]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - fs/btrfs/inode.c
btrfs: extended inode refs
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / inode.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
35#include <linux/bit_spinlock.h>
36#include <linux/xattr.h>
37#include <linux/posix_acl.h>
38#include <linux/falloc.h>
39#include <linux/slab.h>
40#include <linux/ratelimit.h>
41#include <linux/mount.h>
42#include "compat.h"
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
49#include "ordered-data.h"
50#include "xattr.h"
51#include "tree-log.h"
52#include "volumes.h"
53#include "compression.h"
54#include "locking.h"
55#include "free-space-cache.h"
56#include "inode-map.h"
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
70static const struct file_operations btrfs_dir_file_operations;
71static struct extent_io_ops btrfs_extent_io_ops;
72
73static struct kmem_cache *btrfs_inode_cachep;
74struct kmem_cache *btrfs_trans_handle_cachep;
75struct kmem_cache *btrfs_transaction_cachep;
76struct kmem_cache *btrfs_path_cachep;
77struct kmem_cache *btrfs_free_space_cachep;
78
79#define S_SHIFT 12
80static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
88};
89
90static int btrfs_setsize(struct inode *inode, loff_t newsize);
91static int btrfs_truncate(struct inode *inode);
92static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
93static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
97static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
99
100static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
103{
104 int err;
105
106 err = btrfs_init_acl(trans, inode, dir);
107 if (!err)
108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
109 return err;
110}
111
112/*
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
116 */
117static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
120 int compress_type,
121 struct page **compressed_pages)
122{
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
127 char *kaddr;
128 unsigned long ptr;
129 struct btrfs_file_extent_item *ei;
130 int err = 0;
131 int ret;
132 size_t cur_size = size;
133 size_t datasize;
134 unsigned long offset;
135
136 if (compressed_size && compressed_pages)
137 cur_size = compressed_size;
138
139 path = btrfs_alloc_path();
140 if (!path)
141 return -ENOMEM;
142
143 path->leave_spinning = 1;
144
145 key.objectid = btrfs_ino(inode);
146 key.offset = start;
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
149
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 datasize);
153 if (ret) {
154 err = ret;
155 goto fail;
156 }
157 leaf = path->nodes[0];
158 ei = btrfs_item_ptr(leaf, path->slots[0],
159 struct btrfs_file_extent_item);
160 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162 btrfs_set_file_extent_encryption(leaf, ei, 0);
163 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165 ptr = btrfs_file_extent_inline_start(ei);
166
167 if (compress_type != BTRFS_COMPRESS_NONE) {
168 struct page *cpage;
169 int i = 0;
170 while (compressed_size > 0) {
171 cpage = compressed_pages[i];
172 cur_size = min_t(unsigned long, compressed_size,
173 PAGE_CACHE_SIZE);
174
175 kaddr = kmap_atomic(cpage);
176 write_extent_buffer(leaf, kaddr, ptr, cur_size);
177 kunmap_atomic(kaddr);
178
179 i++;
180 ptr += cur_size;
181 compressed_size -= cur_size;
182 }
183 btrfs_set_file_extent_compression(leaf, ei,
184 compress_type);
185 } else {
186 page = find_get_page(inode->i_mapping,
187 start >> PAGE_CACHE_SHIFT);
188 btrfs_set_file_extent_compression(leaf, ei, 0);
189 kaddr = kmap_atomic(page);
190 offset = start & (PAGE_CACHE_SIZE - 1);
191 write_extent_buffer(leaf, kaddr + offset, ptr, size);
192 kunmap_atomic(kaddr);
193 page_cache_release(page);
194 }
195 btrfs_mark_buffer_dirty(leaf);
196 btrfs_free_path(path);
197
198 /*
199 * we're an inline extent, so nobody can
200 * extend the file past i_size without locking
201 * a page we already have locked.
202 *
203 * We must do any isize and inode updates
204 * before we unlock the pages. Otherwise we
205 * could end up racing with unlink.
206 */
207 BTRFS_I(inode)->disk_i_size = inode->i_size;
208 ret = btrfs_update_inode(trans, root, inode);
209
210 return ret;
211fail:
212 btrfs_free_path(path);
213 return err;
214}
215
216
217/*
218 * conditionally insert an inline extent into the file. This
219 * does the checks required to make sure the data is small enough
220 * to fit as an inline extent.
221 */
222static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
223 struct btrfs_root *root,
224 struct inode *inode, u64 start, u64 end,
225 size_t compressed_size, int compress_type,
226 struct page **compressed_pages)
227{
228 u64 isize = i_size_read(inode);
229 u64 actual_end = min(end + 1, isize);
230 u64 inline_len = actual_end - start;
231 u64 aligned_end = (end + root->sectorsize - 1) &
232 ~((u64)root->sectorsize - 1);
233 u64 data_len = inline_len;
234 int ret;
235
236 if (compressed_size)
237 data_len = compressed_size;
238
239 if (start > 0 ||
240 actual_end >= PAGE_CACHE_SIZE ||
241 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
242 (!compressed_size &&
243 (actual_end & (root->sectorsize - 1)) == 0) ||
244 end + 1 < isize ||
245 data_len > root->fs_info->max_inline) {
246 return 1;
247 }
248
249 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
250 if (ret)
251 return ret;
252
253 if (isize > actual_end)
254 inline_len = min_t(u64, isize, actual_end);
255 ret = insert_inline_extent(trans, root, inode, start,
256 inline_len, compressed_size,
257 compress_type, compressed_pages);
258 if (ret && ret != -ENOSPC) {
259 btrfs_abort_transaction(trans, root, ret);
260 return ret;
261 } else if (ret == -ENOSPC) {
262 return 1;
263 }
264
265 btrfs_delalloc_release_metadata(inode, end + 1 - start);
266 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
267 return 0;
268}
269
270struct async_extent {
271 u64 start;
272 u64 ram_size;
273 u64 compressed_size;
274 struct page **pages;
275 unsigned long nr_pages;
276 int compress_type;
277 struct list_head list;
278};
279
280struct async_cow {
281 struct inode *inode;
282 struct btrfs_root *root;
283 struct page *locked_page;
284 u64 start;
285 u64 end;
286 struct list_head extents;
287 struct btrfs_work work;
288};
289
290static noinline int add_async_extent(struct async_cow *cow,
291 u64 start, u64 ram_size,
292 u64 compressed_size,
293 struct page **pages,
294 unsigned long nr_pages,
295 int compress_type)
296{
297 struct async_extent *async_extent;
298
299 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
300 BUG_ON(!async_extent); /* -ENOMEM */
301 async_extent->start = start;
302 async_extent->ram_size = ram_size;
303 async_extent->compressed_size = compressed_size;
304 async_extent->pages = pages;
305 async_extent->nr_pages = nr_pages;
306 async_extent->compress_type = compress_type;
307 list_add_tail(&async_extent->list, &cow->extents);
308 return 0;
309}
310
311/*
312 * we create compressed extents in two phases. The first
313 * phase compresses a range of pages that have already been
314 * locked (both pages and state bits are locked).
315 *
316 * This is done inside an ordered work queue, and the compression
317 * is spread across many cpus. The actual IO submission is step
318 * two, and the ordered work queue takes care of making sure that
319 * happens in the same order things were put onto the queue by
320 * writepages and friends.
321 *
322 * If this code finds it can't get good compression, it puts an
323 * entry onto the work queue to write the uncompressed bytes. This
324 * makes sure that both compressed inodes and uncompressed inodes
325 * are written in the same order that the flusher thread sent them
326 * down.
327 */
328static noinline int compress_file_range(struct inode *inode,
329 struct page *locked_page,
330 u64 start, u64 end,
331 struct async_cow *async_cow,
332 int *num_added)
333{
334 struct btrfs_root *root = BTRFS_I(inode)->root;
335 struct btrfs_trans_handle *trans;
336 u64 num_bytes;
337 u64 blocksize = root->sectorsize;
338 u64 actual_end;
339 u64 isize = i_size_read(inode);
340 int ret = 0;
341 struct page **pages = NULL;
342 unsigned long nr_pages;
343 unsigned long nr_pages_ret = 0;
344 unsigned long total_compressed = 0;
345 unsigned long total_in = 0;
346 unsigned long max_compressed = 128 * 1024;
347 unsigned long max_uncompressed = 128 * 1024;
348 int i;
349 int will_compress;
350 int compress_type = root->fs_info->compress_type;
351
352 /* if this is a small write inside eof, kick off a defrag */
353 if ((end - start + 1) < 16 * 1024 &&
354 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
355 btrfs_add_inode_defrag(NULL, inode);
356
357 actual_end = min_t(u64, isize, end + 1);
358again:
359 will_compress = 0;
360 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
361 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
362
363 /*
364 * we don't want to send crud past the end of i_size through
365 * compression, that's just a waste of CPU time. So, if the
366 * end of the file is before the start of our current
367 * requested range of bytes, we bail out to the uncompressed
368 * cleanup code that can deal with all of this.
369 *
370 * It isn't really the fastest way to fix things, but this is a
371 * very uncommon corner.
372 */
373 if (actual_end <= start)
374 goto cleanup_and_bail_uncompressed;
375
376 total_compressed = actual_end - start;
377
378 /* we want to make sure that amount of ram required to uncompress
379 * an extent is reasonable, so we limit the total size in ram
380 * of a compressed extent to 128k. This is a crucial number
381 * because it also controls how easily we can spread reads across
382 * cpus for decompression.
383 *
384 * We also want to make sure the amount of IO required to do
385 * a random read is reasonably small, so we limit the size of
386 * a compressed extent to 128k.
387 */
388 total_compressed = min(total_compressed, max_uncompressed);
389 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
390 num_bytes = max(blocksize, num_bytes);
391 total_in = 0;
392 ret = 0;
393
394 /*
395 * we do compression for mount -o compress and when the
396 * inode has not been flagged as nocompress. This flag can
397 * change at any time if we discover bad compression ratios.
398 */
399 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
400 (btrfs_test_opt(root, COMPRESS) ||
401 (BTRFS_I(inode)->force_compress) ||
402 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
403 WARN_ON(pages);
404 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
405 if (!pages) {
406 /* just bail out to the uncompressed code */
407 goto cont;
408 }
409
410 if (BTRFS_I(inode)->force_compress)
411 compress_type = BTRFS_I(inode)->force_compress;
412
413 ret = btrfs_compress_pages(compress_type,
414 inode->i_mapping, start,
415 total_compressed, pages,
416 nr_pages, &nr_pages_ret,
417 &total_in,
418 &total_compressed,
419 max_compressed);
420
421 if (!ret) {
422 unsigned long offset = total_compressed &
423 (PAGE_CACHE_SIZE - 1);
424 struct page *page = pages[nr_pages_ret - 1];
425 char *kaddr;
426
427 /* zero the tail end of the last page, we might be
428 * sending it down to disk
429 */
430 if (offset) {
431 kaddr = kmap_atomic(page);
432 memset(kaddr + offset, 0,
433 PAGE_CACHE_SIZE - offset);
434 kunmap_atomic(kaddr);
435 }
436 will_compress = 1;
437 }
438 }
439cont:
440 if (start == 0) {
441 trans = btrfs_join_transaction(root);
442 if (IS_ERR(trans)) {
443 ret = PTR_ERR(trans);
444 trans = NULL;
445 goto cleanup_and_out;
446 }
447 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
448
449 /* lets try to make an inline extent */
450 if (ret || total_in < (actual_end - start)) {
451 /* we didn't compress the entire range, try
452 * to make an uncompressed inline extent.
453 */
454 ret = cow_file_range_inline(trans, root, inode,
455 start, end, 0, 0, NULL);
456 } else {
457 /* try making a compressed inline extent */
458 ret = cow_file_range_inline(trans, root, inode,
459 start, end,
460 total_compressed,
461 compress_type, pages);
462 }
463 if (ret <= 0) {
464 /*
465 * inline extent creation worked or returned error,
466 * we don't need to create any more async work items.
467 * Unlock and free up our temp pages.
468 */
469 extent_clear_unlock_delalloc(inode,
470 &BTRFS_I(inode)->io_tree,
471 start, end, NULL,
472 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
473 EXTENT_CLEAR_DELALLOC |
474 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
475
476 btrfs_end_transaction(trans, root);
477 goto free_pages_out;
478 }
479 btrfs_end_transaction(trans, root);
480 }
481
482 if (will_compress) {
483 /*
484 * we aren't doing an inline extent round the compressed size
485 * up to a block size boundary so the allocator does sane
486 * things
487 */
488 total_compressed = (total_compressed + blocksize - 1) &
489 ~(blocksize - 1);
490
491 /*
492 * one last check to make sure the compression is really a
493 * win, compare the page count read with the blocks on disk
494 */
495 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
496 ~(PAGE_CACHE_SIZE - 1);
497 if (total_compressed >= total_in) {
498 will_compress = 0;
499 } else {
500 num_bytes = total_in;
501 }
502 }
503 if (!will_compress && pages) {
504 /*
505 * the compression code ran but failed to make things smaller,
506 * free any pages it allocated and our page pointer array
507 */
508 for (i = 0; i < nr_pages_ret; i++) {
509 WARN_ON(pages[i]->mapping);
510 page_cache_release(pages[i]);
511 }
512 kfree(pages);
513 pages = NULL;
514 total_compressed = 0;
515 nr_pages_ret = 0;
516
517 /* flag the file so we don't compress in the future */
518 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
519 !(BTRFS_I(inode)->force_compress)) {
520 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
521 }
522 }
523 if (will_compress) {
524 *num_added += 1;
525
526 /* the async work queues will take care of doing actual
527 * allocation on disk for these compressed pages,
528 * and will submit them to the elevator.
529 */
530 add_async_extent(async_cow, start, num_bytes,
531 total_compressed, pages, nr_pages_ret,
532 compress_type);
533
534 if (start + num_bytes < end) {
535 start += num_bytes;
536 pages = NULL;
537 cond_resched();
538 goto again;
539 }
540 } else {
541cleanup_and_bail_uncompressed:
542 /*
543 * No compression, but we still need to write the pages in
544 * the file we've been given so far. redirty the locked
545 * page if it corresponds to our extent and set things up
546 * for the async work queue to run cow_file_range to do
547 * the normal delalloc dance
548 */
549 if (page_offset(locked_page) >= start &&
550 page_offset(locked_page) <= end) {
551 __set_page_dirty_nobuffers(locked_page);
552 /* unlocked later on in the async handlers */
553 }
554 add_async_extent(async_cow, start, end - start + 1,
555 0, NULL, 0, BTRFS_COMPRESS_NONE);
556 *num_added += 1;
557 }
558
559out:
560 return ret;
561
562free_pages_out:
563 for (i = 0; i < nr_pages_ret; i++) {
564 WARN_ON(pages[i]->mapping);
565 page_cache_release(pages[i]);
566 }
567 kfree(pages);
568
569 goto out;
570
571cleanup_and_out:
572 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
573 start, end, NULL,
574 EXTENT_CLEAR_UNLOCK_PAGE |
575 EXTENT_CLEAR_DIRTY |
576 EXTENT_CLEAR_DELALLOC |
577 EXTENT_SET_WRITEBACK |
578 EXTENT_END_WRITEBACK);
579 if (!trans || IS_ERR(trans))
580 btrfs_error(root->fs_info, ret, "Failed to join transaction");
581 else
582 btrfs_abort_transaction(trans, root, ret);
583 goto free_pages_out;
584}
585
586/*
587 * phase two of compressed writeback. This is the ordered portion
588 * of the code, which only gets called in the order the work was
589 * queued. We walk all the async extents created by compress_file_range
590 * and send them down to the disk.
591 */
592static noinline int submit_compressed_extents(struct inode *inode,
593 struct async_cow *async_cow)
594{
595 struct async_extent *async_extent;
596 u64 alloc_hint = 0;
597 struct btrfs_trans_handle *trans;
598 struct btrfs_key ins;
599 struct extent_map *em;
600 struct btrfs_root *root = BTRFS_I(inode)->root;
601 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
602 struct extent_io_tree *io_tree;
603 int ret = 0;
604
605 if (list_empty(&async_cow->extents))
606 return 0;
607
608
609 while (!list_empty(&async_cow->extents)) {
610 async_extent = list_entry(async_cow->extents.next,
611 struct async_extent, list);
612 list_del(&async_extent->list);
613
614 io_tree = &BTRFS_I(inode)->io_tree;
615
616retry:
617 /* did the compression code fall back to uncompressed IO? */
618 if (!async_extent->pages) {
619 int page_started = 0;
620 unsigned long nr_written = 0;
621
622 lock_extent(io_tree, async_extent->start,
623 async_extent->start +
624 async_extent->ram_size - 1);
625
626 /* allocate blocks */
627 ret = cow_file_range(inode, async_cow->locked_page,
628 async_extent->start,
629 async_extent->start +
630 async_extent->ram_size - 1,
631 &page_started, &nr_written, 0);
632
633 /* JDM XXX */
634
635 /*
636 * if page_started, cow_file_range inserted an
637 * inline extent and took care of all the unlocking
638 * and IO for us. Otherwise, we need to submit
639 * all those pages down to the drive.
640 */
641 if (!page_started && !ret)
642 extent_write_locked_range(io_tree,
643 inode, async_extent->start,
644 async_extent->start +
645 async_extent->ram_size - 1,
646 btrfs_get_extent,
647 WB_SYNC_ALL);
648 kfree(async_extent);
649 cond_resched();
650 continue;
651 }
652
653 lock_extent(io_tree, async_extent->start,
654 async_extent->start + async_extent->ram_size - 1);
655
656 trans = btrfs_join_transaction(root);
657 if (IS_ERR(trans)) {
658 ret = PTR_ERR(trans);
659 } else {
660 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
661 ret = btrfs_reserve_extent(trans, root,
662 async_extent->compressed_size,
663 async_extent->compressed_size,
664 0, alloc_hint, &ins, 1);
665 if (ret && ret != -ENOSPC)
666 btrfs_abort_transaction(trans, root, ret);
667 btrfs_end_transaction(trans, root);
668 }
669
670 if (ret) {
671 int i;
672 for (i = 0; i < async_extent->nr_pages; i++) {
673 WARN_ON(async_extent->pages[i]->mapping);
674 page_cache_release(async_extent->pages[i]);
675 }
676 kfree(async_extent->pages);
677 async_extent->nr_pages = 0;
678 async_extent->pages = NULL;
679 unlock_extent(io_tree, async_extent->start,
680 async_extent->start +
681 async_extent->ram_size - 1);
682 if (ret == -ENOSPC)
683 goto retry;
684 goto out_free; /* JDM: Requeue? */
685 }
686
687 /*
688 * here we're doing allocation and writeback of the
689 * compressed pages
690 */
691 btrfs_drop_extent_cache(inode, async_extent->start,
692 async_extent->start +
693 async_extent->ram_size - 1, 0);
694
695 em = alloc_extent_map();
696 BUG_ON(!em); /* -ENOMEM */
697 em->start = async_extent->start;
698 em->len = async_extent->ram_size;
699 em->orig_start = em->start;
700
701 em->block_start = ins.objectid;
702 em->block_len = ins.offset;
703 em->bdev = root->fs_info->fs_devices->latest_bdev;
704 em->compress_type = async_extent->compress_type;
705 set_bit(EXTENT_FLAG_PINNED, &em->flags);
706 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
707
708 while (1) {
709 write_lock(&em_tree->lock);
710 ret = add_extent_mapping(em_tree, em);
711 write_unlock(&em_tree->lock);
712 if (ret != -EEXIST) {
713 free_extent_map(em);
714 break;
715 }
716 btrfs_drop_extent_cache(inode, async_extent->start,
717 async_extent->start +
718 async_extent->ram_size - 1, 0);
719 }
720
721 ret = btrfs_add_ordered_extent_compress(inode,
722 async_extent->start,
723 ins.objectid,
724 async_extent->ram_size,
725 ins.offset,
726 BTRFS_ORDERED_COMPRESSED,
727 async_extent->compress_type);
728 BUG_ON(ret); /* -ENOMEM */
729
730 /*
731 * clear dirty, set writeback and unlock the pages.
732 */
733 extent_clear_unlock_delalloc(inode,
734 &BTRFS_I(inode)->io_tree,
735 async_extent->start,
736 async_extent->start +
737 async_extent->ram_size - 1,
738 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
739 EXTENT_CLEAR_UNLOCK |
740 EXTENT_CLEAR_DELALLOC |
741 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
742
743 ret = btrfs_submit_compressed_write(inode,
744 async_extent->start,
745 async_extent->ram_size,
746 ins.objectid,
747 ins.offset, async_extent->pages,
748 async_extent->nr_pages);
749
750 BUG_ON(ret); /* -ENOMEM */
751 alloc_hint = ins.objectid + ins.offset;
752 kfree(async_extent);
753 cond_resched();
754 }
755 ret = 0;
756out:
757 return ret;
758out_free:
759 kfree(async_extent);
760 goto out;
761}
762
763static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
764 u64 num_bytes)
765{
766 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
767 struct extent_map *em;
768 u64 alloc_hint = 0;
769
770 read_lock(&em_tree->lock);
771 em = search_extent_mapping(em_tree, start, num_bytes);
772 if (em) {
773 /*
774 * if block start isn't an actual block number then find the
775 * first block in this inode and use that as a hint. If that
776 * block is also bogus then just don't worry about it.
777 */
778 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
779 free_extent_map(em);
780 em = search_extent_mapping(em_tree, 0, 0);
781 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
782 alloc_hint = em->block_start;
783 if (em)
784 free_extent_map(em);
785 } else {
786 alloc_hint = em->block_start;
787 free_extent_map(em);
788 }
789 }
790 read_unlock(&em_tree->lock);
791
792 return alloc_hint;
793}
794
795/*
796 * when extent_io.c finds a delayed allocation range in the file,
797 * the call backs end up in this code. The basic idea is to
798 * allocate extents on disk for the range, and create ordered data structs
799 * in ram to track those extents.
800 *
801 * locked_page is the page that writepage had locked already. We use
802 * it to make sure we don't do extra locks or unlocks.
803 *
804 * *page_started is set to one if we unlock locked_page and do everything
805 * required to start IO on it. It may be clean and already done with
806 * IO when we return.
807 */
808static noinline int cow_file_range(struct inode *inode,
809 struct page *locked_page,
810 u64 start, u64 end, int *page_started,
811 unsigned long *nr_written,
812 int unlock)
813{
814 struct btrfs_root *root = BTRFS_I(inode)->root;
815 struct btrfs_trans_handle *trans;
816 u64 alloc_hint = 0;
817 u64 num_bytes;
818 unsigned long ram_size;
819 u64 disk_num_bytes;
820 u64 cur_alloc_size;
821 u64 blocksize = root->sectorsize;
822 struct btrfs_key ins;
823 struct extent_map *em;
824 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
825 int ret = 0;
826
827 BUG_ON(btrfs_is_free_space_inode(inode));
828 trans = btrfs_join_transaction(root);
829 if (IS_ERR(trans)) {
830 extent_clear_unlock_delalloc(inode,
831 &BTRFS_I(inode)->io_tree,
832 start, end, locked_page,
833 EXTENT_CLEAR_UNLOCK_PAGE |
834 EXTENT_CLEAR_UNLOCK |
835 EXTENT_CLEAR_DELALLOC |
836 EXTENT_CLEAR_DIRTY |
837 EXTENT_SET_WRITEBACK |
838 EXTENT_END_WRITEBACK);
839 return PTR_ERR(trans);
840 }
841 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
842
843 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
844 num_bytes = max(blocksize, num_bytes);
845 disk_num_bytes = num_bytes;
846 ret = 0;
847
848 /* if this is a small write inside eof, kick off defrag */
849 if (num_bytes < 64 * 1024 &&
850 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
851 btrfs_add_inode_defrag(trans, inode);
852
853 if (start == 0) {
854 /* lets try to make an inline extent */
855 ret = cow_file_range_inline(trans, root, inode,
856 start, end, 0, 0, NULL);
857 if (ret == 0) {
858 extent_clear_unlock_delalloc(inode,
859 &BTRFS_I(inode)->io_tree,
860 start, end, NULL,
861 EXTENT_CLEAR_UNLOCK_PAGE |
862 EXTENT_CLEAR_UNLOCK |
863 EXTENT_CLEAR_DELALLOC |
864 EXTENT_CLEAR_DIRTY |
865 EXTENT_SET_WRITEBACK |
866 EXTENT_END_WRITEBACK);
867
868 *nr_written = *nr_written +
869 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
870 *page_started = 1;
871 goto out;
872 } else if (ret < 0) {
873 btrfs_abort_transaction(trans, root, ret);
874 goto out_unlock;
875 }
876 }
877
878 BUG_ON(disk_num_bytes >
879 btrfs_super_total_bytes(root->fs_info->super_copy));
880
881 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
882 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
883
884 while (disk_num_bytes > 0) {
885 unsigned long op;
886
887 cur_alloc_size = disk_num_bytes;
888 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
889 root->sectorsize, 0, alloc_hint,
890 &ins, 1);
891 if (ret < 0) {
892 btrfs_abort_transaction(trans, root, ret);
893 goto out_unlock;
894 }
895
896 em = alloc_extent_map();
897 BUG_ON(!em); /* -ENOMEM */
898 em->start = start;
899 em->orig_start = em->start;
900 ram_size = ins.offset;
901 em->len = ins.offset;
902
903 em->block_start = ins.objectid;
904 em->block_len = ins.offset;
905 em->bdev = root->fs_info->fs_devices->latest_bdev;
906 set_bit(EXTENT_FLAG_PINNED, &em->flags);
907
908 while (1) {
909 write_lock(&em_tree->lock);
910 ret = add_extent_mapping(em_tree, em);
911 write_unlock(&em_tree->lock);
912 if (ret != -EEXIST) {
913 free_extent_map(em);
914 break;
915 }
916 btrfs_drop_extent_cache(inode, start,
917 start + ram_size - 1, 0);
918 }
919
920 cur_alloc_size = ins.offset;
921 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
922 ram_size, cur_alloc_size, 0);
923 BUG_ON(ret); /* -ENOMEM */
924
925 if (root->root_key.objectid ==
926 BTRFS_DATA_RELOC_TREE_OBJECTID) {
927 ret = btrfs_reloc_clone_csums(inode, start,
928 cur_alloc_size);
929 if (ret) {
930 btrfs_abort_transaction(trans, root, ret);
931 goto out_unlock;
932 }
933 }
934
935 if (disk_num_bytes < cur_alloc_size)
936 break;
937
938 /* we're not doing compressed IO, don't unlock the first
939 * page (which the caller expects to stay locked), don't
940 * clear any dirty bits and don't set any writeback bits
941 *
942 * Do set the Private2 bit so we know this page was properly
943 * setup for writepage
944 */
945 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
946 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
947 EXTENT_SET_PRIVATE2;
948
949 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
950 start, start + ram_size - 1,
951 locked_page, op);
952 disk_num_bytes -= cur_alloc_size;
953 num_bytes -= cur_alloc_size;
954 alloc_hint = ins.objectid + ins.offset;
955 start += cur_alloc_size;
956 }
957 ret = 0;
958out:
959 btrfs_end_transaction(trans, root);
960
961 return ret;
962out_unlock:
963 extent_clear_unlock_delalloc(inode,
964 &BTRFS_I(inode)->io_tree,
965 start, end, locked_page,
966 EXTENT_CLEAR_UNLOCK_PAGE |
967 EXTENT_CLEAR_UNLOCK |
968 EXTENT_CLEAR_DELALLOC |
969 EXTENT_CLEAR_DIRTY |
970 EXTENT_SET_WRITEBACK |
971 EXTENT_END_WRITEBACK);
972
973 goto out;
974}
975
976/*
977 * work queue call back to started compression on a file and pages
978 */
979static noinline void async_cow_start(struct btrfs_work *work)
980{
981 struct async_cow *async_cow;
982 int num_added = 0;
983 async_cow = container_of(work, struct async_cow, work);
984
985 compress_file_range(async_cow->inode, async_cow->locked_page,
986 async_cow->start, async_cow->end, async_cow,
987 &num_added);
988 if (num_added == 0) {
989 btrfs_add_delayed_iput(async_cow->inode);
990 async_cow->inode = NULL;
991 }
992}
993
994/*
995 * work queue call back to submit previously compressed pages
996 */
997static noinline void async_cow_submit(struct btrfs_work *work)
998{
999 struct async_cow *async_cow;
1000 struct btrfs_root *root;
1001 unsigned long nr_pages;
1002
1003 async_cow = container_of(work, struct async_cow, work);
1004
1005 root = async_cow->root;
1006 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1007 PAGE_CACHE_SHIFT;
1008
1009 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1010 5 * 1024 * 1024 &&
1011 waitqueue_active(&root->fs_info->async_submit_wait))
1012 wake_up(&root->fs_info->async_submit_wait);
1013
1014 if (async_cow->inode)
1015 submit_compressed_extents(async_cow->inode, async_cow);
1016}
1017
1018static noinline void async_cow_free(struct btrfs_work *work)
1019{
1020 struct async_cow *async_cow;
1021 async_cow = container_of(work, struct async_cow, work);
1022 if (async_cow->inode)
1023 btrfs_add_delayed_iput(async_cow->inode);
1024 kfree(async_cow);
1025}
1026
1027static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1028 u64 start, u64 end, int *page_started,
1029 unsigned long *nr_written)
1030{
1031 struct async_cow *async_cow;
1032 struct btrfs_root *root = BTRFS_I(inode)->root;
1033 unsigned long nr_pages;
1034 u64 cur_end;
1035 int limit = 10 * 1024 * 1024;
1036
1037 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1038 1, 0, NULL, GFP_NOFS);
1039 while (start < end) {
1040 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1041 BUG_ON(!async_cow); /* -ENOMEM */
1042 async_cow->inode = igrab(inode);
1043 async_cow->root = root;
1044 async_cow->locked_page = locked_page;
1045 async_cow->start = start;
1046
1047 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1048 cur_end = end;
1049 else
1050 cur_end = min(end, start + 512 * 1024 - 1);
1051
1052 async_cow->end = cur_end;
1053 INIT_LIST_HEAD(&async_cow->extents);
1054
1055 async_cow->work.func = async_cow_start;
1056 async_cow->work.ordered_func = async_cow_submit;
1057 async_cow->work.ordered_free = async_cow_free;
1058 async_cow->work.flags = 0;
1059
1060 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1061 PAGE_CACHE_SHIFT;
1062 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1063
1064 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1065 &async_cow->work);
1066
1067 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1068 wait_event(root->fs_info->async_submit_wait,
1069 (atomic_read(&root->fs_info->async_delalloc_pages) <
1070 limit));
1071 }
1072
1073 while (atomic_read(&root->fs_info->async_submit_draining) &&
1074 atomic_read(&root->fs_info->async_delalloc_pages)) {
1075 wait_event(root->fs_info->async_submit_wait,
1076 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1077 0));
1078 }
1079
1080 *nr_written += nr_pages;
1081 start = cur_end + 1;
1082 }
1083 *page_started = 1;
1084 return 0;
1085}
1086
1087static noinline int csum_exist_in_range(struct btrfs_root *root,
1088 u64 bytenr, u64 num_bytes)
1089{
1090 int ret;
1091 struct btrfs_ordered_sum *sums;
1092 LIST_HEAD(list);
1093
1094 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1095 bytenr + num_bytes - 1, &list, 0);
1096 if (ret == 0 && list_empty(&list))
1097 return 0;
1098
1099 while (!list_empty(&list)) {
1100 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1101 list_del(&sums->list);
1102 kfree(sums);
1103 }
1104 return 1;
1105}
1106
1107/*
1108 * when nowcow writeback call back. This checks for snapshots or COW copies
1109 * of the extents that exist in the file, and COWs the file as required.
1110 *
1111 * If no cow copies or snapshots exist, we write directly to the existing
1112 * blocks on disk
1113 */
1114static noinline int run_delalloc_nocow(struct inode *inode,
1115 struct page *locked_page,
1116 u64 start, u64 end, int *page_started, int force,
1117 unsigned long *nr_written)
1118{
1119 struct btrfs_root *root = BTRFS_I(inode)->root;
1120 struct btrfs_trans_handle *trans;
1121 struct extent_buffer *leaf;
1122 struct btrfs_path *path;
1123 struct btrfs_file_extent_item *fi;
1124 struct btrfs_key found_key;
1125 u64 cow_start;
1126 u64 cur_offset;
1127 u64 extent_end;
1128 u64 extent_offset;
1129 u64 disk_bytenr;
1130 u64 num_bytes;
1131 int extent_type;
1132 int ret, err;
1133 int type;
1134 int nocow;
1135 int check_prev = 1;
1136 bool nolock;
1137 u64 ino = btrfs_ino(inode);
1138
1139 path = btrfs_alloc_path();
1140 if (!path) {
1141 extent_clear_unlock_delalloc(inode,
1142 &BTRFS_I(inode)->io_tree,
1143 start, end, locked_page,
1144 EXTENT_CLEAR_UNLOCK_PAGE |
1145 EXTENT_CLEAR_UNLOCK |
1146 EXTENT_CLEAR_DELALLOC |
1147 EXTENT_CLEAR_DIRTY |
1148 EXTENT_SET_WRITEBACK |
1149 EXTENT_END_WRITEBACK);
1150 return -ENOMEM;
1151 }
1152
1153 nolock = btrfs_is_free_space_inode(inode);
1154
1155 if (nolock)
1156 trans = btrfs_join_transaction_nolock(root);
1157 else
1158 trans = btrfs_join_transaction(root);
1159
1160 if (IS_ERR(trans)) {
1161 extent_clear_unlock_delalloc(inode,
1162 &BTRFS_I(inode)->io_tree,
1163 start, end, locked_page,
1164 EXTENT_CLEAR_UNLOCK_PAGE |
1165 EXTENT_CLEAR_UNLOCK |
1166 EXTENT_CLEAR_DELALLOC |
1167 EXTENT_CLEAR_DIRTY |
1168 EXTENT_SET_WRITEBACK |
1169 EXTENT_END_WRITEBACK);
1170 btrfs_free_path(path);
1171 return PTR_ERR(trans);
1172 }
1173
1174 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1175
1176 cow_start = (u64)-1;
1177 cur_offset = start;
1178 while (1) {
1179 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1180 cur_offset, 0);
1181 if (ret < 0) {
1182 btrfs_abort_transaction(trans, root, ret);
1183 goto error;
1184 }
1185 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1186 leaf = path->nodes[0];
1187 btrfs_item_key_to_cpu(leaf, &found_key,
1188 path->slots[0] - 1);
1189 if (found_key.objectid == ino &&
1190 found_key.type == BTRFS_EXTENT_DATA_KEY)
1191 path->slots[0]--;
1192 }
1193 check_prev = 0;
1194next_slot:
1195 leaf = path->nodes[0];
1196 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1197 ret = btrfs_next_leaf(root, path);
1198 if (ret < 0) {
1199 btrfs_abort_transaction(trans, root, ret);
1200 goto error;
1201 }
1202 if (ret > 0)
1203 break;
1204 leaf = path->nodes[0];
1205 }
1206
1207 nocow = 0;
1208 disk_bytenr = 0;
1209 num_bytes = 0;
1210 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1211
1212 if (found_key.objectid > ino ||
1213 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1214 found_key.offset > end)
1215 break;
1216
1217 if (found_key.offset > cur_offset) {
1218 extent_end = found_key.offset;
1219 extent_type = 0;
1220 goto out_check;
1221 }
1222
1223 fi = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_file_extent_item);
1225 extent_type = btrfs_file_extent_type(leaf, fi);
1226
1227 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1228 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1229 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1230 extent_offset = btrfs_file_extent_offset(leaf, fi);
1231 extent_end = found_key.offset +
1232 btrfs_file_extent_num_bytes(leaf, fi);
1233 if (extent_end <= start) {
1234 path->slots[0]++;
1235 goto next_slot;
1236 }
1237 if (disk_bytenr == 0)
1238 goto out_check;
1239 if (btrfs_file_extent_compression(leaf, fi) ||
1240 btrfs_file_extent_encryption(leaf, fi) ||
1241 btrfs_file_extent_other_encoding(leaf, fi))
1242 goto out_check;
1243 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1244 goto out_check;
1245 if (btrfs_extent_readonly(root, disk_bytenr))
1246 goto out_check;
1247 if (btrfs_cross_ref_exist(trans, root, ino,
1248 found_key.offset -
1249 extent_offset, disk_bytenr))
1250 goto out_check;
1251 disk_bytenr += extent_offset;
1252 disk_bytenr += cur_offset - found_key.offset;
1253 num_bytes = min(end + 1, extent_end) - cur_offset;
1254 /*
1255 * force cow if csum exists in the range.
1256 * this ensure that csum for a given extent are
1257 * either valid or do not exist.
1258 */
1259 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1260 goto out_check;
1261 nocow = 1;
1262 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1263 extent_end = found_key.offset +
1264 btrfs_file_extent_inline_len(leaf, fi);
1265 extent_end = ALIGN(extent_end, root->sectorsize);
1266 } else {
1267 BUG_ON(1);
1268 }
1269out_check:
1270 if (extent_end <= start) {
1271 path->slots[0]++;
1272 goto next_slot;
1273 }
1274 if (!nocow) {
1275 if (cow_start == (u64)-1)
1276 cow_start = cur_offset;
1277 cur_offset = extent_end;
1278 if (cur_offset > end)
1279 break;
1280 path->slots[0]++;
1281 goto next_slot;
1282 }
1283
1284 btrfs_release_path(path);
1285 if (cow_start != (u64)-1) {
1286 ret = cow_file_range(inode, locked_page, cow_start,
1287 found_key.offset - 1, page_started,
1288 nr_written, 1);
1289 if (ret) {
1290 btrfs_abort_transaction(trans, root, ret);
1291 goto error;
1292 }
1293 cow_start = (u64)-1;
1294 }
1295
1296 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1297 struct extent_map *em;
1298 struct extent_map_tree *em_tree;
1299 em_tree = &BTRFS_I(inode)->extent_tree;
1300 em = alloc_extent_map();
1301 BUG_ON(!em); /* -ENOMEM */
1302 em->start = cur_offset;
1303 em->orig_start = em->start;
1304 em->len = num_bytes;
1305 em->block_len = num_bytes;
1306 em->block_start = disk_bytenr;
1307 em->bdev = root->fs_info->fs_devices->latest_bdev;
1308 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1309 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1310 while (1) {
1311 write_lock(&em_tree->lock);
1312 ret = add_extent_mapping(em_tree, em);
1313 write_unlock(&em_tree->lock);
1314 if (ret != -EEXIST) {
1315 free_extent_map(em);
1316 break;
1317 }
1318 btrfs_drop_extent_cache(inode, em->start,
1319 em->start + em->len - 1, 0);
1320 }
1321 type = BTRFS_ORDERED_PREALLOC;
1322 } else {
1323 type = BTRFS_ORDERED_NOCOW;
1324 }
1325
1326 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1327 num_bytes, num_bytes, type);
1328 BUG_ON(ret); /* -ENOMEM */
1329
1330 if (root->root_key.objectid ==
1331 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1332 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1333 num_bytes);
1334 if (ret) {
1335 btrfs_abort_transaction(trans, root, ret);
1336 goto error;
1337 }
1338 }
1339
1340 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1341 cur_offset, cur_offset + num_bytes - 1,
1342 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1343 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1344 EXTENT_SET_PRIVATE2);
1345 cur_offset = extent_end;
1346 if (cur_offset > end)
1347 break;
1348 }
1349 btrfs_release_path(path);
1350
1351 if (cur_offset <= end && cow_start == (u64)-1) {
1352 cow_start = cur_offset;
1353 cur_offset = end;
1354 }
1355
1356 if (cow_start != (u64)-1) {
1357 ret = cow_file_range(inode, locked_page, cow_start, end,
1358 page_started, nr_written, 1);
1359 if (ret) {
1360 btrfs_abort_transaction(trans, root, ret);
1361 goto error;
1362 }
1363 }
1364
1365error:
1366 if (nolock) {
1367 err = btrfs_end_transaction_nolock(trans, root);
1368 } else {
1369 err = btrfs_end_transaction(trans, root);
1370 }
1371 if (!ret)
1372 ret = err;
1373
1374 if (ret && cur_offset < end)
1375 extent_clear_unlock_delalloc(inode,
1376 &BTRFS_I(inode)->io_tree,
1377 cur_offset, end, locked_page,
1378 EXTENT_CLEAR_UNLOCK_PAGE |
1379 EXTENT_CLEAR_UNLOCK |
1380 EXTENT_CLEAR_DELALLOC |
1381 EXTENT_CLEAR_DIRTY |
1382 EXTENT_SET_WRITEBACK |
1383 EXTENT_END_WRITEBACK);
1384
1385 btrfs_free_path(path);
1386 return ret;
1387}
1388
1389/*
1390 * extent_io.c call back to do delayed allocation processing
1391 */
1392static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1393 u64 start, u64 end, int *page_started,
1394 unsigned long *nr_written)
1395{
1396 int ret;
1397 struct btrfs_root *root = BTRFS_I(inode)->root;
1398
1399 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1400 ret = run_delalloc_nocow(inode, locked_page, start, end,
1401 page_started, 1, nr_written);
1402 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1403 ret = run_delalloc_nocow(inode, locked_page, start, end,
1404 page_started, 0, nr_written);
1405 } else if (!btrfs_test_opt(root, COMPRESS) &&
1406 !(BTRFS_I(inode)->force_compress) &&
1407 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1408 ret = cow_file_range(inode, locked_page, start, end,
1409 page_started, nr_written, 1);
1410 } else {
1411 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1412 &BTRFS_I(inode)->runtime_flags);
1413 ret = cow_file_range_async(inode, locked_page, start, end,
1414 page_started, nr_written);
1415 }
1416 return ret;
1417}
1418
1419static void btrfs_split_extent_hook(struct inode *inode,
1420 struct extent_state *orig, u64 split)
1421{
1422 /* not delalloc, ignore it */
1423 if (!(orig->state & EXTENT_DELALLOC))
1424 return;
1425
1426 spin_lock(&BTRFS_I(inode)->lock);
1427 BTRFS_I(inode)->outstanding_extents++;
1428 spin_unlock(&BTRFS_I(inode)->lock);
1429}
1430
1431/*
1432 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1433 * extents so we can keep track of new extents that are just merged onto old
1434 * extents, such as when we are doing sequential writes, so we can properly
1435 * account for the metadata space we'll need.
1436 */
1437static void btrfs_merge_extent_hook(struct inode *inode,
1438 struct extent_state *new,
1439 struct extent_state *other)
1440{
1441 /* not delalloc, ignore it */
1442 if (!(other->state & EXTENT_DELALLOC))
1443 return;
1444
1445 spin_lock(&BTRFS_I(inode)->lock);
1446 BTRFS_I(inode)->outstanding_extents--;
1447 spin_unlock(&BTRFS_I(inode)->lock);
1448}
1449
1450/*
1451 * extent_io.c set_bit_hook, used to track delayed allocation
1452 * bytes in this file, and to maintain the list of inodes that
1453 * have pending delalloc work to be done.
1454 */
1455static void btrfs_set_bit_hook(struct inode *inode,
1456 struct extent_state *state, int *bits)
1457{
1458
1459 /*
1460 * set_bit and clear bit hooks normally require _irqsave/restore
1461 * but in this case, we are only testing for the DELALLOC
1462 * bit, which is only set or cleared with irqs on
1463 */
1464 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1465 struct btrfs_root *root = BTRFS_I(inode)->root;
1466 u64 len = state->end + 1 - state->start;
1467 bool do_list = !btrfs_is_free_space_inode(inode);
1468
1469 if (*bits & EXTENT_FIRST_DELALLOC) {
1470 *bits &= ~EXTENT_FIRST_DELALLOC;
1471 } else {
1472 spin_lock(&BTRFS_I(inode)->lock);
1473 BTRFS_I(inode)->outstanding_extents++;
1474 spin_unlock(&BTRFS_I(inode)->lock);
1475 }
1476
1477 spin_lock(&root->fs_info->delalloc_lock);
1478 BTRFS_I(inode)->delalloc_bytes += len;
1479 root->fs_info->delalloc_bytes += len;
1480 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1481 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1482 &root->fs_info->delalloc_inodes);
1483 }
1484 spin_unlock(&root->fs_info->delalloc_lock);
1485 }
1486}
1487
1488/*
1489 * extent_io.c clear_bit_hook, see set_bit_hook for why
1490 */
1491static void btrfs_clear_bit_hook(struct inode *inode,
1492 struct extent_state *state, int *bits)
1493{
1494 /*
1495 * set_bit and clear bit hooks normally require _irqsave/restore
1496 * but in this case, we are only testing for the DELALLOC
1497 * bit, which is only set or cleared with irqs on
1498 */
1499 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1500 struct btrfs_root *root = BTRFS_I(inode)->root;
1501 u64 len = state->end + 1 - state->start;
1502 bool do_list = !btrfs_is_free_space_inode(inode);
1503
1504 if (*bits & EXTENT_FIRST_DELALLOC) {
1505 *bits &= ~EXTENT_FIRST_DELALLOC;
1506 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1507 spin_lock(&BTRFS_I(inode)->lock);
1508 BTRFS_I(inode)->outstanding_extents--;
1509 spin_unlock(&BTRFS_I(inode)->lock);
1510 }
1511
1512 if (*bits & EXTENT_DO_ACCOUNTING)
1513 btrfs_delalloc_release_metadata(inode, len);
1514
1515 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1516 && do_list)
1517 btrfs_free_reserved_data_space(inode, len);
1518
1519 spin_lock(&root->fs_info->delalloc_lock);
1520 root->fs_info->delalloc_bytes -= len;
1521 BTRFS_I(inode)->delalloc_bytes -= len;
1522
1523 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1524 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1525 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1526 }
1527 spin_unlock(&root->fs_info->delalloc_lock);
1528 }
1529}
1530
1531/*
1532 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1533 * we don't create bios that span stripes or chunks
1534 */
1535int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1536 size_t size, struct bio *bio,
1537 unsigned long bio_flags)
1538{
1539 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1540 struct btrfs_mapping_tree *map_tree;
1541 u64 logical = (u64)bio->bi_sector << 9;
1542 u64 length = 0;
1543 u64 map_length;
1544 int ret;
1545
1546 if (bio_flags & EXTENT_BIO_COMPRESSED)
1547 return 0;
1548
1549 length = bio->bi_size;
1550 map_tree = &root->fs_info->mapping_tree;
1551 map_length = length;
1552 ret = btrfs_map_block(map_tree, READ, logical,
1553 &map_length, NULL, 0);
1554 /* Will always return 0 or 1 with map_multi == NULL */
1555 BUG_ON(ret < 0);
1556 if (map_length < length + size)
1557 return 1;
1558 return 0;
1559}
1560
1561/*
1562 * in order to insert checksums into the metadata in large chunks,
1563 * we wait until bio submission time. All the pages in the bio are
1564 * checksummed and sums are attached onto the ordered extent record.
1565 *
1566 * At IO completion time the cums attached on the ordered extent record
1567 * are inserted into the btree
1568 */
1569static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1570 struct bio *bio, int mirror_num,
1571 unsigned long bio_flags,
1572 u64 bio_offset)
1573{
1574 struct btrfs_root *root = BTRFS_I(inode)->root;
1575 int ret = 0;
1576
1577 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1578 BUG_ON(ret); /* -ENOMEM */
1579 return 0;
1580}
1581
1582/*
1583 * in order to insert checksums into the metadata in large chunks,
1584 * we wait until bio submission time. All the pages in the bio are
1585 * checksummed and sums are attached onto the ordered extent record.
1586 *
1587 * At IO completion time the cums attached on the ordered extent record
1588 * are inserted into the btree
1589 */
1590static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1591 int mirror_num, unsigned long bio_flags,
1592 u64 bio_offset)
1593{
1594 struct btrfs_root *root = BTRFS_I(inode)->root;
1595 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1596}
1597
1598/*
1599 * extent_io.c submission hook. This does the right thing for csum calculation
1600 * on write, or reading the csums from the tree before a read
1601 */
1602static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1603 int mirror_num, unsigned long bio_flags,
1604 u64 bio_offset)
1605{
1606 struct btrfs_root *root = BTRFS_I(inode)->root;
1607 int ret = 0;
1608 int skip_sum;
1609 int metadata = 0;
1610
1611 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1612
1613 if (btrfs_is_free_space_inode(inode))
1614 metadata = 2;
1615
1616 if (!(rw & REQ_WRITE)) {
1617 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1618 if (ret)
1619 return ret;
1620
1621 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1622 return btrfs_submit_compressed_read(inode, bio,
1623 mirror_num, bio_flags);
1624 } else if (!skip_sum) {
1625 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1626 if (ret)
1627 return ret;
1628 }
1629 goto mapit;
1630 } else if (!skip_sum) {
1631 /* csum items have already been cloned */
1632 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1633 goto mapit;
1634 /* we're doing a write, do the async checksumming */
1635 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1636 inode, rw, bio, mirror_num,
1637 bio_flags, bio_offset,
1638 __btrfs_submit_bio_start,
1639 __btrfs_submit_bio_done);
1640 }
1641
1642mapit:
1643 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1644}
1645
1646/*
1647 * given a list of ordered sums record them in the inode. This happens
1648 * at IO completion time based on sums calculated at bio submission time.
1649 */
1650static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1651 struct inode *inode, u64 file_offset,
1652 struct list_head *list)
1653{
1654 struct btrfs_ordered_sum *sum;
1655
1656 list_for_each_entry(sum, list, list) {
1657 btrfs_csum_file_blocks(trans,
1658 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1659 }
1660 return 0;
1661}
1662
1663int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1664 struct extent_state **cached_state)
1665{
1666 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1667 WARN_ON(1);
1668 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1669 cached_state, GFP_NOFS);
1670}
1671
1672/* see btrfs_writepage_start_hook for details on why this is required */
1673struct btrfs_writepage_fixup {
1674 struct page *page;
1675 struct btrfs_work work;
1676};
1677
1678static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1679{
1680 struct btrfs_writepage_fixup *fixup;
1681 struct btrfs_ordered_extent *ordered;
1682 struct extent_state *cached_state = NULL;
1683 struct page *page;
1684 struct inode *inode;
1685 u64 page_start;
1686 u64 page_end;
1687 int ret;
1688
1689 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1690 page = fixup->page;
1691again:
1692 lock_page(page);
1693 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1694 ClearPageChecked(page);
1695 goto out_page;
1696 }
1697
1698 inode = page->mapping->host;
1699 page_start = page_offset(page);
1700 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1701
1702 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1703 &cached_state);
1704
1705 /* already ordered? We're done */
1706 if (PagePrivate2(page))
1707 goto out;
1708
1709 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1710 if (ordered) {
1711 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1712 page_end, &cached_state, GFP_NOFS);
1713 unlock_page(page);
1714 btrfs_start_ordered_extent(inode, ordered, 1);
1715 btrfs_put_ordered_extent(ordered);
1716 goto again;
1717 }
1718
1719 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1720 if (ret) {
1721 mapping_set_error(page->mapping, ret);
1722 end_extent_writepage(page, ret, page_start, page_end);
1723 ClearPageChecked(page);
1724 goto out;
1725 }
1726
1727 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1728 ClearPageChecked(page);
1729 set_page_dirty(page);
1730out:
1731 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1732 &cached_state, GFP_NOFS);
1733out_page:
1734 unlock_page(page);
1735 page_cache_release(page);
1736 kfree(fixup);
1737}
1738
1739/*
1740 * There are a few paths in the higher layers of the kernel that directly
1741 * set the page dirty bit without asking the filesystem if it is a
1742 * good idea. This causes problems because we want to make sure COW
1743 * properly happens and the data=ordered rules are followed.
1744 *
1745 * In our case any range that doesn't have the ORDERED bit set
1746 * hasn't been properly setup for IO. We kick off an async process
1747 * to fix it up. The async helper will wait for ordered extents, set
1748 * the delalloc bit and make it safe to write the page.
1749 */
1750static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1751{
1752 struct inode *inode = page->mapping->host;
1753 struct btrfs_writepage_fixup *fixup;
1754 struct btrfs_root *root = BTRFS_I(inode)->root;
1755
1756 /* this page is properly in the ordered list */
1757 if (TestClearPagePrivate2(page))
1758 return 0;
1759
1760 if (PageChecked(page))
1761 return -EAGAIN;
1762
1763 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1764 if (!fixup)
1765 return -EAGAIN;
1766
1767 SetPageChecked(page);
1768 page_cache_get(page);
1769 fixup->work.func = btrfs_writepage_fixup_worker;
1770 fixup->page = page;
1771 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1772 return -EBUSY;
1773}
1774
1775static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1776 struct inode *inode, u64 file_pos,
1777 u64 disk_bytenr, u64 disk_num_bytes,
1778 u64 num_bytes, u64 ram_bytes,
1779 u8 compression, u8 encryption,
1780 u16 other_encoding, int extent_type)
1781{
1782 struct btrfs_root *root = BTRFS_I(inode)->root;
1783 struct btrfs_file_extent_item *fi;
1784 struct btrfs_path *path;
1785 struct extent_buffer *leaf;
1786 struct btrfs_key ins;
1787 int ret;
1788
1789 path = btrfs_alloc_path();
1790 if (!path)
1791 return -ENOMEM;
1792
1793 path->leave_spinning = 1;
1794
1795 /*
1796 * we may be replacing one extent in the tree with another.
1797 * The new extent is pinned in the extent map, and we don't want
1798 * to drop it from the cache until it is completely in the btree.
1799 *
1800 * So, tell btrfs_drop_extents to leave this extent in the cache.
1801 * the caller is expected to unpin it and allow it to be merged
1802 * with the others.
1803 */
1804 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1805 file_pos + num_bytes, 0);
1806 if (ret)
1807 goto out;
1808
1809 ins.objectid = btrfs_ino(inode);
1810 ins.offset = file_pos;
1811 ins.type = BTRFS_EXTENT_DATA_KEY;
1812 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1813 if (ret)
1814 goto out;
1815 leaf = path->nodes[0];
1816 fi = btrfs_item_ptr(leaf, path->slots[0],
1817 struct btrfs_file_extent_item);
1818 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1819 btrfs_set_file_extent_type(leaf, fi, extent_type);
1820 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1821 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1822 btrfs_set_file_extent_offset(leaf, fi, 0);
1823 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1824 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1825 btrfs_set_file_extent_compression(leaf, fi, compression);
1826 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1827 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1828
1829 btrfs_unlock_up_safe(path, 1);
1830 btrfs_set_lock_blocking(leaf);
1831
1832 btrfs_mark_buffer_dirty(leaf);
1833
1834 inode_add_bytes(inode, num_bytes);
1835
1836 ins.objectid = disk_bytenr;
1837 ins.offset = disk_num_bytes;
1838 ins.type = BTRFS_EXTENT_ITEM_KEY;
1839 ret = btrfs_alloc_reserved_file_extent(trans, root,
1840 root->root_key.objectid,
1841 btrfs_ino(inode), file_pos, &ins);
1842out:
1843 btrfs_free_path(path);
1844
1845 return ret;
1846}
1847
1848/*
1849 * helper function for btrfs_finish_ordered_io, this
1850 * just reads in some of the csum leaves to prime them into ram
1851 * before we start the transaction. It limits the amount of btree
1852 * reads required while inside the transaction.
1853 */
1854/* as ordered data IO finishes, this gets called so we can finish
1855 * an ordered extent if the range of bytes in the file it covers are
1856 * fully written.
1857 */
1858static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
1859{
1860 struct inode *inode = ordered_extent->inode;
1861 struct btrfs_root *root = BTRFS_I(inode)->root;
1862 struct btrfs_trans_handle *trans = NULL;
1863 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1864 struct extent_state *cached_state = NULL;
1865 int compress_type = 0;
1866 int ret;
1867 bool nolock;
1868
1869 nolock = btrfs_is_free_space_inode(inode);
1870
1871 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1872 ret = -EIO;
1873 goto out;
1874 }
1875
1876 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1877 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1878 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1879 if (!ret) {
1880 if (nolock)
1881 trans = btrfs_join_transaction_nolock(root);
1882 else
1883 trans = btrfs_join_transaction(root);
1884 if (IS_ERR(trans)) {
1885 ret = PTR_ERR(trans);
1886 trans = NULL;
1887 goto out;
1888 }
1889 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1890 ret = btrfs_update_inode_fallback(trans, root, inode);
1891 if (ret) /* -ENOMEM or corruption */
1892 btrfs_abort_transaction(trans, root, ret);
1893 }
1894 goto out;
1895 }
1896
1897 lock_extent_bits(io_tree, ordered_extent->file_offset,
1898 ordered_extent->file_offset + ordered_extent->len - 1,
1899 0, &cached_state);
1900
1901 if (nolock)
1902 trans = btrfs_join_transaction_nolock(root);
1903 else
1904 trans = btrfs_join_transaction(root);
1905 if (IS_ERR(trans)) {
1906 ret = PTR_ERR(trans);
1907 trans = NULL;
1908 goto out_unlock;
1909 }
1910 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1911
1912 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1913 compress_type = ordered_extent->compress_type;
1914 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1915 BUG_ON(compress_type);
1916 ret = btrfs_mark_extent_written(trans, inode,
1917 ordered_extent->file_offset,
1918 ordered_extent->file_offset +
1919 ordered_extent->len);
1920 } else {
1921 BUG_ON(root == root->fs_info->tree_root);
1922 ret = insert_reserved_file_extent(trans, inode,
1923 ordered_extent->file_offset,
1924 ordered_extent->start,
1925 ordered_extent->disk_len,
1926 ordered_extent->len,
1927 ordered_extent->len,
1928 compress_type, 0, 0,
1929 BTRFS_FILE_EXTENT_REG);
1930 }
1931 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1932 ordered_extent->file_offset, ordered_extent->len,
1933 trans->transid);
1934 if (ret < 0) {
1935 btrfs_abort_transaction(trans, root, ret);
1936 goto out_unlock;
1937 }
1938
1939 add_pending_csums(trans, inode, ordered_extent->file_offset,
1940 &ordered_extent->list);
1941
1942 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1943 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1944 ret = btrfs_update_inode_fallback(trans, root, inode);
1945 if (ret) { /* -ENOMEM or corruption */
1946 btrfs_abort_transaction(trans, root, ret);
1947 goto out_unlock;
1948 }
1949 } else {
1950 btrfs_set_inode_last_trans(trans, inode);
1951 }
1952 ret = 0;
1953out_unlock:
1954 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1955 ordered_extent->file_offset +
1956 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1957out:
1958 if (root != root->fs_info->tree_root)
1959 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1960 if (trans) {
1961 if (nolock)
1962 btrfs_end_transaction_nolock(trans, root);
1963 else
1964 btrfs_end_transaction(trans, root);
1965 }
1966
1967 if (ret)
1968 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1969 ordered_extent->file_offset +
1970 ordered_extent->len - 1, NULL, GFP_NOFS);
1971
1972 /*
1973 * This needs to be dont to make sure anybody waiting knows we are done
1974 * upating everything for this ordered extent.
1975 */
1976 btrfs_remove_ordered_extent(inode, ordered_extent);
1977
1978 /* once for us */
1979 btrfs_put_ordered_extent(ordered_extent);
1980 /* once for the tree */
1981 btrfs_put_ordered_extent(ordered_extent);
1982
1983 return ret;
1984}
1985
1986static void finish_ordered_fn(struct btrfs_work *work)
1987{
1988 struct btrfs_ordered_extent *ordered_extent;
1989 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
1990 btrfs_finish_ordered_io(ordered_extent);
1991}
1992
1993static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1994 struct extent_state *state, int uptodate)
1995{
1996 struct inode *inode = page->mapping->host;
1997 struct btrfs_root *root = BTRFS_I(inode)->root;
1998 struct btrfs_ordered_extent *ordered_extent = NULL;
1999 struct btrfs_workers *workers;
2000
2001 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2002
2003 ClearPagePrivate2(page);
2004 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2005 end - start + 1, uptodate))
2006 return 0;
2007
2008 ordered_extent->work.func = finish_ordered_fn;
2009 ordered_extent->work.flags = 0;
2010
2011 if (btrfs_is_free_space_inode(inode))
2012 workers = &root->fs_info->endio_freespace_worker;
2013 else
2014 workers = &root->fs_info->endio_write_workers;
2015 btrfs_queue_worker(workers, &ordered_extent->work);
2016
2017 return 0;
2018}
2019
2020/*
2021 * when reads are done, we need to check csums to verify the data is correct
2022 * if there's a match, we allow the bio to finish. If not, the code in
2023 * extent_io.c will try to find good copies for us.
2024 */
2025static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2026 struct extent_state *state, int mirror)
2027{
2028 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
2029 struct inode *inode = page->mapping->host;
2030 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2031 char *kaddr;
2032 u64 private = ~(u32)0;
2033 int ret;
2034 struct btrfs_root *root = BTRFS_I(inode)->root;
2035 u32 csum = ~(u32)0;
2036
2037 if (PageChecked(page)) {
2038 ClearPageChecked(page);
2039 goto good;
2040 }
2041
2042 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2043 goto good;
2044
2045 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2046 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2047 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2048 GFP_NOFS);
2049 return 0;
2050 }
2051
2052 if (state && state->start == start) {
2053 private = state->private;
2054 ret = 0;
2055 } else {
2056 ret = get_state_private(io_tree, start, &private);
2057 }
2058 kaddr = kmap_atomic(page);
2059 if (ret)
2060 goto zeroit;
2061
2062 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2063 btrfs_csum_final(csum, (char *)&csum);
2064 if (csum != private)
2065 goto zeroit;
2066
2067 kunmap_atomic(kaddr);
2068good:
2069 return 0;
2070
2071zeroit:
2072 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2073 "private %llu\n",
2074 (unsigned long long)btrfs_ino(page->mapping->host),
2075 (unsigned long long)start, csum,
2076 (unsigned long long)private);
2077 memset(kaddr + offset, 1, end - start + 1);
2078 flush_dcache_page(page);
2079 kunmap_atomic(kaddr);
2080 if (private == 0)
2081 return 0;
2082 return -EIO;
2083}
2084
2085struct delayed_iput {
2086 struct list_head list;
2087 struct inode *inode;
2088};
2089
2090/* JDM: If this is fs-wide, why can't we add a pointer to
2091 * btrfs_inode instead and avoid the allocation? */
2092void btrfs_add_delayed_iput(struct inode *inode)
2093{
2094 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2095 struct delayed_iput *delayed;
2096
2097 if (atomic_add_unless(&inode->i_count, -1, 1))
2098 return;
2099
2100 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2101 delayed->inode = inode;
2102
2103 spin_lock(&fs_info->delayed_iput_lock);
2104 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2105 spin_unlock(&fs_info->delayed_iput_lock);
2106}
2107
2108void btrfs_run_delayed_iputs(struct btrfs_root *root)
2109{
2110 LIST_HEAD(list);
2111 struct btrfs_fs_info *fs_info = root->fs_info;
2112 struct delayed_iput *delayed;
2113 int empty;
2114
2115 spin_lock(&fs_info->delayed_iput_lock);
2116 empty = list_empty(&fs_info->delayed_iputs);
2117 spin_unlock(&fs_info->delayed_iput_lock);
2118 if (empty)
2119 return;
2120
2121 spin_lock(&fs_info->delayed_iput_lock);
2122 list_splice_init(&fs_info->delayed_iputs, &list);
2123 spin_unlock(&fs_info->delayed_iput_lock);
2124
2125 while (!list_empty(&list)) {
2126 delayed = list_entry(list.next, struct delayed_iput, list);
2127 list_del(&delayed->list);
2128 iput(delayed->inode);
2129 kfree(delayed);
2130 }
2131}
2132
2133enum btrfs_orphan_cleanup_state {
2134 ORPHAN_CLEANUP_STARTED = 1,
2135 ORPHAN_CLEANUP_DONE = 2,
2136};
2137
2138/*
2139 * This is called in transaction commit time. If there are no orphan
2140 * files in the subvolume, it removes orphan item and frees block_rsv
2141 * structure.
2142 */
2143void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2144 struct btrfs_root *root)
2145{
2146 struct btrfs_block_rsv *block_rsv;
2147 int ret;
2148
2149 if (atomic_read(&root->orphan_inodes) ||
2150 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2151 return;
2152
2153 spin_lock(&root->orphan_lock);
2154 if (atomic_read(&root->orphan_inodes)) {
2155 spin_unlock(&root->orphan_lock);
2156 return;
2157 }
2158
2159 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2160 spin_unlock(&root->orphan_lock);
2161 return;
2162 }
2163
2164 block_rsv = root->orphan_block_rsv;
2165 root->orphan_block_rsv = NULL;
2166 spin_unlock(&root->orphan_lock);
2167
2168 if (root->orphan_item_inserted &&
2169 btrfs_root_refs(&root->root_item) > 0) {
2170 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2171 root->root_key.objectid);
2172 BUG_ON(ret);
2173 root->orphan_item_inserted = 0;
2174 }
2175
2176 if (block_rsv) {
2177 WARN_ON(block_rsv->size > 0);
2178 btrfs_free_block_rsv(root, block_rsv);
2179 }
2180}
2181
2182/*
2183 * This creates an orphan entry for the given inode in case something goes
2184 * wrong in the middle of an unlink/truncate.
2185 *
2186 * NOTE: caller of this function should reserve 5 units of metadata for
2187 * this function.
2188 */
2189int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2190{
2191 struct btrfs_root *root = BTRFS_I(inode)->root;
2192 struct btrfs_block_rsv *block_rsv = NULL;
2193 int reserve = 0;
2194 int insert = 0;
2195 int ret;
2196
2197 if (!root->orphan_block_rsv) {
2198 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2199 if (!block_rsv)
2200 return -ENOMEM;
2201 }
2202
2203 spin_lock(&root->orphan_lock);
2204 if (!root->orphan_block_rsv) {
2205 root->orphan_block_rsv = block_rsv;
2206 } else if (block_rsv) {
2207 btrfs_free_block_rsv(root, block_rsv);
2208 block_rsv = NULL;
2209 }
2210
2211 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2212 &BTRFS_I(inode)->runtime_flags)) {
2213#if 0
2214 /*
2215 * For proper ENOSPC handling, we should do orphan
2216 * cleanup when mounting. But this introduces backward
2217 * compatibility issue.
2218 */
2219 if (!xchg(&root->orphan_item_inserted, 1))
2220 insert = 2;
2221 else
2222 insert = 1;
2223#endif
2224 insert = 1;
2225 atomic_inc(&root->orphan_inodes);
2226 }
2227
2228 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2229 &BTRFS_I(inode)->runtime_flags))
2230 reserve = 1;
2231 spin_unlock(&root->orphan_lock);
2232
2233 /* grab metadata reservation from transaction handle */
2234 if (reserve) {
2235 ret = btrfs_orphan_reserve_metadata(trans, inode);
2236 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2237 }
2238
2239 /* insert an orphan item to track this unlinked/truncated file */
2240 if (insert >= 1) {
2241 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2242 if (ret && ret != -EEXIST) {
2243 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2244 &BTRFS_I(inode)->runtime_flags);
2245 btrfs_abort_transaction(trans, root, ret);
2246 return ret;
2247 }
2248 ret = 0;
2249 }
2250
2251 /* insert an orphan item to track subvolume contains orphan files */
2252 if (insert >= 2) {
2253 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2254 root->root_key.objectid);
2255 if (ret && ret != -EEXIST) {
2256 btrfs_abort_transaction(trans, root, ret);
2257 return ret;
2258 }
2259 }
2260 return 0;
2261}
2262
2263/*
2264 * We have done the truncate/delete so we can go ahead and remove the orphan
2265 * item for this particular inode.
2266 */
2267int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2268{
2269 struct btrfs_root *root = BTRFS_I(inode)->root;
2270 int delete_item = 0;
2271 int release_rsv = 0;
2272 int ret = 0;
2273
2274 spin_lock(&root->orphan_lock);
2275 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2276 &BTRFS_I(inode)->runtime_flags))
2277 delete_item = 1;
2278
2279 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2280 &BTRFS_I(inode)->runtime_flags))
2281 release_rsv = 1;
2282 spin_unlock(&root->orphan_lock);
2283
2284 if (trans && delete_item) {
2285 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2286 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2287 }
2288
2289 if (release_rsv) {
2290 btrfs_orphan_release_metadata(inode);
2291 atomic_dec(&root->orphan_inodes);
2292 }
2293
2294 return 0;
2295}
2296
2297/*
2298 * this cleans up any orphans that may be left on the list from the last use
2299 * of this root.
2300 */
2301int btrfs_orphan_cleanup(struct btrfs_root *root)
2302{
2303 struct btrfs_path *path;
2304 struct extent_buffer *leaf;
2305 struct btrfs_key key, found_key;
2306 struct btrfs_trans_handle *trans;
2307 struct inode *inode;
2308 u64 last_objectid = 0;
2309 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2310
2311 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2312 return 0;
2313
2314 path = btrfs_alloc_path();
2315 if (!path) {
2316 ret = -ENOMEM;
2317 goto out;
2318 }
2319 path->reada = -1;
2320
2321 key.objectid = BTRFS_ORPHAN_OBJECTID;
2322 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2323 key.offset = (u64)-1;
2324
2325 while (1) {
2326 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2327 if (ret < 0)
2328 goto out;
2329
2330 /*
2331 * if ret == 0 means we found what we were searching for, which
2332 * is weird, but possible, so only screw with path if we didn't
2333 * find the key and see if we have stuff that matches
2334 */
2335 if (ret > 0) {
2336 ret = 0;
2337 if (path->slots[0] == 0)
2338 break;
2339 path->slots[0]--;
2340 }
2341
2342 /* pull out the item */
2343 leaf = path->nodes[0];
2344 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2345
2346 /* make sure the item matches what we want */
2347 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2348 break;
2349 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2350 break;
2351
2352 /* release the path since we're done with it */
2353 btrfs_release_path(path);
2354
2355 /*
2356 * this is where we are basically btrfs_lookup, without the
2357 * crossing root thing. we store the inode number in the
2358 * offset of the orphan item.
2359 */
2360
2361 if (found_key.offset == last_objectid) {
2362 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2363 "stopping orphan cleanup\n");
2364 ret = -EINVAL;
2365 goto out;
2366 }
2367
2368 last_objectid = found_key.offset;
2369
2370 found_key.objectid = found_key.offset;
2371 found_key.type = BTRFS_INODE_ITEM_KEY;
2372 found_key.offset = 0;
2373 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2374 ret = PTR_RET(inode);
2375 if (ret && ret != -ESTALE)
2376 goto out;
2377
2378 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2379 struct btrfs_root *dead_root;
2380 struct btrfs_fs_info *fs_info = root->fs_info;
2381 int is_dead_root = 0;
2382
2383 /*
2384 * this is an orphan in the tree root. Currently these
2385 * could come from 2 sources:
2386 * a) a snapshot deletion in progress
2387 * b) a free space cache inode
2388 * We need to distinguish those two, as the snapshot
2389 * orphan must not get deleted.
2390 * find_dead_roots already ran before us, so if this
2391 * is a snapshot deletion, we should find the root
2392 * in the dead_roots list
2393 */
2394 spin_lock(&fs_info->trans_lock);
2395 list_for_each_entry(dead_root, &fs_info->dead_roots,
2396 root_list) {
2397 if (dead_root->root_key.objectid ==
2398 found_key.objectid) {
2399 is_dead_root = 1;
2400 break;
2401 }
2402 }
2403 spin_unlock(&fs_info->trans_lock);
2404 if (is_dead_root) {
2405 /* prevent this orphan from being found again */
2406 key.offset = found_key.objectid - 1;
2407 continue;
2408 }
2409 }
2410 /*
2411 * Inode is already gone but the orphan item is still there,
2412 * kill the orphan item.
2413 */
2414 if (ret == -ESTALE) {
2415 trans = btrfs_start_transaction(root, 1);
2416 if (IS_ERR(trans)) {
2417 ret = PTR_ERR(trans);
2418 goto out;
2419 }
2420 printk(KERN_ERR "auto deleting %Lu\n",
2421 found_key.objectid);
2422 ret = btrfs_del_orphan_item(trans, root,
2423 found_key.objectid);
2424 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2425 btrfs_end_transaction(trans, root);
2426 continue;
2427 }
2428
2429 /*
2430 * add this inode to the orphan list so btrfs_orphan_del does
2431 * the proper thing when we hit it
2432 */
2433 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2434 &BTRFS_I(inode)->runtime_flags);
2435
2436 /* if we have links, this was a truncate, lets do that */
2437 if (inode->i_nlink) {
2438 if (!S_ISREG(inode->i_mode)) {
2439 WARN_ON(1);
2440 iput(inode);
2441 continue;
2442 }
2443 nr_truncate++;
2444 ret = btrfs_truncate(inode);
2445 } else {
2446 nr_unlink++;
2447 }
2448
2449 /* this will do delete_inode and everything for us */
2450 iput(inode);
2451 if (ret)
2452 goto out;
2453 }
2454 /* release the path since we're done with it */
2455 btrfs_release_path(path);
2456
2457 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2458
2459 if (root->orphan_block_rsv)
2460 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2461 (u64)-1);
2462
2463 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2464 trans = btrfs_join_transaction(root);
2465 if (!IS_ERR(trans))
2466 btrfs_end_transaction(trans, root);
2467 }
2468
2469 if (nr_unlink)
2470 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2471 if (nr_truncate)
2472 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2473
2474out:
2475 if (ret)
2476 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2477 btrfs_free_path(path);
2478 return ret;
2479}
2480
2481/*
2482 * very simple check to peek ahead in the leaf looking for xattrs. If we
2483 * don't find any xattrs, we know there can't be any acls.
2484 *
2485 * slot is the slot the inode is in, objectid is the objectid of the inode
2486 */
2487static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2488 int slot, u64 objectid)
2489{
2490 u32 nritems = btrfs_header_nritems(leaf);
2491 struct btrfs_key found_key;
2492 int scanned = 0;
2493
2494 slot++;
2495 while (slot < nritems) {
2496 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2497
2498 /* we found a different objectid, there must not be acls */
2499 if (found_key.objectid != objectid)
2500 return 0;
2501
2502 /* we found an xattr, assume we've got an acl */
2503 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2504 return 1;
2505
2506 /*
2507 * we found a key greater than an xattr key, there can't
2508 * be any acls later on
2509 */
2510 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2511 return 0;
2512
2513 slot++;
2514 scanned++;
2515
2516 /*
2517 * it goes inode, inode backrefs, xattrs, extents,
2518 * so if there are a ton of hard links to an inode there can
2519 * be a lot of backrefs. Don't waste time searching too hard,
2520 * this is just an optimization
2521 */
2522 if (scanned >= 8)
2523 break;
2524 }
2525 /* we hit the end of the leaf before we found an xattr or
2526 * something larger than an xattr. We have to assume the inode
2527 * has acls
2528 */
2529 return 1;
2530}
2531
2532/*
2533 * read an inode from the btree into the in-memory inode
2534 */
2535static void btrfs_read_locked_inode(struct inode *inode)
2536{
2537 struct btrfs_path *path;
2538 struct extent_buffer *leaf;
2539 struct btrfs_inode_item *inode_item;
2540 struct btrfs_timespec *tspec;
2541 struct btrfs_root *root = BTRFS_I(inode)->root;
2542 struct btrfs_key location;
2543 int maybe_acls;
2544 u32 rdev;
2545 int ret;
2546 bool filled = false;
2547
2548 ret = btrfs_fill_inode(inode, &rdev);
2549 if (!ret)
2550 filled = true;
2551
2552 path = btrfs_alloc_path();
2553 if (!path)
2554 goto make_bad;
2555
2556 path->leave_spinning = 1;
2557 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2558
2559 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2560 if (ret)
2561 goto make_bad;
2562
2563 leaf = path->nodes[0];
2564
2565 if (filled)
2566 goto cache_acl;
2567
2568 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2569 struct btrfs_inode_item);
2570 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2571 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2572 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2573 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2574 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2575
2576 tspec = btrfs_inode_atime(inode_item);
2577 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2578 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2579
2580 tspec = btrfs_inode_mtime(inode_item);
2581 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2582 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2583
2584 tspec = btrfs_inode_ctime(inode_item);
2585 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2586 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2587
2588 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2589 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2590 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2591
2592 /*
2593 * If we were modified in the current generation and evicted from memory
2594 * and then re-read we need to do a full sync since we don't have any
2595 * idea about which extents were modified before we were evicted from
2596 * cache.
2597 */
2598 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2599 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2600 &BTRFS_I(inode)->runtime_flags);
2601
2602 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
2603 inode->i_generation = BTRFS_I(inode)->generation;
2604 inode->i_rdev = 0;
2605 rdev = btrfs_inode_rdev(leaf, inode_item);
2606
2607 BTRFS_I(inode)->index_cnt = (u64)-1;
2608 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2609cache_acl:
2610 /*
2611 * try to precache a NULL acl entry for files that don't have
2612 * any xattrs or acls
2613 */
2614 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2615 btrfs_ino(inode));
2616 if (!maybe_acls)
2617 cache_no_acl(inode);
2618
2619 btrfs_free_path(path);
2620
2621 switch (inode->i_mode & S_IFMT) {
2622 case S_IFREG:
2623 inode->i_mapping->a_ops = &btrfs_aops;
2624 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2625 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2626 inode->i_fop = &btrfs_file_operations;
2627 inode->i_op = &btrfs_file_inode_operations;
2628 break;
2629 case S_IFDIR:
2630 inode->i_fop = &btrfs_dir_file_operations;
2631 if (root == root->fs_info->tree_root)
2632 inode->i_op = &btrfs_dir_ro_inode_operations;
2633 else
2634 inode->i_op = &btrfs_dir_inode_operations;
2635 break;
2636 case S_IFLNK:
2637 inode->i_op = &btrfs_symlink_inode_operations;
2638 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2639 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2640 break;
2641 default:
2642 inode->i_op = &btrfs_special_inode_operations;
2643 init_special_inode(inode, inode->i_mode, rdev);
2644 break;
2645 }
2646
2647 btrfs_update_iflags(inode);
2648 return;
2649
2650make_bad:
2651 btrfs_free_path(path);
2652 make_bad_inode(inode);
2653}
2654
2655/*
2656 * given a leaf and an inode, copy the inode fields into the leaf
2657 */
2658static void fill_inode_item(struct btrfs_trans_handle *trans,
2659 struct extent_buffer *leaf,
2660 struct btrfs_inode_item *item,
2661 struct inode *inode)
2662{
2663 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2664 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2665 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2666 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2667 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2668
2669 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2670 inode->i_atime.tv_sec);
2671 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2672 inode->i_atime.tv_nsec);
2673
2674 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2675 inode->i_mtime.tv_sec);
2676 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2677 inode->i_mtime.tv_nsec);
2678
2679 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2680 inode->i_ctime.tv_sec);
2681 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2682 inode->i_ctime.tv_nsec);
2683
2684 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2685 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2686 btrfs_set_inode_sequence(leaf, item, inode->i_version);
2687 btrfs_set_inode_transid(leaf, item, trans->transid);
2688 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2689 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2690 btrfs_set_inode_block_group(leaf, item, 0);
2691}
2692
2693/*
2694 * copy everything in the in-memory inode into the btree.
2695 */
2696static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2697 struct btrfs_root *root, struct inode *inode)
2698{
2699 struct btrfs_inode_item *inode_item;
2700 struct btrfs_path *path;
2701 struct extent_buffer *leaf;
2702 int ret;
2703
2704 path = btrfs_alloc_path();
2705 if (!path)
2706 return -ENOMEM;
2707
2708 path->leave_spinning = 1;
2709 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2710 1);
2711 if (ret) {
2712 if (ret > 0)
2713 ret = -ENOENT;
2714 goto failed;
2715 }
2716
2717 btrfs_unlock_up_safe(path, 1);
2718 leaf = path->nodes[0];
2719 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2720 struct btrfs_inode_item);
2721
2722 fill_inode_item(trans, leaf, inode_item, inode);
2723 btrfs_mark_buffer_dirty(leaf);
2724 btrfs_set_inode_last_trans(trans, inode);
2725 ret = 0;
2726failed:
2727 btrfs_free_path(path);
2728 return ret;
2729}
2730
2731/*
2732 * copy everything in the in-memory inode into the btree.
2733 */
2734noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2735 struct btrfs_root *root, struct inode *inode)
2736{
2737 int ret;
2738
2739 /*
2740 * If the inode is a free space inode, we can deadlock during commit
2741 * if we put it into the delayed code.
2742 *
2743 * The data relocation inode should also be directly updated
2744 * without delay
2745 */
2746 if (!btrfs_is_free_space_inode(inode)
2747 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2748 btrfs_update_root_times(trans, root);
2749
2750 ret = btrfs_delayed_update_inode(trans, root, inode);
2751 if (!ret)
2752 btrfs_set_inode_last_trans(trans, inode);
2753 return ret;
2754 }
2755
2756 return btrfs_update_inode_item(trans, root, inode);
2757}
2758
2759static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2760 struct btrfs_root *root, struct inode *inode)
2761{
2762 int ret;
2763
2764 ret = btrfs_update_inode(trans, root, inode);
2765 if (ret == -ENOSPC)
2766 return btrfs_update_inode_item(trans, root, inode);
2767 return ret;
2768}
2769
2770/*
2771 * unlink helper that gets used here in inode.c and in the tree logging
2772 * recovery code. It remove a link in a directory with a given name, and
2773 * also drops the back refs in the inode to the directory
2774 */
2775static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2776 struct btrfs_root *root,
2777 struct inode *dir, struct inode *inode,
2778 const char *name, int name_len)
2779{
2780 struct btrfs_path *path;
2781 int ret = 0;
2782 struct extent_buffer *leaf;
2783 struct btrfs_dir_item *di;
2784 struct btrfs_key key;
2785 u64 index;
2786 u64 ino = btrfs_ino(inode);
2787 u64 dir_ino = btrfs_ino(dir);
2788
2789 path = btrfs_alloc_path();
2790 if (!path) {
2791 ret = -ENOMEM;
2792 goto out;
2793 }
2794
2795 path->leave_spinning = 1;
2796 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2797 name, name_len, -1);
2798 if (IS_ERR(di)) {
2799 ret = PTR_ERR(di);
2800 goto err;
2801 }
2802 if (!di) {
2803 ret = -ENOENT;
2804 goto err;
2805 }
2806 leaf = path->nodes[0];
2807 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2808 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2809 if (ret)
2810 goto err;
2811 btrfs_release_path(path);
2812
2813 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2814 dir_ino, &index);
2815 if (ret) {
2816 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2817 "inode %llu parent %llu\n", name_len, name,
2818 (unsigned long long)ino, (unsigned long long)dir_ino);
2819 btrfs_abort_transaction(trans, root, ret);
2820 goto err;
2821 }
2822
2823 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2824 if (ret) {
2825 btrfs_abort_transaction(trans, root, ret);
2826 goto err;
2827 }
2828
2829 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2830 inode, dir_ino);
2831 if (ret != 0 && ret != -ENOENT) {
2832 btrfs_abort_transaction(trans, root, ret);
2833 goto err;
2834 }
2835
2836 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2837 dir, index);
2838 if (ret == -ENOENT)
2839 ret = 0;
2840err:
2841 btrfs_free_path(path);
2842 if (ret)
2843 goto out;
2844
2845 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2846 inode_inc_iversion(inode);
2847 inode_inc_iversion(dir);
2848 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2849 ret = btrfs_update_inode(trans, root, dir);
2850out:
2851 return ret;
2852}
2853
2854int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2855 struct btrfs_root *root,
2856 struct inode *dir, struct inode *inode,
2857 const char *name, int name_len)
2858{
2859 int ret;
2860 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2861 if (!ret) {
2862 btrfs_drop_nlink(inode);
2863 ret = btrfs_update_inode(trans, root, inode);
2864 }
2865 return ret;
2866}
2867
2868
2869/* helper to check if there is any shared block in the path */
2870static int check_path_shared(struct btrfs_root *root,
2871 struct btrfs_path *path)
2872{
2873 struct extent_buffer *eb;
2874 int level;
2875 u64 refs = 1;
2876
2877 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2878 int ret;
2879
2880 if (!path->nodes[level])
2881 break;
2882 eb = path->nodes[level];
2883 if (!btrfs_block_can_be_shared(root, eb))
2884 continue;
2885 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2886 &refs, NULL);
2887 if (refs > 1)
2888 return 1;
2889 }
2890 return 0;
2891}
2892
2893/*
2894 * helper to start transaction for unlink and rmdir.
2895 *
2896 * unlink and rmdir are special in btrfs, they do not always free space.
2897 * so in enospc case, we should make sure they will free space before
2898 * allowing them to use the global metadata reservation.
2899 */
2900static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2901 struct dentry *dentry)
2902{
2903 struct btrfs_trans_handle *trans;
2904 struct btrfs_root *root = BTRFS_I(dir)->root;
2905 struct btrfs_path *path;
2906 struct btrfs_dir_item *di;
2907 struct inode *inode = dentry->d_inode;
2908 u64 index;
2909 int check_link = 1;
2910 int err = -ENOSPC;
2911 int ret;
2912 u64 ino = btrfs_ino(inode);
2913 u64 dir_ino = btrfs_ino(dir);
2914
2915 /*
2916 * 1 for the possible orphan item
2917 * 1 for the dir item
2918 * 1 for the dir index
2919 * 1 for the inode ref
2920 * 1 for the inode ref in the tree log
2921 * 2 for the dir entries in the log
2922 * 1 for the inode
2923 */
2924 trans = btrfs_start_transaction(root, 8);
2925 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2926 return trans;
2927
2928 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2929 return ERR_PTR(-ENOSPC);
2930
2931 /* check if there is someone else holds reference */
2932 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2933 return ERR_PTR(-ENOSPC);
2934
2935 if (atomic_read(&inode->i_count) > 2)
2936 return ERR_PTR(-ENOSPC);
2937
2938 if (xchg(&root->fs_info->enospc_unlink, 1))
2939 return ERR_PTR(-ENOSPC);
2940
2941 path = btrfs_alloc_path();
2942 if (!path) {
2943 root->fs_info->enospc_unlink = 0;
2944 return ERR_PTR(-ENOMEM);
2945 }
2946
2947 /* 1 for the orphan item */
2948 trans = btrfs_start_transaction(root, 1);
2949 if (IS_ERR(trans)) {
2950 btrfs_free_path(path);
2951 root->fs_info->enospc_unlink = 0;
2952 return trans;
2953 }
2954
2955 path->skip_locking = 1;
2956 path->search_commit_root = 1;
2957
2958 ret = btrfs_lookup_inode(trans, root, path,
2959 &BTRFS_I(dir)->location, 0);
2960 if (ret < 0) {
2961 err = ret;
2962 goto out;
2963 }
2964 if (ret == 0) {
2965 if (check_path_shared(root, path))
2966 goto out;
2967 } else {
2968 check_link = 0;
2969 }
2970 btrfs_release_path(path);
2971
2972 ret = btrfs_lookup_inode(trans, root, path,
2973 &BTRFS_I(inode)->location, 0);
2974 if (ret < 0) {
2975 err = ret;
2976 goto out;
2977 }
2978 if (ret == 0) {
2979 if (check_path_shared(root, path))
2980 goto out;
2981 } else {
2982 check_link = 0;
2983 }
2984 btrfs_release_path(path);
2985
2986 if (ret == 0 && S_ISREG(inode->i_mode)) {
2987 ret = btrfs_lookup_file_extent(trans, root, path,
2988 ino, (u64)-1, 0);
2989 if (ret < 0) {
2990 err = ret;
2991 goto out;
2992 }
2993 BUG_ON(ret == 0); /* Corruption */
2994 if (check_path_shared(root, path))
2995 goto out;
2996 btrfs_release_path(path);
2997 }
2998
2999 if (!check_link) {
3000 err = 0;
3001 goto out;
3002 }
3003
3004 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3005 dentry->d_name.name, dentry->d_name.len, 0);
3006 if (IS_ERR(di)) {
3007 err = PTR_ERR(di);
3008 goto out;
3009 }
3010 if (di) {
3011 if (check_path_shared(root, path))
3012 goto out;
3013 } else {
3014 err = 0;
3015 goto out;
3016 }
3017 btrfs_release_path(path);
3018
3019 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3020 dentry->d_name.len, ino, dir_ino, 0,
3021 &index);
3022 if (ret) {
3023 err = ret;
3024 goto out;
3025 }
3026
3027 if (check_path_shared(root, path))
3028 goto out;
3029
3030 btrfs_release_path(path);
3031
3032 /*
3033 * This is a commit root search, if we can lookup inode item and other
3034 * relative items in the commit root, it means the transaction of
3035 * dir/file creation has been committed, and the dir index item that we
3036 * delay to insert has also been inserted into the commit root. So
3037 * we needn't worry about the delayed insertion of the dir index item
3038 * here.
3039 */
3040 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3041 dentry->d_name.name, dentry->d_name.len, 0);
3042 if (IS_ERR(di)) {
3043 err = PTR_ERR(di);
3044 goto out;
3045 }
3046 BUG_ON(ret == -ENOENT);
3047 if (check_path_shared(root, path))
3048 goto out;
3049
3050 err = 0;
3051out:
3052 btrfs_free_path(path);
3053 /* Migrate the orphan reservation over */
3054 if (!err)
3055 err = btrfs_block_rsv_migrate(trans->block_rsv,
3056 &root->fs_info->global_block_rsv,
3057 trans->bytes_reserved);
3058
3059 if (err) {
3060 btrfs_end_transaction(trans, root);
3061 root->fs_info->enospc_unlink = 0;
3062 return ERR_PTR(err);
3063 }
3064
3065 trans->block_rsv = &root->fs_info->global_block_rsv;
3066 return trans;
3067}
3068
3069static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3070 struct btrfs_root *root)
3071{
3072 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
3073 btrfs_block_rsv_release(root, trans->block_rsv,
3074 trans->bytes_reserved);
3075 trans->block_rsv = &root->fs_info->trans_block_rsv;
3076 BUG_ON(!root->fs_info->enospc_unlink);
3077 root->fs_info->enospc_unlink = 0;
3078 }
3079 btrfs_end_transaction(trans, root);
3080}
3081
3082static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3083{
3084 struct btrfs_root *root = BTRFS_I(dir)->root;
3085 struct btrfs_trans_handle *trans;
3086 struct inode *inode = dentry->d_inode;
3087 int ret;
3088 unsigned long nr = 0;
3089
3090 trans = __unlink_start_trans(dir, dentry);
3091 if (IS_ERR(trans))
3092 return PTR_ERR(trans);
3093
3094 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3095
3096 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3097 dentry->d_name.name, dentry->d_name.len);
3098 if (ret)
3099 goto out;
3100
3101 if (inode->i_nlink == 0) {
3102 ret = btrfs_orphan_add(trans, inode);
3103 if (ret)
3104 goto out;
3105 }
3106
3107out:
3108 nr = trans->blocks_used;
3109 __unlink_end_trans(trans, root);
3110 btrfs_btree_balance_dirty(root, nr);
3111 return ret;
3112}
3113
3114int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3115 struct btrfs_root *root,
3116 struct inode *dir, u64 objectid,
3117 const char *name, int name_len)
3118{
3119 struct btrfs_path *path;
3120 struct extent_buffer *leaf;
3121 struct btrfs_dir_item *di;
3122 struct btrfs_key key;
3123 u64 index;
3124 int ret;
3125 u64 dir_ino = btrfs_ino(dir);
3126
3127 path = btrfs_alloc_path();
3128 if (!path)
3129 return -ENOMEM;
3130
3131 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3132 name, name_len, -1);
3133 if (IS_ERR_OR_NULL(di)) {
3134 if (!di)
3135 ret = -ENOENT;
3136 else
3137 ret = PTR_ERR(di);
3138 goto out;
3139 }
3140
3141 leaf = path->nodes[0];
3142 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3143 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3144 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3145 if (ret) {
3146 btrfs_abort_transaction(trans, root, ret);
3147 goto out;
3148 }
3149 btrfs_release_path(path);
3150
3151 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3152 objectid, root->root_key.objectid,
3153 dir_ino, &index, name, name_len);
3154 if (ret < 0) {
3155 if (ret != -ENOENT) {
3156 btrfs_abort_transaction(trans, root, ret);
3157 goto out;
3158 }
3159 di = btrfs_search_dir_index_item(root, path, dir_ino,
3160 name, name_len);
3161 if (IS_ERR_OR_NULL(di)) {
3162 if (!di)
3163 ret = -ENOENT;
3164 else
3165 ret = PTR_ERR(di);
3166 btrfs_abort_transaction(trans, root, ret);
3167 goto out;
3168 }
3169
3170 leaf = path->nodes[0];
3171 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3172 btrfs_release_path(path);
3173 index = key.offset;
3174 }
3175 btrfs_release_path(path);
3176
3177 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3178 if (ret) {
3179 btrfs_abort_transaction(trans, root, ret);
3180 goto out;
3181 }
3182
3183 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3184 inode_inc_iversion(dir);
3185 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3186 ret = btrfs_update_inode_fallback(trans, root, dir);
3187 if (ret)
3188 btrfs_abort_transaction(trans, root, ret);
3189out:
3190 btrfs_free_path(path);
3191 return ret;
3192}
3193
3194static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3195{
3196 struct inode *inode = dentry->d_inode;
3197 int err = 0;
3198 struct btrfs_root *root = BTRFS_I(dir)->root;
3199 struct btrfs_trans_handle *trans;
3200 unsigned long nr = 0;
3201
3202 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3203 return -ENOTEMPTY;
3204 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3205 return -EPERM;
3206
3207 trans = __unlink_start_trans(dir, dentry);
3208 if (IS_ERR(trans))
3209 return PTR_ERR(trans);
3210
3211 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3212 err = btrfs_unlink_subvol(trans, root, dir,
3213 BTRFS_I(inode)->location.objectid,
3214 dentry->d_name.name,
3215 dentry->d_name.len);
3216 goto out;
3217 }
3218
3219 err = btrfs_orphan_add(trans, inode);
3220 if (err)
3221 goto out;
3222
3223 /* now the directory is empty */
3224 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3225 dentry->d_name.name, dentry->d_name.len);
3226 if (!err)
3227 btrfs_i_size_write(inode, 0);
3228out:
3229 nr = trans->blocks_used;
3230 __unlink_end_trans(trans, root);
3231 btrfs_btree_balance_dirty(root, nr);
3232
3233 return err;
3234}
3235
3236/*
3237 * this can truncate away extent items, csum items and directory items.
3238 * It starts at a high offset and removes keys until it can't find
3239 * any higher than new_size
3240 *
3241 * csum items that cross the new i_size are truncated to the new size
3242 * as well.
3243 *
3244 * min_type is the minimum key type to truncate down to. If set to 0, this
3245 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3246 */
3247int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3248 struct btrfs_root *root,
3249 struct inode *inode,
3250 u64 new_size, u32 min_type)
3251{
3252 struct btrfs_path *path;
3253 struct extent_buffer *leaf;
3254 struct btrfs_file_extent_item *fi;
3255 struct btrfs_key key;
3256 struct btrfs_key found_key;
3257 u64 extent_start = 0;
3258 u64 extent_num_bytes = 0;
3259 u64 extent_offset = 0;
3260 u64 item_end = 0;
3261 u64 mask = root->sectorsize - 1;
3262 u32 found_type = (u8)-1;
3263 int found_extent;
3264 int del_item;
3265 int pending_del_nr = 0;
3266 int pending_del_slot = 0;
3267 int extent_type = -1;
3268 int ret;
3269 int err = 0;
3270 u64 ino = btrfs_ino(inode);
3271
3272 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3273
3274 path = btrfs_alloc_path();
3275 if (!path)
3276 return -ENOMEM;
3277 path->reada = -1;
3278
3279 /*
3280 * We want to drop from the next block forward in case this new size is
3281 * not block aligned since we will be keeping the last block of the
3282 * extent just the way it is.
3283 */
3284 if (root->ref_cows || root == root->fs_info->tree_root)
3285 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
3286
3287 /*
3288 * This function is also used to drop the items in the log tree before
3289 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3290 * it is used to drop the loged items. So we shouldn't kill the delayed
3291 * items.
3292 */
3293 if (min_type == 0 && root == BTRFS_I(inode)->root)
3294 btrfs_kill_delayed_inode_items(inode);
3295
3296 key.objectid = ino;
3297 key.offset = (u64)-1;
3298 key.type = (u8)-1;
3299
3300search_again:
3301 path->leave_spinning = 1;
3302 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3303 if (ret < 0) {
3304 err = ret;
3305 goto out;
3306 }
3307
3308 if (ret > 0) {
3309 /* there are no items in the tree for us to truncate, we're
3310 * done
3311 */
3312 if (path->slots[0] == 0)
3313 goto out;
3314 path->slots[0]--;
3315 }
3316
3317 while (1) {
3318 fi = NULL;
3319 leaf = path->nodes[0];
3320 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3321 found_type = btrfs_key_type(&found_key);
3322
3323 if (found_key.objectid != ino)
3324 break;
3325
3326 if (found_type < min_type)
3327 break;
3328
3329 item_end = found_key.offset;
3330 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3331 fi = btrfs_item_ptr(leaf, path->slots[0],
3332 struct btrfs_file_extent_item);
3333 extent_type = btrfs_file_extent_type(leaf, fi);
3334 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3335 item_end +=
3336 btrfs_file_extent_num_bytes(leaf, fi);
3337 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3338 item_end += btrfs_file_extent_inline_len(leaf,
3339 fi);
3340 }
3341 item_end--;
3342 }
3343 if (found_type > min_type) {
3344 del_item = 1;
3345 } else {
3346 if (item_end < new_size)
3347 break;
3348 if (found_key.offset >= new_size)
3349 del_item = 1;
3350 else
3351 del_item = 0;
3352 }
3353 found_extent = 0;
3354 /* FIXME, shrink the extent if the ref count is only 1 */
3355 if (found_type != BTRFS_EXTENT_DATA_KEY)
3356 goto delete;
3357
3358 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3359 u64 num_dec;
3360 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3361 if (!del_item) {
3362 u64 orig_num_bytes =
3363 btrfs_file_extent_num_bytes(leaf, fi);
3364 extent_num_bytes = new_size -
3365 found_key.offset + root->sectorsize - 1;
3366 extent_num_bytes = extent_num_bytes &
3367 ~((u64)root->sectorsize - 1);
3368 btrfs_set_file_extent_num_bytes(leaf, fi,
3369 extent_num_bytes);
3370 num_dec = (orig_num_bytes -
3371 extent_num_bytes);
3372 if (root->ref_cows && extent_start != 0)
3373 inode_sub_bytes(inode, num_dec);
3374 btrfs_mark_buffer_dirty(leaf);
3375 } else {
3376 extent_num_bytes =
3377 btrfs_file_extent_disk_num_bytes(leaf,
3378 fi);
3379 extent_offset = found_key.offset -
3380 btrfs_file_extent_offset(leaf, fi);
3381
3382 /* FIXME blocksize != 4096 */
3383 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3384 if (extent_start != 0) {
3385 found_extent = 1;
3386 if (root->ref_cows)
3387 inode_sub_bytes(inode, num_dec);
3388 }
3389 }
3390 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3391 /*
3392 * we can't truncate inline items that have had
3393 * special encodings
3394 */
3395 if (!del_item &&
3396 btrfs_file_extent_compression(leaf, fi) == 0 &&
3397 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3398 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3399 u32 size = new_size - found_key.offset;
3400
3401 if (root->ref_cows) {
3402 inode_sub_bytes(inode, item_end + 1 -
3403 new_size);
3404 }
3405 size =
3406 btrfs_file_extent_calc_inline_size(size);
3407 btrfs_truncate_item(trans, root, path,
3408 size, 1);
3409 } else if (root->ref_cows) {
3410 inode_sub_bytes(inode, item_end + 1 -
3411 found_key.offset);
3412 }
3413 }
3414delete:
3415 if (del_item) {
3416 if (!pending_del_nr) {
3417 /* no pending yet, add ourselves */
3418 pending_del_slot = path->slots[0];
3419 pending_del_nr = 1;
3420 } else if (pending_del_nr &&
3421 path->slots[0] + 1 == pending_del_slot) {
3422 /* hop on the pending chunk */
3423 pending_del_nr++;
3424 pending_del_slot = path->slots[0];
3425 } else {
3426 BUG();
3427 }
3428 } else {
3429 break;
3430 }
3431 if (found_extent && (root->ref_cows ||
3432 root == root->fs_info->tree_root)) {
3433 btrfs_set_path_blocking(path);
3434 ret = btrfs_free_extent(trans, root, extent_start,
3435 extent_num_bytes, 0,
3436 btrfs_header_owner(leaf),
3437 ino, extent_offset, 0);
3438 BUG_ON(ret);
3439 }
3440
3441 if (found_type == BTRFS_INODE_ITEM_KEY)
3442 break;
3443
3444 if (path->slots[0] == 0 ||
3445 path->slots[0] != pending_del_slot) {
3446 if (pending_del_nr) {
3447 ret = btrfs_del_items(trans, root, path,
3448 pending_del_slot,
3449 pending_del_nr);
3450 if (ret) {
3451 btrfs_abort_transaction(trans,
3452 root, ret);
3453 goto error;
3454 }
3455 pending_del_nr = 0;
3456 }
3457 btrfs_release_path(path);
3458 goto search_again;
3459 } else {
3460 path->slots[0]--;
3461 }
3462 }
3463out:
3464 if (pending_del_nr) {
3465 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3466 pending_del_nr);
3467 if (ret)
3468 btrfs_abort_transaction(trans, root, ret);
3469 }
3470error:
3471 btrfs_free_path(path);
3472 return err;
3473}
3474
3475/*
3476 * btrfs_truncate_page - read, zero a chunk and write a page
3477 * @inode - inode that we're zeroing
3478 * @from - the offset to start zeroing
3479 * @len - the length to zero, 0 to zero the entire range respective to the
3480 * offset
3481 * @front - zero up to the offset instead of from the offset on
3482 *
3483 * This will find the page for the "from" offset and cow the page and zero the
3484 * part we want to zero. This is used with truncate and hole punching.
3485 */
3486int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3487 int front)
3488{
3489 struct address_space *mapping = inode->i_mapping;
3490 struct btrfs_root *root = BTRFS_I(inode)->root;
3491 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3492 struct btrfs_ordered_extent *ordered;
3493 struct extent_state *cached_state = NULL;
3494 char *kaddr;
3495 u32 blocksize = root->sectorsize;
3496 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3497 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3498 struct page *page;
3499 gfp_t mask = btrfs_alloc_write_mask(mapping);
3500 int ret = 0;
3501 u64 page_start;
3502 u64 page_end;
3503
3504 if ((offset & (blocksize - 1)) == 0 &&
3505 (!len || ((len & (blocksize - 1)) == 0)))
3506 goto out;
3507 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3508 if (ret)
3509 goto out;
3510
3511 ret = -ENOMEM;
3512again:
3513 page = find_or_create_page(mapping, index, mask);
3514 if (!page) {
3515 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3516 goto out;
3517 }
3518
3519 page_start = page_offset(page);
3520 page_end = page_start + PAGE_CACHE_SIZE - 1;
3521
3522 if (!PageUptodate(page)) {
3523 ret = btrfs_readpage(NULL, page);
3524 lock_page(page);
3525 if (page->mapping != mapping) {
3526 unlock_page(page);
3527 page_cache_release(page);
3528 goto again;
3529 }
3530 if (!PageUptodate(page)) {
3531 ret = -EIO;
3532 goto out_unlock;
3533 }
3534 }
3535 wait_on_page_writeback(page);
3536
3537 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3538 set_page_extent_mapped(page);
3539
3540 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3541 if (ordered) {
3542 unlock_extent_cached(io_tree, page_start, page_end,
3543 &cached_state, GFP_NOFS);
3544 unlock_page(page);
3545 page_cache_release(page);
3546 btrfs_start_ordered_extent(inode, ordered, 1);
3547 btrfs_put_ordered_extent(ordered);
3548 goto again;
3549 }
3550
3551 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3552 EXTENT_DIRTY | EXTENT_DELALLOC |
3553 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
3554 0, 0, &cached_state, GFP_NOFS);
3555
3556 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3557 &cached_state);
3558 if (ret) {
3559 unlock_extent_cached(io_tree, page_start, page_end,
3560 &cached_state, GFP_NOFS);
3561 goto out_unlock;
3562 }
3563
3564 ret = 0;
3565 if (offset != PAGE_CACHE_SIZE) {
3566 if (!len)
3567 len = PAGE_CACHE_SIZE - offset;
3568 kaddr = kmap(page);
3569 if (front)
3570 memset(kaddr, 0, offset);
3571 else
3572 memset(kaddr + offset, 0, len);
3573 flush_dcache_page(page);
3574 kunmap(page);
3575 }
3576 ClearPageChecked(page);
3577 set_page_dirty(page);
3578 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3579 GFP_NOFS);
3580
3581out_unlock:
3582 if (ret)
3583 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3584 unlock_page(page);
3585 page_cache_release(page);
3586out:
3587 return ret;
3588}
3589
3590/*
3591 * This function puts in dummy file extents for the area we're creating a hole
3592 * for. So if we are truncating this file to a larger size we need to insert
3593 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3594 * the range between oldsize and size
3595 */
3596int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3597{
3598 struct btrfs_trans_handle *trans;
3599 struct btrfs_root *root = BTRFS_I(inode)->root;
3600 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3601 struct extent_map *em = NULL;
3602 struct extent_state *cached_state = NULL;
3603 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3604 u64 mask = root->sectorsize - 1;
3605 u64 hole_start = (oldsize + mask) & ~mask;
3606 u64 block_end = (size + mask) & ~mask;
3607 u64 last_byte;
3608 u64 cur_offset;
3609 u64 hole_size;
3610 int err = 0;
3611
3612 if (size <= hole_start)
3613 return 0;
3614
3615 while (1) {
3616 struct btrfs_ordered_extent *ordered;
3617 btrfs_wait_ordered_range(inode, hole_start,
3618 block_end - hole_start);
3619 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3620 &cached_state);
3621 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3622 if (!ordered)
3623 break;
3624 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3625 &cached_state, GFP_NOFS);
3626 btrfs_put_ordered_extent(ordered);
3627 }
3628
3629 cur_offset = hole_start;
3630 while (1) {
3631 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3632 block_end - cur_offset, 0);
3633 if (IS_ERR(em)) {
3634 err = PTR_ERR(em);
3635 break;
3636 }
3637 last_byte = min(extent_map_end(em), block_end);
3638 last_byte = (last_byte + mask) & ~mask;
3639 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3640 struct extent_map *hole_em;
3641 hole_size = last_byte - cur_offset;
3642
3643 trans = btrfs_start_transaction(root, 3);
3644 if (IS_ERR(trans)) {
3645 err = PTR_ERR(trans);
3646 break;
3647 }
3648
3649 err = btrfs_drop_extents(trans, root, inode,
3650 cur_offset,
3651 cur_offset + hole_size, 1);
3652 if (err) {
3653 btrfs_abort_transaction(trans, root, err);
3654 btrfs_end_transaction(trans, root);
3655 break;
3656 }
3657
3658 err = btrfs_insert_file_extent(trans, root,
3659 btrfs_ino(inode), cur_offset, 0,
3660 0, hole_size, 0, hole_size,
3661 0, 0, 0);
3662 if (err) {
3663 btrfs_abort_transaction(trans, root, err);
3664 btrfs_end_transaction(trans, root);
3665 break;
3666 }
3667
3668 btrfs_drop_extent_cache(inode, cur_offset,
3669 cur_offset + hole_size - 1, 0);
3670 hole_em = alloc_extent_map();
3671 if (!hole_em) {
3672 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3673 &BTRFS_I(inode)->runtime_flags);
3674 goto next;
3675 }
3676 hole_em->start = cur_offset;
3677 hole_em->len = hole_size;
3678 hole_em->orig_start = cur_offset;
3679
3680 hole_em->block_start = EXTENT_MAP_HOLE;
3681 hole_em->block_len = 0;
3682 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3683 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3684 hole_em->generation = trans->transid;
3685
3686 while (1) {
3687 write_lock(&em_tree->lock);
3688 err = add_extent_mapping(em_tree, hole_em);
3689 if (!err)
3690 list_move(&hole_em->list,
3691 &em_tree->modified_extents);
3692 write_unlock(&em_tree->lock);
3693 if (err != -EEXIST)
3694 break;
3695 btrfs_drop_extent_cache(inode, cur_offset,
3696 cur_offset +
3697 hole_size - 1, 0);
3698 }
3699 free_extent_map(hole_em);
3700next:
3701 btrfs_update_inode(trans, root, inode);
3702 btrfs_end_transaction(trans, root);
3703 }
3704 free_extent_map(em);
3705 em = NULL;
3706 cur_offset = last_byte;
3707 if (cur_offset >= block_end)
3708 break;
3709 }
3710
3711 free_extent_map(em);
3712 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3713 GFP_NOFS);
3714 return err;
3715}
3716
3717static int btrfs_setsize(struct inode *inode, loff_t newsize)
3718{
3719 struct btrfs_root *root = BTRFS_I(inode)->root;
3720 struct btrfs_trans_handle *trans;
3721 loff_t oldsize = i_size_read(inode);
3722 int ret;
3723
3724 if (newsize == oldsize)
3725 return 0;
3726
3727 if (newsize > oldsize) {
3728 truncate_pagecache(inode, oldsize, newsize);
3729 ret = btrfs_cont_expand(inode, oldsize, newsize);
3730 if (ret)
3731 return ret;
3732
3733 trans = btrfs_start_transaction(root, 1);
3734 if (IS_ERR(trans))
3735 return PTR_ERR(trans);
3736
3737 i_size_write(inode, newsize);
3738 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3739 ret = btrfs_update_inode(trans, root, inode);
3740 btrfs_end_transaction(trans, root);
3741 } else {
3742
3743 /*
3744 * We're truncating a file that used to have good data down to
3745 * zero. Make sure it gets into the ordered flush list so that
3746 * any new writes get down to disk quickly.
3747 */
3748 if (newsize == 0)
3749 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3750 &BTRFS_I(inode)->runtime_flags);
3751
3752 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3753 truncate_setsize(inode, newsize);
3754 ret = btrfs_truncate(inode);
3755 }
3756
3757 return ret;
3758}
3759
3760static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3761{
3762 struct inode *inode = dentry->d_inode;
3763 struct btrfs_root *root = BTRFS_I(inode)->root;
3764 int err;
3765
3766 if (btrfs_root_readonly(root))
3767 return -EROFS;
3768
3769 err = inode_change_ok(inode, attr);
3770 if (err)
3771 return err;
3772
3773 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3774 err = btrfs_setsize(inode, attr->ia_size);
3775 if (err)
3776 return err;
3777 }
3778
3779 if (attr->ia_valid) {
3780 setattr_copy(inode, attr);
3781 inode_inc_iversion(inode);
3782 err = btrfs_dirty_inode(inode);
3783
3784 if (!err && attr->ia_valid & ATTR_MODE)
3785 err = btrfs_acl_chmod(inode);
3786 }
3787
3788 return err;
3789}
3790
3791void btrfs_evict_inode(struct inode *inode)
3792{
3793 struct btrfs_trans_handle *trans;
3794 struct btrfs_root *root = BTRFS_I(inode)->root;
3795 struct btrfs_block_rsv *rsv, *global_rsv;
3796 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3797 unsigned long nr;
3798 int ret;
3799
3800 trace_btrfs_inode_evict(inode);
3801
3802 truncate_inode_pages(&inode->i_data, 0);
3803 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3804 btrfs_is_free_space_inode(inode)))
3805 goto no_delete;
3806
3807 if (is_bad_inode(inode)) {
3808 btrfs_orphan_del(NULL, inode);
3809 goto no_delete;
3810 }
3811 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3812 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3813
3814 if (root->fs_info->log_root_recovering) {
3815 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3816 &BTRFS_I(inode)->runtime_flags));
3817 goto no_delete;
3818 }
3819
3820 if (inode->i_nlink > 0) {
3821 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3822 goto no_delete;
3823 }
3824
3825 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3826 if (!rsv) {
3827 btrfs_orphan_del(NULL, inode);
3828 goto no_delete;
3829 }
3830 rsv->size = min_size;
3831 rsv->failfast = 1;
3832 global_rsv = &root->fs_info->global_block_rsv;
3833
3834 btrfs_i_size_write(inode, 0);
3835
3836 /*
3837 * This is a bit simpler than btrfs_truncate since we've already
3838 * reserved our space for our orphan item in the unlink, so we just
3839 * need to reserve some slack space in case we add bytes and update
3840 * inode item when doing the truncate.
3841 */
3842 while (1) {
3843 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
3844
3845 /*
3846 * Try and steal from the global reserve since we will
3847 * likely not use this space anyway, we want to try as
3848 * hard as possible to get this to work.
3849 */
3850 if (ret)
3851 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3852
3853 if (ret) {
3854 printk(KERN_WARNING "Could not get space for a "
3855 "delete, will truncate on mount %d\n", ret);
3856 btrfs_orphan_del(NULL, inode);
3857 btrfs_free_block_rsv(root, rsv);
3858 goto no_delete;
3859 }
3860
3861 trans = btrfs_start_transaction_noflush(root, 1);
3862 if (IS_ERR(trans)) {
3863 btrfs_orphan_del(NULL, inode);
3864 btrfs_free_block_rsv(root, rsv);
3865 goto no_delete;
3866 }
3867
3868 trans->block_rsv = rsv;
3869
3870 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3871 if (ret != -ENOSPC)
3872 break;
3873
3874 trans->block_rsv = &root->fs_info->trans_block_rsv;
3875 ret = btrfs_update_inode(trans, root, inode);
3876 BUG_ON(ret);
3877
3878 nr = trans->blocks_used;
3879 btrfs_end_transaction(trans, root);
3880 trans = NULL;
3881 btrfs_btree_balance_dirty(root, nr);
3882 }
3883
3884 btrfs_free_block_rsv(root, rsv);
3885
3886 if (ret == 0) {
3887 trans->block_rsv = root->orphan_block_rsv;
3888 ret = btrfs_orphan_del(trans, inode);
3889 BUG_ON(ret);
3890 }
3891
3892 trans->block_rsv = &root->fs_info->trans_block_rsv;
3893 if (!(root == root->fs_info->tree_root ||
3894 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3895 btrfs_return_ino(root, btrfs_ino(inode));
3896
3897 nr = trans->blocks_used;
3898 btrfs_end_transaction(trans, root);
3899 btrfs_btree_balance_dirty(root, nr);
3900no_delete:
3901 clear_inode(inode);
3902 return;
3903}
3904
3905/*
3906 * this returns the key found in the dir entry in the location pointer.
3907 * If no dir entries were found, location->objectid is 0.
3908 */
3909static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3910 struct btrfs_key *location)
3911{
3912 const char *name = dentry->d_name.name;
3913 int namelen = dentry->d_name.len;
3914 struct btrfs_dir_item *di;
3915 struct btrfs_path *path;
3916 struct btrfs_root *root = BTRFS_I(dir)->root;
3917 int ret = 0;
3918
3919 path = btrfs_alloc_path();
3920 if (!path)
3921 return -ENOMEM;
3922
3923 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3924 namelen, 0);
3925 if (IS_ERR(di))
3926 ret = PTR_ERR(di);
3927
3928 if (IS_ERR_OR_NULL(di))
3929 goto out_err;
3930
3931 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3932out:
3933 btrfs_free_path(path);
3934 return ret;
3935out_err:
3936 location->objectid = 0;
3937 goto out;
3938}
3939
3940/*
3941 * when we hit a tree root in a directory, the btrfs part of the inode
3942 * needs to be changed to reflect the root directory of the tree root. This
3943 * is kind of like crossing a mount point.
3944 */
3945static int fixup_tree_root_location(struct btrfs_root *root,
3946 struct inode *dir,
3947 struct dentry *dentry,
3948 struct btrfs_key *location,
3949 struct btrfs_root **sub_root)
3950{
3951 struct btrfs_path *path;
3952 struct btrfs_root *new_root;
3953 struct btrfs_root_ref *ref;
3954 struct extent_buffer *leaf;
3955 int ret;
3956 int err = 0;
3957
3958 path = btrfs_alloc_path();
3959 if (!path) {
3960 err = -ENOMEM;
3961 goto out;
3962 }
3963
3964 err = -ENOENT;
3965 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3966 BTRFS_I(dir)->root->root_key.objectid,
3967 location->objectid);
3968 if (ret) {
3969 if (ret < 0)
3970 err = ret;
3971 goto out;
3972 }
3973
3974 leaf = path->nodes[0];
3975 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3976 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3977 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3978 goto out;
3979
3980 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3981 (unsigned long)(ref + 1),
3982 dentry->d_name.len);
3983 if (ret)
3984 goto out;
3985
3986 btrfs_release_path(path);
3987
3988 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3989 if (IS_ERR(new_root)) {
3990 err = PTR_ERR(new_root);
3991 goto out;
3992 }
3993
3994 if (btrfs_root_refs(&new_root->root_item) == 0) {
3995 err = -ENOENT;
3996 goto out;
3997 }
3998
3999 *sub_root = new_root;
4000 location->objectid = btrfs_root_dirid(&new_root->root_item);
4001 location->type = BTRFS_INODE_ITEM_KEY;
4002 location->offset = 0;
4003 err = 0;
4004out:
4005 btrfs_free_path(path);
4006 return err;
4007}
4008
4009static void inode_tree_add(struct inode *inode)
4010{
4011 struct btrfs_root *root = BTRFS_I(inode)->root;
4012 struct btrfs_inode *entry;
4013 struct rb_node **p;
4014 struct rb_node *parent;
4015 u64 ino = btrfs_ino(inode);
4016again:
4017 p = &root->inode_tree.rb_node;
4018 parent = NULL;
4019
4020 if (inode_unhashed(inode))
4021 return;
4022
4023 spin_lock(&root->inode_lock);
4024 while (*p) {
4025 parent = *p;
4026 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4027
4028 if (ino < btrfs_ino(&entry->vfs_inode))
4029 p = &parent->rb_left;
4030 else if (ino > btrfs_ino(&entry->vfs_inode))
4031 p = &parent->rb_right;
4032 else {
4033 WARN_ON(!(entry->vfs_inode.i_state &
4034 (I_WILL_FREE | I_FREEING)));
4035 rb_erase(parent, &root->inode_tree);
4036 RB_CLEAR_NODE(parent);
4037 spin_unlock(&root->inode_lock);
4038 goto again;
4039 }
4040 }
4041 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4042 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4043 spin_unlock(&root->inode_lock);
4044}
4045
4046static void inode_tree_del(struct inode *inode)
4047{
4048 struct btrfs_root *root = BTRFS_I(inode)->root;
4049 int empty = 0;
4050
4051 spin_lock(&root->inode_lock);
4052 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4053 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4054 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4055 empty = RB_EMPTY_ROOT(&root->inode_tree);
4056 }
4057 spin_unlock(&root->inode_lock);
4058
4059 /*
4060 * Free space cache has inodes in the tree root, but the tree root has a
4061 * root_refs of 0, so this could end up dropping the tree root as a
4062 * snapshot, so we need the extra !root->fs_info->tree_root check to
4063 * make sure we don't drop it.
4064 */
4065 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4066 root != root->fs_info->tree_root) {
4067 synchronize_srcu(&root->fs_info->subvol_srcu);
4068 spin_lock(&root->inode_lock);
4069 empty = RB_EMPTY_ROOT(&root->inode_tree);
4070 spin_unlock(&root->inode_lock);
4071 if (empty)
4072 btrfs_add_dead_root(root);
4073 }
4074}
4075
4076void btrfs_invalidate_inodes(struct btrfs_root *root)
4077{
4078 struct rb_node *node;
4079 struct rb_node *prev;
4080 struct btrfs_inode *entry;
4081 struct inode *inode;
4082 u64 objectid = 0;
4083
4084 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4085
4086 spin_lock(&root->inode_lock);
4087again:
4088 node = root->inode_tree.rb_node;
4089 prev = NULL;
4090 while (node) {
4091 prev = node;
4092 entry = rb_entry(node, struct btrfs_inode, rb_node);
4093
4094 if (objectid < btrfs_ino(&entry->vfs_inode))
4095 node = node->rb_left;
4096 else if (objectid > btrfs_ino(&entry->vfs_inode))
4097 node = node->rb_right;
4098 else
4099 break;
4100 }
4101 if (!node) {
4102 while (prev) {
4103 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4104 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4105 node = prev;
4106 break;
4107 }
4108 prev = rb_next(prev);
4109 }
4110 }
4111 while (node) {
4112 entry = rb_entry(node, struct btrfs_inode, rb_node);
4113 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4114 inode = igrab(&entry->vfs_inode);
4115 if (inode) {
4116 spin_unlock(&root->inode_lock);
4117 if (atomic_read(&inode->i_count) > 1)
4118 d_prune_aliases(inode);
4119 /*
4120 * btrfs_drop_inode will have it removed from
4121 * the inode cache when its usage count
4122 * hits zero.
4123 */
4124 iput(inode);
4125 cond_resched();
4126 spin_lock(&root->inode_lock);
4127 goto again;
4128 }
4129
4130 if (cond_resched_lock(&root->inode_lock))
4131 goto again;
4132
4133 node = rb_next(node);
4134 }
4135 spin_unlock(&root->inode_lock);
4136}
4137
4138static int btrfs_init_locked_inode(struct inode *inode, void *p)
4139{
4140 struct btrfs_iget_args *args = p;
4141 inode->i_ino = args->ino;
4142 BTRFS_I(inode)->root = args->root;
4143 return 0;
4144}
4145
4146static int btrfs_find_actor(struct inode *inode, void *opaque)
4147{
4148 struct btrfs_iget_args *args = opaque;
4149 return args->ino == btrfs_ino(inode) &&
4150 args->root == BTRFS_I(inode)->root;
4151}
4152
4153static struct inode *btrfs_iget_locked(struct super_block *s,
4154 u64 objectid,
4155 struct btrfs_root *root)
4156{
4157 struct inode *inode;
4158 struct btrfs_iget_args args;
4159 args.ino = objectid;
4160 args.root = root;
4161
4162 inode = iget5_locked(s, objectid, btrfs_find_actor,
4163 btrfs_init_locked_inode,
4164 (void *)&args);
4165 return inode;
4166}
4167
4168/* Get an inode object given its location and corresponding root.
4169 * Returns in *is_new if the inode was read from disk
4170 */
4171struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4172 struct btrfs_root *root, int *new)
4173{
4174 struct inode *inode;
4175
4176 inode = btrfs_iget_locked(s, location->objectid, root);
4177 if (!inode)
4178 return ERR_PTR(-ENOMEM);
4179
4180 if (inode->i_state & I_NEW) {
4181 BTRFS_I(inode)->root = root;
4182 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4183 btrfs_read_locked_inode(inode);
4184 if (!is_bad_inode(inode)) {
4185 inode_tree_add(inode);
4186 unlock_new_inode(inode);
4187 if (new)
4188 *new = 1;
4189 } else {
4190 unlock_new_inode(inode);
4191 iput(inode);
4192 inode = ERR_PTR(-ESTALE);
4193 }
4194 }
4195
4196 return inode;
4197}
4198
4199static struct inode *new_simple_dir(struct super_block *s,
4200 struct btrfs_key *key,
4201 struct btrfs_root *root)
4202{
4203 struct inode *inode = new_inode(s);
4204
4205 if (!inode)
4206 return ERR_PTR(-ENOMEM);
4207
4208 BTRFS_I(inode)->root = root;
4209 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4210 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4211
4212 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4213 inode->i_op = &btrfs_dir_ro_inode_operations;
4214 inode->i_fop = &simple_dir_operations;
4215 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4216 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4217
4218 return inode;
4219}
4220
4221struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4222{
4223 struct inode *inode;
4224 struct btrfs_root *root = BTRFS_I(dir)->root;
4225 struct btrfs_root *sub_root = root;
4226 struct btrfs_key location;
4227 int index;
4228 int ret = 0;
4229
4230 if (dentry->d_name.len > BTRFS_NAME_LEN)
4231 return ERR_PTR(-ENAMETOOLONG);
4232
4233 if (unlikely(d_need_lookup(dentry))) {
4234 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4235 kfree(dentry->d_fsdata);
4236 dentry->d_fsdata = NULL;
4237 /* This thing is hashed, drop it for now */
4238 d_drop(dentry);
4239 } else {
4240 ret = btrfs_inode_by_name(dir, dentry, &location);
4241 }
4242
4243 if (ret < 0)
4244 return ERR_PTR(ret);
4245
4246 if (location.objectid == 0)
4247 return NULL;
4248
4249 if (location.type == BTRFS_INODE_ITEM_KEY) {
4250 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4251 return inode;
4252 }
4253
4254 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4255
4256 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4257 ret = fixup_tree_root_location(root, dir, dentry,
4258 &location, &sub_root);
4259 if (ret < 0) {
4260 if (ret != -ENOENT)
4261 inode = ERR_PTR(ret);
4262 else
4263 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4264 } else {
4265 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4266 }
4267 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4268
4269 if (!IS_ERR(inode) && root != sub_root) {
4270 down_read(&root->fs_info->cleanup_work_sem);
4271 if (!(inode->i_sb->s_flags & MS_RDONLY))
4272 ret = btrfs_orphan_cleanup(sub_root);
4273 up_read(&root->fs_info->cleanup_work_sem);
4274 if (ret)
4275 inode = ERR_PTR(ret);
4276 }
4277
4278 return inode;
4279}
4280
4281static int btrfs_dentry_delete(const struct dentry *dentry)
4282{
4283 struct btrfs_root *root;
4284 struct inode *inode = dentry->d_inode;
4285
4286 if (!inode && !IS_ROOT(dentry))
4287 inode = dentry->d_parent->d_inode;
4288
4289 if (inode) {
4290 root = BTRFS_I(inode)->root;
4291 if (btrfs_root_refs(&root->root_item) == 0)
4292 return 1;
4293
4294 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4295 return 1;
4296 }
4297 return 0;
4298}
4299
4300static void btrfs_dentry_release(struct dentry *dentry)
4301{
4302 if (dentry->d_fsdata)
4303 kfree(dentry->d_fsdata);
4304}
4305
4306static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4307 unsigned int flags)
4308{
4309 struct dentry *ret;
4310
4311 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4312 if (unlikely(d_need_lookup(dentry))) {
4313 spin_lock(&dentry->d_lock);
4314 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4315 spin_unlock(&dentry->d_lock);
4316 }
4317 return ret;
4318}
4319
4320unsigned char btrfs_filetype_table[] = {
4321 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4322};
4323
4324static int btrfs_real_readdir(struct file *filp, void *dirent,
4325 filldir_t filldir)
4326{
4327 struct inode *inode = filp->f_dentry->d_inode;
4328 struct btrfs_root *root = BTRFS_I(inode)->root;
4329 struct btrfs_item *item;
4330 struct btrfs_dir_item *di;
4331 struct btrfs_key key;
4332 struct btrfs_key found_key;
4333 struct btrfs_path *path;
4334 struct list_head ins_list;
4335 struct list_head del_list;
4336 int ret;
4337 struct extent_buffer *leaf;
4338 int slot;
4339 unsigned char d_type;
4340 int over = 0;
4341 u32 di_cur;
4342 u32 di_total;
4343 u32 di_len;
4344 int key_type = BTRFS_DIR_INDEX_KEY;
4345 char tmp_name[32];
4346 char *name_ptr;
4347 int name_len;
4348 int is_curr = 0; /* filp->f_pos points to the current index? */
4349
4350 /* FIXME, use a real flag for deciding about the key type */
4351 if (root->fs_info->tree_root == root)
4352 key_type = BTRFS_DIR_ITEM_KEY;
4353
4354 /* special case for "." */
4355 if (filp->f_pos == 0) {
4356 over = filldir(dirent, ".", 1,
4357 filp->f_pos, btrfs_ino(inode), DT_DIR);
4358 if (over)
4359 return 0;
4360 filp->f_pos = 1;
4361 }
4362 /* special case for .., just use the back ref */
4363 if (filp->f_pos == 1) {
4364 u64 pino = parent_ino(filp->f_path.dentry);
4365 over = filldir(dirent, "..", 2,
4366 filp->f_pos, pino, DT_DIR);
4367 if (over)
4368 return 0;
4369 filp->f_pos = 2;
4370 }
4371 path = btrfs_alloc_path();
4372 if (!path)
4373 return -ENOMEM;
4374
4375 path->reada = 1;
4376
4377 if (key_type == BTRFS_DIR_INDEX_KEY) {
4378 INIT_LIST_HEAD(&ins_list);
4379 INIT_LIST_HEAD(&del_list);
4380 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4381 }
4382
4383 btrfs_set_key_type(&key, key_type);
4384 key.offset = filp->f_pos;
4385 key.objectid = btrfs_ino(inode);
4386
4387 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4388 if (ret < 0)
4389 goto err;
4390
4391 while (1) {
4392 leaf = path->nodes[0];
4393 slot = path->slots[0];
4394 if (slot >= btrfs_header_nritems(leaf)) {
4395 ret = btrfs_next_leaf(root, path);
4396 if (ret < 0)
4397 goto err;
4398 else if (ret > 0)
4399 break;
4400 continue;
4401 }
4402
4403 item = btrfs_item_nr(leaf, slot);
4404 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4405
4406 if (found_key.objectid != key.objectid)
4407 break;
4408 if (btrfs_key_type(&found_key) != key_type)
4409 break;
4410 if (found_key.offset < filp->f_pos)
4411 goto next;
4412 if (key_type == BTRFS_DIR_INDEX_KEY &&
4413 btrfs_should_delete_dir_index(&del_list,
4414 found_key.offset))
4415 goto next;
4416
4417 filp->f_pos = found_key.offset;
4418 is_curr = 1;
4419
4420 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4421 di_cur = 0;
4422 di_total = btrfs_item_size(leaf, item);
4423
4424 while (di_cur < di_total) {
4425 struct btrfs_key location;
4426
4427 if (verify_dir_item(root, leaf, di))
4428 break;
4429
4430 name_len = btrfs_dir_name_len(leaf, di);
4431 if (name_len <= sizeof(tmp_name)) {
4432 name_ptr = tmp_name;
4433 } else {
4434 name_ptr = kmalloc(name_len, GFP_NOFS);
4435 if (!name_ptr) {
4436 ret = -ENOMEM;
4437 goto err;
4438 }
4439 }
4440 read_extent_buffer(leaf, name_ptr,
4441 (unsigned long)(di + 1), name_len);
4442
4443 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4444 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4445
4446
4447 /* is this a reference to our own snapshot? If so
4448 * skip it.
4449 *
4450 * In contrast to old kernels, we insert the snapshot's
4451 * dir item and dir index after it has been created, so
4452 * we won't find a reference to our own snapshot. We
4453 * still keep the following code for backward
4454 * compatibility.
4455 */
4456 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4457 location.objectid == root->root_key.objectid) {
4458 over = 0;
4459 goto skip;
4460 }
4461 over = filldir(dirent, name_ptr, name_len,
4462 found_key.offset, location.objectid,
4463 d_type);
4464
4465skip:
4466 if (name_ptr != tmp_name)
4467 kfree(name_ptr);
4468
4469 if (over)
4470 goto nopos;
4471 di_len = btrfs_dir_name_len(leaf, di) +
4472 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4473 di_cur += di_len;
4474 di = (struct btrfs_dir_item *)((char *)di + di_len);
4475 }
4476next:
4477 path->slots[0]++;
4478 }
4479
4480 if (key_type == BTRFS_DIR_INDEX_KEY) {
4481 if (is_curr)
4482 filp->f_pos++;
4483 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4484 &ins_list);
4485 if (ret)
4486 goto nopos;
4487 }
4488
4489 /* Reached end of directory/root. Bump pos past the last item. */
4490 if (key_type == BTRFS_DIR_INDEX_KEY)
4491 /*
4492 * 32-bit glibc will use getdents64, but then strtol -
4493 * so the last number we can serve is this.
4494 */
4495 filp->f_pos = 0x7fffffff;
4496 else
4497 filp->f_pos++;
4498nopos:
4499 ret = 0;
4500err:
4501 if (key_type == BTRFS_DIR_INDEX_KEY)
4502 btrfs_put_delayed_items(&ins_list, &del_list);
4503 btrfs_free_path(path);
4504 return ret;
4505}
4506
4507int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4508{
4509 struct btrfs_root *root = BTRFS_I(inode)->root;
4510 struct btrfs_trans_handle *trans;
4511 int ret = 0;
4512 bool nolock = false;
4513
4514 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4515 return 0;
4516
4517 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
4518 nolock = true;
4519
4520 if (wbc->sync_mode == WB_SYNC_ALL) {
4521 if (nolock)
4522 trans = btrfs_join_transaction_nolock(root);
4523 else
4524 trans = btrfs_join_transaction(root);
4525 if (IS_ERR(trans))
4526 return PTR_ERR(trans);
4527 if (nolock)
4528 ret = btrfs_end_transaction_nolock(trans, root);
4529 else
4530 ret = btrfs_commit_transaction(trans, root);
4531 }
4532 return ret;
4533}
4534
4535/*
4536 * This is somewhat expensive, updating the tree every time the
4537 * inode changes. But, it is most likely to find the inode in cache.
4538 * FIXME, needs more benchmarking...there are no reasons other than performance
4539 * to keep or drop this code.
4540 */
4541int btrfs_dirty_inode(struct inode *inode)
4542{
4543 struct btrfs_root *root = BTRFS_I(inode)->root;
4544 struct btrfs_trans_handle *trans;
4545 int ret;
4546
4547 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4548 return 0;
4549
4550 trans = btrfs_join_transaction(root);
4551 if (IS_ERR(trans))
4552 return PTR_ERR(trans);
4553
4554 ret = btrfs_update_inode(trans, root, inode);
4555 if (ret && ret == -ENOSPC) {
4556 /* whoops, lets try again with the full transaction */
4557 btrfs_end_transaction(trans, root);
4558 trans = btrfs_start_transaction(root, 1);
4559 if (IS_ERR(trans))
4560 return PTR_ERR(trans);
4561
4562 ret = btrfs_update_inode(trans, root, inode);
4563 }
4564 btrfs_end_transaction(trans, root);
4565 if (BTRFS_I(inode)->delayed_node)
4566 btrfs_balance_delayed_items(root);
4567
4568 return ret;
4569}
4570
4571/*
4572 * This is a copy of file_update_time. We need this so we can return error on
4573 * ENOSPC for updating the inode in the case of file write and mmap writes.
4574 */
4575static int btrfs_update_time(struct inode *inode, struct timespec *now,
4576 int flags)
4577{
4578 struct btrfs_root *root = BTRFS_I(inode)->root;
4579
4580 if (btrfs_root_readonly(root))
4581 return -EROFS;
4582
4583 if (flags & S_VERSION)
4584 inode_inc_iversion(inode);
4585 if (flags & S_CTIME)
4586 inode->i_ctime = *now;
4587 if (flags & S_MTIME)
4588 inode->i_mtime = *now;
4589 if (flags & S_ATIME)
4590 inode->i_atime = *now;
4591 return btrfs_dirty_inode(inode);
4592}
4593
4594/*
4595 * find the highest existing sequence number in a directory
4596 * and then set the in-memory index_cnt variable to reflect
4597 * free sequence numbers
4598 */
4599static int btrfs_set_inode_index_count(struct inode *inode)
4600{
4601 struct btrfs_root *root = BTRFS_I(inode)->root;
4602 struct btrfs_key key, found_key;
4603 struct btrfs_path *path;
4604 struct extent_buffer *leaf;
4605 int ret;
4606
4607 key.objectid = btrfs_ino(inode);
4608 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4609 key.offset = (u64)-1;
4610
4611 path = btrfs_alloc_path();
4612 if (!path)
4613 return -ENOMEM;
4614
4615 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4616 if (ret < 0)
4617 goto out;
4618 /* FIXME: we should be able to handle this */
4619 if (ret == 0)
4620 goto out;
4621 ret = 0;
4622
4623 /*
4624 * MAGIC NUMBER EXPLANATION:
4625 * since we search a directory based on f_pos we have to start at 2
4626 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4627 * else has to start at 2
4628 */
4629 if (path->slots[0] == 0) {
4630 BTRFS_I(inode)->index_cnt = 2;
4631 goto out;
4632 }
4633
4634 path->slots[0]--;
4635
4636 leaf = path->nodes[0];
4637 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4638
4639 if (found_key.objectid != btrfs_ino(inode) ||
4640 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4641 BTRFS_I(inode)->index_cnt = 2;
4642 goto out;
4643 }
4644
4645 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4646out:
4647 btrfs_free_path(path);
4648 return ret;
4649}
4650
4651/*
4652 * helper to find a free sequence number in a given directory. This current
4653 * code is very simple, later versions will do smarter things in the btree
4654 */
4655int btrfs_set_inode_index(struct inode *dir, u64 *index)
4656{
4657 int ret = 0;
4658
4659 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4660 ret = btrfs_inode_delayed_dir_index_count(dir);
4661 if (ret) {
4662 ret = btrfs_set_inode_index_count(dir);
4663 if (ret)
4664 return ret;
4665 }
4666 }
4667
4668 *index = BTRFS_I(dir)->index_cnt;
4669 BTRFS_I(dir)->index_cnt++;
4670
4671 return ret;
4672}
4673
4674static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4675 struct btrfs_root *root,
4676 struct inode *dir,
4677 const char *name, int name_len,
4678 u64 ref_objectid, u64 objectid,
4679 umode_t mode, u64 *index)
4680{
4681 struct inode *inode;
4682 struct btrfs_inode_item *inode_item;
4683 struct btrfs_key *location;
4684 struct btrfs_path *path;
4685 struct btrfs_inode_ref *ref;
4686 struct btrfs_key key[2];
4687 u32 sizes[2];
4688 unsigned long ptr;
4689 int ret;
4690 int owner;
4691
4692 path = btrfs_alloc_path();
4693 if (!path)
4694 return ERR_PTR(-ENOMEM);
4695
4696 inode = new_inode(root->fs_info->sb);
4697 if (!inode) {
4698 btrfs_free_path(path);
4699 return ERR_PTR(-ENOMEM);
4700 }
4701
4702 /*
4703 * we have to initialize this early, so we can reclaim the inode
4704 * number if we fail afterwards in this function.
4705 */
4706 inode->i_ino = objectid;
4707
4708 if (dir) {
4709 trace_btrfs_inode_request(dir);
4710
4711 ret = btrfs_set_inode_index(dir, index);
4712 if (ret) {
4713 btrfs_free_path(path);
4714 iput(inode);
4715 return ERR_PTR(ret);
4716 }
4717 }
4718 /*
4719 * index_cnt is ignored for everything but a dir,
4720 * btrfs_get_inode_index_count has an explanation for the magic
4721 * number
4722 */
4723 BTRFS_I(inode)->index_cnt = 2;
4724 BTRFS_I(inode)->root = root;
4725 BTRFS_I(inode)->generation = trans->transid;
4726 inode->i_generation = BTRFS_I(inode)->generation;
4727
4728 /*
4729 * We could have gotten an inode number from somebody who was fsynced
4730 * and then removed in this same transaction, so let's just set full
4731 * sync since it will be a full sync anyway and this will blow away the
4732 * old info in the log.
4733 */
4734 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4735
4736 if (S_ISDIR(mode))
4737 owner = 0;
4738 else
4739 owner = 1;
4740
4741 key[0].objectid = objectid;
4742 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4743 key[0].offset = 0;
4744
4745 /*
4746 * Start new inodes with an inode_ref. This is slightly more
4747 * efficient for small numbers of hard links since they will
4748 * be packed into one item. Extended refs will kick in if we
4749 * add more hard links than can fit in the ref item.
4750 */
4751 key[1].objectid = objectid;
4752 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4753 key[1].offset = ref_objectid;
4754
4755 sizes[0] = sizeof(struct btrfs_inode_item);
4756 sizes[1] = name_len + sizeof(*ref);
4757
4758 path->leave_spinning = 1;
4759 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4760 if (ret != 0)
4761 goto fail;
4762
4763 inode_init_owner(inode, dir, mode);
4764 inode_set_bytes(inode, 0);
4765 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4766 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4767 struct btrfs_inode_item);
4768 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4769 sizeof(*inode_item));
4770 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4771
4772 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4773 struct btrfs_inode_ref);
4774 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4775 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4776 ptr = (unsigned long)(ref + 1);
4777 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4778
4779 btrfs_mark_buffer_dirty(path->nodes[0]);
4780 btrfs_free_path(path);
4781
4782 location = &BTRFS_I(inode)->location;
4783 location->objectid = objectid;
4784 location->offset = 0;
4785 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4786
4787 btrfs_inherit_iflags(inode, dir);
4788
4789 if (S_ISREG(mode)) {
4790 if (btrfs_test_opt(root, NODATASUM))
4791 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4792 if (btrfs_test_opt(root, NODATACOW) ||
4793 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4794 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4795 }
4796
4797 insert_inode_hash(inode);
4798 inode_tree_add(inode);
4799
4800 trace_btrfs_inode_new(inode);
4801 btrfs_set_inode_last_trans(trans, inode);
4802
4803 btrfs_update_root_times(trans, root);
4804
4805 return inode;
4806fail:
4807 if (dir)
4808 BTRFS_I(dir)->index_cnt--;
4809 btrfs_free_path(path);
4810 iput(inode);
4811 return ERR_PTR(ret);
4812}
4813
4814static inline u8 btrfs_inode_type(struct inode *inode)
4815{
4816 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4817}
4818
4819/*
4820 * utility function to add 'inode' into 'parent_inode' with
4821 * a give name and a given sequence number.
4822 * if 'add_backref' is true, also insert a backref from the
4823 * inode to the parent directory.
4824 */
4825int btrfs_add_link(struct btrfs_trans_handle *trans,
4826 struct inode *parent_inode, struct inode *inode,
4827 const char *name, int name_len, int add_backref, u64 index)
4828{
4829 int ret = 0;
4830 struct btrfs_key key;
4831 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4832 u64 ino = btrfs_ino(inode);
4833 u64 parent_ino = btrfs_ino(parent_inode);
4834
4835 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4836 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4837 } else {
4838 key.objectid = ino;
4839 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4840 key.offset = 0;
4841 }
4842
4843 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4844 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4845 key.objectid, root->root_key.objectid,
4846 parent_ino, index, name, name_len);
4847 } else if (add_backref) {
4848 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4849 parent_ino, index);
4850 }
4851
4852 /* Nothing to clean up yet */
4853 if (ret)
4854 return ret;
4855
4856 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4857 parent_inode, &key,
4858 btrfs_inode_type(inode), index);
4859 if (ret == -EEXIST)
4860 goto fail_dir_item;
4861 else if (ret) {
4862 btrfs_abort_transaction(trans, root, ret);
4863 return ret;
4864 }
4865
4866 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4867 name_len * 2);
4868 inode_inc_iversion(parent_inode);
4869 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4870 ret = btrfs_update_inode(trans, root, parent_inode);
4871 if (ret)
4872 btrfs_abort_transaction(trans, root, ret);
4873 return ret;
4874
4875fail_dir_item:
4876 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4877 u64 local_index;
4878 int err;
4879 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4880 key.objectid, root->root_key.objectid,
4881 parent_ino, &local_index, name, name_len);
4882
4883 } else if (add_backref) {
4884 u64 local_index;
4885 int err;
4886
4887 err = btrfs_del_inode_ref(trans, root, name, name_len,
4888 ino, parent_ino, &local_index);
4889 }
4890 return ret;
4891}
4892
4893static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4894 struct inode *dir, struct dentry *dentry,
4895 struct inode *inode, int backref, u64 index)
4896{
4897 int err = btrfs_add_link(trans, dir, inode,
4898 dentry->d_name.name, dentry->d_name.len,
4899 backref, index);
4900 if (err > 0)
4901 err = -EEXIST;
4902 return err;
4903}
4904
4905static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4906 umode_t mode, dev_t rdev)
4907{
4908 struct btrfs_trans_handle *trans;
4909 struct btrfs_root *root = BTRFS_I(dir)->root;
4910 struct inode *inode = NULL;
4911 int err;
4912 int drop_inode = 0;
4913 u64 objectid;
4914 unsigned long nr = 0;
4915 u64 index = 0;
4916
4917 if (!new_valid_dev(rdev))
4918 return -EINVAL;
4919
4920 /*
4921 * 2 for inode item and ref
4922 * 2 for dir items
4923 * 1 for xattr if selinux is on
4924 */
4925 trans = btrfs_start_transaction(root, 5);
4926 if (IS_ERR(trans))
4927 return PTR_ERR(trans);
4928
4929 err = btrfs_find_free_ino(root, &objectid);
4930 if (err)
4931 goto out_unlock;
4932
4933 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4934 dentry->d_name.len, btrfs_ino(dir), objectid,
4935 mode, &index);
4936 if (IS_ERR(inode)) {
4937 err = PTR_ERR(inode);
4938 goto out_unlock;
4939 }
4940
4941 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4942 if (err) {
4943 drop_inode = 1;
4944 goto out_unlock;
4945 }
4946
4947 /*
4948 * If the active LSM wants to access the inode during
4949 * d_instantiate it needs these. Smack checks to see
4950 * if the filesystem supports xattrs by looking at the
4951 * ops vector.
4952 */
4953
4954 inode->i_op = &btrfs_special_inode_operations;
4955 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4956 if (err)
4957 drop_inode = 1;
4958 else {
4959 init_special_inode(inode, inode->i_mode, rdev);
4960 btrfs_update_inode(trans, root, inode);
4961 d_instantiate(dentry, inode);
4962 }
4963out_unlock:
4964 nr = trans->blocks_used;
4965 btrfs_end_transaction(trans, root);
4966 btrfs_btree_balance_dirty(root, nr);
4967 if (drop_inode) {
4968 inode_dec_link_count(inode);
4969 iput(inode);
4970 }
4971 return err;
4972}
4973
4974static int btrfs_create(struct inode *dir, struct dentry *dentry,
4975 umode_t mode, bool excl)
4976{
4977 struct btrfs_trans_handle *trans;
4978 struct btrfs_root *root = BTRFS_I(dir)->root;
4979 struct inode *inode = NULL;
4980 int drop_inode = 0;
4981 int err;
4982 unsigned long nr = 0;
4983 u64 objectid;
4984 u64 index = 0;
4985
4986 /*
4987 * 2 for inode item and ref
4988 * 2 for dir items
4989 * 1 for xattr if selinux is on
4990 */
4991 trans = btrfs_start_transaction(root, 5);
4992 if (IS_ERR(trans))
4993 return PTR_ERR(trans);
4994
4995 err = btrfs_find_free_ino(root, &objectid);
4996 if (err)
4997 goto out_unlock;
4998
4999 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5000 dentry->d_name.len, btrfs_ino(dir), objectid,
5001 mode, &index);
5002 if (IS_ERR(inode)) {
5003 err = PTR_ERR(inode);
5004 goto out_unlock;
5005 }
5006
5007 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5008 if (err) {
5009 drop_inode = 1;
5010 goto out_unlock;
5011 }
5012
5013 /*
5014 * If the active LSM wants to access the inode during
5015 * d_instantiate it needs these. Smack checks to see
5016 * if the filesystem supports xattrs by looking at the
5017 * ops vector.
5018 */
5019 inode->i_fop = &btrfs_file_operations;
5020 inode->i_op = &btrfs_file_inode_operations;
5021
5022 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5023 if (err)
5024 drop_inode = 1;
5025 else {
5026 inode->i_mapping->a_ops = &btrfs_aops;
5027 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5028 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5029 d_instantiate(dentry, inode);
5030 }
5031out_unlock:
5032 nr = trans->blocks_used;
5033 btrfs_end_transaction(trans, root);
5034 if (drop_inode) {
5035 inode_dec_link_count(inode);
5036 iput(inode);
5037 }
5038 btrfs_btree_balance_dirty(root, nr);
5039 return err;
5040}
5041
5042static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5043 struct dentry *dentry)
5044{
5045 struct btrfs_trans_handle *trans;
5046 struct btrfs_root *root = BTRFS_I(dir)->root;
5047 struct inode *inode = old_dentry->d_inode;
5048 u64 index;
5049 unsigned long nr = 0;
5050 int err;
5051 int drop_inode = 0;
5052
5053 /* do not allow sys_link's with other subvols of the same device */
5054 if (root->objectid != BTRFS_I(inode)->root->objectid)
5055 return -EXDEV;
5056
5057 if (inode->i_nlink >= BTRFS_LINK_MAX)
5058 return -EMLINK;
5059
5060 err = btrfs_set_inode_index(dir, &index);
5061 if (err)
5062 goto fail;
5063
5064 /*
5065 * 2 items for inode and inode ref
5066 * 2 items for dir items
5067 * 1 item for parent inode
5068 */
5069 trans = btrfs_start_transaction(root, 5);
5070 if (IS_ERR(trans)) {
5071 err = PTR_ERR(trans);
5072 goto fail;
5073 }
5074
5075 btrfs_inc_nlink(inode);
5076 inode_inc_iversion(inode);
5077 inode->i_ctime = CURRENT_TIME;
5078 ihold(inode);
5079
5080 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5081
5082 if (err) {
5083 drop_inode = 1;
5084 } else {
5085 struct dentry *parent = dentry->d_parent;
5086 err = btrfs_update_inode(trans, root, inode);
5087 if (err)
5088 goto fail;
5089 d_instantiate(dentry, inode);
5090 btrfs_log_new_name(trans, inode, NULL, parent);
5091 }
5092
5093 nr = trans->blocks_used;
5094 btrfs_end_transaction(trans, root);
5095fail:
5096 if (drop_inode) {
5097 inode_dec_link_count(inode);
5098 iput(inode);
5099 }
5100 btrfs_btree_balance_dirty(root, nr);
5101 return err;
5102}
5103
5104static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5105{
5106 struct inode *inode = NULL;
5107 struct btrfs_trans_handle *trans;
5108 struct btrfs_root *root = BTRFS_I(dir)->root;
5109 int err = 0;
5110 int drop_on_err = 0;
5111 u64 objectid = 0;
5112 u64 index = 0;
5113 unsigned long nr = 1;
5114
5115 /*
5116 * 2 items for inode and ref
5117 * 2 items for dir items
5118 * 1 for xattr if selinux is on
5119 */
5120 trans = btrfs_start_transaction(root, 5);
5121 if (IS_ERR(trans))
5122 return PTR_ERR(trans);
5123
5124 err = btrfs_find_free_ino(root, &objectid);
5125 if (err)
5126 goto out_fail;
5127
5128 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5129 dentry->d_name.len, btrfs_ino(dir), objectid,
5130 S_IFDIR | mode, &index);
5131 if (IS_ERR(inode)) {
5132 err = PTR_ERR(inode);
5133 goto out_fail;
5134 }
5135
5136 drop_on_err = 1;
5137
5138 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5139 if (err)
5140 goto out_fail;
5141
5142 inode->i_op = &btrfs_dir_inode_operations;
5143 inode->i_fop = &btrfs_dir_file_operations;
5144
5145 btrfs_i_size_write(inode, 0);
5146 err = btrfs_update_inode(trans, root, inode);
5147 if (err)
5148 goto out_fail;
5149
5150 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5151 dentry->d_name.len, 0, index);
5152 if (err)
5153 goto out_fail;
5154
5155 d_instantiate(dentry, inode);
5156 drop_on_err = 0;
5157
5158out_fail:
5159 nr = trans->blocks_used;
5160 btrfs_end_transaction(trans, root);
5161 if (drop_on_err)
5162 iput(inode);
5163 btrfs_btree_balance_dirty(root, nr);
5164 return err;
5165}
5166
5167/* helper for btfs_get_extent. Given an existing extent in the tree,
5168 * and an extent that you want to insert, deal with overlap and insert
5169 * the new extent into the tree.
5170 */
5171static int merge_extent_mapping(struct extent_map_tree *em_tree,
5172 struct extent_map *existing,
5173 struct extent_map *em,
5174 u64 map_start, u64 map_len)
5175{
5176 u64 start_diff;
5177
5178 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5179 start_diff = map_start - em->start;
5180 em->start = map_start;
5181 em->len = map_len;
5182 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5183 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5184 em->block_start += start_diff;
5185 em->block_len -= start_diff;
5186 }
5187 return add_extent_mapping(em_tree, em);
5188}
5189
5190static noinline int uncompress_inline(struct btrfs_path *path,
5191 struct inode *inode, struct page *page,
5192 size_t pg_offset, u64 extent_offset,
5193 struct btrfs_file_extent_item *item)
5194{
5195 int ret;
5196 struct extent_buffer *leaf = path->nodes[0];
5197 char *tmp;
5198 size_t max_size;
5199 unsigned long inline_size;
5200 unsigned long ptr;
5201 int compress_type;
5202
5203 WARN_ON(pg_offset != 0);
5204 compress_type = btrfs_file_extent_compression(leaf, item);
5205 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5206 inline_size = btrfs_file_extent_inline_item_len(leaf,
5207 btrfs_item_nr(leaf, path->slots[0]));
5208 tmp = kmalloc(inline_size, GFP_NOFS);
5209 if (!tmp)
5210 return -ENOMEM;
5211 ptr = btrfs_file_extent_inline_start(item);
5212
5213 read_extent_buffer(leaf, tmp, ptr, inline_size);
5214
5215 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5216 ret = btrfs_decompress(compress_type, tmp, page,
5217 extent_offset, inline_size, max_size);
5218 if (ret) {
5219 char *kaddr = kmap_atomic(page);
5220 unsigned long copy_size = min_t(u64,
5221 PAGE_CACHE_SIZE - pg_offset,
5222 max_size - extent_offset);
5223 memset(kaddr + pg_offset, 0, copy_size);
5224 kunmap_atomic(kaddr);
5225 }
5226 kfree(tmp);
5227 return 0;
5228}
5229
5230/*
5231 * a bit scary, this does extent mapping from logical file offset to the disk.
5232 * the ugly parts come from merging extents from the disk with the in-ram
5233 * representation. This gets more complex because of the data=ordered code,
5234 * where the in-ram extents might be locked pending data=ordered completion.
5235 *
5236 * This also copies inline extents directly into the page.
5237 */
5238
5239struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5240 size_t pg_offset, u64 start, u64 len,
5241 int create)
5242{
5243 int ret;
5244 int err = 0;
5245 u64 bytenr;
5246 u64 extent_start = 0;
5247 u64 extent_end = 0;
5248 u64 objectid = btrfs_ino(inode);
5249 u32 found_type;
5250 struct btrfs_path *path = NULL;
5251 struct btrfs_root *root = BTRFS_I(inode)->root;
5252 struct btrfs_file_extent_item *item;
5253 struct extent_buffer *leaf;
5254 struct btrfs_key found_key;
5255 struct extent_map *em = NULL;
5256 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5257 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5258 struct btrfs_trans_handle *trans = NULL;
5259 int compress_type;
5260
5261again:
5262 read_lock(&em_tree->lock);
5263 em = lookup_extent_mapping(em_tree, start, len);
5264 if (em)
5265 em->bdev = root->fs_info->fs_devices->latest_bdev;
5266 read_unlock(&em_tree->lock);
5267
5268 if (em) {
5269 if (em->start > start || em->start + em->len <= start)
5270 free_extent_map(em);
5271 else if (em->block_start == EXTENT_MAP_INLINE && page)
5272 free_extent_map(em);
5273 else
5274 goto out;
5275 }
5276 em = alloc_extent_map();
5277 if (!em) {
5278 err = -ENOMEM;
5279 goto out;
5280 }
5281 em->bdev = root->fs_info->fs_devices->latest_bdev;
5282 em->start = EXTENT_MAP_HOLE;
5283 em->orig_start = EXTENT_MAP_HOLE;
5284 em->len = (u64)-1;
5285 em->block_len = (u64)-1;
5286
5287 if (!path) {
5288 path = btrfs_alloc_path();
5289 if (!path) {
5290 err = -ENOMEM;
5291 goto out;
5292 }
5293 /*
5294 * Chances are we'll be called again, so go ahead and do
5295 * readahead
5296 */
5297 path->reada = 1;
5298 }
5299
5300 ret = btrfs_lookup_file_extent(trans, root, path,
5301 objectid, start, trans != NULL);
5302 if (ret < 0) {
5303 err = ret;
5304 goto out;
5305 }
5306
5307 if (ret != 0) {
5308 if (path->slots[0] == 0)
5309 goto not_found;
5310 path->slots[0]--;
5311 }
5312
5313 leaf = path->nodes[0];
5314 item = btrfs_item_ptr(leaf, path->slots[0],
5315 struct btrfs_file_extent_item);
5316 /* are we inside the extent that was found? */
5317 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5318 found_type = btrfs_key_type(&found_key);
5319 if (found_key.objectid != objectid ||
5320 found_type != BTRFS_EXTENT_DATA_KEY) {
5321 goto not_found;
5322 }
5323
5324 found_type = btrfs_file_extent_type(leaf, item);
5325 extent_start = found_key.offset;
5326 compress_type = btrfs_file_extent_compression(leaf, item);
5327 if (found_type == BTRFS_FILE_EXTENT_REG ||
5328 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5329 extent_end = extent_start +
5330 btrfs_file_extent_num_bytes(leaf, item);
5331 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5332 size_t size;
5333 size = btrfs_file_extent_inline_len(leaf, item);
5334 extent_end = (extent_start + size + root->sectorsize - 1) &
5335 ~((u64)root->sectorsize - 1);
5336 }
5337
5338 if (start >= extent_end) {
5339 path->slots[0]++;
5340 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5341 ret = btrfs_next_leaf(root, path);
5342 if (ret < 0) {
5343 err = ret;
5344 goto out;
5345 }
5346 if (ret > 0)
5347 goto not_found;
5348 leaf = path->nodes[0];
5349 }
5350 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5351 if (found_key.objectid != objectid ||
5352 found_key.type != BTRFS_EXTENT_DATA_KEY)
5353 goto not_found;
5354 if (start + len <= found_key.offset)
5355 goto not_found;
5356 em->start = start;
5357 em->len = found_key.offset - start;
5358 goto not_found_em;
5359 }
5360
5361 if (found_type == BTRFS_FILE_EXTENT_REG ||
5362 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5363 em->start = extent_start;
5364 em->len = extent_end - extent_start;
5365 em->orig_start = extent_start -
5366 btrfs_file_extent_offset(leaf, item);
5367 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5368 if (bytenr == 0) {
5369 em->block_start = EXTENT_MAP_HOLE;
5370 goto insert;
5371 }
5372 if (compress_type != BTRFS_COMPRESS_NONE) {
5373 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5374 em->compress_type = compress_type;
5375 em->block_start = bytenr;
5376 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5377 item);
5378 } else {
5379 bytenr += btrfs_file_extent_offset(leaf, item);
5380 em->block_start = bytenr;
5381 em->block_len = em->len;
5382 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5383 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5384 }
5385 goto insert;
5386 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5387 unsigned long ptr;
5388 char *map;
5389 size_t size;
5390 size_t extent_offset;
5391 size_t copy_size;
5392
5393 em->block_start = EXTENT_MAP_INLINE;
5394 if (!page || create) {
5395 em->start = extent_start;
5396 em->len = extent_end - extent_start;
5397 goto out;
5398 }
5399
5400 size = btrfs_file_extent_inline_len(leaf, item);
5401 extent_offset = page_offset(page) + pg_offset - extent_start;
5402 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5403 size - extent_offset);
5404 em->start = extent_start + extent_offset;
5405 em->len = (copy_size + root->sectorsize - 1) &
5406 ~((u64)root->sectorsize - 1);
5407 em->orig_start = EXTENT_MAP_INLINE;
5408 if (compress_type) {
5409 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5410 em->compress_type = compress_type;
5411 }
5412 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5413 if (create == 0 && !PageUptodate(page)) {
5414 if (btrfs_file_extent_compression(leaf, item) !=
5415 BTRFS_COMPRESS_NONE) {
5416 ret = uncompress_inline(path, inode, page,
5417 pg_offset,
5418 extent_offset, item);
5419 BUG_ON(ret); /* -ENOMEM */
5420 } else {
5421 map = kmap(page);
5422 read_extent_buffer(leaf, map + pg_offset, ptr,
5423 copy_size);
5424 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5425 memset(map + pg_offset + copy_size, 0,
5426 PAGE_CACHE_SIZE - pg_offset -
5427 copy_size);
5428 }
5429 kunmap(page);
5430 }
5431 flush_dcache_page(page);
5432 } else if (create && PageUptodate(page)) {
5433 BUG();
5434 if (!trans) {
5435 kunmap(page);
5436 free_extent_map(em);
5437 em = NULL;
5438
5439 btrfs_release_path(path);
5440 trans = btrfs_join_transaction(root);
5441
5442 if (IS_ERR(trans))
5443 return ERR_CAST(trans);
5444 goto again;
5445 }
5446 map = kmap(page);
5447 write_extent_buffer(leaf, map + pg_offset, ptr,
5448 copy_size);
5449 kunmap(page);
5450 btrfs_mark_buffer_dirty(leaf);
5451 }
5452 set_extent_uptodate(io_tree, em->start,
5453 extent_map_end(em) - 1, NULL, GFP_NOFS);
5454 goto insert;
5455 } else {
5456 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5457 WARN_ON(1);
5458 }
5459not_found:
5460 em->start = start;
5461 em->len = len;
5462not_found_em:
5463 em->block_start = EXTENT_MAP_HOLE;
5464 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5465insert:
5466 btrfs_release_path(path);
5467 if (em->start > start || extent_map_end(em) <= start) {
5468 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5469 "[%llu %llu]\n", (unsigned long long)em->start,
5470 (unsigned long long)em->len,
5471 (unsigned long long)start,
5472 (unsigned long long)len);
5473 err = -EIO;
5474 goto out;
5475 }
5476
5477 err = 0;
5478 write_lock(&em_tree->lock);
5479 ret = add_extent_mapping(em_tree, em);
5480 /* it is possible that someone inserted the extent into the tree
5481 * while we had the lock dropped. It is also possible that
5482 * an overlapping map exists in the tree
5483 */
5484 if (ret == -EEXIST) {
5485 struct extent_map *existing;
5486
5487 ret = 0;
5488
5489 existing = lookup_extent_mapping(em_tree, start, len);
5490 if (existing && (existing->start > start ||
5491 existing->start + existing->len <= start)) {
5492 free_extent_map(existing);
5493 existing = NULL;
5494 }
5495 if (!existing) {
5496 existing = lookup_extent_mapping(em_tree, em->start,
5497 em->len);
5498 if (existing) {
5499 err = merge_extent_mapping(em_tree, existing,
5500 em, start,
5501 root->sectorsize);
5502 free_extent_map(existing);
5503 if (err) {
5504 free_extent_map(em);
5505 em = NULL;
5506 }
5507 } else {
5508 err = -EIO;
5509 free_extent_map(em);
5510 em = NULL;
5511 }
5512 } else {
5513 free_extent_map(em);
5514 em = existing;
5515 err = 0;
5516 }
5517 }
5518 write_unlock(&em_tree->lock);
5519out:
5520
5521 trace_btrfs_get_extent(root, em);
5522
5523 if (path)
5524 btrfs_free_path(path);
5525 if (trans) {
5526 ret = btrfs_end_transaction(trans, root);
5527 if (!err)
5528 err = ret;
5529 }
5530 if (err) {
5531 free_extent_map(em);
5532 return ERR_PTR(err);
5533 }
5534 BUG_ON(!em); /* Error is always set */
5535 return em;
5536}
5537
5538struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5539 size_t pg_offset, u64 start, u64 len,
5540 int create)
5541{
5542 struct extent_map *em;
5543 struct extent_map *hole_em = NULL;
5544 u64 range_start = start;
5545 u64 end;
5546 u64 found;
5547 u64 found_end;
5548 int err = 0;
5549
5550 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5551 if (IS_ERR(em))
5552 return em;
5553 if (em) {
5554 /*
5555 * if our em maps to a hole, there might
5556 * actually be delalloc bytes behind it
5557 */
5558 if (em->block_start != EXTENT_MAP_HOLE)
5559 return em;
5560 else
5561 hole_em = em;
5562 }
5563
5564 /* check to see if we've wrapped (len == -1 or similar) */
5565 end = start + len;
5566 if (end < start)
5567 end = (u64)-1;
5568 else
5569 end -= 1;
5570
5571 em = NULL;
5572
5573 /* ok, we didn't find anything, lets look for delalloc */
5574 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5575 end, len, EXTENT_DELALLOC, 1);
5576 found_end = range_start + found;
5577 if (found_end < range_start)
5578 found_end = (u64)-1;
5579
5580 /*
5581 * we didn't find anything useful, return
5582 * the original results from get_extent()
5583 */
5584 if (range_start > end || found_end <= start) {
5585 em = hole_em;
5586 hole_em = NULL;
5587 goto out;
5588 }
5589
5590 /* adjust the range_start to make sure it doesn't
5591 * go backwards from the start they passed in
5592 */
5593 range_start = max(start,range_start);
5594 found = found_end - range_start;
5595
5596 if (found > 0) {
5597 u64 hole_start = start;
5598 u64 hole_len = len;
5599
5600 em = alloc_extent_map();
5601 if (!em) {
5602 err = -ENOMEM;
5603 goto out;
5604 }
5605 /*
5606 * when btrfs_get_extent can't find anything it
5607 * returns one huge hole
5608 *
5609 * make sure what it found really fits our range, and
5610 * adjust to make sure it is based on the start from
5611 * the caller
5612 */
5613 if (hole_em) {
5614 u64 calc_end = extent_map_end(hole_em);
5615
5616 if (calc_end <= start || (hole_em->start > end)) {
5617 free_extent_map(hole_em);
5618 hole_em = NULL;
5619 } else {
5620 hole_start = max(hole_em->start, start);
5621 hole_len = calc_end - hole_start;
5622 }
5623 }
5624 em->bdev = NULL;
5625 if (hole_em && range_start > hole_start) {
5626 /* our hole starts before our delalloc, so we
5627 * have to return just the parts of the hole
5628 * that go until the delalloc starts
5629 */
5630 em->len = min(hole_len,
5631 range_start - hole_start);
5632 em->start = hole_start;
5633 em->orig_start = hole_start;
5634 /*
5635 * don't adjust block start at all,
5636 * it is fixed at EXTENT_MAP_HOLE
5637 */
5638 em->block_start = hole_em->block_start;
5639 em->block_len = hole_len;
5640 } else {
5641 em->start = range_start;
5642 em->len = found;
5643 em->orig_start = range_start;
5644 em->block_start = EXTENT_MAP_DELALLOC;
5645 em->block_len = found;
5646 }
5647 } else if (hole_em) {
5648 return hole_em;
5649 }
5650out:
5651
5652 free_extent_map(hole_em);
5653 if (err) {
5654 free_extent_map(em);
5655 return ERR_PTR(err);
5656 }
5657 return em;
5658}
5659
5660static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5661 struct extent_map *em,
5662 u64 start, u64 len)
5663{
5664 struct btrfs_root *root = BTRFS_I(inode)->root;
5665 struct btrfs_trans_handle *trans;
5666 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5667 struct btrfs_key ins;
5668 u64 alloc_hint;
5669 int ret;
5670 bool insert = false;
5671
5672 /*
5673 * Ok if the extent map we looked up is a hole and is for the exact
5674 * range we want, there is no reason to allocate a new one, however if
5675 * it is not right then we need to free this one and drop the cache for
5676 * our range.
5677 */
5678 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5679 em->len != len) {
5680 free_extent_map(em);
5681 em = NULL;
5682 insert = true;
5683 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5684 }
5685
5686 trans = btrfs_join_transaction(root);
5687 if (IS_ERR(trans))
5688 return ERR_CAST(trans);
5689
5690 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5691 btrfs_add_inode_defrag(trans, inode);
5692
5693 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5694
5695 alloc_hint = get_extent_allocation_hint(inode, start, len);
5696 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5697 alloc_hint, &ins, 1);
5698 if (ret) {
5699 em = ERR_PTR(ret);
5700 goto out;
5701 }
5702
5703 if (!em) {
5704 em = alloc_extent_map();
5705 if (!em) {
5706 em = ERR_PTR(-ENOMEM);
5707 goto out;
5708 }
5709 }
5710
5711 em->start = start;
5712 em->orig_start = em->start;
5713 em->len = ins.offset;
5714
5715 em->block_start = ins.objectid;
5716 em->block_len = ins.offset;
5717 em->bdev = root->fs_info->fs_devices->latest_bdev;
5718
5719 /*
5720 * We need to do this because if we're using the original em we searched
5721 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5722 */
5723 em->flags = 0;
5724 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5725
5726 while (insert) {
5727 write_lock(&em_tree->lock);
5728 ret = add_extent_mapping(em_tree, em);
5729 write_unlock(&em_tree->lock);
5730 if (ret != -EEXIST)
5731 break;
5732 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5733 }
5734
5735 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5736 ins.offset, ins.offset, 0);
5737 if (ret) {
5738 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5739 em = ERR_PTR(ret);
5740 }
5741out:
5742 btrfs_end_transaction(trans, root);
5743 return em;
5744}
5745
5746/*
5747 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5748 * block must be cow'd
5749 */
5750static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5751 struct inode *inode, u64 offset, u64 len)
5752{
5753 struct btrfs_path *path;
5754 int ret;
5755 struct extent_buffer *leaf;
5756 struct btrfs_root *root = BTRFS_I(inode)->root;
5757 struct btrfs_file_extent_item *fi;
5758 struct btrfs_key key;
5759 u64 disk_bytenr;
5760 u64 backref_offset;
5761 u64 extent_end;
5762 u64 num_bytes;
5763 int slot;
5764 int found_type;
5765
5766 path = btrfs_alloc_path();
5767 if (!path)
5768 return -ENOMEM;
5769
5770 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5771 offset, 0);
5772 if (ret < 0)
5773 goto out;
5774
5775 slot = path->slots[0];
5776 if (ret == 1) {
5777 if (slot == 0) {
5778 /* can't find the item, must cow */
5779 ret = 0;
5780 goto out;
5781 }
5782 slot--;
5783 }
5784 ret = 0;
5785 leaf = path->nodes[0];
5786 btrfs_item_key_to_cpu(leaf, &key, slot);
5787 if (key.objectid != btrfs_ino(inode) ||
5788 key.type != BTRFS_EXTENT_DATA_KEY) {
5789 /* not our file or wrong item type, must cow */
5790 goto out;
5791 }
5792
5793 if (key.offset > offset) {
5794 /* Wrong offset, must cow */
5795 goto out;
5796 }
5797
5798 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5799 found_type = btrfs_file_extent_type(leaf, fi);
5800 if (found_type != BTRFS_FILE_EXTENT_REG &&
5801 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5802 /* not a regular extent, must cow */
5803 goto out;
5804 }
5805 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5806 backref_offset = btrfs_file_extent_offset(leaf, fi);
5807
5808 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5809 if (extent_end < offset + len) {
5810 /* extent doesn't include our full range, must cow */
5811 goto out;
5812 }
5813
5814 if (btrfs_extent_readonly(root, disk_bytenr))
5815 goto out;
5816
5817 /*
5818 * look for other files referencing this extent, if we
5819 * find any we must cow
5820 */
5821 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5822 key.offset - backref_offset, disk_bytenr))
5823 goto out;
5824
5825 /*
5826 * adjust disk_bytenr and num_bytes to cover just the bytes
5827 * in this extent we are about to write. If there
5828 * are any csums in that range we have to cow in order
5829 * to keep the csums correct
5830 */
5831 disk_bytenr += backref_offset;
5832 disk_bytenr += offset - key.offset;
5833 num_bytes = min(offset + len, extent_end) - offset;
5834 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5835 goto out;
5836 /*
5837 * all of the above have passed, it is safe to overwrite this extent
5838 * without cow
5839 */
5840 ret = 1;
5841out:
5842 btrfs_free_path(path);
5843 return ret;
5844}
5845
5846static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5847 struct extent_state **cached_state, int writing)
5848{
5849 struct btrfs_ordered_extent *ordered;
5850 int ret = 0;
5851
5852 while (1) {
5853 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5854 0, cached_state);
5855 /*
5856 * We're concerned with the entire range that we're going to be
5857 * doing DIO to, so we need to make sure theres no ordered
5858 * extents in this range.
5859 */
5860 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5861 lockend - lockstart + 1);
5862
5863 /*
5864 * We need to make sure there are no buffered pages in this
5865 * range either, we could have raced between the invalidate in
5866 * generic_file_direct_write and locking the extent. The
5867 * invalidate needs to happen so that reads after a write do not
5868 * get stale data.
5869 */
5870 if (!ordered && (!writing ||
5871 !test_range_bit(&BTRFS_I(inode)->io_tree,
5872 lockstart, lockend, EXTENT_UPTODATE, 0,
5873 *cached_state)))
5874 break;
5875
5876 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5877 cached_state, GFP_NOFS);
5878
5879 if (ordered) {
5880 btrfs_start_ordered_extent(inode, ordered, 1);
5881 btrfs_put_ordered_extent(ordered);
5882 } else {
5883 /* Screw you mmap */
5884 ret = filemap_write_and_wait_range(inode->i_mapping,
5885 lockstart,
5886 lockend);
5887 if (ret)
5888 break;
5889
5890 /*
5891 * If we found a page that couldn't be invalidated just
5892 * fall back to buffered.
5893 */
5894 ret = invalidate_inode_pages2_range(inode->i_mapping,
5895 lockstart >> PAGE_CACHE_SHIFT,
5896 lockend >> PAGE_CACHE_SHIFT);
5897 if (ret)
5898 break;
5899 }
5900
5901 cond_resched();
5902 }
5903
5904 return ret;
5905}
5906
5907static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
5908 u64 len, u64 orig_start,
5909 u64 block_start, u64 block_len,
5910 int type)
5911{
5912 struct extent_map_tree *em_tree;
5913 struct extent_map *em;
5914 struct btrfs_root *root = BTRFS_I(inode)->root;
5915 int ret;
5916
5917 em_tree = &BTRFS_I(inode)->extent_tree;
5918 em = alloc_extent_map();
5919 if (!em)
5920 return ERR_PTR(-ENOMEM);
5921
5922 em->start = start;
5923 em->orig_start = orig_start;
5924 em->len = len;
5925 em->block_len = block_len;
5926 em->block_start = block_start;
5927 em->bdev = root->fs_info->fs_devices->latest_bdev;
5928 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5929 if (type == BTRFS_ORDERED_PREALLOC)
5930 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5931
5932 do {
5933 btrfs_drop_extent_cache(inode, em->start,
5934 em->start + em->len - 1, 0);
5935 write_lock(&em_tree->lock);
5936 ret = add_extent_mapping(em_tree, em);
5937 write_unlock(&em_tree->lock);
5938 } while (ret == -EEXIST);
5939
5940 if (ret) {
5941 free_extent_map(em);
5942 return ERR_PTR(ret);
5943 }
5944
5945 return em;
5946}
5947
5948
5949static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5950 struct buffer_head *bh_result, int create)
5951{
5952 struct extent_map *em;
5953 struct btrfs_root *root = BTRFS_I(inode)->root;
5954 struct extent_state *cached_state = NULL;
5955 u64 start = iblock << inode->i_blkbits;
5956 u64 lockstart, lockend;
5957 u64 len = bh_result->b_size;
5958 struct btrfs_trans_handle *trans;
5959 int unlock_bits = EXTENT_LOCKED;
5960 int ret;
5961
5962 if (create) {
5963 ret = btrfs_delalloc_reserve_space(inode, len);
5964 if (ret)
5965 return ret;
5966 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
5967 } else {
5968 len = min_t(u64, len, root->sectorsize);
5969 }
5970
5971 lockstart = start;
5972 lockend = start + len - 1;
5973
5974 /*
5975 * If this errors out it's because we couldn't invalidate pagecache for
5976 * this range and we need to fallback to buffered.
5977 */
5978 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5979 return -ENOTBLK;
5980
5981 if (create) {
5982 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5983 lockend, EXTENT_DELALLOC, NULL,
5984 &cached_state, GFP_NOFS);
5985 if (ret)
5986 goto unlock_err;
5987 }
5988
5989 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5990 if (IS_ERR(em)) {
5991 ret = PTR_ERR(em);
5992 goto unlock_err;
5993 }
5994
5995 /*
5996 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5997 * io. INLINE is special, and we could probably kludge it in here, but
5998 * it's still buffered so for safety lets just fall back to the generic
5999 * buffered path.
6000 *
6001 * For COMPRESSED we _have_ to read the entire extent in so we can
6002 * decompress it, so there will be buffering required no matter what we
6003 * do, so go ahead and fallback to buffered.
6004 *
6005 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6006 * to buffered IO. Don't blame me, this is the price we pay for using
6007 * the generic code.
6008 */
6009 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6010 em->block_start == EXTENT_MAP_INLINE) {
6011 free_extent_map(em);
6012 ret = -ENOTBLK;
6013 goto unlock_err;
6014 }
6015
6016 /* Just a good old fashioned hole, return */
6017 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6018 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6019 free_extent_map(em);
6020 ret = 0;
6021 goto unlock_err;
6022 }
6023
6024 /*
6025 * We don't allocate a new extent in the following cases
6026 *
6027 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6028 * existing extent.
6029 * 2) The extent is marked as PREALLOC. We're good to go here and can
6030 * just use the extent.
6031 *
6032 */
6033 if (!create) {
6034 len = min(len, em->len - (start - em->start));
6035 lockstart = start + len;
6036 goto unlock;
6037 }
6038
6039 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6040 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6041 em->block_start != EXTENT_MAP_HOLE)) {
6042 int type;
6043 int ret;
6044 u64 block_start;
6045
6046 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6047 type = BTRFS_ORDERED_PREALLOC;
6048 else
6049 type = BTRFS_ORDERED_NOCOW;
6050 len = min(len, em->len - (start - em->start));
6051 block_start = em->block_start + (start - em->start);
6052
6053 /*
6054 * we're not going to log anything, but we do need
6055 * to make sure the current transaction stays open
6056 * while we look for nocow cross refs
6057 */
6058 trans = btrfs_join_transaction(root);
6059 if (IS_ERR(trans))
6060 goto must_cow;
6061
6062 if (can_nocow_odirect(trans, inode, start, len) == 1) {
6063 u64 orig_start = em->start;
6064
6065 if (type == BTRFS_ORDERED_PREALLOC) {
6066 free_extent_map(em);
6067 em = create_pinned_em(inode, start, len,
6068 orig_start,
6069 block_start, len, type);
6070 if (IS_ERR(em)) {
6071 btrfs_end_transaction(trans, root);
6072 goto unlock_err;
6073 }
6074 }
6075
6076 ret = btrfs_add_ordered_extent_dio(inode, start,
6077 block_start, len, len, type);
6078 btrfs_end_transaction(trans, root);
6079 if (ret) {
6080 free_extent_map(em);
6081 goto unlock_err;
6082 }
6083 goto unlock;
6084 }
6085 btrfs_end_transaction(trans, root);
6086 }
6087must_cow:
6088 /*
6089 * this will cow the extent, reset the len in case we changed
6090 * it above
6091 */
6092 len = bh_result->b_size;
6093 em = btrfs_new_extent_direct(inode, em, start, len);
6094 if (IS_ERR(em)) {
6095 ret = PTR_ERR(em);
6096 goto unlock_err;
6097 }
6098 len = min(len, em->len - (start - em->start));
6099unlock:
6100 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6101 inode->i_blkbits;
6102 bh_result->b_size = len;
6103 bh_result->b_bdev = em->bdev;
6104 set_buffer_mapped(bh_result);
6105 if (create) {
6106 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6107 set_buffer_new(bh_result);
6108
6109 /*
6110 * Need to update the i_size under the extent lock so buffered
6111 * readers will get the updated i_size when we unlock.
6112 */
6113 if (start + len > i_size_read(inode))
6114 i_size_write(inode, start + len);
6115 }
6116
6117 /*
6118 * In the case of write we need to clear and unlock the entire range,
6119 * in the case of read we need to unlock only the end area that we
6120 * aren't using if there is any left over space.
6121 */
6122 if (lockstart < lockend) {
6123 if (create && len < lockend - lockstart) {
6124 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6125 lockstart + len - 1,
6126 unlock_bits | EXTENT_DEFRAG, 1, 0,
6127 &cached_state, GFP_NOFS);
6128 /*
6129 * Beside unlock, we also need to cleanup reserved space
6130 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6131 */
6132 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6133 lockstart + len, lockend,
6134 unlock_bits | EXTENT_DO_ACCOUNTING |
6135 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS);
6136 } else {
6137 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6138 lockend, unlock_bits, 1, 0,
6139 &cached_state, GFP_NOFS);
6140 }
6141 } else {
6142 free_extent_state(cached_state);
6143 }
6144
6145 free_extent_map(em);
6146
6147 return 0;
6148
6149unlock_err:
6150 if (create)
6151 unlock_bits |= EXTENT_DO_ACCOUNTING;
6152
6153 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6154 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6155 return ret;
6156}
6157
6158struct btrfs_dio_private {
6159 struct inode *inode;
6160 u64 logical_offset;
6161 u64 disk_bytenr;
6162 u64 bytes;
6163 void *private;
6164
6165 /* number of bios pending for this dio */
6166 atomic_t pending_bios;
6167
6168 /* IO errors */
6169 int errors;
6170
6171 struct bio *orig_bio;
6172};
6173
6174static void btrfs_endio_direct_read(struct bio *bio, int err)
6175{
6176 struct btrfs_dio_private *dip = bio->bi_private;
6177 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6178 struct bio_vec *bvec = bio->bi_io_vec;
6179 struct inode *inode = dip->inode;
6180 struct btrfs_root *root = BTRFS_I(inode)->root;
6181 u64 start;
6182
6183 start = dip->logical_offset;
6184 do {
6185 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6186 struct page *page = bvec->bv_page;
6187 char *kaddr;
6188 u32 csum = ~(u32)0;
6189 u64 private = ~(u32)0;
6190 unsigned long flags;
6191
6192 if (get_state_private(&BTRFS_I(inode)->io_tree,
6193 start, &private))
6194 goto failed;
6195 local_irq_save(flags);
6196 kaddr = kmap_atomic(page);
6197 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6198 csum, bvec->bv_len);
6199 btrfs_csum_final(csum, (char *)&csum);
6200 kunmap_atomic(kaddr);
6201 local_irq_restore(flags);
6202
6203 flush_dcache_page(bvec->bv_page);
6204 if (csum != private) {
6205failed:
6206 printk(KERN_ERR "btrfs csum failed ino %llu off"
6207 " %llu csum %u private %u\n",
6208 (unsigned long long)btrfs_ino(inode),
6209 (unsigned long long)start,
6210 csum, (unsigned)private);
6211 err = -EIO;
6212 }
6213 }
6214
6215 start += bvec->bv_len;
6216 bvec++;
6217 } while (bvec <= bvec_end);
6218
6219 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6220 dip->logical_offset + dip->bytes - 1);
6221 bio->bi_private = dip->private;
6222
6223 kfree(dip);
6224
6225 /* If we had a csum failure make sure to clear the uptodate flag */
6226 if (err)
6227 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6228 dio_end_io(bio, err);
6229}
6230
6231static void btrfs_endio_direct_write(struct bio *bio, int err)
6232{
6233 struct btrfs_dio_private *dip = bio->bi_private;
6234 struct inode *inode = dip->inode;
6235 struct btrfs_root *root = BTRFS_I(inode)->root;
6236 struct btrfs_ordered_extent *ordered = NULL;
6237 u64 ordered_offset = dip->logical_offset;
6238 u64 ordered_bytes = dip->bytes;
6239 int ret;
6240
6241 if (err)
6242 goto out_done;
6243again:
6244 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6245 &ordered_offset,
6246 ordered_bytes, !err);
6247 if (!ret)
6248 goto out_test;
6249
6250 ordered->work.func = finish_ordered_fn;
6251 ordered->work.flags = 0;
6252 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6253 &ordered->work);
6254out_test:
6255 /*
6256 * our bio might span multiple ordered extents. If we haven't
6257 * completed the accounting for the whole dio, go back and try again
6258 */
6259 if (ordered_offset < dip->logical_offset + dip->bytes) {
6260 ordered_bytes = dip->logical_offset + dip->bytes -
6261 ordered_offset;
6262 ordered = NULL;
6263 goto again;
6264 }
6265out_done:
6266 bio->bi_private = dip->private;
6267
6268 kfree(dip);
6269
6270 /* If we had an error make sure to clear the uptodate flag */
6271 if (err)
6272 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6273 dio_end_io(bio, err);
6274}
6275
6276static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6277 struct bio *bio, int mirror_num,
6278 unsigned long bio_flags, u64 offset)
6279{
6280 int ret;
6281 struct btrfs_root *root = BTRFS_I(inode)->root;
6282 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6283 BUG_ON(ret); /* -ENOMEM */
6284 return 0;
6285}
6286
6287static void btrfs_end_dio_bio(struct bio *bio, int err)
6288{
6289 struct btrfs_dio_private *dip = bio->bi_private;
6290
6291 if (err) {
6292 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6293 "sector %#Lx len %u err no %d\n",
6294 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6295 (unsigned long long)bio->bi_sector, bio->bi_size, err);
6296 dip->errors = 1;
6297
6298 /*
6299 * before atomic variable goto zero, we must make sure
6300 * dip->errors is perceived to be set.
6301 */
6302 smp_mb__before_atomic_dec();
6303 }
6304
6305 /* if there are more bios still pending for this dio, just exit */
6306 if (!atomic_dec_and_test(&dip->pending_bios))
6307 goto out;
6308
6309 if (dip->errors)
6310 bio_io_error(dip->orig_bio);
6311 else {
6312 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6313 bio_endio(dip->orig_bio, 0);
6314 }
6315out:
6316 bio_put(bio);
6317}
6318
6319static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6320 u64 first_sector, gfp_t gfp_flags)
6321{
6322 int nr_vecs = bio_get_nr_vecs(bdev);
6323 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6324}
6325
6326static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6327 int rw, u64 file_offset, int skip_sum,
6328 int async_submit)
6329{
6330 int write = rw & REQ_WRITE;
6331 struct btrfs_root *root = BTRFS_I(inode)->root;
6332 int ret;
6333
6334 bio_get(bio);
6335
6336 if (!write) {
6337 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6338 if (ret)
6339 goto err;
6340 }
6341
6342 if (skip_sum)
6343 goto map;
6344
6345 if (write && async_submit) {
6346 ret = btrfs_wq_submit_bio(root->fs_info,
6347 inode, rw, bio, 0, 0,
6348 file_offset,
6349 __btrfs_submit_bio_start_direct_io,
6350 __btrfs_submit_bio_done);
6351 goto err;
6352 } else if (write) {
6353 /*
6354 * If we aren't doing async submit, calculate the csum of the
6355 * bio now.
6356 */
6357 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6358 if (ret)
6359 goto err;
6360 } else if (!skip_sum) {
6361 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
6362 if (ret)
6363 goto err;
6364 }
6365
6366map:
6367 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6368err:
6369 bio_put(bio);
6370 return ret;
6371}
6372
6373static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6374 int skip_sum)
6375{
6376 struct inode *inode = dip->inode;
6377 struct btrfs_root *root = BTRFS_I(inode)->root;
6378 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6379 struct bio *bio;
6380 struct bio *orig_bio = dip->orig_bio;
6381 struct bio_vec *bvec = orig_bio->bi_io_vec;
6382 u64 start_sector = orig_bio->bi_sector;
6383 u64 file_offset = dip->logical_offset;
6384 u64 submit_len = 0;
6385 u64 map_length;
6386 int nr_pages = 0;
6387 int ret = 0;
6388 int async_submit = 0;
6389
6390 map_length = orig_bio->bi_size;
6391 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6392 &map_length, NULL, 0);
6393 if (ret) {
6394 bio_put(orig_bio);
6395 return -EIO;
6396 }
6397
6398 if (map_length >= orig_bio->bi_size) {
6399 bio = orig_bio;
6400 goto submit;
6401 }
6402
6403 async_submit = 1;
6404 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6405 if (!bio)
6406 return -ENOMEM;
6407 bio->bi_private = dip;
6408 bio->bi_end_io = btrfs_end_dio_bio;
6409 atomic_inc(&dip->pending_bios);
6410
6411 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6412 if (unlikely(map_length < submit_len + bvec->bv_len ||
6413 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6414 bvec->bv_offset) < bvec->bv_len)) {
6415 /*
6416 * inc the count before we submit the bio so
6417 * we know the end IO handler won't happen before
6418 * we inc the count. Otherwise, the dip might get freed
6419 * before we're done setting it up
6420 */
6421 atomic_inc(&dip->pending_bios);
6422 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6423 file_offset, skip_sum,
6424 async_submit);
6425 if (ret) {
6426 bio_put(bio);
6427 atomic_dec(&dip->pending_bios);
6428 goto out_err;
6429 }
6430
6431 start_sector += submit_len >> 9;
6432 file_offset += submit_len;
6433
6434 submit_len = 0;
6435 nr_pages = 0;
6436
6437 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6438 start_sector, GFP_NOFS);
6439 if (!bio)
6440 goto out_err;
6441 bio->bi_private = dip;
6442 bio->bi_end_io = btrfs_end_dio_bio;
6443
6444 map_length = orig_bio->bi_size;
6445 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6446 &map_length, NULL, 0);
6447 if (ret) {
6448 bio_put(bio);
6449 goto out_err;
6450 }
6451 } else {
6452 submit_len += bvec->bv_len;
6453 nr_pages ++;
6454 bvec++;
6455 }
6456 }
6457
6458submit:
6459 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6460 async_submit);
6461 if (!ret)
6462 return 0;
6463
6464 bio_put(bio);
6465out_err:
6466 dip->errors = 1;
6467 /*
6468 * before atomic variable goto zero, we must
6469 * make sure dip->errors is perceived to be set.
6470 */
6471 smp_mb__before_atomic_dec();
6472 if (atomic_dec_and_test(&dip->pending_bios))
6473 bio_io_error(dip->orig_bio);
6474
6475 /* bio_end_io() will handle error, so we needn't return it */
6476 return 0;
6477}
6478
6479static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6480 loff_t file_offset)
6481{
6482 struct btrfs_root *root = BTRFS_I(inode)->root;
6483 struct btrfs_dio_private *dip;
6484 struct bio_vec *bvec = bio->bi_io_vec;
6485 int skip_sum;
6486 int write = rw & REQ_WRITE;
6487 int ret = 0;
6488
6489 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6490
6491 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6492 if (!dip) {
6493 ret = -ENOMEM;
6494 goto free_ordered;
6495 }
6496
6497 dip->private = bio->bi_private;
6498 dip->inode = inode;
6499 dip->logical_offset = file_offset;
6500
6501 dip->bytes = 0;
6502 do {
6503 dip->bytes += bvec->bv_len;
6504 bvec++;
6505 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6506
6507 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6508 bio->bi_private = dip;
6509 dip->errors = 0;
6510 dip->orig_bio = bio;
6511 atomic_set(&dip->pending_bios, 0);
6512
6513 if (write)
6514 bio->bi_end_io = btrfs_endio_direct_write;
6515 else
6516 bio->bi_end_io = btrfs_endio_direct_read;
6517
6518 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6519 if (!ret)
6520 return;
6521free_ordered:
6522 /*
6523 * If this is a write, we need to clean up the reserved space and kill
6524 * the ordered extent.
6525 */
6526 if (write) {
6527 struct btrfs_ordered_extent *ordered;
6528 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6529 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6530 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6531 btrfs_free_reserved_extent(root, ordered->start,
6532 ordered->disk_len);
6533 btrfs_put_ordered_extent(ordered);
6534 btrfs_put_ordered_extent(ordered);
6535 }
6536 bio_endio(bio, ret);
6537}
6538
6539static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6540 const struct iovec *iov, loff_t offset,
6541 unsigned long nr_segs)
6542{
6543 int seg;
6544 int i;
6545 size_t size;
6546 unsigned long addr;
6547 unsigned blocksize_mask = root->sectorsize - 1;
6548 ssize_t retval = -EINVAL;
6549 loff_t end = offset;
6550
6551 if (offset & blocksize_mask)
6552 goto out;
6553
6554 /* Check the memory alignment. Blocks cannot straddle pages */
6555 for (seg = 0; seg < nr_segs; seg++) {
6556 addr = (unsigned long)iov[seg].iov_base;
6557 size = iov[seg].iov_len;
6558 end += size;
6559 if ((addr & blocksize_mask) || (size & blocksize_mask))
6560 goto out;
6561
6562 /* If this is a write we don't need to check anymore */
6563 if (rw & WRITE)
6564 continue;
6565
6566 /*
6567 * Check to make sure we don't have duplicate iov_base's in this
6568 * iovec, if so return EINVAL, otherwise we'll get csum errors
6569 * when reading back.
6570 */
6571 for (i = seg + 1; i < nr_segs; i++) {
6572 if (iov[seg].iov_base == iov[i].iov_base)
6573 goto out;
6574 }
6575 }
6576 retval = 0;
6577out:
6578 return retval;
6579}
6580
6581static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6582 const struct iovec *iov, loff_t offset,
6583 unsigned long nr_segs)
6584{
6585 struct file *file = iocb->ki_filp;
6586 struct inode *inode = file->f_mapping->host;
6587
6588 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6589 offset, nr_segs))
6590 return 0;
6591
6592 return __blockdev_direct_IO(rw, iocb, inode,
6593 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6594 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6595 btrfs_submit_direct, 0);
6596}
6597
6598static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6599 __u64 start, __u64 len)
6600{
6601 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6602}
6603
6604int btrfs_readpage(struct file *file, struct page *page)
6605{
6606 struct extent_io_tree *tree;
6607 tree = &BTRFS_I(page->mapping->host)->io_tree;
6608 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6609}
6610
6611static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6612{
6613 struct extent_io_tree *tree;
6614
6615
6616 if (current->flags & PF_MEMALLOC) {
6617 redirty_page_for_writepage(wbc, page);
6618 unlock_page(page);
6619 return 0;
6620 }
6621 tree = &BTRFS_I(page->mapping->host)->io_tree;
6622 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6623}
6624
6625int btrfs_writepages(struct address_space *mapping,
6626 struct writeback_control *wbc)
6627{
6628 struct extent_io_tree *tree;
6629
6630 tree = &BTRFS_I(mapping->host)->io_tree;
6631 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6632}
6633
6634static int
6635btrfs_readpages(struct file *file, struct address_space *mapping,
6636 struct list_head *pages, unsigned nr_pages)
6637{
6638 struct extent_io_tree *tree;
6639 tree = &BTRFS_I(mapping->host)->io_tree;
6640 return extent_readpages(tree, mapping, pages, nr_pages,
6641 btrfs_get_extent);
6642}
6643static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6644{
6645 struct extent_io_tree *tree;
6646 struct extent_map_tree *map;
6647 int ret;
6648
6649 tree = &BTRFS_I(page->mapping->host)->io_tree;
6650 map = &BTRFS_I(page->mapping->host)->extent_tree;
6651 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6652 if (ret == 1) {
6653 ClearPagePrivate(page);
6654 set_page_private(page, 0);
6655 page_cache_release(page);
6656 }
6657 return ret;
6658}
6659
6660static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6661{
6662 if (PageWriteback(page) || PageDirty(page))
6663 return 0;
6664 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6665}
6666
6667static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6668{
6669 struct inode *inode = page->mapping->host;
6670 struct extent_io_tree *tree;
6671 struct btrfs_ordered_extent *ordered;
6672 struct extent_state *cached_state = NULL;
6673 u64 page_start = page_offset(page);
6674 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6675
6676 /*
6677 * we have the page locked, so new writeback can't start,
6678 * and the dirty bit won't be cleared while we are here.
6679 *
6680 * Wait for IO on this page so that we can safely clear
6681 * the PagePrivate2 bit and do ordered accounting
6682 */
6683 wait_on_page_writeback(page);
6684
6685 tree = &BTRFS_I(inode)->io_tree;
6686 if (offset) {
6687 btrfs_releasepage(page, GFP_NOFS);
6688 return;
6689 }
6690 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6691 ordered = btrfs_lookup_ordered_extent(inode,
6692 page_offset(page));
6693 if (ordered) {
6694 /*
6695 * IO on this page will never be started, so we need
6696 * to account for any ordered extents now
6697 */
6698 clear_extent_bit(tree, page_start, page_end,
6699 EXTENT_DIRTY | EXTENT_DELALLOC |
6700 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
6701 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
6702 /*
6703 * whoever cleared the private bit is responsible
6704 * for the finish_ordered_io
6705 */
6706 if (TestClearPagePrivate2(page) &&
6707 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6708 PAGE_CACHE_SIZE, 1)) {
6709 btrfs_finish_ordered_io(ordered);
6710 }
6711 btrfs_put_ordered_extent(ordered);
6712 cached_state = NULL;
6713 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6714 }
6715 clear_extent_bit(tree, page_start, page_end,
6716 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6717 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
6718 &cached_state, GFP_NOFS);
6719 __btrfs_releasepage(page, GFP_NOFS);
6720
6721 ClearPageChecked(page);
6722 if (PagePrivate(page)) {
6723 ClearPagePrivate(page);
6724 set_page_private(page, 0);
6725 page_cache_release(page);
6726 }
6727}
6728
6729/*
6730 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6731 * called from a page fault handler when a page is first dirtied. Hence we must
6732 * be careful to check for EOF conditions here. We set the page up correctly
6733 * for a written page which means we get ENOSPC checking when writing into
6734 * holes and correct delalloc and unwritten extent mapping on filesystems that
6735 * support these features.
6736 *
6737 * We are not allowed to take the i_mutex here so we have to play games to
6738 * protect against truncate races as the page could now be beyond EOF. Because
6739 * vmtruncate() writes the inode size before removing pages, once we have the
6740 * page lock we can determine safely if the page is beyond EOF. If it is not
6741 * beyond EOF, then the page is guaranteed safe against truncation until we
6742 * unlock the page.
6743 */
6744int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6745{
6746 struct page *page = vmf->page;
6747 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6748 struct btrfs_root *root = BTRFS_I(inode)->root;
6749 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6750 struct btrfs_ordered_extent *ordered;
6751 struct extent_state *cached_state = NULL;
6752 char *kaddr;
6753 unsigned long zero_start;
6754 loff_t size;
6755 int ret;
6756 int reserved = 0;
6757 u64 page_start;
6758 u64 page_end;
6759
6760 sb_start_pagefault(inode->i_sb);
6761 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6762 if (!ret) {
6763 ret = file_update_time(vma->vm_file);
6764 reserved = 1;
6765 }
6766 if (ret) {
6767 if (ret == -ENOMEM)
6768 ret = VM_FAULT_OOM;
6769 else /* -ENOSPC, -EIO, etc */
6770 ret = VM_FAULT_SIGBUS;
6771 if (reserved)
6772 goto out;
6773 goto out_noreserve;
6774 }
6775
6776 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6777again:
6778 lock_page(page);
6779 size = i_size_read(inode);
6780 page_start = page_offset(page);
6781 page_end = page_start + PAGE_CACHE_SIZE - 1;
6782
6783 if ((page->mapping != inode->i_mapping) ||
6784 (page_start >= size)) {
6785 /* page got truncated out from underneath us */
6786 goto out_unlock;
6787 }
6788 wait_on_page_writeback(page);
6789
6790 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6791 set_page_extent_mapped(page);
6792
6793 /*
6794 * we can't set the delalloc bits if there are pending ordered
6795 * extents. Drop our locks and wait for them to finish
6796 */
6797 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6798 if (ordered) {
6799 unlock_extent_cached(io_tree, page_start, page_end,
6800 &cached_state, GFP_NOFS);
6801 unlock_page(page);
6802 btrfs_start_ordered_extent(inode, ordered, 1);
6803 btrfs_put_ordered_extent(ordered);
6804 goto again;
6805 }
6806
6807 /*
6808 * XXX - page_mkwrite gets called every time the page is dirtied, even
6809 * if it was already dirty, so for space accounting reasons we need to
6810 * clear any delalloc bits for the range we are fixing to save. There
6811 * is probably a better way to do this, but for now keep consistent with
6812 * prepare_pages in the normal write path.
6813 */
6814 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6815 EXTENT_DIRTY | EXTENT_DELALLOC |
6816 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
6817 0, 0, &cached_state, GFP_NOFS);
6818
6819 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6820 &cached_state);
6821 if (ret) {
6822 unlock_extent_cached(io_tree, page_start, page_end,
6823 &cached_state, GFP_NOFS);
6824 ret = VM_FAULT_SIGBUS;
6825 goto out_unlock;
6826 }
6827 ret = 0;
6828
6829 /* page is wholly or partially inside EOF */
6830 if (page_start + PAGE_CACHE_SIZE > size)
6831 zero_start = size & ~PAGE_CACHE_MASK;
6832 else
6833 zero_start = PAGE_CACHE_SIZE;
6834
6835 if (zero_start != PAGE_CACHE_SIZE) {
6836 kaddr = kmap(page);
6837 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6838 flush_dcache_page(page);
6839 kunmap(page);
6840 }
6841 ClearPageChecked(page);
6842 set_page_dirty(page);
6843 SetPageUptodate(page);
6844
6845 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6846 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6847 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
6848
6849 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6850
6851out_unlock:
6852 if (!ret) {
6853 sb_end_pagefault(inode->i_sb);
6854 return VM_FAULT_LOCKED;
6855 }
6856 unlock_page(page);
6857out:
6858 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6859out_noreserve:
6860 sb_end_pagefault(inode->i_sb);
6861 return ret;
6862}
6863
6864static int btrfs_truncate(struct inode *inode)
6865{
6866 struct btrfs_root *root = BTRFS_I(inode)->root;
6867 struct btrfs_block_rsv *rsv;
6868 int ret;
6869 int err = 0;
6870 struct btrfs_trans_handle *trans;
6871 unsigned long nr;
6872 u64 mask = root->sectorsize - 1;
6873 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6874
6875 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
6876 if (ret)
6877 return ret;
6878
6879 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6880 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6881
6882 /*
6883 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6884 * 3 things going on here
6885 *
6886 * 1) We need to reserve space for our orphan item and the space to
6887 * delete our orphan item. Lord knows we don't want to have a dangling
6888 * orphan item because we didn't reserve space to remove it.
6889 *
6890 * 2) We need to reserve space to update our inode.
6891 *
6892 * 3) We need to have something to cache all the space that is going to
6893 * be free'd up by the truncate operation, but also have some slack
6894 * space reserved in case it uses space during the truncate (thank you
6895 * very much snapshotting).
6896 *
6897 * And we need these to all be seperate. The fact is we can use alot of
6898 * space doing the truncate, and we have no earthly idea how much space
6899 * we will use, so we need the truncate reservation to be seperate so it
6900 * doesn't end up using space reserved for updating the inode or
6901 * removing the orphan item. We also need to be able to stop the
6902 * transaction and start a new one, which means we need to be able to
6903 * update the inode several times, and we have no idea of knowing how
6904 * many times that will be, so we can't just reserve 1 item for the
6905 * entirety of the opration, so that has to be done seperately as well.
6906 * Then there is the orphan item, which does indeed need to be held on
6907 * to for the whole operation, and we need nobody to touch this reserved
6908 * space except the orphan code.
6909 *
6910 * So that leaves us with
6911 *
6912 * 1) root->orphan_block_rsv - for the orphan deletion.
6913 * 2) rsv - for the truncate reservation, which we will steal from the
6914 * transaction reservation.
6915 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6916 * updating the inode.
6917 */
6918 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
6919 if (!rsv)
6920 return -ENOMEM;
6921 rsv->size = min_size;
6922 rsv->failfast = 1;
6923
6924 /*
6925 * 1 for the truncate slack space
6926 * 1 for the orphan item we're going to add
6927 * 1 for the orphan item deletion
6928 * 1 for updating the inode.
6929 */
6930 trans = btrfs_start_transaction(root, 4);
6931 if (IS_ERR(trans)) {
6932 err = PTR_ERR(trans);
6933 goto out;
6934 }
6935
6936 /* Migrate the slack space for the truncate to our reserve */
6937 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6938 min_size);
6939 BUG_ON(ret);
6940
6941 ret = btrfs_orphan_add(trans, inode);
6942 if (ret) {
6943 btrfs_end_transaction(trans, root);
6944 goto out;
6945 }
6946
6947 /*
6948 * setattr is responsible for setting the ordered_data_close flag,
6949 * but that is only tested during the last file release. That
6950 * could happen well after the next commit, leaving a great big
6951 * window where new writes may get lost if someone chooses to write
6952 * to this file after truncating to zero
6953 *
6954 * The inode doesn't have any dirty data here, and so if we commit
6955 * this is a noop. If someone immediately starts writing to the inode
6956 * it is very likely we'll catch some of their writes in this
6957 * transaction, and the commit will find this file on the ordered
6958 * data list with good things to send down.
6959 *
6960 * This is a best effort solution, there is still a window where
6961 * using truncate to replace the contents of the file will
6962 * end up with a zero length file after a crash.
6963 */
6964 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6965 &BTRFS_I(inode)->runtime_flags))
6966 btrfs_add_ordered_operation(trans, root, inode);
6967
6968 /*
6969 * So if we truncate and then write and fsync we normally would just
6970 * write the extents that changed, which is a problem if we need to
6971 * first truncate that entire inode. So set this flag so we write out
6972 * all of the extents in the inode to the sync log so we're completely
6973 * safe.
6974 */
6975 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6976 trans->block_rsv = rsv;
6977
6978 while (1) {
6979 ret = btrfs_truncate_inode_items(trans, root, inode,
6980 inode->i_size,
6981 BTRFS_EXTENT_DATA_KEY);
6982 if (ret != -ENOSPC) {
6983 err = ret;
6984 break;
6985 }
6986
6987 trans->block_rsv = &root->fs_info->trans_block_rsv;
6988 ret = btrfs_update_inode(trans, root, inode);
6989 if (ret) {
6990 err = ret;
6991 break;
6992 }
6993
6994 nr = trans->blocks_used;
6995 btrfs_end_transaction(trans, root);
6996 btrfs_btree_balance_dirty(root, nr);
6997
6998 trans = btrfs_start_transaction(root, 2);
6999 if (IS_ERR(trans)) {
7000 ret = err = PTR_ERR(trans);
7001 trans = NULL;
7002 break;
7003 }
7004
7005 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7006 rsv, min_size);
7007 BUG_ON(ret); /* shouldn't happen */
7008 trans->block_rsv = rsv;
7009 }
7010
7011 if (ret == 0 && inode->i_nlink > 0) {
7012 trans->block_rsv = root->orphan_block_rsv;
7013 ret = btrfs_orphan_del(trans, inode);
7014 if (ret)
7015 err = ret;
7016 } else if (ret && inode->i_nlink > 0) {
7017 /*
7018 * Failed to do the truncate, remove us from the in memory
7019 * orphan list.
7020 */
7021 ret = btrfs_orphan_del(NULL, inode);
7022 }
7023
7024 if (trans) {
7025 trans->block_rsv = &root->fs_info->trans_block_rsv;
7026 ret = btrfs_update_inode(trans, root, inode);
7027 if (ret && !err)
7028 err = ret;
7029
7030 nr = trans->blocks_used;
7031 ret = btrfs_end_transaction(trans, root);
7032 btrfs_btree_balance_dirty(root, nr);
7033 }
7034
7035out:
7036 btrfs_free_block_rsv(root, rsv);
7037
7038 if (ret && !err)
7039 err = ret;
7040
7041 return err;
7042}
7043
7044/*
7045 * create a new subvolume directory/inode (helper for the ioctl).
7046 */
7047int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7048 struct btrfs_root *new_root, u64 new_dirid)
7049{
7050 struct inode *inode;
7051 int err;
7052 u64 index = 0;
7053
7054 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7055 new_dirid, new_dirid,
7056 S_IFDIR | (~current_umask() & S_IRWXUGO),
7057 &index);
7058 if (IS_ERR(inode))
7059 return PTR_ERR(inode);
7060 inode->i_op = &btrfs_dir_inode_operations;
7061 inode->i_fop = &btrfs_dir_file_operations;
7062
7063 set_nlink(inode, 1);
7064 btrfs_i_size_write(inode, 0);
7065
7066 err = btrfs_update_inode(trans, new_root, inode);
7067
7068 iput(inode);
7069 return err;
7070}
7071
7072struct inode *btrfs_alloc_inode(struct super_block *sb)
7073{
7074 struct btrfs_inode *ei;
7075 struct inode *inode;
7076
7077 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7078 if (!ei)
7079 return NULL;
7080
7081 ei->root = NULL;
7082 ei->generation = 0;
7083 ei->last_trans = 0;
7084 ei->last_sub_trans = 0;
7085 ei->logged_trans = 0;
7086 ei->delalloc_bytes = 0;
7087 ei->disk_i_size = 0;
7088 ei->flags = 0;
7089 ei->csum_bytes = 0;
7090 ei->index_cnt = (u64)-1;
7091 ei->last_unlink_trans = 0;
7092 ei->last_log_commit = 0;
7093
7094 spin_lock_init(&ei->lock);
7095 ei->outstanding_extents = 0;
7096 ei->reserved_extents = 0;
7097
7098 ei->runtime_flags = 0;
7099 ei->force_compress = BTRFS_COMPRESS_NONE;
7100
7101 ei->delayed_node = NULL;
7102
7103 inode = &ei->vfs_inode;
7104 extent_map_tree_init(&ei->extent_tree);
7105 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7106 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7107 ei->io_tree.track_uptodate = 1;
7108 ei->io_failure_tree.track_uptodate = 1;
7109 mutex_init(&ei->log_mutex);
7110 mutex_init(&ei->delalloc_mutex);
7111 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7112 INIT_LIST_HEAD(&ei->delalloc_inodes);
7113 INIT_LIST_HEAD(&ei->ordered_operations);
7114 RB_CLEAR_NODE(&ei->rb_node);
7115
7116 return inode;
7117}
7118
7119static void btrfs_i_callback(struct rcu_head *head)
7120{
7121 struct inode *inode = container_of(head, struct inode, i_rcu);
7122 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7123}
7124
7125void btrfs_destroy_inode(struct inode *inode)
7126{
7127 struct btrfs_ordered_extent *ordered;
7128 struct btrfs_root *root = BTRFS_I(inode)->root;
7129
7130 WARN_ON(!hlist_empty(&inode->i_dentry));
7131 WARN_ON(inode->i_data.nrpages);
7132 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7133 WARN_ON(BTRFS_I(inode)->reserved_extents);
7134 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7135 WARN_ON(BTRFS_I(inode)->csum_bytes);
7136
7137 /*
7138 * This can happen where we create an inode, but somebody else also
7139 * created the same inode and we need to destroy the one we already
7140 * created.
7141 */
7142 if (!root)
7143 goto free;
7144
7145 /*
7146 * Make sure we're properly removed from the ordered operation
7147 * lists.
7148 */
7149 smp_mb();
7150 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7151 spin_lock(&root->fs_info->ordered_extent_lock);
7152 list_del_init(&BTRFS_I(inode)->ordered_operations);
7153 spin_unlock(&root->fs_info->ordered_extent_lock);
7154 }
7155
7156 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7157 &BTRFS_I(inode)->runtime_flags)) {
7158 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7159 (unsigned long long)btrfs_ino(inode));
7160 atomic_dec(&root->orphan_inodes);
7161 }
7162
7163 while (1) {
7164 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7165 if (!ordered)
7166 break;
7167 else {
7168 printk(KERN_ERR "btrfs found ordered "
7169 "extent %llu %llu on inode cleanup\n",
7170 (unsigned long long)ordered->file_offset,
7171 (unsigned long long)ordered->len);
7172 btrfs_remove_ordered_extent(inode, ordered);
7173 btrfs_put_ordered_extent(ordered);
7174 btrfs_put_ordered_extent(ordered);
7175 }
7176 }
7177 inode_tree_del(inode);
7178 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7179free:
7180 btrfs_remove_delayed_node(inode);
7181 call_rcu(&inode->i_rcu, btrfs_i_callback);
7182}
7183
7184int btrfs_drop_inode(struct inode *inode)
7185{
7186 struct btrfs_root *root = BTRFS_I(inode)->root;
7187
7188 if (btrfs_root_refs(&root->root_item) == 0 &&
7189 !btrfs_is_free_space_inode(inode))
7190 return 1;
7191 else
7192 return generic_drop_inode(inode);
7193}
7194
7195static void init_once(void *foo)
7196{
7197 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7198
7199 inode_init_once(&ei->vfs_inode);
7200}
7201
7202void btrfs_destroy_cachep(void)
7203{
7204 if (btrfs_inode_cachep)
7205 kmem_cache_destroy(btrfs_inode_cachep);
7206 if (btrfs_trans_handle_cachep)
7207 kmem_cache_destroy(btrfs_trans_handle_cachep);
7208 if (btrfs_transaction_cachep)
7209 kmem_cache_destroy(btrfs_transaction_cachep);
7210 if (btrfs_path_cachep)
7211 kmem_cache_destroy(btrfs_path_cachep);
7212 if (btrfs_free_space_cachep)
7213 kmem_cache_destroy(btrfs_free_space_cachep);
7214}
7215
7216int btrfs_init_cachep(void)
7217{
7218 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7219 sizeof(struct btrfs_inode), 0,
7220 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7221 if (!btrfs_inode_cachep)
7222 goto fail;
7223
7224 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
7225 sizeof(struct btrfs_trans_handle), 0,
7226 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7227 if (!btrfs_trans_handle_cachep)
7228 goto fail;
7229
7230 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
7231 sizeof(struct btrfs_transaction), 0,
7232 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7233 if (!btrfs_transaction_cachep)
7234 goto fail;
7235
7236 btrfs_path_cachep = kmem_cache_create("btrfs_path",
7237 sizeof(struct btrfs_path), 0,
7238 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7239 if (!btrfs_path_cachep)
7240 goto fail;
7241
7242 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
7243 sizeof(struct btrfs_free_space), 0,
7244 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7245 if (!btrfs_free_space_cachep)
7246 goto fail;
7247
7248 return 0;
7249fail:
7250 btrfs_destroy_cachep();
7251 return -ENOMEM;
7252}
7253
7254static int btrfs_getattr(struct vfsmount *mnt,
7255 struct dentry *dentry, struct kstat *stat)
7256{
7257 struct inode *inode = dentry->d_inode;
7258 u32 blocksize = inode->i_sb->s_blocksize;
7259
7260 generic_fillattr(inode, stat);
7261 stat->dev = BTRFS_I(inode)->root->anon_dev;
7262 stat->blksize = PAGE_CACHE_SIZE;
7263 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7264 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
7265 return 0;
7266}
7267
7268/*
7269 * If a file is moved, it will inherit the cow and compression flags of the new
7270 * directory.
7271 */
7272static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7273{
7274 struct btrfs_inode *b_dir = BTRFS_I(dir);
7275 struct btrfs_inode *b_inode = BTRFS_I(inode);
7276
7277 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7278 b_inode->flags |= BTRFS_INODE_NODATACOW;
7279 else
7280 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7281
7282 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
7283 b_inode->flags |= BTRFS_INODE_COMPRESS;
7284 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7285 } else {
7286 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7287 BTRFS_INODE_NOCOMPRESS);
7288 }
7289}
7290
7291static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7292 struct inode *new_dir, struct dentry *new_dentry)
7293{
7294 struct btrfs_trans_handle *trans;
7295 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7296 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7297 struct inode *new_inode = new_dentry->d_inode;
7298 struct inode *old_inode = old_dentry->d_inode;
7299 struct timespec ctime = CURRENT_TIME;
7300 u64 index = 0;
7301 u64 root_objectid;
7302 int ret;
7303 u64 old_ino = btrfs_ino(old_inode);
7304
7305 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7306 return -EPERM;
7307
7308 /* we only allow rename subvolume link between subvolumes */
7309 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7310 return -EXDEV;
7311
7312 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7313 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7314 return -ENOTEMPTY;
7315
7316 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7317 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7318 return -ENOTEMPTY;
7319 /*
7320 * we're using rename to replace one file with another.
7321 * and the replacement file is large. Start IO on it now so
7322 * we don't add too much work to the end of the transaction
7323 */
7324 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7325 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7326 filemap_flush(old_inode->i_mapping);
7327
7328 /* close the racy window with snapshot create/destroy ioctl */
7329 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7330 down_read(&root->fs_info->subvol_sem);
7331 /*
7332 * We want to reserve the absolute worst case amount of items. So if
7333 * both inodes are subvols and we need to unlink them then that would
7334 * require 4 item modifications, but if they are both normal inodes it
7335 * would require 5 item modifications, so we'll assume their normal
7336 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7337 * should cover the worst case number of items we'll modify.
7338 */
7339 trans = btrfs_start_transaction(root, 20);
7340 if (IS_ERR(trans)) {
7341 ret = PTR_ERR(trans);
7342 goto out_notrans;
7343 }
7344
7345 if (dest != root)
7346 btrfs_record_root_in_trans(trans, dest);
7347
7348 ret = btrfs_set_inode_index(new_dir, &index);
7349 if (ret)
7350 goto out_fail;
7351
7352 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7353 /* force full log commit if subvolume involved. */
7354 root->fs_info->last_trans_log_full_commit = trans->transid;
7355 } else {
7356 ret = btrfs_insert_inode_ref(trans, dest,
7357 new_dentry->d_name.name,
7358 new_dentry->d_name.len,
7359 old_ino,
7360 btrfs_ino(new_dir), index);
7361 if (ret)
7362 goto out_fail;
7363 /*
7364 * this is an ugly little race, but the rename is required
7365 * to make sure that if we crash, the inode is either at the
7366 * old name or the new one. pinning the log transaction lets
7367 * us make sure we don't allow a log commit to come in after
7368 * we unlink the name but before we add the new name back in.
7369 */
7370 btrfs_pin_log_trans(root);
7371 }
7372 /*
7373 * make sure the inode gets flushed if it is replacing
7374 * something.
7375 */
7376 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7377 btrfs_add_ordered_operation(trans, root, old_inode);
7378
7379 inode_inc_iversion(old_dir);
7380 inode_inc_iversion(new_dir);
7381 inode_inc_iversion(old_inode);
7382 old_dir->i_ctime = old_dir->i_mtime = ctime;
7383 new_dir->i_ctime = new_dir->i_mtime = ctime;
7384 old_inode->i_ctime = ctime;
7385
7386 if (old_dentry->d_parent != new_dentry->d_parent)
7387 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7388
7389 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7390 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7391 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7392 old_dentry->d_name.name,
7393 old_dentry->d_name.len);
7394 } else {
7395 ret = __btrfs_unlink_inode(trans, root, old_dir,
7396 old_dentry->d_inode,
7397 old_dentry->d_name.name,
7398 old_dentry->d_name.len);
7399 if (!ret)
7400 ret = btrfs_update_inode(trans, root, old_inode);
7401 }
7402 if (ret) {
7403 btrfs_abort_transaction(trans, root, ret);
7404 goto out_fail;
7405 }
7406
7407 if (new_inode) {
7408 inode_inc_iversion(new_inode);
7409 new_inode->i_ctime = CURRENT_TIME;
7410 if (unlikely(btrfs_ino(new_inode) ==
7411 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7412 root_objectid = BTRFS_I(new_inode)->location.objectid;
7413 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7414 root_objectid,
7415 new_dentry->d_name.name,
7416 new_dentry->d_name.len);
7417 BUG_ON(new_inode->i_nlink == 0);
7418 } else {
7419 ret = btrfs_unlink_inode(trans, dest, new_dir,
7420 new_dentry->d_inode,
7421 new_dentry->d_name.name,
7422 new_dentry->d_name.len);
7423 }
7424 if (!ret && new_inode->i_nlink == 0) {
7425 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7426 BUG_ON(ret);
7427 }
7428 if (ret) {
7429 btrfs_abort_transaction(trans, root, ret);
7430 goto out_fail;
7431 }
7432 }
7433
7434 fixup_inode_flags(new_dir, old_inode);
7435
7436 ret = btrfs_add_link(trans, new_dir, old_inode,
7437 new_dentry->d_name.name,
7438 new_dentry->d_name.len, 0, index);
7439 if (ret) {
7440 btrfs_abort_transaction(trans, root, ret);
7441 goto out_fail;
7442 }
7443
7444 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7445 struct dentry *parent = new_dentry->d_parent;
7446 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7447 btrfs_end_log_trans(root);
7448 }
7449out_fail:
7450 btrfs_end_transaction(trans, root);
7451out_notrans:
7452 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7453 up_read(&root->fs_info->subvol_sem);
7454
7455 return ret;
7456}
7457
7458/*
7459 * some fairly slow code that needs optimization. This walks the list
7460 * of all the inodes with pending delalloc and forces them to disk.
7461 */
7462int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7463{
7464 struct list_head *head = &root->fs_info->delalloc_inodes;
7465 struct btrfs_inode *binode;
7466 struct inode *inode;
7467
7468 if (root->fs_info->sb->s_flags & MS_RDONLY)
7469 return -EROFS;
7470
7471 spin_lock(&root->fs_info->delalloc_lock);
7472 while (!list_empty(head)) {
7473 binode = list_entry(head->next, struct btrfs_inode,
7474 delalloc_inodes);
7475 inode = igrab(&binode->vfs_inode);
7476 if (!inode)
7477 list_del_init(&binode->delalloc_inodes);
7478 spin_unlock(&root->fs_info->delalloc_lock);
7479 if (inode) {
7480 filemap_flush(inode->i_mapping);
7481 if (delay_iput)
7482 btrfs_add_delayed_iput(inode);
7483 else
7484 iput(inode);
7485 }
7486 cond_resched();
7487 spin_lock(&root->fs_info->delalloc_lock);
7488 }
7489 spin_unlock(&root->fs_info->delalloc_lock);
7490
7491 /* the filemap_flush will queue IO into the worker threads, but
7492 * we have to make sure the IO is actually started and that
7493 * ordered extents get created before we return
7494 */
7495 atomic_inc(&root->fs_info->async_submit_draining);
7496 while (atomic_read(&root->fs_info->nr_async_submits) ||
7497 atomic_read(&root->fs_info->async_delalloc_pages)) {
7498 wait_event(root->fs_info->async_submit_wait,
7499 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7500 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7501 }
7502 atomic_dec(&root->fs_info->async_submit_draining);
7503 return 0;
7504}
7505
7506static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7507 const char *symname)
7508{
7509 struct btrfs_trans_handle *trans;
7510 struct btrfs_root *root = BTRFS_I(dir)->root;
7511 struct btrfs_path *path;
7512 struct btrfs_key key;
7513 struct inode *inode = NULL;
7514 int err;
7515 int drop_inode = 0;
7516 u64 objectid;
7517 u64 index = 0 ;
7518 int name_len;
7519 int datasize;
7520 unsigned long ptr;
7521 struct btrfs_file_extent_item *ei;
7522 struct extent_buffer *leaf;
7523 unsigned long nr = 0;
7524
7525 name_len = strlen(symname) + 1;
7526 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7527 return -ENAMETOOLONG;
7528
7529 /*
7530 * 2 items for inode item and ref
7531 * 2 items for dir items
7532 * 1 item for xattr if selinux is on
7533 */
7534 trans = btrfs_start_transaction(root, 5);
7535 if (IS_ERR(trans))
7536 return PTR_ERR(trans);
7537
7538 err = btrfs_find_free_ino(root, &objectid);
7539 if (err)
7540 goto out_unlock;
7541
7542 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7543 dentry->d_name.len, btrfs_ino(dir), objectid,
7544 S_IFLNK|S_IRWXUGO, &index);
7545 if (IS_ERR(inode)) {
7546 err = PTR_ERR(inode);
7547 goto out_unlock;
7548 }
7549
7550 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7551 if (err) {
7552 drop_inode = 1;
7553 goto out_unlock;
7554 }
7555
7556 /*
7557 * If the active LSM wants to access the inode during
7558 * d_instantiate it needs these. Smack checks to see
7559 * if the filesystem supports xattrs by looking at the
7560 * ops vector.
7561 */
7562 inode->i_fop = &btrfs_file_operations;
7563 inode->i_op = &btrfs_file_inode_operations;
7564
7565 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7566 if (err)
7567 drop_inode = 1;
7568 else {
7569 inode->i_mapping->a_ops = &btrfs_aops;
7570 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7571 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7572 }
7573 if (drop_inode)
7574 goto out_unlock;
7575
7576 path = btrfs_alloc_path();
7577 if (!path) {
7578 err = -ENOMEM;
7579 drop_inode = 1;
7580 goto out_unlock;
7581 }
7582 key.objectid = btrfs_ino(inode);
7583 key.offset = 0;
7584 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7585 datasize = btrfs_file_extent_calc_inline_size(name_len);
7586 err = btrfs_insert_empty_item(trans, root, path, &key,
7587 datasize);
7588 if (err) {
7589 drop_inode = 1;
7590 btrfs_free_path(path);
7591 goto out_unlock;
7592 }
7593 leaf = path->nodes[0];
7594 ei = btrfs_item_ptr(leaf, path->slots[0],
7595 struct btrfs_file_extent_item);
7596 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7597 btrfs_set_file_extent_type(leaf, ei,
7598 BTRFS_FILE_EXTENT_INLINE);
7599 btrfs_set_file_extent_encryption(leaf, ei, 0);
7600 btrfs_set_file_extent_compression(leaf, ei, 0);
7601 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7602 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7603
7604 ptr = btrfs_file_extent_inline_start(ei);
7605 write_extent_buffer(leaf, symname, ptr, name_len);
7606 btrfs_mark_buffer_dirty(leaf);
7607 btrfs_free_path(path);
7608
7609 inode->i_op = &btrfs_symlink_inode_operations;
7610 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7611 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7612 inode_set_bytes(inode, name_len);
7613 btrfs_i_size_write(inode, name_len - 1);
7614 err = btrfs_update_inode(trans, root, inode);
7615 if (err)
7616 drop_inode = 1;
7617
7618out_unlock:
7619 if (!err)
7620 d_instantiate(dentry, inode);
7621 nr = trans->blocks_used;
7622 btrfs_end_transaction(trans, root);
7623 if (drop_inode) {
7624 inode_dec_link_count(inode);
7625 iput(inode);
7626 }
7627 btrfs_btree_balance_dirty(root, nr);
7628 return err;
7629}
7630
7631static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7632 u64 start, u64 num_bytes, u64 min_size,
7633 loff_t actual_len, u64 *alloc_hint,
7634 struct btrfs_trans_handle *trans)
7635{
7636 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7637 struct extent_map *em;
7638 struct btrfs_root *root = BTRFS_I(inode)->root;
7639 struct btrfs_key ins;
7640 u64 cur_offset = start;
7641 u64 i_size;
7642 int ret = 0;
7643 bool own_trans = true;
7644
7645 if (trans)
7646 own_trans = false;
7647 while (num_bytes > 0) {
7648 if (own_trans) {
7649 trans = btrfs_start_transaction(root, 3);
7650 if (IS_ERR(trans)) {
7651 ret = PTR_ERR(trans);
7652 break;
7653 }
7654 }
7655
7656 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7657 0, *alloc_hint, &ins, 1);
7658 if (ret) {
7659 if (own_trans)
7660 btrfs_end_transaction(trans, root);
7661 break;
7662 }
7663
7664 ret = insert_reserved_file_extent(trans, inode,
7665 cur_offset, ins.objectid,
7666 ins.offset, ins.offset,
7667 ins.offset, 0, 0, 0,
7668 BTRFS_FILE_EXTENT_PREALLOC);
7669 if (ret) {
7670 btrfs_abort_transaction(trans, root, ret);
7671 if (own_trans)
7672 btrfs_end_transaction(trans, root);
7673 break;
7674 }
7675 btrfs_drop_extent_cache(inode, cur_offset,
7676 cur_offset + ins.offset -1, 0);
7677
7678 em = alloc_extent_map();
7679 if (!em) {
7680 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7681 &BTRFS_I(inode)->runtime_flags);
7682 goto next;
7683 }
7684
7685 em->start = cur_offset;
7686 em->orig_start = cur_offset;
7687 em->len = ins.offset;
7688 em->block_start = ins.objectid;
7689 em->block_len = ins.offset;
7690 em->bdev = root->fs_info->fs_devices->latest_bdev;
7691 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7692 em->generation = trans->transid;
7693
7694 while (1) {
7695 write_lock(&em_tree->lock);
7696 ret = add_extent_mapping(em_tree, em);
7697 if (!ret)
7698 list_move(&em->list,
7699 &em_tree->modified_extents);
7700 write_unlock(&em_tree->lock);
7701 if (ret != -EEXIST)
7702 break;
7703 btrfs_drop_extent_cache(inode, cur_offset,
7704 cur_offset + ins.offset - 1,
7705 0);
7706 }
7707 free_extent_map(em);
7708next:
7709 num_bytes -= ins.offset;
7710 cur_offset += ins.offset;
7711 *alloc_hint = ins.objectid + ins.offset;
7712
7713 inode_inc_iversion(inode);
7714 inode->i_ctime = CURRENT_TIME;
7715 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7716 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7717 (actual_len > inode->i_size) &&
7718 (cur_offset > inode->i_size)) {
7719 if (cur_offset > actual_len)
7720 i_size = actual_len;
7721 else
7722 i_size = cur_offset;
7723 i_size_write(inode, i_size);
7724 btrfs_ordered_update_i_size(inode, i_size, NULL);
7725 }
7726
7727 ret = btrfs_update_inode(trans, root, inode);
7728
7729 if (ret) {
7730 btrfs_abort_transaction(trans, root, ret);
7731 if (own_trans)
7732 btrfs_end_transaction(trans, root);
7733 break;
7734 }
7735
7736 if (own_trans)
7737 btrfs_end_transaction(trans, root);
7738 }
7739 return ret;
7740}
7741
7742int btrfs_prealloc_file_range(struct inode *inode, int mode,
7743 u64 start, u64 num_bytes, u64 min_size,
7744 loff_t actual_len, u64 *alloc_hint)
7745{
7746 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7747 min_size, actual_len, alloc_hint,
7748 NULL);
7749}
7750
7751int btrfs_prealloc_file_range_trans(struct inode *inode,
7752 struct btrfs_trans_handle *trans, int mode,
7753 u64 start, u64 num_bytes, u64 min_size,
7754 loff_t actual_len, u64 *alloc_hint)
7755{
7756 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7757 min_size, actual_len, alloc_hint, trans);
7758}
7759
7760static int btrfs_set_page_dirty(struct page *page)
7761{
7762 return __set_page_dirty_nobuffers(page);
7763}
7764
7765static int btrfs_permission(struct inode *inode, int mask)
7766{
7767 struct btrfs_root *root = BTRFS_I(inode)->root;
7768 umode_t mode = inode->i_mode;
7769
7770 if (mask & MAY_WRITE &&
7771 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7772 if (btrfs_root_readonly(root))
7773 return -EROFS;
7774 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7775 return -EACCES;
7776 }
7777 return generic_permission(inode, mask);
7778}
7779
7780static const struct inode_operations btrfs_dir_inode_operations = {
7781 .getattr = btrfs_getattr,
7782 .lookup = btrfs_lookup,
7783 .create = btrfs_create,
7784 .unlink = btrfs_unlink,
7785 .link = btrfs_link,
7786 .mkdir = btrfs_mkdir,
7787 .rmdir = btrfs_rmdir,
7788 .rename = btrfs_rename,
7789 .symlink = btrfs_symlink,
7790 .setattr = btrfs_setattr,
7791 .mknod = btrfs_mknod,
7792 .setxattr = btrfs_setxattr,
7793 .getxattr = btrfs_getxattr,
7794 .listxattr = btrfs_listxattr,
7795 .removexattr = btrfs_removexattr,
7796 .permission = btrfs_permission,
7797 .get_acl = btrfs_get_acl,
7798};
7799static const struct inode_operations btrfs_dir_ro_inode_operations = {
7800 .lookup = btrfs_lookup,
7801 .permission = btrfs_permission,
7802 .get_acl = btrfs_get_acl,
7803};
7804
7805static const struct file_operations btrfs_dir_file_operations = {
7806 .llseek = generic_file_llseek,
7807 .read = generic_read_dir,
7808 .readdir = btrfs_real_readdir,
7809 .unlocked_ioctl = btrfs_ioctl,
7810#ifdef CONFIG_COMPAT
7811 .compat_ioctl = btrfs_ioctl,
7812#endif
7813 .release = btrfs_release_file,
7814 .fsync = btrfs_sync_file,
7815};
7816
7817static struct extent_io_ops btrfs_extent_io_ops = {
7818 .fill_delalloc = run_delalloc_range,
7819 .submit_bio_hook = btrfs_submit_bio_hook,
7820 .merge_bio_hook = btrfs_merge_bio_hook,
7821 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7822 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7823 .writepage_start_hook = btrfs_writepage_start_hook,
7824 .set_bit_hook = btrfs_set_bit_hook,
7825 .clear_bit_hook = btrfs_clear_bit_hook,
7826 .merge_extent_hook = btrfs_merge_extent_hook,
7827 .split_extent_hook = btrfs_split_extent_hook,
7828};
7829
7830/*
7831 * btrfs doesn't support the bmap operation because swapfiles
7832 * use bmap to make a mapping of extents in the file. They assume
7833 * these extents won't change over the life of the file and they
7834 * use the bmap result to do IO directly to the drive.
7835 *
7836 * the btrfs bmap call would return logical addresses that aren't
7837 * suitable for IO and they also will change frequently as COW
7838 * operations happen. So, swapfile + btrfs == corruption.
7839 *
7840 * For now we're avoiding this by dropping bmap.
7841 */
7842static const struct address_space_operations btrfs_aops = {
7843 .readpage = btrfs_readpage,
7844 .writepage = btrfs_writepage,
7845 .writepages = btrfs_writepages,
7846 .readpages = btrfs_readpages,
7847 .direct_IO = btrfs_direct_IO,
7848 .invalidatepage = btrfs_invalidatepage,
7849 .releasepage = btrfs_releasepage,
7850 .set_page_dirty = btrfs_set_page_dirty,
7851 .error_remove_page = generic_error_remove_page,
7852};
7853
7854static const struct address_space_operations btrfs_symlink_aops = {
7855 .readpage = btrfs_readpage,
7856 .writepage = btrfs_writepage,
7857 .invalidatepage = btrfs_invalidatepage,
7858 .releasepage = btrfs_releasepage,
7859};
7860
7861static const struct inode_operations btrfs_file_inode_operations = {
7862 .getattr = btrfs_getattr,
7863 .setattr = btrfs_setattr,
7864 .setxattr = btrfs_setxattr,
7865 .getxattr = btrfs_getxattr,
7866 .listxattr = btrfs_listxattr,
7867 .removexattr = btrfs_removexattr,
7868 .permission = btrfs_permission,
7869 .fiemap = btrfs_fiemap,
7870 .get_acl = btrfs_get_acl,
7871 .update_time = btrfs_update_time,
7872};
7873static const struct inode_operations btrfs_special_inode_operations = {
7874 .getattr = btrfs_getattr,
7875 .setattr = btrfs_setattr,
7876 .permission = btrfs_permission,
7877 .setxattr = btrfs_setxattr,
7878 .getxattr = btrfs_getxattr,
7879 .listxattr = btrfs_listxattr,
7880 .removexattr = btrfs_removexattr,
7881 .get_acl = btrfs_get_acl,
7882 .update_time = btrfs_update_time,
7883};
7884static const struct inode_operations btrfs_symlink_inode_operations = {
7885 .readlink = generic_readlink,
7886 .follow_link = page_follow_link_light,
7887 .put_link = page_put_link,
7888 .getattr = btrfs_getattr,
7889 .setattr = btrfs_setattr,
7890 .permission = btrfs_permission,
7891 .setxattr = btrfs_setxattr,
7892 .getxattr = btrfs_getxattr,
7893 .listxattr = btrfs_listxattr,
7894 .removexattr = btrfs_removexattr,
7895 .get_acl = btrfs_get_acl,
7896 .update_time = btrfs_update_time,
7897};
7898
7899const struct dentry_operations btrfs_dentry_operations = {
7900 .d_delete = btrfs_dentry_delete,
7901 .d_release = btrfs_dentry_release,
7902};