]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame_incremental - fs/btrfs/extent-tree.c
Btrfs: reduce the amount of space needed for truncates
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / extent-tree.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/pagemap.h>
20#include <linux/writeback.h>
21#include <linux/blkdev.h>
22#include <linux/sort.h>
23#include <linux/rcupdate.h>
24#include <linux/kthread.h>
25#include <linux/slab.h>
26#include "compat.h"
27#include "hash.h"
28#include "ctree.h"
29#include "disk-io.h"
30#include "print-tree.h"
31#include "transaction.h"
32#include "volumes.h"
33#include "locking.h"
34#include "free-space-cache.h"
35
36/* control flags for do_chunk_alloc's force field
37 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
38 * if we really need one.
39 *
40 * CHUNK_ALLOC_FORCE means it must try to allocate one
41 *
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
47 *
48 */
49enum {
50 CHUNK_ALLOC_NO_FORCE = 0,
51 CHUNK_ALLOC_FORCE = 1,
52 CHUNK_ALLOC_LIMITED = 2,
53};
54
55/*
56 * Control how reservations are dealt with.
57 *
58 * RESERVE_FREE - freeing a reservation.
59 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
60 * ENOSPC accounting
61 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
62 * bytes_may_use as the ENOSPC accounting is done elsewhere
63 */
64enum {
65 RESERVE_FREE = 0,
66 RESERVE_ALLOC = 1,
67 RESERVE_ALLOC_NO_ACCOUNT = 2,
68};
69
70static int update_block_group(struct btrfs_trans_handle *trans,
71 struct btrfs_root *root,
72 u64 bytenr, u64 num_bytes, int alloc);
73static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
74 struct btrfs_root *root,
75 u64 bytenr, u64 num_bytes, u64 parent,
76 u64 root_objectid, u64 owner_objectid,
77 u64 owner_offset, int refs_to_drop,
78 struct btrfs_delayed_extent_op *extra_op);
79static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
80 struct extent_buffer *leaf,
81 struct btrfs_extent_item *ei);
82static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
83 struct btrfs_root *root,
84 u64 parent, u64 root_objectid,
85 u64 flags, u64 owner, u64 offset,
86 struct btrfs_key *ins, int ref_mod);
87static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
88 struct btrfs_root *root,
89 u64 parent, u64 root_objectid,
90 u64 flags, struct btrfs_disk_key *key,
91 int level, struct btrfs_key *ins);
92static int do_chunk_alloc(struct btrfs_trans_handle *trans,
93 struct btrfs_root *extent_root, u64 alloc_bytes,
94 u64 flags, int force);
95static int find_next_key(struct btrfs_path *path, int level,
96 struct btrfs_key *key);
97static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
98 int dump_block_groups);
99static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
100 u64 num_bytes, int reserve);
101
102static noinline int
103block_group_cache_done(struct btrfs_block_group_cache *cache)
104{
105 smp_mb();
106 return cache->cached == BTRFS_CACHE_FINISHED;
107}
108
109static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
110{
111 return (cache->flags & bits) == bits;
112}
113
114static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
115{
116 atomic_inc(&cache->count);
117}
118
119void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
120{
121 if (atomic_dec_and_test(&cache->count)) {
122 WARN_ON(cache->pinned > 0);
123 WARN_ON(cache->reserved > 0);
124 kfree(cache->free_space_ctl);
125 kfree(cache);
126 }
127}
128
129/*
130 * this adds the block group to the fs_info rb tree for the block group
131 * cache
132 */
133static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
134 struct btrfs_block_group_cache *block_group)
135{
136 struct rb_node **p;
137 struct rb_node *parent = NULL;
138 struct btrfs_block_group_cache *cache;
139
140 spin_lock(&info->block_group_cache_lock);
141 p = &info->block_group_cache_tree.rb_node;
142
143 while (*p) {
144 parent = *p;
145 cache = rb_entry(parent, struct btrfs_block_group_cache,
146 cache_node);
147 if (block_group->key.objectid < cache->key.objectid) {
148 p = &(*p)->rb_left;
149 } else if (block_group->key.objectid > cache->key.objectid) {
150 p = &(*p)->rb_right;
151 } else {
152 spin_unlock(&info->block_group_cache_lock);
153 return -EEXIST;
154 }
155 }
156
157 rb_link_node(&block_group->cache_node, parent, p);
158 rb_insert_color(&block_group->cache_node,
159 &info->block_group_cache_tree);
160 spin_unlock(&info->block_group_cache_lock);
161
162 return 0;
163}
164
165/*
166 * This will return the block group at or after bytenr if contains is 0, else
167 * it will return the block group that contains the bytenr
168 */
169static struct btrfs_block_group_cache *
170block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
171 int contains)
172{
173 struct btrfs_block_group_cache *cache, *ret = NULL;
174 struct rb_node *n;
175 u64 end, start;
176
177 spin_lock(&info->block_group_cache_lock);
178 n = info->block_group_cache_tree.rb_node;
179
180 while (n) {
181 cache = rb_entry(n, struct btrfs_block_group_cache,
182 cache_node);
183 end = cache->key.objectid + cache->key.offset - 1;
184 start = cache->key.objectid;
185
186 if (bytenr < start) {
187 if (!contains && (!ret || start < ret->key.objectid))
188 ret = cache;
189 n = n->rb_left;
190 } else if (bytenr > start) {
191 if (contains && bytenr <= end) {
192 ret = cache;
193 break;
194 }
195 n = n->rb_right;
196 } else {
197 ret = cache;
198 break;
199 }
200 }
201 if (ret)
202 btrfs_get_block_group(ret);
203 spin_unlock(&info->block_group_cache_lock);
204
205 return ret;
206}
207
208static int add_excluded_extent(struct btrfs_root *root,
209 u64 start, u64 num_bytes)
210{
211 u64 end = start + num_bytes - 1;
212 set_extent_bits(&root->fs_info->freed_extents[0],
213 start, end, EXTENT_UPTODATE, GFP_NOFS);
214 set_extent_bits(&root->fs_info->freed_extents[1],
215 start, end, EXTENT_UPTODATE, GFP_NOFS);
216 return 0;
217}
218
219static void free_excluded_extents(struct btrfs_root *root,
220 struct btrfs_block_group_cache *cache)
221{
222 u64 start, end;
223
224 start = cache->key.objectid;
225 end = start + cache->key.offset - 1;
226
227 clear_extent_bits(&root->fs_info->freed_extents[0],
228 start, end, EXTENT_UPTODATE, GFP_NOFS);
229 clear_extent_bits(&root->fs_info->freed_extents[1],
230 start, end, EXTENT_UPTODATE, GFP_NOFS);
231}
232
233static int exclude_super_stripes(struct btrfs_root *root,
234 struct btrfs_block_group_cache *cache)
235{
236 u64 bytenr;
237 u64 *logical;
238 int stripe_len;
239 int i, nr, ret;
240
241 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
242 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
243 cache->bytes_super += stripe_len;
244 ret = add_excluded_extent(root, cache->key.objectid,
245 stripe_len);
246 BUG_ON(ret);
247 }
248
249 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
250 bytenr = btrfs_sb_offset(i);
251 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
252 cache->key.objectid, bytenr,
253 0, &logical, &nr, &stripe_len);
254 BUG_ON(ret);
255
256 while (nr--) {
257 cache->bytes_super += stripe_len;
258 ret = add_excluded_extent(root, logical[nr],
259 stripe_len);
260 BUG_ON(ret);
261 }
262
263 kfree(logical);
264 }
265 return 0;
266}
267
268static struct btrfs_caching_control *
269get_caching_control(struct btrfs_block_group_cache *cache)
270{
271 struct btrfs_caching_control *ctl;
272
273 spin_lock(&cache->lock);
274 if (cache->cached != BTRFS_CACHE_STARTED) {
275 spin_unlock(&cache->lock);
276 return NULL;
277 }
278
279 /* We're loading it the fast way, so we don't have a caching_ctl. */
280 if (!cache->caching_ctl) {
281 spin_unlock(&cache->lock);
282 return NULL;
283 }
284
285 ctl = cache->caching_ctl;
286 atomic_inc(&ctl->count);
287 spin_unlock(&cache->lock);
288 return ctl;
289}
290
291static void put_caching_control(struct btrfs_caching_control *ctl)
292{
293 if (atomic_dec_and_test(&ctl->count))
294 kfree(ctl);
295}
296
297/*
298 * this is only called by cache_block_group, since we could have freed extents
299 * we need to check the pinned_extents for any extents that can't be used yet
300 * since their free space will be released as soon as the transaction commits.
301 */
302static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
303 struct btrfs_fs_info *info, u64 start, u64 end)
304{
305 u64 extent_start, extent_end, size, total_added = 0;
306 int ret;
307
308 while (start < end) {
309 ret = find_first_extent_bit(info->pinned_extents, start,
310 &extent_start, &extent_end,
311 EXTENT_DIRTY | EXTENT_UPTODATE);
312 if (ret)
313 break;
314
315 if (extent_start <= start) {
316 start = extent_end + 1;
317 } else if (extent_start > start && extent_start < end) {
318 size = extent_start - start;
319 total_added += size;
320 ret = btrfs_add_free_space(block_group, start,
321 size);
322 BUG_ON(ret);
323 start = extent_end + 1;
324 } else {
325 break;
326 }
327 }
328
329 if (start < end) {
330 size = end - start;
331 total_added += size;
332 ret = btrfs_add_free_space(block_group, start, size);
333 BUG_ON(ret);
334 }
335
336 return total_added;
337}
338
339static noinline void caching_thread(struct btrfs_work *work)
340{
341 struct btrfs_block_group_cache *block_group;
342 struct btrfs_fs_info *fs_info;
343 struct btrfs_caching_control *caching_ctl;
344 struct btrfs_root *extent_root;
345 struct btrfs_path *path;
346 struct extent_buffer *leaf;
347 struct btrfs_key key;
348 u64 total_found = 0;
349 u64 last = 0;
350 u32 nritems;
351 int ret = 0;
352
353 caching_ctl = container_of(work, struct btrfs_caching_control, work);
354 block_group = caching_ctl->block_group;
355 fs_info = block_group->fs_info;
356 extent_root = fs_info->extent_root;
357
358 path = btrfs_alloc_path();
359 if (!path)
360 goto out;
361
362 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
363
364 /*
365 * We don't want to deadlock with somebody trying to allocate a new
366 * extent for the extent root while also trying to search the extent
367 * root to add free space. So we skip locking and search the commit
368 * root, since its read-only
369 */
370 path->skip_locking = 1;
371 path->search_commit_root = 1;
372 path->reada = 1;
373
374 key.objectid = last;
375 key.offset = 0;
376 key.type = BTRFS_EXTENT_ITEM_KEY;
377again:
378 mutex_lock(&caching_ctl->mutex);
379 /* need to make sure the commit_root doesn't disappear */
380 down_read(&fs_info->extent_commit_sem);
381
382 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
383 if (ret < 0)
384 goto err;
385
386 leaf = path->nodes[0];
387 nritems = btrfs_header_nritems(leaf);
388
389 while (1) {
390 if (btrfs_fs_closing(fs_info) > 1) {
391 last = (u64)-1;
392 break;
393 }
394
395 if (path->slots[0] < nritems) {
396 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
397 } else {
398 ret = find_next_key(path, 0, &key);
399 if (ret)
400 break;
401
402 if (need_resched() ||
403 btrfs_next_leaf(extent_root, path)) {
404 caching_ctl->progress = last;
405 btrfs_release_path(path);
406 up_read(&fs_info->extent_commit_sem);
407 mutex_unlock(&caching_ctl->mutex);
408 cond_resched();
409 goto again;
410 }
411 leaf = path->nodes[0];
412 nritems = btrfs_header_nritems(leaf);
413 continue;
414 }
415
416 if (key.objectid < block_group->key.objectid) {
417 path->slots[0]++;
418 continue;
419 }
420
421 if (key.objectid >= block_group->key.objectid +
422 block_group->key.offset)
423 break;
424
425 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
426 total_found += add_new_free_space(block_group,
427 fs_info, last,
428 key.objectid);
429 last = key.objectid + key.offset;
430
431 if (total_found > (1024 * 1024 * 2)) {
432 total_found = 0;
433 wake_up(&caching_ctl->wait);
434 }
435 }
436 path->slots[0]++;
437 }
438 ret = 0;
439
440 total_found += add_new_free_space(block_group, fs_info, last,
441 block_group->key.objectid +
442 block_group->key.offset);
443 caching_ctl->progress = (u64)-1;
444
445 spin_lock(&block_group->lock);
446 block_group->caching_ctl = NULL;
447 block_group->cached = BTRFS_CACHE_FINISHED;
448 spin_unlock(&block_group->lock);
449
450err:
451 btrfs_free_path(path);
452 up_read(&fs_info->extent_commit_sem);
453
454 free_excluded_extents(extent_root, block_group);
455
456 mutex_unlock(&caching_ctl->mutex);
457out:
458 wake_up(&caching_ctl->wait);
459
460 put_caching_control(caching_ctl);
461 btrfs_put_block_group(block_group);
462}
463
464static int cache_block_group(struct btrfs_block_group_cache *cache,
465 struct btrfs_trans_handle *trans,
466 struct btrfs_root *root,
467 int load_cache_only)
468{
469 struct btrfs_fs_info *fs_info = cache->fs_info;
470 struct btrfs_caching_control *caching_ctl;
471 int ret = 0;
472
473 smp_mb();
474 if (cache->cached != BTRFS_CACHE_NO)
475 return 0;
476
477 /*
478 * We can't do the read from on-disk cache during a commit since we need
479 * to have the normal tree locking. Also if we are currently trying to
480 * allocate blocks for the tree root we can't do the fast caching since
481 * we likely hold important locks.
482 */
483 if (trans && (!trans->transaction->in_commit) &&
484 (root && root != root->fs_info->tree_root)) {
485 spin_lock(&cache->lock);
486 if (cache->cached != BTRFS_CACHE_NO) {
487 spin_unlock(&cache->lock);
488 return 0;
489 }
490 cache->cached = BTRFS_CACHE_STARTED;
491 spin_unlock(&cache->lock);
492
493 ret = load_free_space_cache(fs_info, cache);
494
495 spin_lock(&cache->lock);
496 if (ret == 1) {
497 cache->cached = BTRFS_CACHE_FINISHED;
498 cache->last_byte_to_unpin = (u64)-1;
499 } else {
500 cache->cached = BTRFS_CACHE_NO;
501 }
502 spin_unlock(&cache->lock);
503 if (ret == 1) {
504 free_excluded_extents(fs_info->extent_root, cache);
505 return 0;
506 }
507 }
508
509 if (load_cache_only)
510 return 0;
511
512 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
513 BUG_ON(!caching_ctl);
514
515 INIT_LIST_HEAD(&caching_ctl->list);
516 mutex_init(&caching_ctl->mutex);
517 init_waitqueue_head(&caching_ctl->wait);
518 caching_ctl->block_group = cache;
519 caching_ctl->progress = cache->key.objectid;
520 /* one for caching kthread, one for caching block group list */
521 atomic_set(&caching_ctl->count, 2);
522 caching_ctl->work.func = caching_thread;
523
524 spin_lock(&cache->lock);
525 if (cache->cached != BTRFS_CACHE_NO) {
526 spin_unlock(&cache->lock);
527 kfree(caching_ctl);
528 return 0;
529 }
530 cache->caching_ctl = caching_ctl;
531 cache->cached = BTRFS_CACHE_STARTED;
532 spin_unlock(&cache->lock);
533
534 down_write(&fs_info->extent_commit_sem);
535 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
536 up_write(&fs_info->extent_commit_sem);
537
538 btrfs_get_block_group(cache);
539
540 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
541
542 return ret;
543}
544
545/*
546 * return the block group that starts at or after bytenr
547 */
548static struct btrfs_block_group_cache *
549btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
550{
551 struct btrfs_block_group_cache *cache;
552
553 cache = block_group_cache_tree_search(info, bytenr, 0);
554
555 return cache;
556}
557
558/*
559 * return the block group that contains the given bytenr
560 */
561struct btrfs_block_group_cache *btrfs_lookup_block_group(
562 struct btrfs_fs_info *info,
563 u64 bytenr)
564{
565 struct btrfs_block_group_cache *cache;
566
567 cache = block_group_cache_tree_search(info, bytenr, 1);
568
569 return cache;
570}
571
572static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
573 u64 flags)
574{
575 struct list_head *head = &info->space_info;
576 struct btrfs_space_info *found;
577
578 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
579 BTRFS_BLOCK_GROUP_METADATA;
580
581 rcu_read_lock();
582 list_for_each_entry_rcu(found, head, list) {
583 if (found->flags & flags) {
584 rcu_read_unlock();
585 return found;
586 }
587 }
588 rcu_read_unlock();
589 return NULL;
590}
591
592/*
593 * after adding space to the filesystem, we need to clear the full flags
594 * on all the space infos.
595 */
596void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
597{
598 struct list_head *head = &info->space_info;
599 struct btrfs_space_info *found;
600
601 rcu_read_lock();
602 list_for_each_entry_rcu(found, head, list)
603 found->full = 0;
604 rcu_read_unlock();
605}
606
607static u64 div_factor(u64 num, int factor)
608{
609 if (factor == 10)
610 return num;
611 num *= factor;
612 do_div(num, 10);
613 return num;
614}
615
616static u64 div_factor_fine(u64 num, int factor)
617{
618 if (factor == 100)
619 return num;
620 num *= factor;
621 do_div(num, 100);
622 return num;
623}
624
625u64 btrfs_find_block_group(struct btrfs_root *root,
626 u64 search_start, u64 search_hint, int owner)
627{
628 struct btrfs_block_group_cache *cache;
629 u64 used;
630 u64 last = max(search_hint, search_start);
631 u64 group_start = 0;
632 int full_search = 0;
633 int factor = 9;
634 int wrapped = 0;
635again:
636 while (1) {
637 cache = btrfs_lookup_first_block_group(root->fs_info, last);
638 if (!cache)
639 break;
640
641 spin_lock(&cache->lock);
642 last = cache->key.objectid + cache->key.offset;
643 used = btrfs_block_group_used(&cache->item);
644
645 if ((full_search || !cache->ro) &&
646 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
647 if (used + cache->pinned + cache->reserved <
648 div_factor(cache->key.offset, factor)) {
649 group_start = cache->key.objectid;
650 spin_unlock(&cache->lock);
651 btrfs_put_block_group(cache);
652 goto found;
653 }
654 }
655 spin_unlock(&cache->lock);
656 btrfs_put_block_group(cache);
657 cond_resched();
658 }
659 if (!wrapped) {
660 last = search_start;
661 wrapped = 1;
662 goto again;
663 }
664 if (!full_search && factor < 10) {
665 last = search_start;
666 full_search = 1;
667 factor = 10;
668 goto again;
669 }
670found:
671 return group_start;
672}
673
674/* simple helper to search for an existing extent at a given offset */
675int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
676{
677 int ret;
678 struct btrfs_key key;
679 struct btrfs_path *path;
680
681 path = btrfs_alloc_path();
682 if (!path)
683 return -ENOMEM;
684
685 key.objectid = start;
686 key.offset = len;
687 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
688 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
689 0, 0);
690 btrfs_free_path(path);
691 return ret;
692}
693
694/*
695 * helper function to lookup reference count and flags of extent.
696 *
697 * the head node for delayed ref is used to store the sum of all the
698 * reference count modifications queued up in the rbtree. the head
699 * node may also store the extent flags to set. This way you can check
700 * to see what the reference count and extent flags would be if all of
701 * the delayed refs are not processed.
702 */
703int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
704 struct btrfs_root *root, u64 bytenr,
705 u64 num_bytes, u64 *refs, u64 *flags)
706{
707 struct btrfs_delayed_ref_head *head;
708 struct btrfs_delayed_ref_root *delayed_refs;
709 struct btrfs_path *path;
710 struct btrfs_extent_item *ei;
711 struct extent_buffer *leaf;
712 struct btrfs_key key;
713 u32 item_size;
714 u64 num_refs;
715 u64 extent_flags;
716 int ret;
717
718 path = btrfs_alloc_path();
719 if (!path)
720 return -ENOMEM;
721
722 key.objectid = bytenr;
723 key.type = BTRFS_EXTENT_ITEM_KEY;
724 key.offset = num_bytes;
725 if (!trans) {
726 path->skip_locking = 1;
727 path->search_commit_root = 1;
728 }
729again:
730 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
731 &key, path, 0, 0);
732 if (ret < 0)
733 goto out_free;
734
735 if (ret == 0) {
736 leaf = path->nodes[0];
737 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
738 if (item_size >= sizeof(*ei)) {
739 ei = btrfs_item_ptr(leaf, path->slots[0],
740 struct btrfs_extent_item);
741 num_refs = btrfs_extent_refs(leaf, ei);
742 extent_flags = btrfs_extent_flags(leaf, ei);
743 } else {
744#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
745 struct btrfs_extent_item_v0 *ei0;
746 BUG_ON(item_size != sizeof(*ei0));
747 ei0 = btrfs_item_ptr(leaf, path->slots[0],
748 struct btrfs_extent_item_v0);
749 num_refs = btrfs_extent_refs_v0(leaf, ei0);
750 /* FIXME: this isn't correct for data */
751 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
752#else
753 BUG();
754#endif
755 }
756 BUG_ON(num_refs == 0);
757 } else {
758 num_refs = 0;
759 extent_flags = 0;
760 ret = 0;
761 }
762
763 if (!trans)
764 goto out;
765
766 delayed_refs = &trans->transaction->delayed_refs;
767 spin_lock(&delayed_refs->lock);
768 head = btrfs_find_delayed_ref_head(trans, bytenr);
769 if (head) {
770 if (!mutex_trylock(&head->mutex)) {
771 atomic_inc(&head->node.refs);
772 spin_unlock(&delayed_refs->lock);
773
774 btrfs_release_path(path);
775
776 /*
777 * Mutex was contended, block until it's released and try
778 * again
779 */
780 mutex_lock(&head->mutex);
781 mutex_unlock(&head->mutex);
782 btrfs_put_delayed_ref(&head->node);
783 goto again;
784 }
785 if (head->extent_op && head->extent_op->update_flags)
786 extent_flags |= head->extent_op->flags_to_set;
787 else
788 BUG_ON(num_refs == 0);
789
790 num_refs += head->node.ref_mod;
791 mutex_unlock(&head->mutex);
792 }
793 spin_unlock(&delayed_refs->lock);
794out:
795 WARN_ON(num_refs == 0);
796 if (refs)
797 *refs = num_refs;
798 if (flags)
799 *flags = extent_flags;
800out_free:
801 btrfs_free_path(path);
802 return ret;
803}
804
805/*
806 * Back reference rules. Back refs have three main goals:
807 *
808 * 1) differentiate between all holders of references to an extent so that
809 * when a reference is dropped we can make sure it was a valid reference
810 * before freeing the extent.
811 *
812 * 2) Provide enough information to quickly find the holders of an extent
813 * if we notice a given block is corrupted or bad.
814 *
815 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
816 * maintenance. This is actually the same as #2, but with a slightly
817 * different use case.
818 *
819 * There are two kinds of back refs. The implicit back refs is optimized
820 * for pointers in non-shared tree blocks. For a given pointer in a block,
821 * back refs of this kind provide information about the block's owner tree
822 * and the pointer's key. These information allow us to find the block by
823 * b-tree searching. The full back refs is for pointers in tree blocks not
824 * referenced by their owner trees. The location of tree block is recorded
825 * in the back refs. Actually the full back refs is generic, and can be
826 * used in all cases the implicit back refs is used. The major shortcoming
827 * of the full back refs is its overhead. Every time a tree block gets
828 * COWed, we have to update back refs entry for all pointers in it.
829 *
830 * For a newly allocated tree block, we use implicit back refs for
831 * pointers in it. This means most tree related operations only involve
832 * implicit back refs. For a tree block created in old transaction, the
833 * only way to drop a reference to it is COW it. So we can detect the
834 * event that tree block loses its owner tree's reference and do the
835 * back refs conversion.
836 *
837 * When a tree block is COW'd through a tree, there are four cases:
838 *
839 * The reference count of the block is one and the tree is the block's
840 * owner tree. Nothing to do in this case.
841 *
842 * The reference count of the block is one and the tree is not the
843 * block's owner tree. In this case, full back refs is used for pointers
844 * in the block. Remove these full back refs, add implicit back refs for
845 * every pointers in the new block.
846 *
847 * The reference count of the block is greater than one and the tree is
848 * the block's owner tree. In this case, implicit back refs is used for
849 * pointers in the block. Add full back refs for every pointers in the
850 * block, increase lower level extents' reference counts. The original
851 * implicit back refs are entailed to the new block.
852 *
853 * The reference count of the block is greater than one and the tree is
854 * not the block's owner tree. Add implicit back refs for every pointer in
855 * the new block, increase lower level extents' reference count.
856 *
857 * Back Reference Key composing:
858 *
859 * The key objectid corresponds to the first byte in the extent,
860 * The key type is used to differentiate between types of back refs.
861 * There are different meanings of the key offset for different types
862 * of back refs.
863 *
864 * File extents can be referenced by:
865 *
866 * - multiple snapshots, subvolumes, or different generations in one subvol
867 * - different files inside a single subvolume
868 * - different offsets inside a file (bookend extents in file.c)
869 *
870 * The extent ref structure for the implicit back refs has fields for:
871 *
872 * - Objectid of the subvolume root
873 * - objectid of the file holding the reference
874 * - original offset in the file
875 * - how many bookend extents
876 *
877 * The key offset for the implicit back refs is hash of the first
878 * three fields.
879 *
880 * The extent ref structure for the full back refs has field for:
881 *
882 * - number of pointers in the tree leaf
883 *
884 * The key offset for the implicit back refs is the first byte of
885 * the tree leaf
886 *
887 * When a file extent is allocated, The implicit back refs is used.
888 * the fields are filled in:
889 *
890 * (root_key.objectid, inode objectid, offset in file, 1)
891 *
892 * When a file extent is removed file truncation, we find the
893 * corresponding implicit back refs and check the following fields:
894 *
895 * (btrfs_header_owner(leaf), inode objectid, offset in file)
896 *
897 * Btree extents can be referenced by:
898 *
899 * - Different subvolumes
900 *
901 * Both the implicit back refs and the full back refs for tree blocks
902 * only consist of key. The key offset for the implicit back refs is
903 * objectid of block's owner tree. The key offset for the full back refs
904 * is the first byte of parent block.
905 *
906 * When implicit back refs is used, information about the lowest key and
907 * level of the tree block are required. These information are stored in
908 * tree block info structure.
909 */
910
911#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
912static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
913 struct btrfs_root *root,
914 struct btrfs_path *path,
915 u64 owner, u32 extra_size)
916{
917 struct btrfs_extent_item *item;
918 struct btrfs_extent_item_v0 *ei0;
919 struct btrfs_extent_ref_v0 *ref0;
920 struct btrfs_tree_block_info *bi;
921 struct extent_buffer *leaf;
922 struct btrfs_key key;
923 struct btrfs_key found_key;
924 u32 new_size = sizeof(*item);
925 u64 refs;
926 int ret;
927
928 leaf = path->nodes[0];
929 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
930
931 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
932 ei0 = btrfs_item_ptr(leaf, path->slots[0],
933 struct btrfs_extent_item_v0);
934 refs = btrfs_extent_refs_v0(leaf, ei0);
935
936 if (owner == (u64)-1) {
937 while (1) {
938 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
939 ret = btrfs_next_leaf(root, path);
940 if (ret < 0)
941 return ret;
942 BUG_ON(ret > 0);
943 leaf = path->nodes[0];
944 }
945 btrfs_item_key_to_cpu(leaf, &found_key,
946 path->slots[0]);
947 BUG_ON(key.objectid != found_key.objectid);
948 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
949 path->slots[0]++;
950 continue;
951 }
952 ref0 = btrfs_item_ptr(leaf, path->slots[0],
953 struct btrfs_extent_ref_v0);
954 owner = btrfs_ref_objectid_v0(leaf, ref0);
955 break;
956 }
957 }
958 btrfs_release_path(path);
959
960 if (owner < BTRFS_FIRST_FREE_OBJECTID)
961 new_size += sizeof(*bi);
962
963 new_size -= sizeof(*ei0);
964 ret = btrfs_search_slot(trans, root, &key, path,
965 new_size + extra_size, 1);
966 if (ret < 0)
967 return ret;
968 BUG_ON(ret);
969
970 ret = btrfs_extend_item(trans, root, path, new_size);
971
972 leaf = path->nodes[0];
973 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
974 btrfs_set_extent_refs(leaf, item, refs);
975 /* FIXME: get real generation */
976 btrfs_set_extent_generation(leaf, item, 0);
977 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
978 btrfs_set_extent_flags(leaf, item,
979 BTRFS_EXTENT_FLAG_TREE_BLOCK |
980 BTRFS_BLOCK_FLAG_FULL_BACKREF);
981 bi = (struct btrfs_tree_block_info *)(item + 1);
982 /* FIXME: get first key of the block */
983 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
984 btrfs_set_tree_block_level(leaf, bi, (int)owner);
985 } else {
986 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
987 }
988 btrfs_mark_buffer_dirty(leaf);
989 return 0;
990}
991#endif
992
993static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
994{
995 u32 high_crc = ~(u32)0;
996 u32 low_crc = ~(u32)0;
997 __le64 lenum;
998
999 lenum = cpu_to_le64(root_objectid);
1000 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1001 lenum = cpu_to_le64(owner);
1002 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1003 lenum = cpu_to_le64(offset);
1004 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1005
1006 return ((u64)high_crc << 31) ^ (u64)low_crc;
1007}
1008
1009static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1010 struct btrfs_extent_data_ref *ref)
1011{
1012 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1013 btrfs_extent_data_ref_objectid(leaf, ref),
1014 btrfs_extent_data_ref_offset(leaf, ref));
1015}
1016
1017static int match_extent_data_ref(struct extent_buffer *leaf,
1018 struct btrfs_extent_data_ref *ref,
1019 u64 root_objectid, u64 owner, u64 offset)
1020{
1021 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1022 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1023 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1024 return 0;
1025 return 1;
1026}
1027
1028static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1029 struct btrfs_root *root,
1030 struct btrfs_path *path,
1031 u64 bytenr, u64 parent,
1032 u64 root_objectid,
1033 u64 owner, u64 offset)
1034{
1035 struct btrfs_key key;
1036 struct btrfs_extent_data_ref *ref;
1037 struct extent_buffer *leaf;
1038 u32 nritems;
1039 int ret;
1040 int recow;
1041 int err = -ENOENT;
1042
1043 key.objectid = bytenr;
1044 if (parent) {
1045 key.type = BTRFS_SHARED_DATA_REF_KEY;
1046 key.offset = parent;
1047 } else {
1048 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1049 key.offset = hash_extent_data_ref(root_objectid,
1050 owner, offset);
1051 }
1052again:
1053 recow = 0;
1054 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1055 if (ret < 0) {
1056 err = ret;
1057 goto fail;
1058 }
1059
1060 if (parent) {
1061 if (!ret)
1062 return 0;
1063#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1064 key.type = BTRFS_EXTENT_REF_V0_KEY;
1065 btrfs_release_path(path);
1066 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1067 if (ret < 0) {
1068 err = ret;
1069 goto fail;
1070 }
1071 if (!ret)
1072 return 0;
1073#endif
1074 goto fail;
1075 }
1076
1077 leaf = path->nodes[0];
1078 nritems = btrfs_header_nritems(leaf);
1079 while (1) {
1080 if (path->slots[0] >= nritems) {
1081 ret = btrfs_next_leaf(root, path);
1082 if (ret < 0)
1083 err = ret;
1084 if (ret)
1085 goto fail;
1086
1087 leaf = path->nodes[0];
1088 nritems = btrfs_header_nritems(leaf);
1089 recow = 1;
1090 }
1091
1092 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1093 if (key.objectid != bytenr ||
1094 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1095 goto fail;
1096
1097 ref = btrfs_item_ptr(leaf, path->slots[0],
1098 struct btrfs_extent_data_ref);
1099
1100 if (match_extent_data_ref(leaf, ref, root_objectid,
1101 owner, offset)) {
1102 if (recow) {
1103 btrfs_release_path(path);
1104 goto again;
1105 }
1106 err = 0;
1107 break;
1108 }
1109 path->slots[0]++;
1110 }
1111fail:
1112 return err;
1113}
1114
1115static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1116 struct btrfs_root *root,
1117 struct btrfs_path *path,
1118 u64 bytenr, u64 parent,
1119 u64 root_objectid, u64 owner,
1120 u64 offset, int refs_to_add)
1121{
1122 struct btrfs_key key;
1123 struct extent_buffer *leaf;
1124 u32 size;
1125 u32 num_refs;
1126 int ret;
1127
1128 key.objectid = bytenr;
1129 if (parent) {
1130 key.type = BTRFS_SHARED_DATA_REF_KEY;
1131 key.offset = parent;
1132 size = sizeof(struct btrfs_shared_data_ref);
1133 } else {
1134 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1135 key.offset = hash_extent_data_ref(root_objectid,
1136 owner, offset);
1137 size = sizeof(struct btrfs_extent_data_ref);
1138 }
1139
1140 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1141 if (ret && ret != -EEXIST)
1142 goto fail;
1143
1144 leaf = path->nodes[0];
1145 if (parent) {
1146 struct btrfs_shared_data_ref *ref;
1147 ref = btrfs_item_ptr(leaf, path->slots[0],
1148 struct btrfs_shared_data_ref);
1149 if (ret == 0) {
1150 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1151 } else {
1152 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1153 num_refs += refs_to_add;
1154 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1155 }
1156 } else {
1157 struct btrfs_extent_data_ref *ref;
1158 while (ret == -EEXIST) {
1159 ref = btrfs_item_ptr(leaf, path->slots[0],
1160 struct btrfs_extent_data_ref);
1161 if (match_extent_data_ref(leaf, ref, root_objectid,
1162 owner, offset))
1163 break;
1164 btrfs_release_path(path);
1165 key.offset++;
1166 ret = btrfs_insert_empty_item(trans, root, path, &key,
1167 size);
1168 if (ret && ret != -EEXIST)
1169 goto fail;
1170
1171 leaf = path->nodes[0];
1172 }
1173 ref = btrfs_item_ptr(leaf, path->slots[0],
1174 struct btrfs_extent_data_ref);
1175 if (ret == 0) {
1176 btrfs_set_extent_data_ref_root(leaf, ref,
1177 root_objectid);
1178 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1179 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1180 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1181 } else {
1182 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1183 num_refs += refs_to_add;
1184 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1185 }
1186 }
1187 btrfs_mark_buffer_dirty(leaf);
1188 ret = 0;
1189fail:
1190 btrfs_release_path(path);
1191 return ret;
1192}
1193
1194static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1195 struct btrfs_root *root,
1196 struct btrfs_path *path,
1197 int refs_to_drop)
1198{
1199 struct btrfs_key key;
1200 struct btrfs_extent_data_ref *ref1 = NULL;
1201 struct btrfs_shared_data_ref *ref2 = NULL;
1202 struct extent_buffer *leaf;
1203 u32 num_refs = 0;
1204 int ret = 0;
1205
1206 leaf = path->nodes[0];
1207 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1208
1209 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1210 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1211 struct btrfs_extent_data_ref);
1212 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1213 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1214 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1215 struct btrfs_shared_data_ref);
1216 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1217#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1218 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1219 struct btrfs_extent_ref_v0 *ref0;
1220 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1221 struct btrfs_extent_ref_v0);
1222 num_refs = btrfs_ref_count_v0(leaf, ref0);
1223#endif
1224 } else {
1225 BUG();
1226 }
1227
1228 BUG_ON(num_refs < refs_to_drop);
1229 num_refs -= refs_to_drop;
1230
1231 if (num_refs == 0) {
1232 ret = btrfs_del_item(trans, root, path);
1233 } else {
1234 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1235 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1236 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1237 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1238#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1239 else {
1240 struct btrfs_extent_ref_v0 *ref0;
1241 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_ref_v0);
1243 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1244 }
1245#endif
1246 btrfs_mark_buffer_dirty(leaf);
1247 }
1248 return ret;
1249}
1250
1251static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1252 struct btrfs_path *path,
1253 struct btrfs_extent_inline_ref *iref)
1254{
1255 struct btrfs_key key;
1256 struct extent_buffer *leaf;
1257 struct btrfs_extent_data_ref *ref1;
1258 struct btrfs_shared_data_ref *ref2;
1259 u32 num_refs = 0;
1260
1261 leaf = path->nodes[0];
1262 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1263 if (iref) {
1264 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1265 BTRFS_EXTENT_DATA_REF_KEY) {
1266 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1267 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1268 } else {
1269 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1270 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1271 }
1272 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1273 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1274 struct btrfs_extent_data_ref);
1275 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1276 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1277 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_shared_data_ref);
1279 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1280#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1281 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1282 struct btrfs_extent_ref_v0 *ref0;
1283 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_ref_v0);
1285 num_refs = btrfs_ref_count_v0(leaf, ref0);
1286#endif
1287 } else {
1288 WARN_ON(1);
1289 }
1290 return num_refs;
1291}
1292
1293static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1294 struct btrfs_root *root,
1295 struct btrfs_path *path,
1296 u64 bytenr, u64 parent,
1297 u64 root_objectid)
1298{
1299 struct btrfs_key key;
1300 int ret;
1301
1302 key.objectid = bytenr;
1303 if (parent) {
1304 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1305 key.offset = parent;
1306 } else {
1307 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1308 key.offset = root_objectid;
1309 }
1310
1311 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1312 if (ret > 0)
1313 ret = -ENOENT;
1314#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1315 if (ret == -ENOENT && parent) {
1316 btrfs_release_path(path);
1317 key.type = BTRFS_EXTENT_REF_V0_KEY;
1318 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1319 if (ret > 0)
1320 ret = -ENOENT;
1321 }
1322#endif
1323 return ret;
1324}
1325
1326static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1327 struct btrfs_root *root,
1328 struct btrfs_path *path,
1329 u64 bytenr, u64 parent,
1330 u64 root_objectid)
1331{
1332 struct btrfs_key key;
1333 int ret;
1334
1335 key.objectid = bytenr;
1336 if (parent) {
1337 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1338 key.offset = parent;
1339 } else {
1340 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1341 key.offset = root_objectid;
1342 }
1343
1344 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1345 btrfs_release_path(path);
1346 return ret;
1347}
1348
1349static inline int extent_ref_type(u64 parent, u64 owner)
1350{
1351 int type;
1352 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1353 if (parent > 0)
1354 type = BTRFS_SHARED_BLOCK_REF_KEY;
1355 else
1356 type = BTRFS_TREE_BLOCK_REF_KEY;
1357 } else {
1358 if (parent > 0)
1359 type = BTRFS_SHARED_DATA_REF_KEY;
1360 else
1361 type = BTRFS_EXTENT_DATA_REF_KEY;
1362 }
1363 return type;
1364}
1365
1366static int find_next_key(struct btrfs_path *path, int level,
1367 struct btrfs_key *key)
1368
1369{
1370 for (; level < BTRFS_MAX_LEVEL; level++) {
1371 if (!path->nodes[level])
1372 break;
1373 if (path->slots[level] + 1 >=
1374 btrfs_header_nritems(path->nodes[level]))
1375 continue;
1376 if (level == 0)
1377 btrfs_item_key_to_cpu(path->nodes[level], key,
1378 path->slots[level] + 1);
1379 else
1380 btrfs_node_key_to_cpu(path->nodes[level], key,
1381 path->slots[level] + 1);
1382 return 0;
1383 }
1384 return 1;
1385}
1386
1387/*
1388 * look for inline back ref. if back ref is found, *ref_ret is set
1389 * to the address of inline back ref, and 0 is returned.
1390 *
1391 * if back ref isn't found, *ref_ret is set to the address where it
1392 * should be inserted, and -ENOENT is returned.
1393 *
1394 * if insert is true and there are too many inline back refs, the path
1395 * points to the extent item, and -EAGAIN is returned.
1396 *
1397 * NOTE: inline back refs are ordered in the same way that back ref
1398 * items in the tree are ordered.
1399 */
1400static noinline_for_stack
1401int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_path *path,
1404 struct btrfs_extent_inline_ref **ref_ret,
1405 u64 bytenr, u64 num_bytes,
1406 u64 parent, u64 root_objectid,
1407 u64 owner, u64 offset, int insert)
1408{
1409 struct btrfs_key key;
1410 struct extent_buffer *leaf;
1411 struct btrfs_extent_item *ei;
1412 struct btrfs_extent_inline_ref *iref;
1413 u64 flags;
1414 u64 item_size;
1415 unsigned long ptr;
1416 unsigned long end;
1417 int extra_size;
1418 int type;
1419 int want;
1420 int ret;
1421 int err = 0;
1422
1423 key.objectid = bytenr;
1424 key.type = BTRFS_EXTENT_ITEM_KEY;
1425 key.offset = num_bytes;
1426
1427 want = extent_ref_type(parent, owner);
1428 if (insert) {
1429 extra_size = btrfs_extent_inline_ref_size(want);
1430 path->keep_locks = 1;
1431 } else
1432 extra_size = -1;
1433 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1434 if (ret < 0) {
1435 err = ret;
1436 goto out;
1437 }
1438 BUG_ON(ret);
1439
1440 leaf = path->nodes[0];
1441 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1442#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1443 if (item_size < sizeof(*ei)) {
1444 if (!insert) {
1445 err = -ENOENT;
1446 goto out;
1447 }
1448 ret = convert_extent_item_v0(trans, root, path, owner,
1449 extra_size);
1450 if (ret < 0) {
1451 err = ret;
1452 goto out;
1453 }
1454 leaf = path->nodes[0];
1455 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1456 }
1457#endif
1458 BUG_ON(item_size < sizeof(*ei));
1459
1460 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1461 flags = btrfs_extent_flags(leaf, ei);
1462
1463 ptr = (unsigned long)(ei + 1);
1464 end = (unsigned long)ei + item_size;
1465
1466 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1467 ptr += sizeof(struct btrfs_tree_block_info);
1468 BUG_ON(ptr > end);
1469 } else {
1470 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1471 }
1472
1473 err = -ENOENT;
1474 while (1) {
1475 if (ptr >= end) {
1476 WARN_ON(ptr > end);
1477 break;
1478 }
1479 iref = (struct btrfs_extent_inline_ref *)ptr;
1480 type = btrfs_extent_inline_ref_type(leaf, iref);
1481 if (want < type)
1482 break;
1483 if (want > type) {
1484 ptr += btrfs_extent_inline_ref_size(type);
1485 continue;
1486 }
1487
1488 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1489 struct btrfs_extent_data_ref *dref;
1490 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1491 if (match_extent_data_ref(leaf, dref, root_objectid,
1492 owner, offset)) {
1493 err = 0;
1494 break;
1495 }
1496 if (hash_extent_data_ref_item(leaf, dref) <
1497 hash_extent_data_ref(root_objectid, owner, offset))
1498 break;
1499 } else {
1500 u64 ref_offset;
1501 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1502 if (parent > 0) {
1503 if (parent == ref_offset) {
1504 err = 0;
1505 break;
1506 }
1507 if (ref_offset < parent)
1508 break;
1509 } else {
1510 if (root_objectid == ref_offset) {
1511 err = 0;
1512 break;
1513 }
1514 if (ref_offset < root_objectid)
1515 break;
1516 }
1517 }
1518 ptr += btrfs_extent_inline_ref_size(type);
1519 }
1520 if (err == -ENOENT && insert) {
1521 if (item_size + extra_size >=
1522 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1523 err = -EAGAIN;
1524 goto out;
1525 }
1526 /*
1527 * To add new inline back ref, we have to make sure
1528 * there is no corresponding back ref item.
1529 * For simplicity, we just do not add new inline back
1530 * ref if there is any kind of item for this block
1531 */
1532 if (find_next_key(path, 0, &key) == 0 &&
1533 key.objectid == bytenr &&
1534 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1535 err = -EAGAIN;
1536 goto out;
1537 }
1538 }
1539 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1540out:
1541 if (insert) {
1542 path->keep_locks = 0;
1543 btrfs_unlock_up_safe(path, 1);
1544 }
1545 return err;
1546}
1547
1548/*
1549 * helper to add new inline back ref
1550 */
1551static noinline_for_stack
1552int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1553 struct btrfs_root *root,
1554 struct btrfs_path *path,
1555 struct btrfs_extent_inline_ref *iref,
1556 u64 parent, u64 root_objectid,
1557 u64 owner, u64 offset, int refs_to_add,
1558 struct btrfs_delayed_extent_op *extent_op)
1559{
1560 struct extent_buffer *leaf;
1561 struct btrfs_extent_item *ei;
1562 unsigned long ptr;
1563 unsigned long end;
1564 unsigned long item_offset;
1565 u64 refs;
1566 int size;
1567 int type;
1568 int ret;
1569
1570 leaf = path->nodes[0];
1571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1572 item_offset = (unsigned long)iref - (unsigned long)ei;
1573
1574 type = extent_ref_type(parent, owner);
1575 size = btrfs_extent_inline_ref_size(type);
1576
1577 ret = btrfs_extend_item(trans, root, path, size);
1578
1579 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1580 refs = btrfs_extent_refs(leaf, ei);
1581 refs += refs_to_add;
1582 btrfs_set_extent_refs(leaf, ei, refs);
1583 if (extent_op)
1584 __run_delayed_extent_op(extent_op, leaf, ei);
1585
1586 ptr = (unsigned long)ei + item_offset;
1587 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1588 if (ptr < end - size)
1589 memmove_extent_buffer(leaf, ptr + size, ptr,
1590 end - size - ptr);
1591
1592 iref = (struct btrfs_extent_inline_ref *)ptr;
1593 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1594 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1595 struct btrfs_extent_data_ref *dref;
1596 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1597 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1598 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1599 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1600 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1601 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1602 struct btrfs_shared_data_ref *sref;
1603 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1604 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1605 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1606 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1607 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1608 } else {
1609 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1610 }
1611 btrfs_mark_buffer_dirty(leaf);
1612 return 0;
1613}
1614
1615static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1616 struct btrfs_root *root,
1617 struct btrfs_path *path,
1618 struct btrfs_extent_inline_ref **ref_ret,
1619 u64 bytenr, u64 num_bytes, u64 parent,
1620 u64 root_objectid, u64 owner, u64 offset)
1621{
1622 int ret;
1623
1624 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1625 bytenr, num_bytes, parent,
1626 root_objectid, owner, offset, 0);
1627 if (ret != -ENOENT)
1628 return ret;
1629
1630 btrfs_release_path(path);
1631 *ref_ret = NULL;
1632
1633 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1634 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1635 root_objectid);
1636 } else {
1637 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1638 root_objectid, owner, offset);
1639 }
1640 return ret;
1641}
1642
1643/*
1644 * helper to update/remove inline back ref
1645 */
1646static noinline_for_stack
1647int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1648 struct btrfs_root *root,
1649 struct btrfs_path *path,
1650 struct btrfs_extent_inline_ref *iref,
1651 int refs_to_mod,
1652 struct btrfs_delayed_extent_op *extent_op)
1653{
1654 struct extent_buffer *leaf;
1655 struct btrfs_extent_item *ei;
1656 struct btrfs_extent_data_ref *dref = NULL;
1657 struct btrfs_shared_data_ref *sref = NULL;
1658 unsigned long ptr;
1659 unsigned long end;
1660 u32 item_size;
1661 int size;
1662 int type;
1663 int ret;
1664 u64 refs;
1665
1666 leaf = path->nodes[0];
1667 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1668 refs = btrfs_extent_refs(leaf, ei);
1669 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1670 refs += refs_to_mod;
1671 btrfs_set_extent_refs(leaf, ei, refs);
1672 if (extent_op)
1673 __run_delayed_extent_op(extent_op, leaf, ei);
1674
1675 type = btrfs_extent_inline_ref_type(leaf, iref);
1676
1677 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 refs = btrfs_extent_data_ref_count(leaf, dref);
1680 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1681 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1682 refs = btrfs_shared_data_ref_count(leaf, sref);
1683 } else {
1684 refs = 1;
1685 BUG_ON(refs_to_mod != -1);
1686 }
1687
1688 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1689 refs += refs_to_mod;
1690
1691 if (refs > 0) {
1692 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1693 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1694 else
1695 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1696 } else {
1697 size = btrfs_extent_inline_ref_size(type);
1698 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1699 ptr = (unsigned long)iref;
1700 end = (unsigned long)ei + item_size;
1701 if (ptr + size < end)
1702 memmove_extent_buffer(leaf, ptr, ptr + size,
1703 end - ptr - size);
1704 item_size -= size;
1705 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1706 }
1707 btrfs_mark_buffer_dirty(leaf);
1708 return 0;
1709}
1710
1711static noinline_for_stack
1712int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1713 struct btrfs_root *root,
1714 struct btrfs_path *path,
1715 u64 bytenr, u64 num_bytes, u64 parent,
1716 u64 root_objectid, u64 owner,
1717 u64 offset, int refs_to_add,
1718 struct btrfs_delayed_extent_op *extent_op)
1719{
1720 struct btrfs_extent_inline_ref *iref;
1721 int ret;
1722
1723 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1724 bytenr, num_bytes, parent,
1725 root_objectid, owner, offset, 1);
1726 if (ret == 0) {
1727 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1728 ret = update_inline_extent_backref(trans, root, path, iref,
1729 refs_to_add, extent_op);
1730 } else if (ret == -ENOENT) {
1731 ret = setup_inline_extent_backref(trans, root, path, iref,
1732 parent, root_objectid,
1733 owner, offset, refs_to_add,
1734 extent_op);
1735 }
1736 return ret;
1737}
1738
1739static int insert_extent_backref(struct btrfs_trans_handle *trans,
1740 struct btrfs_root *root,
1741 struct btrfs_path *path,
1742 u64 bytenr, u64 parent, u64 root_objectid,
1743 u64 owner, u64 offset, int refs_to_add)
1744{
1745 int ret;
1746 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1747 BUG_ON(refs_to_add != 1);
1748 ret = insert_tree_block_ref(trans, root, path, bytenr,
1749 parent, root_objectid);
1750 } else {
1751 ret = insert_extent_data_ref(trans, root, path, bytenr,
1752 parent, root_objectid,
1753 owner, offset, refs_to_add);
1754 }
1755 return ret;
1756}
1757
1758static int remove_extent_backref(struct btrfs_trans_handle *trans,
1759 struct btrfs_root *root,
1760 struct btrfs_path *path,
1761 struct btrfs_extent_inline_ref *iref,
1762 int refs_to_drop, int is_data)
1763{
1764 int ret;
1765
1766 BUG_ON(!is_data && refs_to_drop != 1);
1767 if (iref) {
1768 ret = update_inline_extent_backref(trans, root, path, iref,
1769 -refs_to_drop, NULL);
1770 } else if (is_data) {
1771 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1772 } else {
1773 ret = btrfs_del_item(trans, root, path);
1774 }
1775 return ret;
1776}
1777
1778static int btrfs_issue_discard(struct block_device *bdev,
1779 u64 start, u64 len)
1780{
1781 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1782}
1783
1784static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1785 u64 num_bytes, u64 *actual_bytes)
1786{
1787 int ret;
1788 u64 discarded_bytes = 0;
1789 struct btrfs_multi_bio *multi = NULL;
1790
1791
1792 /* Tell the block device(s) that the sectors can be discarded */
1793 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1794 bytenr, &num_bytes, &multi, 0);
1795 if (!ret) {
1796 struct btrfs_bio_stripe *stripe = multi->stripes;
1797 int i;
1798
1799
1800 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1801 if (!stripe->dev->can_discard)
1802 continue;
1803
1804 ret = btrfs_issue_discard(stripe->dev->bdev,
1805 stripe->physical,
1806 stripe->length);
1807 if (!ret)
1808 discarded_bytes += stripe->length;
1809 else if (ret != -EOPNOTSUPP)
1810 break;
1811
1812 /*
1813 * Just in case we get back EOPNOTSUPP for some reason,
1814 * just ignore the return value so we don't screw up
1815 * people calling discard_extent.
1816 */
1817 ret = 0;
1818 }
1819 kfree(multi);
1820 }
1821
1822 if (actual_bytes)
1823 *actual_bytes = discarded_bytes;
1824
1825
1826 return ret;
1827}
1828
1829int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1830 struct btrfs_root *root,
1831 u64 bytenr, u64 num_bytes, u64 parent,
1832 u64 root_objectid, u64 owner, u64 offset)
1833{
1834 int ret;
1835 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1836 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1837
1838 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1839 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1840 parent, root_objectid, (int)owner,
1841 BTRFS_ADD_DELAYED_REF, NULL);
1842 } else {
1843 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1844 parent, root_objectid, owner, offset,
1845 BTRFS_ADD_DELAYED_REF, NULL);
1846 }
1847 return ret;
1848}
1849
1850static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1851 struct btrfs_root *root,
1852 u64 bytenr, u64 num_bytes,
1853 u64 parent, u64 root_objectid,
1854 u64 owner, u64 offset, int refs_to_add,
1855 struct btrfs_delayed_extent_op *extent_op)
1856{
1857 struct btrfs_path *path;
1858 struct extent_buffer *leaf;
1859 struct btrfs_extent_item *item;
1860 u64 refs;
1861 int ret;
1862 int err = 0;
1863
1864 path = btrfs_alloc_path();
1865 if (!path)
1866 return -ENOMEM;
1867
1868 path->reada = 1;
1869 path->leave_spinning = 1;
1870 /* this will setup the path even if it fails to insert the back ref */
1871 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1872 path, bytenr, num_bytes, parent,
1873 root_objectid, owner, offset,
1874 refs_to_add, extent_op);
1875 if (ret == 0)
1876 goto out;
1877
1878 if (ret != -EAGAIN) {
1879 err = ret;
1880 goto out;
1881 }
1882
1883 leaf = path->nodes[0];
1884 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1885 refs = btrfs_extent_refs(leaf, item);
1886 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1887 if (extent_op)
1888 __run_delayed_extent_op(extent_op, leaf, item);
1889
1890 btrfs_mark_buffer_dirty(leaf);
1891 btrfs_release_path(path);
1892
1893 path->reada = 1;
1894 path->leave_spinning = 1;
1895
1896 /* now insert the actual backref */
1897 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1898 path, bytenr, parent, root_objectid,
1899 owner, offset, refs_to_add);
1900 BUG_ON(ret);
1901out:
1902 btrfs_free_path(path);
1903 return err;
1904}
1905
1906static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1907 struct btrfs_root *root,
1908 struct btrfs_delayed_ref_node *node,
1909 struct btrfs_delayed_extent_op *extent_op,
1910 int insert_reserved)
1911{
1912 int ret = 0;
1913 struct btrfs_delayed_data_ref *ref;
1914 struct btrfs_key ins;
1915 u64 parent = 0;
1916 u64 ref_root = 0;
1917 u64 flags = 0;
1918
1919 ins.objectid = node->bytenr;
1920 ins.offset = node->num_bytes;
1921 ins.type = BTRFS_EXTENT_ITEM_KEY;
1922
1923 ref = btrfs_delayed_node_to_data_ref(node);
1924 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1925 parent = ref->parent;
1926 else
1927 ref_root = ref->root;
1928
1929 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1930 if (extent_op) {
1931 BUG_ON(extent_op->update_key);
1932 flags |= extent_op->flags_to_set;
1933 }
1934 ret = alloc_reserved_file_extent(trans, root,
1935 parent, ref_root, flags,
1936 ref->objectid, ref->offset,
1937 &ins, node->ref_mod);
1938 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1939 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1940 node->num_bytes, parent,
1941 ref_root, ref->objectid,
1942 ref->offset, node->ref_mod,
1943 extent_op);
1944 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1945 ret = __btrfs_free_extent(trans, root, node->bytenr,
1946 node->num_bytes, parent,
1947 ref_root, ref->objectid,
1948 ref->offset, node->ref_mod,
1949 extent_op);
1950 } else {
1951 BUG();
1952 }
1953 return ret;
1954}
1955
1956static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1957 struct extent_buffer *leaf,
1958 struct btrfs_extent_item *ei)
1959{
1960 u64 flags = btrfs_extent_flags(leaf, ei);
1961 if (extent_op->update_flags) {
1962 flags |= extent_op->flags_to_set;
1963 btrfs_set_extent_flags(leaf, ei, flags);
1964 }
1965
1966 if (extent_op->update_key) {
1967 struct btrfs_tree_block_info *bi;
1968 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1969 bi = (struct btrfs_tree_block_info *)(ei + 1);
1970 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1971 }
1972}
1973
1974static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1975 struct btrfs_root *root,
1976 struct btrfs_delayed_ref_node *node,
1977 struct btrfs_delayed_extent_op *extent_op)
1978{
1979 struct btrfs_key key;
1980 struct btrfs_path *path;
1981 struct btrfs_extent_item *ei;
1982 struct extent_buffer *leaf;
1983 u32 item_size;
1984 int ret;
1985 int err = 0;
1986
1987 path = btrfs_alloc_path();
1988 if (!path)
1989 return -ENOMEM;
1990
1991 key.objectid = node->bytenr;
1992 key.type = BTRFS_EXTENT_ITEM_KEY;
1993 key.offset = node->num_bytes;
1994
1995 path->reada = 1;
1996 path->leave_spinning = 1;
1997 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1998 path, 0, 1);
1999 if (ret < 0) {
2000 err = ret;
2001 goto out;
2002 }
2003 if (ret > 0) {
2004 err = -EIO;
2005 goto out;
2006 }
2007
2008 leaf = path->nodes[0];
2009 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2010#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2011 if (item_size < sizeof(*ei)) {
2012 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2013 path, (u64)-1, 0);
2014 if (ret < 0) {
2015 err = ret;
2016 goto out;
2017 }
2018 leaf = path->nodes[0];
2019 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2020 }
2021#endif
2022 BUG_ON(item_size < sizeof(*ei));
2023 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2024 __run_delayed_extent_op(extent_op, leaf, ei);
2025
2026 btrfs_mark_buffer_dirty(leaf);
2027out:
2028 btrfs_free_path(path);
2029 return err;
2030}
2031
2032static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2033 struct btrfs_root *root,
2034 struct btrfs_delayed_ref_node *node,
2035 struct btrfs_delayed_extent_op *extent_op,
2036 int insert_reserved)
2037{
2038 int ret = 0;
2039 struct btrfs_delayed_tree_ref *ref;
2040 struct btrfs_key ins;
2041 u64 parent = 0;
2042 u64 ref_root = 0;
2043
2044 ins.objectid = node->bytenr;
2045 ins.offset = node->num_bytes;
2046 ins.type = BTRFS_EXTENT_ITEM_KEY;
2047
2048 ref = btrfs_delayed_node_to_tree_ref(node);
2049 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2050 parent = ref->parent;
2051 else
2052 ref_root = ref->root;
2053
2054 BUG_ON(node->ref_mod != 1);
2055 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2056 BUG_ON(!extent_op || !extent_op->update_flags ||
2057 !extent_op->update_key);
2058 ret = alloc_reserved_tree_block(trans, root,
2059 parent, ref_root,
2060 extent_op->flags_to_set,
2061 &extent_op->key,
2062 ref->level, &ins);
2063 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2064 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2065 node->num_bytes, parent, ref_root,
2066 ref->level, 0, 1, extent_op);
2067 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2068 ret = __btrfs_free_extent(trans, root, node->bytenr,
2069 node->num_bytes, parent, ref_root,
2070 ref->level, 0, 1, extent_op);
2071 } else {
2072 BUG();
2073 }
2074 return ret;
2075}
2076
2077/* helper function to actually process a single delayed ref entry */
2078static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2079 struct btrfs_root *root,
2080 struct btrfs_delayed_ref_node *node,
2081 struct btrfs_delayed_extent_op *extent_op,
2082 int insert_reserved)
2083{
2084 int ret;
2085 if (btrfs_delayed_ref_is_head(node)) {
2086 struct btrfs_delayed_ref_head *head;
2087 /*
2088 * we've hit the end of the chain and we were supposed
2089 * to insert this extent into the tree. But, it got
2090 * deleted before we ever needed to insert it, so all
2091 * we have to do is clean up the accounting
2092 */
2093 BUG_ON(extent_op);
2094 head = btrfs_delayed_node_to_head(node);
2095 if (insert_reserved) {
2096 btrfs_pin_extent(root, node->bytenr,
2097 node->num_bytes, 1);
2098 if (head->is_data) {
2099 ret = btrfs_del_csums(trans, root,
2100 node->bytenr,
2101 node->num_bytes);
2102 BUG_ON(ret);
2103 }
2104 }
2105 mutex_unlock(&head->mutex);
2106 return 0;
2107 }
2108
2109 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2110 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2111 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2112 insert_reserved);
2113 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2114 node->type == BTRFS_SHARED_DATA_REF_KEY)
2115 ret = run_delayed_data_ref(trans, root, node, extent_op,
2116 insert_reserved);
2117 else
2118 BUG();
2119 return ret;
2120}
2121
2122static noinline struct btrfs_delayed_ref_node *
2123select_delayed_ref(struct btrfs_delayed_ref_head *head)
2124{
2125 struct rb_node *node;
2126 struct btrfs_delayed_ref_node *ref;
2127 int action = BTRFS_ADD_DELAYED_REF;
2128again:
2129 /*
2130 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2131 * this prevents ref count from going down to zero when
2132 * there still are pending delayed ref.
2133 */
2134 node = rb_prev(&head->node.rb_node);
2135 while (1) {
2136 if (!node)
2137 break;
2138 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2139 rb_node);
2140 if (ref->bytenr != head->node.bytenr)
2141 break;
2142 if (ref->action == action)
2143 return ref;
2144 node = rb_prev(node);
2145 }
2146 if (action == BTRFS_ADD_DELAYED_REF) {
2147 action = BTRFS_DROP_DELAYED_REF;
2148 goto again;
2149 }
2150 return NULL;
2151}
2152
2153static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2154 struct btrfs_root *root,
2155 struct list_head *cluster)
2156{
2157 struct btrfs_delayed_ref_root *delayed_refs;
2158 struct btrfs_delayed_ref_node *ref;
2159 struct btrfs_delayed_ref_head *locked_ref = NULL;
2160 struct btrfs_delayed_extent_op *extent_op;
2161 int ret;
2162 int count = 0;
2163 int must_insert_reserved = 0;
2164
2165 delayed_refs = &trans->transaction->delayed_refs;
2166 while (1) {
2167 if (!locked_ref) {
2168 /* pick a new head ref from the cluster list */
2169 if (list_empty(cluster))
2170 break;
2171
2172 locked_ref = list_entry(cluster->next,
2173 struct btrfs_delayed_ref_head, cluster);
2174
2175 /* grab the lock that says we are going to process
2176 * all the refs for this head */
2177 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2178
2179 /*
2180 * we may have dropped the spin lock to get the head
2181 * mutex lock, and that might have given someone else
2182 * time to free the head. If that's true, it has been
2183 * removed from our list and we can move on.
2184 */
2185 if (ret == -EAGAIN) {
2186 locked_ref = NULL;
2187 count++;
2188 continue;
2189 }
2190 }
2191
2192 /*
2193 * record the must insert reserved flag before we
2194 * drop the spin lock.
2195 */
2196 must_insert_reserved = locked_ref->must_insert_reserved;
2197 locked_ref->must_insert_reserved = 0;
2198
2199 extent_op = locked_ref->extent_op;
2200 locked_ref->extent_op = NULL;
2201
2202 /*
2203 * locked_ref is the head node, so we have to go one
2204 * node back for any delayed ref updates
2205 */
2206 ref = select_delayed_ref(locked_ref);
2207 if (!ref) {
2208 /* All delayed refs have been processed, Go ahead
2209 * and send the head node to run_one_delayed_ref,
2210 * so that any accounting fixes can happen
2211 */
2212 ref = &locked_ref->node;
2213
2214 if (extent_op && must_insert_reserved) {
2215 kfree(extent_op);
2216 extent_op = NULL;
2217 }
2218
2219 if (extent_op) {
2220 spin_unlock(&delayed_refs->lock);
2221
2222 ret = run_delayed_extent_op(trans, root,
2223 ref, extent_op);
2224 BUG_ON(ret);
2225 kfree(extent_op);
2226
2227 cond_resched();
2228 spin_lock(&delayed_refs->lock);
2229 continue;
2230 }
2231
2232 list_del_init(&locked_ref->cluster);
2233 locked_ref = NULL;
2234 }
2235
2236 ref->in_tree = 0;
2237 rb_erase(&ref->rb_node, &delayed_refs->root);
2238 delayed_refs->num_entries--;
2239
2240 spin_unlock(&delayed_refs->lock);
2241
2242 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2243 must_insert_reserved);
2244 BUG_ON(ret);
2245
2246 btrfs_put_delayed_ref(ref);
2247 kfree(extent_op);
2248 count++;
2249
2250 cond_resched();
2251 spin_lock(&delayed_refs->lock);
2252 }
2253 return count;
2254}
2255
2256/*
2257 * this starts processing the delayed reference count updates and
2258 * extent insertions we have queued up so far. count can be
2259 * 0, which means to process everything in the tree at the start
2260 * of the run (but not newly added entries), or it can be some target
2261 * number you'd like to process.
2262 */
2263int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2264 struct btrfs_root *root, unsigned long count)
2265{
2266 struct rb_node *node;
2267 struct btrfs_delayed_ref_root *delayed_refs;
2268 struct btrfs_delayed_ref_node *ref;
2269 struct list_head cluster;
2270 int ret;
2271 int run_all = count == (unsigned long)-1;
2272 int run_most = 0;
2273
2274 if (root == root->fs_info->extent_root)
2275 root = root->fs_info->tree_root;
2276
2277 delayed_refs = &trans->transaction->delayed_refs;
2278 INIT_LIST_HEAD(&cluster);
2279again:
2280 spin_lock(&delayed_refs->lock);
2281 if (count == 0) {
2282 count = delayed_refs->num_entries * 2;
2283 run_most = 1;
2284 }
2285 while (1) {
2286 if (!(run_all || run_most) &&
2287 delayed_refs->num_heads_ready < 64)
2288 break;
2289
2290 /*
2291 * go find something we can process in the rbtree. We start at
2292 * the beginning of the tree, and then build a cluster
2293 * of refs to process starting at the first one we are able to
2294 * lock
2295 */
2296 ret = btrfs_find_ref_cluster(trans, &cluster,
2297 delayed_refs->run_delayed_start);
2298 if (ret)
2299 break;
2300
2301 ret = run_clustered_refs(trans, root, &cluster);
2302 BUG_ON(ret < 0);
2303
2304 count -= min_t(unsigned long, ret, count);
2305
2306 if (count == 0)
2307 break;
2308 }
2309
2310 if (run_all) {
2311 node = rb_first(&delayed_refs->root);
2312 if (!node)
2313 goto out;
2314 count = (unsigned long)-1;
2315
2316 while (node) {
2317 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2318 rb_node);
2319 if (btrfs_delayed_ref_is_head(ref)) {
2320 struct btrfs_delayed_ref_head *head;
2321
2322 head = btrfs_delayed_node_to_head(ref);
2323 atomic_inc(&ref->refs);
2324
2325 spin_unlock(&delayed_refs->lock);
2326 /*
2327 * Mutex was contended, block until it's
2328 * released and try again
2329 */
2330 mutex_lock(&head->mutex);
2331 mutex_unlock(&head->mutex);
2332
2333 btrfs_put_delayed_ref(ref);
2334 cond_resched();
2335 goto again;
2336 }
2337 node = rb_next(node);
2338 }
2339 spin_unlock(&delayed_refs->lock);
2340 schedule_timeout(1);
2341 goto again;
2342 }
2343out:
2344 spin_unlock(&delayed_refs->lock);
2345 return 0;
2346}
2347
2348int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2349 struct btrfs_root *root,
2350 u64 bytenr, u64 num_bytes, u64 flags,
2351 int is_data)
2352{
2353 struct btrfs_delayed_extent_op *extent_op;
2354 int ret;
2355
2356 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2357 if (!extent_op)
2358 return -ENOMEM;
2359
2360 extent_op->flags_to_set = flags;
2361 extent_op->update_flags = 1;
2362 extent_op->update_key = 0;
2363 extent_op->is_data = is_data ? 1 : 0;
2364
2365 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2366 if (ret)
2367 kfree(extent_op);
2368 return ret;
2369}
2370
2371static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2372 struct btrfs_root *root,
2373 struct btrfs_path *path,
2374 u64 objectid, u64 offset, u64 bytenr)
2375{
2376 struct btrfs_delayed_ref_head *head;
2377 struct btrfs_delayed_ref_node *ref;
2378 struct btrfs_delayed_data_ref *data_ref;
2379 struct btrfs_delayed_ref_root *delayed_refs;
2380 struct rb_node *node;
2381 int ret = 0;
2382
2383 ret = -ENOENT;
2384 delayed_refs = &trans->transaction->delayed_refs;
2385 spin_lock(&delayed_refs->lock);
2386 head = btrfs_find_delayed_ref_head(trans, bytenr);
2387 if (!head)
2388 goto out;
2389
2390 if (!mutex_trylock(&head->mutex)) {
2391 atomic_inc(&head->node.refs);
2392 spin_unlock(&delayed_refs->lock);
2393
2394 btrfs_release_path(path);
2395
2396 /*
2397 * Mutex was contended, block until it's released and let
2398 * caller try again
2399 */
2400 mutex_lock(&head->mutex);
2401 mutex_unlock(&head->mutex);
2402 btrfs_put_delayed_ref(&head->node);
2403 return -EAGAIN;
2404 }
2405
2406 node = rb_prev(&head->node.rb_node);
2407 if (!node)
2408 goto out_unlock;
2409
2410 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2411
2412 if (ref->bytenr != bytenr)
2413 goto out_unlock;
2414
2415 ret = 1;
2416 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2417 goto out_unlock;
2418
2419 data_ref = btrfs_delayed_node_to_data_ref(ref);
2420
2421 node = rb_prev(node);
2422 if (node) {
2423 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2424 if (ref->bytenr == bytenr)
2425 goto out_unlock;
2426 }
2427
2428 if (data_ref->root != root->root_key.objectid ||
2429 data_ref->objectid != objectid || data_ref->offset != offset)
2430 goto out_unlock;
2431
2432 ret = 0;
2433out_unlock:
2434 mutex_unlock(&head->mutex);
2435out:
2436 spin_unlock(&delayed_refs->lock);
2437 return ret;
2438}
2439
2440static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2441 struct btrfs_root *root,
2442 struct btrfs_path *path,
2443 u64 objectid, u64 offset, u64 bytenr)
2444{
2445 struct btrfs_root *extent_root = root->fs_info->extent_root;
2446 struct extent_buffer *leaf;
2447 struct btrfs_extent_data_ref *ref;
2448 struct btrfs_extent_inline_ref *iref;
2449 struct btrfs_extent_item *ei;
2450 struct btrfs_key key;
2451 u32 item_size;
2452 int ret;
2453
2454 key.objectid = bytenr;
2455 key.offset = (u64)-1;
2456 key.type = BTRFS_EXTENT_ITEM_KEY;
2457
2458 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2459 if (ret < 0)
2460 goto out;
2461 BUG_ON(ret == 0);
2462
2463 ret = -ENOENT;
2464 if (path->slots[0] == 0)
2465 goto out;
2466
2467 path->slots[0]--;
2468 leaf = path->nodes[0];
2469 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2470
2471 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2472 goto out;
2473
2474 ret = 1;
2475 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2476#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2477 if (item_size < sizeof(*ei)) {
2478 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2479 goto out;
2480 }
2481#endif
2482 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2483
2484 if (item_size != sizeof(*ei) +
2485 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2486 goto out;
2487
2488 if (btrfs_extent_generation(leaf, ei) <=
2489 btrfs_root_last_snapshot(&root->root_item))
2490 goto out;
2491
2492 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2493 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2494 BTRFS_EXTENT_DATA_REF_KEY)
2495 goto out;
2496
2497 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2498 if (btrfs_extent_refs(leaf, ei) !=
2499 btrfs_extent_data_ref_count(leaf, ref) ||
2500 btrfs_extent_data_ref_root(leaf, ref) !=
2501 root->root_key.objectid ||
2502 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2503 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2504 goto out;
2505
2506 ret = 0;
2507out:
2508 return ret;
2509}
2510
2511int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2512 struct btrfs_root *root,
2513 u64 objectid, u64 offset, u64 bytenr)
2514{
2515 struct btrfs_path *path;
2516 int ret;
2517 int ret2;
2518
2519 path = btrfs_alloc_path();
2520 if (!path)
2521 return -ENOENT;
2522
2523 do {
2524 ret = check_committed_ref(trans, root, path, objectid,
2525 offset, bytenr);
2526 if (ret && ret != -ENOENT)
2527 goto out;
2528
2529 ret2 = check_delayed_ref(trans, root, path, objectid,
2530 offset, bytenr);
2531 } while (ret2 == -EAGAIN);
2532
2533 if (ret2 && ret2 != -ENOENT) {
2534 ret = ret2;
2535 goto out;
2536 }
2537
2538 if (ret != -ENOENT || ret2 != -ENOENT)
2539 ret = 0;
2540out:
2541 btrfs_free_path(path);
2542 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2543 WARN_ON(ret > 0);
2544 return ret;
2545}
2546
2547static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2548 struct btrfs_root *root,
2549 struct extent_buffer *buf,
2550 int full_backref, int inc)
2551{
2552 u64 bytenr;
2553 u64 num_bytes;
2554 u64 parent;
2555 u64 ref_root;
2556 u32 nritems;
2557 struct btrfs_key key;
2558 struct btrfs_file_extent_item *fi;
2559 int i;
2560 int level;
2561 int ret = 0;
2562 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2563 u64, u64, u64, u64, u64, u64);
2564
2565 ref_root = btrfs_header_owner(buf);
2566 nritems = btrfs_header_nritems(buf);
2567 level = btrfs_header_level(buf);
2568
2569 if (!root->ref_cows && level == 0)
2570 return 0;
2571
2572 if (inc)
2573 process_func = btrfs_inc_extent_ref;
2574 else
2575 process_func = btrfs_free_extent;
2576
2577 if (full_backref)
2578 parent = buf->start;
2579 else
2580 parent = 0;
2581
2582 for (i = 0; i < nritems; i++) {
2583 if (level == 0) {
2584 btrfs_item_key_to_cpu(buf, &key, i);
2585 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2586 continue;
2587 fi = btrfs_item_ptr(buf, i,
2588 struct btrfs_file_extent_item);
2589 if (btrfs_file_extent_type(buf, fi) ==
2590 BTRFS_FILE_EXTENT_INLINE)
2591 continue;
2592 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2593 if (bytenr == 0)
2594 continue;
2595
2596 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2597 key.offset -= btrfs_file_extent_offset(buf, fi);
2598 ret = process_func(trans, root, bytenr, num_bytes,
2599 parent, ref_root, key.objectid,
2600 key.offset);
2601 if (ret)
2602 goto fail;
2603 } else {
2604 bytenr = btrfs_node_blockptr(buf, i);
2605 num_bytes = btrfs_level_size(root, level - 1);
2606 ret = process_func(trans, root, bytenr, num_bytes,
2607 parent, ref_root, level - 1, 0);
2608 if (ret)
2609 goto fail;
2610 }
2611 }
2612 return 0;
2613fail:
2614 BUG();
2615 return ret;
2616}
2617
2618int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2619 struct extent_buffer *buf, int full_backref)
2620{
2621 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2622}
2623
2624int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2625 struct extent_buffer *buf, int full_backref)
2626{
2627 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2628}
2629
2630static int write_one_cache_group(struct btrfs_trans_handle *trans,
2631 struct btrfs_root *root,
2632 struct btrfs_path *path,
2633 struct btrfs_block_group_cache *cache)
2634{
2635 int ret;
2636 struct btrfs_root *extent_root = root->fs_info->extent_root;
2637 unsigned long bi;
2638 struct extent_buffer *leaf;
2639
2640 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2641 if (ret < 0)
2642 goto fail;
2643 BUG_ON(ret);
2644
2645 leaf = path->nodes[0];
2646 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2647 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2648 btrfs_mark_buffer_dirty(leaf);
2649 btrfs_release_path(path);
2650fail:
2651 if (ret)
2652 return ret;
2653 return 0;
2654
2655}
2656
2657static struct btrfs_block_group_cache *
2658next_block_group(struct btrfs_root *root,
2659 struct btrfs_block_group_cache *cache)
2660{
2661 struct rb_node *node;
2662 spin_lock(&root->fs_info->block_group_cache_lock);
2663 node = rb_next(&cache->cache_node);
2664 btrfs_put_block_group(cache);
2665 if (node) {
2666 cache = rb_entry(node, struct btrfs_block_group_cache,
2667 cache_node);
2668 btrfs_get_block_group(cache);
2669 } else
2670 cache = NULL;
2671 spin_unlock(&root->fs_info->block_group_cache_lock);
2672 return cache;
2673}
2674
2675static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2676 struct btrfs_trans_handle *trans,
2677 struct btrfs_path *path)
2678{
2679 struct btrfs_root *root = block_group->fs_info->tree_root;
2680 struct inode *inode = NULL;
2681 u64 alloc_hint = 0;
2682 int dcs = BTRFS_DC_ERROR;
2683 int num_pages = 0;
2684 int retries = 0;
2685 int ret = 0;
2686
2687 /*
2688 * If this block group is smaller than 100 megs don't bother caching the
2689 * block group.
2690 */
2691 if (block_group->key.offset < (100 * 1024 * 1024)) {
2692 spin_lock(&block_group->lock);
2693 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2694 spin_unlock(&block_group->lock);
2695 return 0;
2696 }
2697
2698again:
2699 inode = lookup_free_space_inode(root, block_group, path);
2700 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2701 ret = PTR_ERR(inode);
2702 btrfs_release_path(path);
2703 goto out;
2704 }
2705
2706 if (IS_ERR(inode)) {
2707 BUG_ON(retries);
2708 retries++;
2709
2710 if (block_group->ro)
2711 goto out_free;
2712
2713 ret = create_free_space_inode(root, trans, block_group, path);
2714 if (ret)
2715 goto out_free;
2716 goto again;
2717 }
2718
2719 /*
2720 * We want to set the generation to 0, that way if anything goes wrong
2721 * from here on out we know not to trust this cache when we load up next
2722 * time.
2723 */
2724 BTRFS_I(inode)->generation = 0;
2725 ret = btrfs_update_inode(trans, root, inode);
2726 WARN_ON(ret);
2727
2728 if (i_size_read(inode) > 0) {
2729 ret = btrfs_truncate_free_space_cache(root, trans, path,
2730 inode);
2731 if (ret)
2732 goto out_put;
2733 }
2734
2735 spin_lock(&block_group->lock);
2736 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2737 /* We're not cached, don't bother trying to write stuff out */
2738 dcs = BTRFS_DC_WRITTEN;
2739 spin_unlock(&block_group->lock);
2740 goto out_put;
2741 }
2742 spin_unlock(&block_group->lock);
2743
2744 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2745 if (!num_pages)
2746 num_pages = 1;
2747
2748 /*
2749 * Just to make absolutely sure we have enough space, we're going to
2750 * preallocate 12 pages worth of space for each block group. In
2751 * practice we ought to use at most 8, but we need extra space so we can
2752 * add our header and have a terminator between the extents and the
2753 * bitmaps.
2754 */
2755 num_pages *= 16;
2756 num_pages *= PAGE_CACHE_SIZE;
2757
2758 ret = btrfs_check_data_free_space(inode, num_pages);
2759 if (ret)
2760 goto out_put;
2761
2762 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2763 num_pages, num_pages,
2764 &alloc_hint);
2765 if (!ret)
2766 dcs = BTRFS_DC_SETUP;
2767 btrfs_free_reserved_data_space(inode, num_pages);
2768out_put:
2769 iput(inode);
2770out_free:
2771 btrfs_release_path(path);
2772out:
2773 spin_lock(&block_group->lock);
2774 block_group->disk_cache_state = dcs;
2775 spin_unlock(&block_group->lock);
2776
2777 return ret;
2778}
2779
2780int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2781 struct btrfs_root *root)
2782{
2783 struct btrfs_block_group_cache *cache;
2784 int err = 0;
2785 struct btrfs_path *path;
2786 u64 last = 0;
2787
2788 path = btrfs_alloc_path();
2789 if (!path)
2790 return -ENOMEM;
2791
2792again:
2793 while (1) {
2794 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2795 while (cache) {
2796 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2797 break;
2798 cache = next_block_group(root, cache);
2799 }
2800 if (!cache) {
2801 if (last == 0)
2802 break;
2803 last = 0;
2804 continue;
2805 }
2806 err = cache_save_setup(cache, trans, path);
2807 last = cache->key.objectid + cache->key.offset;
2808 btrfs_put_block_group(cache);
2809 }
2810
2811 while (1) {
2812 if (last == 0) {
2813 err = btrfs_run_delayed_refs(trans, root,
2814 (unsigned long)-1);
2815 BUG_ON(err);
2816 }
2817
2818 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2819 while (cache) {
2820 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2821 btrfs_put_block_group(cache);
2822 goto again;
2823 }
2824
2825 if (cache->dirty)
2826 break;
2827 cache = next_block_group(root, cache);
2828 }
2829 if (!cache) {
2830 if (last == 0)
2831 break;
2832 last = 0;
2833 continue;
2834 }
2835
2836 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2837 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2838 cache->dirty = 0;
2839 last = cache->key.objectid + cache->key.offset;
2840
2841 err = write_one_cache_group(trans, root, path, cache);
2842 BUG_ON(err);
2843 btrfs_put_block_group(cache);
2844 }
2845
2846 while (1) {
2847 /*
2848 * I don't think this is needed since we're just marking our
2849 * preallocated extent as written, but just in case it can't
2850 * hurt.
2851 */
2852 if (last == 0) {
2853 err = btrfs_run_delayed_refs(trans, root,
2854 (unsigned long)-1);
2855 BUG_ON(err);
2856 }
2857
2858 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2859 while (cache) {
2860 /*
2861 * Really this shouldn't happen, but it could if we
2862 * couldn't write the entire preallocated extent and
2863 * splitting the extent resulted in a new block.
2864 */
2865 if (cache->dirty) {
2866 btrfs_put_block_group(cache);
2867 goto again;
2868 }
2869 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2870 break;
2871 cache = next_block_group(root, cache);
2872 }
2873 if (!cache) {
2874 if (last == 0)
2875 break;
2876 last = 0;
2877 continue;
2878 }
2879
2880 btrfs_write_out_cache(root, trans, cache, path);
2881
2882 /*
2883 * If we didn't have an error then the cache state is still
2884 * NEED_WRITE, so we can set it to WRITTEN.
2885 */
2886 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2887 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2888 last = cache->key.objectid + cache->key.offset;
2889 btrfs_put_block_group(cache);
2890 }
2891
2892 btrfs_free_path(path);
2893 return 0;
2894}
2895
2896int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2897{
2898 struct btrfs_block_group_cache *block_group;
2899 int readonly = 0;
2900
2901 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2902 if (!block_group || block_group->ro)
2903 readonly = 1;
2904 if (block_group)
2905 btrfs_put_block_group(block_group);
2906 return readonly;
2907}
2908
2909static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2910 u64 total_bytes, u64 bytes_used,
2911 struct btrfs_space_info **space_info)
2912{
2913 struct btrfs_space_info *found;
2914 int i;
2915 int factor;
2916
2917 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2918 BTRFS_BLOCK_GROUP_RAID10))
2919 factor = 2;
2920 else
2921 factor = 1;
2922
2923 found = __find_space_info(info, flags);
2924 if (found) {
2925 spin_lock(&found->lock);
2926 found->total_bytes += total_bytes;
2927 found->disk_total += total_bytes * factor;
2928 found->bytes_used += bytes_used;
2929 found->disk_used += bytes_used * factor;
2930 found->full = 0;
2931 spin_unlock(&found->lock);
2932 *space_info = found;
2933 return 0;
2934 }
2935 found = kzalloc(sizeof(*found), GFP_NOFS);
2936 if (!found)
2937 return -ENOMEM;
2938
2939 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2940 INIT_LIST_HEAD(&found->block_groups[i]);
2941 init_rwsem(&found->groups_sem);
2942 spin_lock_init(&found->lock);
2943 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2944 BTRFS_BLOCK_GROUP_SYSTEM |
2945 BTRFS_BLOCK_GROUP_METADATA);
2946 found->total_bytes = total_bytes;
2947 found->disk_total = total_bytes * factor;
2948 found->bytes_used = bytes_used;
2949 found->disk_used = bytes_used * factor;
2950 found->bytes_pinned = 0;
2951 found->bytes_reserved = 0;
2952 found->bytes_readonly = 0;
2953 found->bytes_may_use = 0;
2954 found->full = 0;
2955 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
2956 found->chunk_alloc = 0;
2957 found->flush = 0;
2958 init_waitqueue_head(&found->wait);
2959 *space_info = found;
2960 list_add_rcu(&found->list, &info->space_info);
2961 return 0;
2962}
2963
2964static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2965{
2966 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2967 BTRFS_BLOCK_GROUP_RAID1 |
2968 BTRFS_BLOCK_GROUP_RAID10 |
2969 BTRFS_BLOCK_GROUP_DUP);
2970 if (extra_flags) {
2971 if (flags & BTRFS_BLOCK_GROUP_DATA)
2972 fs_info->avail_data_alloc_bits |= extra_flags;
2973 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2974 fs_info->avail_metadata_alloc_bits |= extra_flags;
2975 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2976 fs_info->avail_system_alloc_bits |= extra_flags;
2977 }
2978}
2979
2980u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2981{
2982 /*
2983 * we add in the count of missing devices because we want
2984 * to make sure that any RAID levels on a degraded FS
2985 * continue to be honored.
2986 */
2987 u64 num_devices = root->fs_info->fs_devices->rw_devices +
2988 root->fs_info->fs_devices->missing_devices;
2989
2990 if (num_devices == 1)
2991 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2992 if (num_devices < 4)
2993 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2994
2995 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2996 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2997 BTRFS_BLOCK_GROUP_RAID10))) {
2998 flags &= ~BTRFS_BLOCK_GROUP_DUP;
2999 }
3000
3001 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3002 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3003 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3004 }
3005
3006 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3007 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3008 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3009 (flags & BTRFS_BLOCK_GROUP_DUP)))
3010 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3011 return flags;
3012}
3013
3014static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3015{
3016 if (flags & BTRFS_BLOCK_GROUP_DATA)
3017 flags |= root->fs_info->avail_data_alloc_bits &
3018 root->fs_info->data_alloc_profile;
3019 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3020 flags |= root->fs_info->avail_system_alloc_bits &
3021 root->fs_info->system_alloc_profile;
3022 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3023 flags |= root->fs_info->avail_metadata_alloc_bits &
3024 root->fs_info->metadata_alloc_profile;
3025 return btrfs_reduce_alloc_profile(root, flags);
3026}
3027
3028u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3029{
3030 u64 flags;
3031
3032 if (data)
3033 flags = BTRFS_BLOCK_GROUP_DATA;
3034 else if (root == root->fs_info->chunk_root)
3035 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3036 else
3037 flags = BTRFS_BLOCK_GROUP_METADATA;
3038
3039 return get_alloc_profile(root, flags);
3040}
3041
3042void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3043{
3044 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3045 BTRFS_BLOCK_GROUP_DATA);
3046}
3047
3048/*
3049 * This will check the space that the inode allocates from to make sure we have
3050 * enough space for bytes.
3051 */
3052int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3053{
3054 struct btrfs_space_info *data_sinfo;
3055 struct btrfs_root *root = BTRFS_I(inode)->root;
3056 u64 used;
3057 int ret = 0, committed = 0, alloc_chunk = 1;
3058
3059 /* make sure bytes are sectorsize aligned */
3060 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3061
3062 if (root == root->fs_info->tree_root ||
3063 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3064 alloc_chunk = 0;
3065 committed = 1;
3066 }
3067
3068 data_sinfo = BTRFS_I(inode)->space_info;
3069 if (!data_sinfo)
3070 goto alloc;
3071
3072again:
3073 /* make sure we have enough space to handle the data first */
3074 spin_lock(&data_sinfo->lock);
3075 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3076 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3077 data_sinfo->bytes_may_use;
3078
3079 if (used + bytes > data_sinfo->total_bytes) {
3080 struct btrfs_trans_handle *trans;
3081
3082 /*
3083 * if we don't have enough free bytes in this space then we need
3084 * to alloc a new chunk.
3085 */
3086 if (!data_sinfo->full && alloc_chunk) {
3087 u64 alloc_target;
3088
3089 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3090 spin_unlock(&data_sinfo->lock);
3091alloc:
3092 alloc_target = btrfs_get_alloc_profile(root, 1);
3093 trans = btrfs_join_transaction(root);
3094 if (IS_ERR(trans))
3095 return PTR_ERR(trans);
3096
3097 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3098 bytes + 2 * 1024 * 1024,
3099 alloc_target,
3100 CHUNK_ALLOC_NO_FORCE);
3101 btrfs_end_transaction(trans, root);
3102 if (ret < 0) {
3103 if (ret != -ENOSPC)
3104 return ret;
3105 else
3106 goto commit_trans;
3107 }
3108
3109 if (!data_sinfo) {
3110 btrfs_set_inode_space_info(root, inode);
3111 data_sinfo = BTRFS_I(inode)->space_info;
3112 }
3113 goto again;
3114 }
3115
3116 /*
3117 * If we have less pinned bytes than we want to allocate then
3118 * don't bother committing the transaction, it won't help us.
3119 */
3120 if (data_sinfo->bytes_pinned < bytes)
3121 committed = 1;
3122 spin_unlock(&data_sinfo->lock);
3123
3124 /* commit the current transaction and try again */
3125commit_trans:
3126 if (!committed &&
3127 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3128 committed = 1;
3129 trans = btrfs_join_transaction(root);
3130 if (IS_ERR(trans))
3131 return PTR_ERR(trans);
3132 ret = btrfs_commit_transaction(trans, root);
3133 if (ret)
3134 return ret;
3135 goto again;
3136 }
3137
3138 return -ENOSPC;
3139 }
3140 data_sinfo->bytes_may_use += bytes;
3141 spin_unlock(&data_sinfo->lock);
3142
3143 return 0;
3144}
3145
3146/*
3147 * Called if we need to clear a data reservation for this inode.
3148 */
3149void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3150{
3151 struct btrfs_root *root = BTRFS_I(inode)->root;
3152 struct btrfs_space_info *data_sinfo;
3153
3154 /* make sure bytes are sectorsize aligned */
3155 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3156
3157 data_sinfo = BTRFS_I(inode)->space_info;
3158 spin_lock(&data_sinfo->lock);
3159 data_sinfo->bytes_may_use -= bytes;
3160 spin_unlock(&data_sinfo->lock);
3161}
3162
3163static void force_metadata_allocation(struct btrfs_fs_info *info)
3164{
3165 struct list_head *head = &info->space_info;
3166 struct btrfs_space_info *found;
3167
3168 rcu_read_lock();
3169 list_for_each_entry_rcu(found, head, list) {
3170 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3171 found->force_alloc = CHUNK_ALLOC_FORCE;
3172 }
3173 rcu_read_unlock();
3174}
3175
3176static int should_alloc_chunk(struct btrfs_root *root,
3177 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3178 int force)
3179{
3180 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3181 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3182 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3183 u64 thresh;
3184
3185 if (force == CHUNK_ALLOC_FORCE)
3186 return 1;
3187
3188 /*
3189 * We need to take into account the global rsv because for all intents
3190 * and purposes it's used space. Don't worry about locking the
3191 * global_rsv, it doesn't change except when the transaction commits.
3192 */
3193 num_allocated += global_rsv->size;
3194
3195 /*
3196 * in limited mode, we want to have some free space up to
3197 * about 1% of the FS size.
3198 */
3199 if (force == CHUNK_ALLOC_LIMITED) {
3200 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3201 thresh = max_t(u64, 64 * 1024 * 1024,
3202 div_factor_fine(thresh, 1));
3203
3204 if (num_bytes - num_allocated < thresh)
3205 return 1;
3206 }
3207
3208 /*
3209 * we have two similar checks here, one based on percentage
3210 * and once based on a hard number of 256MB. The idea
3211 * is that if we have a good amount of free
3212 * room, don't allocate a chunk. A good mount is
3213 * less than 80% utilized of the chunks we have allocated,
3214 * or more than 256MB free
3215 */
3216 if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3217 return 0;
3218
3219 if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3220 return 0;
3221
3222 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3223
3224 /* 256MB or 5% of the FS */
3225 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3226
3227 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3228 return 0;
3229 return 1;
3230}
3231
3232static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3233 struct btrfs_root *extent_root, u64 alloc_bytes,
3234 u64 flags, int force)
3235{
3236 struct btrfs_space_info *space_info;
3237 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3238 int wait_for_alloc = 0;
3239 int ret = 0;
3240
3241 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3242
3243 space_info = __find_space_info(extent_root->fs_info, flags);
3244 if (!space_info) {
3245 ret = update_space_info(extent_root->fs_info, flags,
3246 0, 0, &space_info);
3247 BUG_ON(ret);
3248 }
3249 BUG_ON(!space_info);
3250
3251again:
3252 spin_lock(&space_info->lock);
3253 if (space_info->force_alloc)
3254 force = space_info->force_alloc;
3255 if (space_info->full) {
3256 spin_unlock(&space_info->lock);
3257 return 0;
3258 }
3259
3260 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3261 spin_unlock(&space_info->lock);
3262 return 0;
3263 } else if (space_info->chunk_alloc) {
3264 wait_for_alloc = 1;
3265 } else {
3266 space_info->chunk_alloc = 1;
3267 }
3268
3269 spin_unlock(&space_info->lock);
3270
3271 mutex_lock(&fs_info->chunk_mutex);
3272
3273 /*
3274 * The chunk_mutex is held throughout the entirety of a chunk
3275 * allocation, so once we've acquired the chunk_mutex we know that the
3276 * other guy is done and we need to recheck and see if we should
3277 * allocate.
3278 */
3279 if (wait_for_alloc) {
3280 mutex_unlock(&fs_info->chunk_mutex);
3281 wait_for_alloc = 0;
3282 goto again;
3283 }
3284
3285 /*
3286 * If we have mixed data/metadata chunks we want to make sure we keep
3287 * allocating mixed chunks instead of individual chunks.
3288 */
3289 if (btrfs_mixed_space_info(space_info))
3290 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3291
3292 /*
3293 * if we're doing a data chunk, go ahead and make sure that
3294 * we keep a reasonable number of metadata chunks allocated in the
3295 * FS as well.
3296 */
3297 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3298 fs_info->data_chunk_allocations++;
3299 if (!(fs_info->data_chunk_allocations %
3300 fs_info->metadata_ratio))
3301 force_metadata_allocation(fs_info);
3302 }
3303
3304 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3305 if (ret < 0 && ret != -ENOSPC)
3306 goto out;
3307
3308 spin_lock(&space_info->lock);
3309 if (ret)
3310 space_info->full = 1;
3311 else
3312 ret = 1;
3313
3314 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3315 space_info->chunk_alloc = 0;
3316 spin_unlock(&space_info->lock);
3317out:
3318 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3319 return ret;
3320}
3321
3322/*
3323 * shrink metadata reservation for delalloc
3324 */
3325static int shrink_delalloc(struct btrfs_trans_handle *trans,
3326 struct btrfs_root *root, u64 to_reclaim, int sync)
3327{
3328 struct btrfs_block_rsv *block_rsv;
3329 struct btrfs_space_info *space_info;
3330 u64 reserved;
3331 u64 max_reclaim;
3332 u64 reclaimed = 0;
3333 long time_left;
3334 int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3335 int loops = 0;
3336 unsigned long progress;
3337
3338 block_rsv = &root->fs_info->delalloc_block_rsv;
3339 space_info = block_rsv->space_info;
3340
3341 smp_mb();
3342 reserved = space_info->bytes_may_use;
3343 progress = space_info->reservation_progress;
3344
3345 if (reserved == 0)
3346 return 0;
3347
3348 smp_mb();
3349 if (root->fs_info->delalloc_bytes == 0) {
3350 if (trans)
3351 return 0;
3352 btrfs_wait_ordered_extents(root, 0, 0);
3353 return 0;
3354 }
3355
3356 max_reclaim = min(reserved, to_reclaim);
3357
3358 while (loops < 1024) {
3359 /* have the flusher threads jump in and do some IO */
3360 smp_mb();
3361 nr_pages = min_t(unsigned long, nr_pages,
3362 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3363 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3364
3365 spin_lock(&space_info->lock);
3366 if (reserved > space_info->bytes_may_use)
3367 reclaimed += reserved - space_info->bytes_may_use;
3368 reserved = space_info->bytes_may_use;
3369 spin_unlock(&space_info->lock);
3370
3371 loops++;
3372
3373 if (reserved == 0 || reclaimed >= max_reclaim)
3374 break;
3375
3376 if (trans && trans->transaction->blocked)
3377 return -EAGAIN;
3378
3379 time_left = schedule_timeout_interruptible(1);
3380
3381 /* We were interrupted, exit */
3382 if (time_left)
3383 break;
3384
3385 /* we've kicked the IO a few times, if anything has been freed,
3386 * exit. There is no sense in looping here for a long time
3387 * when we really need to commit the transaction, or there are
3388 * just too many writers without enough free space
3389 */
3390
3391 if (loops > 3) {
3392 smp_mb();
3393 if (progress != space_info->reservation_progress)
3394 break;
3395 }
3396
3397 }
3398 if (reclaimed >= to_reclaim && !trans)
3399 btrfs_wait_ordered_extents(root, 0, 0);
3400 return reclaimed >= to_reclaim;
3401}
3402
3403/*
3404 * Retries tells us how many times we've called reserve_metadata_bytes. The
3405 * idea is if this is the first call (retries == 0) then we will add to our
3406 * reserved count if we can't make the allocation in order to hold our place
3407 * while we go and try and free up space. That way for retries > 1 we don't try
3408 * and add space, we just check to see if the amount of unused space is >= the
3409 * total space, meaning that our reservation is valid.
3410 *
3411 * However if we don't intend to retry this reservation, pass -1 as retries so
3412 * that it short circuits this logic.
3413 */
3414static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
3415 struct btrfs_root *root,
3416 struct btrfs_block_rsv *block_rsv,
3417 u64 orig_bytes, int flush)
3418{
3419 struct btrfs_space_info *space_info = block_rsv->space_info;
3420 u64 unused;
3421 u64 num_bytes = orig_bytes;
3422 int retries = 0;
3423 int ret = 0;
3424 bool committed = false;
3425 bool flushing = false;
3426again:
3427 ret = 0;
3428 spin_lock(&space_info->lock);
3429 /*
3430 * We only want to wait if somebody other than us is flushing and we are
3431 * actually alloed to flush.
3432 */
3433 while (flush && !flushing && space_info->flush) {
3434 spin_unlock(&space_info->lock);
3435 /*
3436 * If we have a trans handle we can't wait because the flusher
3437 * may have to commit the transaction, which would mean we would
3438 * deadlock since we are waiting for the flusher to finish, but
3439 * hold the current transaction open.
3440 */
3441 if (trans)
3442 return -EAGAIN;
3443 ret = wait_event_interruptible(space_info->wait,
3444 !space_info->flush);
3445 /* Must have been interrupted, return */
3446 if (ret)
3447 return -EINTR;
3448
3449 spin_lock(&space_info->lock);
3450 }
3451
3452 ret = -ENOSPC;
3453 unused = space_info->bytes_used + space_info->bytes_reserved +
3454 space_info->bytes_pinned + space_info->bytes_readonly +
3455 space_info->bytes_may_use;
3456
3457 /*
3458 * The idea here is that we've not already over-reserved the block group
3459 * then we can go ahead and save our reservation first and then start
3460 * flushing if we need to. Otherwise if we've already overcommitted
3461 * lets start flushing stuff first and then come back and try to make
3462 * our reservation.
3463 */
3464 if (unused <= space_info->total_bytes) {
3465 unused = space_info->total_bytes - unused;
3466 if (unused >= num_bytes) {
3467 space_info->bytes_may_use += orig_bytes;
3468 ret = 0;
3469 } else {
3470 /*
3471 * Ok set num_bytes to orig_bytes since we aren't
3472 * overocmmitted, this way we only try and reclaim what
3473 * we need.
3474 */
3475 num_bytes = orig_bytes;
3476 }
3477 } else {
3478 /*
3479 * Ok we're over committed, set num_bytes to the overcommitted
3480 * amount plus the amount of bytes that we need for this
3481 * reservation.
3482 */
3483 num_bytes = unused - space_info->total_bytes +
3484 (orig_bytes * (retries + 1));
3485 }
3486
3487 /*
3488 * Couldn't make our reservation, save our place so while we're trying
3489 * to reclaim space we can actually use it instead of somebody else
3490 * stealing it from us.
3491 */
3492 if (ret && flush) {
3493 flushing = true;
3494 space_info->flush = 1;
3495 }
3496
3497 spin_unlock(&space_info->lock);
3498
3499 if (!ret || !flush)
3500 goto out;
3501
3502 /*
3503 * We do synchronous shrinking since we don't actually unreserve
3504 * metadata until after the IO is completed.
3505 */
3506 ret = shrink_delalloc(trans, root, num_bytes, 1);
3507 if (ret < 0)
3508 goto out;
3509
3510 ret = 0;
3511
3512 /*
3513 * So if we were overcommitted it's possible that somebody else flushed
3514 * out enough space and we simply didn't have enough space to reclaim,
3515 * so go back around and try again.
3516 */
3517 if (retries < 2) {
3518 retries++;
3519 goto again;
3520 }
3521
3522 /*
3523 * Not enough space to be reclaimed, don't bother committing the
3524 * transaction.
3525 */
3526 spin_lock(&space_info->lock);
3527 if (space_info->bytes_pinned < orig_bytes)
3528 ret = -ENOSPC;
3529 spin_unlock(&space_info->lock);
3530 if (ret)
3531 goto out;
3532
3533 ret = -EAGAIN;
3534 if (trans)
3535 goto out;
3536
3537 ret = -ENOSPC;
3538 if (committed)
3539 goto out;
3540
3541 trans = btrfs_join_transaction(root);
3542 if (IS_ERR(trans))
3543 goto out;
3544 ret = btrfs_commit_transaction(trans, root);
3545 if (!ret) {
3546 trans = NULL;
3547 committed = true;
3548 goto again;
3549 }
3550
3551out:
3552 if (flushing) {
3553 spin_lock(&space_info->lock);
3554 space_info->flush = 0;
3555 wake_up_all(&space_info->wait);
3556 spin_unlock(&space_info->lock);
3557 }
3558 return ret;
3559}
3560
3561static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3562 struct btrfs_root *root)
3563{
3564 struct btrfs_block_rsv *block_rsv;
3565 if (root->ref_cows)
3566 block_rsv = trans->block_rsv;
3567 else
3568 block_rsv = root->block_rsv;
3569
3570 if (!block_rsv)
3571 block_rsv = &root->fs_info->empty_block_rsv;
3572
3573 return block_rsv;
3574}
3575
3576static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3577 u64 num_bytes)
3578{
3579 int ret = -ENOSPC;
3580 spin_lock(&block_rsv->lock);
3581 if (block_rsv->reserved >= num_bytes) {
3582 block_rsv->reserved -= num_bytes;
3583 if (block_rsv->reserved < block_rsv->size)
3584 block_rsv->full = 0;
3585 ret = 0;
3586 }
3587 spin_unlock(&block_rsv->lock);
3588 return ret;
3589}
3590
3591static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3592 u64 num_bytes, int update_size)
3593{
3594 spin_lock(&block_rsv->lock);
3595 block_rsv->reserved += num_bytes;
3596 if (update_size)
3597 block_rsv->size += num_bytes;
3598 else if (block_rsv->reserved >= block_rsv->size)
3599 block_rsv->full = 1;
3600 spin_unlock(&block_rsv->lock);
3601}
3602
3603static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3604 struct btrfs_block_rsv *dest, u64 num_bytes)
3605{
3606 struct btrfs_space_info *space_info = block_rsv->space_info;
3607
3608 spin_lock(&block_rsv->lock);
3609 if (num_bytes == (u64)-1)
3610 num_bytes = block_rsv->size;
3611 block_rsv->size -= num_bytes;
3612 if (block_rsv->reserved >= block_rsv->size) {
3613 num_bytes = block_rsv->reserved - block_rsv->size;
3614 block_rsv->reserved = block_rsv->size;
3615 block_rsv->full = 1;
3616 } else {
3617 num_bytes = 0;
3618 }
3619 spin_unlock(&block_rsv->lock);
3620
3621 if (num_bytes > 0) {
3622 if (dest) {
3623 spin_lock(&dest->lock);
3624 if (!dest->full) {
3625 u64 bytes_to_add;
3626
3627 bytes_to_add = dest->size - dest->reserved;
3628 bytes_to_add = min(num_bytes, bytes_to_add);
3629 dest->reserved += bytes_to_add;
3630 if (dest->reserved >= dest->size)
3631 dest->full = 1;
3632 num_bytes -= bytes_to_add;
3633 }
3634 spin_unlock(&dest->lock);
3635 }
3636 if (num_bytes) {
3637 spin_lock(&space_info->lock);
3638 space_info->bytes_may_use -= num_bytes;
3639 space_info->reservation_progress++;
3640 spin_unlock(&space_info->lock);
3641 }
3642 }
3643}
3644
3645static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3646 struct btrfs_block_rsv *dst, u64 num_bytes)
3647{
3648 int ret;
3649
3650 ret = block_rsv_use_bytes(src, num_bytes);
3651 if (ret)
3652 return ret;
3653
3654 block_rsv_add_bytes(dst, num_bytes, 1);
3655 return 0;
3656}
3657
3658void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3659{
3660 memset(rsv, 0, sizeof(*rsv));
3661 spin_lock_init(&rsv->lock);
3662}
3663
3664struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3665{
3666 struct btrfs_block_rsv *block_rsv;
3667 struct btrfs_fs_info *fs_info = root->fs_info;
3668
3669 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3670 if (!block_rsv)
3671 return NULL;
3672
3673 btrfs_init_block_rsv(block_rsv);
3674 block_rsv->space_info = __find_space_info(fs_info,
3675 BTRFS_BLOCK_GROUP_METADATA);
3676 return block_rsv;
3677}
3678
3679void btrfs_free_block_rsv(struct btrfs_root *root,
3680 struct btrfs_block_rsv *rsv)
3681{
3682 btrfs_block_rsv_release(root, rsv, (u64)-1);
3683 kfree(rsv);
3684}
3685
3686int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3687 struct btrfs_root *root,
3688 struct btrfs_block_rsv *block_rsv,
3689 u64 num_bytes)
3690{
3691 int ret;
3692
3693 if (num_bytes == 0)
3694 return 0;
3695
3696 ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
3697 if (!ret) {
3698 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3699 return 0;
3700 }
3701
3702 return ret;
3703}
3704
3705int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3706 struct btrfs_root *root,
3707 struct btrfs_block_rsv *block_rsv,
3708 u64 min_reserved, int min_factor)
3709{
3710 u64 num_bytes = 0;
3711 int ret = -ENOSPC;
3712
3713 if (!block_rsv)
3714 return 0;
3715
3716 spin_lock(&block_rsv->lock);
3717 if (min_factor > 0)
3718 num_bytes = div_factor(block_rsv->size, min_factor);
3719 if (min_reserved > num_bytes)
3720 num_bytes = min_reserved;
3721
3722 if (block_rsv->reserved >= num_bytes)
3723 ret = 0;
3724 else
3725 num_bytes -= block_rsv->reserved;
3726 spin_unlock(&block_rsv->lock);
3727
3728 if (!ret)
3729 return 0;
3730
3731 ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 0);
3732 if (!ret) {
3733 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3734 return 0;
3735 }
3736
3737 return ret;
3738}
3739
3740int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3741 struct btrfs_block_rsv *dst_rsv,
3742 u64 num_bytes)
3743{
3744 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3745}
3746
3747void btrfs_block_rsv_release(struct btrfs_root *root,
3748 struct btrfs_block_rsv *block_rsv,
3749 u64 num_bytes)
3750{
3751 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3752 if (global_rsv->full || global_rsv == block_rsv ||
3753 block_rsv->space_info != global_rsv->space_info)
3754 global_rsv = NULL;
3755 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3756}
3757
3758/*
3759 * helper to calculate size of global block reservation.
3760 * the desired value is sum of space used by extent tree,
3761 * checksum tree and root tree
3762 */
3763static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3764{
3765 struct btrfs_space_info *sinfo;
3766 u64 num_bytes;
3767 u64 meta_used;
3768 u64 data_used;
3769 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3770
3771 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3772 spin_lock(&sinfo->lock);
3773 data_used = sinfo->bytes_used;
3774 spin_unlock(&sinfo->lock);
3775
3776 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3777 spin_lock(&sinfo->lock);
3778 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3779 data_used = 0;
3780 meta_used = sinfo->bytes_used;
3781 spin_unlock(&sinfo->lock);
3782
3783 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3784 csum_size * 2;
3785 num_bytes += div64_u64(data_used + meta_used, 50);
3786
3787 if (num_bytes * 3 > meta_used)
3788 num_bytes = div64_u64(meta_used, 3);
3789
3790 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3791}
3792
3793static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3794{
3795 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3796 struct btrfs_space_info *sinfo = block_rsv->space_info;
3797 u64 num_bytes;
3798
3799 num_bytes = calc_global_metadata_size(fs_info);
3800
3801 spin_lock(&block_rsv->lock);
3802 spin_lock(&sinfo->lock);
3803
3804 block_rsv->size = num_bytes;
3805
3806 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3807 sinfo->bytes_reserved + sinfo->bytes_readonly +
3808 sinfo->bytes_may_use;
3809
3810 if (sinfo->total_bytes > num_bytes) {
3811 num_bytes = sinfo->total_bytes - num_bytes;
3812 block_rsv->reserved += num_bytes;
3813 sinfo->bytes_may_use += num_bytes;
3814 }
3815
3816 if (block_rsv->reserved >= block_rsv->size) {
3817 num_bytes = block_rsv->reserved - block_rsv->size;
3818 sinfo->bytes_may_use -= num_bytes;
3819 sinfo->reservation_progress++;
3820 block_rsv->reserved = block_rsv->size;
3821 block_rsv->full = 1;
3822 }
3823
3824 spin_unlock(&sinfo->lock);
3825 spin_unlock(&block_rsv->lock);
3826}
3827
3828static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3829{
3830 struct btrfs_space_info *space_info;
3831
3832 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3833 fs_info->chunk_block_rsv.space_info = space_info;
3834
3835 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3836 fs_info->global_block_rsv.space_info = space_info;
3837 fs_info->delalloc_block_rsv.space_info = space_info;
3838 fs_info->trans_block_rsv.space_info = space_info;
3839 fs_info->empty_block_rsv.space_info = space_info;
3840
3841 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3842 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3843 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3844 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3845 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3846
3847 update_global_block_rsv(fs_info);
3848}
3849
3850static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3851{
3852 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3853 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3854 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3855 WARN_ON(fs_info->trans_block_rsv.size > 0);
3856 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3857 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3858 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3859}
3860
3861void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3862 struct btrfs_root *root)
3863{
3864 if (!trans->bytes_reserved)
3865 return;
3866
3867 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3868 btrfs_block_rsv_release(root, trans->block_rsv,
3869 trans->bytes_reserved);
3870 trans->bytes_reserved = 0;
3871}
3872
3873int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3874 struct inode *inode)
3875{
3876 struct btrfs_root *root = BTRFS_I(inode)->root;
3877 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3878 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3879
3880 /*
3881 * We need to hold space in order to delete our orphan item once we've
3882 * added it, so this takes the reservation so we can release it later
3883 * when we are truly done with the orphan item.
3884 */
3885 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3886 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3887}
3888
3889void btrfs_orphan_release_metadata(struct inode *inode)
3890{
3891 struct btrfs_root *root = BTRFS_I(inode)->root;
3892 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3893 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3894}
3895
3896int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3897 struct btrfs_pending_snapshot *pending)
3898{
3899 struct btrfs_root *root = pending->root;
3900 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3901 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3902 /*
3903 * two for root back/forward refs, two for directory entries
3904 * and one for root of the snapshot.
3905 */
3906 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3907 dst_rsv->space_info = src_rsv->space_info;
3908 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3909}
3910
3911/**
3912 * drop_outstanding_extent - drop an outstanding extent
3913 * @inode: the inode we're dropping the extent for
3914 *
3915 * This is called when we are freeing up an outstanding extent, either called
3916 * after an error or after an extent is written. This will return the number of
3917 * reserved extents that need to be freed. This must be called with
3918 * BTRFS_I(inode)->lock held.
3919 */
3920static unsigned drop_outstanding_extent(struct inode *inode)
3921{
3922 unsigned dropped_extents = 0;
3923
3924 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
3925 BTRFS_I(inode)->outstanding_extents--;
3926
3927 /*
3928 * If we have more or the same amount of outsanding extents than we have
3929 * reserved then we need to leave the reserved extents count alone.
3930 */
3931 if (BTRFS_I(inode)->outstanding_extents >=
3932 BTRFS_I(inode)->reserved_extents)
3933 return 0;
3934
3935 dropped_extents = BTRFS_I(inode)->reserved_extents -
3936 BTRFS_I(inode)->outstanding_extents;
3937 BTRFS_I(inode)->reserved_extents -= dropped_extents;
3938 return dropped_extents;
3939}
3940
3941/**
3942 * calc_csum_metadata_size - return the amount of metada space that must be
3943 * reserved/free'd for the given bytes.
3944 * @inode: the inode we're manipulating
3945 * @num_bytes: the number of bytes in question
3946 * @reserve: 1 if we are reserving space, 0 if we are freeing space
3947 *
3948 * This adjusts the number of csum_bytes in the inode and then returns the
3949 * correct amount of metadata that must either be reserved or freed. We
3950 * calculate how many checksums we can fit into one leaf and then divide the
3951 * number of bytes that will need to be checksumed by this value to figure out
3952 * how many checksums will be required. If we are adding bytes then the number
3953 * may go up and we will return the number of additional bytes that must be
3954 * reserved. If it is going down we will return the number of bytes that must
3955 * be freed.
3956 *
3957 * This must be called with BTRFS_I(inode)->lock held.
3958 */
3959static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
3960 int reserve)
3961{
3962 struct btrfs_root *root = BTRFS_I(inode)->root;
3963 u64 csum_size;
3964 int num_csums_per_leaf;
3965 int num_csums;
3966 int old_csums;
3967
3968 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
3969 BTRFS_I(inode)->csum_bytes == 0)
3970 return 0;
3971
3972 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
3973 if (reserve)
3974 BTRFS_I(inode)->csum_bytes += num_bytes;
3975 else
3976 BTRFS_I(inode)->csum_bytes -= num_bytes;
3977 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
3978 num_csums_per_leaf = (int)div64_u64(csum_size,
3979 sizeof(struct btrfs_csum_item) +
3980 sizeof(struct btrfs_disk_key));
3981 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
3982 num_csums = num_csums + num_csums_per_leaf - 1;
3983 num_csums = num_csums / num_csums_per_leaf;
3984
3985 old_csums = old_csums + num_csums_per_leaf - 1;
3986 old_csums = old_csums / num_csums_per_leaf;
3987
3988 /* No change, no need to reserve more */
3989 if (old_csums == num_csums)
3990 return 0;
3991
3992 if (reserve)
3993 return btrfs_calc_trans_metadata_size(root,
3994 num_csums - old_csums);
3995
3996 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
3997}
3998
3999int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4000{
4001 struct btrfs_root *root = BTRFS_I(inode)->root;
4002 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4003 u64 to_reserve = 0;
4004 unsigned nr_extents = 0;
4005 int ret;
4006
4007 if (btrfs_transaction_in_commit(root->fs_info))
4008 schedule_timeout(1);
4009
4010 num_bytes = ALIGN(num_bytes, root->sectorsize);
4011
4012 spin_lock(&BTRFS_I(inode)->lock);
4013 BTRFS_I(inode)->outstanding_extents++;
4014
4015 if (BTRFS_I(inode)->outstanding_extents >
4016 BTRFS_I(inode)->reserved_extents) {
4017 nr_extents = BTRFS_I(inode)->outstanding_extents -
4018 BTRFS_I(inode)->reserved_extents;
4019 BTRFS_I(inode)->reserved_extents += nr_extents;
4020
4021 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4022 }
4023 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4024 spin_unlock(&BTRFS_I(inode)->lock);
4025
4026 ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
4027 if (ret) {
4028 unsigned dropped;
4029 /*
4030 * We don't need the return value since our reservation failed,
4031 * we just need to clean up our counter.
4032 */
4033 spin_lock(&BTRFS_I(inode)->lock);
4034 dropped = drop_outstanding_extent(inode);
4035 WARN_ON(dropped > 1);
4036 BTRFS_I(inode)->csum_bytes -= num_bytes;
4037 spin_unlock(&BTRFS_I(inode)->lock);
4038 return ret;
4039 }
4040
4041 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4042
4043 return 0;
4044}
4045
4046/**
4047 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4048 * @inode: the inode to release the reservation for
4049 * @num_bytes: the number of bytes we're releasing
4050 *
4051 * This will release the metadata reservation for an inode. This can be called
4052 * once we complete IO for a given set of bytes to release their metadata
4053 * reservations.
4054 */
4055void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4056{
4057 struct btrfs_root *root = BTRFS_I(inode)->root;
4058 u64 to_free = 0;
4059 unsigned dropped;
4060
4061 num_bytes = ALIGN(num_bytes, root->sectorsize);
4062 spin_lock(&BTRFS_I(inode)->lock);
4063 dropped = drop_outstanding_extent(inode);
4064
4065 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4066 spin_unlock(&BTRFS_I(inode)->lock);
4067 if (dropped > 0)
4068 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4069
4070 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4071 to_free);
4072}
4073
4074/**
4075 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4076 * @inode: inode we're writing to
4077 * @num_bytes: the number of bytes we want to allocate
4078 *
4079 * This will do the following things
4080 *
4081 * o reserve space in the data space info for num_bytes
4082 * o reserve space in the metadata space info based on number of outstanding
4083 * extents and how much csums will be needed
4084 * o add to the inodes ->delalloc_bytes
4085 * o add it to the fs_info's delalloc inodes list.
4086 *
4087 * This will return 0 for success and -ENOSPC if there is no space left.
4088 */
4089int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4090{
4091 int ret;
4092
4093 ret = btrfs_check_data_free_space(inode, num_bytes);
4094 if (ret)
4095 return ret;
4096
4097 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4098 if (ret) {
4099 btrfs_free_reserved_data_space(inode, num_bytes);
4100 return ret;
4101 }
4102
4103 return 0;
4104}
4105
4106/**
4107 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4108 * @inode: inode we're releasing space for
4109 * @num_bytes: the number of bytes we want to free up
4110 *
4111 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4112 * called in the case that we don't need the metadata AND data reservations
4113 * anymore. So if there is an error or we insert an inline extent.
4114 *
4115 * This function will release the metadata space that was not used and will
4116 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4117 * list if there are no delalloc bytes left.
4118 */
4119void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4120{
4121 btrfs_delalloc_release_metadata(inode, num_bytes);
4122 btrfs_free_reserved_data_space(inode, num_bytes);
4123}
4124
4125static int update_block_group(struct btrfs_trans_handle *trans,
4126 struct btrfs_root *root,
4127 u64 bytenr, u64 num_bytes, int alloc)
4128{
4129 struct btrfs_block_group_cache *cache = NULL;
4130 struct btrfs_fs_info *info = root->fs_info;
4131 u64 total = num_bytes;
4132 u64 old_val;
4133 u64 byte_in_group;
4134 int factor;
4135
4136 /* block accounting for super block */
4137 spin_lock(&info->delalloc_lock);
4138 old_val = btrfs_super_bytes_used(&info->super_copy);
4139 if (alloc)
4140 old_val += num_bytes;
4141 else
4142 old_val -= num_bytes;
4143 btrfs_set_super_bytes_used(&info->super_copy, old_val);
4144 spin_unlock(&info->delalloc_lock);
4145
4146 while (total) {
4147 cache = btrfs_lookup_block_group(info, bytenr);
4148 if (!cache)
4149 return -1;
4150 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4151 BTRFS_BLOCK_GROUP_RAID1 |
4152 BTRFS_BLOCK_GROUP_RAID10))
4153 factor = 2;
4154 else
4155 factor = 1;
4156 /*
4157 * If this block group has free space cache written out, we
4158 * need to make sure to load it if we are removing space. This
4159 * is because we need the unpinning stage to actually add the
4160 * space back to the block group, otherwise we will leak space.
4161 */
4162 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4163 cache_block_group(cache, trans, NULL, 1);
4164
4165 byte_in_group = bytenr - cache->key.objectid;
4166 WARN_ON(byte_in_group > cache->key.offset);
4167
4168 spin_lock(&cache->space_info->lock);
4169 spin_lock(&cache->lock);
4170
4171 if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4172 cache->disk_cache_state < BTRFS_DC_CLEAR)
4173 cache->disk_cache_state = BTRFS_DC_CLEAR;
4174
4175 cache->dirty = 1;
4176 old_val = btrfs_block_group_used(&cache->item);
4177 num_bytes = min(total, cache->key.offset - byte_in_group);
4178 if (alloc) {
4179 old_val += num_bytes;
4180 btrfs_set_block_group_used(&cache->item, old_val);
4181 cache->reserved -= num_bytes;
4182 cache->space_info->bytes_reserved -= num_bytes;
4183 cache->space_info->bytes_used += num_bytes;
4184 cache->space_info->disk_used += num_bytes * factor;
4185 spin_unlock(&cache->lock);
4186 spin_unlock(&cache->space_info->lock);
4187 } else {
4188 old_val -= num_bytes;
4189 btrfs_set_block_group_used(&cache->item, old_val);
4190 cache->pinned += num_bytes;
4191 cache->space_info->bytes_pinned += num_bytes;
4192 cache->space_info->bytes_used -= num_bytes;
4193 cache->space_info->disk_used -= num_bytes * factor;
4194 spin_unlock(&cache->lock);
4195 spin_unlock(&cache->space_info->lock);
4196
4197 set_extent_dirty(info->pinned_extents,
4198 bytenr, bytenr + num_bytes - 1,
4199 GFP_NOFS | __GFP_NOFAIL);
4200 }
4201 btrfs_put_block_group(cache);
4202 total -= num_bytes;
4203 bytenr += num_bytes;
4204 }
4205 return 0;
4206}
4207
4208static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4209{
4210 struct btrfs_block_group_cache *cache;
4211 u64 bytenr;
4212
4213 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4214 if (!cache)
4215 return 0;
4216
4217 bytenr = cache->key.objectid;
4218 btrfs_put_block_group(cache);
4219
4220 return bytenr;
4221}
4222
4223static int pin_down_extent(struct btrfs_root *root,
4224 struct btrfs_block_group_cache *cache,
4225 u64 bytenr, u64 num_bytes, int reserved)
4226{
4227 spin_lock(&cache->space_info->lock);
4228 spin_lock(&cache->lock);
4229 cache->pinned += num_bytes;
4230 cache->space_info->bytes_pinned += num_bytes;
4231 if (reserved) {
4232 cache->reserved -= num_bytes;
4233 cache->space_info->bytes_reserved -= num_bytes;
4234 }
4235 spin_unlock(&cache->lock);
4236 spin_unlock(&cache->space_info->lock);
4237
4238 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4239 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4240 return 0;
4241}
4242
4243/*
4244 * this function must be called within transaction
4245 */
4246int btrfs_pin_extent(struct btrfs_root *root,
4247 u64 bytenr, u64 num_bytes, int reserved)
4248{
4249 struct btrfs_block_group_cache *cache;
4250
4251 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4252 BUG_ON(!cache);
4253
4254 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4255
4256 btrfs_put_block_group(cache);
4257 return 0;
4258}
4259
4260/**
4261 * btrfs_update_reserved_bytes - update the block_group and space info counters
4262 * @cache: The cache we are manipulating
4263 * @num_bytes: The number of bytes in question
4264 * @reserve: One of the reservation enums
4265 *
4266 * This is called by the allocator when it reserves space, or by somebody who is
4267 * freeing space that was never actually used on disk. For example if you
4268 * reserve some space for a new leaf in transaction A and before transaction A
4269 * commits you free that leaf, you call this with reserve set to 0 in order to
4270 * clear the reservation.
4271 *
4272 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4273 * ENOSPC accounting. For data we handle the reservation through clearing the
4274 * delalloc bits in the io_tree. We have to do this since we could end up
4275 * allocating less disk space for the amount of data we have reserved in the
4276 * case of compression.
4277 *
4278 * If this is a reservation and the block group has become read only we cannot
4279 * make the reservation and return -EAGAIN, otherwise this function always
4280 * succeeds.
4281 */
4282static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4283 u64 num_bytes, int reserve)
4284{
4285 struct btrfs_space_info *space_info = cache->space_info;
4286 int ret = 0;
4287 spin_lock(&space_info->lock);
4288 spin_lock(&cache->lock);
4289 if (reserve != RESERVE_FREE) {
4290 if (cache->ro) {
4291 ret = -EAGAIN;
4292 } else {
4293 cache->reserved += num_bytes;
4294 space_info->bytes_reserved += num_bytes;
4295 if (reserve == RESERVE_ALLOC) {
4296 BUG_ON(space_info->bytes_may_use < num_bytes);
4297 space_info->bytes_may_use -= num_bytes;
4298 }
4299 }
4300 } else {
4301 if (cache->ro)
4302 space_info->bytes_readonly += num_bytes;
4303 cache->reserved -= num_bytes;
4304 space_info->bytes_reserved -= num_bytes;
4305 space_info->reservation_progress++;
4306 }
4307 spin_unlock(&cache->lock);
4308 spin_unlock(&space_info->lock);
4309 return ret;
4310}
4311
4312int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4313 struct btrfs_root *root)
4314{
4315 struct btrfs_fs_info *fs_info = root->fs_info;
4316 struct btrfs_caching_control *next;
4317 struct btrfs_caching_control *caching_ctl;
4318 struct btrfs_block_group_cache *cache;
4319
4320 down_write(&fs_info->extent_commit_sem);
4321
4322 list_for_each_entry_safe(caching_ctl, next,
4323 &fs_info->caching_block_groups, list) {
4324 cache = caching_ctl->block_group;
4325 if (block_group_cache_done(cache)) {
4326 cache->last_byte_to_unpin = (u64)-1;
4327 list_del_init(&caching_ctl->list);
4328 put_caching_control(caching_ctl);
4329 } else {
4330 cache->last_byte_to_unpin = caching_ctl->progress;
4331 }
4332 }
4333
4334 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4335 fs_info->pinned_extents = &fs_info->freed_extents[1];
4336 else
4337 fs_info->pinned_extents = &fs_info->freed_extents[0];
4338
4339 up_write(&fs_info->extent_commit_sem);
4340
4341 update_global_block_rsv(fs_info);
4342 return 0;
4343}
4344
4345static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4346{
4347 struct btrfs_fs_info *fs_info = root->fs_info;
4348 struct btrfs_block_group_cache *cache = NULL;
4349 u64 len;
4350
4351 while (start <= end) {
4352 if (!cache ||
4353 start >= cache->key.objectid + cache->key.offset) {
4354 if (cache)
4355 btrfs_put_block_group(cache);
4356 cache = btrfs_lookup_block_group(fs_info, start);
4357 BUG_ON(!cache);
4358 }
4359
4360 len = cache->key.objectid + cache->key.offset - start;
4361 len = min(len, end + 1 - start);
4362
4363 if (start < cache->last_byte_to_unpin) {
4364 len = min(len, cache->last_byte_to_unpin - start);
4365 btrfs_add_free_space(cache, start, len);
4366 }
4367
4368 start += len;
4369
4370 spin_lock(&cache->space_info->lock);
4371 spin_lock(&cache->lock);
4372 cache->pinned -= len;
4373 cache->space_info->bytes_pinned -= len;
4374 if (cache->ro)
4375 cache->space_info->bytes_readonly += len;
4376 spin_unlock(&cache->lock);
4377 spin_unlock(&cache->space_info->lock);
4378 }
4379
4380 if (cache)
4381 btrfs_put_block_group(cache);
4382 return 0;
4383}
4384
4385int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4386 struct btrfs_root *root)
4387{
4388 struct btrfs_fs_info *fs_info = root->fs_info;
4389 struct extent_io_tree *unpin;
4390 u64 start;
4391 u64 end;
4392 int ret;
4393
4394 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4395 unpin = &fs_info->freed_extents[1];
4396 else
4397 unpin = &fs_info->freed_extents[0];
4398
4399 while (1) {
4400 ret = find_first_extent_bit(unpin, 0, &start, &end,
4401 EXTENT_DIRTY);
4402 if (ret)
4403 break;
4404
4405 if (btrfs_test_opt(root, DISCARD))
4406 ret = btrfs_discard_extent(root, start,
4407 end + 1 - start, NULL);
4408
4409 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4410 unpin_extent_range(root, start, end);
4411 cond_resched();
4412 }
4413
4414 return 0;
4415}
4416
4417static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4418 struct btrfs_root *root,
4419 u64 bytenr, u64 num_bytes, u64 parent,
4420 u64 root_objectid, u64 owner_objectid,
4421 u64 owner_offset, int refs_to_drop,
4422 struct btrfs_delayed_extent_op *extent_op)
4423{
4424 struct btrfs_key key;
4425 struct btrfs_path *path;
4426 struct btrfs_fs_info *info = root->fs_info;
4427 struct btrfs_root *extent_root = info->extent_root;
4428 struct extent_buffer *leaf;
4429 struct btrfs_extent_item *ei;
4430 struct btrfs_extent_inline_ref *iref;
4431 int ret;
4432 int is_data;
4433 int extent_slot = 0;
4434 int found_extent = 0;
4435 int num_to_del = 1;
4436 u32 item_size;
4437 u64 refs;
4438
4439 path = btrfs_alloc_path();
4440 if (!path)
4441 return -ENOMEM;
4442
4443 path->reada = 1;
4444 path->leave_spinning = 1;
4445
4446 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4447 BUG_ON(!is_data && refs_to_drop != 1);
4448
4449 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4450 bytenr, num_bytes, parent,
4451 root_objectid, owner_objectid,
4452 owner_offset);
4453 if (ret == 0) {
4454 extent_slot = path->slots[0];
4455 while (extent_slot >= 0) {
4456 btrfs_item_key_to_cpu(path->nodes[0], &key,
4457 extent_slot);
4458 if (key.objectid != bytenr)
4459 break;
4460 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4461 key.offset == num_bytes) {
4462 found_extent = 1;
4463 break;
4464 }
4465 if (path->slots[0] - extent_slot > 5)
4466 break;
4467 extent_slot--;
4468 }
4469#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4470 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4471 if (found_extent && item_size < sizeof(*ei))
4472 found_extent = 0;
4473#endif
4474 if (!found_extent) {
4475 BUG_ON(iref);
4476 ret = remove_extent_backref(trans, extent_root, path,
4477 NULL, refs_to_drop,
4478 is_data);
4479 BUG_ON(ret);
4480 btrfs_release_path(path);
4481 path->leave_spinning = 1;
4482
4483 key.objectid = bytenr;
4484 key.type = BTRFS_EXTENT_ITEM_KEY;
4485 key.offset = num_bytes;
4486
4487 ret = btrfs_search_slot(trans, extent_root,
4488 &key, path, -1, 1);
4489 if (ret) {
4490 printk(KERN_ERR "umm, got %d back from search"
4491 ", was looking for %llu\n", ret,
4492 (unsigned long long)bytenr);
4493 if (ret > 0)
4494 btrfs_print_leaf(extent_root,
4495 path->nodes[0]);
4496 }
4497 BUG_ON(ret);
4498 extent_slot = path->slots[0];
4499 }
4500 } else {
4501 btrfs_print_leaf(extent_root, path->nodes[0]);
4502 WARN_ON(1);
4503 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4504 "parent %llu root %llu owner %llu offset %llu\n",
4505 (unsigned long long)bytenr,
4506 (unsigned long long)parent,
4507 (unsigned long long)root_objectid,
4508 (unsigned long long)owner_objectid,
4509 (unsigned long long)owner_offset);
4510 }
4511
4512 leaf = path->nodes[0];
4513 item_size = btrfs_item_size_nr(leaf, extent_slot);
4514#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4515 if (item_size < sizeof(*ei)) {
4516 BUG_ON(found_extent || extent_slot != path->slots[0]);
4517 ret = convert_extent_item_v0(trans, extent_root, path,
4518 owner_objectid, 0);
4519 BUG_ON(ret < 0);
4520
4521 btrfs_release_path(path);
4522 path->leave_spinning = 1;
4523
4524 key.objectid = bytenr;
4525 key.type = BTRFS_EXTENT_ITEM_KEY;
4526 key.offset = num_bytes;
4527
4528 ret = btrfs_search_slot(trans, extent_root, &key, path,
4529 -1, 1);
4530 if (ret) {
4531 printk(KERN_ERR "umm, got %d back from search"
4532 ", was looking for %llu\n", ret,
4533 (unsigned long long)bytenr);
4534 btrfs_print_leaf(extent_root, path->nodes[0]);
4535 }
4536 BUG_ON(ret);
4537 extent_slot = path->slots[0];
4538 leaf = path->nodes[0];
4539 item_size = btrfs_item_size_nr(leaf, extent_slot);
4540 }
4541#endif
4542 BUG_ON(item_size < sizeof(*ei));
4543 ei = btrfs_item_ptr(leaf, extent_slot,
4544 struct btrfs_extent_item);
4545 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4546 struct btrfs_tree_block_info *bi;
4547 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4548 bi = (struct btrfs_tree_block_info *)(ei + 1);
4549 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4550 }
4551
4552 refs = btrfs_extent_refs(leaf, ei);
4553 BUG_ON(refs < refs_to_drop);
4554 refs -= refs_to_drop;
4555
4556 if (refs > 0) {
4557 if (extent_op)
4558 __run_delayed_extent_op(extent_op, leaf, ei);
4559 /*
4560 * In the case of inline back ref, reference count will
4561 * be updated by remove_extent_backref
4562 */
4563 if (iref) {
4564 BUG_ON(!found_extent);
4565 } else {
4566 btrfs_set_extent_refs(leaf, ei, refs);
4567 btrfs_mark_buffer_dirty(leaf);
4568 }
4569 if (found_extent) {
4570 ret = remove_extent_backref(trans, extent_root, path,
4571 iref, refs_to_drop,
4572 is_data);
4573 BUG_ON(ret);
4574 }
4575 } else {
4576 if (found_extent) {
4577 BUG_ON(is_data && refs_to_drop !=
4578 extent_data_ref_count(root, path, iref));
4579 if (iref) {
4580 BUG_ON(path->slots[0] != extent_slot);
4581 } else {
4582 BUG_ON(path->slots[0] != extent_slot + 1);
4583 path->slots[0] = extent_slot;
4584 num_to_del = 2;
4585 }
4586 }
4587
4588 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4589 num_to_del);
4590 BUG_ON(ret);
4591 btrfs_release_path(path);
4592
4593 if (is_data) {
4594 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4595 BUG_ON(ret);
4596 } else {
4597 invalidate_mapping_pages(info->btree_inode->i_mapping,
4598 bytenr >> PAGE_CACHE_SHIFT,
4599 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4600 }
4601
4602 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4603 BUG_ON(ret);
4604 }
4605 btrfs_free_path(path);
4606 return ret;
4607}
4608
4609/*
4610 * when we free an block, it is possible (and likely) that we free the last
4611 * delayed ref for that extent as well. This searches the delayed ref tree for
4612 * a given extent, and if there are no other delayed refs to be processed, it
4613 * removes it from the tree.
4614 */
4615static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4616 struct btrfs_root *root, u64 bytenr)
4617{
4618 struct btrfs_delayed_ref_head *head;
4619 struct btrfs_delayed_ref_root *delayed_refs;
4620 struct btrfs_delayed_ref_node *ref;
4621 struct rb_node *node;
4622 int ret = 0;
4623
4624 delayed_refs = &trans->transaction->delayed_refs;
4625 spin_lock(&delayed_refs->lock);
4626 head = btrfs_find_delayed_ref_head(trans, bytenr);
4627 if (!head)
4628 goto out;
4629
4630 node = rb_prev(&head->node.rb_node);
4631 if (!node)
4632 goto out;
4633
4634 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4635
4636 /* there are still entries for this ref, we can't drop it */
4637 if (ref->bytenr == bytenr)
4638 goto out;
4639
4640 if (head->extent_op) {
4641 if (!head->must_insert_reserved)
4642 goto out;
4643 kfree(head->extent_op);
4644 head->extent_op = NULL;
4645 }
4646
4647 /*
4648 * waiting for the lock here would deadlock. If someone else has it
4649 * locked they are already in the process of dropping it anyway
4650 */
4651 if (!mutex_trylock(&head->mutex))
4652 goto out;
4653
4654 /*
4655 * at this point we have a head with no other entries. Go
4656 * ahead and process it.
4657 */
4658 head->node.in_tree = 0;
4659 rb_erase(&head->node.rb_node, &delayed_refs->root);
4660
4661 delayed_refs->num_entries--;
4662
4663 /*
4664 * we don't take a ref on the node because we're removing it from the
4665 * tree, so we just steal the ref the tree was holding.
4666 */
4667 delayed_refs->num_heads--;
4668 if (list_empty(&head->cluster))
4669 delayed_refs->num_heads_ready--;
4670
4671 list_del_init(&head->cluster);
4672 spin_unlock(&delayed_refs->lock);
4673
4674 BUG_ON(head->extent_op);
4675 if (head->must_insert_reserved)
4676 ret = 1;
4677
4678 mutex_unlock(&head->mutex);
4679 btrfs_put_delayed_ref(&head->node);
4680 return ret;
4681out:
4682 spin_unlock(&delayed_refs->lock);
4683 return 0;
4684}
4685
4686void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4687 struct btrfs_root *root,
4688 struct extent_buffer *buf,
4689 u64 parent, int last_ref)
4690{
4691 struct btrfs_block_rsv *block_rsv;
4692 struct btrfs_block_group_cache *cache = NULL;
4693 int ret;
4694
4695 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4696 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4697 parent, root->root_key.objectid,
4698 btrfs_header_level(buf),
4699 BTRFS_DROP_DELAYED_REF, NULL);
4700 BUG_ON(ret);
4701 }
4702
4703 if (!last_ref)
4704 return;
4705
4706 block_rsv = get_block_rsv(trans, root);
4707 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4708 if (block_rsv->space_info != cache->space_info)
4709 goto out;
4710
4711 if (btrfs_header_generation(buf) == trans->transid) {
4712 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4713 ret = check_ref_cleanup(trans, root, buf->start);
4714 if (!ret)
4715 goto out;
4716 }
4717
4718 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4719 pin_down_extent(root, cache, buf->start, buf->len, 1);
4720 goto out;
4721 }
4722
4723 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4724
4725 btrfs_add_free_space(cache, buf->start, buf->len);
4726 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
4727 }
4728out:
4729 /*
4730 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4731 * anymore.
4732 */
4733 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
4734 btrfs_put_block_group(cache);
4735}
4736
4737int btrfs_free_extent(struct btrfs_trans_handle *trans,
4738 struct btrfs_root *root,
4739 u64 bytenr, u64 num_bytes, u64 parent,
4740 u64 root_objectid, u64 owner, u64 offset)
4741{
4742 int ret;
4743
4744 /*
4745 * tree log blocks never actually go into the extent allocation
4746 * tree, just update pinning info and exit early.
4747 */
4748 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4749 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4750 /* unlocks the pinned mutex */
4751 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4752 ret = 0;
4753 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4754 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4755 parent, root_objectid, (int)owner,
4756 BTRFS_DROP_DELAYED_REF, NULL);
4757 BUG_ON(ret);
4758 } else {
4759 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4760 parent, root_objectid, owner,
4761 offset, BTRFS_DROP_DELAYED_REF, NULL);
4762 BUG_ON(ret);
4763 }
4764 return ret;
4765}
4766
4767static u64 stripe_align(struct btrfs_root *root, u64 val)
4768{
4769 u64 mask = ((u64)root->stripesize - 1);
4770 u64 ret = (val + mask) & ~mask;
4771 return ret;
4772}
4773
4774/*
4775 * when we wait for progress in the block group caching, its because
4776 * our allocation attempt failed at least once. So, we must sleep
4777 * and let some progress happen before we try again.
4778 *
4779 * This function will sleep at least once waiting for new free space to
4780 * show up, and then it will check the block group free space numbers
4781 * for our min num_bytes. Another option is to have it go ahead
4782 * and look in the rbtree for a free extent of a given size, but this
4783 * is a good start.
4784 */
4785static noinline int
4786wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4787 u64 num_bytes)
4788{
4789 struct btrfs_caching_control *caching_ctl;
4790 DEFINE_WAIT(wait);
4791
4792 caching_ctl = get_caching_control(cache);
4793 if (!caching_ctl)
4794 return 0;
4795
4796 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4797 (cache->free_space_ctl->free_space >= num_bytes));
4798
4799 put_caching_control(caching_ctl);
4800 return 0;
4801}
4802
4803static noinline int
4804wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4805{
4806 struct btrfs_caching_control *caching_ctl;
4807 DEFINE_WAIT(wait);
4808
4809 caching_ctl = get_caching_control(cache);
4810 if (!caching_ctl)
4811 return 0;
4812
4813 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4814
4815 put_caching_control(caching_ctl);
4816 return 0;
4817}
4818
4819static int get_block_group_index(struct btrfs_block_group_cache *cache)
4820{
4821 int index;
4822 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4823 index = 0;
4824 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4825 index = 1;
4826 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4827 index = 2;
4828 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4829 index = 3;
4830 else
4831 index = 4;
4832 return index;
4833}
4834
4835enum btrfs_loop_type {
4836 LOOP_FIND_IDEAL = 0,
4837 LOOP_CACHING_NOWAIT = 1,
4838 LOOP_CACHING_WAIT = 2,
4839 LOOP_ALLOC_CHUNK = 3,
4840 LOOP_NO_EMPTY_SIZE = 4,
4841};
4842
4843/*
4844 * walks the btree of allocated extents and find a hole of a given size.
4845 * The key ins is changed to record the hole:
4846 * ins->objectid == block start
4847 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4848 * ins->offset == number of blocks
4849 * Any available blocks before search_start are skipped.
4850 */
4851static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4852 struct btrfs_root *orig_root,
4853 u64 num_bytes, u64 empty_size,
4854 u64 search_start, u64 search_end,
4855 u64 hint_byte, struct btrfs_key *ins,
4856 u64 data)
4857{
4858 int ret = 0;
4859 struct btrfs_root *root = orig_root->fs_info->extent_root;
4860 struct btrfs_free_cluster *last_ptr = NULL;
4861 struct btrfs_block_group_cache *block_group = NULL;
4862 int empty_cluster = 2 * 1024 * 1024;
4863 int allowed_chunk_alloc = 0;
4864 int done_chunk_alloc = 0;
4865 struct btrfs_space_info *space_info;
4866 int last_ptr_loop = 0;
4867 int loop = 0;
4868 int index = 0;
4869 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
4870 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
4871 bool found_uncached_bg = false;
4872 bool failed_cluster_refill = false;
4873 bool failed_alloc = false;
4874 bool use_cluster = true;
4875 u64 ideal_cache_percent = 0;
4876 u64 ideal_cache_offset = 0;
4877
4878 WARN_ON(num_bytes < root->sectorsize);
4879 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4880 ins->objectid = 0;
4881 ins->offset = 0;
4882
4883 space_info = __find_space_info(root->fs_info, data);
4884 if (!space_info) {
4885 printk(KERN_ERR "No space info for %llu\n", data);
4886 return -ENOSPC;
4887 }
4888
4889 /*
4890 * If the space info is for both data and metadata it means we have a
4891 * small filesystem and we can't use the clustering stuff.
4892 */
4893 if (btrfs_mixed_space_info(space_info))
4894 use_cluster = false;
4895
4896 if (orig_root->ref_cows || empty_size)
4897 allowed_chunk_alloc = 1;
4898
4899 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4900 last_ptr = &root->fs_info->meta_alloc_cluster;
4901 if (!btrfs_test_opt(root, SSD))
4902 empty_cluster = 64 * 1024;
4903 }
4904
4905 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4906 btrfs_test_opt(root, SSD)) {
4907 last_ptr = &root->fs_info->data_alloc_cluster;
4908 }
4909
4910 if (last_ptr) {
4911 spin_lock(&last_ptr->lock);
4912 if (last_ptr->block_group)
4913 hint_byte = last_ptr->window_start;
4914 spin_unlock(&last_ptr->lock);
4915 }
4916
4917 search_start = max(search_start, first_logical_byte(root, 0));
4918 search_start = max(search_start, hint_byte);
4919
4920 if (!last_ptr)
4921 empty_cluster = 0;
4922
4923 if (search_start == hint_byte) {
4924ideal_cache:
4925 block_group = btrfs_lookup_block_group(root->fs_info,
4926 search_start);
4927 /*
4928 * we don't want to use the block group if it doesn't match our
4929 * allocation bits, or if its not cached.
4930 *
4931 * However if we are re-searching with an ideal block group
4932 * picked out then we don't care that the block group is cached.
4933 */
4934 if (block_group && block_group_bits(block_group, data) &&
4935 (block_group->cached != BTRFS_CACHE_NO ||
4936 search_start == ideal_cache_offset)) {
4937 down_read(&space_info->groups_sem);
4938 if (list_empty(&block_group->list) ||
4939 block_group->ro) {
4940 /*
4941 * someone is removing this block group,
4942 * we can't jump into the have_block_group
4943 * target because our list pointers are not
4944 * valid
4945 */
4946 btrfs_put_block_group(block_group);
4947 up_read(&space_info->groups_sem);
4948 } else {
4949 index = get_block_group_index(block_group);
4950 goto have_block_group;
4951 }
4952 } else if (block_group) {
4953 btrfs_put_block_group(block_group);
4954 }
4955 }
4956search:
4957 down_read(&space_info->groups_sem);
4958 list_for_each_entry(block_group, &space_info->block_groups[index],
4959 list) {
4960 u64 offset;
4961 int cached;
4962
4963 btrfs_get_block_group(block_group);
4964 search_start = block_group->key.objectid;
4965
4966 /*
4967 * this can happen if we end up cycling through all the
4968 * raid types, but we want to make sure we only allocate
4969 * for the proper type.
4970 */
4971 if (!block_group_bits(block_group, data)) {
4972 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4973 BTRFS_BLOCK_GROUP_RAID1 |
4974 BTRFS_BLOCK_GROUP_RAID10;
4975
4976 /*
4977 * if they asked for extra copies and this block group
4978 * doesn't provide them, bail. This does allow us to
4979 * fill raid0 from raid1.
4980 */
4981 if ((data & extra) && !(block_group->flags & extra))
4982 goto loop;
4983 }
4984
4985have_block_group:
4986 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4987 u64 free_percent;
4988
4989 ret = cache_block_group(block_group, trans,
4990 orig_root, 1);
4991 if (block_group->cached == BTRFS_CACHE_FINISHED)
4992 goto have_block_group;
4993
4994 free_percent = btrfs_block_group_used(&block_group->item);
4995 free_percent *= 100;
4996 free_percent = div64_u64(free_percent,
4997 block_group->key.offset);
4998 free_percent = 100 - free_percent;
4999 if (free_percent > ideal_cache_percent &&
5000 likely(!block_group->ro)) {
5001 ideal_cache_offset = block_group->key.objectid;
5002 ideal_cache_percent = free_percent;
5003 }
5004
5005 /*
5006 * The caching workers are limited to 2 threads, so we
5007 * can queue as much work as we care to.
5008 */
5009 if (loop > LOOP_FIND_IDEAL) {
5010 ret = cache_block_group(block_group, trans,
5011 orig_root, 0);
5012 BUG_ON(ret);
5013 }
5014 found_uncached_bg = true;
5015
5016 /*
5017 * If loop is set for cached only, try the next block
5018 * group.
5019 */
5020 if (loop == LOOP_FIND_IDEAL)
5021 goto loop;
5022 }
5023
5024 cached = block_group_cache_done(block_group);
5025 if (unlikely(!cached))
5026 found_uncached_bg = true;
5027
5028 if (unlikely(block_group->ro))
5029 goto loop;
5030
5031 spin_lock(&block_group->free_space_ctl->tree_lock);
5032 if (cached &&
5033 block_group->free_space_ctl->free_space <
5034 num_bytes + empty_size) {
5035 spin_unlock(&block_group->free_space_ctl->tree_lock);
5036 goto loop;
5037 }
5038 spin_unlock(&block_group->free_space_ctl->tree_lock);
5039
5040 /*
5041 * Ok we want to try and use the cluster allocator, so lets look
5042 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5043 * have tried the cluster allocator plenty of times at this
5044 * point and not have found anything, so we are likely way too
5045 * fragmented for the clustering stuff to find anything, so lets
5046 * just skip it and let the allocator find whatever block it can
5047 * find
5048 */
5049 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5050 /*
5051 * the refill lock keeps out other
5052 * people trying to start a new cluster
5053 */
5054 spin_lock(&last_ptr->refill_lock);
5055 if (last_ptr->block_group &&
5056 (last_ptr->block_group->ro ||
5057 !block_group_bits(last_ptr->block_group, data))) {
5058 offset = 0;
5059 goto refill_cluster;
5060 }
5061
5062 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5063 num_bytes, search_start);
5064 if (offset) {
5065 /* we have a block, we're done */
5066 spin_unlock(&last_ptr->refill_lock);
5067 goto checks;
5068 }
5069
5070 spin_lock(&last_ptr->lock);
5071 /*
5072 * whoops, this cluster doesn't actually point to
5073 * this block group. Get a ref on the block
5074 * group is does point to and try again
5075 */
5076 if (!last_ptr_loop && last_ptr->block_group &&
5077 last_ptr->block_group != block_group &&
5078 index <=
5079 get_block_group_index(last_ptr->block_group)) {
5080
5081 btrfs_put_block_group(block_group);
5082 block_group = last_ptr->block_group;
5083 btrfs_get_block_group(block_group);
5084 spin_unlock(&last_ptr->lock);
5085 spin_unlock(&last_ptr->refill_lock);
5086
5087 last_ptr_loop = 1;
5088 search_start = block_group->key.objectid;
5089 /*
5090 * we know this block group is properly
5091 * in the list because
5092 * btrfs_remove_block_group, drops the
5093 * cluster before it removes the block
5094 * group from the list
5095 */
5096 goto have_block_group;
5097 }
5098 spin_unlock(&last_ptr->lock);
5099refill_cluster:
5100 /*
5101 * this cluster didn't work out, free it and
5102 * start over
5103 */
5104 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5105
5106 last_ptr_loop = 0;
5107
5108 /* allocate a cluster in this block group */
5109 ret = btrfs_find_space_cluster(trans, root,
5110 block_group, last_ptr,
5111 offset, num_bytes,
5112 empty_cluster + empty_size);
5113 if (ret == 0) {
5114 /*
5115 * now pull our allocation out of this
5116 * cluster
5117 */
5118 offset = btrfs_alloc_from_cluster(block_group,
5119 last_ptr, num_bytes,
5120 search_start);
5121 if (offset) {
5122 /* we found one, proceed */
5123 spin_unlock(&last_ptr->refill_lock);
5124 goto checks;
5125 }
5126 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5127 && !failed_cluster_refill) {
5128 spin_unlock(&last_ptr->refill_lock);
5129
5130 failed_cluster_refill = true;
5131 wait_block_group_cache_progress(block_group,
5132 num_bytes + empty_cluster + empty_size);
5133 goto have_block_group;
5134 }
5135
5136 /*
5137 * at this point we either didn't find a cluster
5138 * or we weren't able to allocate a block from our
5139 * cluster. Free the cluster we've been trying
5140 * to use, and go to the next block group
5141 */
5142 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5143 spin_unlock(&last_ptr->refill_lock);
5144 goto loop;
5145 }
5146
5147 offset = btrfs_find_space_for_alloc(block_group, search_start,
5148 num_bytes, empty_size);
5149 /*
5150 * If we didn't find a chunk, and we haven't failed on this
5151 * block group before, and this block group is in the middle of
5152 * caching and we are ok with waiting, then go ahead and wait
5153 * for progress to be made, and set failed_alloc to true.
5154 *
5155 * If failed_alloc is true then we've already waited on this
5156 * block group once and should move on to the next block group.
5157 */
5158 if (!offset && !failed_alloc && !cached &&
5159 loop > LOOP_CACHING_NOWAIT) {
5160 wait_block_group_cache_progress(block_group,
5161 num_bytes + empty_size);
5162 failed_alloc = true;
5163 goto have_block_group;
5164 } else if (!offset) {
5165 goto loop;
5166 }
5167checks:
5168 search_start = stripe_align(root, offset);
5169 /* move on to the next group */
5170 if (search_start + num_bytes >= search_end) {
5171 btrfs_add_free_space(block_group, offset, num_bytes);
5172 goto loop;
5173 }
5174
5175 /* move on to the next group */
5176 if (search_start + num_bytes >
5177 block_group->key.objectid + block_group->key.offset) {
5178 btrfs_add_free_space(block_group, offset, num_bytes);
5179 goto loop;
5180 }
5181
5182 ins->objectid = search_start;
5183 ins->offset = num_bytes;
5184
5185 if (offset < search_start)
5186 btrfs_add_free_space(block_group, offset,
5187 search_start - offset);
5188 BUG_ON(offset > search_start);
5189
5190 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
5191 alloc_type);
5192 if (ret == -EAGAIN) {
5193 btrfs_add_free_space(block_group, offset, num_bytes);
5194 goto loop;
5195 }
5196
5197 /* we are all good, lets return */
5198 ins->objectid = search_start;
5199 ins->offset = num_bytes;
5200
5201 if (offset < search_start)
5202 btrfs_add_free_space(block_group, offset,
5203 search_start - offset);
5204 BUG_ON(offset > search_start);
5205 btrfs_put_block_group(block_group);
5206 break;
5207loop:
5208 failed_cluster_refill = false;
5209 failed_alloc = false;
5210 BUG_ON(index != get_block_group_index(block_group));
5211 btrfs_put_block_group(block_group);
5212 }
5213 up_read(&space_info->groups_sem);
5214
5215 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5216 goto search;
5217
5218 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5219 * for them to make caching progress. Also
5220 * determine the best possible bg to cache
5221 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5222 * caching kthreads as we move along
5223 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5224 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5225 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5226 * again
5227 */
5228 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5229 index = 0;
5230 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5231 found_uncached_bg = false;
5232 loop++;
5233 if (!ideal_cache_percent)
5234 goto search;
5235
5236 /*
5237 * 1 of the following 2 things have happened so far
5238 *
5239 * 1) We found an ideal block group for caching that
5240 * is mostly full and will cache quickly, so we might
5241 * as well wait for it.
5242 *
5243 * 2) We searched for cached only and we didn't find
5244 * anything, and we didn't start any caching kthreads
5245 * either, so chances are we will loop through and
5246 * start a couple caching kthreads, and then come back
5247 * around and just wait for them. This will be slower
5248 * because we will have 2 caching kthreads reading at
5249 * the same time when we could have just started one
5250 * and waited for it to get far enough to give us an
5251 * allocation, so go ahead and go to the wait caching
5252 * loop.
5253 */
5254 loop = LOOP_CACHING_WAIT;
5255 search_start = ideal_cache_offset;
5256 ideal_cache_percent = 0;
5257 goto ideal_cache;
5258 } else if (loop == LOOP_FIND_IDEAL) {
5259 /*
5260 * Didn't find a uncached bg, wait on anything we find
5261 * next.
5262 */
5263 loop = LOOP_CACHING_WAIT;
5264 goto search;
5265 }
5266
5267 loop++;
5268
5269 if (loop == LOOP_ALLOC_CHUNK) {
5270 if (allowed_chunk_alloc) {
5271 ret = do_chunk_alloc(trans, root, num_bytes +
5272 2 * 1024 * 1024, data,
5273 CHUNK_ALLOC_LIMITED);
5274 allowed_chunk_alloc = 0;
5275 if (ret == 1)
5276 done_chunk_alloc = 1;
5277 } else if (!done_chunk_alloc &&
5278 space_info->force_alloc ==
5279 CHUNK_ALLOC_NO_FORCE) {
5280 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5281 }
5282
5283 /*
5284 * We didn't allocate a chunk, go ahead and drop the
5285 * empty size and loop again.
5286 */
5287 if (!done_chunk_alloc)
5288 loop = LOOP_NO_EMPTY_SIZE;
5289 }
5290
5291 if (loop == LOOP_NO_EMPTY_SIZE) {
5292 empty_size = 0;
5293 empty_cluster = 0;
5294 }
5295
5296 goto search;
5297 } else if (!ins->objectid) {
5298 ret = -ENOSPC;
5299 } else if (ins->objectid) {
5300 ret = 0;
5301 }
5302
5303 return ret;
5304}
5305
5306static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5307 int dump_block_groups)
5308{
5309 struct btrfs_block_group_cache *cache;
5310 int index = 0;
5311
5312 spin_lock(&info->lock);
5313 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5314 (unsigned long long)info->flags,
5315 (unsigned long long)(info->total_bytes - info->bytes_used -
5316 info->bytes_pinned - info->bytes_reserved -
5317 info->bytes_readonly),
5318 (info->full) ? "" : "not ");
5319 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5320 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5321 (unsigned long long)info->total_bytes,
5322 (unsigned long long)info->bytes_used,
5323 (unsigned long long)info->bytes_pinned,
5324 (unsigned long long)info->bytes_reserved,
5325 (unsigned long long)info->bytes_may_use,
5326 (unsigned long long)info->bytes_readonly);
5327 spin_unlock(&info->lock);
5328
5329 if (!dump_block_groups)
5330 return;
5331
5332 down_read(&info->groups_sem);
5333again:
5334 list_for_each_entry(cache, &info->block_groups[index], list) {
5335 spin_lock(&cache->lock);
5336 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5337 "%llu pinned %llu reserved\n",
5338 (unsigned long long)cache->key.objectid,
5339 (unsigned long long)cache->key.offset,
5340 (unsigned long long)btrfs_block_group_used(&cache->item),
5341 (unsigned long long)cache->pinned,
5342 (unsigned long long)cache->reserved);
5343 btrfs_dump_free_space(cache, bytes);
5344 spin_unlock(&cache->lock);
5345 }
5346 if (++index < BTRFS_NR_RAID_TYPES)
5347 goto again;
5348 up_read(&info->groups_sem);
5349}
5350
5351int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5352 struct btrfs_root *root,
5353 u64 num_bytes, u64 min_alloc_size,
5354 u64 empty_size, u64 hint_byte,
5355 u64 search_end, struct btrfs_key *ins,
5356 u64 data)
5357{
5358 int ret;
5359 u64 search_start = 0;
5360
5361 data = btrfs_get_alloc_profile(root, data);
5362again:
5363 /*
5364 * the only place that sets empty_size is btrfs_realloc_node, which
5365 * is not called recursively on allocations
5366 */
5367 if (empty_size || root->ref_cows)
5368 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5369 num_bytes + 2 * 1024 * 1024, data,
5370 CHUNK_ALLOC_NO_FORCE);
5371
5372 WARN_ON(num_bytes < root->sectorsize);
5373 ret = find_free_extent(trans, root, num_bytes, empty_size,
5374 search_start, search_end, hint_byte,
5375 ins, data);
5376
5377 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5378 num_bytes = num_bytes >> 1;
5379 num_bytes = num_bytes & ~(root->sectorsize - 1);
5380 num_bytes = max(num_bytes, min_alloc_size);
5381 do_chunk_alloc(trans, root->fs_info->extent_root,
5382 num_bytes, data, CHUNK_ALLOC_FORCE);
5383 goto again;
5384 }
5385 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5386 struct btrfs_space_info *sinfo;
5387
5388 sinfo = __find_space_info(root->fs_info, data);
5389 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5390 "wanted %llu\n", (unsigned long long)data,
5391 (unsigned long long)num_bytes);
5392 dump_space_info(sinfo, num_bytes, 1);
5393 }
5394
5395 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5396
5397 return ret;
5398}
5399
5400int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5401{
5402 struct btrfs_block_group_cache *cache;
5403 int ret = 0;
5404
5405 cache = btrfs_lookup_block_group(root->fs_info, start);
5406 if (!cache) {
5407 printk(KERN_ERR "Unable to find block group for %llu\n",
5408 (unsigned long long)start);
5409 return -ENOSPC;
5410 }
5411
5412 if (btrfs_test_opt(root, DISCARD))
5413 ret = btrfs_discard_extent(root, start, len, NULL);
5414
5415 btrfs_add_free_space(cache, start, len);
5416 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5417 btrfs_put_block_group(cache);
5418
5419 trace_btrfs_reserved_extent_free(root, start, len);
5420
5421 return ret;
5422}
5423
5424static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5425 struct btrfs_root *root,
5426 u64 parent, u64 root_objectid,
5427 u64 flags, u64 owner, u64 offset,
5428 struct btrfs_key *ins, int ref_mod)
5429{
5430 int ret;
5431 struct btrfs_fs_info *fs_info = root->fs_info;
5432 struct btrfs_extent_item *extent_item;
5433 struct btrfs_extent_inline_ref *iref;
5434 struct btrfs_path *path;
5435 struct extent_buffer *leaf;
5436 int type;
5437 u32 size;
5438
5439 if (parent > 0)
5440 type = BTRFS_SHARED_DATA_REF_KEY;
5441 else
5442 type = BTRFS_EXTENT_DATA_REF_KEY;
5443
5444 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5445
5446 path = btrfs_alloc_path();
5447 if (!path)
5448 return -ENOMEM;
5449
5450 path->leave_spinning = 1;
5451 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5452 ins, size);
5453 BUG_ON(ret);
5454
5455 leaf = path->nodes[0];
5456 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5457 struct btrfs_extent_item);
5458 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5459 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5460 btrfs_set_extent_flags(leaf, extent_item,
5461 flags | BTRFS_EXTENT_FLAG_DATA);
5462
5463 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5464 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5465 if (parent > 0) {
5466 struct btrfs_shared_data_ref *ref;
5467 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5468 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5469 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5470 } else {
5471 struct btrfs_extent_data_ref *ref;
5472 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5473 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5474 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5475 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5476 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5477 }
5478
5479 btrfs_mark_buffer_dirty(path->nodes[0]);
5480 btrfs_free_path(path);
5481
5482 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5483 if (ret) {
5484 printk(KERN_ERR "btrfs update block group failed for %llu "
5485 "%llu\n", (unsigned long long)ins->objectid,
5486 (unsigned long long)ins->offset);
5487 BUG();
5488 }
5489 return ret;
5490}
5491
5492static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5493 struct btrfs_root *root,
5494 u64 parent, u64 root_objectid,
5495 u64 flags, struct btrfs_disk_key *key,
5496 int level, struct btrfs_key *ins)
5497{
5498 int ret;
5499 struct btrfs_fs_info *fs_info = root->fs_info;
5500 struct btrfs_extent_item *extent_item;
5501 struct btrfs_tree_block_info *block_info;
5502 struct btrfs_extent_inline_ref *iref;
5503 struct btrfs_path *path;
5504 struct extent_buffer *leaf;
5505 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5506
5507 path = btrfs_alloc_path();
5508 if (!path)
5509 return -ENOMEM;
5510
5511 path->leave_spinning = 1;
5512 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5513 ins, size);
5514 BUG_ON(ret);
5515
5516 leaf = path->nodes[0];
5517 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5518 struct btrfs_extent_item);
5519 btrfs_set_extent_refs(leaf, extent_item, 1);
5520 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5521 btrfs_set_extent_flags(leaf, extent_item,
5522 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5523 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5524
5525 btrfs_set_tree_block_key(leaf, block_info, key);
5526 btrfs_set_tree_block_level(leaf, block_info, level);
5527
5528 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5529 if (parent > 0) {
5530 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5531 btrfs_set_extent_inline_ref_type(leaf, iref,
5532 BTRFS_SHARED_BLOCK_REF_KEY);
5533 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5534 } else {
5535 btrfs_set_extent_inline_ref_type(leaf, iref,
5536 BTRFS_TREE_BLOCK_REF_KEY);
5537 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5538 }
5539
5540 btrfs_mark_buffer_dirty(leaf);
5541 btrfs_free_path(path);
5542
5543 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5544 if (ret) {
5545 printk(KERN_ERR "btrfs update block group failed for %llu "
5546 "%llu\n", (unsigned long long)ins->objectid,
5547 (unsigned long long)ins->offset);
5548 BUG();
5549 }
5550 return ret;
5551}
5552
5553int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5554 struct btrfs_root *root,
5555 u64 root_objectid, u64 owner,
5556 u64 offset, struct btrfs_key *ins)
5557{
5558 int ret;
5559
5560 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5561
5562 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5563 0, root_objectid, owner, offset,
5564 BTRFS_ADD_DELAYED_EXTENT, NULL);
5565 return ret;
5566}
5567
5568/*
5569 * this is used by the tree logging recovery code. It records that
5570 * an extent has been allocated and makes sure to clear the free
5571 * space cache bits as well
5572 */
5573int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5574 struct btrfs_root *root,
5575 u64 root_objectid, u64 owner, u64 offset,
5576 struct btrfs_key *ins)
5577{
5578 int ret;
5579 struct btrfs_block_group_cache *block_group;
5580 struct btrfs_caching_control *caching_ctl;
5581 u64 start = ins->objectid;
5582 u64 num_bytes = ins->offset;
5583
5584 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5585 cache_block_group(block_group, trans, NULL, 0);
5586 caching_ctl = get_caching_control(block_group);
5587
5588 if (!caching_ctl) {
5589 BUG_ON(!block_group_cache_done(block_group));
5590 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5591 BUG_ON(ret);
5592 } else {
5593 mutex_lock(&caching_ctl->mutex);
5594
5595 if (start >= caching_ctl->progress) {
5596 ret = add_excluded_extent(root, start, num_bytes);
5597 BUG_ON(ret);
5598 } else if (start + num_bytes <= caching_ctl->progress) {
5599 ret = btrfs_remove_free_space(block_group,
5600 start, num_bytes);
5601 BUG_ON(ret);
5602 } else {
5603 num_bytes = caching_ctl->progress - start;
5604 ret = btrfs_remove_free_space(block_group,
5605 start, num_bytes);
5606 BUG_ON(ret);
5607
5608 start = caching_ctl->progress;
5609 num_bytes = ins->objectid + ins->offset -
5610 caching_ctl->progress;
5611 ret = add_excluded_extent(root, start, num_bytes);
5612 BUG_ON(ret);
5613 }
5614
5615 mutex_unlock(&caching_ctl->mutex);
5616 put_caching_control(caching_ctl);
5617 }
5618
5619 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
5620 RESERVE_ALLOC_NO_ACCOUNT);
5621 BUG_ON(ret);
5622 btrfs_put_block_group(block_group);
5623 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5624 0, owner, offset, ins, 1);
5625 return ret;
5626}
5627
5628struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5629 struct btrfs_root *root,
5630 u64 bytenr, u32 blocksize,
5631 int level)
5632{
5633 struct extent_buffer *buf;
5634
5635 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5636 if (!buf)
5637 return ERR_PTR(-ENOMEM);
5638 btrfs_set_header_generation(buf, trans->transid);
5639 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
5640 btrfs_tree_lock(buf);
5641 clean_tree_block(trans, root, buf);
5642
5643 btrfs_set_lock_blocking(buf);
5644 btrfs_set_buffer_uptodate(buf);
5645
5646 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5647 /*
5648 * we allow two log transactions at a time, use different
5649 * EXENT bit to differentiate dirty pages.
5650 */
5651 if (root->log_transid % 2 == 0)
5652 set_extent_dirty(&root->dirty_log_pages, buf->start,
5653 buf->start + buf->len - 1, GFP_NOFS);
5654 else
5655 set_extent_new(&root->dirty_log_pages, buf->start,
5656 buf->start + buf->len - 1, GFP_NOFS);
5657 } else {
5658 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5659 buf->start + buf->len - 1, GFP_NOFS);
5660 }
5661 trans->blocks_used++;
5662 /* this returns a buffer locked for blocking */
5663 return buf;
5664}
5665
5666static struct btrfs_block_rsv *
5667use_block_rsv(struct btrfs_trans_handle *trans,
5668 struct btrfs_root *root, u32 blocksize)
5669{
5670 struct btrfs_block_rsv *block_rsv;
5671 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5672 int ret;
5673
5674 block_rsv = get_block_rsv(trans, root);
5675
5676 if (block_rsv->size == 0) {
5677 ret = reserve_metadata_bytes(trans, root, block_rsv,
5678 blocksize, 0);
5679 /*
5680 * If we couldn't reserve metadata bytes try and use some from
5681 * the global reserve.
5682 */
5683 if (ret && block_rsv != global_rsv) {
5684 ret = block_rsv_use_bytes(global_rsv, blocksize);
5685 if (!ret)
5686 return global_rsv;
5687 return ERR_PTR(ret);
5688 } else if (ret) {
5689 return ERR_PTR(ret);
5690 }
5691 return block_rsv;
5692 }
5693
5694 ret = block_rsv_use_bytes(block_rsv, blocksize);
5695 if (!ret)
5696 return block_rsv;
5697 if (ret) {
5698 WARN_ON(1);
5699 ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize,
5700 0);
5701 if (!ret) {
5702 spin_lock(&block_rsv->lock);
5703 block_rsv->size += blocksize;
5704 spin_unlock(&block_rsv->lock);
5705 return block_rsv;
5706 } else if (ret && block_rsv != global_rsv) {
5707 ret = block_rsv_use_bytes(global_rsv, blocksize);
5708 if (!ret)
5709 return global_rsv;
5710 }
5711 }
5712
5713 return ERR_PTR(-ENOSPC);
5714}
5715
5716static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5717{
5718 block_rsv_add_bytes(block_rsv, blocksize, 0);
5719 block_rsv_release_bytes(block_rsv, NULL, 0);
5720}
5721
5722/*
5723 * finds a free extent and does all the dirty work required for allocation
5724 * returns the key for the extent through ins, and a tree buffer for
5725 * the first block of the extent through buf.
5726 *
5727 * returns the tree buffer or NULL.
5728 */
5729struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5730 struct btrfs_root *root, u32 blocksize,
5731 u64 parent, u64 root_objectid,
5732 struct btrfs_disk_key *key, int level,
5733 u64 hint, u64 empty_size)
5734{
5735 struct btrfs_key ins;
5736 struct btrfs_block_rsv *block_rsv;
5737 struct extent_buffer *buf;
5738 u64 flags = 0;
5739 int ret;
5740
5741
5742 block_rsv = use_block_rsv(trans, root, blocksize);
5743 if (IS_ERR(block_rsv))
5744 return ERR_CAST(block_rsv);
5745
5746 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5747 empty_size, hint, (u64)-1, &ins, 0);
5748 if (ret) {
5749 unuse_block_rsv(block_rsv, blocksize);
5750 return ERR_PTR(ret);
5751 }
5752
5753 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5754 blocksize, level);
5755 BUG_ON(IS_ERR(buf));
5756
5757 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5758 if (parent == 0)
5759 parent = ins.objectid;
5760 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5761 } else
5762 BUG_ON(parent > 0);
5763
5764 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5765 struct btrfs_delayed_extent_op *extent_op;
5766 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5767 BUG_ON(!extent_op);
5768 if (key)
5769 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5770 else
5771 memset(&extent_op->key, 0, sizeof(extent_op->key));
5772 extent_op->flags_to_set = flags;
5773 extent_op->update_key = 1;
5774 extent_op->update_flags = 1;
5775 extent_op->is_data = 0;
5776
5777 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5778 ins.offset, parent, root_objectid,
5779 level, BTRFS_ADD_DELAYED_EXTENT,
5780 extent_op);
5781 BUG_ON(ret);
5782 }
5783 return buf;
5784}
5785
5786struct walk_control {
5787 u64 refs[BTRFS_MAX_LEVEL];
5788 u64 flags[BTRFS_MAX_LEVEL];
5789 struct btrfs_key update_progress;
5790 int stage;
5791 int level;
5792 int shared_level;
5793 int update_ref;
5794 int keep_locks;
5795 int reada_slot;
5796 int reada_count;
5797};
5798
5799#define DROP_REFERENCE 1
5800#define UPDATE_BACKREF 2
5801
5802static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5803 struct btrfs_root *root,
5804 struct walk_control *wc,
5805 struct btrfs_path *path)
5806{
5807 u64 bytenr;
5808 u64 generation;
5809 u64 refs;
5810 u64 flags;
5811 u32 nritems;
5812 u32 blocksize;
5813 struct btrfs_key key;
5814 struct extent_buffer *eb;
5815 int ret;
5816 int slot;
5817 int nread = 0;
5818
5819 if (path->slots[wc->level] < wc->reada_slot) {
5820 wc->reada_count = wc->reada_count * 2 / 3;
5821 wc->reada_count = max(wc->reada_count, 2);
5822 } else {
5823 wc->reada_count = wc->reada_count * 3 / 2;
5824 wc->reada_count = min_t(int, wc->reada_count,
5825 BTRFS_NODEPTRS_PER_BLOCK(root));
5826 }
5827
5828 eb = path->nodes[wc->level];
5829 nritems = btrfs_header_nritems(eb);
5830 blocksize = btrfs_level_size(root, wc->level - 1);
5831
5832 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5833 if (nread >= wc->reada_count)
5834 break;
5835
5836 cond_resched();
5837 bytenr = btrfs_node_blockptr(eb, slot);
5838 generation = btrfs_node_ptr_generation(eb, slot);
5839
5840 if (slot == path->slots[wc->level])
5841 goto reada;
5842
5843 if (wc->stage == UPDATE_BACKREF &&
5844 generation <= root->root_key.offset)
5845 continue;
5846
5847 /* We don't lock the tree block, it's OK to be racy here */
5848 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5849 &refs, &flags);
5850 BUG_ON(ret);
5851 BUG_ON(refs == 0);
5852
5853 if (wc->stage == DROP_REFERENCE) {
5854 if (refs == 1)
5855 goto reada;
5856
5857 if (wc->level == 1 &&
5858 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5859 continue;
5860 if (!wc->update_ref ||
5861 generation <= root->root_key.offset)
5862 continue;
5863 btrfs_node_key_to_cpu(eb, &key, slot);
5864 ret = btrfs_comp_cpu_keys(&key,
5865 &wc->update_progress);
5866 if (ret < 0)
5867 continue;
5868 } else {
5869 if (wc->level == 1 &&
5870 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5871 continue;
5872 }
5873reada:
5874 ret = readahead_tree_block(root, bytenr, blocksize,
5875 generation);
5876 if (ret)
5877 break;
5878 nread++;
5879 }
5880 wc->reada_slot = slot;
5881}
5882
5883/*
5884 * hepler to process tree block while walking down the tree.
5885 *
5886 * when wc->stage == UPDATE_BACKREF, this function updates
5887 * back refs for pointers in the block.
5888 *
5889 * NOTE: return value 1 means we should stop walking down.
5890 */
5891static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5892 struct btrfs_root *root,
5893 struct btrfs_path *path,
5894 struct walk_control *wc, int lookup_info)
5895{
5896 int level = wc->level;
5897 struct extent_buffer *eb = path->nodes[level];
5898 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5899 int ret;
5900
5901 if (wc->stage == UPDATE_BACKREF &&
5902 btrfs_header_owner(eb) != root->root_key.objectid)
5903 return 1;
5904
5905 /*
5906 * when reference count of tree block is 1, it won't increase
5907 * again. once full backref flag is set, we never clear it.
5908 */
5909 if (lookup_info &&
5910 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5911 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5912 BUG_ON(!path->locks[level]);
5913 ret = btrfs_lookup_extent_info(trans, root,
5914 eb->start, eb->len,
5915 &wc->refs[level],
5916 &wc->flags[level]);
5917 BUG_ON(ret);
5918 BUG_ON(wc->refs[level] == 0);
5919 }
5920
5921 if (wc->stage == DROP_REFERENCE) {
5922 if (wc->refs[level] > 1)
5923 return 1;
5924
5925 if (path->locks[level] && !wc->keep_locks) {
5926 btrfs_tree_unlock_rw(eb, path->locks[level]);
5927 path->locks[level] = 0;
5928 }
5929 return 0;
5930 }
5931
5932 /* wc->stage == UPDATE_BACKREF */
5933 if (!(wc->flags[level] & flag)) {
5934 BUG_ON(!path->locks[level]);
5935 ret = btrfs_inc_ref(trans, root, eb, 1);
5936 BUG_ON(ret);
5937 ret = btrfs_dec_ref(trans, root, eb, 0);
5938 BUG_ON(ret);
5939 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5940 eb->len, flag, 0);
5941 BUG_ON(ret);
5942 wc->flags[level] |= flag;
5943 }
5944
5945 /*
5946 * the block is shared by multiple trees, so it's not good to
5947 * keep the tree lock
5948 */
5949 if (path->locks[level] && level > 0) {
5950 btrfs_tree_unlock_rw(eb, path->locks[level]);
5951 path->locks[level] = 0;
5952 }
5953 return 0;
5954}
5955
5956/*
5957 * hepler to process tree block pointer.
5958 *
5959 * when wc->stage == DROP_REFERENCE, this function checks
5960 * reference count of the block pointed to. if the block
5961 * is shared and we need update back refs for the subtree
5962 * rooted at the block, this function changes wc->stage to
5963 * UPDATE_BACKREF. if the block is shared and there is no
5964 * need to update back, this function drops the reference
5965 * to the block.
5966 *
5967 * NOTE: return value 1 means we should stop walking down.
5968 */
5969static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5970 struct btrfs_root *root,
5971 struct btrfs_path *path,
5972 struct walk_control *wc, int *lookup_info)
5973{
5974 u64 bytenr;
5975 u64 generation;
5976 u64 parent;
5977 u32 blocksize;
5978 struct btrfs_key key;
5979 struct extent_buffer *next;
5980 int level = wc->level;
5981 int reada = 0;
5982 int ret = 0;
5983
5984 generation = btrfs_node_ptr_generation(path->nodes[level],
5985 path->slots[level]);
5986 /*
5987 * if the lower level block was created before the snapshot
5988 * was created, we know there is no need to update back refs
5989 * for the subtree
5990 */
5991 if (wc->stage == UPDATE_BACKREF &&
5992 generation <= root->root_key.offset) {
5993 *lookup_info = 1;
5994 return 1;
5995 }
5996
5997 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5998 blocksize = btrfs_level_size(root, level - 1);
5999
6000 next = btrfs_find_tree_block(root, bytenr, blocksize);
6001 if (!next) {
6002 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6003 if (!next)
6004 return -ENOMEM;
6005 reada = 1;
6006 }
6007 btrfs_tree_lock(next);
6008 btrfs_set_lock_blocking(next);
6009
6010 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6011 &wc->refs[level - 1],
6012 &wc->flags[level - 1]);
6013 BUG_ON(ret);
6014 BUG_ON(wc->refs[level - 1] == 0);
6015 *lookup_info = 0;
6016
6017 if (wc->stage == DROP_REFERENCE) {
6018 if (wc->refs[level - 1] > 1) {
6019 if (level == 1 &&
6020 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6021 goto skip;
6022
6023 if (!wc->update_ref ||
6024 generation <= root->root_key.offset)
6025 goto skip;
6026
6027 btrfs_node_key_to_cpu(path->nodes[level], &key,
6028 path->slots[level]);
6029 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6030 if (ret < 0)
6031 goto skip;
6032
6033 wc->stage = UPDATE_BACKREF;
6034 wc->shared_level = level - 1;
6035 }
6036 } else {
6037 if (level == 1 &&
6038 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6039 goto skip;
6040 }
6041
6042 if (!btrfs_buffer_uptodate(next, generation)) {
6043 btrfs_tree_unlock(next);
6044 free_extent_buffer(next);
6045 next = NULL;
6046 *lookup_info = 1;
6047 }
6048
6049 if (!next) {
6050 if (reada && level == 1)
6051 reada_walk_down(trans, root, wc, path);
6052 next = read_tree_block(root, bytenr, blocksize, generation);
6053 if (!next)
6054 return -EIO;
6055 btrfs_tree_lock(next);
6056 btrfs_set_lock_blocking(next);
6057 }
6058
6059 level--;
6060 BUG_ON(level != btrfs_header_level(next));
6061 path->nodes[level] = next;
6062 path->slots[level] = 0;
6063 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6064 wc->level = level;
6065 if (wc->level == 1)
6066 wc->reada_slot = 0;
6067 return 0;
6068skip:
6069 wc->refs[level - 1] = 0;
6070 wc->flags[level - 1] = 0;
6071 if (wc->stage == DROP_REFERENCE) {
6072 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6073 parent = path->nodes[level]->start;
6074 } else {
6075 BUG_ON(root->root_key.objectid !=
6076 btrfs_header_owner(path->nodes[level]));
6077 parent = 0;
6078 }
6079
6080 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6081 root->root_key.objectid, level - 1, 0);
6082 BUG_ON(ret);
6083 }
6084 btrfs_tree_unlock(next);
6085 free_extent_buffer(next);
6086 *lookup_info = 1;
6087 return 1;
6088}
6089
6090/*
6091 * hepler to process tree block while walking up the tree.
6092 *
6093 * when wc->stage == DROP_REFERENCE, this function drops
6094 * reference count on the block.
6095 *
6096 * when wc->stage == UPDATE_BACKREF, this function changes
6097 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6098 * to UPDATE_BACKREF previously while processing the block.
6099 *
6100 * NOTE: return value 1 means we should stop walking up.
6101 */
6102static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6103 struct btrfs_root *root,
6104 struct btrfs_path *path,
6105 struct walk_control *wc)
6106{
6107 int ret;
6108 int level = wc->level;
6109 struct extent_buffer *eb = path->nodes[level];
6110 u64 parent = 0;
6111
6112 if (wc->stage == UPDATE_BACKREF) {
6113 BUG_ON(wc->shared_level < level);
6114 if (level < wc->shared_level)
6115 goto out;
6116
6117 ret = find_next_key(path, level + 1, &wc->update_progress);
6118 if (ret > 0)
6119 wc->update_ref = 0;
6120
6121 wc->stage = DROP_REFERENCE;
6122 wc->shared_level = -1;
6123 path->slots[level] = 0;
6124
6125 /*
6126 * check reference count again if the block isn't locked.
6127 * we should start walking down the tree again if reference
6128 * count is one.
6129 */
6130 if (!path->locks[level]) {
6131 BUG_ON(level == 0);
6132 btrfs_tree_lock(eb);
6133 btrfs_set_lock_blocking(eb);
6134 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6135
6136 ret = btrfs_lookup_extent_info(trans, root,
6137 eb->start, eb->len,
6138 &wc->refs[level],
6139 &wc->flags[level]);
6140 BUG_ON(ret);
6141 BUG_ON(wc->refs[level] == 0);
6142 if (wc->refs[level] == 1) {
6143 btrfs_tree_unlock_rw(eb, path->locks[level]);
6144 return 1;
6145 }
6146 }
6147 }
6148
6149 /* wc->stage == DROP_REFERENCE */
6150 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6151
6152 if (wc->refs[level] == 1) {
6153 if (level == 0) {
6154 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6155 ret = btrfs_dec_ref(trans, root, eb, 1);
6156 else
6157 ret = btrfs_dec_ref(trans, root, eb, 0);
6158 BUG_ON(ret);
6159 }
6160 /* make block locked assertion in clean_tree_block happy */
6161 if (!path->locks[level] &&
6162 btrfs_header_generation(eb) == trans->transid) {
6163 btrfs_tree_lock(eb);
6164 btrfs_set_lock_blocking(eb);
6165 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6166 }
6167 clean_tree_block(trans, root, eb);
6168 }
6169
6170 if (eb == root->node) {
6171 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6172 parent = eb->start;
6173 else
6174 BUG_ON(root->root_key.objectid !=
6175 btrfs_header_owner(eb));
6176 } else {
6177 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6178 parent = path->nodes[level + 1]->start;
6179 else
6180 BUG_ON(root->root_key.objectid !=
6181 btrfs_header_owner(path->nodes[level + 1]));
6182 }
6183
6184 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6185out:
6186 wc->refs[level] = 0;
6187 wc->flags[level] = 0;
6188 return 0;
6189}
6190
6191static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6192 struct btrfs_root *root,
6193 struct btrfs_path *path,
6194 struct walk_control *wc)
6195{
6196 int level = wc->level;
6197 int lookup_info = 1;
6198 int ret;
6199
6200 while (level >= 0) {
6201 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6202 if (ret > 0)
6203 break;
6204
6205 if (level == 0)
6206 break;
6207
6208 if (path->slots[level] >=
6209 btrfs_header_nritems(path->nodes[level]))
6210 break;
6211
6212 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6213 if (ret > 0) {
6214 path->slots[level]++;
6215 continue;
6216 } else if (ret < 0)
6217 return ret;
6218 level = wc->level;
6219 }
6220 return 0;
6221}
6222
6223static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6224 struct btrfs_root *root,
6225 struct btrfs_path *path,
6226 struct walk_control *wc, int max_level)
6227{
6228 int level = wc->level;
6229 int ret;
6230
6231 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6232 while (level < max_level && path->nodes[level]) {
6233 wc->level = level;
6234 if (path->slots[level] + 1 <
6235 btrfs_header_nritems(path->nodes[level])) {
6236 path->slots[level]++;
6237 return 0;
6238 } else {
6239 ret = walk_up_proc(trans, root, path, wc);
6240 if (ret > 0)
6241 return 0;
6242
6243 if (path->locks[level]) {
6244 btrfs_tree_unlock_rw(path->nodes[level],
6245 path->locks[level]);
6246 path->locks[level] = 0;
6247 }
6248 free_extent_buffer(path->nodes[level]);
6249 path->nodes[level] = NULL;
6250 level++;
6251 }
6252 }
6253 return 1;
6254}
6255
6256/*
6257 * drop a subvolume tree.
6258 *
6259 * this function traverses the tree freeing any blocks that only
6260 * referenced by the tree.
6261 *
6262 * when a shared tree block is found. this function decreases its
6263 * reference count by one. if update_ref is true, this function
6264 * also make sure backrefs for the shared block and all lower level
6265 * blocks are properly updated.
6266 */
6267void btrfs_drop_snapshot(struct btrfs_root *root,
6268 struct btrfs_block_rsv *block_rsv, int update_ref)
6269{
6270 struct btrfs_path *path;
6271 struct btrfs_trans_handle *trans;
6272 struct btrfs_root *tree_root = root->fs_info->tree_root;
6273 struct btrfs_root_item *root_item = &root->root_item;
6274 struct walk_control *wc;
6275 struct btrfs_key key;
6276 int err = 0;
6277 int ret;
6278 int level;
6279
6280 path = btrfs_alloc_path();
6281 if (!path) {
6282 err = -ENOMEM;
6283 goto out;
6284 }
6285
6286 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6287 if (!wc) {
6288 btrfs_free_path(path);
6289 err = -ENOMEM;
6290 goto out;
6291 }
6292
6293 trans = btrfs_start_transaction(tree_root, 0);
6294 BUG_ON(IS_ERR(trans));
6295
6296 if (block_rsv)
6297 trans->block_rsv = block_rsv;
6298
6299 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6300 level = btrfs_header_level(root->node);
6301 path->nodes[level] = btrfs_lock_root_node(root);
6302 btrfs_set_lock_blocking(path->nodes[level]);
6303 path->slots[level] = 0;
6304 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6305 memset(&wc->update_progress, 0,
6306 sizeof(wc->update_progress));
6307 } else {
6308 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6309 memcpy(&wc->update_progress, &key,
6310 sizeof(wc->update_progress));
6311
6312 level = root_item->drop_level;
6313 BUG_ON(level == 0);
6314 path->lowest_level = level;
6315 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6316 path->lowest_level = 0;
6317 if (ret < 0) {
6318 err = ret;
6319 goto out_free;
6320 }
6321 WARN_ON(ret > 0);
6322
6323 /*
6324 * unlock our path, this is safe because only this
6325 * function is allowed to delete this snapshot
6326 */
6327 btrfs_unlock_up_safe(path, 0);
6328
6329 level = btrfs_header_level(root->node);
6330 while (1) {
6331 btrfs_tree_lock(path->nodes[level]);
6332 btrfs_set_lock_blocking(path->nodes[level]);
6333
6334 ret = btrfs_lookup_extent_info(trans, root,
6335 path->nodes[level]->start,
6336 path->nodes[level]->len,
6337 &wc->refs[level],
6338 &wc->flags[level]);
6339 BUG_ON(ret);
6340 BUG_ON(wc->refs[level] == 0);
6341
6342 if (level == root_item->drop_level)
6343 break;
6344
6345 btrfs_tree_unlock(path->nodes[level]);
6346 WARN_ON(wc->refs[level] != 1);
6347 level--;
6348 }
6349 }
6350
6351 wc->level = level;
6352 wc->shared_level = -1;
6353 wc->stage = DROP_REFERENCE;
6354 wc->update_ref = update_ref;
6355 wc->keep_locks = 0;
6356 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6357
6358 while (1) {
6359 ret = walk_down_tree(trans, root, path, wc);
6360 if (ret < 0) {
6361 err = ret;
6362 break;
6363 }
6364
6365 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6366 if (ret < 0) {
6367 err = ret;
6368 break;
6369 }
6370
6371 if (ret > 0) {
6372 BUG_ON(wc->stage != DROP_REFERENCE);
6373 break;
6374 }
6375
6376 if (wc->stage == DROP_REFERENCE) {
6377 level = wc->level;
6378 btrfs_node_key(path->nodes[level],
6379 &root_item->drop_progress,
6380 path->slots[level]);
6381 root_item->drop_level = level;
6382 }
6383
6384 BUG_ON(wc->level == 0);
6385 if (btrfs_should_end_transaction(trans, tree_root)) {
6386 ret = btrfs_update_root(trans, tree_root,
6387 &root->root_key,
6388 root_item);
6389 BUG_ON(ret);
6390
6391 btrfs_end_transaction_throttle(trans, tree_root);
6392 trans = btrfs_start_transaction(tree_root, 0);
6393 BUG_ON(IS_ERR(trans));
6394 if (block_rsv)
6395 trans->block_rsv = block_rsv;
6396 }
6397 }
6398 btrfs_release_path(path);
6399 BUG_ON(err);
6400
6401 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6402 BUG_ON(ret);
6403
6404 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6405 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6406 NULL, NULL);
6407 BUG_ON(ret < 0);
6408 if (ret > 0) {
6409 /* if we fail to delete the orphan item this time
6410 * around, it'll get picked up the next time.
6411 *
6412 * The most common failure here is just -ENOENT.
6413 */
6414 btrfs_del_orphan_item(trans, tree_root,
6415 root->root_key.objectid);
6416 }
6417 }
6418
6419 if (root->in_radix) {
6420 btrfs_free_fs_root(tree_root->fs_info, root);
6421 } else {
6422 free_extent_buffer(root->node);
6423 free_extent_buffer(root->commit_root);
6424 kfree(root);
6425 }
6426out_free:
6427 btrfs_end_transaction_throttle(trans, tree_root);
6428 kfree(wc);
6429 btrfs_free_path(path);
6430out:
6431 if (err)
6432 btrfs_std_error(root->fs_info, err);
6433 return;
6434}
6435
6436/*
6437 * drop subtree rooted at tree block 'node'.
6438 *
6439 * NOTE: this function will unlock and release tree block 'node'
6440 */
6441int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6442 struct btrfs_root *root,
6443 struct extent_buffer *node,
6444 struct extent_buffer *parent)
6445{
6446 struct btrfs_path *path;
6447 struct walk_control *wc;
6448 int level;
6449 int parent_level;
6450 int ret = 0;
6451 int wret;
6452
6453 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6454
6455 path = btrfs_alloc_path();
6456 if (!path)
6457 return -ENOMEM;
6458
6459 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6460 if (!wc) {
6461 btrfs_free_path(path);
6462 return -ENOMEM;
6463 }
6464
6465 btrfs_assert_tree_locked(parent);
6466 parent_level = btrfs_header_level(parent);
6467 extent_buffer_get(parent);
6468 path->nodes[parent_level] = parent;
6469 path->slots[parent_level] = btrfs_header_nritems(parent);
6470
6471 btrfs_assert_tree_locked(node);
6472 level = btrfs_header_level(node);
6473 path->nodes[level] = node;
6474 path->slots[level] = 0;
6475 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6476
6477 wc->refs[parent_level] = 1;
6478 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6479 wc->level = level;
6480 wc->shared_level = -1;
6481 wc->stage = DROP_REFERENCE;
6482 wc->update_ref = 0;
6483 wc->keep_locks = 1;
6484 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6485
6486 while (1) {
6487 wret = walk_down_tree(trans, root, path, wc);
6488 if (wret < 0) {
6489 ret = wret;
6490 break;
6491 }
6492
6493 wret = walk_up_tree(trans, root, path, wc, parent_level);
6494 if (wret < 0)
6495 ret = wret;
6496 if (wret != 0)
6497 break;
6498 }
6499
6500 kfree(wc);
6501 btrfs_free_path(path);
6502 return ret;
6503}
6504
6505static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6506{
6507 u64 num_devices;
6508 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6509 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6510
6511 /*
6512 * we add in the count of missing devices because we want
6513 * to make sure that any RAID levels on a degraded FS
6514 * continue to be honored.
6515 */
6516 num_devices = root->fs_info->fs_devices->rw_devices +
6517 root->fs_info->fs_devices->missing_devices;
6518
6519 if (num_devices == 1) {
6520 stripped |= BTRFS_BLOCK_GROUP_DUP;
6521 stripped = flags & ~stripped;
6522
6523 /* turn raid0 into single device chunks */
6524 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6525 return stripped;
6526
6527 /* turn mirroring into duplication */
6528 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6529 BTRFS_BLOCK_GROUP_RAID10))
6530 return stripped | BTRFS_BLOCK_GROUP_DUP;
6531 return flags;
6532 } else {
6533 /* they already had raid on here, just return */
6534 if (flags & stripped)
6535 return flags;
6536
6537 stripped |= BTRFS_BLOCK_GROUP_DUP;
6538 stripped = flags & ~stripped;
6539
6540 /* switch duplicated blocks with raid1 */
6541 if (flags & BTRFS_BLOCK_GROUP_DUP)
6542 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6543
6544 /* turn single device chunks into raid0 */
6545 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6546 }
6547 return flags;
6548}
6549
6550static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
6551{
6552 struct btrfs_space_info *sinfo = cache->space_info;
6553 u64 num_bytes;
6554 u64 min_allocable_bytes;
6555 int ret = -ENOSPC;
6556
6557
6558 /*
6559 * We need some metadata space and system metadata space for
6560 * allocating chunks in some corner cases until we force to set
6561 * it to be readonly.
6562 */
6563 if ((sinfo->flags &
6564 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
6565 !force)
6566 min_allocable_bytes = 1 * 1024 * 1024;
6567 else
6568 min_allocable_bytes = 0;
6569
6570 spin_lock(&sinfo->lock);
6571 spin_lock(&cache->lock);
6572
6573 if (cache->ro) {
6574 ret = 0;
6575 goto out;
6576 }
6577
6578 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6579 cache->bytes_super - btrfs_block_group_used(&cache->item);
6580
6581 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6582 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
6583 min_allocable_bytes <= sinfo->total_bytes) {
6584 sinfo->bytes_readonly += num_bytes;
6585 cache->ro = 1;
6586 ret = 0;
6587 }
6588out:
6589 spin_unlock(&cache->lock);
6590 spin_unlock(&sinfo->lock);
6591 return ret;
6592}
6593
6594int btrfs_set_block_group_ro(struct btrfs_root *root,
6595 struct btrfs_block_group_cache *cache)
6596
6597{
6598 struct btrfs_trans_handle *trans;
6599 u64 alloc_flags;
6600 int ret;
6601
6602 BUG_ON(cache->ro);
6603
6604 trans = btrfs_join_transaction(root);
6605 BUG_ON(IS_ERR(trans));
6606
6607 alloc_flags = update_block_group_flags(root, cache->flags);
6608 if (alloc_flags != cache->flags)
6609 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6610 CHUNK_ALLOC_FORCE);
6611
6612 ret = set_block_group_ro(cache, 0);
6613 if (!ret)
6614 goto out;
6615 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6616 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6617 CHUNK_ALLOC_FORCE);
6618 if (ret < 0)
6619 goto out;
6620 ret = set_block_group_ro(cache, 0);
6621out:
6622 btrfs_end_transaction(trans, root);
6623 return ret;
6624}
6625
6626int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6627 struct btrfs_root *root, u64 type)
6628{
6629 u64 alloc_flags = get_alloc_profile(root, type);
6630 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6631 CHUNK_ALLOC_FORCE);
6632}
6633
6634/*
6635 * helper to account the unused space of all the readonly block group in the
6636 * list. takes mirrors into account.
6637 */
6638static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6639{
6640 struct btrfs_block_group_cache *block_group;
6641 u64 free_bytes = 0;
6642 int factor;
6643
6644 list_for_each_entry(block_group, groups_list, list) {
6645 spin_lock(&block_group->lock);
6646
6647 if (!block_group->ro) {
6648 spin_unlock(&block_group->lock);
6649 continue;
6650 }
6651
6652 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6653 BTRFS_BLOCK_GROUP_RAID10 |
6654 BTRFS_BLOCK_GROUP_DUP))
6655 factor = 2;
6656 else
6657 factor = 1;
6658
6659 free_bytes += (block_group->key.offset -
6660 btrfs_block_group_used(&block_group->item)) *
6661 factor;
6662
6663 spin_unlock(&block_group->lock);
6664 }
6665
6666 return free_bytes;
6667}
6668
6669/*
6670 * helper to account the unused space of all the readonly block group in the
6671 * space_info. takes mirrors into account.
6672 */
6673u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6674{
6675 int i;
6676 u64 free_bytes = 0;
6677
6678 spin_lock(&sinfo->lock);
6679
6680 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6681 if (!list_empty(&sinfo->block_groups[i]))
6682 free_bytes += __btrfs_get_ro_block_group_free_space(
6683 &sinfo->block_groups[i]);
6684
6685 spin_unlock(&sinfo->lock);
6686
6687 return free_bytes;
6688}
6689
6690int btrfs_set_block_group_rw(struct btrfs_root *root,
6691 struct btrfs_block_group_cache *cache)
6692{
6693 struct btrfs_space_info *sinfo = cache->space_info;
6694 u64 num_bytes;
6695
6696 BUG_ON(!cache->ro);
6697
6698 spin_lock(&sinfo->lock);
6699 spin_lock(&cache->lock);
6700 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6701 cache->bytes_super - btrfs_block_group_used(&cache->item);
6702 sinfo->bytes_readonly -= num_bytes;
6703 cache->ro = 0;
6704 spin_unlock(&cache->lock);
6705 spin_unlock(&sinfo->lock);
6706 return 0;
6707}
6708
6709/*
6710 * checks to see if its even possible to relocate this block group.
6711 *
6712 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6713 * ok to go ahead and try.
6714 */
6715int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
6716{
6717 struct btrfs_block_group_cache *block_group;
6718 struct btrfs_space_info *space_info;
6719 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6720 struct btrfs_device *device;
6721 u64 min_free;
6722 u64 dev_min = 1;
6723 u64 dev_nr = 0;
6724 int index;
6725 int full = 0;
6726 int ret = 0;
6727
6728 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
6729
6730 /* odd, couldn't find the block group, leave it alone */
6731 if (!block_group)
6732 return -1;
6733
6734 min_free = btrfs_block_group_used(&block_group->item);
6735
6736 /* no bytes used, we're good */
6737 if (!min_free)
6738 goto out;
6739
6740 space_info = block_group->space_info;
6741 spin_lock(&space_info->lock);
6742
6743 full = space_info->full;
6744
6745 /*
6746 * if this is the last block group we have in this space, we can't
6747 * relocate it unless we're able to allocate a new chunk below.
6748 *
6749 * Otherwise, we need to make sure we have room in the space to handle
6750 * all of the extents from this block group. If we can, we're good
6751 */
6752 if ((space_info->total_bytes != block_group->key.offset) &&
6753 (space_info->bytes_used + space_info->bytes_reserved +
6754 space_info->bytes_pinned + space_info->bytes_readonly +
6755 min_free < space_info->total_bytes)) {
6756 spin_unlock(&space_info->lock);
6757 goto out;
6758 }
6759 spin_unlock(&space_info->lock);
6760
6761 /*
6762 * ok we don't have enough space, but maybe we have free space on our
6763 * devices to allocate new chunks for relocation, so loop through our
6764 * alloc devices and guess if we have enough space. However, if we
6765 * were marked as full, then we know there aren't enough chunks, and we
6766 * can just return.
6767 */
6768 ret = -1;
6769 if (full)
6770 goto out;
6771
6772 /*
6773 * index:
6774 * 0: raid10
6775 * 1: raid1
6776 * 2: dup
6777 * 3: raid0
6778 * 4: single
6779 */
6780 index = get_block_group_index(block_group);
6781 if (index == 0) {
6782 dev_min = 4;
6783 /* Divide by 2 */
6784 min_free >>= 1;
6785 } else if (index == 1) {
6786 dev_min = 2;
6787 } else if (index == 2) {
6788 /* Multiply by 2 */
6789 min_free <<= 1;
6790 } else if (index == 3) {
6791 dev_min = fs_devices->rw_devices;
6792 do_div(min_free, dev_min);
6793 }
6794
6795 mutex_lock(&root->fs_info->chunk_mutex);
6796 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
6797 u64 dev_offset;
6798
6799 /*
6800 * check to make sure we can actually find a chunk with enough
6801 * space to fit our block group in.
6802 */
6803 if (device->total_bytes > device->bytes_used + min_free) {
6804 ret = find_free_dev_extent(NULL, device, min_free,
6805 &dev_offset, NULL);
6806 if (!ret)
6807 dev_nr++;
6808
6809 if (dev_nr >= dev_min)
6810 break;
6811
6812 ret = -1;
6813 }
6814 }
6815 mutex_unlock(&root->fs_info->chunk_mutex);
6816out:
6817 btrfs_put_block_group(block_group);
6818 return ret;
6819}
6820
6821static int find_first_block_group(struct btrfs_root *root,
6822 struct btrfs_path *path, struct btrfs_key *key)
6823{
6824 int ret = 0;
6825 struct btrfs_key found_key;
6826 struct extent_buffer *leaf;
6827 int slot;
6828
6829 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6830 if (ret < 0)
6831 goto out;
6832
6833 while (1) {
6834 slot = path->slots[0];
6835 leaf = path->nodes[0];
6836 if (slot >= btrfs_header_nritems(leaf)) {
6837 ret = btrfs_next_leaf(root, path);
6838 if (ret == 0)
6839 continue;
6840 if (ret < 0)
6841 goto out;
6842 break;
6843 }
6844 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6845
6846 if (found_key.objectid >= key->objectid &&
6847 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6848 ret = 0;
6849 goto out;
6850 }
6851 path->slots[0]++;
6852 }
6853out:
6854 return ret;
6855}
6856
6857void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
6858{
6859 struct btrfs_block_group_cache *block_group;
6860 u64 last = 0;
6861
6862 while (1) {
6863 struct inode *inode;
6864
6865 block_group = btrfs_lookup_first_block_group(info, last);
6866 while (block_group) {
6867 spin_lock(&block_group->lock);
6868 if (block_group->iref)
6869 break;
6870 spin_unlock(&block_group->lock);
6871 block_group = next_block_group(info->tree_root,
6872 block_group);
6873 }
6874 if (!block_group) {
6875 if (last == 0)
6876 break;
6877 last = 0;
6878 continue;
6879 }
6880
6881 inode = block_group->inode;
6882 block_group->iref = 0;
6883 block_group->inode = NULL;
6884 spin_unlock(&block_group->lock);
6885 iput(inode);
6886 last = block_group->key.objectid + block_group->key.offset;
6887 btrfs_put_block_group(block_group);
6888 }
6889}
6890
6891int btrfs_free_block_groups(struct btrfs_fs_info *info)
6892{
6893 struct btrfs_block_group_cache *block_group;
6894 struct btrfs_space_info *space_info;
6895 struct btrfs_caching_control *caching_ctl;
6896 struct rb_node *n;
6897
6898 down_write(&info->extent_commit_sem);
6899 while (!list_empty(&info->caching_block_groups)) {
6900 caching_ctl = list_entry(info->caching_block_groups.next,
6901 struct btrfs_caching_control, list);
6902 list_del(&caching_ctl->list);
6903 put_caching_control(caching_ctl);
6904 }
6905 up_write(&info->extent_commit_sem);
6906
6907 spin_lock(&info->block_group_cache_lock);
6908 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
6909 block_group = rb_entry(n, struct btrfs_block_group_cache,
6910 cache_node);
6911 rb_erase(&block_group->cache_node,
6912 &info->block_group_cache_tree);
6913 spin_unlock(&info->block_group_cache_lock);
6914
6915 down_write(&block_group->space_info->groups_sem);
6916 list_del(&block_group->list);
6917 up_write(&block_group->space_info->groups_sem);
6918
6919 if (block_group->cached == BTRFS_CACHE_STARTED)
6920 wait_block_group_cache_done(block_group);
6921
6922 /*
6923 * We haven't cached this block group, which means we could
6924 * possibly have excluded extents on this block group.
6925 */
6926 if (block_group->cached == BTRFS_CACHE_NO)
6927 free_excluded_extents(info->extent_root, block_group);
6928
6929 btrfs_remove_free_space_cache(block_group);
6930 btrfs_put_block_group(block_group);
6931
6932 spin_lock(&info->block_group_cache_lock);
6933 }
6934 spin_unlock(&info->block_group_cache_lock);
6935
6936 /* now that all the block groups are freed, go through and
6937 * free all the space_info structs. This is only called during
6938 * the final stages of unmount, and so we know nobody is
6939 * using them. We call synchronize_rcu() once before we start,
6940 * just to be on the safe side.
6941 */
6942 synchronize_rcu();
6943
6944 release_global_block_rsv(info);
6945
6946 while(!list_empty(&info->space_info)) {
6947 space_info = list_entry(info->space_info.next,
6948 struct btrfs_space_info,
6949 list);
6950 if (space_info->bytes_pinned > 0 ||
6951 space_info->bytes_reserved > 0 ||
6952 space_info->bytes_may_use > 0) {
6953 WARN_ON(1);
6954 dump_space_info(space_info, 0, 0);
6955 }
6956 list_del(&space_info->list);
6957 kfree(space_info);
6958 }
6959 return 0;
6960}
6961
6962static void __link_block_group(struct btrfs_space_info *space_info,
6963 struct btrfs_block_group_cache *cache)
6964{
6965 int index = get_block_group_index(cache);
6966
6967 down_write(&space_info->groups_sem);
6968 list_add_tail(&cache->list, &space_info->block_groups[index]);
6969 up_write(&space_info->groups_sem);
6970}
6971
6972int btrfs_read_block_groups(struct btrfs_root *root)
6973{
6974 struct btrfs_path *path;
6975 int ret;
6976 struct btrfs_block_group_cache *cache;
6977 struct btrfs_fs_info *info = root->fs_info;
6978 struct btrfs_space_info *space_info;
6979 struct btrfs_key key;
6980 struct btrfs_key found_key;
6981 struct extent_buffer *leaf;
6982 int need_clear = 0;
6983 u64 cache_gen;
6984
6985 root = info->extent_root;
6986 key.objectid = 0;
6987 key.offset = 0;
6988 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
6989 path = btrfs_alloc_path();
6990 if (!path)
6991 return -ENOMEM;
6992 path->reada = 1;
6993
6994 cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
6995 if (cache_gen != 0 &&
6996 btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
6997 need_clear = 1;
6998 if (btrfs_test_opt(root, CLEAR_CACHE))
6999 need_clear = 1;
7000 if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
7001 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
7002
7003 while (1) {
7004 ret = find_first_block_group(root, path, &key);
7005 if (ret > 0)
7006 break;
7007 if (ret != 0)
7008 goto error;
7009 leaf = path->nodes[0];
7010 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7011 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7012 if (!cache) {
7013 ret = -ENOMEM;
7014 goto error;
7015 }
7016 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7017 GFP_NOFS);
7018 if (!cache->free_space_ctl) {
7019 kfree(cache);
7020 ret = -ENOMEM;
7021 goto error;
7022 }
7023
7024 atomic_set(&cache->count, 1);
7025 spin_lock_init(&cache->lock);
7026 cache->fs_info = info;
7027 INIT_LIST_HEAD(&cache->list);
7028 INIT_LIST_HEAD(&cache->cluster_list);
7029
7030 if (need_clear)
7031 cache->disk_cache_state = BTRFS_DC_CLEAR;
7032
7033 read_extent_buffer(leaf, &cache->item,
7034 btrfs_item_ptr_offset(leaf, path->slots[0]),
7035 sizeof(cache->item));
7036 memcpy(&cache->key, &found_key, sizeof(found_key));
7037
7038 key.objectid = found_key.objectid + found_key.offset;
7039 btrfs_release_path(path);
7040 cache->flags = btrfs_block_group_flags(&cache->item);
7041 cache->sectorsize = root->sectorsize;
7042
7043 btrfs_init_free_space_ctl(cache);
7044
7045 /*
7046 * We need to exclude the super stripes now so that the space
7047 * info has super bytes accounted for, otherwise we'll think
7048 * we have more space than we actually do.
7049 */
7050 exclude_super_stripes(root, cache);
7051
7052 /*
7053 * check for two cases, either we are full, and therefore
7054 * don't need to bother with the caching work since we won't
7055 * find any space, or we are empty, and we can just add all
7056 * the space in and be done with it. This saves us _alot_ of
7057 * time, particularly in the full case.
7058 */
7059 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7060 cache->last_byte_to_unpin = (u64)-1;
7061 cache->cached = BTRFS_CACHE_FINISHED;
7062 free_excluded_extents(root, cache);
7063 } else if (btrfs_block_group_used(&cache->item) == 0) {
7064 cache->last_byte_to_unpin = (u64)-1;
7065 cache->cached = BTRFS_CACHE_FINISHED;
7066 add_new_free_space(cache, root->fs_info,
7067 found_key.objectid,
7068 found_key.objectid +
7069 found_key.offset);
7070 free_excluded_extents(root, cache);
7071 }
7072
7073 ret = update_space_info(info, cache->flags, found_key.offset,
7074 btrfs_block_group_used(&cache->item),
7075 &space_info);
7076 BUG_ON(ret);
7077 cache->space_info = space_info;
7078 spin_lock(&cache->space_info->lock);
7079 cache->space_info->bytes_readonly += cache->bytes_super;
7080 spin_unlock(&cache->space_info->lock);
7081
7082 __link_block_group(space_info, cache);
7083
7084 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7085 BUG_ON(ret);
7086
7087 set_avail_alloc_bits(root->fs_info, cache->flags);
7088 if (btrfs_chunk_readonly(root, cache->key.objectid))
7089 set_block_group_ro(cache, 1);
7090 }
7091
7092 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7093 if (!(get_alloc_profile(root, space_info->flags) &
7094 (BTRFS_BLOCK_GROUP_RAID10 |
7095 BTRFS_BLOCK_GROUP_RAID1 |
7096 BTRFS_BLOCK_GROUP_DUP)))
7097 continue;
7098 /*
7099 * avoid allocating from un-mirrored block group if there are
7100 * mirrored block groups.
7101 */
7102 list_for_each_entry(cache, &space_info->block_groups[3], list)
7103 set_block_group_ro(cache, 1);
7104 list_for_each_entry(cache, &space_info->block_groups[4], list)
7105 set_block_group_ro(cache, 1);
7106 }
7107
7108 init_global_block_rsv(info);
7109 ret = 0;
7110error:
7111 btrfs_free_path(path);
7112 return ret;
7113}
7114
7115int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7116 struct btrfs_root *root, u64 bytes_used,
7117 u64 type, u64 chunk_objectid, u64 chunk_offset,
7118 u64 size)
7119{
7120 int ret;
7121 struct btrfs_root *extent_root;
7122 struct btrfs_block_group_cache *cache;
7123
7124 extent_root = root->fs_info->extent_root;
7125
7126 root->fs_info->last_trans_log_full_commit = trans->transid;
7127
7128 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7129 if (!cache)
7130 return -ENOMEM;
7131 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7132 GFP_NOFS);
7133 if (!cache->free_space_ctl) {
7134 kfree(cache);
7135 return -ENOMEM;
7136 }
7137
7138 cache->key.objectid = chunk_offset;
7139 cache->key.offset = size;
7140 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7141 cache->sectorsize = root->sectorsize;
7142 cache->fs_info = root->fs_info;
7143
7144 atomic_set(&cache->count, 1);
7145 spin_lock_init(&cache->lock);
7146 INIT_LIST_HEAD(&cache->list);
7147 INIT_LIST_HEAD(&cache->cluster_list);
7148
7149 btrfs_init_free_space_ctl(cache);
7150
7151 btrfs_set_block_group_used(&cache->item, bytes_used);
7152 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7153 cache->flags = type;
7154 btrfs_set_block_group_flags(&cache->item, type);
7155
7156 cache->last_byte_to_unpin = (u64)-1;
7157 cache->cached = BTRFS_CACHE_FINISHED;
7158 exclude_super_stripes(root, cache);
7159
7160 add_new_free_space(cache, root->fs_info, chunk_offset,
7161 chunk_offset + size);
7162
7163 free_excluded_extents(root, cache);
7164
7165 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7166 &cache->space_info);
7167 BUG_ON(ret);
7168
7169 spin_lock(&cache->space_info->lock);
7170 cache->space_info->bytes_readonly += cache->bytes_super;
7171 spin_unlock(&cache->space_info->lock);
7172
7173 __link_block_group(cache->space_info, cache);
7174
7175 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7176 BUG_ON(ret);
7177
7178 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7179 sizeof(cache->item));
7180 BUG_ON(ret);
7181
7182 set_avail_alloc_bits(extent_root->fs_info, type);
7183
7184 return 0;
7185}
7186
7187int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7188 struct btrfs_root *root, u64 group_start)
7189{
7190 struct btrfs_path *path;
7191 struct btrfs_block_group_cache *block_group;
7192 struct btrfs_free_cluster *cluster;
7193 struct btrfs_root *tree_root = root->fs_info->tree_root;
7194 struct btrfs_key key;
7195 struct inode *inode;
7196 int ret;
7197 int factor;
7198
7199 root = root->fs_info->extent_root;
7200
7201 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7202 BUG_ON(!block_group);
7203 BUG_ON(!block_group->ro);
7204
7205 /*
7206 * Free the reserved super bytes from this block group before
7207 * remove it.
7208 */
7209 free_excluded_extents(root, block_group);
7210
7211 memcpy(&key, &block_group->key, sizeof(key));
7212 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7213 BTRFS_BLOCK_GROUP_RAID1 |
7214 BTRFS_BLOCK_GROUP_RAID10))
7215 factor = 2;
7216 else
7217 factor = 1;
7218
7219 /* make sure this block group isn't part of an allocation cluster */
7220 cluster = &root->fs_info->data_alloc_cluster;
7221 spin_lock(&cluster->refill_lock);
7222 btrfs_return_cluster_to_free_space(block_group, cluster);
7223 spin_unlock(&cluster->refill_lock);
7224
7225 /*
7226 * make sure this block group isn't part of a metadata
7227 * allocation cluster
7228 */
7229 cluster = &root->fs_info->meta_alloc_cluster;
7230 spin_lock(&cluster->refill_lock);
7231 btrfs_return_cluster_to_free_space(block_group, cluster);
7232 spin_unlock(&cluster->refill_lock);
7233
7234 path = btrfs_alloc_path();
7235 if (!path) {
7236 ret = -ENOMEM;
7237 goto out;
7238 }
7239
7240 inode = lookup_free_space_inode(root, block_group, path);
7241 if (!IS_ERR(inode)) {
7242 ret = btrfs_orphan_add(trans, inode);
7243 BUG_ON(ret);
7244 clear_nlink(inode);
7245 /* One for the block groups ref */
7246 spin_lock(&block_group->lock);
7247 if (block_group->iref) {
7248 block_group->iref = 0;
7249 block_group->inode = NULL;
7250 spin_unlock(&block_group->lock);
7251 iput(inode);
7252 } else {
7253 spin_unlock(&block_group->lock);
7254 }
7255 /* One for our lookup ref */
7256 iput(inode);
7257 }
7258
7259 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7260 key.offset = block_group->key.objectid;
7261 key.type = 0;
7262
7263 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7264 if (ret < 0)
7265 goto out;
7266 if (ret > 0)
7267 btrfs_release_path(path);
7268 if (ret == 0) {
7269 ret = btrfs_del_item(trans, tree_root, path);
7270 if (ret)
7271 goto out;
7272 btrfs_release_path(path);
7273 }
7274
7275 spin_lock(&root->fs_info->block_group_cache_lock);
7276 rb_erase(&block_group->cache_node,
7277 &root->fs_info->block_group_cache_tree);
7278 spin_unlock(&root->fs_info->block_group_cache_lock);
7279
7280 down_write(&block_group->space_info->groups_sem);
7281 /*
7282 * we must use list_del_init so people can check to see if they
7283 * are still on the list after taking the semaphore
7284 */
7285 list_del_init(&block_group->list);
7286 up_write(&block_group->space_info->groups_sem);
7287
7288 if (block_group->cached == BTRFS_CACHE_STARTED)
7289 wait_block_group_cache_done(block_group);
7290
7291 btrfs_remove_free_space_cache(block_group);
7292
7293 spin_lock(&block_group->space_info->lock);
7294 block_group->space_info->total_bytes -= block_group->key.offset;
7295 block_group->space_info->bytes_readonly -= block_group->key.offset;
7296 block_group->space_info->disk_total -= block_group->key.offset * factor;
7297 spin_unlock(&block_group->space_info->lock);
7298
7299 memcpy(&key, &block_group->key, sizeof(key));
7300
7301 btrfs_clear_space_info_full(root->fs_info);
7302
7303 btrfs_put_block_group(block_group);
7304 btrfs_put_block_group(block_group);
7305
7306 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7307 if (ret > 0)
7308 ret = -EIO;
7309 if (ret < 0)
7310 goto out;
7311
7312 ret = btrfs_del_item(trans, root, path);
7313out:
7314 btrfs_free_path(path);
7315 return ret;
7316}
7317
7318int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7319{
7320 struct btrfs_space_info *space_info;
7321 struct btrfs_super_block *disk_super;
7322 u64 features;
7323 u64 flags;
7324 int mixed = 0;
7325 int ret;
7326
7327 disk_super = &fs_info->super_copy;
7328 if (!btrfs_super_root(disk_super))
7329 return 1;
7330
7331 features = btrfs_super_incompat_flags(disk_super);
7332 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7333 mixed = 1;
7334
7335 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7336 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7337 if (ret)
7338 goto out;
7339
7340 if (mixed) {
7341 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7342 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7343 } else {
7344 flags = BTRFS_BLOCK_GROUP_METADATA;
7345 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7346 if (ret)
7347 goto out;
7348
7349 flags = BTRFS_BLOCK_GROUP_DATA;
7350 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7351 }
7352out:
7353 return ret;
7354}
7355
7356int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7357{
7358 return unpin_extent_range(root, start, end);
7359}
7360
7361int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7362 u64 num_bytes, u64 *actual_bytes)
7363{
7364 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7365}
7366
7367int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7368{
7369 struct btrfs_fs_info *fs_info = root->fs_info;
7370 struct btrfs_block_group_cache *cache = NULL;
7371 u64 group_trimmed;
7372 u64 start;
7373 u64 end;
7374 u64 trimmed = 0;
7375 int ret = 0;
7376
7377 cache = btrfs_lookup_block_group(fs_info, range->start);
7378
7379 while (cache) {
7380 if (cache->key.objectid >= (range->start + range->len)) {
7381 btrfs_put_block_group(cache);
7382 break;
7383 }
7384
7385 start = max(range->start, cache->key.objectid);
7386 end = min(range->start + range->len,
7387 cache->key.objectid + cache->key.offset);
7388
7389 if (end - start >= range->minlen) {
7390 if (!block_group_cache_done(cache)) {
7391 ret = cache_block_group(cache, NULL, root, 0);
7392 if (!ret)
7393 wait_block_group_cache_done(cache);
7394 }
7395 ret = btrfs_trim_block_group(cache,
7396 &group_trimmed,
7397 start,
7398 end,
7399 range->minlen);
7400
7401 trimmed += group_trimmed;
7402 if (ret) {
7403 btrfs_put_block_group(cache);
7404 break;
7405 }
7406 }
7407
7408 cache = next_block_group(fs_info->tree_root, cache);
7409 }
7410
7411 range->len = trimmed;
7412 return ret;
7413}