]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame_incremental - fs/btrfs/extent_io.c
btrfs: get rid of endio_repair_workers
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
... / ...
CommitLineData
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
14#include <linux/prefetch.h>
15#include <linux/cleancache.h>
16#include "extent_io.h"
17#include "extent-io-tree.h"
18#include "extent_map.h"
19#include "ctree.h"
20#include "btrfs_inode.h"
21#include "volumes.h"
22#include "check-integrity.h"
23#include "locking.h"
24#include "rcu-string.h"
25#include "backref.h"
26#include "disk-io.h"
27
28static struct kmem_cache *extent_state_cache;
29static struct kmem_cache *extent_buffer_cache;
30static struct bio_set btrfs_bioset;
31
32static inline bool extent_state_in_tree(const struct extent_state *state)
33{
34 return !RB_EMPTY_NODE(&state->rb_node);
35}
36
37#ifdef CONFIG_BTRFS_DEBUG
38static LIST_HEAD(states);
39static DEFINE_SPINLOCK(leak_lock);
40
41static inline void btrfs_leak_debug_add(spinlock_t *lock,
42 struct list_head *new,
43 struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(lock, flags);
50}
51
52static inline void btrfs_leak_debug_del(spinlock_t *lock,
53 struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(lock, flags);
60}
61
62void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63{
64 struct extent_buffer *eb;
65 unsigned long flags;
66
67 /*
68 * If we didn't get into open_ctree our allocated_ebs will not be
69 * initialized, so just skip this.
70 */
71 if (!fs_info->allocated_ebs.next)
72 return;
73
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
78 pr_err(
79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86}
87
88static inline void btrfs_extent_state_leak_debug_check(void)
89{
90 struct extent_state *state;
91
92 while (!list_empty(&states)) {
93 state = list_entry(states.next, struct extent_state, leak_list);
94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95 state->start, state->end, state->state,
96 extent_state_in_tree(state),
97 refcount_read(&state->refs));
98 list_del(&state->leak_list);
99 kmem_cache_free(extent_state_cache, state);
100 }
101}
102
103#define btrfs_debug_check_extent_io_range(tree, start, end) \
104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106 struct extent_io_tree *tree, u64 start, u64 end)
107{
108 struct inode *inode = tree->private_data;
109 u64 isize;
110
111 if (!inode || !is_data_inode(inode))
112 return;
113
114 isize = i_size_read(inode);
115 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117 "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119 }
120}
121#else
122#define btrfs_leak_debug_add(lock, new, head) do {} while (0)
123#define btrfs_leak_debug_del(lock, entry) do {} while (0)
124#define btrfs_extent_state_leak_debug_check() do {} while (0)
125#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
126#endif
127
128struct tree_entry {
129 u64 start;
130 u64 end;
131 struct rb_node rb_node;
132};
133
134struct extent_page_data {
135 struct bio *bio;
136 /* tells writepage not to lock the state bits for this range
137 * it still does the unlocking
138 */
139 unsigned int extent_locked:1;
140
141 /* tells the submit_bio code to use REQ_SYNC */
142 unsigned int sync_io:1;
143};
144
145static int add_extent_changeset(struct extent_state *state, unsigned bits,
146 struct extent_changeset *changeset,
147 int set)
148{
149 int ret;
150
151 if (!changeset)
152 return 0;
153 if (set && (state->state & bits) == bits)
154 return 0;
155 if (!set && (state->state & bits) == 0)
156 return 0;
157 changeset->bytes_changed += state->end - state->start + 1;
158 ret = ulist_add(&changeset->range_changed, state->start, state->end,
159 GFP_ATOMIC);
160 return ret;
161}
162
163static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164 unsigned long bio_flags)
165{
166 blk_status_t ret = 0;
167 struct extent_io_tree *tree = bio->bi_private;
168
169 bio->bi_private = NULL;
170
171 if (tree->ops)
172 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
173 mirror_num, bio_flags);
174 else
175 btrfsic_submit_bio(bio);
176
177 return blk_status_to_errno(ret);
178}
179
180/* Cleanup unsubmitted bios */
181static void end_write_bio(struct extent_page_data *epd, int ret)
182{
183 if (epd->bio) {
184 epd->bio->bi_status = errno_to_blk_status(ret);
185 bio_endio(epd->bio);
186 epd->bio = NULL;
187 }
188}
189
190/*
191 * Submit bio from extent page data via submit_one_bio
192 *
193 * Return 0 if everything is OK.
194 * Return <0 for error.
195 */
196static int __must_check flush_write_bio(struct extent_page_data *epd)
197{
198 int ret = 0;
199
200 if (epd->bio) {
201 ret = submit_one_bio(epd->bio, 0, 0);
202 /*
203 * Clean up of epd->bio is handled by its endio function.
204 * And endio is either triggered by successful bio execution
205 * or the error handler of submit bio hook.
206 * So at this point, no matter what happened, we don't need
207 * to clean up epd->bio.
208 */
209 epd->bio = NULL;
210 }
211 return ret;
212}
213
214int __init extent_state_cache_init(void)
215{
216 extent_state_cache = kmem_cache_create("btrfs_extent_state",
217 sizeof(struct extent_state), 0,
218 SLAB_MEM_SPREAD, NULL);
219 if (!extent_state_cache)
220 return -ENOMEM;
221 return 0;
222}
223
224int __init extent_io_init(void)
225{
226 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
227 sizeof(struct extent_buffer), 0,
228 SLAB_MEM_SPREAD, NULL);
229 if (!extent_buffer_cache)
230 return -ENOMEM;
231
232 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
233 offsetof(struct btrfs_io_bio, bio),
234 BIOSET_NEED_BVECS))
235 goto free_buffer_cache;
236
237 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
238 goto free_bioset;
239
240 return 0;
241
242free_bioset:
243 bioset_exit(&btrfs_bioset);
244
245free_buffer_cache:
246 kmem_cache_destroy(extent_buffer_cache);
247 extent_buffer_cache = NULL;
248 return -ENOMEM;
249}
250
251void __cold extent_state_cache_exit(void)
252{
253 btrfs_extent_state_leak_debug_check();
254 kmem_cache_destroy(extent_state_cache);
255}
256
257void __cold extent_io_exit(void)
258{
259 /*
260 * Make sure all delayed rcu free are flushed before we
261 * destroy caches.
262 */
263 rcu_barrier();
264 kmem_cache_destroy(extent_buffer_cache);
265 bioset_exit(&btrfs_bioset);
266}
267
268/*
269 * For the file_extent_tree, we want to hold the inode lock when we lookup and
270 * update the disk_i_size, but lockdep will complain because our io_tree we hold
271 * the tree lock and get the inode lock when setting delalloc. These two things
272 * are unrelated, so make a class for the file_extent_tree so we don't get the
273 * two locking patterns mixed up.
274 */
275static struct lock_class_key file_extent_tree_class;
276
277void extent_io_tree_init(struct btrfs_fs_info *fs_info,
278 struct extent_io_tree *tree, unsigned int owner,
279 void *private_data)
280{
281 tree->fs_info = fs_info;
282 tree->state = RB_ROOT;
283 tree->ops = NULL;
284 tree->dirty_bytes = 0;
285 spin_lock_init(&tree->lock);
286 tree->private_data = private_data;
287 tree->owner = owner;
288 if (owner == IO_TREE_INODE_FILE_EXTENT)
289 lockdep_set_class(&tree->lock, &file_extent_tree_class);
290}
291
292void extent_io_tree_release(struct extent_io_tree *tree)
293{
294 spin_lock(&tree->lock);
295 /*
296 * Do a single barrier for the waitqueue_active check here, the state
297 * of the waitqueue should not change once extent_io_tree_release is
298 * called.
299 */
300 smp_mb();
301 while (!RB_EMPTY_ROOT(&tree->state)) {
302 struct rb_node *node;
303 struct extent_state *state;
304
305 node = rb_first(&tree->state);
306 state = rb_entry(node, struct extent_state, rb_node);
307 rb_erase(&state->rb_node, &tree->state);
308 RB_CLEAR_NODE(&state->rb_node);
309 /*
310 * btree io trees aren't supposed to have tasks waiting for
311 * changes in the flags of extent states ever.
312 */
313 ASSERT(!waitqueue_active(&state->wq));
314 free_extent_state(state);
315
316 cond_resched_lock(&tree->lock);
317 }
318 spin_unlock(&tree->lock);
319}
320
321static struct extent_state *alloc_extent_state(gfp_t mask)
322{
323 struct extent_state *state;
324
325 /*
326 * The given mask might be not appropriate for the slab allocator,
327 * drop the unsupported bits
328 */
329 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330 state = kmem_cache_alloc(extent_state_cache, mask);
331 if (!state)
332 return state;
333 state->state = 0;
334 state->failrec = NULL;
335 RB_CLEAR_NODE(&state->rb_node);
336 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337 refcount_set(&state->refs, 1);
338 init_waitqueue_head(&state->wq);
339 trace_alloc_extent_state(state, mask, _RET_IP_);
340 return state;
341}
342
343void free_extent_state(struct extent_state *state)
344{
345 if (!state)
346 return;
347 if (refcount_dec_and_test(&state->refs)) {
348 WARN_ON(extent_state_in_tree(state));
349 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350 trace_free_extent_state(state, _RET_IP_);
351 kmem_cache_free(extent_state_cache, state);
352 }
353}
354
355static struct rb_node *tree_insert(struct rb_root *root,
356 struct rb_node *search_start,
357 u64 offset,
358 struct rb_node *node,
359 struct rb_node ***p_in,
360 struct rb_node **parent_in)
361{
362 struct rb_node **p;
363 struct rb_node *parent = NULL;
364 struct tree_entry *entry;
365
366 if (p_in && parent_in) {
367 p = *p_in;
368 parent = *parent_in;
369 goto do_insert;
370 }
371
372 p = search_start ? &search_start : &root->rb_node;
373 while (*p) {
374 parent = *p;
375 entry = rb_entry(parent, struct tree_entry, rb_node);
376
377 if (offset < entry->start)
378 p = &(*p)->rb_left;
379 else if (offset > entry->end)
380 p = &(*p)->rb_right;
381 else
382 return parent;
383 }
384
385do_insert:
386 rb_link_node(node, parent, p);
387 rb_insert_color(node, root);
388 return NULL;
389}
390
391/**
392 * __etree_search - searche @tree for an entry that contains @offset. Such
393 * entry would have entry->start <= offset && entry->end >= offset.
394 *
395 * @tree - the tree to search
396 * @offset - offset that should fall within an entry in @tree
397 * @next_ret - pointer to the first entry whose range ends after @offset
398 * @prev - pointer to the first entry whose range begins before @offset
399 * @p_ret - pointer where new node should be anchored (used when inserting an
400 * entry in the tree)
401 * @parent_ret - points to entry which would have been the parent of the entry,
402 * containing @offset
403 *
404 * This function returns a pointer to the entry that contains @offset byte
405 * address. If no such entry exists, then NULL is returned and the other
406 * pointer arguments to the function are filled, otherwise the found entry is
407 * returned and other pointers are left untouched.
408 */
409static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410 struct rb_node **next_ret,
411 struct rb_node **prev_ret,
412 struct rb_node ***p_ret,
413 struct rb_node **parent_ret)
414{
415 struct rb_root *root = &tree->state;
416 struct rb_node **n = &root->rb_node;
417 struct rb_node *prev = NULL;
418 struct rb_node *orig_prev = NULL;
419 struct tree_entry *entry;
420 struct tree_entry *prev_entry = NULL;
421
422 while (*n) {
423 prev = *n;
424 entry = rb_entry(prev, struct tree_entry, rb_node);
425 prev_entry = entry;
426
427 if (offset < entry->start)
428 n = &(*n)->rb_left;
429 else if (offset > entry->end)
430 n = &(*n)->rb_right;
431 else
432 return *n;
433 }
434
435 if (p_ret)
436 *p_ret = n;
437 if (parent_ret)
438 *parent_ret = prev;
439
440 if (next_ret) {
441 orig_prev = prev;
442 while (prev && offset > prev_entry->end) {
443 prev = rb_next(prev);
444 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445 }
446 *next_ret = prev;
447 prev = orig_prev;
448 }
449
450 if (prev_ret) {
451 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452 while (prev && offset < prev_entry->start) {
453 prev = rb_prev(prev);
454 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 }
456 *prev_ret = prev;
457 }
458 return NULL;
459}
460
461static inline struct rb_node *
462tree_search_for_insert(struct extent_io_tree *tree,
463 u64 offset,
464 struct rb_node ***p_ret,
465 struct rb_node **parent_ret)
466{
467 struct rb_node *next= NULL;
468 struct rb_node *ret;
469
470 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471 if (!ret)
472 return next;
473 return ret;
474}
475
476static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477 u64 offset)
478{
479 return tree_search_for_insert(tree, offset, NULL, NULL);
480}
481
482/*
483 * utility function to look for merge candidates inside a given range.
484 * Any extents with matching state are merged together into a single
485 * extent in the tree. Extents with EXTENT_IO in their state field
486 * are not merged because the end_io handlers need to be able to do
487 * operations on them without sleeping (or doing allocations/splits).
488 *
489 * This should be called with the tree lock held.
490 */
491static void merge_state(struct extent_io_tree *tree,
492 struct extent_state *state)
493{
494 struct extent_state *other;
495 struct rb_node *other_node;
496
497 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498 return;
499
500 other_node = rb_prev(&state->rb_node);
501 if (other_node) {
502 other = rb_entry(other_node, struct extent_state, rb_node);
503 if (other->end == state->start - 1 &&
504 other->state == state->state) {
505 if (tree->private_data &&
506 is_data_inode(tree->private_data))
507 btrfs_merge_delalloc_extent(tree->private_data,
508 state, other);
509 state->start = other->start;
510 rb_erase(&other->rb_node, &tree->state);
511 RB_CLEAR_NODE(&other->rb_node);
512 free_extent_state(other);
513 }
514 }
515 other_node = rb_next(&state->rb_node);
516 if (other_node) {
517 other = rb_entry(other_node, struct extent_state, rb_node);
518 if (other->start == state->end + 1 &&
519 other->state == state->state) {
520 if (tree->private_data &&
521 is_data_inode(tree->private_data))
522 btrfs_merge_delalloc_extent(tree->private_data,
523 state, other);
524 state->end = other->end;
525 rb_erase(&other->rb_node, &tree->state);
526 RB_CLEAR_NODE(&other->rb_node);
527 free_extent_state(other);
528 }
529 }
530}
531
532static void set_state_bits(struct extent_io_tree *tree,
533 struct extent_state *state, unsigned *bits,
534 struct extent_changeset *changeset);
535
536/*
537 * insert an extent_state struct into the tree. 'bits' are set on the
538 * struct before it is inserted.
539 *
540 * This may return -EEXIST if the extent is already there, in which case the
541 * state struct is freed.
542 *
543 * The tree lock is not taken internally. This is a utility function and
544 * probably isn't what you want to call (see set/clear_extent_bit).
545 */
546static int insert_state(struct extent_io_tree *tree,
547 struct extent_state *state, u64 start, u64 end,
548 struct rb_node ***p,
549 struct rb_node **parent,
550 unsigned *bits, struct extent_changeset *changeset)
551{
552 struct rb_node *node;
553
554 if (end < start) {
555 btrfs_err(tree->fs_info,
556 "insert state: end < start %llu %llu", end, start);
557 WARN_ON(1);
558 }
559 state->start = start;
560 state->end = end;
561
562 set_state_bits(tree, state, bits, changeset);
563
564 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565 if (node) {
566 struct extent_state *found;
567 found = rb_entry(node, struct extent_state, rb_node);
568 btrfs_err(tree->fs_info,
569 "found node %llu %llu on insert of %llu %llu",
570 found->start, found->end, start, end);
571 return -EEXIST;
572 }
573 merge_state(tree, state);
574 return 0;
575}
576
577/*
578 * split a given extent state struct in two, inserting the preallocated
579 * struct 'prealloc' as the newly created second half. 'split' indicates an
580 * offset inside 'orig' where it should be split.
581 *
582 * Before calling,
583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
584 * are two extent state structs in the tree:
585 * prealloc: [orig->start, split - 1]
586 * orig: [ split, orig->end ]
587 *
588 * The tree locks are not taken by this function. They need to be held
589 * by the caller.
590 */
591static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592 struct extent_state *prealloc, u64 split)
593{
594 struct rb_node *node;
595
596 if (tree->private_data && is_data_inode(tree->private_data))
597 btrfs_split_delalloc_extent(tree->private_data, orig, split);
598
599 prealloc->start = orig->start;
600 prealloc->end = split - 1;
601 prealloc->state = orig->state;
602 orig->start = split;
603
604 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605 &prealloc->rb_node, NULL, NULL);
606 if (node) {
607 free_extent_state(prealloc);
608 return -EEXIST;
609 }
610 return 0;
611}
612
613static struct extent_state *next_state(struct extent_state *state)
614{
615 struct rb_node *next = rb_next(&state->rb_node);
616 if (next)
617 return rb_entry(next, struct extent_state, rb_node);
618 else
619 return NULL;
620}
621
622/*
623 * utility function to clear some bits in an extent state struct.
624 * it will optionally wake up anyone waiting on this state (wake == 1).
625 *
626 * If no bits are set on the state struct after clearing things, the
627 * struct is freed and removed from the tree
628 */
629static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630 struct extent_state *state,
631 unsigned *bits, int wake,
632 struct extent_changeset *changeset)
633{
634 struct extent_state *next;
635 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636 int ret;
637
638 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639 u64 range = state->end - state->start + 1;
640 WARN_ON(range > tree->dirty_bytes);
641 tree->dirty_bytes -= range;
642 }
643
644 if (tree->private_data && is_data_inode(tree->private_data))
645 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
647 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648 BUG_ON(ret < 0);
649 state->state &= ~bits_to_clear;
650 if (wake)
651 wake_up(&state->wq);
652 if (state->state == 0) {
653 next = next_state(state);
654 if (extent_state_in_tree(state)) {
655 rb_erase(&state->rb_node, &tree->state);
656 RB_CLEAR_NODE(&state->rb_node);
657 free_extent_state(state);
658 } else {
659 WARN_ON(1);
660 }
661 } else {
662 merge_state(tree, state);
663 next = next_state(state);
664 }
665 return next;
666}
667
668static struct extent_state *
669alloc_extent_state_atomic(struct extent_state *prealloc)
670{
671 if (!prealloc)
672 prealloc = alloc_extent_state(GFP_ATOMIC);
673
674 return prealloc;
675}
676
677static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678{
679 struct inode *inode = tree->private_data;
680
681 btrfs_panic(btrfs_sb(inode->i_sb), err,
682 "locking error: extent tree was modified by another thread while locked");
683}
684
685/*
686 * clear some bits on a range in the tree. This may require splitting
687 * or inserting elements in the tree, so the gfp mask is used to
688 * indicate which allocations or sleeping are allowed.
689 *
690 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691 * the given range from the tree regardless of state (ie for truncate).
692 *
693 * the range [start, end] is inclusive.
694 *
695 * This takes the tree lock, and returns 0 on success and < 0 on error.
696 */
697int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698 unsigned bits, int wake, int delete,
699 struct extent_state **cached_state,
700 gfp_t mask, struct extent_changeset *changeset)
701{
702 struct extent_state *state;
703 struct extent_state *cached;
704 struct extent_state *prealloc = NULL;
705 struct rb_node *node;
706 u64 last_end;
707 int err;
708 int clear = 0;
709
710 btrfs_debug_check_extent_io_range(tree, start, end);
711 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
712
713 if (bits & EXTENT_DELALLOC)
714 bits |= EXTENT_NORESERVE;
715
716 if (delete)
717 bits |= ~EXTENT_CTLBITS;
718
719 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720 clear = 1;
721again:
722 if (!prealloc && gfpflags_allow_blocking(mask)) {
723 /*
724 * Don't care for allocation failure here because we might end
725 * up not needing the pre-allocated extent state at all, which
726 * is the case if we only have in the tree extent states that
727 * cover our input range and don't cover too any other range.
728 * If we end up needing a new extent state we allocate it later.
729 */
730 prealloc = alloc_extent_state(mask);
731 }
732
733 spin_lock(&tree->lock);
734 if (cached_state) {
735 cached = *cached_state;
736
737 if (clear) {
738 *cached_state = NULL;
739 cached_state = NULL;
740 }
741
742 if (cached && extent_state_in_tree(cached) &&
743 cached->start <= start && cached->end > start) {
744 if (clear)
745 refcount_dec(&cached->refs);
746 state = cached;
747 goto hit_next;
748 }
749 if (clear)
750 free_extent_state(cached);
751 }
752 /*
753 * this search will find the extents that end after
754 * our range starts
755 */
756 node = tree_search(tree, start);
757 if (!node)
758 goto out;
759 state = rb_entry(node, struct extent_state, rb_node);
760hit_next:
761 if (state->start > end)
762 goto out;
763 WARN_ON(state->end < start);
764 last_end = state->end;
765
766 /* the state doesn't have the wanted bits, go ahead */
767 if (!(state->state & bits)) {
768 state = next_state(state);
769 goto next;
770 }
771
772 /*
773 * | ---- desired range ---- |
774 * | state | or
775 * | ------------- state -------------- |
776 *
777 * We need to split the extent we found, and may flip
778 * bits on second half.
779 *
780 * If the extent we found extends past our range, we
781 * just split and search again. It'll get split again
782 * the next time though.
783 *
784 * If the extent we found is inside our range, we clear
785 * the desired bit on it.
786 */
787
788 if (state->start < start) {
789 prealloc = alloc_extent_state_atomic(prealloc);
790 BUG_ON(!prealloc);
791 err = split_state(tree, state, prealloc, start);
792 if (err)
793 extent_io_tree_panic(tree, err);
794
795 prealloc = NULL;
796 if (err)
797 goto out;
798 if (state->end <= end) {
799 state = clear_state_bit(tree, state, &bits, wake,
800 changeset);
801 goto next;
802 }
803 goto search_again;
804 }
805 /*
806 * | ---- desired range ---- |
807 * | state |
808 * We need to split the extent, and clear the bit
809 * on the first half
810 */
811 if (state->start <= end && state->end > end) {
812 prealloc = alloc_extent_state_atomic(prealloc);
813 BUG_ON(!prealloc);
814 err = split_state(tree, state, prealloc, end + 1);
815 if (err)
816 extent_io_tree_panic(tree, err);
817
818 if (wake)
819 wake_up(&state->wq);
820
821 clear_state_bit(tree, prealloc, &bits, wake, changeset);
822
823 prealloc = NULL;
824 goto out;
825 }
826
827 state = clear_state_bit(tree, state, &bits, wake, changeset);
828next:
829 if (last_end == (u64)-1)
830 goto out;
831 start = last_end + 1;
832 if (start <= end && state && !need_resched())
833 goto hit_next;
834
835search_again:
836 if (start > end)
837 goto out;
838 spin_unlock(&tree->lock);
839 if (gfpflags_allow_blocking(mask))
840 cond_resched();
841 goto again;
842
843out:
844 spin_unlock(&tree->lock);
845 if (prealloc)
846 free_extent_state(prealloc);
847
848 return 0;
849
850}
851
852static void wait_on_state(struct extent_io_tree *tree,
853 struct extent_state *state)
854 __releases(tree->lock)
855 __acquires(tree->lock)
856{
857 DEFINE_WAIT(wait);
858 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859 spin_unlock(&tree->lock);
860 schedule();
861 spin_lock(&tree->lock);
862 finish_wait(&state->wq, &wait);
863}
864
865/*
866 * waits for one or more bits to clear on a range in the state tree.
867 * The range [start, end] is inclusive.
868 * The tree lock is taken by this function
869 */
870static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871 unsigned long bits)
872{
873 struct extent_state *state;
874 struct rb_node *node;
875
876 btrfs_debug_check_extent_io_range(tree, start, end);
877
878 spin_lock(&tree->lock);
879again:
880 while (1) {
881 /*
882 * this search will find all the extents that end after
883 * our range starts
884 */
885 node = tree_search(tree, start);
886process_node:
887 if (!node)
888 break;
889
890 state = rb_entry(node, struct extent_state, rb_node);
891
892 if (state->start > end)
893 goto out;
894
895 if (state->state & bits) {
896 start = state->start;
897 refcount_inc(&state->refs);
898 wait_on_state(tree, state);
899 free_extent_state(state);
900 goto again;
901 }
902 start = state->end + 1;
903
904 if (start > end)
905 break;
906
907 if (!cond_resched_lock(&tree->lock)) {
908 node = rb_next(node);
909 goto process_node;
910 }
911 }
912out:
913 spin_unlock(&tree->lock);
914}
915
916static void set_state_bits(struct extent_io_tree *tree,
917 struct extent_state *state,
918 unsigned *bits, struct extent_changeset *changeset)
919{
920 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
921 int ret;
922
923 if (tree->private_data && is_data_inode(tree->private_data))
924 btrfs_set_delalloc_extent(tree->private_data, state, bits);
925
926 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927 u64 range = state->end - state->start + 1;
928 tree->dirty_bytes += range;
929 }
930 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931 BUG_ON(ret < 0);
932 state->state |= bits_to_set;
933}
934
935static void cache_state_if_flags(struct extent_state *state,
936 struct extent_state **cached_ptr,
937 unsigned flags)
938{
939 if (cached_ptr && !(*cached_ptr)) {
940 if (!flags || (state->state & flags)) {
941 *cached_ptr = state;
942 refcount_inc(&state->refs);
943 }
944 }
945}
946
947static void cache_state(struct extent_state *state,
948 struct extent_state **cached_ptr)
949{
950 return cache_state_if_flags(state, cached_ptr,
951 EXTENT_LOCKED | EXTENT_BOUNDARY);
952}
953
954/*
955 * set some bits on a range in the tree. This may require allocations or
956 * sleeping, so the gfp mask is used to indicate what is allowed.
957 *
958 * If any of the exclusive bits are set, this will fail with -EEXIST if some
959 * part of the range already has the desired bits set. The start of the
960 * existing range is returned in failed_start in this case.
961 *
962 * [start, end] is inclusive This takes the tree lock.
963 */
964
965static int __must_check
966__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
967 unsigned bits, unsigned exclusive_bits,
968 u64 *failed_start, struct extent_state **cached_state,
969 gfp_t mask, struct extent_changeset *changeset)
970{
971 struct extent_state *state;
972 struct extent_state *prealloc = NULL;
973 struct rb_node *node;
974 struct rb_node **p;
975 struct rb_node *parent;
976 int err = 0;
977 u64 last_start;
978 u64 last_end;
979
980 btrfs_debug_check_extent_io_range(tree, start, end);
981 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
982
983again:
984 if (!prealloc && gfpflags_allow_blocking(mask)) {
985 /*
986 * Don't care for allocation failure here because we might end
987 * up not needing the pre-allocated extent state at all, which
988 * is the case if we only have in the tree extent states that
989 * cover our input range and don't cover too any other range.
990 * If we end up needing a new extent state we allocate it later.
991 */
992 prealloc = alloc_extent_state(mask);
993 }
994
995 spin_lock(&tree->lock);
996 if (cached_state && *cached_state) {
997 state = *cached_state;
998 if (state->start <= start && state->end > start &&
999 extent_state_in_tree(state)) {
1000 node = &state->rb_node;
1001 goto hit_next;
1002 }
1003 }
1004 /*
1005 * this search will find all the extents that end after
1006 * our range starts.
1007 */
1008 node = tree_search_for_insert(tree, start, &p, &parent);
1009 if (!node) {
1010 prealloc = alloc_extent_state_atomic(prealloc);
1011 BUG_ON(!prealloc);
1012 err = insert_state(tree, prealloc, start, end,
1013 &p, &parent, &bits, changeset);
1014 if (err)
1015 extent_io_tree_panic(tree, err);
1016
1017 cache_state(prealloc, cached_state);
1018 prealloc = NULL;
1019 goto out;
1020 }
1021 state = rb_entry(node, struct extent_state, rb_node);
1022hit_next:
1023 last_start = state->start;
1024 last_end = state->end;
1025
1026 /*
1027 * | ---- desired range ---- |
1028 * | state |
1029 *
1030 * Just lock what we found and keep going
1031 */
1032 if (state->start == start && state->end <= end) {
1033 if (state->state & exclusive_bits) {
1034 *failed_start = state->start;
1035 err = -EEXIST;
1036 goto out;
1037 }
1038
1039 set_state_bits(tree, state, &bits, changeset);
1040 cache_state(state, cached_state);
1041 merge_state(tree, state);
1042 if (last_end == (u64)-1)
1043 goto out;
1044 start = last_end + 1;
1045 state = next_state(state);
1046 if (start < end && state && state->start == start &&
1047 !need_resched())
1048 goto hit_next;
1049 goto search_again;
1050 }
1051
1052 /*
1053 * | ---- desired range ---- |
1054 * | state |
1055 * or
1056 * | ------------- state -------------- |
1057 *
1058 * We need to split the extent we found, and may flip bits on
1059 * second half.
1060 *
1061 * If the extent we found extends past our
1062 * range, we just split and search again. It'll get split
1063 * again the next time though.
1064 *
1065 * If the extent we found is inside our range, we set the
1066 * desired bit on it.
1067 */
1068 if (state->start < start) {
1069 if (state->state & exclusive_bits) {
1070 *failed_start = start;
1071 err = -EEXIST;
1072 goto out;
1073 }
1074
1075 /*
1076 * If this extent already has all the bits we want set, then
1077 * skip it, not necessary to split it or do anything with it.
1078 */
1079 if ((state->state & bits) == bits) {
1080 start = state->end + 1;
1081 cache_state(state, cached_state);
1082 goto search_again;
1083 }
1084
1085 prealloc = alloc_extent_state_atomic(prealloc);
1086 BUG_ON(!prealloc);
1087 err = split_state(tree, state, prealloc, start);
1088 if (err)
1089 extent_io_tree_panic(tree, err);
1090
1091 prealloc = NULL;
1092 if (err)
1093 goto out;
1094 if (state->end <= end) {
1095 set_state_bits(tree, state, &bits, changeset);
1096 cache_state(state, cached_state);
1097 merge_state(tree, state);
1098 if (last_end == (u64)-1)
1099 goto out;
1100 start = last_end + 1;
1101 state = next_state(state);
1102 if (start < end && state && state->start == start &&
1103 !need_resched())
1104 goto hit_next;
1105 }
1106 goto search_again;
1107 }
1108 /*
1109 * | ---- desired range ---- |
1110 * | state | or | state |
1111 *
1112 * There's a hole, we need to insert something in it and
1113 * ignore the extent we found.
1114 */
1115 if (state->start > start) {
1116 u64 this_end;
1117 if (end < last_start)
1118 this_end = end;
1119 else
1120 this_end = last_start - 1;
1121
1122 prealloc = alloc_extent_state_atomic(prealloc);
1123 BUG_ON(!prealloc);
1124
1125 /*
1126 * Avoid to free 'prealloc' if it can be merged with
1127 * the later extent.
1128 */
1129 err = insert_state(tree, prealloc, start, this_end,
1130 NULL, NULL, &bits, changeset);
1131 if (err)
1132 extent_io_tree_panic(tree, err);
1133
1134 cache_state(prealloc, cached_state);
1135 prealloc = NULL;
1136 start = this_end + 1;
1137 goto search_again;
1138 }
1139 /*
1140 * | ---- desired range ---- |
1141 * | state |
1142 * We need to split the extent, and set the bit
1143 * on the first half
1144 */
1145 if (state->start <= end && state->end > end) {
1146 if (state->state & exclusive_bits) {
1147 *failed_start = start;
1148 err = -EEXIST;
1149 goto out;
1150 }
1151
1152 prealloc = alloc_extent_state_atomic(prealloc);
1153 BUG_ON(!prealloc);
1154 err = split_state(tree, state, prealloc, end + 1);
1155 if (err)
1156 extent_io_tree_panic(tree, err);
1157
1158 set_state_bits(tree, prealloc, &bits, changeset);
1159 cache_state(prealloc, cached_state);
1160 merge_state(tree, prealloc);
1161 prealloc = NULL;
1162 goto out;
1163 }
1164
1165search_again:
1166 if (start > end)
1167 goto out;
1168 spin_unlock(&tree->lock);
1169 if (gfpflags_allow_blocking(mask))
1170 cond_resched();
1171 goto again;
1172
1173out:
1174 spin_unlock(&tree->lock);
1175 if (prealloc)
1176 free_extent_state(prealloc);
1177
1178 return err;
1179
1180}
1181
1182int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1183 unsigned bits, u64 * failed_start,
1184 struct extent_state **cached_state, gfp_t mask)
1185{
1186 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1187 cached_state, mask, NULL);
1188}
1189
1190
1191/**
1192 * convert_extent_bit - convert all bits in a given range from one bit to
1193 * another
1194 * @tree: the io tree to search
1195 * @start: the start offset in bytes
1196 * @end: the end offset in bytes (inclusive)
1197 * @bits: the bits to set in this range
1198 * @clear_bits: the bits to clear in this range
1199 * @cached_state: state that we're going to cache
1200 *
1201 * This will go through and set bits for the given range. If any states exist
1202 * already in this range they are set with the given bit and cleared of the
1203 * clear_bits. This is only meant to be used by things that are mergeable, ie
1204 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1205 * boundary bits like LOCK.
1206 *
1207 * All allocations are done with GFP_NOFS.
1208 */
1209int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1210 unsigned bits, unsigned clear_bits,
1211 struct extent_state **cached_state)
1212{
1213 struct extent_state *state;
1214 struct extent_state *prealloc = NULL;
1215 struct rb_node *node;
1216 struct rb_node **p;
1217 struct rb_node *parent;
1218 int err = 0;
1219 u64 last_start;
1220 u64 last_end;
1221 bool first_iteration = true;
1222
1223 btrfs_debug_check_extent_io_range(tree, start, end);
1224 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225 clear_bits);
1226
1227again:
1228 if (!prealloc) {
1229 /*
1230 * Best effort, don't worry if extent state allocation fails
1231 * here for the first iteration. We might have a cached state
1232 * that matches exactly the target range, in which case no
1233 * extent state allocations are needed. We'll only know this
1234 * after locking the tree.
1235 */
1236 prealloc = alloc_extent_state(GFP_NOFS);
1237 if (!prealloc && !first_iteration)
1238 return -ENOMEM;
1239 }
1240
1241 spin_lock(&tree->lock);
1242 if (cached_state && *cached_state) {
1243 state = *cached_state;
1244 if (state->start <= start && state->end > start &&
1245 extent_state_in_tree(state)) {
1246 node = &state->rb_node;
1247 goto hit_next;
1248 }
1249 }
1250
1251 /*
1252 * this search will find all the extents that end after
1253 * our range starts.
1254 */
1255 node = tree_search_for_insert(tree, start, &p, &parent);
1256 if (!node) {
1257 prealloc = alloc_extent_state_atomic(prealloc);
1258 if (!prealloc) {
1259 err = -ENOMEM;
1260 goto out;
1261 }
1262 err = insert_state(tree, prealloc, start, end,
1263 &p, &parent, &bits, NULL);
1264 if (err)
1265 extent_io_tree_panic(tree, err);
1266 cache_state(prealloc, cached_state);
1267 prealloc = NULL;
1268 goto out;
1269 }
1270 state = rb_entry(node, struct extent_state, rb_node);
1271hit_next:
1272 last_start = state->start;
1273 last_end = state->end;
1274
1275 /*
1276 * | ---- desired range ---- |
1277 * | state |
1278 *
1279 * Just lock what we found and keep going
1280 */
1281 if (state->start == start && state->end <= end) {
1282 set_state_bits(tree, state, &bits, NULL);
1283 cache_state(state, cached_state);
1284 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1285 if (last_end == (u64)-1)
1286 goto out;
1287 start = last_end + 1;
1288 if (start < end && state && state->start == start &&
1289 !need_resched())
1290 goto hit_next;
1291 goto search_again;
1292 }
1293
1294 /*
1295 * | ---- desired range ---- |
1296 * | state |
1297 * or
1298 * | ------------- state -------------- |
1299 *
1300 * We need to split the extent we found, and may flip bits on
1301 * second half.
1302 *
1303 * If the extent we found extends past our
1304 * range, we just split and search again. It'll get split
1305 * again the next time though.
1306 *
1307 * If the extent we found is inside our range, we set the
1308 * desired bit on it.
1309 */
1310 if (state->start < start) {
1311 prealloc = alloc_extent_state_atomic(prealloc);
1312 if (!prealloc) {
1313 err = -ENOMEM;
1314 goto out;
1315 }
1316 err = split_state(tree, state, prealloc, start);
1317 if (err)
1318 extent_io_tree_panic(tree, err);
1319 prealloc = NULL;
1320 if (err)
1321 goto out;
1322 if (state->end <= end) {
1323 set_state_bits(tree, state, &bits, NULL);
1324 cache_state(state, cached_state);
1325 state = clear_state_bit(tree, state, &clear_bits, 0,
1326 NULL);
1327 if (last_end == (u64)-1)
1328 goto out;
1329 start = last_end + 1;
1330 if (start < end && state && state->start == start &&
1331 !need_resched())
1332 goto hit_next;
1333 }
1334 goto search_again;
1335 }
1336 /*
1337 * | ---- desired range ---- |
1338 * | state | or | state |
1339 *
1340 * There's a hole, we need to insert something in it and
1341 * ignore the extent we found.
1342 */
1343 if (state->start > start) {
1344 u64 this_end;
1345 if (end < last_start)
1346 this_end = end;
1347 else
1348 this_end = last_start - 1;
1349
1350 prealloc = alloc_extent_state_atomic(prealloc);
1351 if (!prealloc) {
1352 err = -ENOMEM;
1353 goto out;
1354 }
1355
1356 /*
1357 * Avoid to free 'prealloc' if it can be merged with
1358 * the later extent.
1359 */
1360 err = insert_state(tree, prealloc, start, this_end,
1361 NULL, NULL, &bits, NULL);
1362 if (err)
1363 extent_io_tree_panic(tree, err);
1364 cache_state(prealloc, cached_state);
1365 prealloc = NULL;
1366 start = this_end + 1;
1367 goto search_again;
1368 }
1369 /*
1370 * | ---- desired range ---- |
1371 * | state |
1372 * We need to split the extent, and set the bit
1373 * on the first half
1374 */
1375 if (state->start <= end && state->end > end) {
1376 prealloc = alloc_extent_state_atomic(prealloc);
1377 if (!prealloc) {
1378 err = -ENOMEM;
1379 goto out;
1380 }
1381
1382 err = split_state(tree, state, prealloc, end + 1);
1383 if (err)
1384 extent_io_tree_panic(tree, err);
1385
1386 set_state_bits(tree, prealloc, &bits, NULL);
1387 cache_state(prealloc, cached_state);
1388 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1389 prealloc = NULL;
1390 goto out;
1391 }
1392
1393search_again:
1394 if (start > end)
1395 goto out;
1396 spin_unlock(&tree->lock);
1397 cond_resched();
1398 first_iteration = false;
1399 goto again;
1400
1401out:
1402 spin_unlock(&tree->lock);
1403 if (prealloc)
1404 free_extent_state(prealloc);
1405
1406 return err;
1407}
1408
1409/* wrappers around set/clear extent bit */
1410int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1411 unsigned bits, struct extent_changeset *changeset)
1412{
1413 /*
1414 * We don't support EXTENT_LOCKED yet, as current changeset will
1415 * record any bits changed, so for EXTENT_LOCKED case, it will
1416 * either fail with -EEXIST or changeset will record the whole
1417 * range.
1418 */
1419 BUG_ON(bits & EXTENT_LOCKED);
1420
1421 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422 changeset);
1423}
1424
1425int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426 unsigned bits)
1427{
1428 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429 GFP_NOWAIT, NULL);
1430}
1431
1432int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433 unsigned bits, int wake, int delete,
1434 struct extent_state **cached)
1435{
1436 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1437 cached, GFP_NOFS, NULL);
1438}
1439
1440int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1441 unsigned bits, struct extent_changeset *changeset)
1442{
1443 /*
1444 * Don't support EXTENT_LOCKED case, same reason as
1445 * set_record_extent_bits().
1446 */
1447 BUG_ON(bits & EXTENT_LOCKED);
1448
1449 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1450 changeset);
1451}
1452
1453/*
1454 * either insert or lock state struct between start and end use mask to tell
1455 * us if waiting is desired.
1456 */
1457int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1458 struct extent_state **cached_state)
1459{
1460 int err;
1461 u64 failed_start;
1462
1463 while (1) {
1464 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465 EXTENT_LOCKED, &failed_start,
1466 cached_state, GFP_NOFS, NULL);
1467 if (err == -EEXIST) {
1468 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469 start = failed_start;
1470 } else
1471 break;
1472 WARN_ON(start > end);
1473 }
1474 return err;
1475}
1476
1477int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1478{
1479 int err;
1480 u64 failed_start;
1481
1482 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483 &failed_start, NULL, GFP_NOFS, NULL);
1484 if (err == -EEXIST) {
1485 if (failed_start > start)
1486 clear_extent_bit(tree, start, failed_start - 1,
1487 EXTENT_LOCKED, 1, 0, NULL);
1488 return 0;
1489 }
1490 return 1;
1491}
1492
1493void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1494{
1495 unsigned long index = start >> PAGE_SHIFT;
1496 unsigned long end_index = end >> PAGE_SHIFT;
1497 struct page *page;
1498
1499 while (index <= end_index) {
1500 page = find_get_page(inode->i_mapping, index);
1501 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502 clear_page_dirty_for_io(page);
1503 put_page(page);
1504 index++;
1505 }
1506}
1507
1508void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1509{
1510 unsigned long index = start >> PAGE_SHIFT;
1511 unsigned long end_index = end >> PAGE_SHIFT;
1512 struct page *page;
1513
1514 while (index <= end_index) {
1515 page = find_get_page(inode->i_mapping, index);
1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1517 __set_page_dirty_nobuffers(page);
1518 account_page_redirty(page);
1519 put_page(page);
1520 index++;
1521 }
1522}
1523
1524/* find the first state struct with 'bits' set after 'start', and
1525 * return it. tree->lock must be held. NULL will returned if
1526 * nothing was found after 'start'
1527 */
1528static struct extent_state *
1529find_first_extent_bit_state(struct extent_io_tree *tree,
1530 u64 start, unsigned bits)
1531{
1532 struct rb_node *node;
1533 struct extent_state *state;
1534
1535 /*
1536 * this search will find all the extents that end after
1537 * our range starts.
1538 */
1539 node = tree_search(tree, start);
1540 if (!node)
1541 goto out;
1542
1543 while (1) {
1544 state = rb_entry(node, struct extent_state, rb_node);
1545 if (state->end >= start && (state->state & bits))
1546 return state;
1547
1548 node = rb_next(node);
1549 if (!node)
1550 break;
1551 }
1552out:
1553 return NULL;
1554}
1555
1556/*
1557 * find the first offset in the io tree with 'bits' set. zero is
1558 * returned if we find something, and *start_ret and *end_ret are
1559 * set to reflect the state struct that was found.
1560 *
1561 * If nothing was found, 1 is returned. If found something, return 0.
1562 */
1563int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1564 u64 *start_ret, u64 *end_ret, unsigned bits,
1565 struct extent_state **cached_state)
1566{
1567 struct extent_state *state;
1568 int ret = 1;
1569
1570 spin_lock(&tree->lock);
1571 if (cached_state && *cached_state) {
1572 state = *cached_state;
1573 if (state->end == start - 1 && extent_state_in_tree(state)) {
1574 while ((state = next_state(state)) != NULL) {
1575 if (state->state & bits)
1576 goto got_it;
1577 }
1578 free_extent_state(*cached_state);
1579 *cached_state = NULL;
1580 goto out;
1581 }
1582 free_extent_state(*cached_state);
1583 *cached_state = NULL;
1584 }
1585
1586 state = find_first_extent_bit_state(tree, start, bits);
1587got_it:
1588 if (state) {
1589 cache_state_if_flags(state, cached_state, 0);
1590 *start_ret = state->start;
1591 *end_ret = state->end;
1592 ret = 0;
1593 }
1594out:
1595 spin_unlock(&tree->lock);
1596 return ret;
1597}
1598
1599/**
1600 * find_contiguous_extent_bit: find a contiguous area of bits
1601 * @tree - io tree to check
1602 * @start - offset to start the search from
1603 * @start_ret - the first offset we found with the bits set
1604 * @end_ret - the final contiguous range of the bits that were set
1605 * @bits - bits to look for
1606 *
1607 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608 * to set bits appropriately, and then merge them again. During this time it
1609 * will drop the tree->lock, so use this helper if you want to find the actual
1610 * contiguous area for given bits. We will search to the first bit we find, and
1611 * then walk down the tree until we find a non-contiguous area. The area
1612 * returned will be the full contiguous area with the bits set.
1613 */
1614int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615 u64 *start_ret, u64 *end_ret, unsigned bits)
1616{
1617 struct extent_state *state;
1618 int ret = 1;
1619
1620 spin_lock(&tree->lock);
1621 state = find_first_extent_bit_state(tree, start, bits);
1622 if (state) {
1623 *start_ret = state->start;
1624 *end_ret = state->end;
1625 while ((state = next_state(state)) != NULL) {
1626 if (state->start > (*end_ret + 1))
1627 break;
1628 *end_ret = state->end;
1629 }
1630 ret = 0;
1631 }
1632 spin_unlock(&tree->lock);
1633 return ret;
1634}
1635
1636/**
1637 * find_first_clear_extent_bit - find the first range that has @bits not set.
1638 * This range could start before @start.
1639 *
1640 * @tree - the tree to search
1641 * @start - the offset at/after which the found extent should start
1642 * @start_ret - records the beginning of the range
1643 * @end_ret - records the end of the range (inclusive)
1644 * @bits - the set of bits which must be unset
1645 *
1646 * Since unallocated range is also considered one which doesn't have the bits
1647 * set it's possible that @end_ret contains -1, this happens in case the range
1648 * spans (last_range_end, end of device]. In this case it's up to the caller to
1649 * trim @end_ret to the appropriate size.
1650 */
1651void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652 u64 *start_ret, u64 *end_ret, unsigned bits)
1653{
1654 struct extent_state *state;
1655 struct rb_node *node, *prev = NULL, *next;
1656
1657 spin_lock(&tree->lock);
1658
1659 /* Find first extent with bits cleared */
1660 while (1) {
1661 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1662 if (!node && !next && !prev) {
1663 /*
1664 * Tree is completely empty, send full range and let
1665 * caller deal with it
1666 */
1667 *start_ret = 0;
1668 *end_ret = -1;
1669 goto out;
1670 } else if (!node && !next) {
1671 /*
1672 * We are past the last allocated chunk, set start at
1673 * the end of the last extent.
1674 */
1675 state = rb_entry(prev, struct extent_state, rb_node);
1676 *start_ret = state->end + 1;
1677 *end_ret = -1;
1678 goto out;
1679 } else if (!node) {
1680 node = next;
1681 }
1682 /*
1683 * At this point 'node' either contains 'start' or start is
1684 * before 'node'
1685 */
1686 state = rb_entry(node, struct extent_state, rb_node);
1687
1688 if (in_range(start, state->start, state->end - state->start + 1)) {
1689 if (state->state & bits) {
1690 /*
1691 * |--range with bits sets--|
1692 * |
1693 * start
1694 */
1695 start = state->end + 1;
1696 } else {
1697 /*
1698 * 'start' falls within a range that doesn't
1699 * have the bits set, so take its start as
1700 * the beginning of the desired range
1701 *
1702 * |--range with bits cleared----|
1703 * |
1704 * start
1705 */
1706 *start_ret = state->start;
1707 break;
1708 }
1709 } else {
1710 /*
1711 * |---prev range---|---hole/unset---|---node range---|
1712 * |
1713 * start
1714 *
1715 * or
1716 *
1717 * |---hole/unset--||--first node--|
1718 * 0 |
1719 * start
1720 */
1721 if (prev) {
1722 state = rb_entry(prev, struct extent_state,
1723 rb_node);
1724 *start_ret = state->end + 1;
1725 } else {
1726 *start_ret = 0;
1727 }
1728 break;
1729 }
1730 }
1731
1732 /*
1733 * Find the longest stretch from start until an entry which has the
1734 * bits set
1735 */
1736 while (1) {
1737 state = rb_entry(node, struct extent_state, rb_node);
1738 if (state->end >= start && !(state->state & bits)) {
1739 *end_ret = state->end;
1740 } else {
1741 *end_ret = state->start - 1;
1742 break;
1743 }
1744
1745 node = rb_next(node);
1746 if (!node)
1747 break;
1748 }
1749out:
1750 spin_unlock(&tree->lock);
1751}
1752
1753/*
1754 * find a contiguous range of bytes in the file marked as delalloc, not
1755 * more than 'max_bytes'. start and end are used to return the range,
1756 *
1757 * true is returned if we find something, false if nothing was in the tree
1758 */
1759bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760 u64 *end, u64 max_bytes,
1761 struct extent_state **cached_state)
1762{
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 bool found = false;
1767 u64 total_bytes = 0;
1768
1769 spin_lock(&tree->lock);
1770
1771 /*
1772 * this search will find all the extents that end after
1773 * our range starts.
1774 */
1775 node = tree_search(tree, cur_start);
1776 if (!node) {
1777 *end = (u64)-1;
1778 goto out;
1779 }
1780
1781 while (1) {
1782 state = rb_entry(node, struct extent_state, rb_node);
1783 if (found && (state->start != cur_start ||
1784 (state->state & EXTENT_BOUNDARY))) {
1785 goto out;
1786 }
1787 if (!(state->state & EXTENT_DELALLOC)) {
1788 if (!found)
1789 *end = state->end;
1790 goto out;
1791 }
1792 if (!found) {
1793 *start = state->start;
1794 *cached_state = state;
1795 refcount_inc(&state->refs);
1796 }
1797 found = true;
1798 *end = state->end;
1799 cur_start = state->end + 1;
1800 node = rb_next(node);
1801 total_bytes += state->end - state->start + 1;
1802 if (total_bytes >= max_bytes)
1803 break;
1804 if (!node)
1805 break;
1806 }
1807out:
1808 spin_unlock(&tree->lock);
1809 return found;
1810}
1811
1812static int __process_pages_contig(struct address_space *mapping,
1813 struct page *locked_page,
1814 pgoff_t start_index, pgoff_t end_index,
1815 unsigned long page_ops, pgoff_t *index_ret);
1816
1817static noinline void __unlock_for_delalloc(struct inode *inode,
1818 struct page *locked_page,
1819 u64 start, u64 end)
1820{
1821 unsigned long index = start >> PAGE_SHIFT;
1822 unsigned long end_index = end >> PAGE_SHIFT;
1823
1824 ASSERT(locked_page);
1825 if (index == locked_page->index && end_index == index)
1826 return;
1827
1828 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829 PAGE_UNLOCK, NULL);
1830}
1831
1832static noinline int lock_delalloc_pages(struct inode *inode,
1833 struct page *locked_page,
1834 u64 delalloc_start,
1835 u64 delalloc_end)
1836{
1837 unsigned long index = delalloc_start >> PAGE_SHIFT;
1838 unsigned long index_ret = index;
1839 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1840 int ret;
1841
1842 ASSERT(locked_page);
1843 if (index == locked_page->index && index == end_index)
1844 return 0;
1845
1846 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847 end_index, PAGE_LOCK, &index_ret);
1848 if (ret == -EAGAIN)
1849 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1850 (u64)index_ret << PAGE_SHIFT);
1851 return ret;
1852}
1853
1854/*
1855 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856 * more than @max_bytes. @Start and @end are used to return the range,
1857 *
1858 * Return: true if we find something
1859 * false if nothing was in the tree
1860 */
1861EXPORT_FOR_TESTS
1862noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1863 struct page *locked_page, u64 *start,
1864 u64 *end)
1865{
1866 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1867 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1868 u64 delalloc_start;
1869 u64 delalloc_end;
1870 bool found;
1871 struct extent_state *cached_state = NULL;
1872 int ret;
1873 int loops = 0;
1874
1875again:
1876 /* step one, find a bunch of delalloc bytes starting at start */
1877 delalloc_start = *start;
1878 delalloc_end = 0;
1879 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880 max_bytes, &cached_state);
1881 if (!found || delalloc_end <= *start) {
1882 *start = delalloc_start;
1883 *end = delalloc_end;
1884 free_extent_state(cached_state);
1885 return false;
1886 }
1887
1888 /*
1889 * start comes from the offset of locked_page. We have to lock
1890 * pages in order, so we can't process delalloc bytes before
1891 * locked_page
1892 */
1893 if (delalloc_start < *start)
1894 delalloc_start = *start;
1895
1896 /*
1897 * make sure to limit the number of pages we try to lock down
1898 */
1899 if (delalloc_end + 1 - delalloc_start > max_bytes)
1900 delalloc_end = delalloc_start + max_bytes - 1;
1901
1902 /* step two, lock all the pages after the page that has start */
1903 ret = lock_delalloc_pages(inode, locked_page,
1904 delalloc_start, delalloc_end);
1905 ASSERT(!ret || ret == -EAGAIN);
1906 if (ret == -EAGAIN) {
1907 /* some of the pages are gone, lets avoid looping by
1908 * shortening the size of the delalloc range we're searching
1909 */
1910 free_extent_state(cached_state);
1911 cached_state = NULL;
1912 if (!loops) {
1913 max_bytes = PAGE_SIZE;
1914 loops = 1;
1915 goto again;
1916 } else {
1917 found = false;
1918 goto out_failed;
1919 }
1920 }
1921
1922 /* step three, lock the state bits for the whole range */
1923 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1924
1925 /* then test to make sure it is all still delalloc */
1926 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1927 EXTENT_DELALLOC, 1, cached_state);
1928 if (!ret) {
1929 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1930 &cached_state);
1931 __unlock_for_delalloc(inode, locked_page,
1932 delalloc_start, delalloc_end);
1933 cond_resched();
1934 goto again;
1935 }
1936 free_extent_state(cached_state);
1937 *start = delalloc_start;
1938 *end = delalloc_end;
1939out_failed:
1940 return found;
1941}
1942
1943static int __process_pages_contig(struct address_space *mapping,
1944 struct page *locked_page,
1945 pgoff_t start_index, pgoff_t end_index,
1946 unsigned long page_ops, pgoff_t *index_ret)
1947{
1948 unsigned long nr_pages = end_index - start_index + 1;
1949 unsigned long pages_locked = 0;
1950 pgoff_t index = start_index;
1951 struct page *pages[16];
1952 unsigned ret;
1953 int err = 0;
1954 int i;
1955
1956 if (page_ops & PAGE_LOCK) {
1957 ASSERT(page_ops == PAGE_LOCK);
1958 ASSERT(index_ret && *index_ret == start_index);
1959 }
1960
1961 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1962 mapping_set_error(mapping, -EIO);
1963
1964 while (nr_pages > 0) {
1965 ret = find_get_pages_contig(mapping, index,
1966 min_t(unsigned long,
1967 nr_pages, ARRAY_SIZE(pages)), pages);
1968 if (ret == 0) {
1969 /*
1970 * Only if we're going to lock these pages,
1971 * can we find nothing at @index.
1972 */
1973 ASSERT(page_ops & PAGE_LOCK);
1974 err = -EAGAIN;
1975 goto out;
1976 }
1977
1978 for (i = 0; i < ret; i++) {
1979 if (page_ops & PAGE_SET_PRIVATE2)
1980 SetPagePrivate2(pages[i]);
1981
1982 if (locked_page && pages[i] == locked_page) {
1983 put_page(pages[i]);
1984 pages_locked++;
1985 continue;
1986 }
1987 if (page_ops & PAGE_CLEAR_DIRTY)
1988 clear_page_dirty_for_io(pages[i]);
1989 if (page_ops & PAGE_SET_WRITEBACK)
1990 set_page_writeback(pages[i]);
1991 if (page_ops & PAGE_SET_ERROR)
1992 SetPageError(pages[i]);
1993 if (page_ops & PAGE_END_WRITEBACK)
1994 end_page_writeback(pages[i]);
1995 if (page_ops & PAGE_UNLOCK)
1996 unlock_page(pages[i]);
1997 if (page_ops & PAGE_LOCK) {
1998 lock_page(pages[i]);
1999 if (!PageDirty(pages[i]) ||
2000 pages[i]->mapping != mapping) {
2001 unlock_page(pages[i]);
2002 put_page(pages[i]);
2003 err = -EAGAIN;
2004 goto out;
2005 }
2006 }
2007 put_page(pages[i]);
2008 pages_locked++;
2009 }
2010 nr_pages -= ret;
2011 index += ret;
2012 cond_resched();
2013 }
2014out:
2015 if (err && index_ret)
2016 *index_ret = start_index + pages_locked - 1;
2017 return err;
2018}
2019
2020void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
2021 struct page *locked_page,
2022 unsigned clear_bits,
2023 unsigned long page_ops)
2024{
2025 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
2026 NULL);
2027
2028 __process_pages_contig(inode->i_mapping, locked_page,
2029 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2030 page_ops, NULL);
2031}
2032
2033/*
2034 * count the number of bytes in the tree that have a given bit(s)
2035 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2036 * cached. The total number found is returned.
2037 */
2038u64 count_range_bits(struct extent_io_tree *tree,
2039 u64 *start, u64 search_end, u64 max_bytes,
2040 unsigned bits, int contig)
2041{
2042 struct rb_node *node;
2043 struct extent_state *state;
2044 u64 cur_start = *start;
2045 u64 total_bytes = 0;
2046 u64 last = 0;
2047 int found = 0;
2048
2049 if (WARN_ON(search_end <= cur_start))
2050 return 0;
2051
2052 spin_lock(&tree->lock);
2053 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2054 total_bytes = tree->dirty_bytes;
2055 goto out;
2056 }
2057 /*
2058 * this search will find all the extents that end after
2059 * our range starts.
2060 */
2061 node = tree_search(tree, cur_start);
2062 if (!node)
2063 goto out;
2064
2065 while (1) {
2066 state = rb_entry(node, struct extent_state, rb_node);
2067 if (state->start > search_end)
2068 break;
2069 if (contig && found && state->start > last + 1)
2070 break;
2071 if (state->end >= cur_start && (state->state & bits) == bits) {
2072 total_bytes += min(search_end, state->end) + 1 -
2073 max(cur_start, state->start);
2074 if (total_bytes >= max_bytes)
2075 break;
2076 if (!found) {
2077 *start = max(cur_start, state->start);
2078 found = 1;
2079 }
2080 last = state->end;
2081 } else if (contig && found) {
2082 break;
2083 }
2084 node = rb_next(node);
2085 if (!node)
2086 break;
2087 }
2088out:
2089 spin_unlock(&tree->lock);
2090 return total_bytes;
2091}
2092
2093/*
2094 * set the private field for a given byte offset in the tree. If there isn't
2095 * an extent_state there already, this does nothing.
2096 */
2097int set_state_failrec(struct extent_io_tree *tree, u64 start,
2098 struct io_failure_record *failrec)
2099{
2100 struct rb_node *node;
2101 struct extent_state *state;
2102 int ret = 0;
2103
2104 spin_lock(&tree->lock);
2105 /*
2106 * this search will find all the extents that end after
2107 * our range starts.
2108 */
2109 node = tree_search(tree, start);
2110 if (!node) {
2111 ret = -ENOENT;
2112 goto out;
2113 }
2114 state = rb_entry(node, struct extent_state, rb_node);
2115 if (state->start != start) {
2116 ret = -ENOENT;
2117 goto out;
2118 }
2119 state->failrec = failrec;
2120out:
2121 spin_unlock(&tree->lock);
2122 return ret;
2123}
2124
2125int get_state_failrec(struct extent_io_tree *tree, u64 start,
2126 struct io_failure_record **failrec)
2127{
2128 struct rb_node *node;
2129 struct extent_state *state;
2130 int ret = 0;
2131
2132 spin_lock(&tree->lock);
2133 /*
2134 * this search will find all the extents that end after
2135 * our range starts.
2136 */
2137 node = tree_search(tree, start);
2138 if (!node) {
2139 ret = -ENOENT;
2140 goto out;
2141 }
2142 state = rb_entry(node, struct extent_state, rb_node);
2143 if (state->start != start) {
2144 ret = -ENOENT;
2145 goto out;
2146 }
2147 *failrec = state->failrec;
2148out:
2149 spin_unlock(&tree->lock);
2150 return ret;
2151}
2152
2153/*
2154 * searches a range in the state tree for a given mask.
2155 * If 'filled' == 1, this returns 1 only if every extent in the tree
2156 * has the bits set. Otherwise, 1 is returned if any bit in the
2157 * range is found set.
2158 */
2159int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2160 unsigned bits, int filled, struct extent_state *cached)
2161{
2162 struct extent_state *state = NULL;
2163 struct rb_node *node;
2164 int bitset = 0;
2165
2166 spin_lock(&tree->lock);
2167 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2168 cached->end > start)
2169 node = &cached->rb_node;
2170 else
2171 node = tree_search(tree, start);
2172 while (node && start <= end) {
2173 state = rb_entry(node, struct extent_state, rb_node);
2174
2175 if (filled && state->start > start) {
2176 bitset = 0;
2177 break;
2178 }
2179
2180 if (state->start > end)
2181 break;
2182
2183 if (state->state & bits) {
2184 bitset = 1;
2185 if (!filled)
2186 break;
2187 } else if (filled) {
2188 bitset = 0;
2189 break;
2190 }
2191
2192 if (state->end == (u64)-1)
2193 break;
2194
2195 start = state->end + 1;
2196 if (start > end)
2197 break;
2198 node = rb_next(node);
2199 if (!node) {
2200 if (filled)
2201 bitset = 0;
2202 break;
2203 }
2204 }
2205 spin_unlock(&tree->lock);
2206 return bitset;
2207}
2208
2209/*
2210 * helper function to set a given page up to date if all the
2211 * extents in the tree for that page are up to date
2212 */
2213static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2214{
2215 u64 start = page_offset(page);
2216 u64 end = start + PAGE_SIZE - 1;
2217 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2218 SetPageUptodate(page);
2219}
2220
2221int free_io_failure(struct extent_io_tree *failure_tree,
2222 struct extent_io_tree *io_tree,
2223 struct io_failure_record *rec)
2224{
2225 int ret;
2226 int err = 0;
2227
2228 set_state_failrec(failure_tree, rec->start, NULL);
2229 ret = clear_extent_bits(failure_tree, rec->start,
2230 rec->start + rec->len - 1,
2231 EXTENT_LOCKED | EXTENT_DIRTY);
2232 if (ret)
2233 err = ret;
2234
2235 ret = clear_extent_bits(io_tree, rec->start,
2236 rec->start + rec->len - 1,
2237 EXTENT_DAMAGED);
2238 if (ret && !err)
2239 err = ret;
2240
2241 kfree(rec);
2242 return err;
2243}
2244
2245/*
2246 * this bypasses the standard btrfs submit functions deliberately, as
2247 * the standard behavior is to write all copies in a raid setup. here we only
2248 * want to write the one bad copy. so we do the mapping for ourselves and issue
2249 * submit_bio directly.
2250 * to avoid any synchronization issues, wait for the data after writing, which
2251 * actually prevents the read that triggered the error from finishing.
2252 * currently, there can be no more than two copies of every data bit. thus,
2253 * exactly one rewrite is required.
2254 */
2255int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2256 u64 length, u64 logical, struct page *page,
2257 unsigned int pg_offset, int mirror_num)
2258{
2259 struct bio *bio;
2260 struct btrfs_device *dev;
2261 u64 map_length = 0;
2262 u64 sector;
2263 struct btrfs_bio *bbio = NULL;
2264 int ret;
2265
2266 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2267 BUG_ON(!mirror_num);
2268
2269 bio = btrfs_io_bio_alloc(1);
2270 bio->bi_iter.bi_size = 0;
2271 map_length = length;
2272
2273 /*
2274 * Avoid races with device replace and make sure our bbio has devices
2275 * associated to its stripes that don't go away while we are doing the
2276 * read repair operation.
2277 */
2278 btrfs_bio_counter_inc_blocked(fs_info);
2279 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2280 /*
2281 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2282 * to update all raid stripes, but here we just want to correct
2283 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2284 * stripe's dev and sector.
2285 */
2286 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2287 &map_length, &bbio, 0);
2288 if (ret) {
2289 btrfs_bio_counter_dec(fs_info);
2290 bio_put(bio);
2291 return -EIO;
2292 }
2293 ASSERT(bbio->mirror_num == 1);
2294 } else {
2295 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2296 &map_length, &bbio, mirror_num);
2297 if (ret) {
2298 btrfs_bio_counter_dec(fs_info);
2299 bio_put(bio);
2300 return -EIO;
2301 }
2302 BUG_ON(mirror_num != bbio->mirror_num);
2303 }
2304
2305 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2306 bio->bi_iter.bi_sector = sector;
2307 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2308 btrfs_put_bbio(bbio);
2309 if (!dev || !dev->bdev ||
2310 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2311 btrfs_bio_counter_dec(fs_info);
2312 bio_put(bio);
2313 return -EIO;
2314 }
2315 bio_set_dev(bio, dev->bdev);
2316 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2317 bio_add_page(bio, page, length, pg_offset);
2318
2319 if (btrfsic_submit_bio_wait(bio)) {
2320 /* try to remap that extent elsewhere? */
2321 btrfs_bio_counter_dec(fs_info);
2322 bio_put(bio);
2323 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2324 return -EIO;
2325 }
2326
2327 btrfs_info_rl_in_rcu(fs_info,
2328 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2329 ino, start,
2330 rcu_str_deref(dev->name), sector);
2331 btrfs_bio_counter_dec(fs_info);
2332 bio_put(bio);
2333 return 0;
2334}
2335
2336int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2337{
2338 struct btrfs_fs_info *fs_info = eb->fs_info;
2339 u64 start = eb->start;
2340 int i, num_pages = num_extent_pages(eb);
2341 int ret = 0;
2342
2343 if (sb_rdonly(fs_info->sb))
2344 return -EROFS;
2345
2346 for (i = 0; i < num_pages; i++) {
2347 struct page *p = eb->pages[i];
2348
2349 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2350 start - page_offset(p), mirror_num);
2351 if (ret)
2352 break;
2353 start += PAGE_SIZE;
2354 }
2355
2356 return ret;
2357}
2358
2359/*
2360 * each time an IO finishes, we do a fast check in the IO failure tree
2361 * to see if we need to process or clean up an io_failure_record
2362 */
2363int clean_io_failure(struct btrfs_fs_info *fs_info,
2364 struct extent_io_tree *failure_tree,
2365 struct extent_io_tree *io_tree, u64 start,
2366 struct page *page, u64 ino, unsigned int pg_offset)
2367{
2368 u64 private;
2369 struct io_failure_record *failrec;
2370 struct extent_state *state;
2371 int num_copies;
2372 int ret;
2373
2374 private = 0;
2375 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2376 EXTENT_DIRTY, 0);
2377 if (!ret)
2378 return 0;
2379
2380 ret = get_state_failrec(failure_tree, start, &failrec);
2381 if (ret)
2382 return 0;
2383
2384 BUG_ON(!failrec->this_mirror);
2385
2386 if (failrec->in_validation) {
2387 /* there was no real error, just free the record */
2388 btrfs_debug(fs_info,
2389 "clean_io_failure: freeing dummy error at %llu",
2390 failrec->start);
2391 goto out;
2392 }
2393 if (sb_rdonly(fs_info->sb))
2394 goto out;
2395
2396 spin_lock(&io_tree->lock);
2397 state = find_first_extent_bit_state(io_tree,
2398 failrec->start,
2399 EXTENT_LOCKED);
2400 spin_unlock(&io_tree->lock);
2401
2402 if (state && state->start <= failrec->start &&
2403 state->end >= failrec->start + failrec->len - 1) {
2404 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2405 failrec->len);
2406 if (num_copies > 1) {
2407 repair_io_failure(fs_info, ino, start, failrec->len,
2408 failrec->logical, page, pg_offset,
2409 failrec->failed_mirror);
2410 }
2411 }
2412
2413out:
2414 free_io_failure(failure_tree, io_tree, failrec);
2415
2416 return 0;
2417}
2418
2419/*
2420 * Can be called when
2421 * - hold extent lock
2422 * - under ordered extent
2423 * - the inode is freeing
2424 */
2425void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2426{
2427 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2428 struct io_failure_record *failrec;
2429 struct extent_state *state, *next;
2430
2431 if (RB_EMPTY_ROOT(&failure_tree->state))
2432 return;
2433
2434 spin_lock(&failure_tree->lock);
2435 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2436 while (state) {
2437 if (state->start > end)
2438 break;
2439
2440 ASSERT(state->end <= end);
2441
2442 next = next_state(state);
2443
2444 failrec = state->failrec;
2445 free_extent_state(state);
2446 kfree(failrec);
2447
2448 state = next;
2449 }
2450 spin_unlock(&failure_tree->lock);
2451}
2452
2453int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2454 struct io_failure_record **failrec_ret)
2455{
2456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2457 struct io_failure_record *failrec;
2458 struct extent_map *em;
2459 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2460 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2461 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2462 int ret;
2463 u64 logical;
2464
2465 ret = get_state_failrec(failure_tree, start, &failrec);
2466 if (ret) {
2467 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2468 if (!failrec)
2469 return -ENOMEM;
2470
2471 failrec->start = start;
2472 failrec->len = end - start + 1;
2473 failrec->this_mirror = 0;
2474 failrec->bio_flags = 0;
2475 failrec->in_validation = 0;
2476
2477 read_lock(&em_tree->lock);
2478 em = lookup_extent_mapping(em_tree, start, failrec->len);
2479 if (!em) {
2480 read_unlock(&em_tree->lock);
2481 kfree(failrec);
2482 return -EIO;
2483 }
2484
2485 if (em->start > start || em->start + em->len <= start) {
2486 free_extent_map(em);
2487 em = NULL;
2488 }
2489 read_unlock(&em_tree->lock);
2490 if (!em) {
2491 kfree(failrec);
2492 return -EIO;
2493 }
2494
2495 logical = start - em->start;
2496 logical = em->block_start + logical;
2497 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2498 logical = em->block_start;
2499 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2500 extent_set_compress_type(&failrec->bio_flags,
2501 em->compress_type);
2502 }
2503
2504 btrfs_debug(fs_info,
2505 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2506 logical, start, failrec->len);
2507
2508 failrec->logical = logical;
2509 free_extent_map(em);
2510
2511 /* set the bits in the private failure tree */
2512 ret = set_extent_bits(failure_tree, start, end,
2513 EXTENT_LOCKED | EXTENT_DIRTY);
2514 if (ret >= 0)
2515 ret = set_state_failrec(failure_tree, start, failrec);
2516 /* set the bits in the inode's tree */
2517 if (ret >= 0)
2518 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2519 if (ret < 0) {
2520 kfree(failrec);
2521 return ret;
2522 }
2523 } else {
2524 btrfs_debug(fs_info,
2525 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2526 failrec->logical, failrec->start, failrec->len,
2527 failrec->in_validation);
2528 /*
2529 * when data can be on disk more than twice, add to failrec here
2530 * (e.g. with a list for failed_mirror) to make
2531 * clean_io_failure() clean all those errors at once.
2532 */
2533 }
2534
2535 *failrec_ret = failrec;
2536
2537 return 0;
2538}
2539
2540static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2541 struct io_failure_record *failrec,
2542 int failed_mirror)
2543{
2544 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2545 int num_copies;
2546
2547 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2548 if (num_copies == 1) {
2549 /*
2550 * we only have a single copy of the data, so don't bother with
2551 * all the retry and error correction code that follows. no
2552 * matter what the error is, it is very likely to persist.
2553 */
2554 btrfs_debug(fs_info,
2555 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2556 num_copies, failrec->this_mirror, failed_mirror);
2557 return false;
2558 }
2559
2560 /*
2561 * there are two premises:
2562 * a) deliver good data to the caller
2563 * b) correct the bad sectors on disk
2564 */
2565 if (needs_validation) {
2566 /*
2567 * to fulfill b), we need to know the exact failing sectors, as
2568 * we don't want to rewrite any more than the failed ones. thus,
2569 * we need separate read requests for the failed bio
2570 *
2571 * if the following BUG_ON triggers, our validation request got
2572 * merged. we need separate requests for our algorithm to work.
2573 */
2574 BUG_ON(failrec->in_validation);
2575 failrec->in_validation = 1;
2576 failrec->this_mirror = failed_mirror;
2577 } else {
2578 /*
2579 * we're ready to fulfill a) and b) alongside. get a good copy
2580 * of the failed sector and if we succeed, we have setup
2581 * everything for repair_io_failure to do the rest for us.
2582 */
2583 if (failrec->in_validation) {
2584 BUG_ON(failrec->this_mirror != failed_mirror);
2585 failrec->in_validation = 0;
2586 failrec->this_mirror = 0;
2587 }
2588 failrec->failed_mirror = failed_mirror;
2589 failrec->this_mirror++;
2590 if (failrec->this_mirror == failed_mirror)
2591 failrec->this_mirror++;
2592 }
2593
2594 if (failrec->this_mirror > num_copies) {
2595 btrfs_debug(fs_info,
2596 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2597 num_copies, failrec->this_mirror, failed_mirror);
2598 return false;
2599 }
2600
2601 return true;
2602}
2603
2604
2605struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2606 struct io_failure_record *failrec,
2607 struct page *page, int pg_offset, int icsum,
2608 bio_end_io_t *endio_func, void *data)
2609{
2610 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2611 struct bio *bio;
2612 struct btrfs_io_bio *btrfs_failed_bio;
2613 struct btrfs_io_bio *btrfs_bio;
2614
2615 bio = btrfs_io_bio_alloc(1);
2616 bio->bi_end_io = endio_func;
2617 bio->bi_iter.bi_sector = failrec->logical >> 9;
2618 bio->bi_iter.bi_size = 0;
2619 bio->bi_private = data;
2620
2621 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2622 if (btrfs_failed_bio->csum) {
2623 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2624
2625 btrfs_bio = btrfs_io_bio(bio);
2626 btrfs_bio->csum = btrfs_bio->csum_inline;
2627 icsum *= csum_size;
2628 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2629 csum_size);
2630 }
2631
2632 bio_add_page(bio, page, failrec->len, pg_offset);
2633 btrfs_io_bio(bio)->logical = failrec->start;
2634 btrfs_io_bio(bio)->iter = bio->bi_iter;
2635
2636 return bio;
2637}
2638
2639static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2640{
2641 struct bio_vec *bvec;
2642 u64 len = 0;
2643 int i;
2644
2645 /*
2646 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2647 * I/O error. In this case, we already know exactly which sector was
2648 * bad, so we don't need to validate.
2649 */
2650 if (bio->bi_status == BLK_STS_OK)
2651 return false;
2652
2653 /*
2654 * We need to validate each sector individually if the failed I/O was
2655 * for multiple sectors.
2656 */
2657 bio_for_each_bvec_all(bvec, bio, i) {
2658 len += bvec->bv_len;
2659 if (len > inode->i_sb->s_blocksize)
2660 return true;
2661 }
2662 return false;
2663}
2664
2665/*
2666 * This is a generic handler for readpage errors. If other copies exist, read
2667 * those and write back good data to the failed position. Does not investigate
2668 * in remapping the failed extent elsewhere, hoping the device will be smart
2669 * enough to do this as needed
2670 */
2671static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2672 struct page *page, u64 start, u64 end,
2673 int failed_mirror)
2674{
2675 struct io_failure_record *failrec;
2676 struct inode *inode = page->mapping->host;
2677 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2678 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2679 bool need_validation;
2680 struct bio *bio;
2681 int read_mode = 0;
2682 blk_status_t status;
2683 int ret;
2684
2685 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2686
2687 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2688 if (ret)
2689 return ret;
2690
2691 need_validation = btrfs_io_needs_validation(inode, failed_bio);
2692
2693 if (!btrfs_check_repairable(inode, need_validation, failrec,
2694 failed_mirror)) {
2695 free_io_failure(failure_tree, tree, failrec);
2696 return -EIO;
2697 }
2698
2699 if (need_validation)
2700 read_mode |= REQ_FAILFAST_DEV;
2701
2702 phy_offset >>= inode->i_sb->s_blocksize_bits;
2703 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2704 start - page_offset(page),
2705 (int)phy_offset, failed_bio->bi_end_io,
2706 NULL);
2707 bio->bi_opf = REQ_OP_READ | read_mode;
2708
2709 btrfs_debug(btrfs_sb(inode->i_sb),
2710 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2711 read_mode, failrec->this_mirror, failrec->in_validation);
2712
2713 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2714 failrec->bio_flags);
2715 if (status) {
2716 free_io_failure(failure_tree, tree, failrec);
2717 bio_put(bio);
2718 ret = blk_status_to_errno(status);
2719 }
2720
2721 return ret;
2722}
2723
2724/* lots and lots of room for performance fixes in the end_bio funcs */
2725
2726void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2727{
2728 int uptodate = (err == 0);
2729 int ret = 0;
2730
2731 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2732
2733 if (!uptodate) {
2734 ClearPageUptodate(page);
2735 SetPageError(page);
2736 ret = err < 0 ? err : -EIO;
2737 mapping_set_error(page->mapping, ret);
2738 }
2739}
2740
2741/*
2742 * after a writepage IO is done, we need to:
2743 * clear the uptodate bits on error
2744 * clear the writeback bits in the extent tree for this IO
2745 * end_page_writeback if the page has no more pending IO
2746 *
2747 * Scheduling is not allowed, so the extent state tree is expected
2748 * to have one and only one object corresponding to this IO.
2749 */
2750static void end_bio_extent_writepage(struct bio *bio)
2751{
2752 int error = blk_status_to_errno(bio->bi_status);
2753 struct bio_vec *bvec;
2754 u64 start;
2755 u64 end;
2756 struct bvec_iter_all iter_all;
2757
2758 ASSERT(!bio_flagged(bio, BIO_CLONED));
2759 bio_for_each_segment_all(bvec, bio, iter_all) {
2760 struct page *page = bvec->bv_page;
2761 struct inode *inode = page->mapping->host;
2762 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2763
2764 /* We always issue full-page reads, but if some block
2765 * in a page fails to read, blk_update_request() will
2766 * advance bv_offset and adjust bv_len to compensate.
2767 * Print a warning for nonzero offsets, and an error
2768 * if they don't add up to a full page. */
2769 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2770 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2771 btrfs_err(fs_info,
2772 "partial page write in btrfs with offset %u and length %u",
2773 bvec->bv_offset, bvec->bv_len);
2774 else
2775 btrfs_info(fs_info,
2776 "incomplete page write in btrfs with offset %u and length %u",
2777 bvec->bv_offset, bvec->bv_len);
2778 }
2779
2780 start = page_offset(page);
2781 end = start + bvec->bv_offset + bvec->bv_len - 1;
2782
2783 end_extent_writepage(page, error, start, end);
2784 end_page_writeback(page);
2785 }
2786
2787 bio_put(bio);
2788}
2789
2790static void
2791endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2792 int uptodate)
2793{
2794 struct extent_state *cached = NULL;
2795 u64 end = start + len - 1;
2796
2797 if (uptodate && tree->track_uptodate)
2798 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2799 unlock_extent_cached_atomic(tree, start, end, &cached);
2800}
2801
2802/*
2803 * after a readpage IO is done, we need to:
2804 * clear the uptodate bits on error
2805 * set the uptodate bits if things worked
2806 * set the page up to date if all extents in the tree are uptodate
2807 * clear the lock bit in the extent tree
2808 * unlock the page if there are no other extents locked for it
2809 *
2810 * Scheduling is not allowed, so the extent state tree is expected
2811 * to have one and only one object corresponding to this IO.
2812 */
2813static void end_bio_extent_readpage(struct bio *bio)
2814{
2815 struct bio_vec *bvec;
2816 int uptodate = !bio->bi_status;
2817 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2818 struct extent_io_tree *tree, *failure_tree;
2819 u64 offset = 0;
2820 u64 start;
2821 u64 end;
2822 u64 len;
2823 u64 extent_start = 0;
2824 u64 extent_len = 0;
2825 int mirror;
2826 int ret;
2827 struct bvec_iter_all iter_all;
2828
2829 ASSERT(!bio_flagged(bio, BIO_CLONED));
2830 bio_for_each_segment_all(bvec, bio, iter_all) {
2831 struct page *page = bvec->bv_page;
2832 struct inode *inode = page->mapping->host;
2833 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2834 bool data_inode = btrfs_ino(BTRFS_I(inode))
2835 != BTRFS_BTREE_INODE_OBJECTID;
2836
2837 btrfs_debug(fs_info,
2838 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2839 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2840 io_bio->mirror_num);
2841 tree = &BTRFS_I(inode)->io_tree;
2842 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2843
2844 /* We always issue full-page reads, but if some block
2845 * in a page fails to read, blk_update_request() will
2846 * advance bv_offset and adjust bv_len to compensate.
2847 * Print a warning for nonzero offsets, and an error
2848 * if they don't add up to a full page. */
2849 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2850 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2851 btrfs_err(fs_info,
2852 "partial page read in btrfs with offset %u and length %u",
2853 bvec->bv_offset, bvec->bv_len);
2854 else
2855 btrfs_info(fs_info,
2856 "incomplete page read in btrfs with offset %u and length %u",
2857 bvec->bv_offset, bvec->bv_len);
2858 }
2859
2860 start = page_offset(page);
2861 end = start + bvec->bv_offset + bvec->bv_len - 1;
2862 len = bvec->bv_len;
2863
2864 mirror = io_bio->mirror_num;
2865 if (likely(uptodate)) {
2866 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2867 page, start, end,
2868 mirror);
2869 if (ret)
2870 uptodate = 0;
2871 else
2872 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2873 failure_tree, tree, start,
2874 page,
2875 btrfs_ino(BTRFS_I(inode)), 0);
2876 }
2877
2878 if (likely(uptodate))
2879 goto readpage_ok;
2880
2881 if (data_inode) {
2882
2883 /*
2884 * The generic bio_readpage_error handles errors the
2885 * following way: If possible, new read requests are
2886 * created and submitted and will end up in
2887 * end_bio_extent_readpage as well (if we're lucky,
2888 * not in the !uptodate case). In that case it returns
2889 * 0 and we just go on with the next page in our bio.
2890 * If it can't handle the error it will return -EIO and
2891 * we remain responsible for that page.
2892 */
2893 ret = bio_readpage_error(bio, offset, page, start, end,
2894 mirror);
2895 if (ret == 0) {
2896 uptodate = !bio->bi_status;
2897 offset += len;
2898 continue;
2899 }
2900 } else {
2901 struct extent_buffer *eb;
2902
2903 eb = (struct extent_buffer *)page->private;
2904 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2905 eb->read_mirror = mirror;
2906 atomic_dec(&eb->io_pages);
2907 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2908 &eb->bflags))
2909 btree_readahead_hook(eb, -EIO);
2910 }
2911readpage_ok:
2912 if (likely(uptodate)) {
2913 loff_t i_size = i_size_read(inode);
2914 pgoff_t end_index = i_size >> PAGE_SHIFT;
2915 unsigned off;
2916
2917 /* Zero out the end if this page straddles i_size */
2918 off = offset_in_page(i_size);
2919 if (page->index == end_index && off)
2920 zero_user_segment(page, off, PAGE_SIZE);
2921 SetPageUptodate(page);
2922 } else {
2923 ClearPageUptodate(page);
2924 SetPageError(page);
2925 }
2926 unlock_page(page);
2927 offset += len;
2928
2929 if (unlikely(!uptodate)) {
2930 if (extent_len) {
2931 endio_readpage_release_extent(tree,
2932 extent_start,
2933 extent_len, 1);
2934 extent_start = 0;
2935 extent_len = 0;
2936 }
2937 endio_readpage_release_extent(tree, start,
2938 end - start + 1, 0);
2939 } else if (!extent_len) {
2940 extent_start = start;
2941 extent_len = end + 1 - start;
2942 } else if (extent_start + extent_len == start) {
2943 extent_len += end + 1 - start;
2944 } else {
2945 endio_readpage_release_extent(tree, extent_start,
2946 extent_len, uptodate);
2947 extent_start = start;
2948 extent_len = end + 1 - start;
2949 }
2950 }
2951
2952 if (extent_len)
2953 endio_readpage_release_extent(tree, extent_start, extent_len,
2954 uptodate);
2955 btrfs_io_bio_free_csum(io_bio);
2956 bio_put(bio);
2957}
2958
2959/*
2960 * Initialize the members up to but not including 'bio'. Use after allocating a
2961 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2962 * 'bio' because use of __GFP_ZERO is not supported.
2963 */
2964static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2965{
2966 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2967}
2968
2969/*
2970 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2971 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2972 * for the appropriate container_of magic
2973 */
2974struct bio *btrfs_bio_alloc(u64 first_byte)
2975{
2976 struct bio *bio;
2977
2978 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2979 bio->bi_iter.bi_sector = first_byte >> 9;
2980 btrfs_io_bio_init(btrfs_io_bio(bio));
2981 return bio;
2982}
2983
2984struct bio *btrfs_bio_clone(struct bio *bio)
2985{
2986 struct btrfs_io_bio *btrfs_bio;
2987 struct bio *new;
2988
2989 /* Bio allocation backed by a bioset does not fail */
2990 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2991 btrfs_bio = btrfs_io_bio(new);
2992 btrfs_io_bio_init(btrfs_bio);
2993 btrfs_bio->iter = bio->bi_iter;
2994 return new;
2995}
2996
2997struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2998{
2999 struct bio *bio;
3000
3001 /* Bio allocation backed by a bioset does not fail */
3002 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3003 btrfs_io_bio_init(btrfs_io_bio(bio));
3004 return bio;
3005}
3006
3007struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3008{
3009 struct bio *bio;
3010 struct btrfs_io_bio *btrfs_bio;
3011
3012 /* this will never fail when it's backed by a bioset */
3013 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3014 ASSERT(bio);
3015
3016 btrfs_bio = btrfs_io_bio(bio);
3017 btrfs_io_bio_init(btrfs_bio);
3018
3019 bio_trim(bio, offset >> 9, size >> 9);
3020 btrfs_bio->iter = bio->bi_iter;
3021 return bio;
3022}
3023
3024/*
3025 * @opf: bio REQ_OP_* and REQ_* flags as one value
3026 * @wbc: optional writeback control for io accounting
3027 * @page: page to add to the bio
3028 * @pg_offset: offset of the new bio or to check whether we are adding
3029 * a contiguous page to the previous one
3030 * @size: portion of page that we want to write
3031 * @offset: starting offset in the page
3032 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
3033 * @end_io_func: end_io callback for new bio
3034 * @mirror_num: desired mirror to read/write
3035 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3036 * @bio_flags: flags of the current bio to see if we can merge them
3037 */
3038static int submit_extent_page(unsigned int opf,
3039 struct writeback_control *wbc,
3040 struct page *page, u64 offset,
3041 size_t size, unsigned long pg_offset,
3042 struct bio **bio_ret,
3043 bio_end_io_t end_io_func,
3044 int mirror_num,
3045 unsigned long prev_bio_flags,
3046 unsigned long bio_flags,
3047 bool force_bio_submit)
3048{
3049 int ret = 0;
3050 struct bio *bio;
3051 size_t page_size = min_t(size_t, size, PAGE_SIZE);
3052 sector_t sector = offset >> 9;
3053 struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3054
3055 ASSERT(bio_ret);
3056
3057 if (*bio_ret) {
3058 bool contig;
3059 bool can_merge = true;
3060
3061 bio = *bio_ret;
3062 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3063 contig = bio->bi_iter.bi_sector == sector;
3064 else
3065 contig = bio_end_sector(bio) == sector;
3066
3067 ASSERT(tree->ops);
3068 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3069 can_merge = false;
3070
3071 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3072 force_bio_submit ||
3073 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3074 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3075 if (ret < 0) {
3076 *bio_ret = NULL;
3077 return ret;
3078 }
3079 bio = NULL;
3080 } else {
3081 if (wbc)
3082 wbc_account_cgroup_owner(wbc, page, page_size);
3083 return 0;
3084 }
3085 }
3086
3087 bio = btrfs_bio_alloc(offset);
3088 bio_add_page(bio, page, page_size, pg_offset);
3089 bio->bi_end_io = end_io_func;
3090 bio->bi_private = tree;
3091 bio->bi_write_hint = page->mapping->host->i_write_hint;
3092 bio->bi_opf = opf;
3093 if (wbc) {
3094 struct block_device *bdev;
3095
3096 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3097 bio_set_dev(bio, bdev);
3098 wbc_init_bio(wbc, bio);
3099 wbc_account_cgroup_owner(wbc, page, page_size);
3100 }
3101
3102 *bio_ret = bio;
3103
3104 return ret;
3105}
3106
3107static void attach_extent_buffer_page(struct extent_buffer *eb,
3108 struct page *page)
3109{
3110 if (!PagePrivate(page)) {
3111 SetPagePrivate(page);
3112 get_page(page);
3113 set_page_private(page, (unsigned long)eb);
3114 } else {
3115 WARN_ON(page->private != (unsigned long)eb);
3116 }
3117}
3118
3119void set_page_extent_mapped(struct page *page)
3120{
3121 if (!PagePrivate(page)) {
3122 SetPagePrivate(page);
3123 get_page(page);
3124 set_page_private(page, EXTENT_PAGE_PRIVATE);
3125 }
3126}
3127
3128static struct extent_map *
3129__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3130 u64 start, u64 len, get_extent_t *get_extent,
3131 struct extent_map **em_cached)
3132{
3133 struct extent_map *em;
3134
3135 if (em_cached && *em_cached) {
3136 em = *em_cached;
3137 if (extent_map_in_tree(em) && start >= em->start &&
3138 start < extent_map_end(em)) {
3139 refcount_inc(&em->refs);
3140 return em;
3141 }
3142
3143 free_extent_map(em);
3144 *em_cached = NULL;
3145 }
3146
3147 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3148 if (em_cached && !IS_ERR_OR_NULL(em)) {
3149 BUG_ON(*em_cached);
3150 refcount_inc(&em->refs);
3151 *em_cached = em;
3152 }
3153 return em;
3154}
3155/*
3156 * basic readpage implementation. Locked extent state structs are inserted
3157 * into the tree that are removed when the IO is done (by the end_io
3158 * handlers)
3159 * XXX JDM: This needs looking at to ensure proper page locking
3160 * return 0 on success, otherwise return error
3161 */
3162static int __do_readpage(struct page *page,
3163 get_extent_t *get_extent,
3164 struct extent_map **em_cached,
3165 struct bio **bio, int mirror_num,
3166 unsigned long *bio_flags, unsigned int read_flags,
3167 u64 *prev_em_start)
3168{
3169 struct inode *inode = page->mapping->host;
3170 u64 start = page_offset(page);
3171 const u64 end = start + PAGE_SIZE - 1;
3172 u64 cur = start;
3173 u64 extent_offset;
3174 u64 last_byte = i_size_read(inode);
3175 u64 block_start;
3176 u64 cur_end;
3177 struct extent_map *em;
3178 int ret = 0;
3179 int nr = 0;
3180 size_t pg_offset = 0;
3181 size_t iosize;
3182 size_t disk_io_size;
3183 size_t blocksize = inode->i_sb->s_blocksize;
3184 unsigned long this_bio_flag = 0;
3185 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3186
3187 set_page_extent_mapped(page);
3188
3189 if (!PageUptodate(page)) {
3190 if (cleancache_get_page(page) == 0) {
3191 BUG_ON(blocksize != PAGE_SIZE);
3192 unlock_extent(tree, start, end);
3193 goto out;
3194 }
3195 }
3196
3197 if (page->index == last_byte >> PAGE_SHIFT) {
3198 char *userpage;
3199 size_t zero_offset = offset_in_page(last_byte);
3200
3201 if (zero_offset) {
3202 iosize = PAGE_SIZE - zero_offset;
3203 userpage = kmap_atomic(page);
3204 memset(userpage + zero_offset, 0, iosize);
3205 flush_dcache_page(page);
3206 kunmap_atomic(userpage);
3207 }
3208 }
3209 while (cur <= end) {
3210 bool force_bio_submit = false;
3211 u64 offset;
3212
3213 if (cur >= last_byte) {
3214 char *userpage;
3215 struct extent_state *cached = NULL;
3216
3217 iosize = PAGE_SIZE - pg_offset;
3218 userpage = kmap_atomic(page);
3219 memset(userpage + pg_offset, 0, iosize);
3220 flush_dcache_page(page);
3221 kunmap_atomic(userpage);
3222 set_extent_uptodate(tree, cur, cur + iosize - 1,
3223 &cached, GFP_NOFS);
3224 unlock_extent_cached(tree, cur,
3225 cur + iosize - 1, &cached);
3226 break;
3227 }
3228 em = __get_extent_map(inode, page, pg_offset, cur,
3229 end - cur + 1, get_extent, em_cached);
3230 if (IS_ERR_OR_NULL(em)) {
3231 SetPageError(page);
3232 unlock_extent(tree, cur, end);
3233 break;
3234 }
3235 extent_offset = cur - em->start;
3236 BUG_ON(extent_map_end(em) <= cur);
3237 BUG_ON(end < cur);
3238
3239 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3240 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3241 extent_set_compress_type(&this_bio_flag,
3242 em->compress_type);
3243 }
3244
3245 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3246 cur_end = min(extent_map_end(em) - 1, end);
3247 iosize = ALIGN(iosize, blocksize);
3248 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3249 disk_io_size = em->block_len;
3250 offset = em->block_start;
3251 } else {
3252 offset = em->block_start + extent_offset;
3253 disk_io_size = iosize;
3254 }
3255 block_start = em->block_start;
3256 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3257 block_start = EXTENT_MAP_HOLE;
3258
3259 /*
3260 * If we have a file range that points to a compressed extent
3261 * and it's followed by a consecutive file range that points to
3262 * to the same compressed extent (possibly with a different
3263 * offset and/or length, so it either points to the whole extent
3264 * or only part of it), we must make sure we do not submit a
3265 * single bio to populate the pages for the 2 ranges because
3266 * this makes the compressed extent read zero out the pages
3267 * belonging to the 2nd range. Imagine the following scenario:
3268 *
3269 * File layout
3270 * [0 - 8K] [8K - 24K]
3271 * | |
3272 * | |
3273 * points to extent X, points to extent X,
3274 * offset 4K, length of 8K offset 0, length 16K
3275 *
3276 * [extent X, compressed length = 4K uncompressed length = 16K]
3277 *
3278 * If the bio to read the compressed extent covers both ranges,
3279 * it will decompress extent X into the pages belonging to the
3280 * first range and then it will stop, zeroing out the remaining
3281 * pages that belong to the other range that points to extent X.
3282 * So here we make sure we submit 2 bios, one for the first
3283 * range and another one for the third range. Both will target
3284 * the same physical extent from disk, but we can't currently
3285 * make the compressed bio endio callback populate the pages
3286 * for both ranges because each compressed bio is tightly
3287 * coupled with a single extent map, and each range can have
3288 * an extent map with a different offset value relative to the
3289 * uncompressed data of our extent and different lengths. This
3290 * is a corner case so we prioritize correctness over
3291 * non-optimal behavior (submitting 2 bios for the same extent).
3292 */
3293 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3294 prev_em_start && *prev_em_start != (u64)-1 &&
3295 *prev_em_start != em->start)
3296 force_bio_submit = true;
3297
3298 if (prev_em_start)
3299 *prev_em_start = em->start;
3300
3301 free_extent_map(em);
3302 em = NULL;
3303
3304 /* we've found a hole, just zero and go on */
3305 if (block_start == EXTENT_MAP_HOLE) {
3306 char *userpage;
3307 struct extent_state *cached = NULL;
3308
3309 userpage = kmap_atomic(page);
3310 memset(userpage + pg_offset, 0, iosize);
3311 flush_dcache_page(page);
3312 kunmap_atomic(userpage);
3313
3314 set_extent_uptodate(tree, cur, cur + iosize - 1,
3315 &cached, GFP_NOFS);
3316 unlock_extent_cached(tree, cur,
3317 cur + iosize - 1, &cached);
3318 cur = cur + iosize;
3319 pg_offset += iosize;
3320 continue;
3321 }
3322 /* the get_extent function already copied into the page */
3323 if (test_range_bit(tree, cur, cur_end,
3324 EXTENT_UPTODATE, 1, NULL)) {
3325 check_page_uptodate(tree, page);
3326 unlock_extent(tree, cur, cur + iosize - 1);
3327 cur = cur + iosize;
3328 pg_offset += iosize;
3329 continue;
3330 }
3331 /* we have an inline extent but it didn't get marked up
3332 * to date. Error out
3333 */
3334 if (block_start == EXTENT_MAP_INLINE) {
3335 SetPageError(page);
3336 unlock_extent(tree, cur, cur + iosize - 1);
3337 cur = cur + iosize;
3338 pg_offset += iosize;
3339 continue;
3340 }
3341
3342 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3343 page, offset, disk_io_size,
3344 pg_offset, bio,
3345 end_bio_extent_readpage, mirror_num,
3346 *bio_flags,
3347 this_bio_flag,
3348 force_bio_submit);
3349 if (!ret) {
3350 nr++;
3351 *bio_flags = this_bio_flag;
3352 } else {
3353 SetPageError(page);
3354 unlock_extent(tree, cur, cur + iosize - 1);
3355 goto out;
3356 }
3357 cur = cur + iosize;
3358 pg_offset += iosize;
3359 }
3360out:
3361 if (!nr) {
3362 if (!PageError(page))
3363 SetPageUptodate(page);
3364 unlock_page(page);
3365 }
3366 return ret;
3367}
3368
3369static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3370 u64 start, u64 end,
3371 struct extent_map **em_cached,
3372 struct bio **bio,
3373 unsigned long *bio_flags,
3374 u64 *prev_em_start)
3375{
3376 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3377 int index;
3378
3379 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3380
3381 for (index = 0; index < nr_pages; index++) {
3382 __do_readpage(pages[index], btrfs_get_extent, em_cached,
3383 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3384 put_page(pages[index]);
3385 }
3386}
3387
3388static int __extent_read_full_page(struct page *page,
3389 get_extent_t *get_extent,
3390 struct bio **bio, int mirror_num,
3391 unsigned long *bio_flags,
3392 unsigned int read_flags)
3393{
3394 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3395 u64 start = page_offset(page);
3396 u64 end = start + PAGE_SIZE - 1;
3397 int ret;
3398
3399 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3400
3401 ret = __do_readpage(page, get_extent, NULL, bio, mirror_num,
3402 bio_flags, read_flags, NULL);
3403 return ret;
3404}
3405
3406int extent_read_full_page(struct page *page, get_extent_t *get_extent,
3407 int mirror_num)
3408{
3409 struct bio *bio = NULL;
3410 unsigned long bio_flags = 0;
3411 int ret;
3412
3413 ret = __extent_read_full_page(page, get_extent, &bio, mirror_num,
3414 &bio_flags, 0);
3415 if (bio)
3416 ret = submit_one_bio(bio, mirror_num, bio_flags);
3417 return ret;
3418}
3419
3420static void update_nr_written(struct writeback_control *wbc,
3421 unsigned long nr_written)
3422{
3423 wbc->nr_to_write -= nr_written;
3424}
3425
3426/*
3427 * helper for __extent_writepage, doing all of the delayed allocation setup.
3428 *
3429 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3430 * to write the page (copy into inline extent). In this case the IO has
3431 * been started and the page is already unlocked.
3432 *
3433 * This returns 0 if all went well (page still locked)
3434 * This returns < 0 if there were errors (page still locked)
3435 */
3436static noinline_for_stack int writepage_delalloc(struct inode *inode,
3437 struct page *page, struct writeback_control *wbc,
3438 u64 delalloc_start, unsigned long *nr_written)
3439{
3440 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3441 bool found;
3442 u64 delalloc_to_write = 0;
3443 u64 delalloc_end = 0;
3444 int ret;
3445 int page_started = 0;
3446
3447
3448 while (delalloc_end < page_end) {
3449 found = find_lock_delalloc_range(inode, page,
3450 &delalloc_start,
3451 &delalloc_end);
3452 if (!found) {
3453 delalloc_start = delalloc_end + 1;
3454 continue;
3455 }
3456 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3457 delalloc_end, &page_started, nr_written, wbc);
3458 if (ret) {
3459 SetPageError(page);
3460 /*
3461 * btrfs_run_delalloc_range should return < 0 for error
3462 * but just in case, we use > 0 here meaning the IO is
3463 * started, so we don't want to return > 0 unless
3464 * things are going well.
3465 */
3466 ret = ret < 0 ? ret : -EIO;
3467 goto done;
3468 }
3469 /*
3470 * delalloc_end is already one less than the total length, so
3471 * we don't subtract one from PAGE_SIZE
3472 */
3473 delalloc_to_write += (delalloc_end - delalloc_start +
3474 PAGE_SIZE) >> PAGE_SHIFT;
3475 delalloc_start = delalloc_end + 1;
3476 }
3477 if (wbc->nr_to_write < delalloc_to_write) {
3478 int thresh = 8192;
3479
3480 if (delalloc_to_write < thresh * 2)
3481 thresh = delalloc_to_write;
3482 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3483 thresh);
3484 }
3485
3486 /* did the fill delalloc function already unlock and start
3487 * the IO?
3488 */
3489 if (page_started) {
3490 /*
3491 * we've unlocked the page, so we can't update
3492 * the mapping's writeback index, just update
3493 * nr_to_write.
3494 */
3495 wbc->nr_to_write -= *nr_written;
3496 return 1;
3497 }
3498
3499 ret = 0;
3500
3501done:
3502 return ret;
3503}
3504
3505/*
3506 * helper for __extent_writepage. This calls the writepage start hooks,
3507 * and does the loop to map the page into extents and bios.
3508 *
3509 * We return 1 if the IO is started and the page is unlocked,
3510 * 0 if all went well (page still locked)
3511 * < 0 if there were errors (page still locked)
3512 */
3513static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3514 struct page *page,
3515 struct writeback_control *wbc,
3516 struct extent_page_data *epd,
3517 loff_t i_size,
3518 unsigned long nr_written,
3519 int *nr_ret)
3520{
3521 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3522 u64 start = page_offset(page);
3523 u64 page_end = start + PAGE_SIZE - 1;
3524 u64 end;
3525 u64 cur = start;
3526 u64 extent_offset;
3527 u64 block_start;
3528 u64 iosize;
3529 struct extent_map *em;
3530 size_t pg_offset = 0;
3531 size_t blocksize;
3532 int ret = 0;
3533 int nr = 0;
3534 const unsigned int write_flags = wbc_to_write_flags(wbc);
3535 bool compressed;
3536
3537 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3538 if (ret) {
3539 /* Fixup worker will requeue */
3540 redirty_page_for_writepage(wbc, page);
3541 update_nr_written(wbc, nr_written);
3542 unlock_page(page);
3543 return 1;
3544 }
3545
3546 /*
3547 * we don't want to touch the inode after unlocking the page,
3548 * so we update the mapping writeback index now
3549 */
3550 update_nr_written(wbc, nr_written + 1);
3551
3552 end = page_end;
3553 blocksize = inode->i_sb->s_blocksize;
3554
3555 while (cur <= end) {
3556 u64 em_end;
3557 u64 offset;
3558
3559 if (cur >= i_size) {
3560 btrfs_writepage_endio_finish_ordered(page, cur,
3561 page_end, 1);
3562 break;
3563 }
3564 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur,
3565 end - cur + 1);
3566 if (IS_ERR_OR_NULL(em)) {
3567 SetPageError(page);
3568 ret = PTR_ERR_OR_ZERO(em);
3569 break;
3570 }
3571
3572 extent_offset = cur - em->start;
3573 em_end = extent_map_end(em);
3574 BUG_ON(em_end <= cur);
3575 BUG_ON(end < cur);
3576 iosize = min(em_end - cur, end - cur + 1);
3577 iosize = ALIGN(iosize, blocksize);
3578 offset = em->block_start + extent_offset;
3579 block_start = em->block_start;
3580 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3581 free_extent_map(em);
3582 em = NULL;
3583
3584 /*
3585 * compressed and inline extents are written through other
3586 * paths in the FS
3587 */
3588 if (compressed || block_start == EXTENT_MAP_HOLE ||
3589 block_start == EXTENT_MAP_INLINE) {
3590 if (compressed)
3591 nr++;
3592 else
3593 btrfs_writepage_endio_finish_ordered(page, cur,
3594 cur + iosize - 1, 1);
3595 cur += iosize;
3596 pg_offset += iosize;
3597 continue;
3598 }
3599
3600 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3601 if (!PageWriteback(page)) {
3602 btrfs_err(BTRFS_I(inode)->root->fs_info,
3603 "page %lu not writeback, cur %llu end %llu",
3604 page->index, cur, end);
3605 }
3606
3607 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3608 page, offset, iosize, pg_offset,
3609 &epd->bio,
3610 end_bio_extent_writepage,
3611 0, 0, 0, false);
3612 if (ret) {
3613 SetPageError(page);
3614 if (PageWriteback(page))
3615 end_page_writeback(page);
3616 }
3617
3618 cur = cur + iosize;
3619 pg_offset += iosize;
3620 nr++;
3621 }
3622 *nr_ret = nr;
3623 return ret;
3624}
3625
3626/*
3627 * the writepage semantics are similar to regular writepage. extent
3628 * records are inserted to lock ranges in the tree, and as dirty areas
3629 * are found, they are marked writeback. Then the lock bits are removed
3630 * and the end_io handler clears the writeback ranges
3631 *
3632 * Return 0 if everything goes well.
3633 * Return <0 for error.
3634 */
3635static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3636 struct extent_page_data *epd)
3637{
3638 struct inode *inode = page->mapping->host;
3639 u64 start = page_offset(page);
3640 u64 page_end = start + PAGE_SIZE - 1;
3641 int ret;
3642 int nr = 0;
3643 size_t pg_offset;
3644 loff_t i_size = i_size_read(inode);
3645 unsigned long end_index = i_size >> PAGE_SHIFT;
3646 unsigned long nr_written = 0;
3647
3648 trace___extent_writepage(page, inode, wbc);
3649
3650 WARN_ON(!PageLocked(page));
3651
3652 ClearPageError(page);
3653
3654 pg_offset = offset_in_page(i_size);
3655 if (page->index > end_index ||
3656 (page->index == end_index && !pg_offset)) {
3657 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3658 unlock_page(page);
3659 return 0;
3660 }
3661
3662 if (page->index == end_index) {
3663 char *userpage;
3664
3665 userpage = kmap_atomic(page);
3666 memset(userpage + pg_offset, 0,
3667 PAGE_SIZE - pg_offset);
3668 kunmap_atomic(userpage);
3669 flush_dcache_page(page);
3670 }
3671
3672 set_page_extent_mapped(page);
3673
3674 if (!epd->extent_locked) {
3675 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3676 if (ret == 1)
3677 return 0;
3678 if (ret)
3679 goto done;
3680 }
3681
3682 ret = __extent_writepage_io(inode, page, wbc, epd,
3683 i_size, nr_written, &nr);
3684 if (ret == 1)
3685 return 0;
3686
3687done:
3688 if (nr == 0) {
3689 /* make sure the mapping tag for page dirty gets cleared */
3690 set_page_writeback(page);
3691 end_page_writeback(page);
3692 }
3693 if (PageError(page)) {
3694 ret = ret < 0 ? ret : -EIO;
3695 end_extent_writepage(page, ret, start, page_end);
3696 }
3697 unlock_page(page);
3698 ASSERT(ret <= 0);
3699 return ret;
3700}
3701
3702void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3703{
3704 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3705 TASK_UNINTERRUPTIBLE);
3706}
3707
3708static void end_extent_buffer_writeback(struct extent_buffer *eb)
3709{
3710 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3711 smp_mb__after_atomic();
3712 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3713}
3714
3715/*
3716 * Lock eb pages and flush the bio if we can't the locks
3717 *
3718 * Return 0 if nothing went wrong
3719 * Return >0 is same as 0, except bio is not submitted
3720 * Return <0 if something went wrong, no page is locked
3721 */
3722static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3723 struct extent_page_data *epd)
3724{
3725 struct btrfs_fs_info *fs_info = eb->fs_info;
3726 int i, num_pages, failed_page_nr;
3727 int flush = 0;
3728 int ret = 0;
3729
3730 if (!btrfs_try_tree_write_lock(eb)) {
3731 ret = flush_write_bio(epd);
3732 if (ret < 0)
3733 return ret;
3734 flush = 1;
3735 btrfs_tree_lock(eb);
3736 }
3737
3738 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3739 btrfs_tree_unlock(eb);
3740 if (!epd->sync_io)
3741 return 0;
3742 if (!flush) {
3743 ret = flush_write_bio(epd);
3744 if (ret < 0)
3745 return ret;
3746 flush = 1;
3747 }
3748 while (1) {
3749 wait_on_extent_buffer_writeback(eb);
3750 btrfs_tree_lock(eb);
3751 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3752 break;
3753 btrfs_tree_unlock(eb);
3754 }
3755 }
3756
3757 /*
3758 * We need to do this to prevent races in people who check if the eb is
3759 * under IO since we can end up having no IO bits set for a short period
3760 * of time.
3761 */
3762 spin_lock(&eb->refs_lock);
3763 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3764 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3765 spin_unlock(&eb->refs_lock);
3766 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3767 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3768 -eb->len,
3769 fs_info->dirty_metadata_batch);
3770 ret = 1;
3771 } else {
3772 spin_unlock(&eb->refs_lock);
3773 }
3774
3775 btrfs_tree_unlock(eb);
3776
3777 if (!ret)
3778 return ret;
3779
3780 num_pages = num_extent_pages(eb);
3781 for (i = 0; i < num_pages; i++) {
3782 struct page *p = eb->pages[i];
3783
3784 if (!trylock_page(p)) {
3785 if (!flush) {
3786 int err;
3787
3788 err = flush_write_bio(epd);
3789 if (err < 0) {
3790 ret = err;
3791 failed_page_nr = i;
3792 goto err_unlock;
3793 }
3794 flush = 1;
3795 }
3796 lock_page(p);
3797 }
3798 }
3799
3800 return ret;
3801err_unlock:
3802 /* Unlock already locked pages */
3803 for (i = 0; i < failed_page_nr; i++)
3804 unlock_page(eb->pages[i]);
3805 /*
3806 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3807 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3808 * be made and undo everything done before.
3809 */
3810 btrfs_tree_lock(eb);
3811 spin_lock(&eb->refs_lock);
3812 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3813 end_extent_buffer_writeback(eb);
3814 spin_unlock(&eb->refs_lock);
3815 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3816 fs_info->dirty_metadata_batch);
3817 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3818 btrfs_tree_unlock(eb);
3819 return ret;
3820}
3821
3822static void set_btree_ioerr(struct page *page)
3823{
3824 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3825 struct btrfs_fs_info *fs_info;
3826
3827 SetPageError(page);
3828 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3829 return;
3830
3831 /*
3832 * If we error out, we should add back the dirty_metadata_bytes
3833 * to make it consistent.
3834 */
3835 fs_info = eb->fs_info;
3836 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3837 eb->len, fs_info->dirty_metadata_batch);
3838
3839 /*
3840 * If writeback for a btree extent that doesn't belong to a log tree
3841 * failed, increment the counter transaction->eb_write_errors.
3842 * We do this because while the transaction is running and before it's
3843 * committing (when we call filemap_fdata[write|wait]_range against
3844 * the btree inode), we might have
3845 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3846 * returns an error or an error happens during writeback, when we're
3847 * committing the transaction we wouldn't know about it, since the pages
3848 * can be no longer dirty nor marked anymore for writeback (if a
3849 * subsequent modification to the extent buffer didn't happen before the
3850 * transaction commit), which makes filemap_fdata[write|wait]_range not
3851 * able to find the pages tagged with SetPageError at transaction
3852 * commit time. So if this happens we must abort the transaction,
3853 * otherwise we commit a super block with btree roots that point to
3854 * btree nodes/leafs whose content on disk is invalid - either garbage
3855 * or the content of some node/leaf from a past generation that got
3856 * cowed or deleted and is no longer valid.
3857 *
3858 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3859 * not be enough - we need to distinguish between log tree extents vs
3860 * non-log tree extents, and the next filemap_fdatawait_range() call
3861 * will catch and clear such errors in the mapping - and that call might
3862 * be from a log sync and not from a transaction commit. Also, checking
3863 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3864 * not done and would not be reliable - the eb might have been released
3865 * from memory and reading it back again means that flag would not be
3866 * set (since it's a runtime flag, not persisted on disk).
3867 *
3868 * Using the flags below in the btree inode also makes us achieve the
3869 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3870 * writeback for all dirty pages and before filemap_fdatawait_range()
3871 * is called, the writeback for all dirty pages had already finished
3872 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3873 * filemap_fdatawait_range() would return success, as it could not know
3874 * that writeback errors happened (the pages were no longer tagged for
3875 * writeback).
3876 */
3877 switch (eb->log_index) {
3878 case -1:
3879 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3880 break;
3881 case 0:
3882 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3883 break;
3884 case 1:
3885 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3886 break;
3887 default:
3888 BUG(); /* unexpected, logic error */
3889 }
3890}
3891
3892static void end_bio_extent_buffer_writepage(struct bio *bio)
3893{
3894 struct bio_vec *bvec;
3895 struct extent_buffer *eb;
3896 int done;
3897 struct bvec_iter_all iter_all;
3898
3899 ASSERT(!bio_flagged(bio, BIO_CLONED));
3900 bio_for_each_segment_all(bvec, bio, iter_all) {
3901 struct page *page = bvec->bv_page;
3902
3903 eb = (struct extent_buffer *)page->private;
3904 BUG_ON(!eb);
3905 done = atomic_dec_and_test(&eb->io_pages);
3906
3907 if (bio->bi_status ||
3908 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3909 ClearPageUptodate(page);
3910 set_btree_ioerr(page);
3911 }
3912
3913 end_page_writeback(page);
3914
3915 if (!done)
3916 continue;
3917
3918 end_extent_buffer_writeback(eb);
3919 }
3920
3921 bio_put(bio);
3922}
3923
3924static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3925 struct writeback_control *wbc,
3926 struct extent_page_data *epd)
3927{
3928 u64 offset = eb->start;
3929 u32 nritems;
3930 int i, num_pages;
3931 unsigned long start, end;
3932 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3933 int ret = 0;
3934
3935 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3936 num_pages = num_extent_pages(eb);
3937 atomic_set(&eb->io_pages, num_pages);
3938
3939 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3940 nritems = btrfs_header_nritems(eb);
3941 if (btrfs_header_level(eb) > 0) {
3942 end = btrfs_node_key_ptr_offset(nritems);
3943
3944 memzero_extent_buffer(eb, end, eb->len - end);
3945 } else {
3946 /*
3947 * leaf:
3948 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3949 */
3950 start = btrfs_item_nr_offset(nritems);
3951 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3952 memzero_extent_buffer(eb, start, end - start);
3953 }
3954
3955 for (i = 0; i < num_pages; i++) {
3956 struct page *p = eb->pages[i];
3957
3958 clear_page_dirty_for_io(p);
3959 set_page_writeback(p);
3960 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3961 p, offset, PAGE_SIZE, 0,
3962 &epd->bio,
3963 end_bio_extent_buffer_writepage,
3964 0, 0, 0, false);
3965 if (ret) {
3966 set_btree_ioerr(p);
3967 if (PageWriteback(p))
3968 end_page_writeback(p);
3969 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3970 end_extent_buffer_writeback(eb);
3971 ret = -EIO;
3972 break;
3973 }
3974 offset += PAGE_SIZE;
3975 update_nr_written(wbc, 1);
3976 unlock_page(p);
3977 }
3978
3979 if (unlikely(ret)) {
3980 for (; i < num_pages; i++) {
3981 struct page *p = eb->pages[i];
3982 clear_page_dirty_for_io(p);
3983 unlock_page(p);
3984 }
3985 }
3986
3987 return ret;
3988}
3989
3990int btree_write_cache_pages(struct address_space *mapping,
3991 struct writeback_control *wbc)
3992{
3993 struct extent_buffer *eb, *prev_eb = NULL;
3994 struct extent_page_data epd = {
3995 .bio = NULL,
3996 .extent_locked = 0,
3997 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3998 };
3999 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4000 int ret = 0;
4001 int done = 0;
4002 int nr_to_write_done = 0;
4003 struct pagevec pvec;
4004 int nr_pages;
4005 pgoff_t index;
4006 pgoff_t end; /* Inclusive */
4007 int scanned = 0;
4008 xa_mark_t tag;
4009
4010 pagevec_init(&pvec);
4011 if (wbc->range_cyclic) {
4012 index = mapping->writeback_index; /* Start from prev offset */
4013 end = -1;
4014 /*
4015 * Start from the beginning does not need to cycle over the
4016 * range, mark it as scanned.
4017 */
4018 scanned = (index == 0);
4019 } else {
4020 index = wbc->range_start >> PAGE_SHIFT;
4021 end = wbc->range_end >> PAGE_SHIFT;
4022 scanned = 1;
4023 }
4024 if (wbc->sync_mode == WB_SYNC_ALL)
4025 tag = PAGECACHE_TAG_TOWRITE;
4026 else
4027 tag = PAGECACHE_TAG_DIRTY;
4028retry:
4029 if (wbc->sync_mode == WB_SYNC_ALL)
4030 tag_pages_for_writeback(mapping, index, end);
4031 while (!done && !nr_to_write_done && (index <= end) &&
4032 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4033 tag))) {
4034 unsigned i;
4035
4036 for (i = 0; i < nr_pages; i++) {
4037 struct page *page = pvec.pages[i];
4038
4039 if (!PagePrivate(page))
4040 continue;
4041
4042 spin_lock(&mapping->private_lock);
4043 if (!PagePrivate(page)) {
4044 spin_unlock(&mapping->private_lock);
4045 continue;
4046 }
4047
4048 eb = (struct extent_buffer *)page->private;
4049
4050 /*
4051 * Shouldn't happen and normally this would be a BUG_ON
4052 * but no sense in crashing the users box for something
4053 * we can survive anyway.
4054 */
4055 if (WARN_ON(!eb)) {
4056 spin_unlock(&mapping->private_lock);
4057 continue;
4058 }
4059
4060 if (eb == prev_eb) {
4061 spin_unlock(&mapping->private_lock);
4062 continue;
4063 }
4064
4065 ret = atomic_inc_not_zero(&eb->refs);
4066 spin_unlock(&mapping->private_lock);
4067 if (!ret)
4068 continue;
4069
4070 prev_eb = eb;
4071 ret = lock_extent_buffer_for_io(eb, &epd);
4072 if (!ret) {
4073 free_extent_buffer(eb);
4074 continue;
4075 } else if (ret < 0) {
4076 done = 1;
4077 free_extent_buffer(eb);
4078 break;
4079 }
4080
4081 ret = write_one_eb(eb, wbc, &epd);
4082 if (ret) {
4083 done = 1;
4084 free_extent_buffer(eb);
4085 break;
4086 }
4087 free_extent_buffer(eb);
4088
4089 /*
4090 * the filesystem may choose to bump up nr_to_write.
4091 * We have to make sure to honor the new nr_to_write
4092 * at any time
4093 */
4094 nr_to_write_done = wbc->nr_to_write <= 0;
4095 }
4096 pagevec_release(&pvec);
4097 cond_resched();
4098 }
4099 if (!scanned && !done) {
4100 /*
4101 * We hit the last page and there is more work to be done: wrap
4102 * back to the start of the file
4103 */
4104 scanned = 1;
4105 index = 0;
4106 goto retry;
4107 }
4108 ASSERT(ret <= 0);
4109 if (ret < 0) {
4110 end_write_bio(&epd, ret);
4111 return ret;
4112 }
4113 /*
4114 * If something went wrong, don't allow any metadata write bio to be
4115 * submitted.
4116 *
4117 * This would prevent use-after-free if we had dirty pages not
4118 * cleaned up, which can still happen by fuzzed images.
4119 *
4120 * - Bad extent tree
4121 * Allowing existing tree block to be allocated for other trees.
4122 *
4123 * - Log tree operations
4124 * Exiting tree blocks get allocated to log tree, bumps its
4125 * generation, then get cleaned in tree re-balance.
4126 * Such tree block will not be written back, since it's clean,
4127 * thus no WRITTEN flag set.
4128 * And after log writes back, this tree block is not traced by
4129 * any dirty extent_io_tree.
4130 *
4131 * - Offending tree block gets re-dirtied from its original owner
4132 * Since it has bumped generation, no WRITTEN flag, it can be
4133 * reused without COWing. This tree block will not be traced
4134 * by btrfs_transaction::dirty_pages.
4135 *
4136 * Now such dirty tree block will not be cleaned by any dirty
4137 * extent io tree. Thus we don't want to submit such wild eb
4138 * if the fs already has error.
4139 */
4140 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4141 ret = flush_write_bio(&epd);
4142 } else {
4143 ret = -EUCLEAN;
4144 end_write_bio(&epd, ret);
4145 }
4146 return ret;
4147}
4148
4149/**
4150 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4151 * @mapping: address space structure to write
4152 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4153 * @data: data passed to __extent_writepage function
4154 *
4155 * If a page is already under I/O, write_cache_pages() skips it, even
4156 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4157 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4158 * and msync() need to guarantee that all the data which was dirty at the time
4159 * the call was made get new I/O started against them. If wbc->sync_mode is
4160 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4161 * existing IO to complete.
4162 */
4163static int extent_write_cache_pages(struct address_space *mapping,
4164 struct writeback_control *wbc,
4165 struct extent_page_data *epd)
4166{
4167 struct inode *inode = mapping->host;
4168 int ret = 0;
4169 int done = 0;
4170 int nr_to_write_done = 0;
4171 struct pagevec pvec;
4172 int nr_pages;
4173 pgoff_t index;
4174 pgoff_t end; /* Inclusive */
4175 pgoff_t done_index;
4176 int range_whole = 0;
4177 int scanned = 0;
4178 xa_mark_t tag;
4179
4180 /*
4181 * We have to hold onto the inode so that ordered extents can do their
4182 * work when the IO finishes. The alternative to this is failing to add
4183 * an ordered extent if the igrab() fails there and that is a huge pain
4184 * to deal with, so instead just hold onto the inode throughout the
4185 * writepages operation. If it fails here we are freeing up the inode
4186 * anyway and we'd rather not waste our time writing out stuff that is
4187 * going to be truncated anyway.
4188 */
4189 if (!igrab(inode))
4190 return 0;
4191
4192 pagevec_init(&pvec);
4193 if (wbc->range_cyclic) {
4194 index = mapping->writeback_index; /* Start from prev offset */
4195 end = -1;
4196 /*
4197 * Start from the beginning does not need to cycle over the
4198 * range, mark it as scanned.
4199 */
4200 scanned = (index == 0);
4201 } else {
4202 index = wbc->range_start >> PAGE_SHIFT;
4203 end = wbc->range_end >> PAGE_SHIFT;
4204 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4205 range_whole = 1;
4206 scanned = 1;
4207 }
4208
4209 /*
4210 * We do the tagged writepage as long as the snapshot flush bit is set
4211 * and we are the first one who do the filemap_flush() on this inode.
4212 *
4213 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4214 * not race in and drop the bit.
4215 */
4216 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4217 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4218 &BTRFS_I(inode)->runtime_flags))
4219 wbc->tagged_writepages = 1;
4220
4221 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4222 tag = PAGECACHE_TAG_TOWRITE;
4223 else
4224 tag = PAGECACHE_TAG_DIRTY;
4225retry:
4226 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4227 tag_pages_for_writeback(mapping, index, end);
4228 done_index = index;
4229 while (!done && !nr_to_write_done && (index <= end) &&
4230 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4231 &index, end, tag))) {
4232 unsigned i;
4233
4234 for (i = 0; i < nr_pages; i++) {
4235 struct page *page = pvec.pages[i];
4236
4237 done_index = page->index + 1;
4238 /*
4239 * At this point we hold neither the i_pages lock nor
4240 * the page lock: the page may be truncated or
4241 * invalidated (changing page->mapping to NULL),
4242 * or even swizzled back from swapper_space to
4243 * tmpfs file mapping
4244 */
4245 if (!trylock_page(page)) {
4246 ret = flush_write_bio(epd);
4247 BUG_ON(ret < 0);
4248 lock_page(page);
4249 }
4250
4251 if (unlikely(page->mapping != mapping)) {
4252 unlock_page(page);
4253 continue;
4254 }
4255
4256 if (wbc->sync_mode != WB_SYNC_NONE) {
4257 if (PageWriteback(page)) {
4258 ret = flush_write_bio(epd);
4259 BUG_ON(ret < 0);
4260 }
4261 wait_on_page_writeback(page);
4262 }
4263
4264 if (PageWriteback(page) ||
4265 !clear_page_dirty_for_io(page)) {
4266 unlock_page(page);
4267 continue;
4268 }
4269
4270 ret = __extent_writepage(page, wbc, epd);
4271 if (ret < 0) {
4272 done = 1;
4273 break;
4274 }
4275
4276 /*
4277 * the filesystem may choose to bump up nr_to_write.
4278 * We have to make sure to honor the new nr_to_write
4279 * at any time
4280 */
4281 nr_to_write_done = wbc->nr_to_write <= 0;
4282 }
4283 pagevec_release(&pvec);
4284 cond_resched();
4285 }
4286 if (!scanned && !done) {
4287 /*
4288 * We hit the last page and there is more work to be done: wrap
4289 * back to the start of the file
4290 */
4291 scanned = 1;
4292 index = 0;
4293
4294 /*
4295 * If we're looping we could run into a page that is locked by a
4296 * writer and that writer could be waiting on writeback for a
4297 * page in our current bio, and thus deadlock, so flush the
4298 * write bio here.
4299 */
4300 ret = flush_write_bio(epd);
4301 if (!ret)
4302 goto retry;
4303 }
4304
4305 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4306 mapping->writeback_index = done_index;
4307
4308 btrfs_add_delayed_iput(inode);
4309 return ret;
4310}
4311
4312int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4313{
4314 int ret;
4315 struct extent_page_data epd = {
4316 .bio = NULL,
4317 .extent_locked = 0,
4318 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4319 };
4320
4321 ret = __extent_writepage(page, wbc, &epd);
4322 ASSERT(ret <= 0);
4323 if (ret < 0) {
4324 end_write_bio(&epd, ret);
4325 return ret;
4326 }
4327
4328 ret = flush_write_bio(&epd);
4329 ASSERT(ret <= 0);
4330 return ret;
4331}
4332
4333int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4334 int mode)
4335{
4336 int ret = 0;
4337 struct address_space *mapping = inode->i_mapping;
4338 struct page *page;
4339 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4340 PAGE_SHIFT;
4341
4342 struct extent_page_data epd = {
4343 .bio = NULL,
4344 .extent_locked = 1,
4345 .sync_io = mode == WB_SYNC_ALL,
4346 };
4347 struct writeback_control wbc_writepages = {
4348 .sync_mode = mode,
4349 .nr_to_write = nr_pages * 2,
4350 .range_start = start,
4351 .range_end = end + 1,
4352 /* We're called from an async helper function */
4353 .punt_to_cgroup = 1,
4354 .no_cgroup_owner = 1,
4355 };
4356
4357 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4358 while (start <= end) {
4359 page = find_get_page(mapping, start >> PAGE_SHIFT);
4360 if (clear_page_dirty_for_io(page))
4361 ret = __extent_writepage(page, &wbc_writepages, &epd);
4362 else {
4363 btrfs_writepage_endio_finish_ordered(page, start,
4364 start + PAGE_SIZE - 1, 1);
4365 unlock_page(page);
4366 }
4367 put_page(page);
4368 start += PAGE_SIZE;
4369 }
4370
4371 ASSERT(ret <= 0);
4372 if (ret == 0)
4373 ret = flush_write_bio(&epd);
4374 else
4375 end_write_bio(&epd, ret);
4376
4377 wbc_detach_inode(&wbc_writepages);
4378 return ret;
4379}
4380
4381int extent_writepages(struct address_space *mapping,
4382 struct writeback_control *wbc)
4383{
4384 int ret = 0;
4385 struct extent_page_data epd = {
4386 .bio = NULL,
4387 .extent_locked = 0,
4388 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4389 };
4390
4391 ret = extent_write_cache_pages(mapping, wbc, &epd);
4392 ASSERT(ret <= 0);
4393 if (ret < 0) {
4394 end_write_bio(&epd, ret);
4395 return ret;
4396 }
4397 ret = flush_write_bio(&epd);
4398 return ret;
4399}
4400
4401int extent_readpages(struct address_space *mapping, struct list_head *pages,
4402 unsigned nr_pages)
4403{
4404 struct bio *bio = NULL;
4405 unsigned long bio_flags = 0;
4406 struct page *pagepool[16];
4407 struct extent_map *em_cached = NULL;
4408 int nr = 0;
4409 u64 prev_em_start = (u64)-1;
4410
4411 while (!list_empty(pages)) {
4412 u64 contig_end = 0;
4413
4414 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4415 struct page *page = lru_to_page(pages);
4416
4417 prefetchw(&page->flags);
4418 list_del(&page->lru);
4419 if (add_to_page_cache_lru(page, mapping, page->index,
4420 readahead_gfp_mask(mapping))) {
4421 put_page(page);
4422 break;
4423 }
4424
4425 pagepool[nr++] = page;
4426 contig_end = page_offset(page) + PAGE_SIZE - 1;
4427 }
4428
4429 if (nr) {
4430 u64 contig_start = page_offset(pagepool[0]);
4431
4432 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4433
4434 contiguous_readpages(pagepool, nr, contig_start,
4435 contig_end, &em_cached, &bio, &bio_flags,
4436 &prev_em_start);
4437 }
4438 }
4439
4440 if (em_cached)
4441 free_extent_map(em_cached);
4442
4443 if (bio)
4444 return submit_one_bio(bio, 0, bio_flags);
4445 return 0;
4446}
4447
4448/*
4449 * basic invalidatepage code, this waits on any locked or writeback
4450 * ranges corresponding to the page, and then deletes any extent state
4451 * records from the tree
4452 */
4453int extent_invalidatepage(struct extent_io_tree *tree,
4454 struct page *page, unsigned long offset)
4455{
4456 struct extent_state *cached_state = NULL;
4457 u64 start = page_offset(page);
4458 u64 end = start + PAGE_SIZE - 1;
4459 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4460
4461 start += ALIGN(offset, blocksize);
4462 if (start > end)
4463 return 0;
4464
4465 lock_extent_bits(tree, start, end, &cached_state);
4466 wait_on_page_writeback(page);
4467 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4468 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4469 return 0;
4470}
4471
4472/*
4473 * a helper for releasepage, this tests for areas of the page that
4474 * are locked or under IO and drops the related state bits if it is safe
4475 * to drop the page.
4476 */
4477static int try_release_extent_state(struct extent_io_tree *tree,
4478 struct page *page, gfp_t mask)
4479{
4480 u64 start = page_offset(page);
4481 u64 end = start + PAGE_SIZE - 1;
4482 int ret = 1;
4483
4484 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4485 ret = 0;
4486 } else {
4487 /*
4488 * at this point we can safely clear everything except the
4489 * locked bit and the nodatasum bit
4490 */
4491 ret = __clear_extent_bit(tree, start, end,
4492 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4493 0, 0, NULL, mask, NULL);
4494
4495 /* if clear_extent_bit failed for enomem reasons,
4496 * we can't allow the release to continue.
4497 */
4498 if (ret < 0)
4499 ret = 0;
4500 else
4501 ret = 1;
4502 }
4503 return ret;
4504}
4505
4506/*
4507 * a helper for releasepage. As long as there are no locked extents
4508 * in the range corresponding to the page, both state records and extent
4509 * map records are removed
4510 */
4511int try_release_extent_mapping(struct page *page, gfp_t mask)
4512{
4513 struct extent_map *em;
4514 u64 start = page_offset(page);
4515 u64 end = start + PAGE_SIZE - 1;
4516 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4517 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4518 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4519
4520 if (gfpflags_allow_blocking(mask) &&
4521 page->mapping->host->i_size > SZ_16M) {
4522 u64 len;
4523 while (start <= end) {
4524 len = end - start + 1;
4525 write_lock(&map->lock);
4526 em = lookup_extent_mapping(map, start, len);
4527 if (!em) {
4528 write_unlock(&map->lock);
4529 break;
4530 }
4531 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4532 em->start != start) {
4533 write_unlock(&map->lock);
4534 free_extent_map(em);
4535 break;
4536 }
4537 if (!test_range_bit(tree, em->start,
4538 extent_map_end(em) - 1,
4539 EXTENT_LOCKED, 0, NULL)) {
4540 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4541 &btrfs_inode->runtime_flags);
4542 remove_extent_mapping(map, em);
4543 /* once for the rb tree */
4544 free_extent_map(em);
4545 }
4546 start = extent_map_end(em);
4547 write_unlock(&map->lock);
4548
4549 /* once for us */
4550 free_extent_map(em);
4551 }
4552 }
4553 return try_release_extent_state(tree, page, mask);
4554}
4555
4556/*
4557 * helper function for fiemap, which doesn't want to see any holes.
4558 * This maps until we find something past 'last'
4559 */
4560static struct extent_map *get_extent_skip_holes(struct inode *inode,
4561 u64 offset, u64 last)
4562{
4563 u64 sectorsize = btrfs_inode_sectorsize(inode);
4564 struct extent_map *em;
4565 u64 len;
4566
4567 if (offset >= last)
4568 return NULL;
4569
4570 while (1) {
4571 len = last - offset;
4572 if (len == 0)
4573 break;
4574 len = ALIGN(len, sectorsize);
4575 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4576 if (IS_ERR_OR_NULL(em))
4577 return em;
4578
4579 /* if this isn't a hole return it */
4580 if (em->block_start != EXTENT_MAP_HOLE)
4581 return em;
4582
4583 /* this is a hole, advance to the next extent */
4584 offset = extent_map_end(em);
4585 free_extent_map(em);
4586 if (offset >= last)
4587 break;
4588 }
4589 return NULL;
4590}
4591
4592/*
4593 * To cache previous fiemap extent
4594 *
4595 * Will be used for merging fiemap extent
4596 */
4597struct fiemap_cache {
4598 u64 offset;
4599 u64 phys;
4600 u64 len;
4601 u32 flags;
4602 bool cached;
4603};
4604
4605/*
4606 * Helper to submit fiemap extent.
4607 *
4608 * Will try to merge current fiemap extent specified by @offset, @phys,
4609 * @len and @flags with cached one.
4610 * And only when we fails to merge, cached one will be submitted as
4611 * fiemap extent.
4612 *
4613 * Return value is the same as fiemap_fill_next_extent().
4614 */
4615static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4616 struct fiemap_cache *cache,
4617 u64 offset, u64 phys, u64 len, u32 flags)
4618{
4619 int ret = 0;
4620
4621 if (!cache->cached)
4622 goto assign;
4623
4624 /*
4625 * Sanity check, extent_fiemap() should have ensured that new
4626 * fiemap extent won't overlap with cached one.
4627 * Not recoverable.
4628 *
4629 * NOTE: Physical address can overlap, due to compression
4630 */
4631 if (cache->offset + cache->len > offset) {
4632 WARN_ON(1);
4633 return -EINVAL;
4634 }
4635
4636 /*
4637 * Only merges fiemap extents if
4638 * 1) Their logical addresses are continuous
4639 *
4640 * 2) Their physical addresses are continuous
4641 * So truly compressed (physical size smaller than logical size)
4642 * extents won't get merged with each other
4643 *
4644 * 3) Share same flags except FIEMAP_EXTENT_LAST
4645 * So regular extent won't get merged with prealloc extent
4646 */
4647 if (cache->offset + cache->len == offset &&
4648 cache->phys + cache->len == phys &&
4649 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4650 (flags & ~FIEMAP_EXTENT_LAST)) {
4651 cache->len += len;
4652 cache->flags |= flags;
4653 goto try_submit_last;
4654 }
4655
4656 /* Not mergeable, need to submit cached one */
4657 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4658 cache->len, cache->flags);
4659 cache->cached = false;
4660 if (ret)
4661 return ret;
4662assign:
4663 cache->cached = true;
4664 cache->offset = offset;
4665 cache->phys = phys;
4666 cache->len = len;
4667 cache->flags = flags;
4668try_submit_last:
4669 if (cache->flags & FIEMAP_EXTENT_LAST) {
4670 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4671 cache->phys, cache->len, cache->flags);
4672 cache->cached = false;
4673 }
4674 return ret;
4675}
4676
4677/*
4678 * Emit last fiemap cache
4679 *
4680 * The last fiemap cache may still be cached in the following case:
4681 * 0 4k 8k
4682 * |<- Fiemap range ->|
4683 * |<------------ First extent ----------->|
4684 *
4685 * In this case, the first extent range will be cached but not emitted.
4686 * So we must emit it before ending extent_fiemap().
4687 */
4688static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4689 struct fiemap_cache *cache)
4690{
4691 int ret;
4692
4693 if (!cache->cached)
4694 return 0;
4695
4696 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4697 cache->len, cache->flags);
4698 cache->cached = false;
4699 if (ret > 0)
4700 ret = 0;
4701 return ret;
4702}
4703
4704int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4705 __u64 start, __u64 len)
4706{
4707 int ret = 0;
4708 u64 off = start;
4709 u64 max = start + len;
4710 u32 flags = 0;
4711 u32 found_type;
4712 u64 last;
4713 u64 last_for_get_extent = 0;
4714 u64 disko = 0;
4715 u64 isize = i_size_read(inode);
4716 struct btrfs_key found_key;
4717 struct extent_map *em = NULL;
4718 struct extent_state *cached_state = NULL;
4719 struct btrfs_path *path;
4720 struct btrfs_root *root = BTRFS_I(inode)->root;
4721 struct fiemap_cache cache = { 0 };
4722 struct ulist *roots;
4723 struct ulist *tmp_ulist;
4724 int end = 0;
4725 u64 em_start = 0;
4726 u64 em_len = 0;
4727 u64 em_end = 0;
4728
4729 if (len == 0)
4730 return -EINVAL;
4731
4732 path = btrfs_alloc_path();
4733 if (!path)
4734 return -ENOMEM;
4735 path->leave_spinning = 1;
4736
4737 roots = ulist_alloc(GFP_KERNEL);
4738 tmp_ulist = ulist_alloc(GFP_KERNEL);
4739 if (!roots || !tmp_ulist) {
4740 ret = -ENOMEM;
4741 goto out_free_ulist;
4742 }
4743
4744 start = round_down(start, btrfs_inode_sectorsize(inode));
4745 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4746
4747 /*
4748 * lookup the last file extent. We're not using i_size here
4749 * because there might be preallocation past i_size
4750 */
4751 ret = btrfs_lookup_file_extent(NULL, root, path,
4752 btrfs_ino(BTRFS_I(inode)), -1, 0);
4753 if (ret < 0) {
4754 goto out_free_ulist;
4755 } else {
4756 WARN_ON(!ret);
4757 if (ret == 1)
4758 ret = 0;
4759 }
4760
4761 path->slots[0]--;
4762 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4763 found_type = found_key.type;
4764
4765 /* No extents, but there might be delalloc bits */
4766 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4767 found_type != BTRFS_EXTENT_DATA_KEY) {
4768 /* have to trust i_size as the end */
4769 last = (u64)-1;
4770 last_for_get_extent = isize;
4771 } else {
4772 /*
4773 * remember the start of the last extent. There are a
4774 * bunch of different factors that go into the length of the
4775 * extent, so its much less complex to remember where it started
4776 */
4777 last = found_key.offset;
4778 last_for_get_extent = last + 1;
4779 }
4780 btrfs_release_path(path);
4781
4782 /*
4783 * we might have some extents allocated but more delalloc past those
4784 * extents. so, we trust isize unless the start of the last extent is
4785 * beyond isize
4786 */
4787 if (last < isize) {
4788 last = (u64)-1;
4789 last_for_get_extent = isize;
4790 }
4791
4792 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4793 &cached_state);
4794
4795 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4796 if (!em)
4797 goto out;
4798 if (IS_ERR(em)) {
4799 ret = PTR_ERR(em);
4800 goto out;
4801 }
4802
4803 while (!end) {
4804 u64 offset_in_extent = 0;
4805
4806 /* break if the extent we found is outside the range */
4807 if (em->start >= max || extent_map_end(em) < off)
4808 break;
4809
4810 /*
4811 * get_extent may return an extent that starts before our
4812 * requested range. We have to make sure the ranges
4813 * we return to fiemap always move forward and don't
4814 * overlap, so adjust the offsets here
4815 */
4816 em_start = max(em->start, off);
4817
4818 /*
4819 * record the offset from the start of the extent
4820 * for adjusting the disk offset below. Only do this if the
4821 * extent isn't compressed since our in ram offset may be past
4822 * what we have actually allocated on disk.
4823 */
4824 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4825 offset_in_extent = em_start - em->start;
4826 em_end = extent_map_end(em);
4827 em_len = em_end - em_start;
4828 flags = 0;
4829 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4830 disko = em->block_start + offset_in_extent;
4831 else
4832 disko = 0;
4833
4834 /*
4835 * bump off for our next call to get_extent
4836 */
4837 off = extent_map_end(em);
4838 if (off >= max)
4839 end = 1;
4840
4841 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4842 end = 1;
4843 flags |= FIEMAP_EXTENT_LAST;
4844 } else if (em->block_start == EXTENT_MAP_INLINE) {
4845 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4846 FIEMAP_EXTENT_NOT_ALIGNED);
4847 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4848 flags |= (FIEMAP_EXTENT_DELALLOC |
4849 FIEMAP_EXTENT_UNKNOWN);
4850 } else if (fieinfo->fi_extents_max) {
4851 u64 bytenr = em->block_start -
4852 (em->start - em->orig_start);
4853
4854 /*
4855 * As btrfs supports shared space, this information
4856 * can be exported to userspace tools via
4857 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4858 * then we're just getting a count and we can skip the
4859 * lookup stuff.
4860 */
4861 ret = btrfs_check_shared(root,
4862 btrfs_ino(BTRFS_I(inode)),
4863 bytenr, roots, tmp_ulist);
4864 if (ret < 0)
4865 goto out_free;
4866 if (ret)
4867 flags |= FIEMAP_EXTENT_SHARED;
4868 ret = 0;
4869 }
4870 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4871 flags |= FIEMAP_EXTENT_ENCODED;
4872 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4873 flags |= FIEMAP_EXTENT_UNWRITTEN;
4874
4875 free_extent_map(em);
4876 em = NULL;
4877 if ((em_start >= last) || em_len == (u64)-1 ||
4878 (last == (u64)-1 && isize <= em_end)) {
4879 flags |= FIEMAP_EXTENT_LAST;
4880 end = 1;
4881 }
4882
4883 /* now scan forward to see if this is really the last extent. */
4884 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4885 if (IS_ERR(em)) {
4886 ret = PTR_ERR(em);
4887 goto out;
4888 }
4889 if (!em) {
4890 flags |= FIEMAP_EXTENT_LAST;
4891 end = 1;
4892 }
4893 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4894 em_len, flags);
4895 if (ret) {
4896 if (ret == 1)
4897 ret = 0;
4898 goto out_free;
4899 }
4900 }
4901out_free:
4902 if (!ret)
4903 ret = emit_last_fiemap_cache(fieinfo, &cache);
4904 free_extent_map(em);
4905out:
4906 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4907 &cached_state);
4908
4909out_free_ulist:
4910 btrfs_free_path(path);
4911 ulist_free(roots);
4912 ulist_free(tmp_ulist);
4913 return ret;
4914}
4915
4916static void __free_extent_buffer(struct extent_buffer *eb)
4917{
4918 kmem_cache_free(extent_buffer_cache, eb);
4919}
4920
4921int extent_buffer_under_io(struct extent_buffer *eb)
4922{
4923 return (atomic_read(&eb->io_pages) ||
4924 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4925 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4926}
4927
4928/*
4929 * Release all pages attached to the extent buffer.
4930 */
4931static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4932{
4933 int i;
4934 int num_pages;
4935 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4936
4937 BUG_ON(extent_buffer_under_io(eb));
4938
4939 num_pages = num_extent_pages(eb);
4940 for (i = 0; i < num_pages; i++) {
4941 struct page *page = eb->pages[i];
4942
4943 if (!page)
4944 continue;
4945 if (mapped)
4946 spin_lock(&page->mapping->private_lock);
4947 /*
4948 * We do this since we'll remove the pages after we've
4949 * removed the eb from the radix tree, so we could race
4950 * and have this page now attached to the new eb. So
4951 * only clear page_private if it's still connected to
4952 * this eb.
4953 */
4954 if (PagePrivate(page) &&
4955 page->private == (unsigned long)eb) {
4956 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4957 BUG_ON(PageDirty(page));
4958 BUG_ON(PageWriteback(page));
4959 /*
4960 * We need to make sure we haven't be attached
4961 * to a new eb.
4962 */
4963 ClearPagePrivate(page);
4964 set_page_private(page, 0);
4965 /* One for the page private */
4966 put_page(page);
4967 }
4968
4969 if (mapped)
4970 spin_unlock(&page->mapping->private_lock);
4971
4972 /* One for when we allocated the page */
4973 put_page(page);
4974 }
4975}
4976
4977/*
4978 * Helper for releasing the extent buffer.
4979 */
4980static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4981{
4982 btrfs_release_extent_buffer_pages(eb);
4983 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4984 __free_extent_buffer(eb);
4985}
4986
4987static struct extent_buffer *
4988__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4989 unsigned long len)
4990{
4991 struct extent_buffer *eb = NULL;
4992
4993 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4994 eb->start = start;
4995 eb->len = len;
4996 eb->fs_info = fs_info;
4997 eb->bflags = 0;
4998 rwlock_init(&eb->lock);
4999 atomic_set(&eb->blocking_readers, 0);
5000 eb->blocking_writers = 0;
5001 eb->lock_nested = false;
5002 init_waitqueue_head(&eb->write_lock_wq);
5003 init_waitqueue_head(&eb->read_lock_wq);
5004
5005 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5006 &fs_info->allocated_ebs);
5007
5008 spin_lock_init(&eb->refs_lock);
5009 atomic_set(&eb->refs, 1);
5010 atomic_set(&eb->io_pages, 0);
5011
5012 /*
5013 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
5014 */
5015 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
5016 > MAX_INLINE_EXTENT_BUFFER_SIZE);
5017 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
5018
5019#ifdef CONFIG_BTRFS_DEBUG
5020 eb->spinning_writers = 0;
5021 atomic_set(&eb->spinning_readers, 0);
5022 atomic_set(&eb->read_locks, 0);
5023 eb->write_locks = 0;
5024#endif
5025
5026 return eb;
5027}
5028
5029struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
5030{
5031 int i;
5032 struct page *p;
5033 struct extent_buffer *new;
5034 int num_pages = num_extent_pages(src);
5035
5036 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5037 if (new == NULL)
5038 return NULL;
5039
5040 for (i = 0; i < num_pages; i++) {
5041 p = alloc_page(GFP_NOFS);
5042 if (!p) {
5043 btrfs_release_extent_buffer(new);
5044 return NULL;
5045 }
5046 attach_extent_buffer_page(new, p);
5047 WARN_ON(PageDirty(p));
5048 SetPageUptodate(p);
5049 new->pages[i] = p;
5050 copy_page(page_address(p), page_address(src->pages[i]));
5051 }
5052
5053 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5054 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5055
5056 return new;
5057}
5058
5059struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5060 u64 start, unsigned long len)
5061{
5062 struct extent_buffer *eb;
5063 int num_pages;
5064 int i;
5065
5066 eb = __alloc_extent_buffer(fs_info, start, len);
5067 if (!eb)
5068 return NULL;
5069
5070 num_pages = num_extent_pages(eb);
5071 for (i = 0; i < num_pages; i++) {
5072 eb->pages[i] = alloc_page(GFP_NOFS);
5073 if (!eb->pages[i])
5074 goto err;
5075 }
5076 set_extent_buffer_uptodate(eb);
5077 btrfs_set_header_nritems(eb, 0);
5078 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5079
5080 return eb;
5081err:
5082 for (; i > 0; i--)
5083 __free_page(eb->pages[i - 1]);
5084 __free_extent_buffer(eb);
5085 return NULL;
5086}
5087
5088struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5089 u64 start)
5090{
5091 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5092}
5093
5094static void check_buffer_tree_ref(struct extent_buffer *eb)
5095{
5096 int refs;
5097 /* the ref bit is tricky. We have to make sure it is set
5098 * if we have the buffer dirty. Otherwise the
5099 * code to free a buffer can end up dropping a dirty
5100 * page
5101 *
5102 * Once the ref bit is set, it won't go away while the
5103 * buffer is dirty or in writeback, and it also won't
5104 * go away while we have the reference count on the
5105 * eb bumped.
5106 *
5107 * We can't just set the ref bit without bumping the
5108 * ref on the eb because free_extent_buffer might
5109 * see the ref bit and try to clear it. If this happens
5110 * free_extent_buffer might end up dropping our original
5111 * ref by mistake and freeing the page before we are able
5112 * to add one more ref.
5113 *
5114 * So bump the ref count first, then set the bit. If someone
5115 * beat us to it, drop the ref we added.
5116 */
5117 refs = atomic_read(&eb->refs);
5118 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5119 return;
5120
5121 spin_lock(&eb->refs_lock);
5122 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5123 atomic_inc(&eb->refs);
5124 spin_unlock(&eb->refs_lock);
5125}
5126
5127static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5128 struct page *accessed)
5129{
5130 int num_pages, i;
5131
5132 check_buffer_tree_ref(eb);
5133
5134 num_pages = num_extent_pages(eb);
5135 for (i = 0; i < num_pages; i++) {
5136 struct page *p = eb->pages[i];
5137
5138 if (p != accessed)
5139 mark_page_accessed(p);
5140 }
5141}
5142
5143struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5144 u64 start)
5145{
5146 struct extent_buffer *eb;
5147
5148 rcu_read_lock();
5149 eb = radix_tree_lookup(&fs_info->buffer_radix,
5150 start >> PAGE_SHIFT);
5151 if (eb && atomic_inc_not_zero(&eb->refs)) {
5152 rcu_read_unlock();
5153 /*
5154 * Lock our eb's refs_lock to avoid races with
5155 * free_extent_buffer. When we get our eb it might be flagged
5156 * with EXTENT_BUFFER_STALE and another task running
5157 * free_extent_buffer might have seen that flag set,
5158 * eb->refs == 2, that the buffer isn't under IO (dirty and
5159 * writeback flags not set) and it's still in the tree (flag
5160 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5161 * of decrementing the extent buffer's reference count twice.
5162 * So here we could race and increment the eb's reference count,
5163 * clear its stale flag, mark it as dirty and drop our reference
5164 * before the other task finishes executing free_extent_buffer,
5165 * which would later result in an attempt to free an extent
5166 * buffer that is dirty.
5167 */
5168 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5169 spin_lock(&eb->refs_lock);
5170 spin_unlock(&eb->refs_lock);
5171 }
5172 mark_extent_buffer_accessed(eb, NULL);
5173 return eb;
5174 }
5175 rcu_read_unlock();
5176
5177 return NULL;
5178}
5179
5180#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5181struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5182 u64 start)
5183{
5184 struct extent_buffer *eb, *exists = NULL;
5185 int ret;
5186
5187 eb = find_extent_buffer(fs_info, start);
5188 if (eb)
5189 return eb;
5190 eb = alloc_dummy_extent_buffer(fs_info, start);
5191 if (!eb)
5192 return ERR_PTR(-ENOMEM);
5193 eb->fs_info = fs_info;
5194again:
5195 ret = radix_tree_preload(GFP_NOFS);
5196 if (ret) {
5197 exists = ERR_PTR(ret);
5198 goto free_eb;
5199 }
5200 spin_lock(&fs_info->buffer_lock);
5201 ret = radix_tree_insert(&fs_info->buffer_radix,
5202 start >> PAGE_SHIFT, eb);
5203 spin_unlock(&fs_info->buffer_lock);
5204 radix_tree_preload_end();
5205 if (ret == -EEXIST) {
5206 exists = find_extent_buffer(fs_info, start);
5207 if (exists)
5208 goto free_eb;
5209 else
5210 goto again;
5211 }
5212 check_buffer_tree_ref(eb);
5213 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5214
5215 return eb;
5216free_eb:
5217 btrfs_release_extent_buffer(eb);
5218 return exists;
5219}
5220#endif
5221
5222struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5223 u64 start)
5224{
5225 unsigned long len = fs_info->nodesize;
5226 int num_pages;
5227 int i;
5228 unsigned long index = start >> PAGE_SHIFT;
5229 struct extent_buffer *eb;
5230 struct extent_buffer *exists = NULL;
5231 struct page *p;
5232 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5233 int uptodate = 1;
5234 int ret;
5235
5236 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5237 btrfs_err(fs_info, "bad tree block start %llu", start);
5238 return ERR_PTR(-EINVAL);
5239 }
5240
5241 eb = find_extent_buffer(fs_info, start);
5242 if (eb)
5243 return eb;
5244
5245 eb = __alloc_extent_buffer(fs_info, start, len);
5246 if (!eb)
5247 return ERR_PTR(-ENOMEM);
5248
5249 num_pages = num_extent_pages(eb);
5250 for (i = 0; i < num_pages; i++, index++) {
5251 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5252 if (!p) {
5253 exists = ERR_PTR(-ENOMEM);
5254 goto free_eb;
5255 }
5256
5257 spin_lock(&mapping->private_lock);
5258 if (PagePrivate(p)) {
5259 /*
5260 * We could have already allocated an eb for this page
5261 * and attached one so lets see if we can get a ref on
5262 * the existing eb, and if we can we know it's good and
5263 * we can just return that one, else we know we can just
5264 * overwrite page->private.
5265 */
5266 exists = (struct extent_buffer *)p->private;
5267 if (atomic_inc_not_zero(&exists->refs)) {
5268 spin_unlock(&mapping->private_lock);
5269 unlock_page(p);
5270 put_page(p);
5271 mark_extent_buffer_accessed(exists, p);
5272 goto free_eb;
5273 }
5274 exists = NULL;
5275
5276 /*
5277 * Do this so attach doesn't complain and we need to
5278 * drop the ref the old guy had.
5279 */
5280 ClearPagePrivate(p);
5281 WARN_ON(PageDirty(p));
5282 put_page(p);
5283 }
5284 attach_extent_buffer_page(eb, p);
5285 spin_unlock(&mapping->private_lock);
5286 WARN_ON(PageDirty(p));
5287 eb->pages[i] = p;
5288 if (!PageUptodate(p))
5289 uptodate = 0;
5290
5291 /*
5292 * We can't unlock the pages just yet since the extent buffer
5293 * hasn't been properly inserted in the radix tree, this
5294 * opens a race with btree_releasepage which can free a page
5295 * while we are still filling in all pages for the buffer and
5296 * we could crash.
5297 */
5298 }
5299 if (uptodate)
5300 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5301again:
5302 ret = radix_tree_preload(GFP_NOFS);
5303 if (ret) {
5304 exists = ERR_PTR(ret);
5305 goto free_eb;
5306 }
5307
5308 spin_lock(&fs_info->buffer_lock);
5309 ret = radix_tree_insert(&fs_info->buffer_radix,
5310 start >> PAGE_SHIFT, eb);
5311 spin_unlock(&fs_info->buffer_lock);
5312 radix_tree_preload_end();
5313 if (ret == -EEXIST) {
5314 exists = find_extent_buffer(fs_info, start);
5315 if (exists)
5316 goto free_eb;
5317 else
5318 goto again;
5319 }
5320 /* add one reference for the tree */
5321 check_buffer_tree_ref(eb);
5322 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5323
5324 /*
5325 * Now it's safe to unlock the pages because any calls to
5326 * btree_releasepage will correctly detect that a page belongs to a
5327 * live buffer and won't free them prematurely.
5328 */
5329 for (i = 0; i < num_pages; i++)
5330 unlock_page(eb->pages[i]);
5331 return eb;
5332
5333free_eb:
5334 WARN_ON(!atomic_dec_and_test(&eb->refs));
5335 for (i = 0; i < num_pages; i++) {
5336 if (eb->pages[i])
5337 unlock_page(eb->pages[i]);
5338 }
5339
5340 btrfs_release_extent_buffer(eb);
5341 return exists;
5342}
5343
5344static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5345{
5346 struct extent_buffer *eb =
5347 container_of(head, struct extent_buffer, rcu_head);
5348
5349 __free_extent_buffer(eb);
5350}
5351
5352static int release_extent_buffer(struct extent_buffer *eb)
5353 __releases(&eb->refs_lock)
5354{
5355 lockdep_assert_held(&eb->refs_lock);
5356
5357 WARN_ON(atomic_read(&eb->refs) == 0);
5358 if (atomic_dec_and_test(&eb->refs)) {
5359 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5360 struct btrfs_fs_info *fs_info = eb->fs_info;
5361
5362 spin_unlock(&eb->refs_lock);
5363
5364 spin_lock(&fs_info->buffer_lock);
5365 radix_tree_delete(&fs_info->buffer_radix,
5366 eb->start >> PAGE_SHIFT);
5367 spin_unlock(&fs_info->buffer_lock);
5368 } else {
5369 spin_unlock(&eb->refs_lock);
5370 }
5371
5372 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5373 /* Should be safe to release our pages at this point */
5374 btrfs_release_extent_buffer_pages(eb);
5375#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5376 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5377 __free_extent_buffer(eb);
5378 return 1;
5379 }
5380#endif
5381 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5382 return 1;
5383 }
5384 spin_unlock(&eb->refs_lock);
5385
5386 return 0;
5387}
5388
5389void free_extent_buffer(struct extent_buffer *eb)
5390{
5391 int refs;
5392 int old;
5393 if (!eb)
5394 return;
5395
5396 while (1) {
5397 refs = atomic_read(&eb->refs);
5398 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5399 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5400 refs == 1))
5401 break;
5402 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5403 if (old == refs)
5404 return;
5405 }
5406
5407 spin_lock(&eb->refs_lock);
5408 if (atomic_read(&eb->refs) == 2 &&
5409 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5410 !extent_buffer_under_io(eb) &&
5411 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5412 atomic_dec(&eb->refs);
5413
5414 /*
5415 * I know this is terrible, but it's temporary until we stop tracking
5416 * the uptodate bits and such for the extent buffers.
5417 */
5418 release_extent_buffer(eb);
5419}
5420
5421void free_extent_buffer_stale(struct extent_buffer *eb)
5422{
5423 if (!eb)
5424 return;
5425
5426 spin_lock(&eb->refs_lock);
5427 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5428
5429 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5430 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5431 atomic_dec(&eb->refs);
5432 release_extent_buffer(eb);
5433}
5434
5435void clear_extent_buffer_dirty(struct extent_buffer *eb)
5436{
5437 int i;
5438 int num_pages;
5439 struct page *page;
5440
5441 num_pages = num_extent_pages(eb);
5442
5443 for (i = 0; i < num_pages; i++) {
5444 page = eb->pages[i];
5445 if (!PageDirty(page))
5446 continue;
5447
5448 lock_page(page);
5449 WARN_ON(!PagePrivate(page));
5450
5451 clear_page_dirty_for_io(page);
5452 xa_lock_irq(&page->mapping->i_pages);
5453 if (!PageDirty(page))
5454 __xa_clear_mark(&page->mapping->i_pages,
5455 page_index(page), PAGECACHE_TAG_DIRTY);
5456 xa_unlock_irq(&page->mapping->i_pages);
5457 ClearPageError(page);
5458 unlock_page(page);
5459 }
5460 WARN_ON(atomic_read(&eb->refs) == 0);
5461}
5462
5463bool set_extent_buffer_dirty(struct extent_buffer *eb)
5464{
5465 int i;
5466 int num_pages;
5467 bool was_dirty;
5468
5469 check_buffer_tree_ref(eb);
5470
5471 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5472
5473 num_pages = num_extent_pages(eb);
5474 WARN_ON(atomic_read(&eb->refs) == 0);
5475 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5476
5477 if (!was_dirty)
5478 for (i = 0; i < num_pages; i++)
5479 set_page_dirty(eb->pages[i]);
5480
5481#ifdef CONFIG_BTRFS_DEBUG
5482 for (i = 0; i < num_pages; i++)
5483 ASSERT(PageDirty(eb->pages[i]));
5484#endif
5485
5486 return was_dirty;
5487}
5488
5489void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5490{
5491 int i;
5492 struct page *page;
5493 int num_pages;
5494
5495 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5496 num_pages = num_extent_pages(eb);
5497 for (i = 0; i < num_pages; i++) {
5498 page = eb->pages[i];
5499 if (page)
5500 ClearPageUptodate(page);
5501 }
5502}
5503
5504void set_extent_buffer_uptodate(struct extent_buffer *eb)
5505{
5506 int i;
5507 struct page *page;
5508 int num_pages;
5509
5510 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5511 num_pages = num_extent_pages(eb);
5512 for (i = 0; i < num_pages; i++) {
5513 page = eb->pages[i];
5514 SetPageUptodate(page);
5515 }
5516}
5517
5518int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5519{
5520 int i;
5521 struct page *page;
5522 int err;
5523 int ret = 0;
5524 int locked_pages = 0;
5525 int all_uptodate = 1;
5526 int num_pages;
5527 unsigned long num_reads = 0;
5528 struct bio *bio = NULL;
5529 unsigned long bio_flags = 0;
5530
5531 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5532 return 0;
5533
5534 num_pages = num_extent_pages(eb);
5535 for (i = 0; i < num_pages; i++) {
5536 page = eb->pages[i];
5537 if (wait == WAIT_NONE) {
5538 if (!trylock_page(page))
5539 goto unlock_exit;
5540 } else {
5541 lock_page(page);
5542 }
5543 locked_pages++;
5544 }
5545 /*
5546 * We need to firstly lock all pages to make sure that
5547 * the uptodate bit of our pages won't be affected by
5548 * clear_extent_buffer_uptodate().
5549 */
5550 for (i = 0; i < num_pages; i++) {
5551 page = eb->pages[i];
5552 if (!PageUptodate(page)) {
5553 num_reads++;
5554 all_uptodate = 0;
5555 }
5556 }
5557
5558 if (all_uptodate) {
5559 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5560 goto unlock_exit;
5561 }
5562
5563 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5564 eb->read_mirror = 0;
5565 atomic_set(&eb->io_pages, num_reads);
5566 for (i = 0; i < num_pages; i++) {
5567 page = eb->pages[i];
5568
5569 if (!PageUptodate(page)) {
5570 if (ret) {
5571 atomic_dec(&eb->io_pages);
5572 unlock_page(page);
5573 continue;
5574 }
5575
5576 ClearPageError(page);
5577 err = __extent_read_full_page(page,
5578 btree_get_extent, &bio,
5579 mirror_num, &bio_flags,
5580 REQ_META);
5581 if (err) {
5582 ret = err;
5583 /*
5584 * We use &bio in above __extent_read_full_page,
5585 * so we ensure that if it returns error, the
5586 * current page fails to add itself to bio and
5587 * it's been unlocked.
5588 *
5589 * We must dec io_pages by ourselves.
5590 */
5591 atomic_dec(&eb->io_pages);
5592 }
5593 } else {
5594 unlock_page(page);
5595 }
5596 }
5597
5598 if (bio) {
5599 err = submit_one_bio(bio, mirror_num, bio_flags);
5600 if (err)
5601 return err;
5602 }
5603
5604 if (ret || wait != WAIT_COMPLETE)
5605 return ret;
5606
5607 for (i = 0; i < num_pages; i++) {
5608 page = eb->pages[i];
5609 wait_on_page_locked(page);
5610 if (!PageUptodate(page))
5611 ret = -EIO;
5612 }
5613
5614 return ret;
5615
5616unlock_exit:
5617 while (locked_pages > 0) {
5618 locked_pages--;
5619 page = eb->pages[locked_pages];
5620 unlock_page(page);
5621 }
5622 return ret;
5623}
5624
5625void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5626 unsigned long start, unsigned long len)
5627{
5628 size_t cur;
5629 size_t offset;
5630 struct page *page;
5631 char *kaddr;
5632 char *dst = (char *)dstv;
5633 size_t start_offset = offset_in_page(eb->start);
5634 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5635
5636 if (start + len > eb->len) {
5637 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5638 eb->start, eb->len, start, len);
5639 memset(dst, 0, len);
5640 return;
5641 }
5642
5643 offset = offset_in_page(start_offset + start);
5644
5645 while (len > 0) {
5646 page = eb->pages[i];
5647
5648 cur = min(len, (PAGE_SIZE - offset));
5649 kaddr = page_address(page);
5650 memcpy(dst, kaddr + offset, cur);
5651
5652 dst += cur;
5653 len -= cur;
5654 offset = 0;
5655 i++;
5656 }
5657}
5658
5659int read_extent_buffer_to_user(const struct extent_buffer *eb,
5660 void __user *dstv,
5661 unsigned long start, unsigned long len)
5662{
5663 size_t cur;
5664 size_t offset;
5665 struct page *page;
5666 char *kaddr;
5667 char __user *dst = (char __user *)dstv;
5668 size_t start_offset = offset_in_page(eb->start);
5669 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5670 int ret = 0;
5671
5672 WARN_ON(start > eb->len);
5673 WARN_ON(start + len > eb->start + eb->len);
5674
5675 offset = offset_in_page(start_offset + start);
5676
5677 while (len > 0) {
5678 page = eb->pages[i];
5679
5680 cur = min(len, (PAGE_SIZE - offset));
5681 kaddr = page_address(page);
5682 if (copy_to_user(dst, kaddr + offset, cur)) {
5683 ret = -EFAULT;
5684 break;
5685 }
5686
5687 dst += cur;
5688 len -= cur;
5689 offset = 0;
5690 i++;
5691 }
5692
5693 return ret;
5694}
5695
5696/*
5697 * return 0 if the item is found within a page.
5698 * return 1 if the item spans two pages.
5699 * return -EINVAL otherwise.
5700 */
5701int map_private_extent_buffer(const struct extent_buffer *eb,
5702 unsigned long start, unsigned long min_len,
5703 char **map, unsigned long *map_start,
5704 unsigned long *map_len)
5705{
5706 size_t offset;
5707 char *kaddr;
5708 struct page *p;
5709 size_t start_offset = offset_in_page(eb->start);
5710 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5711 unsigned long end_i = (start_offset + start + min_len - 1) >>
5712 PAGE_SHIFT;
5713
5714 if (start + min_len > eb->len) {
5715 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5716 eb->start, eb->len, start, min_len);
5717 return -EINVAL;
5718 }
5719
5720 if (i != end_i)
5721 return 1;
5722
5723 if (i == 0) {
5724 offset = start_offset;
5725 *map_start = 0;
5726 } else {
5727 offset = 0;
5728 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5729 }
5730
5731 p = eb->pages[i];
5732 kaddr = page_address(p);
5733 *map = kaddr + offset;
5734 *map_len = PAGE_SIZE - offset;
5735 return 0;
5736}
5737
5738int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5739 unsigned long start, unsigned long len)
5740{
5741 size_t cur;
5742 size_t offset;
5743 struct page *page;
5744 char *kaddr;
5745 char *ptr = (char *)ptrv;
5746 size_t start_offset = offset_in_page(eb->start);
5747 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5748 int ret = 0;
5749
5750 WARN_ON(start > eb->len);
5751 WARN_ON(start + len > eb->start + eb->len);
5752
5753 offset = offset_in_page(start_offset + start);
5754
5755 while (len > 0) {
5756 page = eb->pages[i];
5757
5758 cur = min(len, (PAGE_SIZE - offset));
5759
5760 kaddr = page_address(page);
5761 ret = memcmp(ptr, kaddr + offset, cur);
5762 if (ret)
5763 break;
5764
5765 ptr += cur;
5766 len -= cur;
5767 offset = 0;
5768 i++;
5769 }
5770 return ret;
5771}
5772
5773void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5774 const void *srcv)
5775{
5776 char *kaddr;
5777
5778 WARN_ON(!PageUptodate(eb->pages[0]));
5779 kaddr = page_address(eb->pages[0]);
5780 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5781 BTRFS_FSID_SIZE);
5782}
5783
5784void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5785{
5786 char *kaddr;
5787
5788 WARN_ON(!PageUptodate(eb->pages[0]));
5789 kaddr = page_address(eb->pages[0]);
5790 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5791 BTRFS_FSID_SIZE);
5792}
5793
5794void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5795 unsigned long start, unsigned long len)
5796{
5797 size_t cur;
5798 size_t offset;
5799 struct page *page;
5800 char *kaddr;
5801 char *src = (char *)srcv;
5802 size_t start_offset = offset_in_page(eb->start);
5803 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5804
5805 WARN_ON(start > eb->len);
5806 WARN_ON(start + len > eb->start + eb->len);
5807
5808 offset = offset_in_page(start_offset + start);
5809
5810 while (len > 0) {
5811 page = eb->pages[i];
5812 WARN_ON(!PageUptodate(page));
5813
5814 cur = min(len, PAGE_SIZE - offset);
5815 kaddr = page_address(page);
5816 memcpy(kaddr + offset, src, cur);
5817
5818 src += cur;
5819 len -= cur;
5820 offset = 0;
5821 i++;
5822 }
5823}
5824
5825void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5826 unsigned long len)
5827{
5828 size_t cur;
5829 size_t offset;
5830 struct page *page;
5831 char *kaddr;
5832 size_t start_offset = offset_in_page(eb->start);
5833 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5834
5835 WARN_ON(start > eb->len);
5836 WARN_ON(start + len > eb->start + eb->len);
5837
5838 offset = offset_in_page(start_offset + start);
5839
5840 while (len > 0) {
5841 page = eb->pages[i];
5842 WARN_ON(!PageUptodate(page));
5843
5844 cur = min(len, PAGE_SIZE - offset);
5845 kaddr = page_address(page);
5846 memset(kaddr + offset, 0, cur);
5847
5848 len -= cur;
5849 offset = 0;
5850 i++;
5851 }
5852}
5853
5854void copy_extent_buffer_full(struct extent_buffer *dst,
5855 struct extent_buffer *src)
5856{
5857 int i;
5858 int num_pages;
5859
5860 ASSERT(dst->len == src->len);
5861
5862 num_pages = num_extent_pages(dst);
5863 for (i = 0; i < num_pages; i++)
5864 copy_page(page_address(dst->pages[i]),
5865 page_address(src->pages[i]));
5866}
5867
5868void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5869 unsigned long dst_offset, unsigned long src_offset,
5870 unsigned long len)
5871{
5872 u64 dst_len = dst->len;
5873 size_t cur;
5874 size_t offset;
5875 struct page *page;
5876 char *kaddr;
5877 size_t start_offset = offset_in_page(dst->start);
5878 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5879
5880 WARN_ON(src->len != dst_len);
5881
5882 offset = offset_in_page(start_offset + dst_offset);
5883
5884 while (len > 0) {
5885 page = dst->pages[i];
5886 WARN_ON(!PageUptodate(page));
5887
5888 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5889
5890 kaddr = page_address(page);
5891 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5892
5893 src_offset += cur;
5894 len -= cur;
5895 offset = 0;
5896 i++;
5897 }
5898}
5899
5900/*
5901 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5902 * given bit number
5903 * @eb: the extent buffer
5904 * @start: offset of the bitmap item in the extent buffer
5905 * @nr: bit number
5906 * @page_index: return index of the page in the extent buffer that contains the
5907 * given bit number
5908 * @page_offset: return offset into the page given by page_index
5909 *
5910 * This helper hides the ugliness of finding the byte in an extent buffer which
5911 * contains a given bit.
5912 */
5913static inline void eb_bitmap_offset(struct extent_buffer *eb,
5914 unsigned long start, unsigned long nr,
5915 unsigned long *page_index,
5916 size_t *page_offset)
5917{
5918 size_t start_offset = offset_in_page(eb->start);
5919 size_t byte_offset = BIT_BYTE(nr);
5920 size_t offset;
5921
5922 /*
5923 * The byte we want is the offset of the extent buffer + the offset of
5924 * the bitmap item in the extent buffer + the offset of the byte in the
5925 * bitmap item.
5926 */
5927 offset = start_offset + start + byte_offset;
5928
5929 *page_index = offset >> PAGE_SHIFT;
5930 *page_offset = offset_in_page(offset);
5931}
5932
5933/**
5934 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5935 * @eb: the extent buffer
5936 * @start: offset of the bitmap item in the extent buffer
5937 * @nr: bit number to test
5938 */
5939int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5940 unsigned long nr)
5941{
5942 u8 *kaddr;
5943 struct page *page;
5944 unsigned long i;
5945 size_t offset;
5946
5947 eb_bitmap_offset(eb, start, nr, &i, &offset);
5948 page = eb->pages[i];
5949 WARN_ON(!PageUptodate(page));
5950 kaddr = page_address(page);
5951 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5952}
5953
5954/**
5955 * extent_buffer_bitmap_set - set an area of a bitmap
5956 * @eb: the extent buffer
5957 * @start: offset of the bitmap item in the extent buffer
5958 * @pos: bit number of the first bit
5959 * @len: number of bits to set
5960 */
5961void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5962 unsigned long pos, unsigned long len)
5963{
5964 u8 *kaddr;
5965 struct page *page;
5966 unsigned long i;
5967 size_t offset;
5968 const unsigned int size = pos + len;
5969 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5970 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5971
5972 eb_bitmap_offset(eb, start, pos, &i, &offset);
5973 page = eb->pages[i];
5974 WARN_ON(!PageUptodate(page));
5975 kaddr = page_address(page);
5976
5977 while (len >= bits_to_set) {
5978 kaddr[offset] |= mask_to_set;
5979 len -= bits_to_set;
5980 bits_to_set = BITS_PER_BYTE;
5981 mask_to_set = ~0;
5982 if (++offset >= PAGE_SIZE && len > 0) {
5983 offset = 0;
5984 page = eb->pages[++i];
5985 WARN_ON(!PageUptodate(page));
5986 kaddr = page_address(page);
5987 }
5988 }
5989 if (len) {
5990 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5991 kaddr[offset] |= mask_to_set;
5992 }
5993}
5994
5995
5996/**
5997 * extent_buffer_bitmap_clear - clear an area of a bitmap
5998 * @eb: the extent buffer
5999 * @start: offset of the bitmap item in the extent buffer
6000 * @pos: bit number of the first bit
6001 * @len: number of bits to clear
6002 */
6003void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
6004 unsigned long pos, unsigned long len)
6005{
6006 u8 *kaddr;
6007 struct page *page;
6008 unsigned long i;
6009 size_t offset;
6010 const unsigned int size = pos + len;
6011 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6012 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6013
6014 eb_bitmap_offset(eb, start, pos, &i, &offset);
6015 page = eb->pages[i];
6016 WARN_ON(!PageUptodate(page));
6017 kaddr = page_address(page);
6018
6019 while (len >= bits_to_clear) {
6020 kaddr[offset] &= ~mask_to_clear;
6021 len -= bits_to_clear;
6022 bits_to_clear = BITS_PER_BYTE;
6023 mask_to_clear = ~0;
6024 if (++offset >= PAGE_SIZE && len > 0) {
6025 offset = 0;
6026 page = eb->pages[++i];
6027 WARN_ON(!PageUptodate(page));
6028 kaddr = page_address(page);
6029 }
6030 }
6031 if (len) {
6032 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
6033 kaddr[offset] &= ~mask_to_clear;
6034 }
6035}
6036
6037static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
6038{
6039 unsigned long distance = (src > dst) ? src - dst : dst - src;
6040 return distance < len;
6041}
6042
6043static void copy_pages(struct page *dst_page, struct page *src_page,
6044 unsigned long dst_off, unsigned long src_off,
6045 unsigned long len)
6046{
6047 char *dst_kaddr = page_address(dst_page);
6048 char *src_kaddr;
6049 int must_memmove = 0;
6050
6051 if (dst_page != src_page) {
6052 src_kaddr = page_address(src_page);
6053 } else {
6054 src_kaddr = dst_kaddr;
6055 if (areas_overlap(src_off, dst_off, len))
6056 must_memmove = 1;
6057 }
6058
6059 if (must_memmove)
6060 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6061 else
6062 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6063}
6064
6065void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
6066 unsigned long src_offset, unsigned long len)
6067{
6068 struct btrfs_fs_info *fs_info = dst->fs_info;
6069 size_t cur;
6070 size_t dst_off_in_page;
6071 size_t src_off_in_page;
6072 size_t start_offset = offset_in_page(dst->start);
6073 unsigned long dst_i;
6074 unsigned long src_i;
6075
6076 if (src_offset + len > dst->len) {
6077 btrfs_err(fs_info,
6078 "memmove bogus src_offset %lu move len %lu dst len %lu",
6079 src_offset, len, dst->len);
6080 BUG();
6081 }
6082 if (dst_offset + len > dst->len) {
6083 btrfs_err(fs_info,
6084 "memmove bogus dst_offset %lu move len %lu dst len %lu",
6085 dst_offset, len, dst->len);
6086 BUG();
6087 }
6088
6089 while (len > 0) {
6090 dst_off_in_page = offset_in_page(start_offset + dst_offset);
6091 src_off_in_page = offset_in_page(start_offset + src_offset);
6092
6093 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
6094 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
6095
6096 cur = min(len, (unsigned long)(PAGE_SIZE -
6097 src_off_in_page));
6098 cur = min_t(unsigned long, cur,
6099 (unsigned long)(PAGE_SIZE - dst_off_in_page));
6100
6101 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6102 dst_off_in_page, src_off_in_page, cur);
6103
6104 src_offset += cur;
6105 dst_offset += cur;
6106 len -= cur;
6107 }
6108}
6109
6110void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
6111 unsigned long src_offset, unsigned long len)
6112{
6113 struct btrfs_fs_info *fs_info = dst->fs_info;
6114 size_t cur;
6115 size_t dst_off_in_page;
6116 size_t src_off_in_page;
6117 unsigned long dst_end = dst_offset + len - 1;
6118 unsigned long src_end = src_offset + len - 1;
6119 size_t start_offset = offset_in_page(dst->start);
6120 unsigned long dst_i;
6121 unsigned long src_i;
6122
6123 if (src_offset + len > dst->len) {
6124 btrfs_err(fs_info,
6125 "memmove bogus src_offset %lu move len %lu len %lu",
6126 src_offset, len, dst->len);
6127 BUG();
6128 }
6129 if (dst_offset + len > dst->len) {
6130 btrfs_err(fs_info,
6131 "memmove bogus dst_offset %lu move len %lu len %lu",
6132 dst_offset, len, dst->len);
6133 BUG();
6134 }
6135 if (dst_offset < src_offset) {
6136 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6137 return;
6138 }
6139 while (len > 0) {
6140 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6141 src_i = (start_offset + src_end) >> PAGE_SHIFT;
6142
6143 dst_off_in_page = offset_in_page(start_offset + dst_end);
6144 src_off_in_page = offset_in_page(start_offset + src_end);
6145
6146 cur = min_t(unsigned long, len, src_off_in_page + 1);
6147 cur = min(cur, dst_off_in_page + 1);
6148 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6149 dst_off_in_page - cur + 1,
6150 src_off_in_page - cur + 1, cur);
6151
6152 dst_end -= cur;
6153 src_end -= cur;
6154 len -= cur;
6155 }
6156}
6157
6158int try_release_extent_buffer(struct page *page)
6159{
6160 struct extent_buffer *eb;
6161
6162 /*
6163 * We need to make sure nobody is attaching this page to an eb right
6164 * now.
6165 */
6166 spin_lock(&page->mapping->private_lock);
6167 if (!PagePrivate(page)) {
6168 spin_unlock(&page->mapping->private_lock);
6169 return 1;
6170 }
6171
6172 eb = (struct extent_buffer *)page->private;
6173 BUG_ON(!eb);
6174
6175 /*
6176 * This is a little awful but should be ok, we need to make sure that
6177 * the eb doesn't disappear out from under us while we're looking at
6178 * this page.
6179 */
6180 spin_lock(&eb->refs_lock);
6181 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6182 spin_unlock(&eb->refs_lock);
6183 spin_unlock(&page->mapping->private_lock);
6184 return 0;
6185 }
6186 spin_unlock(&page->mapping->private_lock);
6187
6188 /*
6189 * If tree ref isn't set then we know the ref on this eb is a real ref,
6190 * so just return, this page will likely be freed soon anyway.
6191 */
6192 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6193 spin_unlock(&eb->refs_lock);
6194 return 0;
6195 }
6196
6197 return release_extent_buffer(eb);
6198}