1140 BTRFS_NESTING_NORMAL);
1141 if (IS_ERR(leaf)) {
1142 ret = PTR_ERR(leaf);
1143 leaf = NULL;
1144 goto fail_unlock;
1145 }
1146
1147 root->node = leaf;
1148 btrfs_mark_buffer_dirty(leaf);
1149
1150 root->commit_root = btrfs_root_node(root);
1151 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1152
1153 btrfs_set_root_flags(&root->root_item, 0);
1154 btrfs_set_root_limit(&root->root_item, 0);
1155 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1156 btrfs_set_root_generation(&root->root_item, trans->transid);
1157 btrfs_set_root_level(&root->root_item, 0);
1158 btrfs_set_root_refs(&root->root_item, 1);
1159 btrfs_set_root_used(&root->root_item, leaf->len);
1160 btrfs_set_root_last_snapshot(&root->root_item, 0);
1161 btrfs_set_root_dirid(&root->root_item, 0);
1162 if (is_fstree(objectid))
1163 generate_random_guid(root->root_item.uuid);
1164 else
1165 export_guid(root->root_item.uuid, &guid_null);
1166 btrfs_set_root_drop_level(&root->root_item, 0);
1167
1168 btrfs_tree_unlock(leaf);
1169
1170 key.objectid = objectid;
1171 key.type = BTRFS_ROOT_ITEM_KEY;
1172 key.offset = 0;
1173 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1174 if (ret)
1175 goto fail;
1176
1177 return root;
1178
1179fail_unlock:
1180 if (leaf)
1181 btrfs_tree_unlock(leaf);
1182fail:
1183 btrfs_put_root(root);
1184
1185 return ERR_PTR(ret);
1186}
1187
1188static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1189 struct btrfs_fs_info *fs_info)
1190{
1191 struct btrfs_root *root;
1192 struct extent_buffer *leaf;
1193
1194 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1195 if (!root)
1196 return ERR_PTR(-ENOMEM);
1197
1198 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1199 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1200 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1201
1202 /*
1203 * DON'T set SHAREABLE bit for log trees.
1204 *
1205 * Log trees are not exposed to user space thus can't be snapshotted,
1206 * and they go away before a real commit is actually done.
1207 *
1208 * They do store pointers to file data extents, and those reference
1209 * counts still get updated (along with back refs to the log tree).
1210 */
1211
1212 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1213 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1214 if (IS_ERR(leaf)) {
1215 btrfs_put_root(root);
1216 return ERR_CAST(leaf);
1217 }
1218
1219 root->node = leaf;
1220
1221 btrfs_mark_buffer_dirty(root->node);
1222 btrfs_tree_unlock(root->node);
1223 return root;
1224}
1225
1226int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1227 struct btrfs_fs_info *fs_info)
1228{
1229 struct btrfs_root *log_root;
1230
1231 log_root = alloc_log_tree(trans, fs_info);
1232 if (IS_ERR(log_root))
1233 return PTR_ERR(log_root);
1234 WARN_ON(fs_info->log_root_tree);
1235 fs_info->log_root_tree = log_root;
1236 return 0;
1237}
1238
1239int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1240 struct btrfs_root *root)
1241{
1242 struct btrfs_fs_info *fs_info = root->fs_info;
1243 struct btrfs_root *log_root;
1244 struct btrfs_inode_item *inode_item;
1245
1246 log_root = alloc_log_tree(trans, fs_info);
1247 if (IS_ERR(log_root))
1248 return PTR_ERR(log_root);
1249
1250 log_root->last_trans = trans->transid;
1251 log_root->root_key.offset = root->root_key.objectid;
1252
1253 inode_item = &log_root->root_item.inode;
1254 btrfs_set_stack_inode_generation(inode_item, 1);
1255 btrfs_set_stack_inode_size(inode_item, 3);
1256 btrfs_set_stack_inode_nlink(inode_item, 1);
1257 btrfs_set_stack_inode_nbytes(inode_item,
1258 fs_info->nodesize);
1259 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1260
1261 btrfs_set_root_node(&log_root->root_item, log_root->node);
1262
1263 WARN_ON(root->log_root);
1264 root->log_root = log_root;
1265 root->log_transid = 0;
1266 root->log_transid_committed = -1;
1267 root->last_log_commit = 0;
1268 return 0;
1269}
1270
1271static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1272 struct btrfs_path *path,
1273 struct btrfs_key *key)
1274{
1275 struct btrfs_root *root;
1276 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1277 u64 generation;
1278 int ret;
1279 int level;
1280
1281 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1282 if (!root)
1283 return ERR_PTR(-ENOMEM);
1284
1285 ret = btrfs_find_root(tree_root, key, path,
1286 &root->root_item, &root->root_key);
1287 if (ret) {
1288 if (ret > 0)
1289 ret = -ENOENT;
1290 goto fail;
1291 }
1292
1293 generation = btrfs_root_generation(&root->root_item);
1294 level = btrfs_root_level(&root->root_item);
1295 root->node = read_tree_block(fs_info,
1296 btrfs_root_bytenr(&root->root_item),
1297 key->objectid, generation, level, NULL);
1298 if (IS_ERR(root->node)) {
1299 ret = PTR_ERR(root->node);
1300 root->node = NULL;
1301 goto fail;
1302 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1303 ret = -EIO;
1304 goto fail;
1305 }
1306 root->commit_root = btrfs_root_node(root);
1307 return root;
1308fail:
1309 btrfs_put_root(root);
1310 return ERR_PTR(ret);
1311}
1312
1313struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1314 struct btrfs_key *key)
1315{
1316 struct btrfs_root *root;
1317 struct btrfs_path *path;
1318
1319 path = btrfs_alloc_path();
1320 if (!path)
1321 return ERR_PTR(-ENOMEM);
1322 root = read_tree_root_path(tree_root, path, key);
1323 btrfs_free_path(path);
1324
1325 return root;
1326}
1327
1328/*
1329 * Initialize subvolume root in-memory structure
1330 *
1331 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1332 */
1333static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1334{
1335 int ret;
1336 unsigned int nofs_flag;
1337
1338 /*
1339 * We might be called under a transaction (e.g. indirect backref
1340 * resolution) which could deadlock if it triggers memory reclaim
1341 */
1342 nofs_flag = memalloc_nofs_save();
1343 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1344 memalloc_nofs_restore(nofs_flag);
1345 if (ret)
1346 goto fail;
1347
1348 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1349 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1350 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1351 btrfs_check_and_init_root_item(&root->root_item);
1352 }
1353
1354 /*
1355 * Don't assign anonymous block device to roots that are not exposed to
1356 * userspace, the id pool is limited to 1M
1357 */
1358 if (is_fstree(root->root_key.objectid) &&
1359 btrfs_root_refs(&root->root_item) > 0) {
1360 if (!anon_dev) {
1361 ret = get_anon_bdev(&root->anon_dev);
1362 if (ret)
1363 goto fail;
1364 } else {
1365 root->anon_dev = anon_dev;
1366 }
1367 }
1368
1369 mutex_lock(&root->objectid_mutex);
1370 ret = btrfs_find_highest_objectid(root,
1371 &root->highest_objectid);
1372 if (ret) {
1373 mutex_unlock(&root->objectid_mutex);
1374 goto fail;
1375 }
1376
1377 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1378
1379 mutex_unlock(&root->objectid_mutex);
1380
1381 return 0;
1382fail:
1383 /* The caller is responsible to call btrfs_free_fs_root */
1384 return ret;
1385}
1386
1387static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1388 u64 root_id)
1389{
1390 struct btrfs_root *root;
1391
1392 spin_lock(&fs_info->fs_roots_radix_lock);
1393 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1394 (unsigned long)root_id);
1395 if (root)
1396 root = btrfs_grab_root(root);
1397 spin_unlock(&fs_info->fs_roots_radix_lock);
1398 return root;
1399}
1400
1401static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1402 u64 objectid)
1403{
1404 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1405 return btrfs_grab_root(fs_info->tree_root);
1406 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1407 return btrfs_grab_root(fs_info->extent_root);
1408 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1409 return btrfs_grab_root(fs_info->chunk_root);
1410 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1411 return btrfs_grab_root(fs_info->dev_root);
1412 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1413 return btrfs_grab_root(fs_info->csum_root);
1414 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1415 return btrfs_grab_root(fs_info->quota_root) ?
1416 fs_info->quota_root : ERR_PTR(-ENOENT);
1417 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1418 return btrfs_grab_root(fs_info->uuid_root) ?
1419 fs_info->uuid_root : ERR_PTR(-ENOENT);
1420 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1421 return btrfs_grab_root(fs_info->free_space_root) ?
1422 fs_info->free_space_root : ERR_PTR(-ENOENT);
1423 return NULL;
1424}
1425
1426int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1427 struct btrfs_root *root)
1428{
1429 int ret;
1430
1431 ret = radix_tree_preload(GFP_NOFS);
1432 if (ret)
1433 return ret;
1434
1435 spin_lock(&fs_info->fs_roots_radix_lock);
1436 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1437 (unsigned long)root->root_key.objectid,
1438 root);
1439 if (ret == 0) {
1440 btrfs_grab_root(root);
1441 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1442 }
1443 spin_unlock(&fs_info->fs_roots_radix_lock);
1444 radix_tree_preload_end();
1445
1446 return ret;
1447}
1448
1449void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1450{
1451#ifdef CONFIG_BTRFS_DEBUG
1452 struct btrfs_root *root;
1453
1454 while (!list_empty(&fs_info->allocated_roots)) {
1455 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1456
1457 root = list_first_entry(&fs_info->allocated_roots,
1458 struct btrfs_root, leak_list);
1459 btrfs_err(fs_info, "leaked root %s refcount %d",
1460 btrfs_root_name(&root->root_key, buf),
1461 refcount_read(&root->refs));
1462 while (refcount_read(&root->refs) > 1)
1463 btrfs_put_root(root);
1464 btrfs_put_root(root);
1465 }
1466#endif
1467}
1468
1469void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1470{
1471 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1472 percpu_counter_destroy(&fs_info->delalloc_bytes);
1473 percpu_counter_destroy(&fs_info->dio_bytes);
1474 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1475 btrfs_free_csum_hash(fs_info);
1476 btrfs_free_stripe_hash_table(fs_info);
1477 btrfs_free_ref_cache(fs_info);
1478 kfree(fs_info->balance_ctl);
1479 kfree(fs_info->delayed_root);
1480 btrfs_put_root(fs_info->extent_root);
1481 btrfs_put_root(fs_info->tree_root);
1482 btrfs_put_root(fs_info->chunk_root);
1483 btrfs_put_root(fs_info->dev_root);
1484 btrfs_put_root(fs_info->csum_root);
1485 btrfs_put_root(fs_info->quota_root);
1486 btrfs_put_root(fs_info->uuid_root);
1487 btrfs_put_root(fs_info->free_space_root);
1488 btrfs_put_root(fs_info->fs_root);
1489 btrfs_put_root(fs_info->data_reloc_root);
1490 btrfs_check_leaked_roots(fs_info);
1491 btrfs_extent_buffer_leak_debug_check(fs_info);
1492 kfree(fs_info->super_copy);
1493 kfree(fs_info->super_for_commit);
1494 kvfree(fs_info);
1495}
1496
1497
1498/*
1499 * Get an in-memory reference of a root structure.
1500 *
1501 * For essential trees like root/extent tree, we grab it from fs_info directly.
1502 * For subvolume trees, we check the cached filesystem roots first. If not
1503 * found, then read it from disk and add it to cached fs roots.
1504 *
1505 * Caller should release the root by calling btrfs_put_root() after the usage.
1506 *
1507 * NOTE: Reloc and log trees can't be read by this function as they share the
1508 * same root objectid.
1509 *
1510 * @objectid: root id
1511 * @anon_dev: preallocated anonymous block device number for new roots,
1512 * pass 0 for new allocation.
1513 * @check_ref: whether to check root item references, If true, return -ENOENT
1514 * for orphan roots
1515 */
1516static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1517 u64 objectid, dev_t anon_dev,
1518 bool check_ref)
1519{
1520 struct btrfs_root *root;
1521 struct btrfs_path *path;
1522 struct btrfs_key key;
1523 int ret;
1524
1525 root = btrfs_get_global_root(fs_info, objectid);
1526 if (root)
1527 return root;
1528again:
1529 root = btrfs_lookup_fs_root(fs_info, objectid);
1530 if (root) {
1531 /* Shouldn't get preallocated anon_dev for cached roots */
1532 ASSERT(!anon_dev);
1533 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1534 btrfs_put_root(root);
1535 return ERR_PTR(-ENOENT);
1536 }
1537 return root;
1538 }
1539
1540 key.objectid = objectid;
1541 key.type = BTRFS_ROOT_ITEM_KEY;
1542 key.offset = (u64)-1;
1543 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1544 if (IS_ERR(root))
1545 return root;
1546
1547 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1548 ret = -ENOENT;
1549 goto fail;
1550 }
1551
1552 ret = btrfs_init_fs_root(root, anon_dev);
1553 if (ret)
1554 goto fail;
1555
1556 path = btrfs_alloc_path();
1557 if (!path) {
1558 ret = -ENOMEM;
1559 goto fail;
1560 }
1561 key.objectid = BTRFS_ORPHAN_OBJECTID;
1562 key.type = BTRFS_ORPHAN_ITEM_KEY;
1563 key.offset = objectid;
1564
1565 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1566 btrfs_free_path(path);
1567 if (ret < 0)
1568 goto fail;
1569 if (ret == 0)
1570 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1571
1572 ret = btrfs_insert_fs_root(fs_info, root);
1573 if (ret) {
1574 btrfs_put_root(root);
1575 if (ret == -EEXIST)
1576 goto again;
1577 goto fail;
1578 }
1579 return root;
1580fail:
1581 btrfs_put_root(root);
1582 return ERR_PTR(ret);
1583}
1584
1585/*
1586 * Get in-memory reference of a root structure
1587 *
1588 * @objectid: tree objectid
1589 * @check_ref: if set, verify that the tree exists and the item has at least
1590 * one reference
1591 */
1592struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1593 u64 objectid, bool check_ref)
1594{
1595 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1596}
1597
1598/*
1599 * Get in-memory reference of a root structure, created as new, optionally pass
1600 * the anonymous block device id
1601 *
1602 * @objectid: tree objectid
1603 * @anon_dev: if zero, allocate a new anonymous block device or use the
1604 * parameter value
1605 */
1606struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1607 u64 objectid, dev_t anon_dev)
1608{
1609 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1610}
1611
1612/*
1613 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1614 * @fs_info: the fs_info
1615 * @objectid: the objectid we need to lookup
1616 *
1617 * This is exclusively used for backref walking, and exists specifically because
1618 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1619 * creation time, which means we may have to read the tree_root in order to look
1620 * up a fs root that is not in memory. If the root is not in memory we will
1621 * read the tree root commit root and look up the fs root from there. This is a
1622 * temporary root, it will not be inserted into the radix tree as it doesn't
1623 * have the most uptodate information, it'll simply be discarded once the
1624 * backref code is finished using the root.
1625 */
1626struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1627 struct btrfs_path *path,
1628 u64 objectid)
1629{
1630 struct btrfs_root *root;
1631 struct btrfs_key key;
1632
1633 ASSERT(path->search_commit_root && path->skip_locking);
1634
1635 /*
1636 * This can return -ENOENT if we ask for a root that doesn't exist, but
1637 * since this is called via the backref walking code we won't be looking
1638 * up a root that doesn't exist, unless there's corruption. So if root
1639 * != NULL just return it.
1640 */
1641 root = btrfs_get_global_root(fs_info, objectid);
1642 if (root)
1643 return root;
1644
1645 root = btrfs_lookup_fs_root(fs_info, objectid);
1646 if (root)
1647 return root;
1648
1649 key.objectid = objectid;
1650 key.type = BTRFS_ROOT_ITEM_KEY;
1651 key.offset = (u64)-1;
1652 root = read_tree_root_path(fs_info->tree_root, path, &key);
1653 btrfs_release_path(path);
1654
1655 return root;
1656}
1657
1658/*
1659 * called by the kthread helper functions to finally call the bio end_io
1660 * functions. This is where read checksum verification actually happens
1661 */
1662static void end_workqueue_fn(struct btrfs_work *work)
1663{
1664 struct bio *bio;
1665 struct btrfs_end_io_wq *end_io_wq;
1666
1667 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1668 bio = end_io_wq->bio;
1669
1670 bio->bi_status = end_io_wq->status;
1671 bio->bi_private = end_io_wq->private;
1672 bio->bi_end_io = end_io_wq->end_io;
1673 bio_endio(bio);
1674 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1675}
1676
1677static int cleaner_kthread(void *arg)
1678{
1679 struct btrfs_root *root = arg;
1680 struct btrfs_fs_info *fs_info = root->fs_info;
1681 int again;
1682
1683 while (1) {
1684 again = 0;
1685
1686 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1687
1688 /* Make the cleaner go to sleep early. */
1689 if (btrfs_need_cleaner_sleep(fs_info))
1690 goto sleep;
1691
1692 /*
1693 * Do not do anything if we might cause open_ctree() to block
1694 * before we have finished mounting the filesystem.
1695 */
1696 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1697 goto sleep;
1698
1699 if (!mutex_trylock(&fs_info->cleaner_mutex))
1700 goto sleep;
1701
1702 /*
1703 * Avoid the problem that we change the status of the fs
1704 * during the above check and trylock.
1705 */
1706 if (btrfs_need_cleaner_sleep(fs_info)) {
1707 mutex_unlock(&fs_info->cleaner_mutex);
1708 goto sleep;
1709 }
1710
1711 btrfs_run_delayed_iputs(fs_info);
1712
1713 again = btrfs_clean_one_deleted_snapshot(root);
1714 mutex_unlock(&fs_info->cleaner_mutex);
1715
1716 /*
1717 * The defragger has dealt with the R/O remount and umount,
1718 * needn't do anything special here.
1719 */
1720 btrfs_run_defrag_inodes(fs_info);
1721
1722 /*
1723 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1724 * with relocation (btrfs_relocate_chunk) and relocation
1725 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1726 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1727 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1728 * unused block groups.
1729 */
1730 btrfs_delete_unused_bgs(fs_info);
1731sleep:
1732 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1733 if (kthread_should_park())
1734 kthread_parkme();
1735 if (kthread_should_stop())
1736 return 0;
1737 if (!again) {
1738 set_current_state(TASK_INTERRUPTIBLE);
1739 schedule();
1740 __set_current_state(TASK_RUNNING);
1741 }
1742 }
1743}
1744
1745static int transaction_kthread(void *arg)
1746{
1747 struct btrfs_root *root = arg;
1748 struct btrfs_fs_info *fs_info = root->fs_info;
1749 struct btrfs_trans_handle *trans;
1750 struct btrfs_transaction *cur;
1751 u64 transid;
1752 time64_t delta;
1753 unsigned long delay;
1754 bool cannot_commit;
1755
1756 do {
1757 cannot_commit = false;
1758 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1759 mutex_lock(&fs_info->transaction_kthread_mutex);
1760
1761 spin_lock(&fs_info->trans_lock);
1762 cur = fs_info->running_transaction;
1763 if (!cur) {
1764 spin_unlock(&fs_info->trans_lock);
1765 goto sleep;
1766 }
1767
1768 delta = ktime_get_seconds() - cur->start_time;
1769 if (cur->state < TRANS_STATE_COMMIT_START &&
1770 delta < fs_info->commit_interval) {
1771 spin_unlock(&fs_info->trans_lock);
1772 delay -= msecs_to_jiffies((delta - 1) * 1000);
1773 delay = min(delay,
1774 msecs_to_jiffies(fs_info->commit_interval * 1000));
1775 goto sleep;
1776 }
1777 transid = cur->transid;
1778 spin_unlock(&fs_info->trans_lock);
1779
1780 /* If the file system is aborted, this will always fail. */
1781 trans = btrfs_attach_transaction(root);
1782 if (IS_ERR(trans)) {
1783 if (PTR_ERR(trans) != -ENOENT)
1784 cannot_commit = true;
1785 goto sleep;
1786 }
1787 if (transid == trans->transid) {
1788 btrfs_commit_transaction(trans);
1789 } else {
1790 btrfs_end_transaction(trans);
1791 }
1792sleep:
1793 wake_up_process(fs_info->cleaner_kthread);
1794 mutex_unlock(&fs_info->transaction_kthread_mutex);
1795
1796 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1797 &fs_info->fs_state)))
1798 btrfs_cleanup_transaction(fs_info);
1799 if (!kthread_should_stop() &&
1800 (!btrfs_transaction_blocked(fs_info) ||
1801 cannot_commit))
1802 schedule_timeout_interruptible(delay);
1803 } while (!kthread_should_stop());
1804 return 0;
1805}
1806
1807/*
1808 * This will find the highest generation in the array of root backups. The
1809 * index of the highest array is returned, or -EINVAL if we can't find
1810 * anything.
1811 *
1812 * We check to make sure the array is valid by comparing the
1813 * generation of the latest root in the array with the generation
1814 * in the super block. If they don't match we pitch it.
1815 */
1816static int find_newest_super_backup(struct btrfs_fs_info *info)
1817{
1818 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1819 u64 cur;
1820 struct btrfs_root_backup *root_backup;
1821 int i;
1822
1823 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1824 root_backup = info->super_copy->super_roots + i;
1825 cur = btrfs_backup_tree_root_gen(root_backup);
1826 if (cur == newest_gen)
1827 return i;
1828 }
1829
1830 return -EINVAL;
1831}
1832
1833/*
1834 * copy all the root pointers into the super backup array.
1835 * this will bump the backup pointer by one when it is
1836 * done
1837 */
1838static void backup_super_roots(struct btrfs_fs_info *info)
1839{
1840 const int next_backup = info->backup_root_index;
1841 struct btrfs_root_backup *root_backup;
1842
1843 root_backup = info->super_for_commit->super_roots + next_backup;
1844
1845 /*
1846 * make sure all of our padding and empty slots get zero filled
1847 * regardless of which ones we use today
1848 */
1849 memset(root_backup, 0, sizeof(*root_backup));
1850
1851 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1852
1853 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1854 btrfs_set_backup_tree_root_gen(root_backup,
1855 btrfs_header_generation(info->tree_root->node));
1856
1857 btrfs_set_backup_tree_root_level(root_backup,
1858 btrfs_header_level(info->tree_root->node));
1859
1860 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1861 btrfs_set_backup_chunk_root_gen(root_backup,
1862 btrfs_header_generation(info->chunk_root->node));
1863 btrfs_set_backup_chunk_root_level(root_backup,
1864 btrfs_header_level(info->chunk_root->node));
1865
1866 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1867 btrfs_set_backup_extent_root_gen(root_backup,
1868 btrfs_header_generation(info->extent_root->node));
1869 btrfs_set_backup_extent_root_level(root_backup,
1870 btrfs_header_level(info->extent_root->node));
1871
1872 /*
1873 * we might commit during log recovery, which happens before we set
1874 * the fs_root. Make sure it is valid before we fill it in.
1875 */
1876 if (info->fs_root && info->fs_root->node) {
1877 btrfs_set_backup_fs_root(root_backup,
1878 info->fs_root->node->start);
1879 btrfs_set_backup_fs_root_gen(root_backup,
1880 btrfs_header_generation(info->fs_root->node));
1881 btrfs_set_backup_fs_root_level(root_backup,
1882 btrfs_header_level(info->fs_root->node));
1883 }
1884
1885 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1886 btrfs_set_backup_dev_root_gen(root_backup,
1887 btrfs_header_generation(info->dev_root->node));
1888 btrfs_set_backup_dev_root_level(root_backup,
1889 btrfs_header_level(info->dev_root->node));
1890
1891 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1892 btrfs_set_backup_csum_root_gen(root_backup,
1893 btrfs_header_generation(info->csum_root->node));
1894 btrfs_set_backup_csum_root_level(root_backup,
1895 btrfs_header_level(info->csum_root->node));
1896
1897 btrfs_set_backup_total_bytes(root_backup,
1898 btrfs_super_total_bytes(info->super_copy));
1899 btrfs_set_backup_bytes_used(root_backup,
1900 btrfs_super_bytes_used(info->super_copy));
1901 btrfs_set_backup_num_devices(root_backup,
1902 btrfs_super_num_devices(info->super_copy));
1903
1904 /*
1905 * if we don't copy this out to the super_copy, it won't get remembered
1906 * for the next commit
1907 */
1908 memcpy(&info->super_copy->super_roots,
1909 &info->super_for_commit->super_roots,
1910 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1911}
1912
1913/*
1914 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1915 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1916 *
1917 * fs_info - filesystem whose backup roots need to be read
1918 * priority - priority of backup root required
1919 *
1920 * Returns backup root index on success and -EINVAL otherwise.
1921 */
1922static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1923{
1924 int backup_index = find_newest_super_backup(fs_info);
1925 struct btrfs_super_block *super = fs_info->super_copy;
1926 struct btrfs_root_backup *root_backup;
1927
1928 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1929 if (priority == 0)
1930 return backup_index;
1931
1932 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1933 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1934 } else {
1935 return -EINVAL;
1936 }
1937
1938 root_backup = super->super_roots + backup_index;
1939
1940 btrfs_set_super_generation(super,
1941 btrfs_backup_tree_root_gen(root_backup));
1942 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1943 btrfs_set_super_root_level(super,
1944 btrfs_backup_tree_root_level(root_backup));
1945 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1946
1947 /*
1948 * Fixme: the total bytes and num_devices need to match or we should
1949 * need a fsck
1950 */
1951 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1952 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1953
1954 return backup_index;
1955}
1956
1957/* helper to cleanup workers */
1958static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1959{
1960 btrfs_destroy_workqueue(fs_info->fixup_workers);
1961 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1962 btrfs_destroy_workqueue(fs_info->workers);
1963 btrfs_destroy_workqueue(fs_info->endio_workers);
1964 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1965 btrfs_destroy_workqueue(fs_info->rmw_workers);
1966 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1967 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1968 btrfs_destroy_workqueue(fs_info->delayed_workers);
1969 btrfs_destroy_workqueue(fs_info->caching_workers);
1970 btrfs_destroy_workqueue(fs_info->readahead_workers);
1971 btrfs_destroy_workqueue(fs_info->flush_workers);
1972 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1973 if (fs_info->discard_ctl.discard_workers)
1974 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1975 /*
1976 * Now that all other work queues are destroyed, we can safely destroy
1977 * the queues used for metadata I/O, since tasks from those other work
1978 * queues can do metadata I/O operations.
1979 */
1980 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1981 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1982}
1983
1984static void free_root_extent_buffers(struct btrfs_root *root)
1985{
1986 if (root) {
1987 free_extent_buffer(root->node);
1988 free_extent_buffer(root->commit_root);
1989 root->node = NULL;
1990 root->commit_root = NULL;
1991 }
1992}
1993
1994/* helper to cleanup tree roots */
1995static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1996{
1997 free_root_extent_buffers(info->tree_root);
1998
1999 free_root_extent_buffers(info->dev_root);
2000 free_root_extent_buffers(info->extent_root);
2001 free_root_extent_buffers(info->csum_root);
2002 free_root_extent_buffers(info->quota_root);
2003 free_root_extent_buffers(info->uuid_root);
2004 free_root_extent_buffers(info->fs_root);
2005 free_root_extent_buffers(info->data_reloc_root);
2006 if (free_chunk_root)
2007 free_root_extent_buffers(info->chunk_root);
2008 free_root_extent_buffers(info->free_space_root);
2009}
2010
2011void btrfs_put_root(struct btrfs_root *root)
2012{
2013 if (!root)
2014 return;
2015
2016 if (refcount_dec_and_test(&root->refs)) {
2017 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2018 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2019 if (root->anon_dev)
2020 free_anon_bdev(root->anon_dev);
2021 btrfs_drew_lock_destroy(&root->snapshot_lock);
2022 free_root_extent_buffers(root);
2023#ifdef CONFIG_BTRFS_DEBUG
2024 spin_lock(&root->fs_info->fs_roots_radix_lock);
2025 list_del_init(&root->leak_list);
2026 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2027#endif
2028 kfree(root);
2029 }
2030}
2031
2032void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2033{
2034 int ret;
2035 struct btrfs_root *gang[8];
2036 int i;
2037
2038 while (!list_empty(&fs_info->dead_roots)) {
2039 gang[0] = list_entry(fs_info->dead_roots.next,
2040 struct btrfs_root, root_list);
2041 list_del(&gang[0]->root_list);
2042
2043 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2044 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2045 btrfs_put_root(gang[0]);
2046 }
2047
2048 while (1) {
2049 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2050 (void **)gang, 0,
2051 ARRAY_SIZE(gang));
2052 if (!ret)
2053 break;
2054 for (i = 0; i < ret; i++)
2055 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2056 }
2057}
2058
2059static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2060{
2061 mutex_init(&fs_info->scrub_lock);
2062 atomic_set(&fs_info->scrubs_running, 0);
2063 atomic_set(&fs_info->scrub_pause_req, 0);
2064 atomic_set(&fs_info->scrubs_paused, 0);
2065 atomic_set(&fs_info->scrub_cancel_req, 0);
2066 init_waitqueue_head(&fs_info->scrub_pause_wait);
2067 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2068}
2069
2070static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2071{
2072 spin_lock_init(&fs_info->balance_lock);
2073 mutex_init(&fs_info->balance_mutex);
2074 atomic_set(&fs_info->balance_pause_req, 0);
2075 atomic_set(&fs_info->balance_cancel_req, 0);
2076 fs_info->balance_ctl = NULL;
2077 init_waitqueue_head(&fs_info->balance_wait_q);
2078}
2079
2080static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2081{
2082 struct inode *inode = fs_info->btree_inode;
2083
2084 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2085 set_nlink(inode, 1);
2086 /*
2087 * we set the i_size on the btree inode to the max possible int.
2088 * the real end of the address space is determined by all of
2089 * the devices in the system
2090 */
2091 inode->i_size = OFFSET_MAX;
2092 inode->i_mapping->a_ops = &btree_aops;
2093
2094 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2095 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2096 IO_TREE_BTREE_INODE_IO, inode);
2097 BTRFS_I(inode)->io_tree.track_uptodate = false;
2098 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2099
2100 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2101 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2102 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2103 btrfs_insert_inode_hash(inode);
2104}
2105
2106static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2107{
2108 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2109 init_rwsem(&fs_info->dev_replace.rwsem);
2110 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2111}
2112
2113static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2114{
2115 spin_lock_init(&fs_info->qgroup_lock);
2116 mutex_init(&fs_info->qgroup_ioctl_lock);
2117 fs_info->qgroup_tree = RB_ROOT;
2118 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2119 fs_info->qgroup_seq = 1;
2120 fs_info->qgroup_ulist = NULL;
2121 fs_info->qgroup_rescan_running = false;
2122 mutex_init(&fs_info->qgroup_rescan_lock);
2123}
2124
2125static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2126 struct btrfs_fs_devices *fs_devices)
2127{
2128 u32 max_active = fs_info->thread_pool_size;
2129 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2130
2131 fs_info->workers =
2132 btrfs_alloc_workqueue(fs_info, "worker",
2133 flags | WQ_HIGHPRI, max_active, 16);
2134
2135 fs_info->delalloc_workers =
2136 btrfs_alloc_workqueue(fs_info, "delalloc",
2137 flags, max_active, 2);
2138
2139 fs_info->flush_workers =
2140 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2141 flags, max_active, 0);
2142
2143 fs_info->caching_workers =
2144 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2145
2146 fs_info->fixup_workers =
2147 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2148
2149 /*
2150 * endios are largely parallel and should have a very
2151 * low idle thresh
2152 */
2153 fs_info->endio_workers =
2154 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2155 fs_info->endio_meta_workers =
2156 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2157 max_active, 4);
2158 fs_info->endio_meta_write_workers =
2159 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2160 max_active, 2);
2161 fs_info->endio_raid56_workers =
2162 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2163 max_active, 4);
2164 fs_info->rmw_workers =
2165 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2166 fs_info->endio_write_workers =
2167 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2168 max_active, 2);
2169 fs_info->endio_freespace_worker =
2170 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2171 max_active, 0);
2172 fs_info->delayed_workers =
2173 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2174 max_active, 0);
2175 fs_info->readahead_workers =
2176 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2177 max_active, 2);
2178 fs_info->qgroup_rescan_workers =
2179 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2180 fs_info->discard_ctl.discard_workers =
2181 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2182
2183 if (!(fs_info->workers && fs_info->delalloc_workers &&
2184 fs_info->flush_workers &&
2185 fs_info->endio_workers && fs_info->endio_meta_workers &&
2186 fs_info->endio_meta_write_workers &&
2187 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2188 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2189 fs_info->caching_workers && fs_info->readahead_workers &&
2190 fs_info->fixup_workers && fs_info->delayed_workers &&
2191 fs_info->qgroup_rescan_workers &&
2192 fs_info->discard_ctl.discard_workers)) {
2193 return -ENOMEM;
2194 }
2195
2196 return 0;
2197}
2198
2199static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2200{
2201 struct crypto_shash *csum_shash;
2202 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2203
2204 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2205
2206 if (IS_ERR(csum_shash)) {
2207 btrfs_err(fs_info, "error allocating %s hash for checksum",
2208 csum_driver);
2209 return PTR_ERR(csum_shash);
2210 }
2211
2212 fs_info->csum_shash = csum_shash;
2213
2214 return 0;
2215}
2216
2217static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2218 struct btrfs_fs_devices *fs_devices)
2219{
2220 int ret;
2221 struct btrfs_root *log_tree_root;
2222 struct btrfs_super_block *disk_super = fs_info->super_copy;
2223 u64 bytenr = btrfs_super_log_root(disk_super);
2224 int level = btrfs_super_log_root_level(disk_super);
2225
2226 if (fs_devices->rw_devices == 0) {
2227 btrfs_warn(fs_info, "log replay required on RO media");
2228 return -EIO;
2229 }
2230
2231 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2232 GFP_KERNEL);
2233 if (!log_tree_root)
2234 return -ENOMEM;
2235
2236 log_tree_root->node = read_tree_block(fs_info, bytenr,
2237 BTRFS_TREE_LOG_OBJECTID,
2238 fs_info->generation + 1, level,
2239 NULL);
2240 if (IS_ERR(log_tree_root->node)) {
2241 btrfs_warn(fs_info, "failed to read log tree");
2242 ret = PTR_ERR(log_tree_root->node);
2243 log_tree_root->node = NULL;
2244 btrfs_put_root(log_tree_root);
2245 return ret;
2246 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2247 btrfs_err(fs_info, "failed to read log tree");
2248 btrfs_put_root(log_tree_root);
2249 return -EIO;
2250 }
2251 /* returns with log_tree_root freed on success */
2252 ret = btrfs_recover_log_trees(log_tree_root);
2253 if (ret) {
2254 btrfs_handle_fs_error(fs_info, ret,
2255 "Failed to recover log tree");
2256 btrfs_put_root(log_tree_root);
2257 return ret;
2258 }
2259
2260 if (sb_rdonly(fs_info->sb)) {
2261 ret = btrfs_commit_super(fs_info);
2262 if (ret)
2263 return ret;
2264 }
2265
2266 return 0;
2267}
2268
2269static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2270{
2271 struct btrfs_root *tree_root = fs_info->tree_root;
2272 struct btrfs_root *root;
2273 struct btrfs_key location;
2274 int ret;
2275
2276 BUG_ON(!fs_info->tree_root);
2277
2278 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2279 location.type = BTRFS_ROOT_ITEM_KEY;
2280 location.offset = 0;
2281
2282 root = btrfs_read_tree_root(tree_root, &location);
2283 if (IS_ERR(root)) {
2284 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2285 ret = PTR_ERR(root);
2286 goto out;
2287 }
2288 } else {
2289 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2290 fs_info->extent_root = root;
2291 }
2292
2293 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2294 root = btrfs_read_tree_root(tree_root, &location);
2295 if (IS_ERR(root)) {
2296 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2297 ret = PTR_ERR(root);
2298 goto out;
2299 }
2300 } else {
2301 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2302 fs_info->dev_root = root;
2303 btrfs_init_devices_late(fs_info);
2304 }
2305
2306 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2307 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2308 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2309 root = btrfs_read_tree_root(tree_root, &location);
2310 if (IS_ERR(root)) {
2311 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2312 ret = PTR_ERR(root);
2313 goto out;
2314 }
2315 } else {
2316 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2317 fs_info->csum_root = root;
2318 }
2319 }
2320
2321 /*
2322 * This tree can share blocks with some other fs tree during relocation
2323 * and we need a proper setup by btrfs_get_fs_root
2324 */
2325 root = btrfs_get_fs_root(tree_root->fs_info,
2326 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2327 if (IS_ERR(root)) {
2328 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2329 ret = PTR_ERR(root);
2330 goto out;
2331 }
2332 } else {
2333 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2334 fs_info->data_reloc_root = root;
2335 }
2336
2337 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2338 root = btrfs_read_tree_root(tree_root, &location);
2339 if (!IS_ERR(root)) {
2340 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2341 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2342 fs_info->quota_root = root;
2343 }
2344
2345 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2346 root = btrfs_read_tree_root(tree_root, &location);
2347 if (IS_ERR(root)) {
2348 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2349 ret = PTR_ERR(root);
2350 if (ret != -ENOENT)
2351 goto out;
2352 }
2353 } else {
2354 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2355 fs_info->uuid_root = root;
2356 }
2357
2358 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2359 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2360 root = btrfs_read_tree_root(tree_root, &location);
2361 if (IS_ERR(root)) {
2362 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2363 ret = PTR_ERR(root);
2364 goto out;
2365 }
2366 } else {
2367 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2368 fs_info->free_space_root = root;
2369 }
2370 }
2371
2372 return 0;
2373out:
2374 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2375 location.objectid, ret);
2376 return ret;
2377}
2378
2379/*
2380 * Real super block validation
2381 * NOTE: super csum type and incompat features will not be checked here.
2382 *
2383 * @sb: super block to check
2384 * @mirror_num: the super block number to check its bytenr:
2385 * 0 the primary (1st) sb
2386 * 1, 2 2nd and 3rd backup copy
2387 * -1 skip bytenr check
2388 */
2389static int validate_super(struct btrfs_fs_info *fs_info,
2390 struct btrfs_super_block *sb, int mirror_num)
2391{
2392 u64 nodesize = btrfs_super_nodesize(sb);
2393 u64 sectorsize = btrfs_super_sectorsize(sb);
2394 int ret = 0;
2395
2396 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2397 btrfs_err(fs_info, "no valid FS found");
2398 ret = -EINVAL;
2399 }
2400 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2401 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2402 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2403 ret = -EINVAL;
2404 }
2405 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2406 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2407 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2408 ret = -EINVAL;
2409 }
2410 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2411 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2412 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2413 ret = -EINVAL;
2414 }
2415 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2416 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2417 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2418 ret = -EINVAL;
2419 }
2420
2421 /*
2422 * Check sectorsize and nodesize first, other check will need it.
2423 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2424 */
2425 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2426 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2427 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2428 ret = -EINVAL;
2429 }
2430 /* Only PAGE SIZE is supported yet */
2431 if (sectorsize != PAGE_SIZE) {
2432 btrfs_err(fs_info,
2433 "sectorsize %llu not supported yet, only support %lu",
2434 sectorsize, PAGE_SIZE);
2435 ret = -EINVAL;
2436 }
2437 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2438 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2439 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2440 ret = -EINVAL;
2441 }
2442 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2443 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2444 le32_to_cpu(sb->__unused_leafsize), nodesize);
2445 ret = -EINVAL;
2446 }
2447
2448 /* Root alignment check */
2449 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2450 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2451 btrfs_super_root(sb));
2452 ret = -EINVAL;
2453 }
2454 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2455 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2456 btrfs_super_chunk_root(sb));
2457 ret = -EINVAL;
2458 }
2459 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2460 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2461 btrfs_super_log_root(sb));
2462 ret = -EINVAL;
2463 }
2464
2465 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2466 BTRFS_FSID_SIZE) != 0) {
2467 btrfs_err(fs_info,
2468 "dev_item UUID does not match metadata fsid: %pU != %pU",
2469 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2470 ret = -EINVAL;
2471 }
2472
2473 /*
2474 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2475 * done later
2476 */
2477 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2478 btrfs_err(fs_info, "bytes_used is too small %llu",
2479 btrfs_super_bytes_used(sb));
2480 ret = -EINVAL;
2481 }
2482 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2483 btrfs_err(fs_info, "invalid stripesize %u",
2484 btrfs_super_stripesize(sb));
2485 ret = -EINVAL;
2486 }
2487 if (btrfs_super_num_devices(sb) > (1UL << 31))
2488 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2489 btrfs_super_num_devices(sb));
2490 if (btrfs_super_num_devices(sb) == 0) {
2491 btrfs_err(fs_info, "number of devices is 0");
2492 ret = -EINVAL;
2493 }
2494
2495 if (mirror_num >= 0 &&
2496 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2497 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2498 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2499 ret = -EINVAL;
2500 }
2501
2502 /*
2503 * Obvious sys_chunk_array corruptions, it must hold at least one key
2504 * and one chunk
2505 */
2506 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2507 btrfs_err(fs_info, "system chunk array too big %u > %u",
2508 btrfs_super_sys_array_size(sb),
2509 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2510 ret = -EINVAL;
2511 }
2512 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2513 + sizeof(struct btrfs_chunk)) {
2514 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2515 btrfs_super_sys_array_size(sb),
2516 sizeof(struct btrfs_disk_key)
2517 + sizeof(struct btrfs_chunk));
2518 ret = -EINVAL;
2519 }
2520
2521 /*
2522 * The generation is a global counter, we'll trust it more than the others
2523 * but it's still possible that it's the one that's wrong.
2524 */
2525 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2526 btrfs_warn(fs_info,
2527 "suspicious: generation < chunk_root_generation: %llu < %llu",
2528 btrfs_super_generation(sb),
2529 btrfs_super_chunk_root_generation(sb));
2530 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2531 && btrfs_super_cache_generation(sb) != (u64)-1)
2532 btrfs_warn(fs_info,
2533 "suspicious: generation < cache_generation: %llu < %llu",
2534 btrfs_super_generation(sb),
2535 btrfs_super_cache_generation(sb));
2536
2537 return ret;
2538}
2539
2540/*
2541 * Validation of super block at mount time.
2542 * Some checks already done early at mount time, like csum type and incompat
2543 * flags will be skipped.
2544 */
2545static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2546{
2547 return validate_super(fs_info, fs_info->super_copy, 0);
2548}
2549
2550/*
2551 * Validation of super block at write time.
2552 * Some checks like bytenr check will be skipped as their values will be
2553 * overwritten soon.
2554 * Extra checks like csum type and incompat flags will be done here.
2555 */
2556static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2557 struct btrfs_super_block *sb)
2558{
2559 int ret;
2560
2561 ret = validate_super(fs_info, sb, -1);
2562 if (ret < 0)
2563 goto out;
2564 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2565 ret = -EUCLEAN;
2566 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2567 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2568 goto out;
2569 }
2570 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2571 ret = -EUCLEAN;
2572 btrfs_err(fs_info,
2573 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2574 btrfs_super_incompat_flags(sb),
2575 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2576 goto out;
2577 }
2578out:
2579 if (ret < 0)
2580 btrfs_err(fs_info,
2581 "super block corruption detected before writing it to disk");
2582 return ret;
2583}
2584
2585static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2586{
2587 int backup_index = find_newest_super_backup(fs_info);
2588 struct btrfs_super_block *sb = fs_info->super_copy;
2589 struct btrfs_root *tree_root = fs_info->tree_root;
2590 bool handle_error = false;
2591 int ret = 0;
2592 int i;
2593
2594 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2595 u64 generation;
2596 int level;
2597
2598 if (handle_error) {
2599 if (!IS_ERR(tree_root->node))
2600 free_extent_buffer(tree_root->node);
2601 tree_root->node = NULL;
2602
2603 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2604 break;
2605
2606 free_root_pointers(fs_info, 0);
2607
2608 /*
2609 * Don't use the log in recovery mode, it won't be
2610 * valid
2611 */
2612 btrfs_set_super_log_root(sb, 0);
2613
2614 /* We can't trust the free space cache either */
2615 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2616
2617 ret = read_backup_root(fs_info, i);
2618 backup_index = ret;
2619 if (ret < 0)
2620 return ret;
2621 }
2622 generation = btrfs_super_generation(sb);
2623 level = btrfs_super_root_level(sb);
2624 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2625 BTRFS_ROOT_TREE_OBJECTID,
2626 generation, level, NULL);
2627 if (IS_ERR(tree_root->node)) {
2628 handle_error = true;
2629 ret = PTR_ERR(tree_root->node);
2630 tree_root->node = NULL;
2631 btrfs_warn(fs_info, "couldn't read tree root");
2632 continue;
2633
2634 } else if (!extent_buffer_uptodate(tree_root->node)) {
2635 handle_error = true;
2636 ret = -EIO;
2637 btrfs_warn(fs_info, "error while reading tree root");
2638 continue;
2639 }
2640
2641 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2642 tree_root->commit_root = btrfs_root_node(tree_root);
2643 btrfs_set_root_refs(&tree_root->root_item, 1);
2644
2645 /*
2646 * No need to hold btrfs_root::objectid_mutex since the fs
2647 * hasn't been fully initialised and we are the only user
2648 */
2649 ret = btrfs_find_highest_objectid(tree_root,
2650 &tree_root->highest_objectid);
2651 if (ret < 0) {
2652 handle_error = true;
2653 continue;
2654 }
2655
2656 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2657
2658 ret = btrfs_read_roots(fs_info);
2659 if (ret < 0) {
2660 handle_error = true;
2661 continue;
2662 }
2663
2664 /* All successful */
2665 fs_info->generation = generation;
2666 fs_info->last_trans_committed = generation;
2667
2668 /* Always begin writing backup roots after the one being used */
2669 if (backup_index < 0) {
2670 fs_info->backup_root_index = 0;
2671 } else {
2672 fs_info->backup_root_index = backup_index + 1;
2673 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2674 }
2675 break;
2676 }
2677
2678 return ret;
2679}
2680
2681void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2682{
2683 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2684 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2685 INIT_LIST_HEAD(&fs_info->trans_list);
2686 INIT_LIST_HEAD(&fs_info->dead_roots);
2687 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2688 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2689 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2690 spin_lock_init(&fs_info->delalloc_root_lock);
2691 spin_lock_init(&fs_info->trans_lock);
2692 spin_lock_init(&fs_info->fs_roots_radix_lock);
2693 spin_lock_init(&fs_info->delayed_iput_lock);
2694 spin_lock_init(&fs_info->defrag_inodes_lock);
2695 spin_lock_init(&fs_info->super_lock);
2696 spin_lock_init(&fs_info->buffer_lock);
2697 spin_lock_init(&fs_info->unused_bgs_lock);
2698 rwlock_init(&fs_info->tree_mod_log_lock);
2699 mutex_init(&fs_info->unused_bg_unpin_mutex);
2700 mutex_init(&fs_info->delete_unused_bgs_mutex);
2701 mutex_init(&fs_info->reloc_mutex);
2702 mutex_init(&fs_info->delalloc_root_mutex);
2703 seqlock_init(&fs_info->profiles_lock);
2704
2705 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2706 INIT_LIST_HEAD(&fs_info->space_info);
2707 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2708 INIT_LIST_HEAD(&fs_info->unused_bgs);
2709#ifdef CONFIG_BTRFS_DEBUG
2710 INIT_LIST_HEAD(&fs_info->allocated_roots);
2711 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2712 spin_lock_init(&fs_info->eb_leak_lock);
2713#endif
2714 extent_map_tree_init(&fs_info->mapping_tree);
2715 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2716 BTRFS_BLOCK_RSV_GLOBAL);
2717 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2718 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2719 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2720 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2721 BTRFS_BLOCK_RSV_DELOPS);
2722 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2723 BTRFS_BLOCK_RSV_DELREFS);
2724
2725 atomic_set(&fs_info->async_delalloc_pages, 0);
2726 atomic_set(&fs_info->defrag_running, 0);
2727 atomic_set(&fs_info->reada_works_cnt, 0);
2728 atomic_set(&fs_info->nr_delayed_iputs, 0);
2729 atomic64_set(&fs_info->tree_mod_seq, 0);
2730 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2731 fs_info->metadata_ratio = 0;
2732 fs_info->defrag_inodes = RB_ROOT;
2733 atomic64_set(&fs_info->free_chunk_space, 0);
2734 fs_info->tree_mod_log = RB_ROOT;
2735 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2736 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2737 /* readahead state */
2738 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2739 spin_lock_init(&fs_info->reada_lock);
2740 btrfs_init_ref_verify(fs_info);
2741
2742 fs_info->thread_pool_size = min_t(unsigned long,
2743 num_online_cpus() + 2, 8);
2744
2745 INIT_LIST_HEAD(&fs_info->ordered_roots);
2746 spin_lock_init(&fs_info->ordered_root_lock);
2747
2748 btrfs_init_scrub(fs_info);
2749#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2750 fs_info->check_integrity_print_mask = 0;
2751#endif
2752 btrfs_init_balance(fs_info);
2753 btrfs_init_async_reclaim_work(fs_info);
2754
2755 spin_lock_init(&fs_info->block_group_cache_lock);
2756 fs_info->block_group_cache_tree = RB_ROOT;
2757 fs_info->first_logical_byte = (u64)-1;
2758
2759 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2760 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2761 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2762
2763 mutex_init(&fs_info->ordered_operations_mutex);
2764 mutex_init(&fs_info->tree_log_mutex);
2765 mutex_init(&fs_info->chunk_mutex);
2766 mutex_init(&fs_info->transaction_kthread_mutex);
2767 mutex_init(&fs_info->cleaner_mutex);
2768 mutex_init(&fs_info->ro_block_group_mutex);
2769 init_rwsem(&fs_info->commit_root_sem);
2770 init_rwsem(&fs_info->cleanup_work_sem);
2771 init_rwsem(&fs_info->subvol_sem);
2772 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2773
2774 btrfs_init_dev_replace_locks(fs_info);
2775 btrfs_init_qgroup(fs_info);
2776 btrfs_discard_init(fs_info);
2777
2778 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2779 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2780
2781 init_waitqueue_head(&fs_info->transaction_throttle);
2782 init_waitqueue_head(&fs_info->transaction_wait);
2783 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2784 init_waitqueue_head(&fs_info->async_submit_wait);
2785 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2786
2787 /* Usable values until the real ones are cached from the superblock */
2788 fs_info->nodesize = 4096;
2789 fs_info->sectorsize = 4096;
2790 fs_info->sectorsize_bits = ilog2(4096);
2791 fs_info->stripesize = 4096;
2792
2793 spin_lock_init(&fs_info->swapfile_pins_lock);
2794 fs_info->swapfile_pins = RB_ROOT;
2795
2796 fs_info->send_in_progress = 0;
2797}
2798
2799static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2800{
2801 int ret;
2802
2803 fs_info->sb = sb;
2804 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2805 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2806
2807 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2808 if (ret)
2809 return ret;
2810
2811 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2812 if (ret)
2813 return ret;
2814
2815 fs_info->dirty_metadata_batch = PAGE_SIZE *
2816 (1 + ilog2(nr_cpu_ids));
2817
2818 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2819 if (ret)
2820 return ret;
2821
2822 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2823 GFP_KERNEL);
2824 if (ret)
2825 return ret;
2826
2827 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2828 GFP_KERNEL);
2829 if (!fs_info->delayed_root)
2830 return -ENOMEM;
2831 btrfs_init_delayed_root(fs_info->delayed_root);
2832
2833 if (sb_rdonly(sb))
2834 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2835
2836 return btrfs_alloc_stripe_hash_table(fs_info);
2837}
2838
2839static int btrfs_uuid_rescan_kthread(void *data)
2840{
2841 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2842 int ret;
2843
2844 /*
2845 * 1st step is to iterate through the existing UUID tree and
2846 * to delete all entries that contain outdated data.
2847 * 2nd step is to add all missing entries to the UUID tree.
2848 */
2849 ret = btrfs_uuid_tree_iterate(fs_info);
2850 if (ret < 0) {
2851 if (ret != -EINTR)
2852 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2853 ret);
2854 up(&fs_info->uuid_tree_rescan_sem);
2855 return ret;
2856 }
2857 return btrfs_uuid_scan_kthread(data);
2858}
2859
2860static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2861{
2862 struct task_struct *task;
2863
2864 down(&fs_info->uuid_tree_rescan_sem);
2865 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2866 if (IS_ERR(task)) {
2867 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2868 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2869 up(&fs_info->uuid_tree_rescan_sem);
2870 return PTR_ERR(task);
2871 }
2872
2873 return 0;
2874}
2875
2876/*
2877 * Some options only have meaning at mount time and shouldn't persist across
2878 * remounts, or be displayed. Clear these at the end of mount and remount
2879 * code paths.
2880 */
2881void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2882{
2883 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
2884 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
2885}
2886
2887/*
2888 * Mounting logic specific to read-write file systems. Shared by open_ctree
2889 * and btrfs_remount when remounting from read-only to read-write.
2890 */
2891int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2892{
2893 int ret;
2894 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2895 bool clear_free_space_tree = false;
2896
2897 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2898 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2899 clear_free_space_tree = true;
2900 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2901 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2902 btrfs_warn(fs_info, "free space tree is invalid");
2903 clear_free_space_tree = true;
2904 }
2905
2906 if (clear_free_space_tree) {
2907 btrfs_info(fs_info, "clearing free space tree");
2908 ret = btrfs_clear_free_space_tree(fs_info);
2909 if (ret) {
2910 btrfs_warn(fs_info,
2911 "failed to clear free space tree: %d", ret);
2912 goto out;
2913 }
2914 }
2915
2916 ret = btrfs_cleanup_fs_roots(fs_info);
2917 if (ret)
2918 goto out;
2919
2920 down_read(&fs_info->cleanup_work_sem);
2921 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2922 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2923 up_read(&fs_info->cleanup_work_sem);
2924 goto out;
2925 }
2926 up_read(&fs_info->cleanup_work_sem);
2927
2928 mutex_lock(&fs_info->cleaner_mutex);
2929 ret = btrfs_recover_relocation(fs_info->tree_root);
2930 mutex_unlock(&fs_info->cleaner_mutex);
2931 if (ret < 0) {
2932 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
2933 goto out;
2934 }
2935
2936 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2937 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2938 btrfs_info(fs_info, "creating free space tree");
2939 ret = btrfs_create_free_space_tree(fs_info);
2940 if (ret) {
2941 btrfs_warn(fs_info,
2942 "failed to create free space tree: %d", ret);
2943 goto out;
2944 }
2945 }
2946
2947 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
2948 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
2949 if (ret)
2950 goto out;
2951 }
2952
2953 ret = btrfs_resume_balance_async(fs_info);
2954 if (ret)
2955 goto out;
2956
2957 ret = btrfs_resume_dev_replace_async(fs_info);
2958 if (ret) {
2959 btrfs_warn(fs_info, "failed to resume dev_replace");
2960 goto out;
2961 }
2962
2963 btrfs_qgroup_rescan_resume(fs_info);
2964
2965 if (!fs_info->uuid_root) {
2966 btrfs_info(fs_info, "creating UUID tree");
2967 ret = btrfs_create_uuid_tree(fs_info);
2968 if (ret) {
2969 btrfs_warn(fs_info,
2970 "failed to create the UUID tree %d", ret);
2971 goto out;
2972 }
2973 }
2974
2975 ret = btrfs_find_orphan_roots(fs_info);
2976out:
2977 return ret;
2978}
2979
2980int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2981 char *options)
2982{
2983 u32 sectorsize;
2984 u32 nodesize;
2985 u32 stripesize;
2986 u64 generation;
2987 u64 features;
2988 u16 csum_type;
2989 struct btrfs_super_block *disk_super;
2990 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2991 struct btrfs_root *tree_root;
2992 struct btrfs_root *chunk_root;
2993 int ret;
2994 int err = -EINVAL;
2995 int level;
2996
2997 ret = init_mount_fs_info(fs_info, sb);
2998 if (ret) {
2999 err = ret;
3000 goto fail;
3001 }
3002
3003 /* These need to be init'ed before we start creating inodes and such. */
3004 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3005 GFP_KERNEL);
3006 fs_info->tree_root = tree_root;
3007 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3008 GFP_KERNEL);
3009 fs_info->chunk_root = chunk_root;
3010 if (!tree_root || !chunk_root) {
3011 err = -ENOMEM;
3012 goto fail;
3013 }
3014
3015 fs_info->btree_inode = new_inode(sb);
3016 if (!fs_info->btree_inode) {
3017 err = -ENOMEM;
3018 goto fail;
3019 }
3020 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3021 btrfs_init_btree_inode(fs_info);
3022
3023 invalidate_bdev(fs_devices->latest_bdev);
3024
3025 /*
3026 * Read super block and check the signature bytes only
3027 */
3028 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
3029 if (IS_ERR(disk_super)) {
3030 err = PTR_ERR(disk_super);
3031 goto fail_alloc;
3032 }
3033
3034 /*
3035 * Verify the type first, if that or the checksum value are
3036 * corrupted, we'll find out
3037 */
3038 csum_type = btrfs_super_csum_type(disk_super);
3039 if (!btrfs_supported_super_csum(csum_type)) {
3040 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3041 csum_type);
3042 err = -EINVAL;
3043 btrfs_release_disk_super(disk_super);
3044 goto fail_alloc;
3045 }
3046
3047 ret = btrfs_init_csum_hash(fs_info, csum_type);
3048 if (ret) {
3049 err = ret;
3050 btrfs_release_disk_super(disk_super);
3051 goto fail_alloc;
3052 }
3053
3054 /*
3055 * We want to check superblock checksum, the type is stored inside.
3056 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3057 */
3058 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3059 btrfs_err(fs_info, "superblock checksum mismatch");
3060 err = -EINVAL;
3061 btrfs_release_disk_super(disk_super);
3062 goto fail_alloc;
3063 }
3064
3065 /*
3066 * super_copy is zeroed at allocation time and we never touch the
3067 * following bytes up to INFO_SIZE, the checksum is calculated from
3068 * the whole block of INFO_SIZE
3069 */
3070 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3071 btrfs_release_disk_super(disk_super);
3072
3073 disk_super = fs_info->super_copy;
3074
3075 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
3076 BTRFS_FSID_SIZE));
3077
3078 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
3079 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
3080 fs_info->super_copy->metadata_uuid,
3081 BTRFS_FSID_SIZE));
3082 }
3083
3084 features = btrfs_super_flags(disk_super);
3085 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3086 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3087 btrfs_set_super_flags(disk_super, features);
3088 btrfs_info(fs_info,
3089 "found metadata UUID change in progress flag, clearing");
3090 }
3091
3092 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3093 sizeof(*fs_info->super_for_commit));
3094
3095 ret = btrfs_validate_mount_super(fs_info);
3096 if (ret) {
3097 btrfs_err(fs_info, "superblock contains fatal errors");
3098 err = -EINVAL;
3099 goto fail_alloc;
3100 }
3101
3102 if (!btrfs_super_root(disk_super))
3103 goto fail_alloc;
3104
3105 /* check FS state, whether FS is broken. */
3106 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3107 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3108
3109 /*
3110 * In the long term, we'll store the compression type in the super
3111 * block, and it'll be used for per file compression control.
3112 */
3113 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3114
3115 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3116 if (ret) {
3117 err = ret;
3118 goto fail_alloc;
3119 }
3120
3121 features = btrfs_super_incompat_flags(disk_super) &
3122 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3123 if (features) {
3124 btrfs_err(fs_info,
3125 "cannot mount because of unsupported optional features (%llx)",
3126 features);
3127 err = -EINVAL;
3128 goto fail_alloc;
3129 }
3130
3131 features = btrfs_super_incompat_flags(disk_super);
3132 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3133 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3134 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3135 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3136 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3137
3138 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3139 btrfs_info(fs_info, "has skinny extents");
3140
3141 fs_info->zoned = (features & BTRFS_FEATURE_INCOMPAT_ZONED);
3142
3143 /*
3144 * flag our filesystem as having big metadata blocks if
3145 * they are bigger than the page size
3146 */
3147 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3148 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3149 btrfs_info(fs_info,
3150 "flagging fs with big metadata feature");
3151 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3152 }
3153
3154 nodesize = btrfs_super_nodesize(disk_super);
3155 sectorsize = btrfs_super_sectorsize(disk_super);
3156 stripesize = sectorsize;
3157 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3158 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3159
3160 /* Cache block sizes */
3161 fs_info->nodesize = nodesize;
3162 fs_info->sectorsize = sectorsize;
3163 fs_info->sectorsize_bits = ilog2(sectorsize);
3164 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3165 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3166 fs_info->stripesize = stripesize;
3167
3168 /*
3169 * mixed block groups end up with duplicate but slightly offset
3170 * extent buffers for the same range. It leads to corruptions
3171 */
3172 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3173 (sectorsize != nodesize)) {
3174 btrfs_err(fs_info,
3175"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3176 nodesize, sectorsize);
3177 goto fail_alloc;
3178 }
3179
3180 /*
3181 * Needn't use the lock because there is no other task which will
3182 * update the flag.
3183 */
3184 btrfs_set_super_incompat_flags(disk_super, features);
3185
3186 features = btrfs_super_compat_ro_flags(disk_super) &
3187 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3188 if (!sb_rdonly(sb) && features) {
3189 btrfs_err(fs_info,
3190 "cannot mount read-write because of unsupported optional features (%llx)",
3191 features);
3192 err = -EINVAL;
3193 goto fail_alloc;
3194 }
3195
3196 ret = btrfs_init_workqueues(fs_info, fs_devices);
3197 if (ret) {
3198 err = ret;
3199 goto fail_sb_buffer;
3200 }
3201
3202 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3203 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3204
3205 sb->s_blocksize = sectorsize;
3206 sb->s_blocksize_bits = blksize_bits(sectorsize);
3207 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3208
3209 mutex_lock(&fs_info->chunk_mutex);
3210 ret = btrfs_read_sys_array(fs_info);
3211 mutex_unlock(&fs_info->chunk_mutex);
3212 if (ret) {
3213 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3214 goto fail_sb_buffer;
3215 }
3216
3217 generation = btrfs_super_chunk_root_generation(disk_super);
3218 level = btrfs_super_chunk_root_level(disk_super);
3219
3220 chunk_root->node = read_tree_block(fs_info,
3221 btrfs_super_chunk_root(disk_super),
3222 BTRFS_CHUNK_TREE_OBJECTID,
3223 generation, level, NULL);
3224 if (IS_ERR(chunk_root->node) ||
3225 !extent_buffer_uptodate(chunk_root->node)) {
3226 btrfs_err(fs_info, "failed to read chunk root");
3227 if (!IS_ERR(chunk_root->node))
3228 free_extent_buffer(chunk_root->node);
3229 chunk_root->node = NULL;
3230 goto fail_tree_roots;
3231 }
3232 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3233 chunk_root->commit_root = btrfs_root_node(chunk_root);
3234
3235 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3236 offsetof(struct btrfs_header, chunk_tree_uuid),
3237 BTRFS_UUID_SIZE);
3238
3239 ret = btrfs_read_chunk_tree(fs_info);
3240 if (ret) {
3241 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3242 goto fail_tree_roots;
3243 }
3244
3245 /*
3246 * At this point we know all the devices that make this filesystem,
3247 * including the seed devices but we don't know yet if the replace
3248 * target is required. So free devices that are not part of this
3249 * filesystem but skip the replace traget device which is checked
3250 * below in btrfs_init_dev_replace().
3251 */
3252 btrfs_free_extra_devids(fs_devices);
3253 if (!fs_devices->latest_bdev) {
3254 btrfs_err(fs_info, "failed to read devices");
3255 goto fail_tree_roots;
3256 }
3257
3258 ret = init_tree_roots(fs_info);
3259 if (ret)
3260 goto fail_tree_roots;
3261
3262 /*
3263 * If we have a uuid root and we're not being told to rescan we need to
3264 * check the generation here so we can set the
3265 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3266 * transaction during a balance or the log replay without updating the
3267 * uuid generation, and then if we crash we would rescan the uuid tree,
3268 * even though it was perfectly fine.
3269 */
3270 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3271 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3272 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3273
3274 ret = btrfs_verify_dev_extents(fs_info);
3275 if (ret) {
3276 btrfs_err(fs_info,
3277 "failed to verify dev extents against chunks: %d",
3278 ret);
3279 goto fail_block_groups;
3280 }
3281 ret = btrfs_recover_balance(fs_info);
3282 if (ret) {
3283 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3284 goto fail_block_groups;
3285 }
3286
3287 ret = btrfs_init_dev_stats(fs_info);
3288 if (ret) {
3289 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3290 goto fail_block_groups;
3291 }
3292
3293 ret = btrfs_init_dev_replace(fs_info);
3294 if (ret) {
3295 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3296 goto fail_block_groups;
3297 }
3298
3299 ret = btrfs_check_zoned_mode(fs_info);
3300 if (ret) {
3301 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3302 ret);
3303 goto fail_block_groups;
3304 }
3305
3306 ret = btrfs_sysfs_add_fsid(fs_devices);
3307 if (ret) {
3308 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3309 ret);
3310 goto fail_block_groups;
3311 }
3312
3313 ret = btrfs_sysfs_add_mounted(fs_info);
3314 if (ret) {
3315 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3316 goto fail_fsdev_sysfs;
3317 }
3318
3319 ret = btrfs_init_space_info(fs_info);
3320 if (ret) {
3321 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3322 goto fail_sysfs;
3323 }
3324
3325 ret = btrfs_read_block_groups(fs_info);
3326 if (ret) {
3327 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3328 goto fail_sysfs;
3329 }
3330
3331 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3332 btrfs_warn(fs_info,
3333 "writable mount is not allowed due to too many missing devices");
3334 goto fail_sysfs;
3335 }
3336
3337 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3338 "btrfs-cleaner");
3339 if (IS_ERR(fs_info->cleaner_kthread))
3340 goto fail_sysfs;
3341
3342 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3343 tree_root,
3344 "btrfs-transaction");
3345 if (IS_ERR(fs_info->transaction_kthread))
3346 goto fail_cleaner;
3347
3348 if (!btrfs_test_opt(fs_info, NOSSD) &&
3349 !fs_info->fs_devices->rotating) {
3350 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3351 }
3352
3353 /*
3354 * Mount does not set all options immediately, we can do it now and do
3355 * not have to wait for transaction commit
3356 */
3357 btrfs_apply_pending_changes(fs_info);
3358
3359#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3360 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3361 ret = btrfsic_mount(fs_info, fs_devices,
3362 btrfs_test_opt(fs_info,
3363 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3364 1 : 0,
3365 fs_info->check_integrity_print_mask);
3366 if (ret)
3367 btrfs_warn(fs_info,
3368 "failed to initialize integrity check module: %d",
3369 ret);
3370 }
3371#endif
3372 ret = btrfs_read_qgroup_config(fs_info);
3373 if (ret)
3374 goto fail_trans_kthread;
3375
3376 if (btrfs_build_ref_tree(fs_info))
3377 btrfs_err(fs_info, "couldn't build ref tree");
3378
3379 /* do not make disk changes in broken FS or nologreplay is given */
3380 if (btrfs_super_log_root(disk_super) != 0 &&
3381 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3382 btrfs_info(fs_info, "start tree-log replay");
3383 ret = btrfs_replay_log(fs_info, fs_devices);
3384 if (ret) {
3385 err = ret;
3386 goto fail_qgroup;
3387 }
3388 }
3389
3390 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3391 if (IS_ERR(fs_info->fs_root)) {
3392 err = PTR_ERR(fs_info->fs_root);
3393 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3394 fs_info->fs_root = NULL;
3395 goto fail_qgroup;
3396 }
3397
3398 if (sb_rdonly(sb))
3399 goto clear_oneshot;
3400
3401 ret = btrfs_start_pre_rw_mount(fs_info);
3402 if (ret) {
3403 close_ctree(fs_info);
3404 return ret;
3405 }
3406 btrfs_discard_resume(fs_info);
3407
3408 if (fs_info->uuid_root &&
3409 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3410 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3411 btrfs_info(fs_info, "checking UUID tree");
3412 ret = btrfs_check_uuid_tree(fs_info);
3413 if (ret) {
3414 btrfs_warn(fs_info,
3415 "failed to check the UUID tree: %d", ret);
3416 close_ctree(fs_info);
3417 return ret;
3418 }
3419 }
3420
3421 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3422
3423clear_oneshot:
3424 btrfs_clear_oneshot_options(fs_info);
3425 return 0;
3426
3427fail_qgroup:
3428 btrfs_free_qgroup_config(fs_info);
3429fail_trans_kthread:
3430 kthread_stop(fs_info->transaction_kthread);
3431 btrfs_cleanup_transaction(fs_info);
3432 btrfs_free_fs_roots(fs_info);
3433fail_cleaner:
3434 kthread_stop(fs_info->cleaner_kthread);
3435
3436 /*
3437 * make sure we're done with the btree inode before we stop our
3438 * kthreads
3439 */
3440 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3441
3442fail_sysfs:
3443 btrfs_sysfs_remove_mounted(fs_info);
3444
3445fail_fsdev_sysfs:
3446 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3447
3448fail_block_groups:
3449 btrfs_put_block_group_cache(fs_info);
3450
3451fail_tree_roots:
3452 if (fs_info->data_reloc_root)
3453 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3454 free_root_pointers(fs_info, true);
3455 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3456
3457fail_sb_buffer:
3458 btrfs_stop_all_workers(fs_info);
3459 btrfs_free_block_groups(fs_info);
3460fail_alloc:
3461 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3462
3463 iput(fs_info->btree_inode);
3464fail:
3465 btrfs_close_devices(fs_info->fs_devices);
3466 return err;
3467}
3468ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3469
3470static void btrfs_end_super_write(struct bio *bio)
3471{
3472 struct btrfs_device *device = bio->bi_private;
3473 struct bio_vec *bvec;
3474 struct bvec_iter_all iter_all;
3475 struct page *page;
3476
3477 bio_for_each_segment_all(bvec, bio, iter_all) {
3478 page = bvec->bv_page;
3479
3480 if (bio->bi_status) {
3481 btrfs_warn_rl_in_rcu(device->fs_info,
3482 "lost page write due to IO error on %s (%d)",
3483 rcu_str_deref(device->name),
3484 blk_status_to_errno(bio->bi_status));
3485 ClearPageUptodate(page);
3486 SetPageError(page);
3487 btrfs_dev_stat_inc_and_print(device,
3488 BTRFS_DEV_STAT_WRITE_ERRS);
3489 } else {
3490 SetPageUptodate(page);
3491 }
3492
3493 put_page(page);
3494 unlock_page(page);
3495 }
3496
3497 bio_put(bio);
3498}
3499
3500struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3501 int copy_num)
3502{
3503 struct btrfs_super_block *super;
3504 struct page *page;
3505 u64 bytenr, bytenr_orig;
3506 struct address_space *mapping = bdev->bd_inode->i_mapping;
3507 int ret;
3508
3509 bytenr_orig = btrfs_sb_offset(copy_num);
3510 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3511 if (ret == -ENOENT)
3512 return ERR_PTR(-EINVAL);
3513 else if (ret)
3514 return ERR_PTR(ret);
3515
3516 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3517 return ERR_PTR(-EINVAL);
3518
3519 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3520 if (IS_ERR(page))
3521 return ERR_CAST(page);
3522
3523 super = page_address(page);
3524 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3525 btrfs_release_disk_super(super);
3526 return ERR_PTR(-ENODATA);
3527 }
3528
3529 if (btrfs_super_bytenr(super) != bytenr_orig) {
3530 btrfs_release_disk_super(super);
3531 return ERR_PTR(-EINVAL);
3532 }
3533
3534 return super;
3535}
3536
3537
3538struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3539{
3540 struct btrfs_super_block *super, *latest = NULL;
3541 int i;
3542 u64 transid = 0;
3543
3544 /* we would like to check all the supers, but that would make
3545 * a btrfs mount succeed after a mkfs from a different FS.
3546 * So, we need to add a special mount option to scan for
3547 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3548 */
3549 for (i = 0; i < 1; i++) {
3550 super = btrfs_read_dev_one_super(bdev, i);
3551 if (IS_ERR(super))
3552 continue;
3553
3554 if (!latest || btrfs_super_generation(super) > transid) {
3555 if (latest)
3556 btrfs_release_disk_super(super);
3557
3558 latest = super;
3559 transid = btrfs_super_generation(super);
3560 }
3561 }
3562
3563 return super;
3564}
3565
3566/*
3567 * Write superblock @sb to the @device. Do not wait for completion, all the
3568 * pages we use for writing are locked.
3569 *
3570 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3571 * the expected device size at commit time. Note that max_mirrors must be
3572 * same for write and wait phases.
3573 *
3574 * Return number of errors when page is not found or submission fails.
3575 */
3576static int write_dev_supers(struct btrfs_device *device,
3577 struct btrfs_super_block *sb, int max_mirrors)
3578{
3579 struct btrfs_fs_info *fs_info = device->fs_info;
3580 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3581 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3582 int i;
3583 int errors = 0;
3584 int ret;
3585 u64 bytenr, bytenr_orig;
3586
3587 if (max_mirrors == 0)
3588 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3589
3590 shash->tfm = fs_info->csum_shash;
3591
3592 for (i = 0; i < max_mirrors; i++) {
3593 struct page *page;
3594 struct bio *bio;
3595 struct btrfs_super_block *disk_super;
3596
3597 bytenr_orig = btrfs_sb_offset(i);
3598 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3599 if (ret == -ENOENT) {
3600 continue;
3601 } else if (ret < 0) {
3602 btrfs_err(device->fs_info,
3603 "couldn't get super block location for mirror %d",
3604 i);
3605 errors++;
3606 continue;
3607 }
3608 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3609 device->commit_total_bytes)
3610 break;
3611
3612 btrfs_set_super_bytenr(sb, bytenr_orig);
3613
3614 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3615 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3616 sb->csum);
3617
3618 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3619 GFP_NOFS);
3620 if (!page) {
3621 btrfs_err(device->fs_info,
3622 "couldn't get super block page for bytenr %llu",
3623 bytenr);
3624 errors++;
3625 continue;
3626 }
3627
3628 /* Bump the refcount for wait_dev_supers() */
3629 get_page(page);
3630
3631 disk_super = page_address(page);
3632 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3633
3634 /*
3635 * Directly use bios here instead of relying on the page cache
3636 * to do I/O, so we don't lose the ability to do integrity
3637 * checking.
3638 */
3639 bio = bio_alloc(GFP_NOFS, 1);
3640 bio_set_dev(bio, device->bdev);
3641 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3642 bio->bi_private = device;
3643 bio->bi_end_io = btrfs_end_super_write;
3644 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3645 offset_in_page(bytenr));
3646
3647 /*
3648 * We FUA only the first super block. The others we allow to
3649 * go down lazy and there's a short window where the on-disk
3650 * copies might still contain the older version.
3651 */
3652 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3653 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3654 bio->bi_opf |= REQ_FUA;
3655
3656 btrfsic_submit_bio(bio);
3657 btrfs_advance_sb_log(device, i);
3658 }
3659 return errors < i ? 0 : -1;
3660}
3661
3662/*
3663 * Wait for write completion of superblocks done by write_dev_supers,
3664 * @max_mirrors same for write and wait phases.
3665 *
3666 * Return number of errors when page is not found or not marked up to
3667 * date.
3668 */
3669static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3670{
3671 int i;
3672 int errors = 0;
3673 bool primary_failed = false;
3674 int ret;
3675 u64 bytenr;
3676
3677 if (max_mirrors == 0)
3678 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3679
3680 for (i = 0; i < max_mirrors; i++) {
3681 struct page *page;
3682
3683 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3684 if (ret == -ENOENT) {
3685 break;
3686 } else if (ret < 0) {
3687 errors++;
3688 if (i == 0)
3689 primary_failed = true;
3690 continue;
3691 }
3692 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3693 device->commit_total_bytes)
3694 break;
3695
3696 page = find_get_page(device->bdev->bd_inode->i_mapping,
3697 bytenr >> PAGE_SHIFT);
3698 if (!page) {
3699 errors++;
3700 if (i == 0)
3701 primary_failed = true;
3702 continue;
3703 }
3704 /* Page is submitted locked and unlocked once the IO completes */
3705 wait_on_page_locked(page);
3706 if (PageError(page)) {
3707 errors++;
3708 if (i == 0)
3709 primary_failed = true;
3710 }
3711
3712 /* Drop our reference */
3713 put_page(page);
3714
3715 /* Drop the reference from the writing run */
3716 put_page(page);
3717 }
3718
3719 /* log error, force error return */
3720 if (primary_failed) {
3721 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3722 device->devid);
3723 return -1;
3724 }
3725
3726 return errors < i ? 0 : -1;
3727}
3728
3729/*
3730 * endio for the write_dev_flush, this will wake anyone waiting
3731 * for the barrier when it is done
3732 */
3733static void btrfs_end_empty_barrier(struct bio *bio)
3734{
3735 complete(bio->bi_private);
3736}
3737
3738/*
3739 * Submit a flush request to the device if it supports it. Error handling is
3740 * done in the waiting counterpart.
3741 */
3742static void write_dev_flush(struct btrfs_device *device)
3743{
3744 struct request_queue *q = bdev_get_queue(device->bdev);
3745 struct bio *bio = device->flush_bio;
3746
3747 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3748 return;
3749
3750 bio_reset(bio);
3751 bio->bi_end_io = btrfs_end_empty_barrier;
3752 bio_set_dev(bio, device->bdev);
3753 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3754 init_completion(&device->flush_wait);
3755 bio->bi_private = &device->flush_wait;
3756
3757 btrfsic_submit_bio(bio);
3758 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3759}
3760
3761/*
3762 * If the flush bio has been submitted by write_dev_flush, wait for it.
3763 */
3764static blk_status_t wait_dev_flush(struct btrfs_device *device)
3765{
3766 struct bio *bio = device->flush_bio;
3767
3768 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3769 return BLK_STS_OK;
3770
3771 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3772 wait_for_completion_io(&device->flush_wait);
3773
3774 return bio->bi_status;
3775}
3776
3777static int check_barrier_error(struct btrfs_fs_info *fs_info)
3778{
3779 if (!btrfs_check_rw_degradable(fs_info, NULL))
3780 return -EIO;
3781 return 0;
3782}
3783
3784/*
3785 * send an empty flush down to each device in parallel,
3786 * then wait for them
3787 */
3788static int barrier_all_devices(struct btrfs_fs_info *info)
3789{
3790 struct list_head *head;
3791 struct btrfs_device *dev;
3792 int errors_wait = 0;
3793 blk_status_t ret;
3794
3795 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3796 /* send down all the barriers */
3797 head = &info->fs_devices->devices;
3798 list_for_each_entry(dev, head, dev_list) {
3799 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3800 continue;
3801 if (!dev->bdev)
3802 continue;
3803 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3804 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3805 continue;
3806
3807 write_dev_flush(dev);
3808 dev->last_flush_error = BLK_STS_OK;
3809 }
3810
3811 /* wait for all the barriers */
3812 list_for_each_entry(dev, head, dev_list) {
3813 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3814 continue;
3815 if (!dev->bdev) {
3816 errors_wait++;
3817 continue;
3818 }
3819 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3820 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3821 continue;
3822
3823 ret = wait_dev_flush(dev);
3824 if (ret) {
3825 dev->last_flush_error = ret;
3826 btrfs_dev_stat_inc_and_print(dev,
3827 BTRFS_DEV_STAT_FLUSH_ERRS);
3828 errors_wait++;
3829 }
3830 }
3831
3832 if (errors_wait) {
3833 /*
3834 * At some point we need the status of all disks
3835 * to arrive at the volume status. So error checking
3836 * is being pushed to a separate loop.
3837 */
3838 return check_barrier_error(info);
3839 }
3840 return 0;
3841}
3842
3843int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3844{
3845 int raid_type;
3846 int min_tolerated = INT_MAX;
3847
3848 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3849 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3850 min_tolerated = min_t(int, min_tolerated,
3851 btrfs_raid_array[BTRFS_RAID_SINGLE].
3852 tolerated_failures);
3853
3854 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3855 if (raid_type == BTRFS_RAID_SINGLE)
3856 continue;
3857 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3858 continue;
3859 min_tolerated = min_t(int, min_tolerated,
3860 btrfs_raid_array[raid_type].
3861 tolerated_failures);
3862 }
3863
3864 if (min_tolerated == INT_MAX) {
3865 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3866 min_tolerated = 0;
3867 }
3868
3869 return min_tolerated;
3870}
3871
3872int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3873{
3874 struct list_head *head;
3875 struct btrfs_device *dev;
3876 struct btrfs_super_block *sb;
3877 struct btrfs_dev_item *dev_item;
3878 int ret;
3879 int do_barriers;
3880 int max_errors;
3881 int total_errors = 0;
3882 u64 flags;
3883
3884 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3885
3886 /*
3887 * max_mirrors == 0 indicates we're from commit_transaction,
3888 * not from fsync where the tree roots in fs_info have not
3889 * been consistent on disk.
3890 */
3891 if (max_mirrors == 0)
3892 backup_super_roots(fs_info);
3893
3894 sb = fs_info->super_for_commit;
3895 dev_item = &sb->dev_item;
3896
3897 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3898 head = &fs_info->fs_devices->devices;
3899 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3900
3901 if (do_barriers) {
3902 ret = barrier_all_devices(fs_info);
3903 if (ret) {
3904 mutex_unlock(
3905 &fs_info->fs_devices->device_list_mutex);
3906 btrfs_handle_fs_error(fs_info, ret,
3907 "errors while submitting device barriers.");
3908 return ret;
3909 }
3910 }
3911
3912 list_for_each_entry(dev, head, dev_list) {
3913 if (!dev->bdev) {
3914 total_errors++;
3915 continue;
3916 }
3917 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3918 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3919 continue;
3920
3921 btrfs_set_stack_device_generation(dev_item, 0);
3922 btrfs_set_stack_device_type(dev_item, dev->type);
3923 btrfs_set_stack_device_id(dev_item, dev->devid);
3924 btrfs_set_stack_device_total_bytes(dev_item,
3925 dev->commit_total_bytes);
3926 btrfs_set_stack_device_bytes_used(dev_item,
3927 dev->commit_bytes_used);
3928 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3929 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3930 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3931 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3932 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3933 BTRFS_FSID_SIZE);
3934
3935 flags = btrfs_super_flags(sb);
3936 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3937
3938 ret = btrfs_validate_write_super(fs_info, sb);
3939 if (ret < 0) {
3940 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3941 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3942 "unexpected superblock corruption detected");
3943 return -EUCLEAN;
3944 }
3945
3946 ret = write_dev_supers(dev, sb, max_mirrors);
3947 if (ret)
3948 total_errors++;
3949 }
3950 if (total_errors > max_errors) {
3951 btrfs_err(fs_info, "%d errors while writing supers",
3952 total_errors);
3953 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3954
3955 /* FUA is masked off if unsupported and can't be the reason */
3956 btrfs_handle_fs_error(fs_info, -EIO,
3957 "%d errors while writing supers",
3958 total_errors);
3959 return -EIO;
3960 }
3961
3962 total_errors = 0;
3963 list_for_each_entry(dev, head, dev_list) {
3964 if (!dev->bdev)
3965 continue;
3966 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3967 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3968 continue;
3969
3970 ret = wait_dev_supers(dev, max_mirrors);
3971 if (ret)
3972 total_errors++;
3973 }
3974 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3975 if (total_errors > max_errors) {
3976 btrfs_handle_fs_error(fs_info, -EIO,
3977 "%d errors while writing supers",
3978 total_errors);
3979 return -EIO;
3980 }
3981 return 0;
3982}
3983
3984/* Drop a fs root from the radix tree and free it. */
3985void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3986 struct btrfs_root *root)
3987{
3988 bool drop_ref = false;
3989
3990 spin_lock(&fs_info->fs_roots_radix_lock);
3991 radix_tree_delete(&fs_info->fs_roots_radix,
3992 (unsigned long)root->root_key.objectid);
3993 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3994 drop_ref = true;
3995 spin_unlock(&fs_info->fs_roots_radix_lock);
3996
3997 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3998 ASSERT(root->log_root == NULL);
3999 if (root->reloc_root) {
4000 btrfs_put_root(root->reloc_root);
4001 root->reloc_root = NULL;
4002 }
4003 }
4004
4005 if (drop_ref)
4006 btrfs_put_root(root);
4007}
4008
4009int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4010{
4011 u64 root_objectid = 0;
4012 struct btrfs_root *gang[8];
4013 int i = 0;
4014 int err = 0;
4015 unsigned int ret = 0;
4016
4017 while (1) {
4018 spin_lock(&fs_info->fs_roots_radix_lock);
4019 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4020 (void **)gang, root_objectid,
4021 ARRAY_SIZE(gang));
4022 if (!ret) {
4023 spin_unlock(&fs_info->fs_roots_radix_lock);
4024 break;
4025 }
4026 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4027
4028 for (i = 0; i < ret; i++) {
4029 /* Avoid to grab roots in dead_roots */
4030 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4031 gang[i] = NULL;
4032 continue;
4033 }
4034 /* grab all the search result for later use */
4035 gang[i] = btrfs_grab_root(gang[i]);
4036 }
4037 spin_unlock(&fs_info->fs_roots_radix_lock);
4038
4039 for (i = 0; i < ret; i++) {
4040 if (!gang[i])
4041 continue;
4042 root_objectid = gang[i]->root_key.objectid;
4043 err = btrfs_orphan_cleanup(gang[i]);
4044 if (err)
4045 break;
4046 btrfs_put_root(gang[i]);
4047 }
4048 root_objectid++;
4049 }
4050
4051 /* release the uncleaned roots due to error */
4052 for (; i < ret; i++) {
4053 if (gang[i])
4054 btrfs_put_root(gang[i]);
4055 }
4056 return err;
4057}
4058
4059int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4060{
4061 struct btrfs_root *root = fs_info->tree_root;
4062 struct btrfs_trans_handle *trans;
4063
4064 mutex_lock(&fs_info->cleaner_mutex);
4065 btrfs_run_delayed_iputs(fs_info);
4066 mutex_unlock(&fs_info->cleaner_mutex);
4067 wake_up_process(fs_info->cleaner_kthread);
4068
4069 /* wait until ongoing cleanup work done */
4070 down_write(&fs_info->cleanup_work_sem);
4071 up_write(&fs_info->cleanup_work_sem);
4072
4073 trans = btrfs_join_transaction(root);
4074 if (IS_ERR(trans))
4075 return PTR_ERR(trans);
4076 return btrfs_commit_transaction(trans);
4077}
4078
4079void __cold close_ctree(struct btrfs_fs_info *fs_info)
4080{
4081 int ret;
4082
4083 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4084 /*
4085 * We don't want the cleaner to start new transactions, add more delayed
4086 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4087 * because that frees the task_struct, and the transaction kthread might
4088 * still try to wake up the cleaner.
4089 */
4090 kthread_park(fs_info->cleaner_kthread);
4091
4092 /* wait for the qgroup rescan worker to stop */
4093 btrfs_qgroup_wait_for_completion(fs_info, false);
4094
4095 /* wait for the uuid_scan task to finish */
4096 down(&fs_info->uuid_tree_rescan_sem);
4097 /* avoid complains from lockdep et al., set sem back to initial state */
4098 up(&fs_info->uuid_tree_rescan_sem);
4099
4100 /* pause restriper - we want to resume on mount */
4101 btrfs_pause_balance(fs_info);
4102
4103 btrfs_dev_replace_suspend_for_unmount(fs_info);
4104
4105 btrfs_scrub_cancel(fs_info);
4106
4107 /* wait for any defraggers to finish */
4108 wait_event(fs_info->transaction_wait,
4109 (atomic_read(&fs_info->defrag_running) == 0));
4110
4111 /* clear out the rbtree of defraggable inodes */
4112 btrfs_cleanup_defrag_inodes(fs_info);
4113
4114 cancel_work_sync(&fs_info->async_reclaim_work);
4115 cancel_work_sync(&fs_info->async_data_reclaim_work);
4116
4117 /* Cancel or finish ongoing discard work */
4118 btrfs_discard_cleanup(fs_info);
4119
4120 if (!sb_rdonly(fs_info->sb)) {
4121 /*
4122 * The cleaner kthread is stopped, so do one final pass over
4123 * unused block groups.
4124 */
4125 btrfs_delete_unused_bgs(fs_info);
4126
4127 /*
4128 * There might be existing delayed inode workers still running
4129 * and holding an empty delayed inode item. We must wait for
4130 * them to complete first because they can create a transaction.
4131 * This happens when someone calls btrfs_balance_delayed_items()
4132 * and then a transaction commit runs the same delayed nodes
4133 * before any delayed worker has done something with the nodes.
4134 * We must wait for any worker here and not at transaction
4135 * commit time since that could cause a deadlock.
4136 * This is a very rare case.
4137 */
4138 btrfs_flush_workqueue(fs_info->delayed_workers);
4139
4140 ret = btrfs_commit_super(fs_info);
4141 if (ret)
4142 btrfs_err(fs_info, "commit super ret %d", ret);
4143 }
4144
4145 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4146 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4147 btrfs_error_commit_super(fs_info);
4148
4149 kthread_stop(fs_info->transaction_kthread);
4150 kthread_stop(fs_info->cleaner_kthread);
4151
4152 ASSERT(list_empty(&fs_info->delayed_iputs));
4153 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4154
4155 if (btrfs_check_quota_leak(fs_info)) {
4156 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4157 btrfs_err(fs_info, "qgroup reserved space leaked");
4158 }
4159
4160 btrfs_free_qgroup_config(fs_info);
4161 ASSERT(list_empty(&fs_info->delalloc_roots));
4162
4163 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4164 btrfs_info(fs_info, "at unmount delalloc count %lld",
4165 percpu_counter_sum(&fs_info->delalloc_bytes));
4166 }
4167
4168 if (percpu_counter_sum(&fs_info->dio_bytes))
4169 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4170 percpu_counter_sum(&fs_info->dio_bytes));
4171
4172 btrfs_sysfs_remove_mounted(fs_info);
4173 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4174
4175 btrfs_put_block_group_cache(fs_info);
4176
4177 /*
4178 * we must make sure there is not any read request to
4179 * submit after we stopping all workers.
4180 */
4181 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4182 btrfs_stop_all_workers(fs_info);
4183
4184 /* We shouldn't have any transaction open at this point */
4185 ASSERT(list_empty(&fs_info->trans_list));
4186
4187 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4188 free_root_pointers(fs_info, true);
4189 btrfs_free_fs_roots(fs_info);
4190
4191 /*
4192 * We must free the block groups after dropping the fs_roots as we could
4193 * have had an IO error and have left over tree log blocks that aren't
4194 * cleaned up until the fs roots are freed. This makes the block group
4195 * accounting appear to be wrong because there's pending reserved bytes,
4196 * so make sure we do the block group cleanup afterwards.
4197 */
4198 btrfs_free_block_groups(fs_info);
4199
4200 iput(fs_info->btree_inode);
4201
4202#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4203 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4204 btrfsic_unmount(fs_info->fs_devices);
4205#endif
4206
4207 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4208 btrfs_close_devices(fs_info->fs_devices);
4209}
4210
4211int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4212 int atomic)
4213{
4214 int ret;
4215 struct inode *btree_inode = buf->pages[0]->mapping->host;
4216
4217 ret = extent_buffer_uptodate(buf);
4218 if (!ret)
4219 return ret;
4220
4221 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4222 parent_transid, atomic);
4223 if (ret == -EAGAIN)
4224 return ret;
4225 return !ret;
4226}
4227
4228void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4229{
4230 struct btrfs_fs_info *fs_info = buf->fs_info;
4231 u64 transid = btrfs_header_generation(buf);
4232 int was_dirty;
4233
4234#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4235 /*
4236 * This is a fast path so only do this check if we have sanity tests
4237 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4238 * outside of the sanity tests.
4239 */
4240 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4241 return;
4242#endif
4243 btrfs_assert_tree_locked(buf);
4244 if (transid != fs_info->generation)
4245 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4246 buf->start, transid, fs_info->generation);
4247 was_dirty = set_extent_buffer_dirty(buf);
4248 if (!was_dirty)
4249 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4250 buf->len,
4251 fs_info->dirty_metadata_batch);
4252#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4253 /*
4254 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4255 * but item data not updated.
4256 * So here we should only check item pointers, not item data.
4257 */
4258 if (btrfs_header_level(buf) == 0 &&
4259 btrfs_check_leaf_relaxed(buf)) {
4260 btrfs_print_leaf(buf);
4261 ASSERT(0);
4262 }
4263#endif
4264}
4265
4266static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4267 int flush_delayed)
4268{
4269 /*
4270 * looks as though older kernels can get into trouble with
4271 * this code, they end up stuck in balance_dirty_pages forever
4272 */
4273 int ret;
4274
4275 if (current->flags & PF_MEMALLOC)
4276 return;
4277
4278 if (flush_delayed)
4279 btrfs_balance_delayed_items(fs_info);
4280
4281 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4282 BTRFS_DIRTY_METADATA_THRESH,
4283 fs_info->dirty_metadata_batch);
4284 if (ret > 0) {
4285 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4286 }
4287}
4288
4289void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4290{
4291 __btrfs_btree_balance_dirty(fs_info, 1);
4292}
4293
4294void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4295{
4296 __btrfs_btree_balance_dirty(fs_info, 0);
4297}
4298
4299int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4300 struct btrfs_key *first_key)
4301{
4302 return btree_read_extent_buffer_pages(buf, parent_transid,
4303 level, first_key);
4304}
4305
4306static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4307{
4308 /* cleanup FS via transaction */
4309 btrfs_cleanup_transaction(fs_info);
4310
4311 mutex_lock(&fs_info->cleaner_mutex);
4312 btrfs_run_delayed_iputs(fs_info);
4313 mutex_unlock(&fs_info->cleaner_mutex);
4314
4315 down_write(&fs_info->cleanup_work_sem);
4316 up_write(&fs_info->cleanup_work_sem);
4317}
4318
4319static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4320{
4321 struct btrfs_root *gang[8];
4322 u64 root_objectid = 0;
4323 int ret;
4324
4325 spin_lock(&fs_info->fs_roots_radix_lock);
4326 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4327 (void **)gang, root_objectid,
4328 ARRAY_SIZE(gang))) != 0) {
4329 int i;
4330
4331 for (i = 0; i < ret; i++)
4332 gang[i] = btrfs_grab_root(gang[i]);
4333 spin_unlock(&fs_info->fs_roots_radix_lock);
4334
4335 for (i = 0; i < ret; i++) {
4336 if (!gang[i])
4337 continue;
4338 root_objectid = gang[i]->root_key.objectid;
4339 btrfs_free_log(NULL, gang[i]);
4340 btrfs_put_root(gang[i]);
4341 }
4342 root_objectid++;
4343 spin_lock(&fs_info->fs_roots_radix_lock);
4344 }
4345 spin_unlock(&fs_info->fs_roots_radix_lock);
4346 btrfs_free_log_root_tree(NULL, fs_info);
4347}
4348
4349static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4350{
4351 struct btrfs_ordered_extent *ordered;
4352
4353 spin_lock(&root->ordered_extent_lock);
4354 /*
4355 * This will just short circuit the ordered completion stuff which will
4356 * make sure the ordered extent gets properly cleaned up.
4357 */
4358 list_for_each_entry(ordered, &root->ordered_extents,
4359 root_extent_list)
4360 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4361 spin_unlock(&root->ordered_extent_lock);
4362}
4363
4364static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4365{
4366 struct btrfs_root *root;
4367 struct list_head splice;
4368
4369 INIT_LIST_HEAD(&splice);
4370
4371 spin_lock(&fs_info->ordered_root_lock);
4372 list_splice_init(&fs_info->ordered_roots, &splice);
4373 while (!list_empty(&splice)) {
4374 root = list_first_entry(&splice, struct btrfs_root,
4375 ordered_root);
4376 list_move_tail(&root->ordered_root,
4377 &fs_info->ordered_roots);
4378
4379 spin_unlock(&fs_info->ordered_root_lock);
4380 btrfs_destroy_ordered_extents(root);
4381
4382 cond_resched();
4383 spin_lock(&fs_info->ordered_root_lock);
4384 }
4385 spin_unlock(&fs_info->ordered_root_lock);
4386
4387 /*
4388 * We need this here because if we've been flipped read-only we won't
4389 * get sync() from the umount, so we need to make sure any ordered
4390 * extents that haven't had their dirty pages IO start writeout yet
4391 * actually get run and error out properly.
4392 */
4393 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4394}
4395
4396static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4397 struct btrfs_fs_info *fs_info)
4398{
4399 struct rb_node *node;
4400 struct btrfs_delayed_ref_root *delayed_refs;
4401 struct btrfs_delayed_ref_node *ref;
4402 int ret = 0;
4403
4404 delayed_refs = &trans->delayed_refs;
4405
4406 spin_lock(&delayed_refs->lock);
4407 if (atomic_read(&delayed_refs->num_entries) == 0) {
4408 spin_unlock(&delayed_refs->lock);
4409 btrfs_debug(fs_info, "delayed_refs has NO entry");
4410 return ret;
4411 }
4412
4413 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4414 struct btrfs_delayed_ref_head *head;
4415 struct rb_node *n;
4416 bool pin_bytes = false;
4417
4418 head = rb_entry(node, struct btrfs_delayed_ref_head,
4419 href_node);
4420 if (btrfs_delayed_ref_lock(delayed_refs, head))
4421 continue;
4422
4423 spin_lock(&head->lock);
4424 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4425 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4426 ref_node);
4427 ref->in_tree = 0;
4428 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4429 RB_CLEAR_NODE(&ref->ref_node);
4430 if (!list_empty(&ref->add_list))
4431 list_del(&ref->add_list);
4432 atomic_dec(&delayed_refs->num_entries);
4433 btrfs_put_delayed_ref(ref);
4434 }
4435 if (head->must_insert_reserved)
4436 pin_bytes = true;
4437 btrfs_free_delayed_extent_op(head->extent_op);
4438 btrfs_delete_ref_head(delayed_refs, head);
4439 spin_unlock(&head->lock);
4440 spin_unlock(&delayed_refs->lock);
4441 mutex_unlock(&head->mutex);
4442
4443 if (pin_bytes) {
4444 struct btrfs_block_group *cache;
4445
4446 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4447 BUG_ON(!cache);
4448
4449 spin_lock(&cache->space_info->lock);
4450 spin_lock(&cache->lock);
4451 cache->pinned += head->num_bytes;
4452 btrfs_space_info_update_bytes_pinned(fs_info,
4453 cache->space_info, head->num_bytes);
4454 cache->reserved -= head->num_bytes;
4455 cache->space_info->bytes_reserved -= head->num_bytes;
4456 spin_unlock(&cache->lock);
4457 spin_unlock(&cache->space_info->lock);
4458 percpu_counter_add_batch(
4459 &cache->space_info->total_bytes_pinned,
4460 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4461
4462 btrfs_put_block_group(cache);
4463
4464 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4465 head->bytenr + head->num_bytes - 1);
4466 }
4467 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4468 btrfs_put_delayed_ref_head(head);
4469 cond_resched();
4470 spin_lock(&delayed_refs->lock);
4471 }
4472 btrfs_qgroup_destroy_extent_records(trans);
4473
4474 spin_unlock(&delayed_refs->lock);
4475
4476 return ret;
4477}
4478
4479static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4480{
4481 struct btrfs_inode *btrfs_inode;
4482 struct list_head splice;
4483
4484 INIT_LIST_HEAD(&splice);
4485
4486 spin_lock(&root->delalloc_lock);
4487 list_splice_init(&root->delalloc_inodes, &splice);
4488
4489 while (!list_empty(&splice)) {
4490 struct inode *inode = NULL;
4491 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4492 delalloc_inodes);
4493 __btrfs_del_delalloc_inode(root, btrfs_inode);
4494 spin_unlock(&root->delalloc_lock);
4495
4496 /*
4497 * Make sure we get a live inode and that it'll not disappear
4498 * meanwhile.
4499 */
4500 inode = igrab(&btrfs_inode->vfs_inode);
4501 if (inode) {
4502 invalidate_inode_pages2(inode->i_mapping);
4503 iput(inode);
4504 }
4505 spin_lock(&root->delalloc_lock);
4506 }
4507 spin_unlock(&root->delalloc_lock);
4508}
4509
4510static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4511{
4512 struct btrfs_root *root;
4513 struct list_head splice;
4514
4515 INIT_LIST_HEAD(&splice);
4516
4517 spin_lock(&fs_info->delalloc_root_lock);
4518 list_splice_init(&fs_info->delalloc_roots, &splice);
4519 while (!list_empty(&splice)) {
4520 root = list_first_entry(&splice, struct btrfs_root,
4521 delalloc_root);
4522 root = btrfs_grab_root(root);
4523 BUG_ON(!root);
4524 spin_unlock(&fs_info->delalloc_root_lock);
4525
4526 btrfs_destroy_delalloc_inodes(root);
4527 btrfs_put_root(root);
4528
4529 spin_lock(&fs_info->delalloc_root_lock);
4530 }
4531 spin_unlock(&fs_info->delalloc_root_lock);
4532}
4533
4534static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4535 struct extent_io_tree *dirty_pages,
4536 int mark)
4537{
4538 int ret;
4539 struct extent_buffer *eb;
4540 u64 start = 0;
4541 u64 end;
4542
4543 while (1) {
4544 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4545 mark, NULL);
4546 if (ret)
4547 break;
4548
4549 clear_extent_bits(dirty_pages, start, end, mark);
4550 while (start <= end) {
4551 eb = find_extent_buffer(fs_info, start);
4552 start += fs_info->nodesize;
4553 if (!eb)
4554 continue;
4555 wait_on_extent_buffer_writeback(eb);
4556
4557 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4558 &eb->bflags))
4559 clear_extent_buffer_dirty(eb);
4560 free_extent_buffer_stale(eb);
4561 }
4562 }
4563
4564 return ret;
4565}
4566
4567static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4568 struct extent_io_tree *unpin)
4569{
4570 u64 start;
4571 u64 end;
4572 int ret;
4573
4574 while (1) {
4575 struct extent_state *cached_state = NULL;
4576
4577 /*
4578 * The btrfs_finish_extent_commit() may get the same range as
4579 * ours between find_first_extent_bit and clear_extent_dirty.
4580 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4581 * the same extent range.
4582 */
4583 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4584 ret = find_first_extent_bit(unpin, 0, &start, &end,
4585 EXTENT_DIRTY, &cached_state);
4586 if (ret) {
4587 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4588 break;
4589 }
4590
4591 clear_extent_dirty(unpin, start, end, &cached_state);
4592 free_extent_state(cached_state);
4593 btrfs_error_unpin_extent_range(fs_info, start, end);
4594 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4595 cond_resched();
4596 }
4597
4598 return 0;
4599}
4600
4601static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4602{
4603 struct inode *inode;
4604
4605 inode = cache->io_ctl.inode;
4606 if (inode) {
4607 invalidate_inode_pages2(inode->i_mapping);
4608 BTRFS_I(inode)->generation = 0;
4609 cache->io_ctl.inode = NULL;
4610 iput(inode);
4611 }
4612 ASSERT(cache->io_ctl.pages == NULL);
4613 btrfs_put_block_group(cache);
4614}
4615
4616void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4617 struct btrfs_fs_info *fs_info)
4618{
4619 struct btrfs_block_group *cache;
4620
4621 spin_lock(&cur_trans->dirty_bgs_lock);
4622 while (!list_empty(&cur_trans->dirty_bgs)) {
4623 cache = list_first_entry(&cur_trans->dirty_bgs,
4624 struct btrfs_block_group,
4625 dirty_list);
4626
4627 if (!list_empty(&cache->io_list)) {
4628 spin_unlock(&cur_trans->dirty_bgs_lock);
4629 list_del_init(&cache->io_list);
4630 btrfs_cleanup_bg_io(cache);
4631 spin_lock(&cur_trans->dirty_bgs_lock);
4632 }
4633
4634 list_del_init(&cache->dirty_list);
4635 spin_lock(&cache->lock);
4636 cache->disk_cache_state = BTRFS_DC_ERROR;
4637 spin_unlock(&cache->lock);
4638
4639 spin_unlock(&cur_trans->dirty_bgs_lock);
4640 btrfs_put_block_group(cache);
4641 btrfs_delayed_refs_rsv_release(fs_info, 1);
4642 spin_lock(&cur_trans->dirty_bgs_lock);
4643 }
4644 spin_unlock(&cur_trans->dirty_bgs_lock);
4645
4646 /*
4647 * Refer to the definition of io_bgs member for details why it's safe
4648 * to use it without any locking
4649 */
4650 while (!list_empty(&cur_trans->io_bgs)) {
4651 cache = list_first_entry(&cur_trans->io_bgs,
4652 struct btrfs_block_group,
4653 io_list);
4654
4655 list_del_init(&cache->io_list);
4656 spin_lock(&cache->lock);
4657 cache->disk_cache_state = BTRFS_DC_ERROR;
4658 spin_unlock(&cache->lock);
4659 btrfs_cleanup_bg_io(cache);
4660 }
4661}
4662
4663void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4664 struct btrfs_fs_info *fs_info)
4665{
4666 struct btrfs_device *dev, *tmp;
4667
4668 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4669 ASSERT(list_empty(&cur_trans->dirty_bgs));
4670 ASSERT(list_empty(&cur_trans->io_bgs));
4671
4672 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4673 post_commit_list) {
4674 list_del_init(&dev->post_commit_list);
4675 }
4676
4677 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4678
4679 cur_trans->state = TRANS_STATE_COMMIT_START;
4680 wake_up(&fs_info->transaction_blocked_wait);
4681
4682 cur_trans->state = TRANS_STATE_UNBLOCKED;
4683 wake_up(&fs_info->transaction_wait);
4684
4685 btrfs_destroy_delayed_inodes(fs_info);
4686
4687 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4688 EXTENT_DIRTY);
4689 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4690
4691 cur_trans->state =TRANS_STATE_COMPLETED;
4692 wake_up(&cur_trans->commit_wait);
4693}
4694
4695static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4696{
4697 struct btrfs_transaction *t;
4698
4699 mutex_lock(&fs_info->transaction_kthread_mutex);
4700
4701 spin_lock(&fs_info->trans_lock);
4702 while (!list_empty(&fs_info->trans_list)) {
4703 t = list_first_entry(&fs_info->trans_list,
4704 struct btrfs_transaction, list);
4705 if (t->state >= TRANS_STATE_COMMIT_START) {
4706 refcount_inc(&t->use_count);
4707 spin_unlock(&fs_info->trans_lock);
4708 btrfs_wait_for_commit(fs_info, t->transid);
4709 btrfs_put_transaction(t);
4710 spin_lock(&fs_info->trans_lock);
4711 continue;
4712 }
4713 if (t == fs_info->running_transaction) {
4714 t->state = TRANS_STATE_COMMIT_DOING;
4715 spin_unlock(&fs_info->trans_lock);
4716 /*
4717 * We wait for 0 num_writers since we don't hold a trans
4718 * handle open currently for this transaction.
4719 */
4720 wait_event(t->writer_wait,
4721 atomic_read(&t->num_writers) == 0);
4722 } else {
4723 spin_unlock(&fs_info->trans_lock);
4724 }
4725 btrfs_cleanup_one_transaction(t, fs_info);
4726
4727 spin_lock(&fs_info->trans_lock);
4728 if (t == fs_info->running_transaction)
4729 fs_info->running_transaction = NULL;
4730 list_del_init(&t->list);
4731 spin_unlock(&fs_info->trans_lock);
4732
4733 btrfs_put_transaction(t);
4734 trace_btrfs_transaction_commit(fs_info->tree_root);
4735 spin_lock(&fs_info->trans_lock);
4736 }
4737 spin_unlock(&fs_info->trans_lock);
4738 btrfs_destroy_all_ordered_extents(fs_info);
4739 btrfs_destroy_delayed_inodes(fs_info);
4740 btrfs_assert_delayed_root_empty(fs_info);
4741 btrfs_destroy_all_delalloc_inodes(fs_info);
4742 btrfs_drop_all_logs(fs_info);
4743 mutex_unlock(&fs_info->transaction_kthread_mutex);
4744
4745 return 0;
4746}
4747
4748int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
4749{
4750 struct btrfs_path *path;
4751 int ret;
4752 struct extent_buffer *l;
4753 struct btrfs_key search_key;
4754 struct btrfs_key found_key;
4755 int slot;
4756
4757 path = btrfs_alloc_path();
4758 if (!path)
4759 return -ENOMEM;
4760
4761 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4762 search_key.type = -1;
4763 search_key.offset = (u64)-1;
4764 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4765 if (ret < 0)
4766 goto error;
4767 BUG_ON(ret == 0); /* Corruption */
4768 if (path->slots[0] > 0) {
4769 slot = path->slots[0] - 1;
4770 l = path->nodes[0];
4771 btrfs_item_key_to_cpu(l, &found_key, slot);
4772 *objectid = max_t(u64, found_key.objectid,
4773 BTRFS_FIRST_FREE_OBJECTID - 1);
4774 } else {
4775 *objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
4776 }
4777 ret = 0;
4778error:
4779 btrfs_free_path(path);
4780 return ret;
4781}
4782
4783int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
4784{
4785 int ret;
4786 mutex_lock(&root->objectid_mutex);
4787
4788 if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4789 btrfs_warn(root->fs_info,
4790 "the objectid of root %llu reaches its highest value",
4791 root->root_key.objectid);
4792 ret = -ENOSPC;
4793 goto out;
4794 }
4795
4796 *objectid = ++root->highest_objectid;
4797 ret = 0;
4798out:
4799 mutex_unlock(&root->objectid_mutex);
4800 return ret;
4801}