]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - fs/btrfs/disk-io.c
btrfs: root->fs_info cleanup, update_block_group{,flags}
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / disk-io.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/blkdev.h>
21#include <linux/scatterlist.h>
22#include <linux/swap.h>
23#include <linux/radix-tree.h>
24#include <linux/writeback.h>
25#include <linux/buffer_head.h>
26#include <linux/workqueue.h>
27#include <linux/kthread.h>
28#include <linux/slab.h>
29#include <linux/migrate.h>
30#include <linux/ratelimit.h>
31#include <linux/uuid.h>
32#include <linux/semaphore.h>
33#include <asm/unaligned.h>
34#include "ctree.h"
35#include "disk-io.h"
36#include "hash.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39#include "volumes.h"
40#include "print-tree.h"
41#include "locking.h"
42#include "tree-log.h"
43#include "free-space-cache.h"
44#include "free-space-tree.h"
45#include "inode-map.h"
46#include "check-integrity.h"
47#include "rcu-string.h"
48#include "dev-replace.h"
49#include "raid56.h"
50#include "sysfs.h"
51#include "qgroup.h"
52#include "compression.h"
53
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
58#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
64static const struct extent_io_ops btree_extent_io_ops;
65static void end_workqueue_fn(struct btrfs_work *work);
66static void free_fs_root(struct btrfs_root *root);
67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 int read_only);
69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
78static int btrfs_cleanup_transaction(struct btrfs_root *root);
79static void btrfs_error_commit_super(struct btrfs_root *root);
80
81/*
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
86struct btrfs_end_io_wq {
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
92 enum btrfs_wq_endio_type metadata;
93 struct list_head list;
94 struct btrfs_work work;
95};
96
97static struct kmem_cache *btrfs_end_io_wq_cache;
98
99int __init btrfs_end_io_wq_init(void)
100{
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
104 SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109}
110
111void btrfs_end_io_wq_exit(void)
112{
113 kmem_cache_destroy(btrfs_end_io_wq_cache);
114}
115
116/*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
121struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
127 int mirror_num;
128 unsigned long bio_flags;
129 /*
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
132 */
133 u64 bio_offset;
134 struct btrfs_work work;
135 int error;
136};
137
138/*
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
142 *
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
148 *
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
152 *
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
156 *
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
160 */
161#ifdef CONFIG_DEBUG_LOCK_ALLOC
162# if BTRFS_MAX_LEVEL != 8
163# error
164# endif
165
166static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171} btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184 { .id = 0, .name_stem = "tree" },
185};
186
187void __init btrfs_init_lockdep(void)
188{
189 int i, j;
190
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
198 }
199}
200
201void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
203{
204 struct btrfs_lockdep_keyset *ks;
205
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
212
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
215}
216
217#endif
218
219/*
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
222 */
223static struct extent_map *btree_get_extent(struct inode *inode,
224 struct page *page, size_t pg_offset, u64 start, u64 len,
225 int create)
226{
227 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228 struct extent_map *em;
229 int ret;
230
231 read_lock(&em_tree->lock);
232 em = lookup_extent_mapping(em_tree, start, len);
233 if (em) {
234 em->bdev =
235 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
236 read_unlock(&em_tree->lock);
237 goto out;
238 }
239 read_unlock(&em_tree->lock);
240
241 em = alloc_extent_map();
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
245 }
246 em->start = 0;
247 em->len = (u64)-1;
248 em->block_len = (u64)-1;
249 em->block_start = 0;
250 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
251
252 write_lock(&em_tree->lock);
253 ret = add_extent_mapping(em_tree, em, 0);
254 if (ret == -EEXIST) {
255 free_extent_map(em);
256 em = lookup_extent_mapping(em_tree, start, len);
257 if (!em)
258 em = ERR_PTR(-EIO);
259 } else if (ret) {
260 free_extent_map(em);
261 em = ERR_PTR(ret);
262 }
263 write_unlock(&em_tree->lock);
264
265out:
266 return em;
267}
268
269u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270{
271 return btrfs_crc32c(seed, data, len);
272}
273
274void btrfs_csum_final(u32 crc, u8 *result)
275{
276 put_unaligned_le32(~crc, result);
277}
278
279/*
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
282 */
283static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
285 int verify)
286{
287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 char *result = NULL;
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
297 unsigned long inline_result;
298
299 len = buf->len - offset;
300 while (len > 0) {
301 err = map_private_extent_buffer(buf, offset, 32,
302 &kaddr, &map_start, &map_len);
303 if (err)
304 return err;
305 cur_len = min(len, map_len - (offset - map_start));
306 crc = btrfs_csum_data(kaddr + offset - map_start,
307 crc, cur_len);
308 len -= cur_len;
309 offset += cur_len;
310 }
311 if (csum_size > sizeof(inline_result)) {
312 result = kzalloc(csum_size, GFP_NOFS);
313 if (!result)
314 return -ENOMEM;
315 } else {
316 result = (char *)&inline_result;
317 }
318
319 btrfs_csum_final(crc, result);
320
321 if (verify) {
322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 u32 val;
324 u32 found = 0;
325 memcpy(&found, result, csum_size);
326
327 read_extent_buffer(buf, &val, 0, csum_size);
328 btrfs_warn_rl(fs_info,
329 "%s checksum verify failed on %llu wanted %X found %X level %d",
330 fs_info->sb->s_id, buf->start,
331 val, found, btrfs_header_level(buf));
332 if (result != (char *)&inline_result)
333 kfree(result);
334 return -EUCLEAN;
335 }
336 } else {
337 write_extent_buffer(buf, result, 0, csum_size);
338 }
339 if (result != (char *)&inline_result)
340 kfree(result);
341 return 0;
342}
343
344/*
345 * we can't consider a given block up to date unless the transid of the
346 * block matches the transid in the parent node's pointer. This is how we
347 * detect blocks that either didn't get written at all or got written
348 * in the wrong place.
349 */
350static int verify_parent_transid(struct extent_io_tree *io_tree,
351 struct extent_buffer *eb, u64 parent_transid,
352 int atomic)
353{
354 struct extent_state *cached_state = NULL;
355 int ret;
356 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
357
358 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359 return 0;
360
361 if (atomic)
362 return -EAGAIN;
363
364 if (need_lock) {
365 btrfs_tree_read_lock(eb);
366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367 }
368
369 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
370 &cached_state);
371 if (extent_buffer_uptodate(eb) &&
372 btrfs_header_generation(eb) == parent_transid) {
373 ret = 0;
374 goto out;
375 }
376 btrfs_err_rl(eb->fs_info,
377 "parent transid verify failed on %llu wanted %llu found %llu",
378 eb->start,
379 parent_transid, btrfs_header_generation(eb));
380 ret = 1;
381
382 /*
383 * Things reading via commit roots that don't have normal protection,
384 * like send, can have a really old block in cache that may point at a
385 * block that has been freed and re-allocated. So don't clear uptodate
386 * if we find an eb that is under IO (dirty/writeback) because we could
387 * end up reading in the stale data and then writing it back out and
388 * making everybody very sad.
389 */
390 if (!extent_buffer_under_io(eb))
391 clear_extent_buffer_uptodate(eb);
392out:
393 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394 &cached_state, GFP_NOFS);
395 if (need_lock)
396 btrfs_tree_read_unlock_blocking(eb);
397 return ret;
398}
399
400/*
401 * Return 0 if the superblock checksum type matches the checksum value of that
402 * algorithm. Pass the raw disk superblock data.
403 */
404static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405 char *raw_disk_sb)
406{
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 int ret = 0;
411
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 u32 crc = ~(u32)0;
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
416
417 /*
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 * is filled with zeros and is included in the checksum.
421 */
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
425
426 if (memcmp(raw_disk_sb, result, csum_size))
427 ret = 1;
428 }
429
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 btrfs_err(fs_info, "unsupported checksum algorithm %u",
432 csum_type);
433 ret = 1;
434 }
435
436 return ret;
437}
438
439/*
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
442 */
443static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444 struct extent_buffer *eb,
445 u64 parent_transid)
446{
447 struct extent_io_tree *io_tree;
448 int failed = 0;
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
452 int failed_mirror = 0;
453
454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456 while (1) {
457 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
458 btree_get_extent, mirror_num);
459 if (!ret) {
460 if (!verify_parent_transid(io_tree, eb,
461 parent_transid, 0))
462 break;
463 else
464 ret = -EIO;
465 }
466
467 /*
468 * This buffer's crc is fine, but its contents are corrupted, so
469 * there is no reason to read the other copies, they won't be
470 * any less wrong.
471 */
472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
473 break;
474
475 num_copies = btrfs_num_copies(root->fs_info,
476 eb->start, eb->len);
477 if (num_copies == 1)
478 break;
479
480 if (!failed_mirror) {
481 failed = 1;
482 failed_mirror = eb->read_mirror;
483 }
484
485 mirror_num++;
486 if (mirror_num == failed_mirror)
487 mirror_num++;
488
489 if (mirror_num > num_copies)
490 break;
491 }
492
493 if (failed && !ret && failed_mirror)
494 repair_eb_io_failure(root, eb, failed_mirror);
495
496 return ret;
497}
498
499/*
500 * checksum a dirty tree block before IO. This has extra checks to make sure
501 * we only fill in the checksum field in the first page of a multi-page block
502 */
503
504static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
505{
506 u64 start = page_offset(page);
507 u64 found_start;
508 struct extent_buffer *eb;
509
510 eb = (struct extent_buffer *)page->private;
511 if (page != eb->pages[0])
512 return 0;
513
514 found_start = btrfs_header_bytenr(eb);
515 /*
516 * Please do not consolidate these warnings into a single if.
517 * It is useful to know what went wrong.
518 */
519 if (WARN_ON(found_start != start))
520 return -EUCLEAN;
521 if (WARN_ON(!PageUptodate(page)))
522 return -EUCLEAN;
523
524 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
525 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
526
527 return csum_tree_block(fs_info, eb, 0);
528}
529
530static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
531 struct extent_buffer *eb)
532{
533 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
534 u8 fsid[BTRFS_UUID_SIZE];
535 int ret = 1;
536
537 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
538 while (fs_devices) {
539 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
540 ret = 0;
541 break;
542 }
543 fs_devices = fs_devices->seed;
544 }
545 return ret;
546}
547
548#define CORRUPT(reason, eb, root, slot) \
549 btrfs_crit(root->fs_info, "corrupt %s, %s: block=%llu," \
550 " root=%llu, slot=%d", \
551 btrfs_header_level(eb) == 0 ? "leaf" : "node",\
552 reason, btrfs_header_bytenr(eb), root->objectid, slot)
553
554static noinline int check_leaf(struct btrfs_root *root,
555 struct extent_buffer *leaf)
556{
557 struct btrfs_key key;
558 struct btrfs_key leaf_key;
559 u32 nritems = btrfs_header_nritems(leaf);
560 int slot;
561
562 if (nritems == 0) {
563 struct btrfs_root *check_root;
564
565 key.objectid = btrfs_header_owner(leaf);
566 key.type = BTRFS_ROOT_ITEM_KEY;
567 key.offset = (u64)-1;
568
569 check_root = btrfs_get_fs_root(root->fs_info, &key, false);
570 /*
571 * The only reason we also check NULL here is that during
572 * open_ctree() some roots has not yet been set up.
573 */
574 if (!IS_ERR_OR_NULL(check_root)) {
575 /* if leaf is the root, then it's fine */
576 if (leaf->start !=
577 btrfs_root_bytenr(&check_root->root_item)) {
578 CORRUPT("non-root leaf's nritems is 0",
579 leaf, root, 0);
580 return -EIO;
581 }
582 }
583 return 0;
584 }
585
586 /* Check the 0 item */
587 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
588 BTRFS_LEAF_DATA_SIZE(root->fs_info)) {
589 CORRUPT("invalid item offset size pair", leaf, root, 0);
590 return -EIO;
591 }
592
593 /*
594 * Check to make sure each items keys are in the correct order and their
595 * offsets make sense. We only have to loop through nritems-1 because
596 * we check the current slot against the next slot, which verifies the
597 * next slot's offset+size makes sense and that the current's slot
598 * offset is correct.
599 */
600 for (slot = 0; slot < nritems - 1; slot++) {
601 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
602 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
603
604 /* Make sure the keys are in the right order */
605 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
606 CORRUPT("bad key order", leaf, root, slot);
607 return -EIO;
608 }
609
610 /*
611 * Make sure the offset and ends are right, remember that the
612 * item data starts at the end of the leaf and grows towards the
613 * front.
614 */
615 if (btrfs_item_offset_nr(leaf, slot) !=
616 btrfs_item_end_nr(leaf, slot + 1)) {
617 CORRUPT("slot offset bad", leaf, root, slot);
618 return -EIO;
619 }
620
621 /*
622 * Check to make sure that we don't point outside of the leaf,
623 * just in case all the items are consistent to each other, but
624 * all point outside of the leaf.
625 */
626 if (btrfs_item_end_nr(leaf, slot) >
627 BTRFS_LEAF_DATA_SIZE(root->fs_info)) {
628 CORRUPT("slot end outside of leaf", leaf, root, slot);
629 return -EIO;
630 }
631 }
632
633 return 0;
634}
635
636static int check_node(struct btrfs_root *root, struct extent_buffer *node)
637{
638 unsigned long nr = btrfs_header_nritems(node);
639 struct btrfs_key key, next_key;
640 int slot;
641 u64 bytenr;
642 int ret = 0;
643
644 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
645 btrfs_crit(root->fs_info,
646 "corrupt node: block %llu root %llu nritems %lu",
647 node->start, root->objectid, nr);
648 return -EIO;
649 }
650
651 for (slot = 0; slot < nr - 1; slot++) {
652 bytenr = btrfs_node_blockptr(node, slot);
653 btrfs_node_key_to_cpu(node, &key, slot);
654 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
655
656 if (!bytenr) {
657 CORRUPT("invalid item slot", node, root, slot);
658 ret = -EIO;
659 goto out;
660 }
661
662 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
663 CORRUPT("bad key order", node, root, slot);
664 ret = -EIO;
665 goto out;
666 }
667 }
668out:
669 return ret;
670}
671
672static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
673 u64 phy_offset, struct page *page,
674 u64 start, u64 end, int mirror)
675{
676 u64 found_start;
677 int found_level;
678 struct extent_buffer *eb;
679 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
680 struct btrfs_fs_info *fs_info = root->fs_info;
681 int ret = 0;
682 int reads_done;
683
684 if (!page->private)
685 goto out;
686
687 eb = (struct extent_buffer *)page->private;
688
689 /* the pending IO might have been the only thing that kept this buffer
690 * in memory. Make sure we have a ref for all this other checks
691 */
692 extent_buffer_get(eb);
693
694 reads_done = atomic_dec_and_test(&eb->io_pages);
695 if (!reads_done)
696 goto err;
697
698 eb->read_mirror = mirror;
699 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
700 ret = -EIO;
701 goto err;
702 }
703
704 found_start = btrfs_header_bytenr(eb);
705 if (found_start != eb->start) {
706 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
707 found_start, eb->start);
708 ret = -EIO;
709 goto err;
710 }
711 if (check_tree_block_fsid(fs_info, eb)) {
712 btrfs_err_rl(fs_info, "bad fsid on block %llu",
713 eb->start);
714 ret = -EIO;
715 goto err;
716 }
717 found_level = btrfs_header_level(eb);
718 if (found_level >= BTRFS_MAX_LEVEL) {
719 btrfs_err(fs_info, "bad tree block level %d",
720 (int)btrfs_header_level(eb));
721 ret = -EIO;
722 goto err;
723 }
724
725 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
726 eb, found_level);
727
728 ret = csum_tree_block(fs_info, eb, 1);
729 if (ret)
730 goto err;
731
732 /*
733 * If this is a leaf block and it is corrupt, set the corrupt bit so
734 * that we don't try and read the other copies of this block, just
735 * return -EIO.
736 */
737 if (found_level == 0 && check_leaf(root, eb)) {
738 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
739 ret = -EIO;
740 }
741
742 if (found_level > 0 && check_node(root, eb))
743 ret = -EIO;
744
745 if (!ret)
746 set_extent_buffer_uptodate(eb);
747err:
748 if (reads_done &&
749 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
750 btree_readahead_hook(fs_info, eb, ret);
751
752 if (ret) {
753 /*
754 * our io error hook is going to dec the io pages
755 * again, we have to make sure it has something
756 * to decrement
757 */
758 atomic_inc(&eb->io_pages);
759 clear_extent_buffer_uptodate(eb);
760 }
761 free_extent_buffer(eb);
762out:
763 return ret;
764}
765
766static int btree_io_failed_hook(struct page *page, int failed_mirror)
767{
768 struct extent_buffer *eb;
769
770 eb = (struct extent_buffer *)page->private;
771 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
772 eb->read_mirror = failed_mirror;
773 atomic_dec(&eb->io_pages);
774 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
775 btree_readahead_hook(eb->fs_info, eb, -EIO);
776 return -EIO; /* we fixed nothing */
777}
778
779static void end_workqueue_bio(struct bio *bio)
780{
781 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
782 struct btrfs_fs_info *fs_info;
783 struct btrfs_workqueue *wq;
784 btrfs_work_func_t func;
785
786 fs_info = end_io_wq->info;
787 end_io_wq->error = bio->bi_error;
788
789 if (bio_op(bio) == REQ_OP_WRITE) {
790 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
791 wq = fs_info->endio_meta_write_workers;
792 func = btrfs_endio_meta_write_helper;
793 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
794 wq = fs_info->endio_freespace_worker;
795 func = btrfs_freespace_write_helper;
796 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
797 wq = fs_info->endio_raid56_workers;
798 func = btrfs_endio_raid56_helper;
799 } else {
800 wq = fs_info->endio_write_workers;
801 func = btrfs_endio_write_helper;
802 }
803 } else {
804 if (unlikely(end_io_wq->metadata ==
805 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
806 wq = fs_info->endio_repair_workers;
807 func = btrfs_endio_repair_helper;
808 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
809 wq = fs_info->endio_raid56_workers;
810 func = btrfs_endio_raid56_helper;
811 } else if (end_io_wq->metadata) {
812 wq = fs_info->endio_meta_workers;
813 func = btrfs_endio_meta_helper;
814 } else {
815 wq = fs_info->endio_workers;
816 func = btrfs_endio_helper;
817 }
818 }
819
820 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
821 btrfs_queue_work(wq, &end_io_wq->work);
822}
823
824int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
825 enum btrfs_wq_endio_type metadata)
826{
827 struct btrfs_end_io_wq *end_io_wq;
828
829 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
830 if (!end_io_wq)
831 return -ENOMEM;
832
833 end_io_wq->private = bio->bi_private;
834 end_io_wq->end_io = bio->bi_end_io;
835 end_io_wq->info = info;
836 end_io_wq->error = 0;
837 end_io_wq->bio = bio;
838 end_io_wq->metadata = metadata;
839
840 bio->bi_private = end_io_wq;
841 bio->bi_end_io = end_workqueue_bio;
842 return 0;
843}
844
845unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
846{
847 unsigned long limit = min_t(unsigned long,
848 info->thread_pool_size,
849 info->fs_devices->open_devices);
850 return 256 * limit;
851}
852
853static void run_one_async_start(struct btrfs_work *work)
854{
855 struct async_submit_bio *async;
856 int ret;
857
858 async = container_of(work, struct async_submit_bio, work);
859 ret = async->submit_bio_start(async->inode, async->bio,
860 async->mirror_num, async->bio_flags,
861 async->bio_offset);
862 if (ret)
863 async->error = ret;
864}
865
866static void run_one_async_done(struct btrfs_work *work)
867{
868 struct btrfs_fs_info *fs_info;
869 struct async_submit_bio *async;
870 int limit;
871
872 async = container_of(work, struct async_submit_bio, work);
873 fs_info = BTRFS_I(async->inode)->root->fs_info;
874
875 limit = btrfs_async_submit_limit(fs_info);
876 limit = limit * 2 / 3;
877
878 /*
879 * atomic_dec_return implies a barrier for waitqueue_active
880 */
881 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
882 waitqueue_active(&fs_info->async_submit_wait))
883 wake_up(&fs_info->async_submit_wait);
884
885 /* If an error occurred we just want to clean up the bio and move on */
886 if (async->error) {
887 async->bio->bi_error = async->error;
888 bio_endio(async->bio);
889 return;
890 }
891
892 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
893 async->bio_flags, async->bio_offset);
894}
895
896static void run_one_async_free(struct btrfs_work *work)
897{
898 struct async_submit_bio *async;
899
900 async = container_of(work, struct async_submit_bio, work);
901 kfree(async);
902}
903
904int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
905 struct bio *bio, int mirror_num,
906 unsigned long bio_flags,
907 u64 bio_offset,
908 extent_submit_bio_hook_t *submit_bio_start,
909 extent_submit_bio_hook_t *submit_bio_done)
910{
911 struct async_submit_bio *async;
912
913 async = kmalloc(sizeof(*async), GFP_NOFS);
914 if (!async)
915 return -ENOMEM;
916
917 async->inode = inode;
918 async->bio = bio;
919 async->mirror_num = mirror_num;
920 async->submit_bio_start = submit_bio_start;
921 async->submit_bio_done = submit_bio_done;
922
923 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
924 run_one_async_done, run_one_async_free);
925
926 async->bio_flags = bio_flags;
927 async->bio_offset = bio_offset;
928
929 async->error = 0;
930
931 atomic_inc(&fs_info->nr_async_submits);
932
933 if (bio->bi_opf & REQ_SYNC)
934 btrfs_set_work_high_priority(&async->work);
935
936 btrfs_queue_work(fs_info->workers, &async->work);
937
938 while (atomic_read(&fs_info->async_submit_draining) &&
939 atomic_read(&fs_info->nr_async_submits)) {
940 wait_event(fs_info->async_submit_wait,
941 (atomic_read(&fs_info->nr_async_submits) == 0));
942 }
943
944 return 0;
945}
946
947static int btree_csum_one_bio(struct bio *bio)
948{
949 struct bio_vec *bvec;
950 struct btrfs_root *root;
951 int i, ret = 0;
952
953 bio_for_each_segment_all(bvec, bio, i) {
954 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
955 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
956 if (ret)
957 break;
958 }
959
960 return ret;
961}
962
963static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
964 int mirror_num, unsigned long bio_flags,
965 u64 bio_offset)
966{
967 /*
968 * when we're called for a write, we're already in the async
969 * submission context. Just jump into btrfs_map_bio
970 */
971 return btree_csum_one_bio(bio);
972}
973
974static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
975 int mirror_num, unsigned long bio_flags,
976 u64 bio_offset)
977{
978 int ret;
979
980 /*
981 * when we're called for a write, we're already in the async
982 * submission context. Just jump into btrfs_map_bio
983 */
984 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
985 if (ret) {
986 bio->bi_error = ret;
987 bio_endio(bio);
988 }
989 return ret;
990}
991
992static int check_async_write(struct inode *inode, unsigned long bio_flags)
993{
994 if (bio_flags & EXTENT_BIO_TREE_LOG)
995 return 0;
996#ifdef CONFIG_X86
997 if (static_cpu_has(X86_FEATURE_XMM4_2))
998 return 0;
999#endif
1000 return 1;
1001}
1002
1003static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1004 int mirror_num, unsigned long bio_flags,
1005 u64 bio_offset)
1006{
1007 int async = check_async_write(inode, bio_flags);
1008 int ret;
1009
1010 if (bio_op(bio) != REQ_OP_WRITE) {
1011 /*
1012 * called for a read, do the setup so that checksum validation
1013 * can happen in the async kernel threads
1014 */
1015 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
1016 bio, BTRFS_WQ_ENDIO_METADATA);
1017 if (ret)
1018 goto out_w_error;
1019 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1020 } else if (!async) {
1021 ret = btree_csum_one_bio(bio);
1022 if (ret)
1023 goto out_w_error;
1024 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1025 } else {
1026 /*
1027 * kthread helpers are used to submit writes so that
1028 * checksumming can happen in parallel across all CPUs
1029 */
1030 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1031 inode, bio, mirror_num, 0,
1032 bio_offset,
1033 __btree_submit_bio_start,
1034 __btree_submit_bio_done);
1035 }
1036
1037 if (ret)
1038 goto out_w_error;
1039 return 0;
1040
1041out_w_error:
1042 bio->bi_error = ret;
1043 bio_endio(bio);
1044 return ret;
1045}
1046
1047#ifdef CONFIG_MIGRATION
1048static int btree_migratepage(struct address_space *mapping,
1049 struct page *newpage, struct page *page,
1050 enum migrate_mode mode)
1051{
1052 /*
1053 * we can't safely write a btree page from here,
1054 * we haven't done the locking hook
1055 */
1056 if (PageDirty(page))
1057 return -EAGAIN;
1058 /*
1059 * Buffers may be managed in a filesystem specific way.
1060 * We must have no buffers or drop them.
1061 */
1062 if (page_has_private(page) &&
1063 !try_to_release_page(page, GFP_KERNEL))
1064 return -EAGAIN;
1065 return migrate_page(mapping, newpage, page, mode);
1066}
1067#endif
1068
1069
1070static int btree_writepages(struct address_space *mapping,
1071 struct writeback_control *wbc)
1072{
1073 struct btrfs_fs_info *fs_info;
1074 int ret;
1075
1076 if (wbc->sync_mode == WB_SYNC_NONE) {
1077
1078 if (wbc->for_kupdate)
1079 return 0;
1080
1081 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1082 /* this is a bit racy, but that's ok */
1083 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1084 BTRFS_DIRTY_METADATA_THRESH);
1085 if (ret < 0)
1086 return 0;
1087 }
1088 return btree_write_cache_pages(mapping, wbc);
1089}
1090
1091static int btree_readpage(struct file *file, struct page *page)
1092{
1093 struct extent_io_tree *tree;
1094 tree = &BTRFS_I(page->mapping->host)->io_tree;
1095 return extent_read_full_page(tree, page, btree_get_extent, 0);
1096}
1097
1098static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1099{
1100 if (PageWriteback(page) || PageDirty(page))
1101 return 0;
1102
1103 return try_release_extent_buffer(page);
1104}
1105
1106static void btree_invalidatepage(struct page *page, unsigned int offset,
1107 unsigned int length)
1108{
1109 struct extent_io_tree *tree;
1110 tree = &BTRFS_I(page->mapping->host)->io_tree;
1111 extent_invalidatepage(tree, page, offset);
1112 btree_releasepage(page, GFP_NOFS);
1113 if (PagePrivate(page)) {
1114 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1115 "page private not zero on page %llu",
1116 (unsigned long long)page_offset(page));
1117 ClearPagePrivate(page);
1118 set_page_private(page, 0);
1119 put_page(page);
1120 }
1121}
1122
1123static int btree_set_page_dirty(struct page *page)
1124{
1125#ifdef DEBUG
1126 struct extent_buffer *eb;
1127
1128 BUG_ON(!PagePrivate(page));
1129 eb = (struct extent_buffer *)page->private;
1130 BUG_ON(!eb);
1131 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1132 BUG_ON(!atomic_read(&eb->refs));
1133 btrfs_assert_tree_locked(eb);
1134#endif
1135 return __set_page_dirty_nobuffers(page);
1136}
1137
1138static const struct address_space_operations btree_aops = {
1139 .readpage = btree_readpage,
1140 .writepages = btree_writepages,
1141 .releasepage = btree_releasepage,
1142 .invalidatepage = btree_invalidatepage,
1143#ifdef CONFIG_MIGRATION
1144 .migratepage = btree_migratepage,
1145#endif
1146 .set_page_dirty = btree_set_page_dirty,
1147};
1148
1149void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1150{
1151 struct extent_buffer *buf = NULL;
1152 struct inode *btree_inode = root->fs_info->btree_inode;
1153
1154 buf = btrfs_find_create_tree_block(root, bytenr);
1155 if (IS_ERR(buf))
1156 return;
1157 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1158 buf, WAIT_NONE, btree_get_extent, 0);
1159 free_extent_buffer(buf);
1160}
1161
1162int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1163 int mirror_num, struct extent_buffer **eb)
1164{
1165 struct extent_buffer *buf = NULL;
1166 struct inode *btree_inode = root->fs_info->btree_inode;
1167 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1168 int ret;
1169
1170 buf = btrfs_find_create_tree_block(root, bytenr);
1171 if (IS_ERR(buf))
1172 return 0;
1173
1174 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1175
1176 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1177 btree_get_extent, mirror_num);
1178 if (ret) {
1179 free_extent_buffer(buf);
1180 return ret;
1181 }
1182
1183 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1184 free_extent_buffer(buf);
1185 return -EIO;
1186 } else if (extent_buffer_uptodate(buf)) {
1187 *eb = buf;
1188 } else {
1189 free_extent_buffer(buf);
1190 }
1191 return 0;
1192}
1193
1194struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1195 u64 bytenr)
1196{
1197 if (btrfs_is_testing(root->fs_info))
1198 return alloc_test_extent_buffer(root->fs_info, bytenr);
1199 return alloc_extent_buffer(root->fs_info, bytenr);
1200}
1201
1202
1203int btrfs_write_tree_block(struct extent_buffer *buf)
1204{
1205 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1206 buf->start + buf->len - 1);
1207}
1208
1209int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1210{
1211 return filemap_fdatawait_range(buf->pages[0]->mapping,
1212 buf->start, buf->start + buf->len - 1);
1213}
1214
1215struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1216 u64 parent_transid)
1217{
1218 struct extent_buffer *buf = NULL;
1219 int ret;
1220
1221 buf = btrfs_find_create_tree_block(root, bytenr);
1222 if (IS_ERR(buf))
1223 return buf;
1224
1225 ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
1226 if (ret) {
1227 free_extent_buffer(buf);
1228 return ERR_PTR(ret);
1229 }
1230 return buf;
1231
1232}
1233
1234void clean_tree_block(struct btrfs_trans_handle *trans,
1235 struct btrfs_fs_info *fs_info,
1236 struct extent_buffer *buf)
1237{
1238 if (btrfs_header_generation(buf) ==
1239 fs_info->running_transaction->transid) {
1240 btrfs_assert_tree_locked(buf);
1241
1242 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1243 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1244 -buf->len,
1245 fs_info->dirty_metadata_batch);
1246 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1247 btrfs_set_lock_blocking(buf);
1248 clear_extent_buffer_dirty(buf);
1249 }
1250 }
1251}
1252
1253static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1254{
1255 struct btrfs_subvolume_writers *writers;
1256 int ret;
1257
1258 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1259 if (!writers)
1260 return ERR_PTR(-ENOMEM);
1261
1262 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1263 if (ret < 0) {
1264 kfree(writers);
1265 return ERR_PTR(ret);
1266 }
1267
1268 init_waitqueue_head(&writers->wait);
1269 return writers;
1270}
1271
1272static void
1273btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1274{
1275 percpu_counter_destroy(&writers->counter);
1276 kfree(writers);
1277}
1278
1279static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1280 u64 objectid)
1281{
1282 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1283 root->node = NULL;
1284 root->commit_root = NULL;
1285 root->state = 0;
1286 root->orphan_cleanup_state = 0;
1287
1288 root->objectid = objectid;
1289 root->last_trans = 0;
1290 root->highest_objectid = 0;
1291 root->nr_delalloc_inodes = 0;
1292 root->nr_ordered_extents = 0;
1293 root->name = NULL;
1294 root->inode_tree = RB_ROOT;
1295 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1296 root->block_rsv = NULL;
1297 root->orphan_block_rsv = NULL;
1298
1299 INIT_LIST_HEAD(&root->dirty_list);
1300 INIT_LIST_HEAD(&root->root_list);
1301 INIT_LIST_HEAD(&root->delalloc_inodes);
1302 INIT_LIST_HEAD(&root->delalloc_root);
1303 INIT_LIST_HEAD(&root->ordered_extents);
1304 INIT_LIST_HEAD(&root->ordered_root);
1305 INIT_LIST_HEAD(&root->logged_list[0]);
1306 INIT_LIST_HEAD(&root->logged_list[1]);
1307 spin_lock_init(&root->orphan_lock);
1308 spin_lock_init(&root->inode_lock);
1309 spin_lock_init(&root->delalloc_lock);
1310 spin_lock_init(&root->ordered_extent_lock);
1311 spin_lock_init(&root->accounting_lock);
1312 spin_lock_init(&root->log_extents_lock[0]);
1313 spin_lock_init(&root->log_extents_lock[1]);
1314 mutex_init(&root->objectid_mutex);
1315 mutex_init(&root->log_mutex);
1316 mutex_init(&root->ordered_extent_mutex);
1317 mutex_init(&root->delalloc_mutex);
1318 init_waitqueue_head(&root->log_writer_wait);
1319 init_waitqueue_head(&root->log_commit_wait[0]);
1320 init_waitqueue_head(&root->log_commit_wait[1]);
1321 INIT_LIST_HEAD(&root->log_ctxs[0]);
1322 INIT_LIST_HEAD(&root->log_ctxs[1]);
1323 atomic_set(&root->log_commit[0], 0);
1324 atomic_set(&root->log_commit[1], 0);
1325 atomic_set(&root->log_writers, 0);
1326 atomic_set(&root->log_batch, 0);
1327 atomic_set(&root->orphan_inodes, 0);
1328 atomic_set(&root->refs, 1);
1329 atomic_set(&root->will_be_snapshoted, 0);
1330 atomic_set(&root->qgroup_meta_rsv, 0);
1331 root->log_transid = 0;
1332 root->log_transid_committed = -1;
1333 root->last_log_commit = 0;
1334 if (!dummy)
1335 extent_io_tree_init(&root->dirty_log_pages,
1336 fs_info->btree_inode->i_mapping);
1337
1338 memset(&root->root_key, 0, sizeof(root->root_key));
1339 memset(&root->root_item, 0, sizeof(root->root_item));
1340 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1341 if (!dummy)
1342 root->defrag_trans_start = fs_info->generation;
1343 else
1344 root->defrag_trans_start = 0;
1345 root->root_key.objectid = objectid;
1346 root->anon_dev = 0;
1347
1348 spin_lock_init(&root->root_item_lock);
1349}
1350
1351static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1352 gfp_t flags)
1353{
1354 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1355 if (root)
1356 root->fs_info = fs_info;
1357 return root;
1358}
1359
1360#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1361/* Should only be used by the testing infrastructure */
1362struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1363{
1364 struct btrfs_root *root;
1365
1366 if (!fs_info)
1367 return ERR_PTR(-EINVAL);
1368
1369 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1370 if (!root)
1371 return ERR_PTR(-ENOMEM);
1372
1373 /* We don't use the stripesize in selftest, set it as sectorsize */
1374 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1375 root->alloc_bytenr = 0;
1376
1377 return root;
1378}
1379#endif
1380
1381struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1382 struct btrfs_fs_info *fs_info,
1383 u64 objectid)
1384{
1385 struct extent_buffer *leaf;
1386 struct btrfs_root *tree_root = fs_info->tree_root;
1387 struct btrfs_root *root;
1388 struct btrfs_key key;
1389 int ret = 0;
1390 uuid_le uuid;
1391
1392 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1393 if (!root)
1394 return ERR_PTR(-ENOMEM);
1395
1396 __setup_root(root, fs_info, objectid);
1397 root->root_key.objectid = objectid;
1398 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1399 root->root_key.offset = 0;
1400
1401 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1402 if (IS_ERR(leaf)) {
1403 ret = PTR_ERR(leaf);
1404 leaf = NULL;
1405 goto fail;
1406 }
1407
1408 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1409 btrfs_set_header_bytenr(leaf, leaf->start);
1410 btrfs_set_header_generation(leaf, trans->transid);
1411 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1412 btrfs_set_header_owner(leaf, objectid);
1413 root->node = leaf;
1414
1415 write_extent_buffer_fsid(leaf, fs_info->fsid);
1416 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1417 btrfs_mark_buffer_dirty(leaf);
1418
1419 root->commit_root = btrfs_root_node(root);
1420 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1421
1422 root->root_item.flags = 0;
1423 root->root_item.byte_limit = 0;
1424 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1425 btrfs_set_root_generation(&root->root_item, trans->transid);
1426 btrfs_set_root_level(&root->root_item, 0);
1427 btrfs_set_root_refs(&root->root_item, 1);
1428 btrfs_set_root_used(&root->root_item, leaf->len);
1429 btrfs_set_root_last_snapshot(&root->root_item, 0);
1430 btrfs_set_root_dirid(&root->root_item, 0);
1431 uuid_le_gen(&uuid);
1432 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1433 root->root_item.drop_level = 0;
1434
1435 key.objectid = objectid;
1436 key.type = BTRFS_ROOT_ITEM_KEY;
1437 key.offset = 0;
1438 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1439 if (ret)
1440 goto fail;
1441
1442 btrfs_tree_unlock(leaf);
1443
1444 return root;
1445
1446fail:
1447 if (leaf) {
1448 btrfs_tree_unlock(leaf);
1449 free_extent_buffer(root->commit_root);
1450 free_extent_buffer(leaf);
1451 }
1452 kfree(root);
1453
1454 return ERR_PTR(ret);
1455}
1456
1457static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1458 struct btrfs_fs_info *fs_info)
1459{
1460 struct btrfs_root *root;
1461 struct extent_buffer *leaf;
1462
1463 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1464 if (!root)
1465 return ERR_PTR(-ENOMEM);
1466
1467 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1468
1469 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1470 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1471 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1472
1473 /*
1474 * DON'T set REF_COWS for log trees
1475 *
1476 * log trees do not get reference counted because they go away
1477 * before a real commit is actually done. They do store pointers
1478 * to file data extents, and those reference counts still get
1479 * updated (along with back refs to the log tree).
1480 */
1481
1482 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1483 NULL, 0, 0, 0);
1484 if (IS_ERR(leaf)) {
1485 kfree(root);
1486 return ERR_CAST(leaf);
1487 }
1488
1489 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1490 btrfs_set_header_bytenr(leaf, leaf->start);
1491 btrfs_set_header_generation(leaf, trans->transid);
1492 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1493 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1494 root->node = leaf;
1495
1496 write_extent_buffer_fsid(root->node, root->fs_info->fsid);
1497 btrfs_mark_buffer_dirty(root->node);
1498 btrfs_tree_unlock(root->node);
1499 return root;
1500}
1501
1502int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1503 struct btrfs_fs_info *fs_info)
1504{
1505 struct btrfs_root *log_root;
1506
1507 log_root = alloc_log_tree(trans, fs_info);
1508 if (IS_ERR(log_root))
1509 return PTR_ERR(log_root);
1510 WARN_ON(fs_info->log_root_tree);
1511 fs_info->log_root_tree = log_root;
1512 return 0;
1513}
1514
1515int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1516 struct btrfs_root *root)
1517{
1518 struct btrfs_root *log_root;
1519 struct btrfs_inode_item *inode_item;
1520
1521 log_root = alloc_log_tree(trans, root->fs_info);
1522 if (IS_ERR(log_root))
1523 return PTR_ERR(log_root);
1524
1525 log_root->last_trans = trans->transid;
1526 log_root->root_key.offset = root->root_key.objectid;
1527
1528 inode_item = &log_root->root_item.inode;
1529 btrfs_set_stack_inode_generation(inode_item, 1);
1530 btrfs_set_stack_inode_size(inode_item, 3);
1531 btrfs_set_stack_inode_nlink(inode_item, 1);
1532 btrfs_set_stack_inode_nbytes(inode_item,
1533 root->fs_info->nodesize);
1534 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1535
1536 btrfs_set_root_node(&log_root->root_item, log_root->node);
1537
1538 WARN_ON(root->log_root);
1539 root->log_root = log_root;
1540 root->log_transid = 0;
1541 root->log_transid_committed = -1;
1542 root->last_log_commit = 0;
1543 return 0;
1544}
1545
1546static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1547 struct btrfs_key *key)
1548{
1549 struct btrfs_root *root;
1550 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1551 struct btrfs_path *path;
1552 u64 generation;
1553 int ret;
1554
1555 path = btrfs_alloc_path();
1556 if (!path)
1557 return ERR_PTR(-ENOMEM);
1558
1559 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1560 if (!root) {
1561 ret = -ENOMEM;
1562 goto alloc_fail;
1563 }
1564
1565 __setup_root(root, fs_info, key->objectid);
1566
1567 ret = btrfs_find_root(tree_root, key, path,
1568 &root->root_item, &root->root_key);
1569 if (ret) {
1570 if (ret > 0)
1571 ret = -ENOENT;
1572 goto find_fail;
1573 }
1574
1575 generation = btrfs_root_generation(&root->root_item);
1576 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1577 generation);
1578 if (IS_ERR(root->node)) {
1579 ret = PTR_ERR(root->node);
1580 goto find_fail;
1581 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1582 ret = -EIO;
1583 free_extent_buffer(root->node);
1584 goto find_fail;
1585 }
1586 root->commit_root = btrfs_root_node(root);
1587out:
1588 btrfs_free_path(path);
1589 return root;
1590
1591find_fail:
1592 kfree(root);
1593alloc_fail:
1594 root = ERR_PTR(ret);
1595 goto out;
1596}
1597
1598struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1599 struct btrfs_key *location)
1600{
1601 struct btrfs_root *root;
1602
1603 root = btrfs_read_tree_root(tree_root, location);
1604 if (IS_ERR(root))
1605 return root;
1606
1607 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1608 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1609 btrfs_check_and_init_root_item(&root->root_item);
1610 }
1611
1612 return root;
1613}
1614
1615int btrfs_init_fs_root(struct btrfs_root *root)
1616{
1617 int ret;
1618 struct btrfs_subvolume_writers *writers;
1619
1620 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1621 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1622 GFP_NOFS);
1623 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1624 ret = -ENOMEM;
1625 goto fail;
1626 }
1627
1628 writers = btrfs_alloc_subvolume_writers();
1629 if (IS_ERR(writers)) {
1630 ret = PTR_ERR(writers);
1631 goto fail;
1632 }
1633 root->subv_writers = writers;
1634
1635 btrfs_init_free_ino_ctl(root);
1636 spin_lock_init(&root->ino_cache_lock);
1637 init_waitqueue_head(&root->ino_cache_wait);
1638
1639 ret = get_anon_bdev(&root->anon_dev);
1640 if (ret)
1641 goto fail;
1642
1643 mutex_lock(&root->objectid_mutex);
1644 ret = btrfs_find_highest_objectid(root,
1645 &root->highest_objectid);
1646 if (ret) {
1647 mutex_unlock(&root->objectid_mutex);
1648 goto fail;
1649 }
1650
1651 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1652
1653 mutex_unlock(&root->objectid_mutex);
1654
1655 return 0;
1656fail:
1657 /* the caller is responsible to call free_fs_root */
1658 return ret;
1659}
1660
1661struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1662 u64 root_id)
1663{
1664 struct btrfs_root *root;
1665
1666 spin_lock(&fs_info->fs_roots_radix_lock);
1667 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1668 (unsigned long)root_id);
1669 spin_unlock(&fs_info->fs_roots_radix_lock);
1670 return root;
1671}
1672
1673int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1674 struct btrfs_root *root)
1675{
1676 int ret;
1677
1678 ret = radix_tree_preload(GFP_NOFS);
1679 if (ret)
1680 return ret;
1681
1682 spin_lock(&fs_info->fs_roots_radix_lock);
1683 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1684 (unsigned long)root->root_key.objectid,
1685 root);
1686 if (ret == 0)
1687 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1688 spin_unlock(&fs_info->fs_roots_radix_lock);
1689 radix_tree_preload_end();
1690
1691 return ret;
1692}
1693
1694struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1695 struct btrfs_key *location,
1696 bool check_ref)
1697{
1698 struct btrfs_root *root;
1699 struct btrfs_path *path;
1700 struct btrfs_key key;
1701 int ret;
1702
1703 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1704 return fs_info->tree_root;
1705 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1706 return fs_info->extent_root;
1707 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1708 return fs_info->chunk_root;
1709 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1710 return fs_info->dev_root;
1711 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1712 return fs_info->csum_root;
1713 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1714 return fs_info->quota_root ? fs_info->quota_root :
1715 ERR_PTR(-ENOENT);
1716 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1717 return fs_info->uuid_root ? fs_info->uuid_root :
1718 ERR_PTR(-ENOENT);
1719 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1720 return fs_info->free_space_root ? fs_info->free_space_root :
1721 ERR_PTR(-ENOENT);
1722again:
1723 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1724 if (root) {
1725 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1726 return ERR_PTR(-ENOENT);
1727 return root;
1728 }
1729
1730 root = btrfs_read_fs_root(fs_info->tree_root, location);
1731 if (IS_ERR(root))
1732 return root;
1733
1734 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1735 ret = -ENOENT;
1736 goto fail;
1737 }
1738
1739 ret = btrfs_init_fs_root(root);
1740 if (ret)
1741 goto fail;
1742
1743 path = btrfs_alloc_path();
1744 if (!path) {
1745 ret = -ENOMEM;
1746 goto fail;
1747 }
1748 key.objectid = BTRFS_ORPHAN_OBJECTID;
1749 key.type = BTRFS_ORPHAN_ITEM_KEY;
1750 key.offset = location->objectid;
1751
1752 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1753 btrfs_free_path(path);
1754 if (ret < 0)
1755 goto fail;
1756 if (ret == 0)
1757 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1758
1759 ret = btrfs_insert_fs_root(fs_info, root);
1760 if (ret) {
1761 if (ret == -EEXIST) {
1762 free_fs_root(root);
1763 goto again;
1764 }
1765 goto fail;
1766 }
1767 return root;
1768fail:
1769 free_fs_root(root);
1770 return ERR_PTR(ret);
1771}
1772
1773static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1774{
1775 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1776 int ret = 0;
1777 struct btrfs_device *device;
1778 struct backing_dev_info *bdi;
1779
1780 rcu_read_lock();
1781 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1782 if (!device->bdev)
1783 continue;
1784 bdi = blk_get_backing_dev_info(device->bdev);
1785 if (bdi_congested(bdi, bdi_bits)) {
1786 ret = 1;
1787 break;
1788 }
1789 }
1790 rcu_read_unlock();
1791 return ret;
1792}
1793
1794static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1795{
1796 int err;
1797
1798 err = bdi_setup_and_register(bdi, "btrfs");
1799 if (err)
1800 return err;
1801
1802 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1803 bdi->congested_fn = btrfs_congested_fn;
1804 bdi->congested_data = info;
1805 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1806 return 0;
1807}
1808
1809/*
1810 * called by the kthread helper functions to finally call the bio end_io
1811 * functions. This is where read checksum verification actually happens
1812 */
1813static void end_workqueue_fn(struct btrfs_work *work)
1814{
1815 struct bio *bio;
1816 struct btrfs_end_io_wq *end_io_wq;
1817
1818 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1819 bio = end_io_wq->bio;
1820
1821 bio->bi_error = end_io_wq->error;
1822 bio->bi_private = end_io_wq->private;
1823 bio->bi_end_io = end_io_wq->end_io;
1824 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1825 bio_endio(bio);
1826}
1827
1828static int cleaner_kthread(void *arg)
1829{
1830 struct btrfs_root *root = arg;
1831 int again;
1832 struct btrfs_trans_handle *trans;
1833
1834 do {
1835 again = 0;
1836
1837 /* Make the cleaner go to sleep early. */
1838 if (btrfs_need_cleaner_sleep(root))
1839 goto sleep;
1840
1841 /*
1842 * Do not do anything if we might cause open_ctree() to block
1843 * before we have finished mounting the filesystem.
1844 */
1845 if (!test_bit(BTRFS_FS_OPEN, &root->fs_info->flags))
1846 goto sleep;
1847
1848 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1849 goto sleep;
1850
1851 /*
1852 * Avoid the problem that we change the status of the fs
1853 * during the above check and trylock.
1854 */
1855 if (btrfs_need_cleaner_sleep(root)) {
1856 mutex_unlock(&root->fs_info->cleaner_mutex);
1857 goto sleep;
1858 }
1859
1860 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1861 btrfs_run_delayed_iputs(root);
1862 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1863
1864 again = btrfs_clean_one_deleted_snapshot(root);
1865 mutex_unlock(&root->fs_info->cleaner_mutex);
1866
1867 /*
1868 * The defragger has dealt with the R/O remount and umount,
1869 * needn't do anything special here.
1870 */
1871 btrfs_run_defrag_inodes(root->fs_info);
1872
1873 /*
1874 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1875 * with relocation (btrfs_relocate_chunk) and relocation
1876 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1877 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1878 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1879 * unused block groups.
1880 */
1881 btrfs_delete_unused_bgs(root->fs_info);
1882sleep:
1883 if (!again) {
1884 set_current_state(TASK_INTERRUPTIBLE);
1885 if (!kthread_should_stop())
1886 schedule();
1887 __set_current_state(TASK_RUNNING);
1888 }
1889 } while (!kthread_should_stop());
1890
1891 /*
1892 * Transaction kthread is stopped before us and wakes us up.
1893 * However we might have started a new transaction and COWed some
1894 * tree blocks when deleting unused block groups for example. So
1895 * make sure we commit the transaction we started to have a clean
1896 * shutdown when evicting the btree inode - if it has dirty pages
1897 * when we do the final iput() on it, eviction will trigger a
1898 * writeback for it which will fail with null pointer dereferences
1899 * since work queues and other resources were already released and
1900 * destroyed by the time the iput/eviction/writeback is made.
1901 */
1902 trans = btrfs_attach_transaction(root);
1903 if (IS_ERR(trans)) {
1904 if (PTR_ERR(trans) != -ENOENT)
1905 btrfs_err(root->fs_info,
1906 "cleaner transaction attach returned %ld",
1907 PTR_ERR(trans));
1908 } else {
1909 int ret;
1910
1911 ret = btrfs_commit_transaction(trans, root);
1912 if (ret)
1913 btrfs_err(root->fs_info,
1914 "cleaner open transaction commit returned %d",
1915 ret);
1916 }
1917
1918 return 0;
1919}
1920
1921static int transaction_kthread(void *arg)
1922{
1923 struct btrfs_root *root = arg;
1924 struct btrfs_trans_handle *trans;
1925 struct btrfs_transaction *cur;
1926 u64 transid;
1927 unsigned long now;
1928 unsigned long delay;
1929 bool cannot_commit;
1930
1931 do {
1932 cannot_commit = false;
1933 delay = HZ * root->fs_info->commit_interval;
1934 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1935
1936 spin_lock(&root->fs_info->trans_lock);
1937 cur = root->fs_info->running_transaction;
1938 if (!cur) {
1939 spin_unlock(&root->fs_info->trans_lock);
1940 goto sleep;
1941 }
1942
1943 now = get_seconds();
1944 if (cur->state < TRANS_STATE_BLOCKED &&
1945 (now < cur->start_time ||
1946 now - cur->start_time < root->fs_info->commit_interval)) {
1947 spin_unlock(&root->fs_info->trans_lock);
1948 delay = HZ * 5;
1949 goto sleep;
1950 }
1951 transid = cur->transid;
1952 spin_unlock(&root->fs_info->trans_lock);
1953
1954 /* If the file system is aborted, this will always fail. */
1955 trans = btrfs_attach_transaction(root);
1956 if (IS_ERR(trans)) {
1957 if (PTR_ERR(trans) != -ENOENT)
1958 cannot_commit = true;
1959 goto sleep;
1960 }
1961 if (transid == trans->transid) {
1962 btrfs_commit_transaction(trans, root);
1963 } else {
1964 btrfs_end_transaction(trans, root);
1965 }
1966sleep:
1967 wake_up_process(root->fs_info->cleaner_kthread);
1968 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1969
1970 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1971 &root->fs_info->fs_state)))
1972 btrfs_cleanup_transaction(root);
1973 set_current_state(TASK_INTERRUPTIBLE);
1974 if (!kthread_should_stop() &&
1975 (!btrfs_transaction_blocked(root->fs_info) ||
1976 cannot_commit))
1977 schedule_timeout(delay);
1978 __set_current_state(TASK_RUNNING);
1979 } while (!kthread_should_stop());
1980 return 0;
1981}
1982
1983/*
1984 * this will find the highest generation in the array of
1985 * root backups. The index of the highest array is returned,
1986 * or -1 if we can't find anything.
1987 *
1988 * We check to make sure the array is valid by comparing the
1989 * generation of the latest root in the array with the generation
1990 * in the super block. If they don't match we pitch it.
1991 */
1992static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1993{
1994 u64 cur;
1995 int newest_index = -1;
1996 struct btrfs_root_backup *root_backup;
1997 int i;
1998
1999 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2000 root_backup = info->super_copy->super_roots + i;
2001 cur = btrfs_backup_tree_root_gen(root_backup);
2002 if (cur == newest_gen)
2003 newest_index = i;
2004 }
2005
2006 /* check to see if we actually wrapped around */
2007 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2008 root_backup = info->super_copy->super_roots;
2009 cur = btrfs_backup_tree_root_gen(root_backup);
2010 if (cur == newest_gen)
2011 newest_index = 0;
2012 }
2013 return newest_index;
2014}
2015
2016
2017/*
2018 * find the oldest backup so we know where to store new entries
2019 * in the backup array. This will set the backup_root_index
2020 * field in the fs_info struct
2021 */
2022static void find_oldest_super_backup(struct btrfs_fs_info *info,
2023 u64 newest_gen)
2024{
2025 int newest_index = -1;
2026
2027 newest_index = find_newest_super_backup(info, newest_gen);
2028 /* if there was garbage in there, just move along */
2029 if (newest_index == -1) {
2030 info->backup_root_index = 0;
2031 } else {
2032 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2033 }
2034}
2035
2036/*
2037 * copy all the root pointers into the super backup array.
2038 * this will bump the backup pointer by one when it is
2039 * done
2040 */
2041static void backup_super_roots(struct btrfs_fs_info *info)
2042{
2043 int next_backup;
2044 struct btrfs_root_backup *root_backup;
2045 int last_backup;
2046
2047 next_backup = info->backup_root_index;
2048 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2049 BTRFS_NUM_BACKUP_ROOTS;
2050
2051 /*
2052 * just overwrite the last backup if we're at the same generation
2053 * this happens only at umount
2054 */
2055 root_backup = info->super_for_commit->super_roots + last_backup;
2056 if (btrfs_backup_tree_root_gen(root_backup) ==
2057 btrfs_header_generation(info->tree_root->node))
2058 next_backup = last_backup;
2059
2060 root_backup = info->super_for_commit->super_roots + next_backup;
2061
2062 /*
2063 * make sure all of our padding and empty slots get zero filled
2064 * regardless of which ones we use today
2065 */
2066 memset(root_backup, 0, sizeof(*root_backup));
2067
2068 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2069
2070 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2071 btrfs_set_backup_tree_root_gen(root_backup,
2072 btrfs_header_generation(info->tree_root->node));
2073
2074 btrfs_set_backup_tree_root_level(root_backup,
2075 btrfs_header_level(info->tree_root->node));
2076
2077 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2078 btrfs_set_backup_chunk_root_gen(root_backup,
2079 btrfs_header_generation(info->chunk_root->node));
2080 btrfs_set_backup_chunk_root_level(root_backup,
2081 btrfs_header_level(info->chunk_root->node));
2082
2083 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2084 btrfs_set_backup_extent_root_gen(root_backup,
2085 btrfs_header_generation(info->extent_root->node));
2086 btrfs_set_backup_extent_root_level(root_backup,
2087 btrfs_header_level(info->extent_root->node));
2088
2089 /*
2090 * we might commit during log recovery, which happens before we set
2091 * the fs_root. Make sure it is valid before we fill it in.
2092 */
2093 if (info->fs_root && info->fs_root->node) {
2094 btrfs_set_backup_fs_root(root_backup,
2095 info->fs_root->node->start);
2096 btrfs_set_backup_fs_root_gen(root_backup,
2097 btrfs_header_generation(info->fs_root->node));
2098 btrfs_set_backup_fs_root_level(root_backup,
2099 btrfs_header_level(info->fs_root->node));
2100 }
2101
2102 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2103 btrfs_set_backup_dev_root_gen(root_backup,
2104 btrfs_header_generation(info->dev_root->node));
2105 btrfs_set_backup_dev_root_level(root_backup,
2106 btrfs_header_level(info->dev_root->node));
2107
2108 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2109 btrfs_set_backup_csum_root_gen(root_backup,
2110 btrfs_header_generation(info->csum_root->node));
2111 btrfs_set_backup_csum_root_level(root_backup,
2112 btrfs_header_level(info->csum_root->node));
2113
2114 btrfs_set_backup_total_bytes(root_backup,
2115 btrfs_super_total_bytes(info->super_copy));
2116 btrfs_set_backup_bytes_used(root_backup,
2117 btrfs_super_bytes_used(info->super_copy));
2118 btrfs_set_backup_num_devices(root_backup,
2119 btrfs_super_num_devices(info->super_copy));
2120
2121 /*
2122 * if we don't copy this out to the super_copy, it won't get remembered
2123 * for the next commit
2124 */
2125 memcpy(&info->super_copy->super_roots,
2126 &info->super_for_commit->super_roots,
2127 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2128}
2129
2130/*
2131 * this copies info out of the root backup array and back into
2132 * the in-memory super block. It is meant to help iterate through
2133 * the array, so you send it the number of backups you've already
2134 * tried and the last backup index you used.
2135 *
2136 * this returns -1 when it has tried all the backups
2137 */
2138static noinline int next_root_backup(struct btrfs_fs_info *info,
2139 struct btrfs_super_block *super,
2140 int *num_backups_tried, int *backup_index)
2141{
2142 struct btrfs_root_backup *root_backup;
2143 int newest = *backup_index;
2144
2145 if (*num_backups_tried == 0) {
2146 u64 gen = btrfs_super_generation(super);
2147
2148 newest = find_newest_super_backup(info, gen);
2149 if (newest == -1)
2150 return -1;
2151
2152 *backup_index = newest;
2153 *num_backups_tried = 1;
2154 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2155 /* we've tried all the backups, all done */
2156 return -1;
2157 } else {
2158 /* jump to the next oldest backup */
2159 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2160 BTRFS_NUM_BACKUP_ROOTS;
2161 *backup_index = newest;
2162 *num_backups_tried += 1;
2163 }
2164 root_backup = super->super_roots + newest;
2165
2166 btrfs_set_super_generation(super,
2167 btrfs_backup_tree_root_gen(root_backup));
2168 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2169 btrfs_set_super_root_level(super,
2170 btrfs_backup_tree_root_level(root_backup));
2171 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2172
2173 /*
2174 * fixme: the total bytes and num_devices need to match or we should
2175 * need a fsck
2176 */
2177 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2178 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2179 return 0;
2180}
2181
2182/* helper to cleanup workers */
2183static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2184{
2185 btrfs_destroy_workqueue(fs_info->fixup_workers);
2186 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2187 btrfs_destroy_workqueue(fs_info->workers);
2188 btrfs_destroy_workqueue(fs_info->endio_workers);
2189 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2190 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2191 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2192 btrfs_destroy_workqueue(fs_info->rmw_workers);
2193 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2194 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2195 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2196 btrfs_destroy_workqueue(fs_info->submit_workers);
2197 btrfs_destroy_workqueue(fs_info->delayed_workers);
2198 btrfs_destroy_workqueue(fs_info->caching_workers);
2199 btrfs_destroy_workqueue(fs_info->readahead_workers);
2200 btrfs_destroy_workqueue(fs_info->flush_workers);
2201 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2202 btrfs_destroy_workqueue(fs_info->extent_workers);
2203}
2204
2205static void free_root_extent_buffers(struct btrfs_root *root)
2206{
2207 if (root) {
2208 free_extent_buffer(root->node);
2209 free_extent_buffer(root->commit_root);
2210 root->node = NULL;
2211 root->commit_root = NULL;
2212 }
2213}
2214
2215/* helper to cleanup tree roots */
2216static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2217{
2218 free_root_extent_buffers(info->tree_root);
2219
2220 free_root_extent_buffers(info->dev_root);
2221 free_root_extent_buffers(info->extent_root);
2222 free_root_extent_buffers(info->csum_root);
2223 free_root_extent_buffers(info->quota_root);
2224 free_root_extent_buffers(info->uuid_root);
2225 if (chunk_root)
2226 free_root_extent_buffers(info->chunk_root);
2227 free_root_extent_buffers(info->free_space_root);
2228}
2229
2230void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2231{
2232 int ret;
2233 struct btrfs_root *gang[8];
2234 int i;
2235
2236 while (!list_empty(&fs_info->dead_roots)) {
2237 gang[0] = list_entry(fs_info->dead_roots.next,
2238 struct btrfs_root, root_list);
2239 list_del(&gang[0]->root_list);
2240
2241 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2242 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2243 } else {
2244 free_extent_buffer(gang[0]->node);
2245 free_extent_buffer(gang[0]->commit_root);
2246 btrfs_put_fs_root(gang[0]);
2247 }
2248 }
2249
2250 while (1) {
2251 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2252 (void **)gang, 0,
2253 ARRAY_SIZE(gang));
2254 if (!ret)
2255 break;
2256 for (i = 0; i < ret; i++)
2257 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2258 }
2259
2260 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2261 btrfs_free_log_root_tree(NULL, fs_info);
2262 btrfs_destroy_pinned_extent(fs_info->tree_root,
2263 fs_info->pinned_extents);
2264 }
2265}
2266
2267static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2268{
2269 mutex_init(&fs_info->scrub_lock);
2270 atomic_set(&fs_info->scrubs_running, 0);
2271 atomic_set(&fs_info->scrub_pause_req, 0);
2272 atomic_set(&fs_info->scrubs_paused, 0);
2273 atomic_set(&fs_info->scrub_cancel_req, 0);
2274 init_waitqueue_head(&fs_info->scrub_pause_wait);
2275 fs_info->scrub_workers_refcnt = 0;
2276}
2277
2278static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2279{
2280 spin_lock_init(&fs_info->balance_lock);
2281 mutex_init(&fs_info->balance_mutex);
2282 atomic_set(&fs_info->balance_running, 0);
2283 atomic_set(&fs_info->balance_pause_req, 0);
2284 atomic_set(&fs_info->balance_cancel_req, 0);
2285 fs_info->balance_ctl = NULL;
2286 init_waitqueue_head(&fs_info->balance_wait_q);
2287}
2288
2289static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2290{
2291 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2292 set_nlink(fs_info->btree_inode, 1);
2293 /*
2294 * we set the i_size on the btree inode to the max possible int.
2295 * the real end of the address space is determined by all of
2296 * the devices in the system
2297 */
2298 fs_info->btree_inode->i_size = OFFSET_MAX;
2299 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2300
2301 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2302 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2303 fs_info->btree_inode->i_mapping);
2304 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2305 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2306
2307 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2308
2309 BTRFS_I(fs_info->btree_inode)->root = fs_info->tree_root;
2310 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2311 sizeof(struct btrfs_key));
2312 set_bit(BTRFS_INODE_DUMMY,
2313 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2314 btrfs_insert_inode_hash(fs_info->btree_inode);
2315}
2316
2317static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2318{
2319 fs_info->dev_replace.lock_owner = 0;
2320 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2321 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2322 rwlock_init(&fs_info->dev_replace.lock);
2323 atomic_set(&fs_info->dev_replace.read_locks, 0);
2324 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2325 init_waitqueue_head(&fs_info->replace_wait);
2326 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2327}
2328
2329static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2330{
2331 spin_lock_init(&fs_info->qgroup_lock);
2332 mutex_init(&fs_info->qgroup_ioctl_lock);
2333 fs_info->qgroup_tree = RB_ROOT;
2334 fs_info->qgroup_op_tree = RB_ROOT;
2335 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2336 fs_info->qgroup_seq = 1;
2337 fs_info->qgroup_ulist = NULL;
2338 fs_info->qgroup_rescan_running = false;
2339 mutex_init(&fs_info->qgroup_rescan_lock);
2340}
2341
2342static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2343 struct btrfs_fs_devices *fs_devices)
2344{
2345 int max_active = fs_info->thread_pool_size;
2346 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2347
2348 fs_info->workers =
2349 btrfs_alloc_workqueue(fs_info, "worker",
2350 flags | WQ_HIGHPRI, max_active, 16);
2351
2352 fs_info->delalloc_workers =
2353 btrfs_alloc_workqueue(fs_info, "delalloc",
2354 flags, max_active, 2);
2355
2356 fs_info->flush_workers =
2357 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2358 flags, max_active, 0);
2359
2360 fs_info->caching_workers =
2361 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2362
2363 /*
2364 * a higher idle thresh on the submit workers makes it much more
2365 * likely that bios will be send down in a sane order to the
2366 * devices
2367 */
2368 fs_info->submit_workers =
2369 btrfs_alloc_workqueue(fs_info, "submit", flags,
2370 min_t(u64, fs_devices->num_devices,
2371 max_active), 64);
2372
2373 fs_info->fixup_workers =
2374 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2375
2376 /*
2377 * endios are largely parallel and should have a very
2378 * low idle thresh
2379 */
2380 fs_info->endio_workers =
2381 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2382 fs_info->endio_meta_workers =
2383 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2384 max_active, 4);
2385 fs_info->endio_meta_write_workers =
2386 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2387 max_active, 2);
2388 fs_info->endio_raid56_workers =
2389 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2390 max_active, 4);
2391 fs_info->endio_repair_workers =
2392 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2393 fs_info->rmw_workers =
2394 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2395 fs_info->endio_write_workers =
2396 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2397 max_active, 2);
2398 fs_info->endio_freespace_worker =
2399 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2400 max_active, 0);
2401 fs_info->delayed_workers =
2402 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2403 max_active, 0);
2404 fs_info->readahead_workers =
2405 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2406 max_active, 2);
2407 fs_info->qgroup_rescan_workers =
2408 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2409 fs_info->extent_workers =
2410 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2411 min_t(u64, fs_devices->num_devices,
2412 max_active), 8);
2413
2414 if (!(fs_info->workers && fs_info->delalloc_workers &&
2415 fs_info->submit_workers && fs_info->flush_workers &&
2416 fs_info->endio_workers && fs_info->endio_meta_workers &&
2417 fs_info->endio_meta_write_workers &&
2418 fs_info->endio_repair_workers &&
2419 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2420 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2421 fs_info->caching_workers && fs_info->readahead_workers &&
2422 fs_info->fixup_workers && fs_info->delayed_workers &&
2423 fs_info->extent_workers &&
2424 fs_info->qgroup_rescan_workers)) {
2425 return -ENOMEM;
2426 }
2427
2428 return 0;
2429}
2430
2431static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2432 struct btrfs_fs_devices *fs_devices)
2433{
2434 int ret;
2435 struct btrfs_root *tree_root = fs_info->tree_root;
2436 struct btrfs_root *log_tree_root;
2437 struct btrfs_super_block *disk_super = fs_info->super_copy;
2438 u64 bytenr = btrfs_super_log_root(disk_super);
2439
2440 if (fs_devices->rw_devices == 0) {
2441 btrfs_warn(fs_info, "log replay required on RO media");
2442 return -EIO;
2443 }
2444
2445 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2446 if (!log_tree_root)
2447 return -ENOMEM;
2448
2449 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2450
2451 log_tree_root->node = read_tree_block(tree_root, bytenr,
2452 fs_info->generation + 1);
2453 if (IS_ERR(log_tree_root->node)) {
2454 btrfs_warn(fs_info, "failed to read log tree");
2455 ret = PTR_ERR(log_tree_root->node);
2456 kfree(log_tree_root);
2457 return ret;
2458 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2459 btrfs_err(fs_info, "failed to read log tree");
2460 free_extent_buffer(log_tree_root->node);
2461 kfree(log_tree_root);
2462 return -EIO;
2463 }
2464 /* returns with log_tree_root freed on success */
2465 ret = btrfs_recover_log_trees(log_tree_root);
2466 if (ret) {
2467 btrfs_handle_fs_error(tree_root->fs_info, ret,
2468 "Failed to recover log tree");
2469 free_extent_buffer(log_tree_root->node);
2470 kfree(log_tree_root);
2471 return ret;
2472 }
2473
2474 if (fs_info->sb->s_flags & MS_RDONLY) {
2475 ret = btrfs_commit_super(fs_info);
2476 if (ret)
2477 return ret;
2478 }
2479
2480 return 0;
2481}
2482
2483static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2484{
2485 struct btrfs_root *tree_root = fs_info->tree_root;
2486 struct btrfs_root *root;
2487 struct btrfs_key location;
2488 int ret;
2489
2490 BUG_ON(!fs_info->tree_root);
2491
2492 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2493 location.type = BTRFS_ROOT_ITEM_KEY;
2494 location.offset = 0;
2495
2496 root = btrfs_read_tree_root(tree_root, &location);
2497 if (IS_ERR(root))
2498 return PTR_ERR(root);
2499 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2500 fs_info->extent_root = root;
2501
2502 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2503 root = btrfs_read_tree_root(tree_root, &location);
2504 if (IS_ERR(root))
2505 return PTR_ERR(root);
2506 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2507 fs_info->dev_root = root;
2508 btrfs_init_devices_late(fs_info);
2509
2510 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2511 root = btrfs_read_tree_root(tree_root, &location);
2512 if (IS_ERR(root))
2513 return PTR_ERR(root);
2514 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2515 fs_info->csum_root = root;
2516
2517 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2518 root = btrfs_read_tree_root(tree_root, &location);
2519 if (!IS_ERR(root)) {
2520 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2521 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2522 fs_info->quota_root = root;
2523 }
2524
2525 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2526 root = btrfs_read_tree_root(tree_root, &location);
2527 if (IS_ERR(root)) {
2528 ret = PTR_ERR(root);
2529 if (ret != -ENOENT)
2530 return ret;
2531 } else {
2532 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2533 fs_info->uuid_root = root;
2534 }
2535
2536 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2537 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2538 root = btrfs_read_tree_root(tree_root, &location);
2539 if (IS_ERR(root))
2540 return PTR_ERR(root);
2541 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2542 fs_info->free_space_root = root;
2543 }
2544
2545 return 0;
2546}
2547
2548int open_ctree(struct super_block *sb,
2549 struct btrfs_fs_devices *fs_devices,
2550 char *options)
2551{
2552 u32 sectorsize;
2553 u32 nodesize;
2554 u32 stripesize;
2555 u64 generation;
2556 u64 features;
2557 struct btrfs_key location;
2558 struct buffer_head *bh;
2559 struct btrfs_super_block *disk_super;
2560 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2561 struct btrfs_root *tree_root;
2562 struct btrfs_root *chunk_root;
2563 int ret;
2564 int err = -EINVAL;
2565 int num_backups_tried = 0;
2566 int backup_index = 0;
2567 int max_active;
2568 int clear_free_space_tree = 0;
2569
2570 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2571 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2572 if (!tree_root || !chunk_root) {
2573 err = -ENOMEM;
2574 goto fail;
2575 }
2576
2577 ret = init_srcu_struct(&fs_info->subvol_srcu);
2578 if (ret) {
2579 err = ret;
2580 goto fail;
2581 }
2582
2583 ret = setup_bdi(fs_info, &fs_info->bdi);
2584 if (ret) {
2585 err = ret;
2586 goto fail_srcu;
2587 }
2588
2589 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2590 if (ret) {
2591 err = ret;
2592 goto fail_bdi;
2593 }
2594 fs_info->dirty_metadata_batch = PAGE_SIZE *
2595 (1 + ilog2(nr_cpu_ids));
2596
2597 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2598 if (ret) {
2599 err = ret;
2600 goto fail_dirty_metadata_bytes;
2601 }
2602
2603 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2604 if (ret) {
2605 err = ret;
2606 goto fail_delalloc_bytes;
2607 }
2608
2609 fs_info->btree_inode = new_inode(sb);
2610 if (!fs_info->btree_inode) {
2611 err = -ENOMEM;
2612 goto fail_bio_counter;
2613 }
2614
2615 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2616
2617 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2618 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2619 INIT_LIST_HEAD(&fs_info->trans_list);
2620 INIT_LIST_HEAD(&fs_info->dead_roots);
2621 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2622 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2623 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2624 spin_lock_init(&fs_info->delalloc_root_lock);
2625 spin_lock_init(&fs_info->trans_lock);
2626 spin_lock_init(&fs_info->fs_roots_radix_lock);
2627 spin_lock_init(&fs_info->delayed_iput_lock);
2628 spin_lock_init(&fs_info->defrag_inodes_lock);
2629 spin_lock_init(&fs_info->free_chunk_lock);
2630 spin_lock_init(&fs_info->tree_mod_seq_lock);
2631 spin_lock_init(&fs_info->super_lock);
2632 spin_lock_init(&fs_info->qgroup_op_lock);
2633 spin_lock_init(&fs_info->buffer_lock);
2634 spin_lock_init(&fs_info->unused_bgs_lock);
2635 rwlock_init(&fs_info->tree_mod_log_lock);
2636 mutex_init(&fs_info->unused_bg_unpin_mutex);
2637 mutex_init(&fs_info->delete_unused_bgs_mutex);
2638 mutex_init(&fs_info->reloc_mutex);
2639 mutex_init(&fs_info->delalloc_root_mutex);
2640 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2641 seqlock_init(&fs_info->profiles_lock);
2642
2643 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2644 INIT_LIST_HEAD(&fs_info->space_info);
2645 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2646 INIT_LIST_HEAD(&fs_info->unused_bgs);
2647 btrfs_mapping_init(&fs_info->mapping_tree);
2648 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2649 BTRFS_BLOCK_RSV_GLOBAL);
2650 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2651 BTRFS_BLOCK_RSV_DELALLOC);
2652 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2653 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2654 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2655 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2656 BTRFS_BLOCK_RSV_DELOPS);
2657 atomic_set(&fs_info->nr_async_submits, 0);
2658 atomic_set(&fs_info->async_delalloc_pages, 0);
2659 atomic_set(&fs_info->async_submit_draining, 0);
2660 atomic_set(&fs_info->nr_async_bios, 0);
2661 atomic_set(&fs_info->defrag_running, 0);
2662 atomic_set(&fs_info->qgroup_op_seq, 0);
2663 atomic_set(&fs_info->reada_works_cnt, 0);
2664 atomic64_set(&fs_info->tree_mod_seq, 0);
2665 fs_info->fs_frozen = 0;
2666 fs_info->sb = sb;
2667 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2668 fs_info->metadata_ratio = 0;
2669 fs_info->defrag_inodes = RB_ROOT;
2670 fs_info->free_chunk_space = 0;
2671 fs_info->tree_mod_log = RB_ROOT;
2672 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2673 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2674 /* readahead state */
2675 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2676 spin_lock_init(&fs_info->reada_lock);
2677
2678 fs_info->thread_pool_size = min_t(unsigned long,
2679 num_online_cpus() + 2, 8);
2680
2681 INIT_LIST_HEAD(&fs_info->ordered_roots);
2682 spin_lock_init(&fs_info->ordered_root_lock);
2683 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2684 GFP_KERNEL);
2685 if (!fs_info->delayed_root) {
2686 err = -ENOMEM;
2687 goto fail_iput;
2688 }
2689 btrfs_init_delayed_root(fs_info->delayed_root);
2690
2691 btrfs_init_scrub(fs_info);
2692#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2693 fs_info->check_integrity_print_mask = 0;
2694#endif
2695 btrfs_init_balance(fs_info);
2696 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2697
2698 sb->s_blocksize = 4096;
2699 sb->s_blocksize_bits = blksize_bits(4096);
2700 sb->s_bdi = &fs_info->bdi;
2701
2702 btrfs_init_btree_inode(fs_info);
2703
2704 spin_lock_init(&fs_info->block_group_cache_lock);
2705 fs_info->block_group_cache_tree = RB_ROOT;
2706 fs_info->first_logical_byte = (u64)-1;
2707
2708 extent_io_tree_init(&fs_info->freed_extents[0],
2709 fs_info->btree_inode->i_mapping);
2710 extent_io_tree_init(&fs_info->freed_extents[1],
2711 fs_info->btree_inode->i_mapping);
2712 fs_info->pinned_extents = &fs_info->freed_extents[0];
2713 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2714
2715 mutex_init(&fs_info->ordered_operations_mutex);
2716 mutex_init(&fs_info->tree_log_mutex);
2717 mutex_init(&fs_info->chunk_mutex);
2718 mutex_init(&fs_info->transaction_kthread_mutex);
2719 mutex_init(&fs_info->cleaner_mutex);
2720 mutex_init(&fs_info->volume_mutex);
2721 mutex_init(&fs_info->ro_block_group_mutex);
2722 init_rwsem(&fs_info->commit_root_sem);
2723 init_rwsem(&fs_info->cleanup_work_sem);
2724 init_rwsem(&fs_info->subvol_sem);
2725 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2726
2727 btrfs_init_dev_replace_locks(fs_info);
2728 btrfs_init_qgroup(fs_info);
2729
2730 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2731 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2732
2733 init_waitqueue_head(&fs_info->transaction_throttle);
2734 init_waitqueue_head(&fs_info->transaction_wait);
2735 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2736 init_waitqueue_head(&fs_info->async_submit_wait);
2737
2738 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2739
2740 /* Usable values until the real ones are cached from the superblock */
2741 fs_info->nodesize = 4096;
2742 fs_info->sectorsize = 4096;
2743 fs_info->stripesize = 4096;
2744
2745 ret = btrfs_alloc_stripe_hash_table(fs_info);
2746 if (ret) {
2747 err = ret;
2748 goto fail_alloc;
2749 }
2750
2751 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2752
2753 invalidate_bdev(fs_devices->latest_bdev);
2754
2755 /*
2756 * Read super block and check the signature bytes only
2757 */
2758 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2759 if (IS_ERR(bh)) {
2760 err = PTR_ERR(bh);
2761 goto fail_alloc;
2762 }
2763
2764 /*
2765 * We want to check superblock checksum, the type is stored inside.
2766 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2767 */
2768 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2769 btrfs_err(fs_info, "superblock checksum mismatch");
2770 err = -EINVAL;
2771 brelse(bh);
2772 goto fail_alloc;
2773 }
2774
2775 /*
2776 * super_copy is zeroed at allocation time and we never touch the
2777 * following bytes up to INFO_SIZE, the checksum is calculated from
2778 * the whole block of INFO_SIZE
2779 */
2780 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2781 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2782 sizeof(*fs_info->super_for_commit));
2783 brelse(bh);
2784
2785 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2786
2787 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2788 if (ret) {
2789 btrfs_err(fs_info, "superblock contains fatal errors");
2790 err = -EINVAL;
2791 goto fail_alloc;
2792 }
2793
2794 disk_super = fs_info->super_copy;
2795 if (!btrfs_super_root(disk_super))
2796 goto fail_alloc;
2797
2798 /* check FS state, whether FS is broken. */
2799 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2800 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2801
2802 /*
2803 * run through our array of backup supers and setup
2804 * our ring pointer to the oldest one
2805 */
2806 generation = btrfs_super_generation(disk_super);
2807 find_oldest_super_backup(fs_info, generation);
2808
2809 /*
2810 * In the long term, we'll store the compression type in the super
2811 * block, and it'll be used for per file compression control.
2812 */
2813 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2814
2815 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2816 if (ret) {
2817 err = ret;
2818 goto fail_alloc;
2819 }
2820
2821 features = btrfs_super_incompat_flags(disk_super) &
2822 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2823 if (features) {
2824 btrfs_err(fs_info,
2825 "cannot mount because of unsupported optional features (%llx)",
2826 features);
2827 err = -EINVAL;
2828 goto fail_alloc;
2829 }
2830
2831 features = btrfs_super_incompat_flags(disk_super);
2832 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2833 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2834 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2835
2836 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2837 btrfs_info(fs_info, "has skinny extents");
2838
2839 /*
2840 * flag our filesystem as having big metadata blocks if
2841 * they are bigger than the page size
2842 */
2843 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2844 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2845 btrfs_info(fs_info,
2846 "flagging fs with big metadata feature");
2847 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2848 }
2849
2850 nodesize = btrfs_super_nodesize(disk_super);
2851 sectorsize = btrfs_super_sectorsize(disk_super);
2852 stripesize = sectorsize;
2853 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2854 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2855
2856 /* Cache block sizes */
2857 fs_info->nodesize = nodesize;
2858 fs_info->sectorsize = sectorsize;
2859 fs_info->stripesize = stripesize;
2860
2861 /*
2862 * mixed block groups end up with duplicate but slightly offset
2863 * extent buffers for the same range. It leads to corruptions
2864 */
2865 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2866 (sectorsize != nodesize)) {
2867 btrfs_err(fs_info,
2868"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2869 nodesize, sectorsize);
2870 goto fail_alloc;
2871 }
2872
2873 /*
2874 * Needn't use the lock because there is no other task which will
2875 * update the flag.
2876 */
2877 btrfs_set_super_incompat_flags(disk_super, features);
2878
2879 features = btrfs_super_compat_ro_flags(disk_super) &
2880 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2881 if (!(sb->s_flags & MS_RDONLY) && features) {
2882 btrfs_err(fs_info,
2883 "cannot mount read-write because of unsupported optional features (%llx)",
2884 features);
2885 err = -EINVAL;
2886 goto fail_alloc;
2887 }
2888
2889 max_active = fs_info->thread_pool_size;
2890
2891 ret = btrfs_init_workqueues(fs_info, fs_devices);
2892 if (ret) {
2893 err = ret;
2894 goto fail_sb_buffer;
2895 }
2896
2897 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2898 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2899 SZ_4M / PAGE_SIZE);
2900
2901 sb->s_blocksize = sectorsize;
2902 sb->s_blocksize_bits = blksize_bits(sectorsize);
2903
2904 mutex_lock(&fs_info->chunk_mutex);
2905 ret = btrfs_read_sys_array(fs_info);
2906 mutex_unlock(&fs_info->chunk_mutex);
2907 if (ret) {
2908 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2909 goto fail_sb_buffer;
2910 }
2911
2912 generation = btrfs_super_chunk_root_generation(disk_super);
2913
2914 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2915
2916 chunk_root->node = read_tree_block(chunk_root,
2917 btrfs_super_chunk_root(disk_super),
2918 generation);
2919 if (IS_ERR(chunk_root->node) ||
2920 !extent_buffer_uptodate(chunk_root->node)) {
2921 btrfs_err(fs_info, "failed to read chunk root");
2922 if (!IS_ERR(chunk_root->node))
2923 free_extent_buffer(chunk_root->node);
2924 chunk_root->node = NULL;
2925 goto fail_tree_roots;
2926 }
2927 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2928 chunk_root->commit_root = btrfs_root_node(chunk_root);
2929
2930 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2931 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2932
2933 ret = btrfs_read_chunk_tree(fs_info);
2934 if (ret) {
2935 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2936 goto fail_tree_roots;
2937 }
2938
2939 /*
2940 * keep the device that is marked to be the target device for the
2941 * dev_replace procedure
2942 */
2943 btrfs_close_extra_devices(fs_devices, 0);
2944
2945 if (!fs_devices->latest_bdev) {
2946 btrfs_err(fs_info, "failed to read devices");
2947 goto fail_tree_roots;
2948 }
2949
2950retry_root_backup:
2951 generation = btrfs_super_generation(disk_super);
2952
2953 tree_root->node = read_tree_block(tree_root,
2954 btrfs_super_root(disk_super),
2955 generation);
2956 if (IS_ERR(tree_root->node) ||
2957 !extent_buffer_uptodate(tree_root->node)) {
2958 btrfs_warn(fs_info, "failed to read tree root");
2959 if (!IS_ERR(tree_root->node))
2960 free_extent_buffer(tree_root->node);
2961 tree_root->node = NULL;
2962 goto recovery_tree_root;
2963 }
2964
2965 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2966 tree_root->commit_root = btrfs_root_node(tree_root);
2967 btrfs_set_root_refs(&tree_root->root_item, 1);
2968
2969 mutex_lock(&tree_root->objectid_mutex);
2970 ret = btrfs_find_highest_objectid(tree_root,
2971 &tree_root->highest_objectid);
2972 if (ret) {
2973 mutex_unlock(&tree_root->objectid_mutex);
2974 goto recovery_tree_root;
2975 }
2976
2977 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2978
2979 mutex_unlock(&tree_root->objectid_mutex);
2980
2981 ret = btrfs_read_roots(fs_info);
2982 if (ret)
2983 goto recovery_tree_root;
2984
2985 fs_info->generation = generation;
2986 fs_info->last_trans_committed = generation;
2987
2988 ret = btrfs_recover_balance(fs_info);
2989 if (ret) {
2990 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2991 goto fail_block_groups;
2992 }
2993
2994 ret = btrfs_init_dev_stats(fs_info);
2995 if (ret) {
2996 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2997 goto fail_block_groups;
2998 }
2999
3000 ret = btrfs_init_dev_replace(fs_info);
3001 if (ret) {
3002 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3003 goto fail_block_groups;
3004 }
3005
3006 btrfs_close_extra_devices(fs_devices, 1);
3007
3008 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3009 if (ret) {
3010 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3011 ret);
3012 goto fail_block_groups;
3013 }
3014
3015 ret = btrfs_sysfs_add_device(fs_devices);
3016 if (ret) {
3017 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3018 ret);
3019 goto fail_fsdev_sysfs;
3020 }
3021
3022 ret = btrfs_sysfs_add_mounted(fs_info);
3023 if (ret) {
3024 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3025 goto fail_fsdev_sysfs;
3026 }
3027
3028 ret = btrfs_init_space_info(fs_info);
3029 if (ret) {
3030 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3031 goto fail_sysfs;
3032 }
3033
3034 ret = btrfs_read_block_groups(fs_info);
3035 if (ret) {
3036 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3037 goto fail_sysfs;
3038 }
3039 fs_info->num_tolerated_disk_barrier_failures =
3040 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3041 if (fs_info->fs_devices->missing_devices >
3042 fs_info->num_tolerated_disk_barrier_failures &&
3043 !(sb->s_flags & MS_RDONLY)) {
3044 btrfs_warn(fs_info,
3045"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3046 fs_info->fs_devices->missing_devices,
3047 fs_info->num_tolerated_disk_barrier_failures);
3048 goto fail_sysfs;
3049 }
3050
3051 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3052 "btrfs-cleaner");
3053 if (IS_ERR(fs_info->cleaner_kthread))
3054 goto fail_sysfs;
3055
3056 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3057 tree_root,
3058 "btrfs-transaction");
3059 if (IS_ERR(fs_info->transaction_kthread))
3060 goto fail_cleaner;
3061
3062 if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3063 !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
3064 !fs_info->fs_devices->rotating) {
3065 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3066 btrfs_set_opt(fs_info->mount_opt, SSD);
3067 }
3068
3069 /*
3070 * Mount does not set all options immediately, we can do it now and do
3071 * not have to wait for transaction commit
3072 */
3073 btrfs_apply_pending_changes(fs_info);
3074
3075#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3076 if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
3077 ret = btrfsic_mount(tree_root, fs_devices,
3078 btrfs_test_opt(tree_root->fs_info,
3079 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3080 1 : 0,
3081 fs_info->check_integrity_print_mask);
3082 if (ret)
3083 btrfs_warn(fs_info,
3084 "failed to initialize integrity check module: %d",
3085 ret);
3086 }
3087#endif
3088 ret = btrfs_read_qgroup_config(fs_info);
3089 if (ret)
3090 goto fail_trans_kthread;
3091
3092 /* do not make disk changes in broken FS or nologreplay is given */
3093 if (btrfs_super_log_root(disk_super) != 0 &&
3094 !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
3095 ret = btrfs_replay_log(fs_info, fs_devices);
3096 if (ret) {
3097 err = ret;
3098 goto fail_qgroup;
3099 }
3100 }
3101
3102 ret = btrfs_find_orphan_roots(fs_info);
3103 if (ret)
3104 goto fail_qgroup;
3105
3106 if (!(sb->s_flags & MS_RDONLY)) {
3107 ret = btrfs_cleanup_fs_roots(fs_info);
3108 if (ret)
3109 goto fail_qgroup;
3110
3111 mutex_lock(&fs_info->cleaner_mutex);
3112 ret = btrfs_recover_relocation(tree_root);
3113 mutex_unlock(&fs_info->cleaner_mutex);
3114 if (ret < 0) {
3115 btrfs_warn(fs_info, "failed to recover relocation: %d",
3116 ret);
3117 err = -EINVAL;
3118 goto fail_qgroup;
3119 }
3120 }
3121
3122 location.objectid = BTRFS_FS_TREE_OBJECTID;
3123 location.type = BTRFS_ROOT_ITEM_KEY;
3124 location.offset = 0;
3125
3126 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3127 if (IS_ERR(fs_info->fs_root)) {
3128 err = PTR_ERR(fs_info->fs_root);
3129 goto fail_qgroup;
3130 }
3131
3132 if (sb->s_flags & MS_RDONLY)
3133 return 0;
3134
3135 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3136 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3137 clear_free_space_tree = 1;
3138 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3139 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3140 btrfs_warn(fs_info, "free space tree is invalid");
3141 clear_free_space_tree = 1;
3142 }
3143
3144 if (clear_free_space_tree) {
3145 btrfs_info(fs_info, "clearing free space tree");
3146 ret = btrfs_clear_free_space_tree(fs_info);
3147 if (ret) {
3148 btrfs_warn(fs_info,
3149 "failed to clear free space tree: %d", ret);
3150 close_ctree(fs_info);
3151 return ret;
3152 }
3153 }
3154
3155 if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3156 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3157 btrfs_info(fs_info, "creating free space tree");
3158 ret = btrfs_create_free_space_tree(fs_info);
3159 if (ret) {
3160 btrfs_warn(fs_info,
3161 "failed to create free space tree: %d", ret);
3162 close_ctree(fs_info);
3163 return ret;
3164 }
3165 }
3166
3167 down_read(&fs_info->cleanup_work_sem);
3168 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3169 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3170 up_read(&fs_info->cleanup_work_sem);
3171 close_ctree(fs_info);
3172 return ret;
3173 }
3174 up_read(&fs_info->cleanup_work_sem);
3175
3176 ret = btrfs_resume_balance_async(fs_info);
3177 if (ret) {
3178 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3179 close_ctree(fs_info);
3180 return ret;
3181 }
3182
3183 ret = btrfs_resume_dev_replace_async(fs_info);
3184 if (ret) {
3185 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3186 close_ctree(fs_info);
3187 return ret;
3188 }
3189
3190 btrfs_qgroup_rescan_resume(fs_info);
3191
3192 if (!fs_info->uuid_root) {
3193 btrfs_info(fs_info, "creating UUID tree");
3194 ret = btrfs_create_uuid_tree(fs_info);
3195 if (ret) {
3196 btrfs_warn(fs_info,
3197 "failed to create the UUID tree: %d", ret);
3198 close_ctree(fs_info);
3199 return ret;
3200 }
3201 } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3202 fs_info->generation !=
3203 btrfs_super_uuid_tree_generation(disk_super)) {
3204 btrfs_info(fs_info, "checking UUID tree");
3205 ret = btrfs_check_uuid_tree(fs_info);
3206 if (ret) {
3207 btrfs_warn(fs_info,
3208 "failed to check the UUID tree: %d", ret);
3209 close_ctree(fs_info);
3210 return ret;
3211 }
3212 } else {
3213 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3214 }
3215 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3216
3217 /*
3218 * backuproot only affect mount behavior, and if open_ctree succeeded,
3219 * no need to keep the flag
3220 */
3221 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3222
3223 return 0;
3224
3225fail_qgroup:
3226 btrfs_free_qgroup_config(fs_info);
3227fail_trans_kthread:
3228 kthread_stop(fs_info->transaction_kthread);
3229 btrfs_cleanup_transaction(fs_info->tree_root);
3230 btrfs_free_fs_roots(fs_info);
3231fail_cleaner:
3232 kthread_stop(fs_info->cleaner_kthread);
3233
3234 /*
3235 * make sure we're done with the btree inode before we stop our
3236 * kthreads
3237 */
3238 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3239
3240fail_sysfs:
3241 btrfs_sysfs_remove_mounted(fs_info);
3242
3243fail_fsdev_sysfs:
3244 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3245
3246fail_block_groups:
3247 btrfs_put_block_group_cache(fs_info);
3248 btrfs_free_block_groups(fs_info);
3249
3250fail_tree_roots:
3251 free_root_pointers(fs_info, 1);
3252 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3253
3254fail_sb_buffer:
3255 btrfs_stop_all_workers(fs_info);
3256fail_alloc:
3257fail_iput:
3258 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3259
3260 iput(fs_info->btree_inode);
3261fail_bio_counter:
3262 percpu_counter_destroy(&fs_info->bio_counter);
3263fail_delalloc_bytes:
3264 percpu_counter_destroy(&fs_info->delalloc_bytes);
3265fail_dirty_metadata_bytes:
3266 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3267fail_bdi:
3268 bdi_destroy(&fs_info->bdi);
3269fail_srcu:
3270 cleanup_srcu_struct(&fs_info->subvol_srcu);
3271fail:
3272 btrfs_free_stripe_hash_table(fs_info);
3273 btrfs_close_devices(fs_info->fs_devices);
3274 return err;
3275
3276recovery_tree_root:
3277 if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3278 goto fail_tree_roots;
3279
3280 free_root_pointers(fs_info, 0);
3281
3282 /* don't use the log in recovery mode, it won't be valid */
3283 btrfs_set_super_log_root(disk_super, 0);
3284
3285 /* we can't trust the free space cache either */
3286 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3287
3288 ret = next_root_backup(fs_info, fs_info->super_copy,
3289 &num_backups_tried, &backup_index);
3290 if (ret == -1)
3291 goto fail_block_groups;
3292 goto retry_root_backup;
3293}
3294
3295static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3296{
3297 if (uptodate) {
3298 set_buffer_uptodate(bh);
3299 } else {
3300 struct btrfs_device *device = (struct btrfs_device *)
3301 bh->b_private;
3302
3303 btrfs_warn_rl_in_rcu(device->fs_info,
3304 "lost page write due to IO error on %s",
3305 rcu_str_deref(device->name));
3306 /* note, we don't set_buffer_write_io_error because we have
3307 * our own ways of dealing with the IO errors
3308 */
3309 clear_buffer_uptodate(bh);
3310 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3311 }
3312 unlock_buffer(bh);
3313 put_bh(bh);
3314}
3315
3316int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3317 struct buffer_head **bh_ret)
3318{
3319 struct buffer_head *bh;
3320 struct btrfs_super_block *super;
3321 u64 bytenr;
3322
3323 bytenr = btrfs_sb_offset(copy_num);
3324 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3325 return -EINVAL;
3326
3327 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3328 /*
3329 * If we fail to read from the underlying devices, as of now
3330 * the best option we have is to mark it EIO.
3331 */
3332 if (!bh)
3333 return -EIO;
3334
3335 super = (struct btrfs_super_block *)bh->b_data;
3336 if (btrfs_super_bytenr(super) != bytenr ||
3337 btrfs_super_magic(super) != BTRFS_MAGIC) {
3338 brelse(bh);
3339 return -EINVAL;
3340 }
3341
3342 *bh_ret = bh;
3343 return 0;
3344}
3345
3346
3347struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3348{
3349 struct buffer_head *bh;
3350 struct buffer_head *latest = NULL;
3351 struct btrfs_super_block *super;
3352 int i;
3353 u64 transid = 0;
3354 int ret = -EINVAL;
3355
3356 /* we would like to check all the supers, but that would make
3357 * a btrfs mount succeed after a mkfs from a different FS.
3358 * So, we need to add a special mount option to scan for
3359 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3360 */
3361 for (i = 0; i < 1; i++) {
3362 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3363 if (ret)
3364 continue;
3365
3366 super = (struct btrfs_super_block *)bh->b_data;
3367
3368 if (!latest || btrfs_super_generation(super) > transid) {
3369 brelse(latest);
3370 latest = bh;
3371 transid = btrfs_super_generation(super);
3372 } else {
3373 brelse(bh);
3374 }
3375 }
3376
3377 if (!latest)
3378 return ERR_PTR(ret);
3379
3380 return latest;
3381}
3382
3383/*
3384 * this should be called twice, once with wait == 0 and
3385 * once with wait == 1. When wait == 0 is done, all the buffer heads
3386 * we write are pinned.
3387 *
3388 * They are released when wait == 1 is done.
3389 * max_mirrors must be the same for both runs, and it indicates how
3390 * many supers on this one device should be written.
3391 *
3392 * max_mirrors == 0 means to write them all.
3393 */
3394static int write_dev_supers(struct btrfs_device *device,
3395 struct btrfs_super_block *sb,
3396 int do_barriers, int wait, int max_mirrors)
3397{
3398 struct buffer_head *bh;
3399 int i;
3400 int ret;
3401 int errors = 0;
3402 u32 crc;
3403 u64 bytenr;
3404
3405 if (max_mirrors == 0)
3406 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3407
3408 for (i = 0; i < max_mirrors; i++) {
3409 bytenr = btrfs_sb_offset(i);
3410 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3411 device->commit_total_bytes)
3412 break;
3413
3414 if (wait) {
3415 bh = __find_get_block(device->bdev, bytenr / 4096,
3416 BTRFS_SUPER_INFO_SIZE);
3417 if (!bh) {
3418 errors++;
3419 continue;
3420 }
3421 wait_on_buffer(bh);
3422 if (!buffer_uptodate(bh))
3423 errors++;
3424
3425 /* drop our reference */
3426 brelse(bh);
3427
3428 /* drop the reference from the wait == 0 run */
3429 brelse(bh);
3430 continue;
3431 } else {
3432 btrfs_set_super_bytenr(sb, bytenr);
3433
3434 crc = ~(u32)0;
3435 crc = btrfs_csum_data((char *)sb +
3436 BTRFS_CSUM_SIZE, crc,
3437 BTRFS_SUPER_INFO_SIZE -
3438 BTRFS_CSUM_SIZE);
3439 btrfs_csum_final(crc, sb->csum);
3440
3441 /*
3442 * one reference for us, and we leave it for the
3443 * caller
3444 */
3445 bh = __getblk(device->bdev, bytenr / 4096,
3446 BTRFS_SUPER_INFO_SIZE);
3447 if (!bh) {
3448 btrfs_err(device->fs_info,
3449 "couldn't get super buffer head for bytenr %llu",
3450 bytenr);
3451 errors++;
3452 continue;
3453 }
3454
3455 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3456
3457 /* one reference for submit_bh */
3458 get_bh(bh);
3459
3460 set_buffer_uptodate(bh);
3461 lock_buffer(bh);
3462 bh->b_end_io = btrfs_end_buffer_write_sync;
3463 bh->b_private = device;
3464 }
3465
3466 /*
3467 * we fua the first super. The others we allow
3468 * to go down lazy.
3469 */
3470 if (i == 0)
3471 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3472 else
3473 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3474 if (ret)
3475 errors++;
3476 }
3477 return errors < i ? 0 : -1;
3478}
3479
3480/*
3481 * endio for the write_dev_flush, this will wake anyone waiting
3482 * for the barrier when it is done
3483 */
3484static void btrfs_end_empty_barrier(struct bio *bio)
3485{
3486 if (bio->bi_private)
3487 complete(bio->bi_private);
3488 bio_put(bio);
3489}
3490
3491/*
3492 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3493 * sent down. With wait == 1, it waits for the previous flush.
3494 *
3495 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3496 * capable
3497 */
3498static int write_dev_flush(struct btrfs_device *device, int wait)
3499{
3500 struct bio *bio;
3501 int ret = 0;
3502
3503 if (device->nobarriers)
3504 return 0;
3505
3506 if (wait) {
3507 bio = device->flush_bio;
3508 if (!bio)
3509 return 0;
3510
3511 wait_for_completion(&device->flush_wait);
3512
3513 if (bio->bi_error) {
3514 ret = bio->bi_error;
3515 btrfs_dev_stat_inc_and_print(device,
3516 BTRFS_DEV_STAT_FLUSH_ERRS);
3517 }
3518
3519 /* drop the reference from the wait == 0 run */
3520 bio_put(bio);
3521 device->flush_bio = NULL;
3522
3523 return ret;
3524 }
3525
3526 /*
3527 * one reference for us, and we leave it for the
3528 * caller
3529 */
3530 device->flush_bio = NULL;
3531 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3532 if (!bio)
3533 return -ENOMEM;
3534
3535 bio->bi_end_io = btrfs_end_empty_barrier;
3536 bio->bi_bdev = device->bdev;
3537 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3538 init_completion(&device->flush_wait);
3539 bio->bi_private = &device->flush_wait;
3540 device->flush_bio = bio;
3541
3542 bio_get(bio);
3543 btrfsic_submit_bio(bio);
3544
3545 return 0;
3546}
3547
3548/*
3549 * send an empty flush down to each device in parallel,
3550 * then wait for them
3551 */
3552static int barrier_all_devices(struct btrfs_fs_info *info)
3553{
3554 struct list_head *head;
3555 struct btrfs_device *dev;
3556 int errors_send = 0;
3557 int errors_wait = 0;
3558 int ret;
3559
3560 /* send down all the barriers */
3561 head = &info->fs_devices->devices;
3562 list_for_each_entry_rcu(dev, head, dev_list) {
3563 if (dev->missing)
3564 continue;
3565 if (!dev->bdev) {
3566 errors_send++;
3567 continue;
3568 }
3569 if (!dev->in_fs_metadata || !dev->writeable)
3570 continue;
3571
3572 ret = write_dev_flush(dev, 0);
3573 if (ret)
3574 errors_send++;
3575 }
3576
3577 /* wait for all the barriers */
3578 list_for_each_entry_rcu(dev, head, dev_list) {
3579 if (dev->missing)
3580 continue;
3581 if (!dev->bdev) {
3582 errors_wait++;
3583 continue;
3584 }
3585 if (!dev->in_fs_metadata || !dev->writeable)
3586 continue;
3587
3588 ret = write_dev_flush(dev, 1);
3589 if (ret)
3590 errors_wait++;
3591 }
3592 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3593 errors_wait > info->num_tolerated_disk_barrier_failures)
3594 return -EIO;
3595 return 0;
3596}
3597
3598int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3599{
3600 int raid_type;
3601 int min_tolerated = INT_MAX;
3602
3603 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3604 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3605 min_tolerated = min(min_tolerated,
3606 btrfs_raid_array[BTRFS_RAID_SINGLE].
3607 tolerated_failures);
3608
3609 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3610 if (raid_type == BTRFS_RAID_SINGLE)
3611 continue;
3612 if (!(flags & btrfs_raid_group[raid_type]))
3613 continue;
3614 min_tolerated = min(min_tolerated,
3615 btrfs_raid_array[raid_type].
3616 tolerated_failures);
3617 }
3618
3619 if (min_tolerated == INT_MAX) {
3620 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3621 min_tolerated = 0;
3622 }
3623
3624 return min_tolerated;
3625}
3626
3627int btrfs_calc_num_tolerated_disk_barrier_failures(
3628 struct btrfs_fs_info *fs_info)
3629{
3630 struct btrfs_ioctl_space_info space;
3631 struct btrfs_space_info *sinfo;
3632 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3633 BTRFS_BLOCK_GROUP_SYSTEM,
3634 BTRFS_BLOCK_GROUP_METADATA,
3635 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3636 int i;
3637 int c;
3638 int num_tolerated_disk_barrier_failures =
3639 (int)fs_info->fs_devices->num_devices;
3640
3641 for (i = 0; i < ARRAY_SIZE(types); i++) {
3642 struct btrfs_space_info *tmp;
3643
3644 sinfo = NULL;
3645 rcu_read_lock();
3646 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3647 if (tmp->flags == types[i]) {
3648 sinfo = tmp;
3649 break;
3650 }
3651 }
3652 rcu_read_unlock();
3653
3654 if (!sinfo)
3655 continue;
3656
3657 down_read(&sinfo->groups_sem);
3658 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3659 u64 flags;
3660
3661 if (list_empty(&sinfo->block_groups[c]))
3662 continue;
3663
3664 btrfs_get_block_group_info(&sinfo->block_groups[c],
3665 &space);
3666 if (space.total_bytes == 0 || space.used_bytes == 0)
3667 continue;
3668 flags = space.flags;
3669
3670 num_tolerated_disk_barrier_failures = min(
3671 num_tolerated_disk_barrier_failures,
3672 btrfs_get_num_tolerated_disk_barrier_failures(
3673 flags));
3674 }
3675 up_read(&sinfo->groups_sem);
3676 }
3677
3678 return num_tolerated_disk_barrier_failures;
3679}
3680
3681static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3682{
3683 struct list_head *head;
3684 struct btrfs_device *dev;
3685 struct btrfs_super_block *sb;
3686 struct btrfs_dev_item *dev_item;
3687 int ret;
3688 int do_barriers;
3689 int max_errors;
3690 int total_errors = 0;
3691 u64 flags;
3692
3693 do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3694 backup_super_roots(root->fs_info);
3695
3696 sb = root->fs_info->super_for_commit;
3697 dev_item = &sb->dev_item;
3698
3699 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3700 head = &root->fs_info->fs_devices->devices;
3701 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3702
3703 if (do_barriers) {
3704 ret = barrier_all_devices(root->fs_info);
3705 if (ret) {
3706 mutex_unlock(
3707 &root->fs_info->fs_devices->device_list_mutex);
3708 btrfs_handle_fs_error(root->fs_info, ret,
3709 "errors while submitting device barriers.");
3710 return ret;
3711 }
3712 }
3713
3714 list_for_each_entry_rcu(dev, head, dev_list) {
3715 if (!dev->bdev) {
3716 total_errors++;
3717 continue;
3718 }
3719 if (!dev->in_fs_metadata || !dev->writeable)
3720 continue;
3721
3722 btrfs_set_stack_device_generation(dev_item, 0);
3723 btrfs_set_stack_device_type(dev_item, dev->type);
3724 btrfs_set_stack_device_id(dev_item, dev->devid);
3725 btrfs_set_stack_device_total_bytes(dev_item,
3726 dev->commit_total_bytes);
3727 btrfs_set_stack_device_bytes_used(dev_item,
3728 dev->commit_bytes_used);
3729 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3730 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3731 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3732 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3733 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3734
3735 flags = btrfs_super_flags(sb);
3736 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3737
3738 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3739 if (ret)
3740 total_errors++;
3741 }
3742 if (total_errors > max_errors) {
3743 btrfs_err(root->fs_info, "%d errors while writing supers",
3744 total_errors);
3745 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3746
3747 /* FUA is masked off if unsupported and can't be the reason */
3748 btrfs_handle_fs_error(root->fs_info, -EIO,
3749 "%d errors while writing supers", total_errors);
3750 return -EIO;
3751 }
3752
3753 total_errors = 0;
3754 list_for_each_entry_rcu(dev, head, dev_list) {
3755 if (!dev->bdev)
3756 continue;
3757 if (!dev->in_fs_metadata || !dev->writeable)
3758 continue;
3759
3760 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3761 if (ret)
3762 total_errors++;
3763 }
3764 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3765 if (total_errors > max_errors) {
3766 btrfs_handle_fs_error(root->fs_info, -EIO,
3767 "%d errors while writing supers", total_errors);
3768 return -EIO;
3769 }
3770 return 0;
3771}
3772
3773int write_ctree_super(struct btrfs_trans_handle *trans,
3774 struct btrfs_root *root, int max_mirrors)
3775{
3776 return write_all_supers(root, max_mirrors);
3777}
3778
3779/* Drop a fs root from the radix tree and free it. */
3780void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3781 struct btrfs_root *root)
3782{
3783 spin_lock(&fs_info->fs_roots_radix_lock);
3784 radix_tree_delete(&fs_info->fs_roots_radix,
3785 (unsigned long)root->root_key.objectid);
3786 spin_unlock(&fs_info->fs_roots_radix_lock);
3787
3788 if (btrfs_root_refs(&root->root_item) == 0)
3789 synchronize_srcu(&fs_info->subvol_srcu);
3790
3791 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3792 btrfs_free_log(NULL, root);
3793 if (root->reloc_root) {
3794 free_extent_buffer(root->reloc_root->node);
3795 free_extent_buffer(root->reloc_root->commit_root);
3796 btrfs_put_fs_root(root->reloc_root);
3797 root->reloc_root = NULL;
3798 }
3799 }
3800
3801 if (root->free_ino_pinned)
3802 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3803 if (root->free_ino_ctl)
3804 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3805 free_fs_root(root);
3806}
3807
3808static void free_fs_root(struct btrfs_root *root)
3809{
3810 iput(root->ino_cache_inode);
3811 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3812 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3813 root->orphan_block_rsv = NULL;
3814 if (root->anon_dev)
3815 free_anon_bdev(root->anon_dev);
3816 if (root->subv_writers)
3817 btrfs_free_subvolume_writers(root->subv_writers);
3818 free_extent_buffer(root->node);
3819 free_extent_buffer(root->commit_root);
3820 kfree(root->free_ino_ctl);
3821 kfree(root->free_ino_pinned);
3822 kfree(root->name);
3823 btrfs_put_fs_root(root);
3824}
3825
3826void btrfs_free_fs_root(struct btrfs_root *root)
3827{
3828 free_fs_root(root);
3829}
3830
3831int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3832{
3833 u64 root_objectid = 0;
3834 struct btrfs_root *gang[8];
3835 int i = 0;
3836 int err = 0;
3837 unsigned int ret = 0;
3838 int index;
3839
3840 while (1) {
3841 index = srcu_read_lock(&fs_info->subvol_srcu);
3842 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3843 (void **)gang, root_objectid,
3844 ARRAY_SIZE(gang));
3845 if (!ret) {
3846 srcu_read_unlock(&fs_info->subvol_srcu, index);
3847 break;
3848 }
3849 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3850
3851 for (i = 0; i < ret; i++) {
3852 /* Avoid to grab roots in dead_roots */
3853 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3854 gang[i] = NULL;
3855 continue;
3856 }
3857 /* grab all the search result for later use */
3858 gang[i] = btrfs_grab_fs_root(gang[i]);
3859 }
3860 srcu_read_unlock(&fs_info->subvol_srcu, index);
3861
3862 for (i = 0; i < ret; i++) {
3863 if (!gang[i])
3864 continue;
3865 root_objectid = gang[i]->root_key.objectid;
3866 err = btrfs_orphan_cleanup(gang[i]);
3867 if (err)
3868 break;
3869 btrfs_put_fs_root(gang[i]);
3870 }
3871 root_objectid++;
3872 }
3873
3874 /* release the uncleaned roots due to error */
3875 for (; i < ret; i++) {
3876 if (gang[i])
3877 btrfs_put_fs_root(gang[i]);
3878 }
3879 return err;
3880}
3881
3882int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3883{
3884 struct btrfs_root *root = fs_info->tree_root;
3885 struct btrfs_trans_handle *trans;
3886
3887 mutex_lock(&root->fs_info->cleaner_mutex);
3888 btrfs_run_delayed_iputs(root);
3889 mutex_unlock(&root->fs_info->cleaner_mutex);
3890 wake_up_process(root->fs_info->cleaner_kthread);
3891
3892 /* wait until ongoing cleanup work done */
3893 down_write(&root->fs_info->cleanup_work_sem);
3894 up_write(&root->fs_info->cleanup_work_sem);
3895
3896 trans = btrfs_join_transaction(root);
3897 if (IS_ERR(trans))
3898 return PTR_ERR(trans);
3899 return btrfs_commit_transaction(trans, root);
3900}
3901
3902void close_ctree(struct btrfs_fs_info *fs_info)
3903{
3904 struct btrfs_root *root = fs_info->tree_root;
3905 int ret;
3906
3907 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3908
3909 /* wait for the qgroup rescan worker to stop */
3910 btrfs_qgroup_wait_for_completion(fs_info, false);
3911
3912 /* wait for the uuid_scan task to finish */
3913 down(&fs_info->uuid_tree_rescan_sem);
3914 /* avoid complains from lockdep et al., set sem back to initial state */
3915 up(&fs_info->uuid_tree_rescan_sem);
3916
3917 /* pause restriper - we want to resume on mount */
3918 btrfs_pause_balance(fs_info);
3919
3920 btrfs_dev_replace_suspend_for_unmount(fs_info);
3921
3922 btrfs_scrub_cancel(fs_info);
3923
3924 /* wait for any defraggers to finish */
3925 wait_event(fs_info->transaction_wait,
3926 (atomic_read(&fs_info->defrag_running) == 0));
3927
3928 /* clear out the rbtree of defraggable inodes */
3929 btrfs_cleanup_defrag_inodes(fs_info);
3930
3931 cancel_work_sync(&fs_info->async_reclaim_work);
3932
3933 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3934 /*
3935 * If the cleaner thread is stopped and there are
3936 * block groups queued for removal, the deletion will be
3937 * skipped when we quit the cleaner thread.
3938 */
3939 btrfs_delete_unused_bgs(root->fs_info);
3940
3941 ret = btrfs_commit_super(fs_info);
3942 if (ret)
3943 btrfs_err(fs_info, "commit super ret %d", ret);
3944 }
3945
3946 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3947 btrfs_error_commit_super(root);
3948
3949 kthread_stop(fs_info->transaction_kthread);
3950 kthread_stop(fs_info->cleaner_kthread);
3951
3952 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3953
3954 btrfs_free_qgroup_config(fs_info);
3955
3956 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3957 btrfs_info(fs_info, "at unmount delalloc count %lld",
3958 percpu_counter_sum(&fs_info->delalloc_bytes));
3959 }
3960
3961 btrfs_sysfs_remove_mounted(fs_info);
3962 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3963
3964 btrfs_free_fs_roots(fs_info);
3965
3966 btrfs_put_block_group_cache(fs_info);
3967
3968 btrfs_free_block_groups(fs_info);
3969
3970 /*
3971 * we must make sure there is not any read request to
3972 * submit after we stopping all workers.
3973 */
3974 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3975 btrfs_stop_all_workers(fs_info);
3976
3977 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3978 free_root_pointers(fs_info, 1);
3979
3980 iput(fs_info->btree_inode);
3981
3982#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3983 if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
3984 btrfsic_unmount(root, fs_info->fs_devices);
3985#endif
3986
3987 btrfs_close_devices(fs_info->fs_devices);
3988 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3989
3990 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3991 percpu_counter_destroy(&fs_info->delalloc_bytes);
3992 percpu_counter_destroy(&fs_info->bio_counter);
3993 bdi_destroy(&fs_info->bdi);
3994 cleanup_srcu_struct(&fs_info->subvol_srcu);
3995
3996 btrfs_free_stripe_hash_table(fs_info);
3997
3998 __btrfs_free_block_rsv(root->orphan_block_rsv);
3999 root->orphan_block_rsv = NULL;
4000
4001 lock_chunks(root->fs_info);
4002 while (!list_empty(&fs_info->pinned_chunks)) {
4003 struct extent_map *em;
4004
4005 em = list_first_entry(&fs_info->pinned_chunks,
4006 struct extent_map, list);
4007 list_del_init(&em->list);
4008 free_extent_map(em);
4009 }
4010 unlock_chunks(root->fs_info);
4011}
4012
4013int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4014 int atomic)
4015{
4016 int ret;
4017 struct inode *btree_inode = buf->pages[0]->mapping->host;
4018
4019 ret = extent_buffer_uptodate(buf);
4020 if (!ret)
4021 return ret;
4022
4023 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4024 parent_transid, atomic);
4025 if (ret == -EAGAIN)
4026 return ret;
4027 return !ret;
4028}
4029
4030void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4031{
4032 struct btrfs_root *root;
4033 u64 transid = btrfs_header_generation(buf);
4034 int was_dirty;
4035
4036#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4037 /*
4038 * This is a fast path so only do this check if we have sanity tests
4039 * enabled. Normal people shouldn't be marking dummy buffers as dirty
4040 * outside of the sanity tests.
4041 */
4042 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4043 return;
4044#endif
4045 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4046 btrfs_assert_tree_locked(buf);
4047 if (transid != root->fs_info->generation)
4048 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4049 buf->start, transid, root->fs_info->generation);
4050 was_dirty = set_extent_buffer_dirty(buf);
4051 if (!was_dirty)
4052 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4053 buf->len,
4054 root->fs_info->dirty_metadata_batch);
4055#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4056 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4057 btrfs_print_leaf(root, buf);
4058 ASSERT(0);
4059 }
4060#endif
4061}
4062
4063static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4064 int flush_delayed)
4065{
4066 /*
4067 * looks as though older kernels can get into trouble with
4068 * this code, they end up stuck in balance_dirty_pages forever
4069 */
4070 int ret;
4071
4072 if (current->flags & PF_MEMALLOC)
4073 return;
4074
4075 if (flush_delayed)
4076 btrfs_balance_delayed_items(root);
4077
4078 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4079 BTRFS_DIRTY_METADATA_THRESH);
4080 if (ret > 0) {
4081 balance_dirty_pages_ratelimited(
4082 root->fs_info->btree_inode->i_mapping);
4083 }
4084}
4085
4086void btrfs_btree_balance_dirty(struct btrfs_root *root)
4087{
4088 __btrfs_btree_balance_dirty(root, 1);
4089}
4090
4091void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4092{
4093 __btrfs_btree_balance_dirty(root, 0);
4094}
4095
4096int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4097{
4098 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4099 return btree_read_extent_buffer_pages(root, buf, parent_transid);
4100}
4101
4102static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4103 int read_only)
4104{
4105 struct btrfs_super_block *sb = fs_info->super_copy;
4106 u64 nodesize = btrfs_super_nodesize(sb);
4107 u64 sectorsize = btrfs_super_sectorsize(sb);
4108 int ret = 0;
4109
4110 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4111 btrfs_err(fs_info, "no valid FS found");
4112 ret = -EINVAL;
4113 }
4114 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4115 btrfs_warn(fs_info, "unrecognized super flag: %llu",
4116 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4117 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4118 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4119 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4120 ret = -EINVAL;
4121 }
4122 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4123 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4124 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4125 ret = -EINVAL;
4126 }
4127 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4128 btrfs_err(fs_info, "log_root level too big: %d >= %d",
4129 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4130 ret = -EINVAL;
4131 }
4132
4133 /*
4134 * Check sectorsize and nodesize first, other check will need it.
4135 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4136 */
4137 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4138 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4139 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4140 ret = -EINVAL;
4141 }
4142 /* Only PAGE SIZE is supported yet */
4143 if (sectorsize != PAGE_SIZE) {
4144 btrfs_err(fs_info,
4145 "sectorsize %llu not supported yet, only support %lu",
4146 sectorsize, PAGE_SIZE);
4147 ret = -EINVAL;
4148 }
4149 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4150 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4151 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4152 ret = -EINVAL;
4153 }
4154 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4155 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4156 le32_to_cpu(sb->__unused_leafsize), nodesize);
4157 ret = -EINVAL;
4158 }
4159
4160 /* Root alignment check */
4161 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4162 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4163 btrfs_super_root(sb));
4164 ret = -EINVAL;
4165 }
4166 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4167 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4168 btrfs_super_chunk_root(sb));
4169 ret = -EINVAL;
4170 }
4171 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4172 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4173 btrfs_super_log_root(sb));
4174 ret = -EINVAL;
4175 }
4176
4177 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4178 btrfs_err(fs_info,
4179 "dev_item UUID does not match fsid: %pU != %pU",
4180 fs_info->fsid, sb->dev_item.fsid);
4181 ret = -EINVAL;
4182 }
4183
4184 /*
4185 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4186 * done later
4187 */
4188 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4189 btrfs_err(fs_info, "bytes_used is too small %llu",
4190 btrfs_super_bytes_used(sb));
4191 ret = -EINVAL;
4192 }
4193 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4194 btrfs_err(fs_info, "invalid stripesize %u",
4195 btrfs_super_stripesize(sb));
4196 ret = -EINVAL;
4197 }
4198 if (btrfs_super_num_devices(sb) > (1UL << 31))
4199 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4200 btrfs_super_num_devices(sb));
4201 if (btrfs_super_num_devices(sb) == 0) {
4202 btrfs_err(fs_info, "number of devices is 0");
4203 ret = -EINVAL;
4204 }
4205
4206 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4207 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4208 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4209 ret = -EINVAL;
4210 }
4211
4212 /*
4213 * Obvious sys_chunk_array corruptions, it must hold at least one key
4214 * and one chunk
4215 */
4216 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4217 btrfs_err(fs_info, "system chunk array too big %u > %u",
4218 btrfs_super_sys_array_size(sb),
4219 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4220 ret = -EINVAL;
4221 }
4222 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4223 + sizeof(struct btrfs_chunk)) {
4224 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4225 btrfs_super_sys_array_size(sb),
4226 sizeof(struct btrfs_disk_key)
4227 + sizeof(struct btrfs_chunk));
4228 ret = -EINVAL;
4229 }
4230
4231 /*
4232 * The generation is a global counter, we'll trust it more than the others
4233 * but it's still possible that it's the one that's wrong.
4234 */
4235 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4236 btrfs_warn(fs_info,
4237 "suspicious: generation < chunk_root_generation: %llu < %llu",
4238 btrfs_super_generation(sb),
4239 btrfs_super_chunk_root_generation(sb));
4240 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4241 && btrfs_super_cache_generation(sb) != (u64)-1)
4242 btrfs_warn(fs_info,
4243 "suspicious: generation < cache_generation: %llu < %llu",
4244 btrfs_super_generation(sb),
4245 btrfs_super_cache_generation(sb));
4246
4247 return ret;
4248}
4249
4250static void btrfs_error_commit_super(struct btrfs_root *root)
4251{
4252 mutex_lock(&root->fs_info->cleaner_mutex);
4253 btrfs_run_delayed_iputs(root);
4254 mutex_unlock(&root->fs_info->cleaner_mutex);
4255
4256 down_write(&root->fs_info->cleanup_work_sem);
4257 up_write(&root->fs_info->cleanup_work_sem);
4258
4259 /* cleanup FS via transaction */
4260 btrfs_cleanup_transaction(root);
4261}
4262
4263static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4264{
4265 struct btrfs_ordered_extent *ordered;
4266
4267 spin_lock(&root->ordered_extent_lock);
4268 /*
4269 * This will just short circuit the ordered completion stuff which will
4270 * make sure the ordered extent gets properly cleaned up.
4271 */
4272 list_for_each_entry(ordered, &root->ordered_extents,
4273 root_extent_list)
4274 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4275 spin_unlock(&root->ordered_extent_lock);
4276}
4277
4278static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4279{
4280 struct btrfs_root *root;
4281 struct list_head splice;
4282
4283 INIT_LIST_HEAD(&splice);
4284
4285 spin_lock(&fs_info->ordered_root_lock);
4286 list_splice_init(&fs_info->ordered_roots, &splice);
4287 while (!list_empty(&splice)) {
4288 root = list_first_entry(&splice, struct btrfs_root,
4289 ordered_root);
4290 list_move_tail(&root->ordered_root,
4291 &fs_info->ordered_roots);
4292
4293 spin_unlock(&fs_info->ordered_root_lock);
4294 btrfs_destroy_ordered_extents(root);
4295
4296 cond_resched();
4297 spin_lock(&fs_info->ordered_root_lock);
4298 }
4299 spin_unlock(&fs_info->ordered_root_lock);
4300}
4301
4302static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4303 struct btrfs_root *root)
4304{
4305 struct rb_node *node;
4306 struct btrfs_delayed_ref_root *delayed_refs;
4307 struct btrfs_delayed_ref_node *ref;
4308 int ret = 0;
4309
4310 delayed_refs = &trans->delayed_refs;
4311
4312 spin_lock(&delayed_refs->lock);
4313 if (atomic_read(&delayed_refs->num_entries) == 0) {
4314 spin_unlock(&delayed_refs->lock);
4315 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4316 return ret;
4317 }
4318
4319 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4320 struct btrfs_delayed_ref_head *head;
4321 struct btrfs_delayed_ref_node *tmp;
4322 bool pin_bytes = false;
4323
4324 head = rb_entry(node, struct btrfs_delayed_ref_head,
4325 href_node);
4326 if (!mutex_trylock(&head->mutex)) {
4327 atomic_inc(&head->node.refs);
4328 spin_unlock(&delayed_refs->lock);
4329
4330 mutex_lock(&head->mutex);
4331 mutex_unlock(&head->mutex);
4332 btrfs_put_delayed_ref(&head->node);
4333 spin_lock(&delayed_refs->lock);
4334 continue;
4335 }
4336 spin_lock(&head->lock);
4337 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4338 list) {
4339 ref->in_tree = 0;
4340 list_del(&ref->list);
4341 if (!list_empty(&ref->add_list))
4342 list_del(&ref->add_list);
4343 atomic_dec(&delayed_refs->num_entries);
4344 btrfs_put_delayed_ref(ref);
4345 }
4346 if (head->must_insert_reserved)
4347 pin_bytes = true;
4348 btrfs_free_delayed_extent_op(head->extent_op);
4349 delayed_refs->num_heads--;
4350 if (head->processing == 0)
4351 delayed_refs->num_heads_ready--;
4352 atomic_dec(&delayed_refs->num_entries);
4353 head->node.in_tree = 0;
4354 rb_erase(&head->href_node, &delayed_refs->href_root);
4355 spin_unlock(&head->lock);
4356 spin_unlock(&delayed_refs->lock);
4357 mutex_unlock(&head->mutex);
4358
4359 if (pin_bytes)
4360 btrfs_pin_extent(root, head->node.bytenr,
4361 head->node.num_bytes, 1);
4362 btrfs_put_delayed_ref(&head->node);
4363 cond_resched();
4364 spin_lock(&delayed_refs->lock);
4365 }
4366
4367 spin_unlock(&delayed_refs->lock);
4368
4369 return ret;
4370}
4371
4372static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4373{
4374 struct btrfs_inode *btrfs_inode;
4375 struct list_head splice;
4376
4377 INIT_LIST_HEAD(&splice);
4378
4379 spin_lock(&root->delalloc_lock);
4380 list_splice_init(&root->delalloc_inodes, &splice);
4381
4382 while (!list_empty(&splice)) {
4383 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4384 delalloc_inodes);
4385
4386 list_del_init(&btrfs_inode->delalloc_inodes);
4387 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4388 &btrfs_inode->runtime_flags);
4389 spin_unlock(&root->delalloc_lock);
4390
4391 btrfs_invalidate_inodes(btrfs_inode->root);
4392
4393 spin_lock(&root->delalloc_lock);
4394 }
4395
4396 spin_unlock(&root->delalloc_lock);
4397}
4398
4399static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4400{
4401 struct btrfs_root *root;
4402 struct list_head splice;
4403
4404 INIT_LIST_HEAD(&splice);
4405
4406 spin_lock(&fs_info->delalloc_root_lock);
4407 list_splice_init(&fs_info->delalloc_roots, &splice);
4408 while (!list_empty(&splice)) {
4409 root = list_first_entry(&splice, struct btrfs_root,
4410 delalloc_root);
4411 list_del_init(&root->delalloc_root);
4412 root = btrfs_grab_fs_root(root);
4413 BUG_ON(!root);
4414 spin_unlock(&fs_info->delalloc_root_lock);
4415
4416 btrfs_destroy_delalloc_inodes(root);
4417 btrfs_put_fs_root(root);
4418
4419 spin_lock(&fs_info->delalloc_root_lock);
4420 }
4421 spin_unlock(&fs_info->delalloc_root_lock);
4422}
4423
4424static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4425 struct extent_io_tree *dirty_pages,
4426 int mark)
4427{
4428 int ret;
4429 struct extent_buffer *eb;
4430 u64 start = 0;
4431 u64 end;
4432
4433 while (1) {
4434 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4435 mark, NULL);
4436 if (ret)
4437 break;
4438
4439 clear_extent_bits(dirty_pages, start, end, mark);
4440 while (start <= end) {
4441 eb = find_extent_buffer(root->fs_info, start);
4442 start += root->fs_info->nodesize;
4443 if (!eb)
4444 continue;
4445 wait_on_extent_buffer_writeback(eb);
4446
4447 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4448 &eb->bflags))
4449 clear_extent_buffer_dirty(eb);
4450 free_extent_buffer_stale(eb);
4451 }
4452 }
4453
4454 return ret;
4455}
4456
4457static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4458 struct extent_io_tree *pinned_extents)
4459{
4460 struct extent_io_tree *unpin;
4461 u64 start;
4462 u64 end;
4463 int ret;
4464 bool loop = true;
4465
4466 unpin = pinned_extents;
4467again:
4468 while (1) {
4469 ret = find_first_extent_bit(unpin, 0, &start, &end,
4470 EXTENT_DIRTY, NULL);
4471 if (ret)
4472 break;
4473
4474 clear_extent_dirty(unpin, start, end);
4475 btrfs_error_unpin_extent_range(root, start, end);
4476 cond_resched();
4477 }
4478
4479 if (loop) {
4480 if (unpin == &root->fs_info->freed_extents[0])
4481 unpin = &root->fs_info->freed_extents[1];
4482 else
4483 unpin = &root->fs_info->freed_extents[0];
4484 loop = false;
4485 goto again;
4486 }
4487
4488 return 0;
4489}
4490
4491static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4492{
4493 struct inode *inode;
4494
4495 inode = cache->io_ctl.inode;
4496 if (inode) {
4497 invalidate_inode_pages2(inode->i_mapping);
4498 BTRFS_I(inode)->generation = 0;
4499 cache->io_ctl.inode = NULL;
4500 iput(inode);
4501 }
4502 btrfs_put_block_group(cache);
4503}
4504
4505void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4506 struct btrfs_root *root)
4507{
4508 struct btrfs_block_group_cache *cache;
4509
4510 spin_lock(&cur_trans->dirty_bgs_lock);
4511 while (!list_empty(&cur_trans->dirty_bgs)) {
4512 cache = list_first_entry(&cur_trans->dirty_bgs,
4513 struct btrfs_block_group_cache,
4514 dirty_list);
4515 if (!cache) {
4516 btrfs_err(root->fs_info,
4517 "orphan block group dirty_bgs list");
4518 spin_unlock(&cur_trans->dirty_bgs_lock);
4519 return;
4520 }
4521
4522 if (!list_empty(&cache->io_list)) {
4523 spin_unlock(&cur_trans->dirty_bgs_lock);
4524 list_del_init(&cache->io_list);
4525 btrfs_cleanup_bg_io(cache);
4526 spin_lock(&cur_trans->dirty_bgs_lock);
4527 }
4528
4529 list_del_init(&cache->dirty_list);
4530 spin_lock(&cache->lock);
4531 cache->disk_cache_state = BTRFS_DC_ERROR;
4532 spin_unlock(&cache->lock);
4533
4534 spin_unlock(&cur_trans->dirty_bgs_lock);
4535 btrfs_put_block_group(cache);
4536 spin_lock(&cur_trans->dirty_bgs_lock);
4537 }
4538 spin_unlock(&cur_trans->dirty_bgs_lock);
4539
4540 while (!list_empty(&cur_trans->io_bgs)) {
4541 cache = list_first_entry(&cur_trans->io_bgs,
4542 struct btrfs_block_group_cache,
4543 io_list);
4544 if (!cache) {
4545 btrfs_err(root->fs_info,
4546 "orphan block group on io_bgs list");
4547 return;
4548 }
4549
4550 list_del_init(&cache->io_list);
4551 spin_lock(&cache->lock);
4552 cache->disk_cache_state = BTRFS_DC_ERROR;
4553 spin_unlock(&cache->lock);
4554 btrfs_cleanup_bg_io(cache);
4555 }
4556}
4557
4558void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4559 struct btrfs_root *root)
4560{
4561 btrfs_cleanup_dirty_bgs(cur_trans, root);
4562 ASSERT(list_empty(&cur_trans->dirty_bgs));
4563 ASSERT(list_empty(&cur_trans->io_bgs));
4564
4565 btrfs_destroy_delayed_refs(cur_trans, root);
4566
4567 cur_trans->state = TRANS_STATE_COMMIT_START;
4568 wake_up(&root->fs_info->transaction_blocked_wait);
4569
4570 cur_trans->state = TRANS_STATE_UNBLOCKED;
4571 wake_up(&root->fs_info->transaction_wait);
4572
4573 btrfs_destroy_delayed_inodes(root);
4574 btrfs_assert_delayed_root_empty(root);
4575
4576 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4577 EXTENT_DIRTY);
4578 btrfs_destroy_pinned_extent(root,
4579 root->fs_info->pinned_extents);
4580
4581 cur_trans->state =TRANS_STATE_COMPLETED;
4582 wake_up(&cur_trans->commit_wait);
4583
4584 /*
4585 memset(cur_trans, 0, sizeof(*cur_trans));
4586 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4587 */
4588}
4589
4590static int btrfs_cleanup_transaction(struct btrfs_root *root)
4591{
4592 struct btrfs_transaction *t;
4593
4594 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4595
4596 spin_lock(&root->fs_info->trans_lock);
4597 while (!list_empty(&root->fs_info->trans_list)) {
4598 t = list_first_entry(&root->fs_info->trans_list,
4599 struct btrfs_transaction, list);
4600 if (t->state >= TRANS_STATE_COMMIT_START) {
4601 atomic_inc(&t->use_count);
4602 spin_unlock(&root->fs_info->trans_lock);
4603 btrfs_wait_for_commit(root, t->transid);
4604 btrfs_put_transaction(t);
4605 spin_lock(&root->fs_info->trans_lock);
4606 continue;
4607 }
4608 if (t == root->fs_info->running_transaction) {
4609 t->state = TRANS_STATE_COMMIT_DOING;
4610 spin_unlock(&root->fs_info->trans_lock);
4611 /*
4612 * We wait for 0 num_writers since we don't hold a trans
4613 * handle open currently for this transaction.
4614 */
4615 wait_event(t->writer_wait,
4616 atomic_read(&t->num_writers) == 0);
4617 } else {
4618 spin_unlock(&root->fs_info->trans_lock);
4619 }
4620 btrfs_cleanup_one_transaction(t, root);
4621
4622 spin_lock(&root->fs_info->trans_lock);
4623 if (t == root->fs_info->running_transaction)
4624 root->fs_info->running_transaction = NULL;
4625 list_del_init(&t->list);
4626 spin_unlock(&root->fs_info->trans_lock);
4627
4628 btrfs_put_transaction(t);
4629 trace_btrfs_transaction_commit(root);
4630 spin_lock(&root->fs_info->trans_lock);
4631 }
4632 spin_unlock(&root->fs_info->trans_lock);
4633 btrfs_destroy_all_ordered_extents(root->fs_info);
4634 btrfs_destroy_delayed_inodes(root);
4635 btrfs_assert_delayed_root_empty(root);
4636 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4637 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4638 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4639
4640 return 0;
4641}
4642
4643static const struct extent_io_ops btree_extent_io_ops = {
4644 .readpage_end_io_hook = btree_readpage_end_io_hook,
4645 .readpage_io_failed_hook = btree_io_failed_hook,
4646 .submit_bio_hook = btree_submit_bio_hook,
4647 /* note we're sharing with inode.c for the merge bio hook */
4648 .merge_bio_hook = btrfs_merge_bio_hook,
4649};