]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame_incremental - fs/btrfs/relocation.c
btrfs: call functions that always use the same root with fs_info instead
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / relocation.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2009 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/pagemap.h>
21#include <linux/writeback.h>
22#include <linux/blkdev.h>
23#include <linux/rbtree.h>
24#include <linux/slab.h>
25#include "ctree.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "volumes.h"
29#include "locking.h"
30#include "btrfs_inode.h"
31#include "async-thread.h"
32#include "free-space-cache.h"
33#include "inode-map.h"
34#include "qgroup.h"
35
36/*
37 * backref_node, mapping_node and tree_block start with this
38 */
39struct tree_entry {
40 struct rb_node rb_node;
41 u64 bytenr;
42};
43
44/*
45 * present a tree block in the backref cache
46 */
47struct backref_node {
48 struct rb_node rb_node;
49 u64 bytenr;
50
51 u64 new_bytenr;
52 /* objectid of tree block owner, can be not uptodate */
53 u64 owner;
54 /* link to pending, changed or detached list */
55 struct list_head list;
56 /* list of upper level blocks reference this block */
57 struct list_head upper;
58 /* list of child blocks in the cache */
59 struct list_head lower;
60 /* NULL if this node is not tree root */
61 struct btrfs_root *root;
62 /* extent buffer got by COW the block */
63 struct extent_buffer *eb;
64 /* level of tree block */
65 unsigned int level:8;
66 /* is the block in non-reference counted tree */
67 unsigned int cowonly:1;
68 /* 1 if no child node in the cache */
69 unsigned int lowest:1;
70 /* is the extent buffer locked */
71 unsigned int locked:1;
72 /* has the block been processed */
73 unsigned int processed:1;
74 /* have backrefs of this block been checked */
75 unsigned int checked:1;
76 /*
77 * 1 if corresponding block has been cowed but some upper
78 * level block pointers may not point to the new location
79 */
80 unsigned int pending:1;
81 /*
82 * 1 if the backref node isn't connected to any other
83 * backref node.
84 */
85 unsigned int detached:1;
86};
87
88/*
89 * present a block pointer in the backref cache
90 */
91struct backref_edge {
92 struct list_head list[2];
93 struct backref_node *node[2];
94};
95
96#define LOWER 0
97#define UPPER 1
98#define RELOCATION_RESERVED_NODES 256
99
100struct backref_cache {
101 /* red black tree of all backref nodes in the cache */
102 struct rb_root rb_root;
103 /* for passing backref nodes to btrfs_reloc_cow_block */
104 struct backref_node *path[BTRFS_MAX_LEVEL];
105 /*
106 * list of blocks that have been cowed but some block
107 * pointers in upper level blocks may not reflect the
108 * new location
109 */
110 struct list_head pending[BTRFS_MAX_LEVEL];
111 /* list of backref nodes with no child node */
112 struct list_head leaves;
113 /* list of blocks that have been cowed in current transaction */
114 struct list_head changed;
115 /* list of detached backref node. */
116 struct list_head detached;
117
118 u64 last_trans;
119
120 int nr_nodes;
121 int nr_edges;
122};
123
124/*
125 * map address of tree root to tree
126 */
127struct mapping_node {
128 struct rb_node rb_node;
129 u64 bytenr;
130 void *data;
131};
132
133struct mapping_tree {
134 struct rb_root rb_root;
135 spinlock_t lock;
136};
137
138/*
139 * present a tree block to process
140 */
141struct tree_block {
142 struct rb_node rb_node;
143 u64 bytenr;
144 struct btrfs_key key;
145 unsigned int level:8;
146 unsigned int key_ready:1;
147};
148
149#define MAX_EXTENTS 128
150
151struct file_extent_cluster {
152 u64 start;
153 u64 end;
154 u64 boundary[MAX_EXTENTS];
155 unsigned int nr;
156};
157
158struct reloc_control {
159 /* block group to relocate */
160 struct btrfs_block_group_cache *block_group;
161 /* extent tree */
162 struct btrfs_root *extent_root;
163 /* inode for moving data */
164 struct inode *data_inode;
165
166 struct btrfs_block_rsv *block_rsv;
167
168 struct backref_cache backref_cache;
169
170 struct file_extent_cluster cluster;
171 /* tree blocks have been processed */
172 struct extent_io_tree processed_blocks;
173 /* map start of tree root to corresponding reloc tree */
174 struct mapping_tree reloc_root_tree;
175 /* list of reloc trees */
176 struct list_head reloc_roots;
177 /* size of metadata reservation for merging reloc trees */
178 u64 merging_rsv_size;
179 /* size of relocated tree nodes */
180 u64 nodes_relocated;
181 /* reserved size for block group relocation*/
182 u64 reserved_bytes;
183
184 u64 search_start;
185 u64 extents_found;
186
187 unsigned int stage:8;
188 unsigned int create_reloc_tree:1;
189 unsigned int merge_reloc_tree:1;
190 unsigned int found_file_extent:1;
191};
192
193/* stages of data relocation */
194#define MOVE_DATA_EXTENTS 0
195#define UPDATE_DATA_PTRS 1
196
197static void remove_backref_node(struct backref_cache *cache,
198 struct backref_node *node);
199static void __mark_block_processed(struct reloc_control *rc,
200 struct backref_node *node);
201
202static void mapping_tree_init(struct mapping_tree *tree)
203{
204 tree->rb_root = RB_ROOT;
205 spin_lock_init(&tree->lock);
206}
207
208static void backref_cache_init(struct backref_cache *cache)
209{
210 int i;
211 cache->rb_root = RB_ROOT;
212 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
213 INIT_LIST_HEAD(&cache->pending[i]);
214 INIT_LIST_HEAD(&cache->changed);
215 INIT_LIST_HEAD(&cache->detached);
216 INIT_LIST_HEAD(&cache->leaves);
217}
218
219static void backref_cache_cleanup(struct backref_cache *cache)
220{
221 struct backref_node *node;
222 int i;
223
224 while (!list_empty(&cache->detached)) {
225 node = list_entry(cache->detached.next,
226 struct backref_node, list);
227 remove_backref_node(cache, node);
228 }
229
230 while (!list_empty(&cache->leaves)) {
231 node = list_entry(cache->leaves.next,
232 struct backref_node, lower);
233 remove_backref_node(cache, node);
234 }
235
236 cache->last_trans = 0;
237
238 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
239 ASSERT(list_empty(&cache->pending[i]));
240 ASSERT(list_empty(&cache->changed));
241 ASSERT(list_empty(&cache->detached));
242 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
243 ASSERT(!cache->nr_nodes);
244 ASSERT(!cache->nr_edges);
245}
246
247static struct backref_node *alloc_backref_node(struct backref_cache *cache)
248{
249 struct backref_node *node;
250
251 node = kzalloc(sizeof(*node), GFP_NOFS);
252 if (node) {
253 INIT_LIST_HEAD(&node->list);
254 INIT_LIST_HEAD(&node->upper);
255 INIT_LIST_HEAD(&node->lower);
256 RB_CLEAR_NODE(&node->rb_node);
257 cache->nr_nodes++;
258 }
259 return node;
260}
261
262static void free_backref_node(struct backref_cache *cache,
263 struct backref_node *node)
264{
265 if (node) {
266 cache->nr_nodes--;
267 kfree(node);
268 }
269}
270
271static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
272{
273 struct backref_edge *edge;
274
275 edge = kzalloc(sizeof(*edge), GFP_NOFS);
276 if (edge)
277 cache->nr_edges++;
278 return edge;
279}
280
281static void free_backref_edge(struct backref_cache *cache,
282 struct backref_edge *edge)
283{
284 if (edge) {
285 cache->nr_edges--;
286 kfree(edge);
287 }
288}
289
290static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
291 struct rb_node *node)
292{
293 struct rb_node **p = &root->rb_node;
294 struct rb_node *parent = NULL;
295 struct tree_entry *entry;
296
297 while (*p) {
298 parent = *p;
299 entry = rb_entry(parent, struct tree_entry, rb_node);
300
301 if (bytenr < entry->bytenr)
302 p = &(*p)->rb_left;
303 else if (bytenr > entry->bytenr)
304 p = &(*p)->rb_right;
305 else
306 return parent;
307 }
308
309 rb_link_node(node, parent, p);
310 rb_insert_color(node, root);
311 return NULL;
312}
313
314static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
315{
316 struct rb_node *n = root->rb_node;
317 struct tree_entry *entry;
318
319 while (n) {
320 entry = rb_entry(n, struct tree_entry, rb_node);
321
322 if (bytenr < entry->bytenr)
323 n = n->rb_left;
324 else if (bytenr > entry->bytenr)
325 n = n->rb_right;
326 else
327 return n;
328 }
329 return NULL;
330}
331
332static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
333{
334
335 struct btrfs_fs_info *fs_info = NULL;
336 struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
337 rb_node);
338 if (bnode->root)
339 fs_info = bnode->root->fs_info;
340 btrfs_panic(fs_info, errno,
341 "Inconsistency in backref cache found at offset %llu",
342 bytenr);
343}
344
345/*
346 * walk up backref nodes until reach node presents tree root
347 */
348static struct backref_node *walk_up_backref(struct backref_node *node,
349 struct backref_edge *edges[],
350 int *index)
351{
352 struct backref_edge *edge;
353 int idx = *index;
354
355 while (!list_empty(&node->upper)) {
356 edge = list_entry(node->upper.next,
357 struct backref_edge, list[LOWER]);
358 edges[idx++] = edge;
359 node = edge->node[UPPER];
360 }
361 BUG_ON(node->detached);
362 *index = idx;
363 return node;
364}
365
366/*
367 * walk down backref nodes to find start of next reference path
368 */
369static struct backref_node *walk_down_backref(struct backref_edge *edges[],
370 int *index)
371{
372 struct backref_edge *edge;
373 struct backref_node *lower;
374 int idx = *index;
375
376 while (idx > 0) {
377 edge = edges[idx - 1];
378 lower = edge->node[LOWER];
379 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
380 idx--;
381 continue;
382 }
383 edge = list_entry(edge->list[LOWER].next,
384 struct backref_edge, list[LOWER]);
385 edges[idx - 1] = edge;
386 *index = idx;
387 return edge->node[UPPER];
388 }
389 *index = 0;
390 return NULL;
391}
392
393static void unlock_node_buffer(struct backref_node *node)
394{
395 if (node->locked) {
396 btrfs_tree_unlock(node->eb);
397 node->locked = 0;
398 }
399}
400
401static void drop_node_buffer(struct backref_node *node)
402{
403 if (node->eb) {
404 unlock_node_buffer(node);
405 free_extent_buffer(node->eb);
406 node->eb = NULL;
407 }
408}
409
410static void drop_backref_node(struct backref_cache *tree,
411 struct backref_node *node)
412{
413 BUG_ON(!list_empty(&node->upper));
414
415 drop_node_buffer(node);
416 list_del(&node->list);
417 list_del(&node->lower);
418 if (!RB_EMPTY_NODE(&node->rb_node))
419 rb_erase(&node->rb_node, &tree->rb_root);
420 free_backref_node(tree, node);
421}
422
423/*
424 * remove a backref node from the backref cache
425 */
426static void remove_backref_node(struct backref_cache *cache,
427 struct backref_node *node)
428{
429 struct backref_node *upper;
430 struct backref_edge *edge;
431
432 if (!node)
433 return;
434
435 BUG_ON(!node->lowest && !node->detached);
436 while (!list_empty(&node->upper)) {
437 edge = list_entry(node->upper.next, struct backref_edge,
438 list[LOWER]);
439 upper = edge->node[UPPER];
440 list_del(&edge->list[LOWER]);
441 list_del(&edge->list[UPPER]);
442 free_backref_edge(cache, edge);
443
444 if (RB_EMPTY_NODE(&upper->rb_node)) {
445 BUG_ON(!list_empty(&node->upper));
446 drop_backref_node(cache, node);
447 node = upper;
448 node->lowest = 1;
449 continue;
450 }
451 /*
452 * add the node to leaf node list if no other
453 * child block cached.
454 */
455 if (list_empty(&upper->lower)) {
456 list_add_tail(&upper->lower, &cache->leaves);
457 upper->lowest = 1;
458 }
459 }
460
461 drop_backref_node(cache, node);
462}
463
464static void update_backref_node(struct backref_cache *cache,
465 struct backref_node *node, u64 bytenr)
466{
467 struct rb_node *rb_node;
468 rb_erase(&node->rb_node, &cache->rb_root);
469 node->bytenr = bytenr;
470 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
471 if (rb_node)
472 backref_tree_panic(rb_node, -EEXIST, bytenr);
473}
474
475/*
476 * update backref cache after a transaction commit
477 */
478static int update_backref_cache(struct btrfs_trans_handle *trans,
479 struct backref_cache *cache)
480{
481 struct backref_node *node;
482 int level = 0;
483
484 if (cache->last_trans == 0) {
485 cache->last_trans = trans->transid;
486 return 0;
487 }
488
489 if (cache->last_trans == trans->transid)
490 return 0;
491
492 /*
493 * detached nodes are used to avoid unnecessary backref
494 * lookup. transaction commit changes the extent tree.
495 * so the detached nodes are no longer useful.
496 */
497 while (!list_empty(&cache->detached)) {
498 node = list_entry(cache->detached.next,
499 struct backref_node, list);
500 remove_backref_node(cache, node);
501 }
502
503 while (!list_empty(&cache->changed)) {
504 node = list_entry(cache->changed.next,
505 struct backref_node, list);
506 list_del_init(&node->list);
507 BUG_ON(node->pending);
508 update_backref_node(cache, node, node->new_bytenr);
509 }
510
511 /*
512 * some nodes can be left in the pending list if there were
513 * errors during processing the pending nodes.
514 */
515 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
516 list_for_each_entry(node, &cache->pending[level], list) {
517 BUG_ON(!node->pending);
518 if (node->bytenr == node->new_bytenr)
519 continue;
520 update_backref_node(cache, node, node->new_bytenr);
521 }
522 }
523
524 cache->last_trans = 0;
525 return 1;
526}
527
528
529static int should_ignore_root(struct btrfs_root *root)
530{
531 struct btrfs_root *reloc_root;
532
533 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
534 return 0;
535
536 reloc_root = root->reloc_root;
537 if (!reloc_root)
538 return 0;
539
540 if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
541 root->fs_info->running_transaction->transid - 1)
542 return 0;
543 /*
544 * if there is reloc tree and it was created in previous
545 * transaction backref lookup can find the reloc tree,
546 * so backref node for the fs tree root is useless for
547 * relocation.
548 */
549 return 1;
550}
551/*
552 * find reloc tree by address of tree root
553 */
554static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
555 u64 bytenr)
556{
557 struct rb_node *rb_node;
558 struct mapping_node *node;
559 struct btrfs_root *root = NULL;
560
561 spin_lock(&rc->reloc_root_tree.lock);
562 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
563 if (rb_node) {
564 node = rb_entry(rb_node, struct mapping_node, rb_node);
565 root = (struct btrfs_root *)node->data;
566 }
567 spin_unlock(&rc->reloc_root_tree.lock);
568 return root;
569}
570
571static int is_cowonly_root(u64 root_objectid)
572{
573 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
574 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
575 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
576 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
577 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
578 root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
579 root_objectid == BTRFS_UUID_TREE_OBJECTID ||
580 root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
581 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
582 return 1;
583 return 0;
584}
585
586static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
587 u64 root_objectid)
588{
589 struct btrfs_key key;
590
591 key.objectid = root_objectid;
592 key.type = BTRFS_ROOT_ITEM_KEY;
593 if (is_cowonly_root(root_objectid))
594 key.offset = 0;
595 else
596 key.offset = (u64)-1;
597
598 return btrfs_get_fs_root(fs_info, &key, false);
599}
600
601#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
602static noinline_for_stack
603struct btrfs_root *find_tree_root(struct reloc_control *rc,
604 struct extent_buffer *leaf,
605 struct btrfs_extent_ref_v0 *ref0)
606{
607 struct btrfs_root *root;
608 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
609 u64 generation = btrfs_ref_generation_v0(leaf, ref0);
610
611 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
612
613 root = read_fs_root(rc->extent_root->fs_info, root_objectid);
614 BUG_ON(IS_ERR(root));
615
616 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
617 generation != btrfs_root_generation(&root->root_item))
618 return NULL;
619
620 return root;
621}
622#endif
623
624static noinline_for_stack
625int find_inline_backref(struct extent_buffer *leaf, int slot,
626 unsigned long *ptr, unsigned long *end)
627{
628 struct btrfs_key key;
629 struct btrfs_extent_item *ei;
630 struct btrfs_tree_block_info *bi;
631 u32 item_size;
632
633 btrfs_item_key_to_cpu(leaf, &key, slot);
634
635 item_size = btrfs_item_size_nr(leaf, slot);
636#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
637 if (item_size < sizeof(*ei)) {
638 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
639 return 1;
640 }
641#endif
642 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
643 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
644 BTRFS_EXTENT_FLAG_TREE_BLOCK));
645
646 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
647 item_size <= sizeof(*ei) + sizeof(*bi)) {
648 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
649 return 1;
650 }
651 if (key.type == BTRFS_METADATA_ITEM_KEY &&
652 item_size <= sizeof(*ei)) {
653 WARN_ON(item_size < sizeof(*ei));
654 return 1;
655 }
656
657 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
658 bi = (struct btrfs_tree_block_info *)(ei + 1);
659 *ptr = (unsigned long)(bi + 1);
660 } else {
661 *ptr = (unsigned long)(ei + 1);
662 }
663 *end = (unsigned long)ei + item_size;
664 return 0;
665}
666
667/*
668 * build backref tree for a given tree block. root of the backref tree
669 * corresponds the tree block, leaves of the backref tree correspond
670 * roots of b-trees that reference the tree block.
671 *
672 * the basic idea of this function is check backrefs of a given block
673 * to find upper level blocks that reference the block, and then check
674 * backrefs of these upper level blocks recursively. the recursion stop
675 * when tree root is reached or backrefs for the block is cached.
676 *
677 * NOTE: if we find backrefs for a block are cached, we know backrefs
678 * for all upper level blocks that directly/indirectly reference the
679 * block are also cached.
680 */
681static noinline_for_stack
682struct backref_node *build_backref_tree(struct reloc_control *rc,
683 struct btrfs_key *node_key,
684 int level, u64 bytenr)
685{
686 struct backref_cache *cache = &rc->backref_cache;
687 struct btrfs_path *path1;
688 struct btrfs_path *path2;
689 struct extent_buffer *eb;
690 struct btrfs_root *root;
691 struct backref_node *cur;
692 struct backref_node *upper;
693 struct backref_node *lower;
694 struct backref_node *node = NULL;
695 struct backref_node *exist = NULL;
696 struct backref_edge *edge;
697 struct rb_node *rb_node;
698 struct btrfs_key key;
699 unsigned long end;
700 unsigned long ptr;
701 LIST_HEAD(list);
702 LIST_HEAD(useless);
703 int cowonly;
704 int ret;
705 int err = 0;
706 bool need_check = true;
707
708 path1 = btrfs_alloc_path();
709 path2 = btrfs_alloc_path();
710 if (!path1 || !path2) {
711 err = -ENOMEM;
712 goto out;
713 }
714 path1->reada = READA_FORWARD;
715 path2->reada = READA_FORWARD;
716
717 node = alloc_backref_node(cache);
718 if (!node) {
719 err = -ENOMEM;
720 goto out;
721 }
722
723 node->bytenr = bytenr;
724 node->level = level;
725 node->lowest = 1;
726 cur = node;
727again:
728 end = 0;
729 ptr = 0;
730 key.objectid = cur->bytenr;
731 key.type = BTRFS_METADATA_ITEM_KEY;
732 key.offset = (u64)-1;
733
734 path1->search_commit_root = 1;
735 path1->skip_locking = 1;
736 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
737 0, 0);
738 if (ret < 0) {
739 err = ret;
740 goto out;
741 }
742 ASSERT(ret);
743 ASSERT(path1->slots[0]);
744
745 path1->slots[0]--;
746
747 WARN_ON(cur->checked);
748 if (!list_empty(&cur->upper)) {
749 /*
750 * the backref was added previously when processing
751 * backref of type BTRFS_TREE_BLOCK_REF_KEY
752 */
753 ASSERT(list_is_singular(&cur->upper));
754 edge = list_entry(cur->upper.next, struct backref_edge,
755 list[LOWER]);
756 ASSERT(list_empty(&edge->list[UPPER]));
757 exist = edge->node[UPPER];
758 /*
759 * add the upper level block to pending list if we need
760 * check its backrefs
761 */
762 if (!exist->checked)
763 list_add_tail(&edge->list[UPPER], &list);
764 } else {
765 exist = NULL;
766 }
767
768 while (1) {
769 cond_resched();
770 eb = path1->nodes[0];
771
772 if (ptr >= end) {
773 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
774 ret = btrfs_next_leaf(rc->extent_root, path1);
775 if (ret < 0) {
776 err = ret;
777 goto out;
778 }
779 if (ret > 0)
780 break;
781 eb = path1->nodes[0];
782 }
783
784 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
785 if (key.objectid != cur->bytenr) {
786 WARN_ON(exist);
787 break;
788 }
789
790 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
791 key.type == BTRFS_METADATA_ITEM_KEY) {
792 ret = find_inline_backref(eb, path1->slots[0],
793 &ptr, &end);
794 if (ret)
795 goto next;
796 }
797 }
798
799 if (ptr < end) {
800 /* update key for inline back ref */
801 struct btrfs_extent_inline_ref *iref;
802 iref = (struct btrfs_extent_inline_ref *)ptr;
803 key.type = btrfs_extent_inline_ref_type(eb, iref);
804 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
805 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
806 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
807 }
808
809 if (exist &&
810 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
811 exist->owner == key.offset) ||
812 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
813 exist->bytenr == key.offset))) {
814 exist = NULL;
815 goto next;
816 }
817
818#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
819 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
820 key.type == BTRFS_EXTENT_REF_V0_KEY) {
821 if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
822 struct btrfs_extent_ref_v0 *ref0;
823 ref0 = btrfs_item_ptr(eb, path1->slots[0],
824 struct btrfs_extent_ref_v0);
825 if (key.objectid == key.offset) {
826 root = find_tree_root(rc, eb, ref0);
827 if (root && !should_ignore_root(root))
828 cur->root = root;
829 else
830 list_add(&cur->list, &useless);
831 break;
832 }
833 if (is_cowonly_root(btrfs_ref_root_v0(eb,
834 ref0)))
835 cur->cowonly = 1;
836 }
837#else
838 ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
839 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
840#endif
841 if (key.objectid == key.offset) {
842 /*
843 * only root blocks of reloc trees use
844 * backref of this type.
845 */
846 root = find_reloc_root(rc, cur->bytenr);
847 ASSERT(root);
848 cur->root = root;
849 break;
850 }
851
852 edge = alloc_backref_edge(cache);
853 if (!edge) {
854 err = -ENOMEM;
855 goto out;
856 }
857 rb_node = tree_search(&cache->rb_root, key.offset);
858 if (!rb_node) {
859 upper = alloc_backref_node(cache);
860 if (!upper) {
861 free_backref_edge(cache, edge);
862 err = -ENOMEM;
863 goto out;
864 }
865 upper->bytenr = key.offset;
866 upper->level = cur->level + 1;
867 /*
868 * backrefs for the upper level block isn't
869 * cached, add the block to pending list
870 */
871 list_add_tail(&edge->list[UPPER], &list);
872 } else {
873 upper = rb_entry(rb_node, struct backref_node,
874 rb_node);
875 ASSERT(upper->checked);
876 INIT_LIST_HEAD(&edge->list[UPPER]);
877 }
878 list_add_tail(&edge->list[LOWER], &cur->upper);
879 edge->node[LOWER] = cur;
880 edge->node[UPPER] = upper;
881
882 goto next;
883 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
884 goto next;
885 }
886
887 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
888 root = read_fs_root(rc->extent_root->fs_info, key.offset);
889 if (IS_ERR(root)) {
890 err = PTR_ERR(root);
891 goto out;
892 }
893
894 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
895 cur->cowonly = 1;
896
897 if (btrfs_root_level(&root->root_item) == cur->level) {
898 /* tree root */
899 ASSERT(btrfs_root_bytenr(&root->root_item) ==
900 cur->bytenr);
901 if (should_ignore_root(root))
902 list_add(&cur->list, &useless);
903 else
904 cur->root = root;
905 break;
906 }
907
908 level = cur->level + 1;
909
910 /*
911 * searching the tree to find upper level blocks
912 * reference the block.
913 */
914 path2->search_commit_root = 1;
915 path2->skip_locking = 1;
916 path2->lowest_level = level;
917 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
918 path2->lowest_level = 0;
919 if (ret < 0) {
920 err = ret;
921 goto out;
922 }
923 if (ret > 0 && path2->slots[level] > 0)
924 path2->slots[level]--;
925
926 eb = path2->nodes[level];
927 if (btrfs_node_blockptr(eb, path2->slots[level]) !=
928 cur->bytenr) {
929 btrfs_err(root->fs_info,
930 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
931 cur->bytenr, level - 1, root->objectid,
932 node_key->objectid, node_key->type,
933 node_key->offset);
934 err = -ENOENT;
935 goto out;
936 }
937 lower = cur;
938 need_check = true;
939 for (; level < BTRFS_MAX_LEVEL; level++) {
940 if (!path2->nodes[level]) {
941 ASSERT(btrfs_root_bytenr(&root->root_item) ==
942 lower->bytenr);
943 if (should_ignore_root(root))
944 list_add(&lower->list, &useless);
945 else
946 lower->root = root;
947 break;
948 }
949
950 edge = alloc_backref_edge(cache);
951 if (!edge) {
952 err = -ENOMEM;
953 goto out;
954 }
955
956 eb = path2->nodes[level];
957 rb_node = tree_search(&cache->rb_root, eb->start);
958 if (!rb_node) {
959 upper = alloc_backref_node(cache);
960 if (!upper) {
961 free_backref_edge(cache, edge);
962 err = -ENOMEM;
963 goto out;
964 }
965 upper->bytenr = eb->start;
966 upper->owner = btrfs_header_owner(eb);
967 upper->level = lower->level + 1;
968 if (!test_bit(BTRFS_ROOT_REF_COWS,
969 &root->state))
970 upper->cowonly = 1;
971
972 /*
973 * if we know the block isn't shared
974 * we can void checking its backrefs.
975 */
976 if (btrfs_block_can_be_shared(root, eb))
977 upper->checked = 0;
978 else
979 upper->checked = 1;
980
981 /*
982 * add the block to pending list if we
983 * need check its backrefs, we only do this once
984 * while walking up a tree as we will catch
985 * anything else later on.
986 */
987 if (!upper->checked && need_check) {
988 need_check = false;
989 list_add_tail(&edge->list[UPPER],
990 &list);
991 } else {
992 if (upper->checked)
993 need_check = true;
994 INIT_LIST_HEAD(&edge->list[UPPER]);
995 }
996 } else {
997 upper = rb_entry(rb_node, struct backref_node,
998 rb_node);
999 ASSERT(upper->checked);
1000 INIT_LIST_HEAD(&edge->list[UPPER]);
1001 if (!upper->owner)
1002 upper->owner = btrfs_header_owner(eb);
1003 }
1004 list_add_tail(&edge->list[LOWER], &lower->upper);
1005 edge->node[LOWER] = lower;
1006 edge->node[UPPER] = upper;
1007
1008 if (rb_node)
1009 break;
1010 lower = upper;
1011 upper = NULL;
1012 }
1013 btrfs_release_path(path2);
1014next:
1015 if (ptr < end) {
1016 ptr += btrfs_extent_inline_ref_size(key.type);
1017 if (ptr >= end) {
1018 WARN_ON(ptr > end);
1019 ptr = 0;
1020 end = 0;
1021 }
1022 }
1023 if (ptr >= end)
1024 path1->slots[0]++;
1025 }
1026 btrfs_release_path(path1);
1027
1028 cur->checked = 1;
1029 WARN_ON(exist);
1030
1031 /* the pending list isn't empty, take the first block to process */
1032 if (!list_empty(&list)) {
1033 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1034 list_del_init(&edge->list[UPPER]);
1035 cur = edge->node[UPPER];
1036 goto again;
1037 }
1038
1039 /*
1040 * everything goes well, connect backref nodes and insert backref nodes
1041 * into the cache.
1042 */
1043 ASSERT(node->checked);
1044 cowonly = node->cowonly;
1045 if (!cowonly) {
1046 rb_node = tree_insert(&cache->rb_root, node->bytenr,
1047 &node->rb_node);
1048 if (rb_node)
1049 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1050 list_add_tail(&node->lower, &cache->leaves);
1051 }
1052
1053 list_for_each_entry(edge, &node->upper, list[LOWER])
1054 list_add_tail(&edge->list[UPPER], &list);
1055
1056 while (!list_empty(&list)) {
1057 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1058 list_del_init(&edge->list[UPPER]);
1059 upper = edge->node[UPPER];
1060 if (upper->detached) {
1061 list_del(&edge->list[LOWER]);
1062 lower = edge->node[LOWER];
1063 free_backref_edge(cache, edge);
1064 if (list_empty(&lower->upper))
1065 list_add(&lower->list, &useless);
1066 continue;
1067 }
1068
1069 if (!RB_EMPTY_NODE(&upper->rb_node)) {
1070 if (upper->lowest) {
1071 list_del_init(&upper->lower);
1072 upper->lowest = 0;
1073 }
1074
1075 list_add_tail(&edge->list[UPPER], &upper->lower);
1076 continue;
1077 }
1078
1079 if (!upper->checked) {
1080 /*
1081 * Still want to blow up for developers since this is a
1082 * logic bug.
1083 */
1084 ASSERT(0);
1085 err = -EINVAL;
1086 goto out;
1087 }
1088 if (cowonly != upper->cowonly) {
1089 ASSERT(0);
1090 err = -EINVAL;
1091 goto out;
1092 }
1093
1094 if (!cowonly) {
1095 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1096 &upper->rb_node);
1097 if (rb_node)
1098 backref_tree_panic(rb_node, -EEXIST,
1099 upper->bytenr);
1100 }
1101
1102 list_add_tail(&edge->list[UPPER], &upper->lower);
1103
1104 list_for_each_entry(edge, &upper->upper, list[LOWER])
1105 list_add_tail(&edge->list[UPPER], &list);
1106 }
1107 /*
1108 * process useless backref nodes. backref nodes for tree leaves
1109 * are deleted from the cache. backref nodes for upper level
1110 * tree blocks are left in the cache to avoid unnecessary backref
1111 * lookup.
1112 */
1113 while (!list_empty(&useless)) {
1114 upper = list_entry(useless.next, struct backref_node, list);
1115 list_del_init(&upper->list);
1116 ASSERT(list_empty(&upper->upper));
1117 if (upper == node)
1118 node = NULL;
1119 if (upper->lowest) {
1120 list_del_init(&upper->lower);
1121 upper->lowest = 0;
1122 }
1123 while (!list_empty(&upper->lower)) {
1124 edge = list_entry(upper->lower.next,
1125 struct backref_edge, list[UPPER]);
1126 list_del(&edge->list[UPPER]);
1127 list_del(&edge->list[LOWER]);
1128 lower = edge->node[LOWER];
1129 free_backref_edge(cache, edge);
1130
1131 if (list_empty(&lower->upper))
1132 list_add(&lower->list, &useless);
1133 }
1134 __mark_block_processed(rc, upper);
1135 if (upper->level > 0) {
1136 list_add(&upper->list, &cache->detached);
1137 upper->detached = 1;
1138 } else {
1139 rb_erase(&upper->rb_node, &cache->rb_root);
1140 free_backref_node(cache, upper);
1141 }
1142 }
1143out:
1144 btrfs_free_path(path1);
1145 btrfs_free_path(path2);
1146 if (err) {
1147 while (!list_empty(&useless)) {
1148 lower = list_entry(useless.next,
1149 struct backref_node, list);
1150 list_del_init(&lower->list);
1151 }
1152 while (!list_empty(&list)) {
1153 edge = list_first_entry(&list, struct backref_edge,
1154 list[UPPER]);
1155 list_del(&edge->list[UPPER]);
1156 list_del(&edge->list[LOWER]);
1157 lower = edge->node[LOWER];
1158 upper = edge->node[UPPER];
1159 free_backref_edge(cache, edge);
1160
1161 /*
1162 * Lower is no longer linked to any upper backref nodes
1163 * and isn't in the cache, we can free it ourselves.
1164 */
1165 if (list_empty(&lower->upper) &&
1166 RB_EMPTY_NODE(&lower->rb_node))
1167 list_add(&lower->list, &useless);
1168
1169 if (!RB_EMPTY_NODE(&upper->rb_node))
1170 continue;
1171
1172 /* Add this guy's upper edges to the list to process */
1173 list_for_each_entry(edge, &upper->upper, list[LOWER])
1174 list_add_tail(&edge->list[UPPER], &list);
1175 if (list_empty(&upper->upper))
1176 list_add(&upper->list, &useless);
1177 }
1178
1179 while (!list_empty(&useless)) {
1180 lower = list_entry(useless.next,
1181 struct backref_node, list);
1182 list_del_init(&lower->list);
1183 if (lower == node)
1184 node = NULL;
1185 free_backref_node(cache, lower);
1186 }
1187
1188 free_backref_node(cache, node);
1189 return ERR_PTR(err);
1190 }
1191 ASSERT(!node || !node->detached);
1192 return node;
1193}
1194
1195/*
1196 * helper to add backref node for the newly created snapshot.
1197 * the backref node is created by cloning backref node that
1198 * corresponds to root of source tree
1199 */
1200static int clone_backref_node(struct btrfs_trans_handle *trans,
1201 struct reloc_control *rc,
1202 struct btrfs_root *src,
1203 struct btrfs_root *dest)
1204{
1205 struct btrfs_root *reloc_root = src->reloc_root;
1206 struct backref_cache *cache = &rc->backref_cache;
1207 struct backref_node *node = NULL;
1208 struct backref_node *new_node;
1209 struct backref_edge *edge;
1210 struct backref_edge *new_edge;
1211 struct rb_node *rb_node;
1212
1213 if (cache->last_trans > 0)
1214 update_backref_cache(trans, cache);
1215
1216 rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1217 if (rb_node) {
1218 node = rb_entry(rb_node, struct backref_node, rb_node);
1219 if (node->detached)
1220 node = NULL;
1221 else
1222 BUG_ON(node->new_bytenr != reloc_root->node->start);
1223 }
1224
1225 if (!node) {
1226 rb_node = tree_search(&cache->rb_root,
1227 reloc_root->commit_root->start);
1228 if (rb_node) {
1229 node = rb_entry(rb_node, struct backref_node,
1230 rb_node);
1231 BUG_ON(node->detached);
1232 }
1233 }
1234
1235 if (!node)
1236 return 0;
1237
1238 new_node = alloc_backref_node(cache);
1239 if (!new_node)
1240 return -ENOMEM;
1241
1242 new_node->bytenr = dest->node->start;
1243 new_node->level = node->level;
1244 new_node->lowest = node->lowest;
1245 new_node->checked = 1;
1246 new_node->root = dest;
1247
1248 if (!node->lowest) {
1249 list_for_each_entry(edge, &node->lower, list[UPPER]) {
1250 new_edge = alloc_backref_edge(cache);
1251 if (!new_edge)
1252 goto fail;
1253
1254 new_edge->node[UPPER] = new_node;
1255 new_edge->node[LOWER] = edge->node[LOWER];
1256 list_add_tail(&new_edge->list[UPPER],
1257 &new_node->lower);
1258 }
1259 } else {
1260 list_add_tail(&new_node->lower, &cache->leaves);
1261 }
1262
1263 rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1264 &new_node->rb_node);
1265 if (rb_node)
1266 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1267
1268 if (!new_node->lowest) {
1269 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1270 list_add_tail(&new_edge->list[LOWER],
1271 &new_edge->node[LOWER]->upper);
1272 }
1273 }
1274 return 0;
1275fail:
1276 while (!list_empty(&new_node->lower)) {
1277 new_edge = list_entry(new_node->lower.next,
1278 struct backref_edge, list[UPPER]);
1279 list_del(&new_edge->list[UPPER]);
1280 free_backref_edge(cache, new_edge);
1281 }
1282 free_backref_node(cache, new_node);
1283 return -ENOMEM;
1284}
1285
1286/*
1287 * helper to add 'address of tree root -> reloc tree' mapping
1288 */
1289static int __must_check __add_reloc_root(struct btrfs_root *root)
1290{
1291 struct rb_node *rb_node;
1292 struct mapping_node *node;
1293 struct reloc_control *rc = root->fs_info->reloc_ctl;
1294
1295 node = kmalloc(sizeof(*node), GFP_NOFS);
1296 if (!node)
1297 return -ENOMEM;
1298
1299 node->bytenr = root->node->start;
1300 node->data = root;
1301
1302 spin_lock(&rc->reloc_root_tree.lock);
1303 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1304 node->bytenr, &node->rb_node);
1305 spin_unlock(&rc->reloc_root_tree.lock);
1306 if (rb_node) {
1307 btrfs_panic(root->fs_info, -EEXIST,
1308 "Duplicate root found for start=%llu while inserting into relocation tree",
1309 node->bytenr);
1310 kfree(node);
1311 return -EEXIST;
1312 }
1313
1314 list_add_tail(&root->root_list, &rc->reloc_roots);
1315 return 0;
1316}
1317
1318/*
1319 * helper to delete the 'address of tree root -> reloc tree'
1320 * mapping
1321 */
1322static void __del_reloc_root(struct btrfs_root *root)
1323{
1324 struct rb_node *rb_node;
1325 struct mapping_node *node = NULL;
1326 struct reloc_control *rc = root->fs_info->reloc_ctl;
1327
1328 spin_lock(&rc->reloc_root_tree.lock);
1329 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1330 root->node->start);
1331 if (rb_node) {
1332 node = rb_entry(rb_node, struct mapping_node, rb_node);
1333 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1334 }
1335 spin_unlock(&rc->reloc_root_tree.lock);
1336
1337 if (!node)
1338 return;
1339 BUG_ON((struct btrfs_root *)node->data != root);
1340
1341 spin_lock(&root->fs_info->trans_lock);
1342 list_del_init(&root->root_list);
1343 spin_unlock(&root->fs_info->trans_lock);
1344 kfree(node);
1345}
1346
1347/*
1348 * helper to update the 'address of tree root -> reloc tree'
1349 * mapping
1350 */
1351static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1352{
1353 struct rb_node *rb_node;
1354 struct mapping_node *node = NULL;
1355 struct reloc_control *rc = root->fs_info->reloc_ctl;
1356
1357 spin_lock(&rc->reloc_root_tree.lock);
1358 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1359 root->node->start);
1360 if (rb_node) {
1361 node = rb_entry(rb_node, struct mapping_node, rb_node);
1362 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1363 }
1364 spin_unlock(&rc->reloc_root_tree.lock);
1365
1366 if (!node)
1367 return 0;
1368 BUG_ON((struct btrfs_root *)node->data != root);
1369
1370 spin_lock(&rc->reloc_root_tree.lock);
1371 node->bytenr = new_bytenr;
1372 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1373 node->bytenr, &node->rb_node);
1374 spin_unlock(&rc->reloc_root_tree.lock);
1375 if (rb_node)
1376 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1377 return 0;
1378}
1379
1380static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1381 struct btrfs_root *root, u64 objectid)
1382{
1383 struct btrfs_root *reloc_root;
1384 struct extent_buffer *eb;
1385 struct btrfs_root_item *root_item;
1386 struct btrfs_key root_key;
1387 u64 last_snap = 0;
1388 int ret;
1389
1390 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1391 BUG_ON(!root_item);
1392
1393 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1394 root_key.type = BTRFS_ROOT_ITEM_KEY;
1395 root_key.offset = objectid;
1396
1397 if (root->root_key.objectid == objectid) {
1398 /* called by btrfs_init_reloc_root */
1399 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1400 BTRFS_TREE_RELOC_OBJECTID);
1401 BUG_ON(ret);
1402
1403 last_snap = btrfs_root_last_snapshot(&root->root_item);
1404 btrfs_set_root_last_snapshot(&root->root_item,
1405 trans->transid - 1);
1406 } else {
1407 /*
1408 * called by btrfs_reloc_post_snapshot_hook.
1409 * the source tree is a reloc tree, all tree blocks
1410 * modified after it was created have RELOC flag
1411 * set in their headers. so it's OK to not update
1412 * the 'last_snapshot'.
1413 */
1414 ret = btrfs_copy_root(trans, root, root->node, &eb,
1415 BTRFS_TREE_RELOC_OBJECTID);
1416 BUG_ON(ret);
1417 }
1418
1419 memcpy(root_item, &root->root_item, sizeof(*root_item));
1420 btrfs_set_root_bytenr(root_item, eb->start);
1421 btrfs_set_root_level(root_item, btrfs_header_level(eb));
1422 btrfs_set_root_generation(root_item, trans->transid);
1423
1424 if (root->root_key.objectid == objectid) {
1425 btrfs_set_root_refs(root_item, 0);
1426 memset(&root_item->drop_progress, 0,
1427 sizeof(struct btrfs_disk_key));
1428 root_item->drop_level = 0;
1429 /*
1430 * abuse rtransid, it is safe because it is impossible to
1431 * receive data into a relocation tree.
1432 */
1433 btrfs_set_root_rtransid(root_item, last_snap);
1434 btrfs_set_root_otransid(root_item, trans->transid);
1435 }
1436
1437 btrfs_tree_unlock(eb);
1438 free_extent_buffer(eb);
1439
1440 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1441 &root_key, root_item);
1442 BUG_ON(ret);
1443 kfree(root_item);
1444
1445 reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1446 BUG_ON(IS_ERR(reloc_root));
1447 reloc_root->last_trans = trans->transid;
1448 return reloc_root;
1449}
1450
1451/*
1452 * create reloc tree for a given fs tree. reloc tree is just a
1453 * snapshot of the fs tree with special root objectid.
1454 */
1455int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1456 struct btrfs_root *root)
1457{
1458 struct btrfs_root *reloc_root;
1459 struct reloc_control *rc = root->fs_info->reloc_ctl;
1460 struct btrfs_block_rsv *rsv;
1461 int clear_rsv = 0;
1462 int ret;
1463
1464 if (root->reloc_root) {
1465 reloc_root = root->reloc_root;
1466 reloc_root->last_trans = trans->transid;
1467 return 0;
1468 }
1469
1470 if (!rc || !rc->create_reloc_tree ||
1471 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1472 return 0;
1473
1474 if (!trans->reloc_reserved) {
1475 rsv = trans->block_rsv;
1476 trans->block_rsv = rc->block_rsv;
1477 clear_rsv = 1;
1478 }
1479 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1480 if (clear_rsv)
1481 trans->block_rsv = rsv;
1482
1483 ret = __add_reloc_root(reloc_root);
1484 BUG_ON(ret < 0);
1485 root->reloc_root = reloc_root;
1486 return 0;
1487}
1488
1489/*
1490 * update root item of reloc tree
1491 */
1492int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1493 struct btrfs_root *root)
1494{
1495 struct btrfs_root *reloc_root;
1496 struct btrfs_root_item *root_item;
1497 int ret;
1498
1499 if (!root->reloc_root)
1500 goto out;
1501
1502 reloc_root = root->reloc_root;
1503 root_item = &reloc_root->root_item;
1504
1505 if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1506 btrfs_root_refs(root_item) == 0) {
1507 root->reloc_root = NULL;
1508 __del_reloc_root(reloc_root);
1509 }
1510
1511 if (reloc_root->commit_root != reloc_root->node) {
1512 btrfs_set_root_node(root_item, reloc_root->node);
1513 free_extent_buffer(reloc_root->commit_root);
1514 reloc_root->commit_root = btrfs_root_node(reloc_root);
1515 }
1516
1517 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1518 &reloc_root->root_key, root_item);
1519 BUG_ON(ret);
1520
1521out:
1522 return 0;
1523}
1524
1525/*
1526 * helper to find first cached inode with inode number >= objectid
1527 * in a subvolume
1528 */
1529static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1530{
1531 struct rb_node *node;
1532 struct rb_node *prev;
1533 struct btrfs_inode *entry;
1534 struct inode *inode;
1535
1536 spin_lock(&root->inode_lock);
1537again:
1538 node = root->inode_tree.rb_node;
1539 prev = NULL;
1540 while (node) {
1541 prev = node;
1542 entry = rb_entry(node, struct btrfs_inode, rb_node);
1543
1544 if (objectid < btrfs_ino(&entry->vfs_inode))
1545 node = node->rb_left;
1546 else if (objectid > btrfs_ino(&entry->vfs_inode))
1547 node = node->rb_right;
1548 else
1549 break;
1550 }
1551 if (!node) {
1552 while (prev) {
1553 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1554 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1555 node = prev;
1556 break;
1557 }
1558 prev = rb_next(prev);
1559 }
1560 }
1561 while (node) {
1562 entry = rb_entry(node, struct btrfs_inode, rb_node);
1563 inode = igrab(&entry->vfs_inode);
1564 if (inode) {
1565 spin_unlock(&root->inode_lock);
1566 return inode;
1567 }
1568
1569 objectid = btrfs_ino(&entry->vfs_inode) + 1;
1570 if (cond_resched_lock(&root->inode_lock))
1571 goto again;
1572
1573 node = rb_next(node);
1574 }
1575 spin_unlock(&root->inode_lock);
1576 return NULL;
1577}
1578
1579static int in_block_group(u64 bytenr,
1580 struct btrfs_block_group_cache *block_group)
1581{
1582 if (bytenr >= block_group->key.objectid &&
1583 bytenr < block_group->key.objectid + block_group->key.offset)
1584 return 1;
1585 return 0;
1586}
1587
1588/*
1589 * get new location of data
1590 */
1591static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1592 u64 bytenr, u64 num_bytes)
1593{
1594 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1595 struct btrfs_path *path;
1596 struct btrfs_file_extent_item *fi;
1597 struct extent_buffer *leaf;
1598 int ret;
1599
1600 path = btrfs_alloc_path();
1601 if (!path)
1602 return -ENOMEM;
1603
1604 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1605 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1606 bytenr, 0);
1607 if (ret < 0)
1608 goto out;
1609 if (ret > 0) {
1610 ret = -ENOENT;
1611 goto out;
1612 }
1613
1614 leaf = path->nodes[0];
1615 fi = btrfs_item_ptr(leaf, path->slots[0],
1616 struct btrfs_file_extent_item);
1617
1618 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1619 btrfs_file_extent_compression(leaf, fi) ||
1620 btrfs_file_extent_encryption(leaf, fi) ||
1621 btrfs_file_extent_other_encoding(leaf, fi));
1622
1623 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1624 ret = -EINVAL;
1625 goto out;
1626 }
1627
1628 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1629 ret = 0;
1630out:
1631 btrfs_free_path(path);
1632 return ret;
1633}
1634
1635/*
1636 * update file extent items in the tree leaf to point to
1637 * the new locations.
1638 */
1639static noinline_for_stack
1640int replace_file_extents(struct btrfs_trans_handle *trans,
1641 struct reloc_control *rc,
1642 struct btrfs_root *root,
1643 struct extent_buffer *leaf)
1644{
1645 struct btrfs_key key;
1646 struct btrfs_file_extent_item *fi;
1647 struct inode *inode = NULL;
1648 u64 parent;
1649 u64 bytenr;
1650 u64 new_bytenr = 0;
1651 u64 num_bytes;
1652 u64 end;
1653 u32 nritems;
1654 u32 i;
1655 int ret = 0;
1656 int first = 1;
1657 int dirty = 0;
1658
1659 if (rc->stage != UPDATE_DATA_PTRS)
1660 return 0;
1661
1662 /* reloc trees always use full backref */
1663 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1664 parent = leaf->start;
1665 else
1666 parent = 0;
1667
1668 nritems = btrfs_header_nritems(leaf);
1669 for (i = 0; i < nritems; i++) {
1670 cond_resched();
1671 btrfs_item_key_to_cpu(leaf, &key, i);
1672 if (key.type != BTRFS_EXTENT_DATA_KEY)
1673 continue;
1674 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1675 if (btrfs_file_extent_type(leaf, fi) ==
1676 BTRFS_FILE_EXTENT_INLINE)
1677 continue;
1678 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1679 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1680 if (bytenr == 0)
1681 continue;
1682 if (!in_block_group(bytenr, rc->block_group))
1683 continue;
1684
1685 /*
1686 * if we are modifying block in fs tree, wait for readpage
1687 * to complete and drop the extent cache
1688 */
1689 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1690 if (first) {
1691 inode = find_next_inode(root, key.objectid);
1692 first = 0;
1693 } else if (inode && btrfs_ino(inode) < key.objectid) {
1694 btrfs_add_delayed_iput(inode);
1695 inode = find_next_inode(root, key.objectid);
1696 }
1697 if (inode && btrfs_ino(inode) == key.objectid) {
1698 end = key.offset +
1699 btrfs_file_extent_num_bytes(leaf, fi);
1700 WARN_ON(!IS_ALIGNED(key.offset,
1701 root->sectorsize));
1702 WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1703 end--;
1704 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1705 key.offset, end);
1706 if (!ret)
1707 continue;
1708
1709 btrfs_drop_extent_cache(inode, key.offset, end,
1710 1);
1711 unlock_extent(&BTRFS_I(inode)->io_tree,
1712 key.offset, end);
1713 }
1714 }
1715
1716 ret = get_new_location(rc->data_inode, &new_bytenr,
1717 bytenr, num_bytes);
1718 if (ret) {
1719 /*
1720 * Don't have to abort since we've not changed anything
1721 * in the file extent yet.
1722 */
1723 break;
1724 }
1725
1726 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1727 dirty = 1;
1728
1729 key.offset -= btrfs_file_extent_offset(leaf, fi);
1730 ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1731 num_bytes, parent,
1732 btrfs_header_owner(leaf),
1733 key.objectid, key.offset);
1734 if (ret) {
1735 btrfs_abort_transaction(trans, ret);
1736 break;
1737 }
1738
1739 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1740 parent, btrfs_header_owner(leaf),
1741 key.objectid, key.offset);
1742 if (ret) {
1743 btrfs_abort_transaction(trans, ret);
1744 break;
1745 }
1746 }
1747 if (dirty)
1748 btrfs_mark_buffer_dirty(leaf);
1749 if (inode)
1750 btrfs_add_delayed_iput(inode);
1751 return ret;
1752}
1753
1754static noinline_for_stack
1755int memcmp_node_keys(struct extent_buffer *eb, int slot,
1756 struct btrfs_path *path, int level)
1757{
1758 struct btrfs_disk_key key1;
1759 struct btrfs_disk_key key2;
1760 btrfs_node_key(eb, &key1, slot);
1761 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1762 return memcmp(&key1, &key2, sizeof(key1));
1763}
1764
1765/*
1766 * try to replace tree blocks in fs tree with the new blocks
1767 * in reloc tree. tree blocks haven't been modified since the
1768 * reloc tree was create can be replaced.
1769 *
1770 * if a block was replaced, level of the block + 1 is returned.
1771 * if no block got replaced, 0 is returned. if there are other
1772 * errors, a negative error number is returned.
1773 */
1774static noinline_for_stack
1775int replace_path(struct btrfs_trans_handle *trans,
1776 struct btrfs_root *dest, struct btrfs_root *src,
1777 struct btrfs_path *path, struct btrfs_key *next_key,
1778 int lowest_level, int max_level)
1779{
1780 struct extent_buffer *eb;
1781 struct extent_buffer *parent;
1782 struct btrfs_key key;
1783 u64 old_bytenr;
1784 u64 new_bytenr;
1785 u64 old_ptr_gen;
1786 u64 new_ptr_gen;
1787 u64 last_snapshot;
1788 u32 blocksize;
1789 int cow = 0;
1790 int level;
1791 int ret;
1792 int slot;
1793
1794 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1795 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1796
1797 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1798again:
1799 slot = path->slots[lowest_level];
1800 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1801
1802 eb = btrfs_lock_root_node(dest);
1803 btrfs_set_lock_blocking(eb);
1804 level = btrfs_header_level(eb);
1805
1806 if (level < lowest_level) {
1807 btrfs_tree_unlock(eb);
1808 free_extent_buffer(eb);
1809 return 0;
1810 }
1811
1812 if (cow) {
1813 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1814 BUG_ON(ret);
1815 }
1816 btrfs_set_lock_blocking(eb);
1817
1818 if (next_key) {
1819 next_key->objectid = (u64)-1;
1820 next_key->type = (u8)-1;
1821 next_key->offset = (u64)-1;
1822 }
1823
1824 parent = eb;
1825 while (1) {
1826 level = btrfs_header_level(parent);
1827 BUG_ON(level < lowest_level);
1828
1829 ret = btrfs_bin_search(parent, &key, level, &slot);
1830 if (ret && slot > 0)
1831 slot--;
1832
1833 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1834 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1835
1836 old_bytenr = btrfs_node_blockptr(parent, slot);
1837 blocksize = dest->nodesize;
1838 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1839
1840 if (level <= max_level) {
1841 eb = path->nodes[level];
1842 new_bytenr = btrfs_node_blockptr(eb,
1843 path->slots[level]);
1844 new_ptr_gen = btrfs_node_ptr_generation(eb,
1845 path->slots[level]);
1846 } else {
1847 new_bytenr = 0;
1848 new_ptr_gen = 0;
1849 }
1850
1851 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1852 ret = level;
1853 break;
1854 }
1855
1856 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1857 memcmp_node_keys(parent, slot, path, level)) {
1858 if (level <= lowest_level) {
1859 ret = 0;
1860 break;
1861 }
1862
1863 eb = read_tree_block(dest, old_bytenr, old_ptr_gen);
1864 if (IS_ERR(eb)) {
1865 ret = PTR_ERR(eb);
1866 break;
1867 } else if (!extent_buffer_uptodate(eb)) {
1868 ret = -EIO;
1869 free_extent_buffer(eb);
1870 break;
1871 }
1872 btrfs_tree_lock(eb);
1873 if (cow) {
1874 ret = btrfs_cow_block(trans, dest, eb, parent,
1875 slot, &eb);
1876 BUG_ON(ret);
1877 }
1878 btrfs_set_lock_blocking(eb);
1879
1880 btrfs_tree_unlock(parent);
1881 free_extent_buffer(parent);
1882
1883 parent = eb;
1884 continue;
1885 }
1886
1887 if (!cow) {
1888 btrfs_tree_unlock(parent);
1889 free_extent_buffer(parent);
1890 cow = 1;
1891 goto again;
1892 }
1893
1894 btrfs_node_key_to_cpu(path->nodes[level], &key,
1895 path->slots[level]);
1896 btrfs_release_path(path);
1897
1898 path->lowest_level = level;
1899 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1900 path->lowest_level = 0;
1901 BUG_ON(ret);
1902
1903 /*
1904 * Info qgroup to trace both subtrees.
1905 *
1906 * We must trace both trees.
1907 * 1) Tree reloc subtree
1908 * If not traced, we will leak data numbers
1909 * 2) Fs subtree
1910 * If not traced, we will double count old data
1911 * and tree block numbers, if current trans doesn't free
1912 * data reloc tree inode.
1913 */
1914 ret = btrfs_qgroup_trace_subtree(trans, src, parent,
1915 btrfs_header_generation(parent),
1916 btrfs_header_level(parent));
1917 if (ret < 0)
1918 break;
1919 ret = btrfs_qgroup_trace_subtree(trans, dest,
1920 path->nodes[level],
1921 btrfs_header_generation(path->nodes[level]),
1922 btrfs_header_level(path->nodes[level]));
1923 if (ret < 0)
1924 break;
1925
1926 /*
1927 * swap blocks in fs tree and reloc tree.
1928 */
1929 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1930 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1931 btrfs_mark_buffer_dirty(parent);
1932
1933 btrfs_set_node_blockptr(path->nodes[level],
1934 path->slots[level], old_bytenr);
1935 btrfs_set_node_ptr_generation(path->nodes[level],
1936 path->slots[level], old_ptr_gen);
1937 btrfs_mark_buffer_dirty(path->nodes[level]);
1938
1939 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1940 path->nodes[level]->start,
1941 src->root_key.objectid, level - 1, 0);
1942 BUG_ON(ret);
1943 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1944 0, dest->root_key.objectid, level - 1,
1945 0);
1946 BUG_ON(ret);
1947
1948 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1949 path->nodes[level]->start,
1950 src->root_key.objectid, level - 1, 0);
1951 BUG_ON(ret);
1952
1953 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1954 0, dest->root_key.objectid, level - 1,
1955 0);
1956 BUG_ON(ret);
1957
1958 btrfs_unlock_up_safe(path, 0);
1959
1960 ret = level;
1961 break;
1962 }
1963 btrfs_tree_unlock(parent);
1964 free_extent_buffer(parent);
1965 return ret;
1966}
1967
1968/*
1969 * helper to find next relocated block in reloc tree
1970 */
1971static noinline_for_stack
1972int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1973 int *level)
1974{
1975 struct extent_buffer *eb;
1976 int i;
1977 u64 last_snapshot;
1978 u32 nritems;
1979
1980 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1981
1982 for (i = 0; i < *level; i++) {
1983 free_extent_buffer(path->nodes[i]);
1984 path->nodes[i] = NULL;
1985 }
1986
1987 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1988 eb = path->nodes[i];
1989 nritems = btrfs_header_nritems(eb);
1990 while (path->slots[i] + 1 < nritems) {
1991 path->slots[i]++;
1992 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1993 last_snapshot)
1994 continue;
1995
1996 *level = i;
1997 return 0;
1998 }
1999 free_extent_buffer(path->nodes[i]);
2000 path->nodes[i] = NULL;
2001 }
2002 return 1;
2003}
2004
2005/*
2006 * walk down reloc tree to find relocated block of lowest level
2007 */
2008static noinline_for_stack
2009int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2010 int *level)
2011{
2012 struct extent_buffer *eb = NULL;
2013 int i;
2014 u64 bytenr;
2015 u64 ptr_gen = 0;
2016 u64 last_snapshot;
2017 u32 nritems;
2018
2019 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2020
2021 for (i = *level; i > 0; i--) {
2022 eb = path->nodes[i];
2023 nritems = btrfs_header_nritems(eb);
2024 while (path->slots[i] < nritems) {
2025 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2026 if (ptr_gen > last_snapshot)
2027 break;
2028 path->slots[i]++;
2029 }
2030 if (path->slots[i] >= nritems) {
2031 if (i == *level)
2032 break;
2033 *level = i + 1;
2034 return 0;
2035 }
2036 if (i == 1) {
2037 *level = i;
2038 return 0;
2039 }
2040
2041 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2042 eb = read_tree_block(root, bytenr, ptr_gen);
2043 if (IS_ERR(eb)) {
2044 return PTR_ERR(eb);
2045 } else if (!extent_buffer_uptodate(eb)) {
2046 free_extent_buffer(eb);
2047 return -EIO;
2048 }
2049 BUG_ON(btrfs_header_level(eb) != i - 1);
2050 path->nodes[i - 1] = eb;
2051 path->slots[i - 1] = 0;
2052 }
2053 return 1;
2054}
2055
2056/*
2057 * invalidate extent cache for file extents whose key in range of
2058 * [min_key, max_key)
2059 */
2060static int invalidate_extent_cache(struct btrfs_root *root,
2061 struct btrfs_key *min_key,
2062 struct btrfs_key *max_key)
2063{
2064 struct inode *inode = NULL;
2065 u64 objectid;
2066 u64 start, end;
2067 u64 ino;
2068
2069 objectid = min_key->objectid;
2070 while (1) {
2071 cond_resched();
2072 iput(inode);
2073
2074 if (objectid > max_key->objectid)
2075 break;
2076
2077 inode = find_next_inode(root, objectid);
2078 if (!inode)
2079 break;
2080 ino = btrfs_ino(inode);
2081
2082 if (ino > max_key->objectid) {
2083 iput(inode);
2084 break;
2085 }
2086
2087 objectid = ino + 1;
2088 if (!S_ISREG(inode->i_mode))
2089 continue;
2090
2091 if (unlikely(min_key->objectid == ino)) {
2092 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2093 continue;
2094 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2095 start = 0;
2096 else {
2097 start = min_key->offset;
2098 WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2099 }
2100 } else {
2101 start = 0;
2102 }
2103
2104 if (unlikely(max_key->objectid == ino)) {
2105 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2106 continue;
2107 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2108 end = (u64)-1;
2109 } else {
2110 if (max_key->offset == 0)
2111 continue;
2112 end = max_key->offset;
2113 WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2114 end--;
2115 }
2116 } else {
2117 end = (u64)-1;
2118 }
2119
2120 /* the lock_extent waits for readpage to complete */
2121 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2122 btrfs_drop_extent_cache(inode, start, end, 1);
2123 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2124 }
2125 return 0;
2126}
2127
2128static int find_next_key(struct btrfs_path *path, int level,
2129 struct btrfs_key *key)
2130
2131{
2132 while (level < BTRFS_MAX_LEVEL) {
2133 if (!path->nodes[level])
2134 break;
2135 if (path->slots[level] + 1 <
2136 btrfs_header_nritems(path->nodes[level])) {
2137 btrfs_node_key_to_cpu(path->nodes[level], key,
2138 path->slots[level] + 1);
2139 return 0;
2140 }
2141 level++;
2142 }
2143 return 1;
2144}
2145
2146/*
2147 * merge the relocated tree blocks in reloc tree with corresponding
2148 * fs tree.
2149 */
2150static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2151 struct btrfs_root *root)
2152{
2153 LIST_HEAD(inode_list);
2154 struct btrfs_key key;
2155 struct btrfs_key next_key;
2156 struct btrfs_trans_handle *trans = NULL;
2157 struct btrfs_root *reloc_root;
2158 struct btrfs_root_item *root_item;
2159 struct btrfs_path *path;
2160 struct extent_buffer *leaf;
2161 int level;
2162 int max_level;
2163 int replaced = 0;
2164 int ret;
2165 int err = 0;
2166 u32 min_reserved;
2167
2168 path = btrfs_alloc_path();
2169 if (!path)
2170 return -ENOMEM;
2171 path->reada = READA_FORWARD;
2172
2173 reloc_root = root->reloc_root;
2174 root_item = &reloc_root->root_item;
2175
2176 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2177 level = btrfs_root_level(root_item);
2178 extent_buffer_get(reloc_root->node);
2179 path->nodes[level] = reloc_root->node;
2180 path->slots[level] = 0;
2181 } else {
2182 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2183
2184 level = root_item->drop_level;
2185 BUG_ON(level == 0);
2186 path->lowest_level = level;
2187 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2188 path->lowest_level = 0;
2189 if (ret < 0) {
2190 btrfs_free_path(path);
2191 return ret;
2192 }
2193
2194 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2195 path->slots[level]);
2196 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2197
2198 btrfs_unlock_up_safe(path, 0);
2199 }
2200
2201 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2202 memset(&next_key, 0, sizeof(next_key));
2203
2204 while (1) {
2205 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2206 BTRFS_RESERVE_FLUSH_ALL);
2207 if (ret) {
2208 err = ret;
2209 goto out;
2210 }
2211 trans = btrfs_start_transaction(root, 0);
2212 if (IS_ERR(trans)) {
2213 err = PTR_ERR(trans);
2214 trans = NULL;
2215 goto out;
2216 }
2217 trans->block_rsv = rc->block_rsv;
2218
2219 replaced = 0;
2220 max_level = level;
2221
2222 ret = walk_down_reloc_tree(reloc_root, path, &level);
2223 if (ret < 0) {
2224 err = ret;
2225 goto out;
2226 }
2227 if (ret > 0)
2228 break;
2229
2230 if (!find_next_key(path, level, &key) &&
2231 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2232 ret = 0;
2233 } else {
2234 ret = replace_path(trans, root, reloc_root, path,
2235 &next_key, level, max_level);
2236 }
2237 if (ret < 0) {
2238 err = ret;
2239 goto out;
2240 }
2241
2242 if (ret > 0) {
2243 level = ret;
2244 btrfs_node_key_to_cpu(path->nodes[level], &key,
2245 path->slots[level]);
2246 replaced = 1;
2247 }
2248
2249 ret = walk_up_reloc_tree(reloc_root, path, &level);
2250 if (ret > 0)
2251 break;
2252
2253 BUG_ON(level == 0);
2254 /*
2255 * save the merging progress in the drop_progress.
2256 * this is OK since root refs == 1 in this case.
2257 */
2258 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2259 path->slots[level]);
2260 root_item->drop_level = level;
2261
2262 btrfs_end_transaction_throttle(trans, root);
2263 trans = NULL;
2264
2265 btrfs_btree_balance_dirty(root);
2266
2267 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2268 invalidate_extent_cache(root, &key, &next_key);
2269 }
2270
2271 /*
2272 * handle the case only one block in the fs tree need to be
2273 * relocated and the block is tree root.
2274 */
2275 leaf = btrfs_lock_root_node(root);
2276 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2277 btrfs_tree_unlock(leaf);
2278 free_extent_buffer(leaf);
2279 if (ret < 0)
2280 err = ret;
2281out:
2282 btrfs_free_path(path);
2283
2284 if (err == 0) {
2285 memset(&root_item->drop_progress, 0,
2286 sizeof(root_item->drop_progress));
2287 root_item->drop_level = 0;
2288 btrfs_set_root_refs(root_item, 0);
2289 btrfs_update_reloc_root(trans, root);
2290 }
2291
2292 if (trans)
2293 btrfs_end_transaction_throttle(trans, root);
2294
2295 btrfs_btree_balance_dirty(root);
2296
2297 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2298 invalidate_extent_cache(root, &key, &next_key);
2299
2300 return err;
2301}
2302
2303static noinline_for_stack
2304int prepare_to_merge(struct reloc_control *rc, int err)
2305{
2306 struct btrfs_root *root = rc->extent_root;
2307 struct btrfs_root *reloc_root;
2308 struct btrfs_trans_handle *trans;
2309 LIST_HEAD(reloc_roots);
2310 u64 num_bytes = 0;
2311 int ret;
2312
2313 mutex_lock(&root->fs_info->reloc_mutex);
2314 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2315 rc->merging_rsv_size += rc->nodes_relocated * 2;
2316 mutex_unlock(&root->fs_info->reloc_mutex);
2317
2318again:
2319 if (!err) {
2320 num_bytes = rc->merging_rsv_size;
2321 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2322 BTRFS_RESERVE_FLUSH_ALL);
2323 if (ret)
2324 err = ret;
2325 }
2326
2327 trans = btrfs_join_transaction(rc->extent_root);
2328 if (IS_ERR(trans)) {
2329 if (!err)
2330 btrfs_block_rsv_release(rc->extent_root,
2331 rc->block_rsv, num_bytes);
2332 return PTR_ERR(trans);
2333 }
2334
2335 if (!err) {
2336 if (num_bytes != rc->merging_rsv_size) {
2337 btrfs_end_transaction(trans, rc->extent_root);
2338 btrfs_block_rsv_release(rc->extent_root,
2339 rc->block_rsv, num_bytes);
2340 goto again;
2341 }
2342 }
2343
2344 rc->merge_reloc_tree = 1;
2345
2346 while (!list_empty(&rc->reloc_roots)) {
2347 reloc_root = list_entry(rc->reloc_roots.next,
2348 struct btrfs_root, root_list);
2349 list_del_init(&reloc_root->root_list);
2350
2351 root = read_fs_root(reloc_root->fs_info,
2352 reloc_root->root_key.offset);
2353 BUG_ON(IS_ERR(root));
2354 BUG_ON(root->reloc_root != reloc_root);
2355
2356 /*
2357 * set reference count to 1, so btrfs_recover_relocation
2358 * knows it should resumes merging
2359 */
2360 if (!err)
2361 btrfs_set_root_refs(&reloc_root->root_item, 1);
2362 btrfs_update_reloc_root(trans, root);
2363
2364 list_add(&reloc_root->root_list, &reloc_roots);
2365 }
2366
2367 list_splice(&reloc_roots, &rc->reloc_roots);
2368
2369 if (!err)
2370 btrfs_commit_transaction(trans, rc->extent_root);
2371 else
2372 btrfs_end_transaction(trans, rc->extent_root);
2373 return err;
2374}
2375
2376static noinline_for_stack
2377void free_reloc_roots(struct list_head *list)
2378{
2379 struct btrfs_root *reloc_root;
2380
2381 while (!list_empty(list)) {
2382 reloc_root = list_entry(list->next, struct btrfs_root,
2383 root_list);
2384 free_extent_buffer(reloc_root->node);
2385 free_extent_buffer(reloc_root->commit_root);
2386 reloc_root->node = NULL;
2387 reloc_root->commit_root = NULL;
2388 __del_reloc_root(reloc_root);
2389 }
2390}
2391
2392static noinline_for_stack
2393void merge_reloc_roots(struct reloc_control *rc)
2394{
2395 struct btrfs_root *root;
2396 struct btrfs_root *reloc_root;
2397 u64 last_snap;
2398 u64 otransid;
2399 u64 objectid;
2400 LIST_HEAD(reloc_roots);
2401 int found = 0;
2402 int ret = 0;
2403again:
2404 root = rc->extent_root;
2405
2406 /*
2407 * this serializes us with btrfs_record_root_in_transaction,
2408 * we have to make sure nobody is in the middle of
2409 * adding their roots to the list while we are
2410 * doing this splice
2411 */
2412 mutex_lock(&root->fs_info->reloc_mutex);
2413 list_splice_init(&rc->reloc_roots, &reloc_roots);
2414 mutex_unlock(&root->fs_info->reloc_mutex);
2415
2416 while (!list_empty(&reloc_roots)) {
2417 found = 1;
2418 reloc_root = list_entry(reloc_roots.next,
2419 struct btrfs_root, root_list);
2420
2421 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2422 root = read_fs_root(reloc_root->fs_info,
2423 reloc_root->root_key.offset);
2424 BUG_ON(IS_ERR(root));
2425 BUG_ON(root->reloc_root != reloc_root);
2426
2427 ret = merge_reloc_root(rc, root);
2428 if (ret) {
2429 if (list_empty(&reloc_root->root_list))
2430 list_add_tail(&reloc_root->root_list,
2431 &reloc_roots);
2432 goto out;
2433 }
2434 } else {
2435 list_del_init(&reloc_root->root_list);
2436 }
2437
2438 /*
2439 * we keep the old last snapshot transid in rtranid when we
2440 * created the relocation tree.
2441 */
2442 last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2443 otransid = btrfs_root_otransid(&reloc_root->root_item);
2444 objectid = reloc_root->root_key.offset;
2445
2446 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2447 if (ret < 0) {
2448 if (list_empty(&reloc_root->root_list))
2449 list_add_tail(&reloc_root->root_list,
2450 &reloc_roots);
2451 goto out;
2452 }
2453 }
2454
2455 if (found) {
2456 found = 0;
2457 goto again;
2458 }
2459out:
2460 if (ret) {
2461 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2462 if (!list_empty(&reloc_roots))
2463 free_reloc_roots(&reloc_roots);
2464
2465 /* new reloc root may be added */
2466 mutex_lock(&root->fs_info->reloc_mutex);
2467 list_splice_init(&rc->reloc_roots, &reloc_roots);
2468 mutex_unlock(&root->fs_info->reloc_mutex);
2469 if (!list_empty(&reloc_roots))
2470 free_reloc_roots(&reloc_roots);
2471 }
2472
2473 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2474}
2475
2476static void free_block_list(struct rb_root *blocks)
2477{
2478 struct tree_block *block;
2479 struct rb_node *rb_node;
2480 while ((rb_node = rb_first(blocks))) {
2481 block = rb_entry(rb_node, struct tree_block, rb_node);
2482 rb_erase(rb_node, blocks);
2483 kfree(block);
2484 }
2485}
2486
2487static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2488 struct btrfs_root *reloc_root)
2489{
2490 struct btrfs_root *root;
2491
2492 if (reloc_root->last_trans == trans->transid)
2493 return 0;
2494
2495 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2496 BUG_ON(IS_ERR(root));
2497 BUG_ON(root->reloc_root != reloc_root);
2498
2499 return btrfs_record_root_in_trans(trans, root);
2500}
2501
2502static noinline_for_stack
2503struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2504 struct reloc_control *rc,
2505 struct backref_node *node,
2506 struct backref_edge *edges[])
2507{
2508 struct backref_node *next;
2509 struct btrfs_root *root;
2510 int index = 0;
2511
2512 next = node;
2513 while (1) {
2514 cond_resched();
2515 next = walk_up_backref(next, edges, &index);
2516 root = next->root;
2517 BUG_ON(!root);
2518 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2519
2520 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2521 record_reloc_root_in_trans(trans, root);
2522 break;
2523 }
2524
2525 btrfs_record_root_in_trans(trans, root);
2526 root = root->reloc_root;
2527
2528 if (next->new_bytenr != root->node->start) {
2529 BUG_ON(next->new_bytenr);
2530 BUG_ON(!list_empty(&next->list));
2531 next->new_bytenr = root->node->start;
2532 next->root = root;
2533 list_add_tail(&next->list,
2534 &rc->backref_cache.changed);
2535 __mark_block_processed(rc, next);
2536 break;
2537 }
2538
2539 WARN_ON(1);
2540 root = NULL;
2541 next = walk_down_backref(edges, &index);
2542 if (!next || next->level <= node->level)
2543 break;
2544 }
2545 if (!root)
2546 return NULL;
2547
2548 next = node;
2549 /* setup backref node path for btrfs_reloc_cow_block */
2550 while (1) {
2551 rc->backref_cache.path[next->level] = next;
2552 if (--index < 0)
2553 break;
2554 next = edges[index]->node[UPPER];
2555 }
2556 return root;
2557}
2558
2559/*
2560 * select a tree root for relocation. return NULL if the block
2561 * is reference counted. we should use do_relocation() in this
2562 * case. return a tree root pointer if the block isn't reference
2563 * counted. return -ENOENT if the block is root of reloc tree.
2564 */
2565static noinline_for_stack
2566struct btrfs_root *select_one_root(struct backref_node *node)
2567{
2568 struct backref_node *next;
2569 struct btrfs_root *root;
2570 struct btrfs_root *fs_root = NULL;
2571 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2572 int index = 0;
2573
2574 next = node;
2575 while (1) {
2576 cond_resched();
2577 next = walk_up_backref(next, edges, &index);
2578 root = next->root;
2579 BUG_ON(!root);
2580
2581 /* no other choice for non-references counted tree */
2582 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2583 return root;
2584
2585 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2586 fs_root = root;
2587
2588 if (next != node)
2589 return NULL;
2590
2591 next = walk_down_backref(edges, &index);
2592 if (!next || next->level <= node->level)
2593 break;
2594 }
2595
2596 if (!fs_root)
2597 return ERR_PTR(-ENOENT);
2598 return fs_root;
2599}
2600
2601static noinline_for_stack
2602u64 calcu_metadata_size(struct reloc_control *rc,
2603 struct backref_node *node, int reserve)
2604{
2605 struct backref_node *next = node;
2606 struct backref_edge *edge;
2607 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2608 u64 num_bytes = 0;
2609 int index = 0;
2610
2611 BUG_ON(reserve && node->processed);
2612
2613 while (next) {
2614 cond_resched();
2615 while (1) {
2616 if (next->processed && (reserve || next != node))
2617 break;
2618
2619 num_bytes += rc->extent_root->nodesize;
2620
2621 if (list_empty(&next->upper))
2622 break;
2623
2624 edge = list_entry(next->upper.next,
2625 struct backref_edge, list[LOWER]);
2626 edges[index++] = edge;
2627 next = edge->node[UPPER];
2628 }
2629 next = walk_down_backref(edges, &index);
2630 }
2631 return num_bytes;
2632}
2633
2634static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2635 struct reloc_control *rc,
2636 struct backref_node *node)
2637{
2638 struct btrfs_root *root = rc->extent_root;
2639 u64 num_bytes;
2640 int ret;
2641 u64 tmp;
2642
2643 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2644
2645 trans->block_rsv = rc->block_rsv;
2646 rc->reserved_bytes += num_bytes;
2647
2648 /*
2649 * We are under a transaction here so we can only do limited flushing.
2650 * If we get an enospc just kick back -EAGAIN so we know to drop the
2651 * transaction and try to refill when we can flush all the things.
2652 */
2653 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2654 BTRFS_RESERVE_FLUSH_LIMIT);
2655 if (ret) {
2656 tmp = rc->extent_root->nodesize * RELOCATION_RESERVED_NODES;
2657 while (tmp <= rc->reserved_bytes)
2658 tmp <<= 1;
2659 /*
2660 * only one thread can access block_rsv at this point,
2661 * so we don't need hold lock to protect block_rsv.
2662 * we expand more reservation size here to allow enough
2663 * space for relocation and we will return eailer in
2664 * enospc case.
2665 */
2666 rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2667 RELOCATION_RESERVED_NODES;
2668 return -EAGAIN;
2669 }
2670
2671 return 0;
2672}
2673
2674/*
2675 * relocate a block tree, and then update pointers in upper level
2676 * blocks that reference the block to point to the new location.
2677 *
2678 * if called by link_to_upper, the block has already been relocated.
2679 * in that case this function just updates pointers.
2680 */
2681static int do_relocation(struct btrfs_trans_handle *trans,
2682 struct reloc_control *rc,
2683 struct backref_node *node,
2684 struct btrfs_key *key,
2685 struct btrfs_path *path, int lowest)
2686{
2687 struct backref_node *upper;
2688 struct backref_edge *edge;
2689 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2690 struct btrfs_root *root;
2691 struct extent_buffer *eb;
2692 u32 blocksize;
2693 u64 bytenr;
2694 u64 generation;
2695 int slot;
2696 int ret;
2697 int err = 0;
2698
2699 BUG_ON(lowest && node->eb);
2700
2701 path->lowest_level = node->level + 1;
2702 rc->backref_cache.path[node->level] = node;
2703 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2704 cond_resched();
2705
2706 upper = edge->node[UPPER];
2707 root = select_reloc_root(trans, rc, upper, edges);
2708 BUG_ON(!root);
2709
2710 if (upper->eb && !upper->locked) {
2711 if (!lowest) {
2712 ret = btrfs_bin_search(upper->eb, key,
2713 upper->level, &slot);
2714 BUG_ON(ret);
2715 bytenr = btrfs_node_blockptr(upper->eb, slot);
2716 if (node->eb->start == bytenr)
2717 goto next;
2718 }
2719 drop_node_buffer(upper);
2720 }
2721
2722 if (!upper->eb) {
2723 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2724 if (ret) {
2725 if (ret < 0)
2726 err = ret;
2727 else
2728 err = -ENOENT;
2729
2730 btrfs_release_path(path);
2731 break;
2732 }
2733
2734 if (!upper->eb) {
2735 upper->eb = path->nodes[upper->level];
2736 path->nodes[upper->level] = NULL;
2737 } else {
2738 BUG_ON(upper->eb != path->nodes[upper->level]);
2739 }
2740
2741 upper->locked = 1;
2742 path->locks[upper->level] = 0;
2743
2744 slot = path->slots[upper->level];
2745 btrfs_release_path(path);
2746 } else {
2747 ret = btrfs_bin_search(upper->eb, key, upper->level,
2748 &slot);
2749 BUG_ON(ret);
2750 }
2751
2752 bytenr = btrfs_node_blockptr(upper->eb, slot);
2753 if (lowest) {
2754 if (bytenr != node->bytenr) {
2755 btrfs_err(root->fs_info,
2756 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2757 bytenr, node->bytenr, slot,
2758 upper->eb->start);
2759 err = -EIO;
2760 goto next;
2761 }
2762 } else {
2763 if (node->eb->start == bytenr)
2764 goto next;
2765 }
2766
2767 blocksize = root->nodesize;
2768 generation = btrfs_node_ptr_generation(upper->eb, slot);
2769 eb = read_tree_block(root, bytenr, generation);
2770 if (IS_ERR(eb)) {
2771 err = PTR_ERR(eb);
2772 goto next;
2773 } else if (!extent_buffer_uptodate(eb)) {
2774 free_extent_buffer(eb);
2775 err = -EIO;
2776 goto next;
2777 }
2778 btrfs_tree_lock(eb);
2779 btrfs_set_lock_blocking(eb);
2780
2781 if (!node->eb) {
2782 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2783 slot, &eb);
2784 btrfs_tree_unlock(eb);
2785 free_extent_buffer(eb);
2786 if (ret < 0) {
2787 err = ret;
2788 goto next;
2789 }
2790 BUG_ON(node->eb != eb);
2791 } else {
2792 btrfs_set_node_blockptr(upper->eb, slot,
2793 node->eb->start);
2794 btrfs_set_node_ptr_generation(upper->eb, slot,
2795 trans->transid);
2796 btrfs_mark_buffer_dirty(upper->eb);
2797
2798 ret = btrfs_inc_extent_ref(trans, root,
2799 node->eb->start, blocksize,
2800 upper->eb->start,
2801 btrfs_header_owner(upper->eb),
2802 node->level, 0);
2803 BUG_ON(ret);
2804
2805 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2806 BUG_ON(ret);
2807 }
2808next:
2809 if (!upper->pending)
2810 drop_node_buffer(upper);
2811 else
2812 unlock_node_buffer(upper);
2813 if (err)
2814 break;
2815 }
2816
2817 if (!err && node->pending) {
2818 drop_node_buffer(node);
2819 list_move_tail(&node->list, &rc->backref_cache.changed);
2820 node->pending = 0;
2821 }
2822
2823 path->lowest_level = 0;
2824 BUG_ON(err == -ENOSPC);
2825 return err;
2826}
2827
2828static int link_to_upper(struct btrfs_trans_handle *trans,
2829 struct reloc_control *rc,
2830 struct backref_node *node,
2831 struct btrfs_path *path)
2832{
2833 struct btrfs_key key;
2834
2835 btrfs_node_key_to_cpu(node->eb, &key, 0);
2836 return do_relocation(trans, rc, node, &key, path, 0);
2837}
2838
2839static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2840 struct reloc_control *rc,
2841 struct btrfs_path *path, int err)
2842{
2843 LIST_HEAD(list);
2844 struct backref_cache *cache = &rc->backref_cache;
2845 struct backref_node *node;
2846 int level;
2847 int ret;
2848
2849 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2850 while (!list_empty(&cache->pending[level])) {
2851 node = list_entry(cache->pending[level].next,
2852 struct backref_node, list);
2853 list_move_tail(&node->list, &list);
2854 BUG_ON(!node->pending);
2855
2856 if (!err) {
2857 ret = link_to_upper(trans, rc, node, path);
2858 if (ret < 0)
2859 err = ret;
2860 }
2861 }
2862 list_splice_init(&list, &cache->pending[level]);
2863 }
2864 return err;
2865}
2866
2867static void mark_block_processed(struct reloc_control *rc,
2868 u64 bytenr, u32 blocksize)
2869{
2870 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2871 EXTENT_DIRTY);
2872}
2873
2874static void __mark_block_processed(struct reloc_control *rc,
2875 struct backref_node *node)
2876{
2877 u32 blocksize;
2878 if (node->level == 0 ||
2879 in_block_group(node->bytenr, rc->block_group)) {
2880 blocksize = rc->extent_root->nodesize;
2881 mark_block_processed(rc, node->bytenr, blocksize);
2882 }
2883 node->processed = 1;
2884}
2885
2886/*
2887 * mark a block and all blocks directly/indirectly reference the block
2888 * as processed.
2889 */
2890static void update_processed_blocks(struct reloc_control *rc,
2891 struct backref_node *node)
2892{
2893 struct backref_node *next = node;
2894 struct backref_edge *edge;
2895 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2896 int index = 0;
2897
2898 while (next) {
2899 cond_resched();
2900 while (1) {
2901 if (next->processed)
2902 break;
2903
2904 __mark_block_processed(rc, next);
2905
2906 if (list_empty(&next->upper))
2907 break;
2908
2909 edge = list_entry(next->upper.next,
2910 struct backref_edge, list[LOWER]);
2911 edges[index++] = edge;
2912 next = edge->node[UPPER];
2913 }
2914 next = walk_down_backref(edges, &index);
2915 }
2916}
2917
2918static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2919{
2920 u32 blocksize = rc->extent_root->nodesize;
2921
2922 if (test_range_bit(&rc->processed_blocks, bytenr,
2923 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2924 return 1;
2925 return 0;
2926}
2927
2928static int get_tree_block_key(struct reloc_control *rc,
2929 struct tree_block *block)
2930{
2931 struct extent_buffer *eb;
2932
2933 BUG_ON(block->key_ready);
2934 eb = read_tree_block(rc->extent_root, block->bytenr,
2935 block->key.offset);
2936 if (IS_ERR(eb)) {
2937 return PTR_ERR(eb);
2938 } else if (!extent_buffer_uptodate(eb)) {
2939 free_extent_buffer(eb);
2940 return -EIO;
2941 }
2942 WARN_ON(btrfs_header_level(eb) != block->level);
2943 if (block->level == 0)
2944 btrfs_item_key_to_cpu(eb, &block->key, 0);
2945 else
2946 btrfs_node_key_to_cpu(eb, &block->key, 0);
2947 free_extent_buffer(eb);
2948 block->key_ready = 1;
2949 return 0;
2950}
2951
2952/*
2953 * helper function to relocate a tree block
2954 */
2955static int relocate_tree_block(struct btrfs_trans_handle *trans,
2956 struct reloc_control *rc,
2957 struct backref_node *node,
2958 struct btrfs_key *key,
2959 struct btrfs_path *path)
2960{
2961 struct btrfs_root *root;
2962 int ret = 0;
2963
2964 if (!node)
2965 return 0;
2966
2967 BUG_ON(node->processed);
2968 root = select_one_root(node);
2969 if (root == ERR_PTR(-ENOENT)) {
2970 update_processed_blocks(rc, node);
2971 goto out;
2972 }
2973
2974 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2975 ret = reserve_metadata_space(trans, rc, node);
2976 if (ret)
2977 goto out;
2978 }
2979
2980 if (root) {
2981 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2982 BUG_ON(node->new_bytenr);
2983 BUG_ON(!list_empty(&node->list));
2984 btrfs_record_root_in_trans(trans, root);
2985 root = root->reloc_root;
2986 node->new_bytenr = root->node->start;
2987 node->root = root;
2988 list_add_tail(&node->list, &rc->backref_cache.changed);
2989 } else {
2990 path->lowest_level = node->level;
2991 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2992 btrfs_release_path(path);
2993 if (ret > 0)
2994 ret = 0;
2995 }
2996 if (!ret)
2997 update_processed_blocks(rc, node);
2998 } else {
2999 ret = do_relocation(trans, rc, node, key, path, 1);
3000 }
3001out:
3002 if (ret || node->level == 0 || node->cowonly)
3003 remove_backref_node(&rc->backref_cache, node);
3004 return ret;
3005}
3006
3007/*
3008 * relocate a list of blocks
3009 */
3010static noinline_for_stack
3011int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3012 struct reloc_control *rc, struct rb_root *blocks)
3013{
3014 struct backref_node *node;
3015 struct btrfs_path *path;
3016 struct tree_block *block;
3017 struct rb_node *rb_node;
3018 int ret;
3019 int err = 0;
3020
3021 path = btrfs_alloc_path();
3022 if (!path) {
3023 err = -ENOMEM;
3024 goto out_free_blocks;
3025 }
3026
3027 rb_node = rb_first(blocks);
3028 while (rb_node) {
3029 block = rb_entry(rb_node, struct tree_block, rb_node);
3030 if (!block->key_ready)
3031 readahead_tree_block(rc->extent_root, block->bytenr);
3032 rb_node = rb_next(rb_node);
3033 }
3034
3035 rb_node = rb_first(blocks);
3036 while (rb_node) {
3037 block = rb_entry(rb_node, struct tree_block, rb_node);
3038 if (!block->key_ready) {
3039 err = get_tree_block_key(rc, block);
3040 if (err)
3041 goto out_free_path;
3042 }
3043 rb_node = rb_next(rb_node);
3044 }
3045
3046 rb_node = rb_first(blocks);
3047 while (rb_node) {
3048 block = rb_entry(rb_node, struct tree_block, rb_node);
3049
3050 node = build_backref_tree(rc, &block->key,
3051 block->level, block->bytenr);
3052 if (IS_ERR(node)) {
3053 err = PTR_ERR(node);
3054 goto out;
3055 }
3056
3057 ret = relocate_tree_block(trans, rc, node, &block->key,
3058 path);
3059 if (ret < 0) {
3060 if (ret != -EAGAIN || rb_node == rb_first(blocks))
3061 err = ret;
3062 goto out;
3063 }
3064 rb_node = rb_next(rb_node);
3065 }
3066out:
3067 err = finish_pending_nodes(trans, rc, path, err);
3068
3069out_free_path:
3070 btrfs_free_path(path);
3071out_free_blocks:
3072 free_block_list(blocks);
3073 return err;
3074}
3075
3076static noinline_for_stack
3077int prealloc_file_extent_cluster(struct inode *inode,
3078 struct file_extent_cluster *cluster)
3079{
3080 u64 alloc_hint = 0;
3081 u64 start;
3082 u64 end;
3083 u64 offset = BTRFS_I(inode)->index_cnt;
3084 u64 num_bytes;
3085 int nr = 0;
3086 int ret = 0;
3087 u64 prealloc_start = cluster->start - offset;
3088 u64 prealloc_end = cluster->end - offset;
3089 u64 cur_offset;
3090
3091 BUG_ON(cluster->start != cluster->boundary[0]);
3092 inode_lock(inode);
3093
3094 ret = btrfs_check_data_free_space(inode, prealloc_start,
3095 prealloc_end + 1 - prealloc_start);
3096 if (ret)
3097 goto out;
3098
3099 cur_offset = prealloc_start;
3100 while (nr < cluster->nr) {
3101 start = cluster->boundary[nr] - offset;
3102 if (nr + 1 < cluster->nr)
3103 end = cluster->boundary[nr + 1] - 1 - offset;
3104 else
3105 end = cluster->end - offset;
3106
3107 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3108 num_bytes = end + 1 - start;
3109 if (cur_offset < start)
3110 btrfs_free_reserved_data_space(inode, cur_offset,
3111 start - cur_offset);
3112 ret = btrfs_prealloc_file_range(inode, 0, start,
3113 num_bytes, num_bytes,
3114 end + 1, &alloc_hint);
3115 cur_offset = end + 1;
3116 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3117 if (ret)
3118 break;
3119 nr++;
3120 }
3121 if (cur_offset < prealloc_end)
3122 btrfs_free_reserved_data_space(inode, cur_offset,
3123 prealloc_end + 1 - cur_offset);
3124out:
3125 inode_unlock(inode);
3126 return ret;
3127}
3128
3129static noinline_for_stack
3130int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3131 u64 block_start)
3132{
3133 struct btrfs_root *root = BTRFS_I(inode)->root;
3134 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3135 struct extent_map *em;
3136 int ret = 0;
3137
3138 em = alloc_extent_map();
3139 if (!em)
3140 return -ENOMEM;
3141
3142 em->start = start;
3143 em->len = end + 1 - start;
3144 em->block_len = em->len;
3145 em->block_start = block_start;
3146 em->bdev = root->fs_info->fs_devices->latest_bdev;
3147 set_bit(EXTENT_FLAG_PINNED, &em->flags);
3148
3149 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3150 while (1) {
3151 write_lock(&em_tree->lock);
3152 ret = add_extent_mapping(em_tree, em, 0);
3153 write_unlock(&em_tree->lock);
3154 if (ret != -EEXIST) {
3155 free_extent_map(em);
3156 break;
3157 }
3158 btrfs_drop_extent_cache(inode, start, end, 0);
3159 }
3160 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3161 return ret;
3162}
3163
3164static int relocate_file_extent_cluster(struct inode *inode,
3165 struct file_extent_cluster *cluster)
3166{
3167 u64 page_start;
3168 u64 page_end;
3169 u64 offset = BTRFS_I(inode)->index_cnt;
3170 unsigned long index;
3171 unsigned long last_index;
3172 struct page *page;
3173 struct file_ra_state *ra;
3174 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3175 int nr = 0;
3176 int ret = 0;
3177
3178 if (!cluster->nr)
3179 return 0;
3180
3181 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3182 if (!ra)
3183 return -ENOMEM;
3184
3185 ret = prealloc_file_extent_cluster(inode, cluster);
3186 if (ret)
3187 goto out;
3188
3189 file_ra_state_init(ra, inode->i_mapping);
3190
3191 ret = setup_extent_mapping(inode, cluster->start - offset,
3192 cluster->end - offset, cluster->start);
3193 if (ret)
3194 goto out;
3195
3196 index = (cluster->start - offset) >> PAGE_SHIFT;
3197 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3198 while (index <= last_index) {
3199 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE);
3200 if (ret)
3201 goto out;
3202
3203 page = find_lock_page(inode->i_mapping, index);
3204 if (!page) {
3205 page_cache_sync_readahead(inode->i_mapping,
3206 ra, NULL, index,
3207 last_index + 1 - index);
3208 page = find_or_create_page(inode->i_mapping, index,
3209 mask);
3210 if (!page) {
3211 btrfs_delalloc_release_metadata(inode,
3212 PAGE_SIZE);
3213 ret = -ENOMEM;
3214 goto out;
3215 }
3216 }
3217
3218 if (PageReadahead(page)) {
3219 page_cache_async_readahead(inode->i_mapping,
3220 ra, NULL, page, index,
3221 last_index + 1 - index);
3222 }
3223
3224 if (!PageUptodate(page)) {
3225 btrfs_readpage(NULL, page);
3226 lock_page(page);
3227 if (!PageUptodate(page)) {
3228 unlock_page(page);
3229 put_page(page);
3230 btrfs_delalloc_release_metadata(inode,
3231 PAGE_SIZE);
3232 ret = -EIO;
3233 goto out;
3234 }
3235 }
3236
3237 page_start = page_offset(page);
3238 page_end = page_start + PAGE_SIZE - 1;
3239
3240 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3241
3242 set_page_extent_mapped(page);
3243
3244 if (nr < cluster->nr &&
3245 page_start + offset == cluster->boundary[nr]) {
3246 set_extent_bits(&BTRFS_I(inode)->io_tree,
3247 page_start, page_end,
3248 EXTENT_BOUNDARY);
3249 nr++;
3250 }
3251
3252 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL, 0);
3253 set_page_dirty(page);
3254
3255 unlock_extent(&BTRFS_I(inode)->io_tree,
3256 page_start, page_end);
3257 unlock_page(page);
3258 put_page(page);
3259
3260 index++;
3261 balance_dirty_pages_ratelimited(inode->i_mapping);
3262 btrfs_throttle(BTRFS_I(inode)->root);
3263 }
3264 WARN_ON(nr != cluster->nr);
3265out:
3266 kfree(ra);
3267 return ret;
3268}
3269
3270static noinline_for_stack
3271int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3272 struct file_extent_cluster *cluster)
3273{
3274 int ret;
3275
3276 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3277 ret = relocate_file_extent_cluster(inode, cluster);
3278 if (ret)
3279 return ret;
3280 cluster->nr = 0;
3281 }
3282
3283 if (!cluster->nr)
3284 cluster->start = extent_key->objectid;
3285 else
3286 BUG_ON(cluster->nr >= MAX_EXTENTS);
3287 cluster->end = extent_key->objectid + extent_key->offset - 1;
3288 cluster->boundary[cluster->nr] = extent_key->objectid;
3289 cluster->nr++;
3290
3291 if (cluster->nr >= MAX_EXTENTS) {
3292 ret = relocate_file_extent_cluster(inode, cluster);
3293 if (ret)
3294 return ret;
3295 cluster->nr = 0;
3296 }
3297 return 0;
3298}
3299
3300#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3301static int get_ref_objectid_v0(struct reloc_control *rc,
3302 struct btrfs_path *path,
3303 struct btrfs_key *extent_key,
3304 u64 *ref_objectid, int *path_change)
3305{
3306 struct btrfs_key key;
3307 struct extent_buffer *leaf;
3308 struct btrfs_extent_ref_v0 *ref0;
3309 int ret;
3310 int slot;
3311
3312 leaf = path->nodes[0];
3313 slot = path->slots[0];
3314 while (1) {
3315 if (slot >= btrfs_header_nritems(leaf)) {
3316 ret = btrfs_next_leaf(rc->extent_root, path);
3317 if (ret < 0)
3318 return ret;
3319 BUG_ON(ret > 0);
3320 leaf = path->nodes[0];
3321 slot = path->slots[0];
3322 if (path_change)
3323 *path_change = 1;
3324 }
3325 btrfs_item_key_to_cpu(leaf, &key, slot);
3326 if (key.objectid != extent_key->objectid)
3327 return -ENOENT;
3328
3329 if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3330 slot++;
3331 continue;
3332 }
3333 ref0 = btrfs_item_ptr(leaf, slot,
3334 struct btrfs_extent_ref_v0);
3335 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3336 break;
3337 }
3338 return 0;
3339}
3340#endif
3341
3342/*
3343 * helper to add a tree block to the list.
3344 * the major work is getting the generation and level of the block
3345 */
3346static int add_tree_block(struct reloc_control *rc,
3347 struct btrfs_key *extent_key,
3348 struct btrfs_path *path,
3349 struct rb_root *blocks)
3350{
3351 struct extent_buffer *eb;
3352 struct btrfs_extent_item *ei;
3353 struct btrfs_tree_block_info *bi;
3354 struct tree_block *block;
3355 struct rb_node *rb_node;
3356 u32 item_size;
3357 int level = -1;
3358 u64 generation;
3359
3360 eb = path->nodes[0];
3361 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3362
3363 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3364 item_size >= sizeof(*ei) + sizeof(*bi)) {
3365 ei = btrfs_item_ptr(eb, path->slots[0],
3366 struct btrfs_extent_item);
3367 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3368 bi = (struct btrfs_tree_block_info *)(ei + 1);
3369 level = btrfs_tree_block_level(eb, bi);
3370 } else {
3371 level = (int)extent_key->offset;
3372 }
3373 generation = btrfs_extent_generation(eb, ei);
3374 } else {
3375#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3376 u64 ref_owner;
3377 int ret;
3378
3379 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3380 ret = get_ref_objectid_v0(rc, path, extent_key,
3381 &ref_owner, NULL);
3382 if (ret < 0)
3383 return ret;
3384 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3385 level = (int)ref_owner;
3386 /* FIXME: get real generation */
3387 generation = 0;
3388#else
3389 BUG();
3390#endif
3391 }
3392
3393 btrfs_release_path(path);
3394
3395 BUG_ON(level == -1);
3396
3397 block = kmalloc(sizeof(*block), GFP_NOFS);
3398 if (!block)
3399 return -ENOMEM;
3400
3401 block->bytenr = extent_key->objectid;
3402 block->key.objectid = rc->extent_root->nodesize;
3403 block->key.offset = generation;
3404 block->level = level;
3405 block->key_ready = 0;
3406
3407 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3408 if (rb_node)
3409 backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3410
3411 return 0;
3412}
3413
3414/*
3415 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3416 */
3417static int __add_tree_block(struct reloc_control *rc,
3418 u64 bytenr, u32 blocksize,
3419 struct rb_root *blocks)
3420{
3421 struct btrfs_path *path;
3422 struct btrfs_key key;
3423 int ret;
3424 bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3425 SKINNY_METADATA);
3426
3427 if (tree_block_processed(bytenr, rc))
3428 return 0;
3429
3430 if (tree_search(blocks, bytenr))
3431 return 0;
3432
3433 path = btrfs_alloc_path();
3434 if (!path)
3435 return -ENOMEM;
3436again:
3437 key.objectid = bytenr;
3438 if (skinny) {
3439 key.type = BTRFS_METADATA_ITEM_KEY;
3440 key.offset = (u64)-1;
3441 } else {
3442 key.type = BTRFS_EXTENT_ITEM_KEY;
3443 key.offset = blocksize;
3444 }
3445
3446 path->search_commit_root = 1;
3447 path->skip_locking = 1;
3448 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3449 if (ret < 0)
3450 goto out;
3451
3452 if (ret > 0 && skinny) {
3453 if (path->slots[0]) {
3454 path->slots[0]--;
3455 btrfs_item_key_to_cpu(path->nodes[0], &key,
3456 path->slots[0]);
3457 if (key.objectid == bytenr &&
3458 (key.type == BTRFS_METADATA_ITEM_KEY ||
3459 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3460 key.offset == blocksize)))
3461 ret = 0;
3462 }
3463
3464 if (ret) {
3465 skinny = false;
3466 btrfs_release_path(path);
3467 goto again;
3468 }
3469 }
3470 BUG_ON(ret);
3471
3472 ret = add_tree_block(rc, &key, path, blocks);
3473out:
3474 btrfs_free_path(path);
3475 return ret;
3476}
3477
3478/*
3479 * helper to check if the block use full backrefs for pointers in it
3480 */
3481static int block_use_full_backref(struct reloc_control *rc,
3482 struct extent_buffer *eb)
3483{
3484 u64 flags;
3485 int ret;
3486
3487 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3488 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3489 return 1;
3490
3491 ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3492 eb->start, btrfs_header_level(eb), 1,
3493 NULL, &flags);
3494 BUG_ON(ret);
3495
3496 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3497 ret = 1;
3498 else
3499 ret = 0;
3500 return ret;
3501}
3502
3503static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3504 struct btrfs_block_group_cache *block_group,
3505 struct inode *inode,
3506 u64 ino)
3507{
3508 struct btrfs_key key;
3509 struct btrfs_root *root = fs_info->tree_root;
3510 struct btrfs_trans_handle *trans;
3511 int ret = 0;
3512
3513 if (inode)
3514 goto truncate;
3515
3516 key.objectid = ino;
3517 key.type = BTRFS_INODE_ITEM_KEY;
3518 key.offset = 0;
3519
3520 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3521 if (IS_ERR(inode) || is_bad_inode(inode)) {
3522 if (!IS_ERR(inode))
3523 iput(inode);
3524 return -ENOENT;
3525 }
3526
3527truncate:
3528 ret = btrfs_check_trunc_cache_free_space(root,
3529 &fs_info->global_block_rsv);
3530 if (ret)
3531 goto out;
3532
3533 trans = btrfs_join_transaction(root);
3534 if (IS_ERR(trans)) {
3535 ret = PTR_ERR(trans);
3536 goto out;
3537 }
3538
3539 ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3540
3541 btrfs_end_transaction(trans, root);
3542 btrfs_btree_balance_dirty(root);
3543out:
3544 iput(inode);
3545 return ret;
3546}
3547
3548/*
3549 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3550 * this function scans fs tree to find blocks reference the data extent
3551 */
3552static int find_data_references(struct reloc_control *rc,
3553 struct btrfs_key *extent_key,
3554 struct extent_buffer *leaf,
3555 struct btrfs_extent_data_ref *ref,
3556 struct rb_root *blocks)
3557{
3558 struct btrfs_path *path;
3559 struct tree_block *block;
3560 struct btrfs_root *root;
3561 struct btrfs_file_extent_item *fi;
3562 struct rb_node *rb_node;
3563 struct btrfs_key key;
3564 u64 ref_root;
3565 u64 ref_objectid;
3566 u64 ref_offset;
3567 u32 ref_count;
3568 u32 nritems;
3569 int err = 0;
3570 int added = 0;
3571 int counted;
3572 int ret;
3573
3574 ref_root = btrfs_extent_data_ref_root(leaf, ref);
3575 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3576 ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3577 ref_count = btrfs_extent_data_ref_count(leaf, ref);
3578
3579 /*
3580 * This is an extent belonging to the free space cache, lets just delete
3581 * it and redo the search.
3582 */
3583 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3584 ret = delete_block_group_cache(rc->extent_root->fs_info,
3585 rc->block_group,
3586 NULL, ref_objectid);
3587 if (ret != -ENOENT)
3588 return ret;
3589 ret = 0;
3590 }
3591
3592 path = btrfs_alloc_path();
3593 if (!path)
3594 return -ENOMEM;
3595 path->reada = READA_FORWARD;
3596
3597 root = read_fs_root(rc->extent_root->fs_info, ref_root);
3598 if (IS_ERR(root)) {
3599 err = PTR_ERR(root);
3600 goto out;
3601 }
3602
3603 key.objectid = ref_objectid;
3604 key.type = BTRFS_EXTENT_DATA_KEY;
3605 if (ref_offset > ((u64)-1 << 32))
3606 key.offset = 0;
3607 else
3608 key.offset = ref_offset;
3609
3610 path->search_commit_root = 1;
3611 path->skip_locking = 1;
3612 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3613 if (ret < 0) {
3614 err = ret;
3615 goto out;
3616 }
3617
3618 leaf = path->nodes[0];
3619 nritems = btrfs_header_nritems(leaf);
3620 /*
3621 * the references in tree blocks that use full backrefs
3622 * are not counted in
3623 */
3624 if (block_use_full_backref(rc, leaf))
3625 counted = 0;
3626 else
3627 counted = 1;
3628 rb_node = tree_search(blocks, leaf->start);
3629 if (rb_node) {
3630 if (counted)
3631 added = 1;
3632 else
3633 path->slots[0] = nritems;
3634 }
3635
3636 while (ref_count > 0) {
3637 while (path->slots[0] >= nritems) {
3638 ret = btrfs_next_leaf(root, path);
3639 if (ret < 0) {
3640 err = ret;
3641 goto out;
3642 }
3643 if (WARN_ON(ret > 0))
3644 goto out;
3645
3646 leaf = path->nodes[0];
3647 nritems = btrfs_header_nritems(leaf);
3648 added = 0;
3649
3650 if (block_use_full_backref(rc, leaf))
3651 counted = 0;
3652 else
3653 counted = 1;
3654 rb_node = tree_search(blocks, leaf->start);
3655 if (rb_node) {
3656 if (counted)
3657 added = 1;
3658 else
3659 path->slots[0] = nritems;
3660 }
3661 }
3662
3663 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3664 if (WARN_ON(key.objectid != ref_objectid ||
3665 key.type != BTRFS_EXTENT_DATA_KEY))
3666 break;
3667
3668 fi = btrfs_item_ptr(leaf, path->slots[0],
3669 struct btrfs_file_extent_item);
3670
3671 if (btrfs_file_extent_type(leaf, fi) ==
3672 BTRFS_FILE_EXTENT_INLINE)
3673 goto next;
3674
3675 if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3676 extent_key->objectid)
3677 goto next;
3678
3679 key.offset -= btrfs_file_extent_offset(leaf, fi);
3680 if (key.offset != ref_offset)
3681 goto next;
3682
3683 if (counted)
3684 ref_count--;
3685 if (added)
3686 goto next;
3687
3688 if (!tree_block_processed(leaf->start, rc)) {
3689 block = kmalloc(sizeof(*block), GFP_NOFS);
3690 if (!block) {
3691 err = -ENOMEM;
3692 break;
3693 }
3694 block->bytenr = leaf->start;
3695 btrfs_item_key_to_cpu(leaf, &block->key, 0);
3696 block->level = 0;
3697 block->key_ready = 1;
3698 rb_node = tree_insert(blocks, block->bytenr,
3699 &block->rb_node);
3700 if (rb_node)
3701 backref_tree_panic(rb_node, -EEXIST,
3702 block->bytenr);
3703 }
3704 if (counted)
3705 added = 1;
3706 else
3707 path->slots[0] = nritems;
3708next:
3709 path->slots[0]++;
3710
3711 }
3712out:
3713 btrfs_free_path(path);
3714 return err;
3715}
3716
3717/*
3718 * helper to find all tree blocks that reference a given data extent
3719 */
3720static noinline_for_stack
3721int add_data_references(struct reloc_control *rc,
3722 struct btrfs_key *extent_key,
3723 struct btrfs_path *path,
3724 struct rb_root *blocks)
3725{
3726 struct btrfs_key key;
3727 struct extent_buffer *eb;
3728 struct btrfs_extent_data_ref *dref;
3729 struct btrfs_extent_inline_ref *iref;
3730 unsigned long ptr;
3731 unsigned long end;
3732 u32 blocksize = rc->extent_root->nodesize;
3733 int ret = 0;
3734 int err = 0;
3735
3736 eb = path->nodes[0];
3737 ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3738 end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3739#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3740 if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3741 ptr = end;
3742 else
3743#endif
3744 ptr += sizeof(struct btrfs_extent_item);
3745
3746 while (ptr < end) {
3747 iref = (struct btrfs_extent_inline_ref *)ptr;
3748 key.type = btrfs_extent_inline_ref_type(eb, iref);
3749 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3750 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3751 ret = __add_tree_block(rc, key.offset, blocksize,
3752 blocks);
3753 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3754 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3755 ret = find_data_references(rc, extent_key,
3756 eb, dref, blocks);
3757 } else {
3758 BUG();
3759 }
3760 if (ret) {
3761 err = ret;
3762 goto out;
3763 }
3764 ptr += btrfs_extent_inline_ref_size(key.type);
3765 }
3766 WARN_ON(ptr > end);
3767
3768 while (1) {
3769 cond_resched();
3770 eb = path->nodes[0];
3771 if (path->slots[0] >= btrfs_header_nritems(eb)) {
3772 ret = btrfs_next_leaf(rc->extent_root, path);
3773 if (ret < 0) {
3774 err = ret;
3775 break;
3776 }
3777 if (ret > 0)
3778 break;
3779 eb = path->nodes[0];
3780 }
3781
3782 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3783 if (key.objectid != extent_key->objectid)
3784 break;
3785
3786#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3787 if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3788 key.type == BTRFS_EXTENT_REF_V0_KEY) {
3789#else
3790 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3791 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3792#endif
3793 ret = __add_tree_block(rc, key.offset, blocksize,
3794 blocks);
3795 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3796 dref = btrfs_item_ptr(eb, path->slots[0],
3797 struct btrfs_extent_data_ref);
3798 ret = find_data_references(rc, extent_key,
3799 eb, dref, blocks);
3800 } else {
3801 ret = 0;
3802 }
3803 if (ret) {
3804 err = ret;
3805 break;
3806 }
3807 path->slots[0]++;
3808 }
3809out:
3810 btrfs_release_path(path);
3811 if (err)
3812 free_block_list(blocks);
3813 return err;
3814}
3815
3816/*
3817 * helper to find next unprocessed extent
3818 */
3819static noinline_for_stack
3820int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3821 struct btrfs_key *extent_key)
3822{
3823 struct btrfs_key key;
3824 struct extent_buffer *leaf;
3825 u64 start, end, last;
3826 int ret;
3827
3828 last = rc->block_group->key.objectid + rc->block_group->key.offset;
3829 while (1) {
3830 cond_resched();
3831 if (rc->search_start >= last) {
3832 ret = 1;
3833 break;
3834 }
3835
3836 key.objectid = rc->search_start;
3837 key.type = BTRFS_EXTENT_ITEM_KEY;
3838 key.offset = 0;
3839
3840 path->search_commit_root = 1;
3841 path->skip_locking = 1;
3842 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3843 0, 0);
3844 if (ret < 0)
3845 break;
3846next:
3847 leaf = path->nodes[0];
3848 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3849 ret = btrfs_next_leaf(rc->extent_root, path);
3850 if (ret != 0)
3851 break;
3852 leaf = path->nodes[0];
3853 }
3854
3855 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3856 if (key.objectid >= last) {
3857 ret = 1;
3858 break;
3859 }
3860
3861 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3862 key.type != BTRFS_METADATA_ITEM_KEY) {
3863 path->slots[0]++;
3864 goto next;
3865 }
3866
3867 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3868 key.objectid + key.offset <= rc->search_start) {
3869 path->slots[0]++;
3870 goto next;
3871 }
3872
3873 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3874 key.objectid + rc->extent_root->nodesize <=
3875 rc->search_start) {
3876 path->slots[0]++;
3877 goto next;
3878 }
3879
3880 ret = find_first_extent_bit(&rc->processed_blocks,
3881 key.objectid, &start, &end,
3882 EXTENT_DIRTY, NULL);
3883
3884 if (ret == 0 && start <= key.objectid) {
3885 btrfs_release_path(path);
3886 rc->search_start = end + 1;
3887 } else {
3888 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3889 rc->search_start = key.objectid + key.offset;
3890 else
3891 rc->search_start = key.objectid +
3892 rc->extent_root->nodesize;
3893 memcpy(extent_key, &key, sizeof(key));
3894 return 0;
3895 }
3896 }
3897 btrfs_release_path(path);
3898 return ret;
3899}
3900
3901static void set_reloc_control(struct reloc_control *rc)
3902{
3903 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3904
3905 mutex_lock(&fs_info->reloc_mutex);
3906 fs_info->reloc_ctl = rc;
3907 mutex_unlock(&fs_info->reloc_mutex);
3908}
3909
3910static void unset_reloc_control(struct reloc_control *rc)
3911{
3912 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3913
3914 mutex_lock(&fs_info->reloc_mutex);
3915 fs_info->reloc_ctl = NULL;
3916 mutex_unlock(&fs_info->reloc_mutex);
3917}
3918
3919static int check_extent_flags(u64 flags)
3920{
3921 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3922 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3923 return 1;
3924 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3925 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3926 return 1;
3927 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3928 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3929 return 1;
3930 return 0;
3931}
3932
3933static noinline_for_stack
3934int prepare_to_relocate(struct reloc_control *rc)
3935{
3936 struct btrfs_trans_handle *trans;
3937 int ret;
3938
3939 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3940 BTRFS_BLOCK_RSV_TEMP);
3941 if (!rc->block_rsv)
3942 return -ENOMEM;
3943
3944 memset(&rc->cluster, 0, sizeof(rc->cluster));
3945 rc->search_start = rc->block_group->key.objectid;
3946 rc->extents_found = 0;
3947 rc->nodes_relocated = 0;
3948 rc->merging_rsv_size = 0;
3949 rc->reserved_bytes = 0;
3950 rc->block_rsv->size = rc->extent_root->nodesize *
3951 RELOCATION_RESERVED_NODES;
3952 ret = btrfs_block_rsv_refill(rc->extent_root,
3953 rc->block_rsv, rc->block_rsv->size,
3954 BTRFS_RESERVE_FLUSH_ALL);
3955 if (ret)
3956 return ret;
3957
3958 rc->create_reloc_tree = 1;
3959 set_reloc_control(rc);
3960
3961 trans = btrfs_join_transaction(rc->extent_root);
3962 if (IS_ERR(trans)) {
3963 unset_reloc_control(rc);
3964 /*
3965 * extent tree is not a ref_cow tree and has no reloc_root to
3966 * cleanup. And callers are responsible to free the above
3967 * block rsv.
3968 */
3969 return PTR_ERR(trans);
3970 }
3971 btrfs_commit_transaction(trans, rc->extent_root);
3972 return 0;
3973}
3974
3975static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3976{
3977 struct rb_root blocks = RB_ROOT;
3978 struct btrfs_key key;
3979 struct btrfs_trans_handle *trans = NULL;
3980 struct btrfs_path *path;
3981 struct btrfs_extent_item *ei;
3982 u64 flags;
3983 u32 item_size;
3984 int ret;
3985 int err = 0;
3986 int progress = 0;
3987
3988 path = btrfs_alloc_path();
3989 if (!path)
3990 return -ENOMEM;
3991 path->reada = READA_FORWARD;
3992
3993 ret = prepare_to_relocate(rc);
3994 if (ret) {
3995 err = ret;
3996 goto out_free;
3997 }
3998
3999 while (1) {
4000 rc->reserved_bytes = 0;
4001 ret = btrfs_block_rsv_refill(rc->extent_root,
4002 rc->block_rsv, rc->block_rsv->size,
4003 BTRFS_RESERVE_FLUSH_ALL);
4004 if (ret) {
4005 err = ret;
4006 break;
4007 }
4008 progress++;
4009 trans = btrfs_start_transaction(rc->extent_root, 0);
4010 if (IS_ERR(trans)) {
4011 err = PTR_ERR(trans);
4012 trans = NULL;
4013 break;
4014 }
4015restart:
4016 if (update_backref_cache(trans, &rc->backref_cache)) {
4017 btrfs_end_transaction(trans, rc->extent_root);
4018 continue;
4019 }
4020
4021 ret = find_next_extent(rc, path, &key);
4022 if (ret < 0)
4023 err = ret;
4024 if (ret != 0)
4025 break;
4026
4027 rc->extents_found++;
4028
4029 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4030 struct btrfs_extent_item);
4031 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4032 if (item_size >= sizeof(*ei)) {
4033 flags = btrfs_extent_flags(path->nodes[0], ei);
4034 ret = check_extent_flags(flags);
4035 BUG_ON(ret);
4036
4037 } else {
4038#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4039 u64 ref_owner;
4040 int path_change = 0;
4041
4042 BUG_ON(item_size !=
4043 sizeof(struct btrfs_extent_item_v0));
4044 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
4045 &path_change);
4046 if (ret < 0) {
4047 err = ret;
4048 break;
4049 }
4050 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
4051 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
4052 else
4053 flags = BTRFS_EXTENT_FLAG_DATA;
4054
4055 if (path_change) {
4056 btrfs_release_path(path);
4057
4058 path->search_commit_root = 1;
4059 path->skip_locking = 1;
4060 ret = btrfs_search_slot(NULL, rc->extent_root,
4061 &key, path, 0, 0);
4062 if (ret < 0) {
4063 err = ret;
4064 break;
4065 }
4066 BUG_ON(ret > 0);
4067 }
4068#else
4069 BUG();
4070#endif
4071 }
4072
4073 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4074 ret = add_tree_block(rc, &key, path, &blocks);
4075 } else if (rc->stage == UPDATE_DATA_PTRS &&
4076 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4077 ret = add_data_references(rc, &key, path, &blocks);
4078 } else {
4079 btrfs_release_path(path);
4080 ret = 0;
4081 }
4082 if (ret < 0) {
4083 err = ret;
4084 break;
4085 }
4086
4087 if (!RB_EMPTY_ROOT(&blocks)) {
4088 ret = relocate_tree_blocks(trans, rc, &blocks);
4089 if (ret < 0) {
4090 /*
4091 * if we fail to relocate tree blocks, force to update
4092 * backref cache when committing transaction.
4093 */
4094 rc->backref_cache.last_trans = trans->transid - 1;
4095
4096 if (ret != -EAGAIN) {
4097 err = ret;
4098 break;
4099 }
4100 rc->extents_found--;
4101 rc->search_start = key.objectid;
4102 }
4103 }
4104
4105 btrfs_end_transaction_throttle(trans, rc->extent_root);
4106 btrfs_btree_balance_dirty(rc->extent_root);
4107 trans = NULL;
4108
4109 if (rc->stage == MOVE_DATA_EXTENTS &&
4110 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4111 rc->found_file_extent = 1;
4112 ret = relocate_data_extent(rc->data_inode,
4113 &key, &rc->cluster);
4114 if (ret < 0) {
4115 err = ret;
4116 break;
4117 }
4118 }
4119 }
4120 if (trans && progress && err == -ENOSPC) {
4121 ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4122 rc->block_group->flags);
4123 if (ret == 1) {
4124 err = 0;
4125 progress = 0;
4126 goto restart;
4127 }
4128 }
4129
4130 btrfs_release_path(path);
4131 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4132
4133 if (trans) {
4134 btrfs_end_transaction_throttle(trans, rc->extent_root);
4135 btrfs_btree_balance_dirty(rc->extent_root);
4136 }
4137
4138 if (!err) {
4139 ret = relocate_file_extent_cluster(rc->data_inode,
4140 &rc->cluster);
4141 if (ret < 0)
4142 err = ret;
4143 }
4144
4145 rc->create_reloc_tree = 0;
4146 set_reloc_control(rc);
4147
4148 backref_cache_cleanup(&rc->backref_cache);
4149 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4150
4151 err = prepare_to_merge(rc, err);
4152
4153 merge_reloc_roots(rc);
4154
4155 rc->merge_reloc_tree = 0;
4156 unset_reloc_control(rc);
4157 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4158
4159 /* get rid of pinned extents */
4160 trans = btrfs_join_transaction(rc->extent_root);
4161 if (IS_ERR(trans)) {
4162 err = PTR_ERR(trans);
4163 goto out_free;
4164 }
4165 btrfs_commit_transaction(trans, rc->extent_root);
4166out_free:
4167 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
4168 btrfs_free_path(path);
4169 return err;
4170}
4171
4172static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4173 struct btrfs_root *root, u64 objectid)
4174{
4175 struct btrfs_path *path;
4176 struct btrfs_inode_item *item;
4177 struct extent_buffer *leaf;
4178 int ret;
4179
4180 path = btrfs_alloc_path();
4181 if (!path)
4182 return -ENOMEM;
4183
4184 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4185 if (ret)
4186 goto out;
4187
4188 leaf = path->nodes[0];
4189 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4190 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4191 btrfs_set_inode_generation(leaf, item, 1);
4192 btrfs_set_inode_size(leaf, item, 0);
4193 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4194 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4195 BTRFS_INODE_PREALLOC);
4196 btrfs_mark_buffer_dirty(leaf);
4197out:
4198 btrfs_free_path(path);
4199 return ret;
4200}
4201
4202/*
4203 * helper to create inode for data relocation.
4204 * the inode is in data relocation tree and its link count is 0
4205 */
4206static noinline_for_stack
4207struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4208 struct btrfs_block_group_cache *group)
4209{
4210 struct inode *inode = NULL;
4211 struct btrfs_trans_handle *trans;
4212 struct btrfs_root *root;
4213 struct btrfs_key key;
4214 u64 objectid;
4215 int err = 0;
4216
4217 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4218 if (IS_ERR(root))
4219 return ERR_CAST(root);
4220
4221 trans = btrfs_start_transaction(root, 6);
4222 if (IS_ERR(trans))
4223 return ERR_CAST(trans);
4224
4225 err = btrfs_find_free_objectid(root, &objectid);
4226 if (err)
4227 goto out;
4228
4229 err = __insert_orphan_inode(trans, root, objectid);
4230 BUG_ON(err);
4231
4232 key.objectid = objectid;
4233 key.type = BTRFS_INODE_ITEM_KEY;
4234 key.offset = 0;
4235 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4236 BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4237 BTRFS_I(inode)->index_cnt = group->key.objectid;
4238
4239 err = btrfs_orphan_add(trans, inode);
4240out:
4241 btrfs_end_transaction(trans, root);
4242 btrfs_btree_balance_dirty(root);
4243 if (err) {
4244 if (inode)
4245 iput(inode);
4246 inode = ERR_PTR(err);
4247 }
4248 return inode;
4249}
4250
4251static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4252{
4253 struct reloc_control *rc;
4254
4255 rc = kzalloc(sizeof(*rc), GFP_NOFS);
4256 if (!rc)
4257 return NULL;
4258
4259 INIT_LIST_HEAD(&rc->reloc_roots);
4260 backref_cache_init(&rc->backref_cache);
4261 mapping_tree_init(&rc->reloc_root_tree);
4262 extent_io_tree_init(&rc->processed_blocks,
4263 fs_info->btree_inode->i_mapping);
4264 return rc;
4265}
4266
4267/*
4268 * Print the block group being relocated
4269 */
4270static void describe_relocation(struct btrfs_fs_info *fs_info,
4271 struct btrfs_block_group_cache *block_group)
4272{
4273 char buf[128]; /* prefixed by a '|' that'll be dropped */
4274 u64 flags = block_group->flags;
4275
4276 /* Shouldn't happen */
4277 if (!flags) {
4278 strcpy(buf, "|NONE");
4279 } else {
4280 char *bp = buf;
4281
4282#define DESCRIBE_FLAG(f, d) \
4283 if (flags & BTRFS_BLOCK_GROUP_##f) { \
4284 bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
4285 flags &= ~BTRFS_BLOCK_GROUP_##f; \
4286 }
4287 DESCRIBE_FLAG(DATA, "data");
4288 DESCRIBE_FLAG(SYSTEM, "system");
4289 DESCRIBE_FLAG(METADATA, "metadata");
4290 DESCRIBE_FLAG(RAID0, "raid0");
4291 DESCRIBE_FLAG(RAID1, "raid1");
4292 DESCRIBE_FLAG(DUP, "dup");
4293 DESCRIBE_FLAG(RAID10, "raid10");
4294 DESCRIBE_FLAG(RAID5, "raid5");
4295 DESCRIBE_FLAG(RAID6, "raid6");
4296 if (flags)
4297 snprintf(buf, buf - bp + sizeof(buf), "|0x%llx", flags);
4298#undef DESCRIBE_FLAG
4299 }
4300
4301 btrfs_info(fs_info,
4302 "relocating block group %llu flags %s",
4303 block_group->key.objectid, buf + 1);
4304}
4305
4306/*
4307 * function to relocate all extents in a block group.
4308 */
4309int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4310{
4311 struct btrfs_root *extent_root = fs_info->extent_root;
4312 struct reloc_control *rc;
4313 struct inode *inode;
4314 struct btrfs_path *path;
4315 int ret;
4316 int rw = 0;
4317 int err = 0;
4318
4319 rc = alloc_reloc_control(fs_info);
4320 if (!rc)
4321 return -ENOMEM;
4322
4323 rc->extent_root = extent_root;
4324
4325 rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4326 BUG_ON(!rc->block_group);
4327
4328 ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
4329 if (ret) {
4330 err = ret;
4331 goto out;
4332 }
4333 rw = 1;
4334
4335 path = btrfs_alloc_path();
4336 if (!path) {
4337 err = -ENOMEM;
4338 goto out;
4339 }
4340
4341 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4342 path);
4343 btrfs_free_path(path);
4344
4345 if (!IS_ERR(inode))
4346 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4347 else
4348 ret = PTR_ERR(inode);
4349
4350 if (ret && ret != -ENOENT) {
4351 err = ret;
4352 goto out;
4353 }
4354
4355 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4356 if (IS_ERR(rc->data_inode)) {
4357 err = PTR_ERR(rc->data_inode);
4358 rc->data_inode = NULL;
4359 goto out;
4360 }
4361
4362 describe_relocation(extent_root->fs_info, rc->block_group);
4363
4364 btrfs_wait_block_group_reservations(rc->block_group);
4365 btrfs_wait_nocow_writers(rc->block_group);
4366 btrfs_wait_ordered_roots(fs_info, -1,
4367 rc->block_group->key.objectid,
4368 rc->block_group->key.offset);
4369
4370 while (1) {
4371 mutex_lock(&fs_info->cleaner_mutex);
4372 ret = relocate_block_group(rc);
4373 mutex_unlock(&fs_info->cleaner_mutex);
4374 if (ret < 0) {
4375 err = ret;
4376 goto out;
4377 }
4378
4379 if (rc->extents_found == 0)
4380 break;
4381
4382 btrfs_info(extent_root->fs_info, "found %llu extents",
4383 rc->extents_found);
4384
4385 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4386 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4387 (u64)-1);
4388 if (ret) {
4389 err = ret;
4390 goto out;
4391 }
4392 invalidate_mapping_pages(rc->data_inode->i_mapping,
4393 0, -1);
4394 rc->stage = UPDATE_DATA_PTRS;
4395 }
4396 }
4397
4398 WARN_ON(rc->block_group->pinned > 0);
4399 WARN_ON(rc->block_group->reserved > 0);
4400 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4401out:
4402 if (err && rw)
4403 btrfs_dec_block_group_ro(extent_root, rc->block_group);
4404 iput(rc->data_inode);
4405 btrfs_put_block_group(rc->block_group);
4406 kfree(rc);
4407 return err;
4408}
4409
4410static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4411{
4412 struct btrfs_trans_handle *trans;
4413 int ret, err;
4414
4415 trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4416 if (IS_ERR(trans))
4417 return PTR_ERR(trans);
4418
4419 memset(&root->root_item.drop_progress, 0,
4420 sizeof(root->root_item.drop_progress));
4421 root->root_item.drop_level = 0;
4422 btrfs_set_root_refs(&root->root_item, 0);
4423 ret = btrfs_update_root(trans, root->fs_info->tree_root,
4424 &root->root_key, &root->root_item);
4425
4426 err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4427 if (err)
4428 return err;
4429 return ret;
4430}
4431
4432/*
4433 * recover relocation interrupted by system crash.
4434 *
4435 * this function resumes merging reloc trees with corresponding fs trees.
4436 * this is important for keeping the sharing of tree blocks
4437 */
4438int btrfs_recover_relocation(struct btrfs_root *root)
4439{
4440 LIST_HEAD(reloc_roots);
4441 struct btrfs_key key;
4442 struct btrfs_root *fs_root;
4443 struct btrfs_root *reloc_root;
4444 struct btrfs_path *path;
4445 struct extent_buffer *leaf;
4446 struct reloc_control *rc = NULL;
4447 struct btrfs_trans_handle *trans;
4448 int ret;
4449 int err = 0;
4450
4451 path = btrfs_alloc_path();
4452 if (!path)
4453 return -ENOMEM;
4454 path->reada = READA_BACK;
4455
4456 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4457 key.type = BTRFS_ROOT_ITEM_KEY;
4458 key.offset = (u64)-1;
4459
4460 while (1) {
4461 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4462 path, 0, 0);
4463 if (ret < 0) {
4464 err = ret;
4465 goto out;
4466 }
4467 if (ret > 0) {
4468 if (path->slots[0] == 0)
4469 break;
4470 path->slots[0]--;
4471 }
4472 leaf = path->nodes[0];
4473 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4474 btrfs_release_path(path);
4475
4476 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4477 key.type != BTRFS_ROOT_ITEM_KEY)
4478 break;
4479
4480 reloc_root = btrfs_read_fs_root(root, &key);
4481 if (IS_ERR(reloc_root)) {
4482 err = PTR_ERR(reloc_root);
4483 goto out;
4484 }
4485
4486 list_add(&reloc_root->root_list, &reloc_roots);
4487
4488 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4489 fs_root = read_fs_root(root->fs_info,
4490 reloc_root->root_key.offset);
4491 if (IS_ERR(fs_root)) {
4492 ret = PTR_ERR(fs_root);
4493 if (ret != -ENOENT) {
4494 err = ret;
4495 goto out;
4496 }
4497 ret = mark_garbage_root(reloc_root);
4498 if (ret < 0) {
4499 err = ret;
4500 goto out;
4501 }
4502 }
4503 }
4504
4505 if (key.offset == 0)
4506 break;
4507
4508 key.offset--;
4509 }
4510 btrfs_release_path(path);
4511
4512 if (list_empty(&reloc_roots))
4513 goto out;
4514
4515 rc = alloc_reloc_control(root->fs_info);
4516 if (!rc) {
4517 err = -ENOMEM;
4518 goto out;
4519 }
4520
4521 rc->extent_root = root->fs_info->extent_root;
4522
4523 set_reloc_control(rc);
4524
4525 trans = btrfs_join_transaction(rc->extent_root);
4526 if (IS_ERR(trans)) {
4527 unset_reloc_control(rc);
4528 err = PTR_ERR(trans);
4529 goto out_free;
4530 }
4531
4532 rc->merge_reloc_tree = 1;
4533
4534 while (!list_empty(&reloc_roots)) {
4535 reloc_root = list_entry(reloc_roots.next,
4536 struct btrfs_root, root_list);
4537 list_del(&reloc_root->root_list);
4538
4539 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4540 list_add_tail(&reloc_root->root_list,
4541 &rc->reloc_roots);
4542 continue;
4543 }
4544
4545 fs_root = read_fs_root(root->fs_info,
4546 reloc_root->root_key.offset);
4547 if (IS_ERR(fs_root)) {
4548 err = PTR_ERR(fs_root);
4549 goto out_free;
4550 }
4551
4552 err = __add_reloc_root(reloc_root);
4553 BUG_ON(err < 0); /* -ENOMEM or logic error */
4554 fs_root->reloc_root = reloc_root;
4555 }
4556
4557 err = btrfs_commit_transaction(trans, rc->extent_root);
4558 if (err)
4559 goto out_free;
4560
4561 merge_reloc_roots(rc);
4562
4563 unset_reloc_control(rc);
4564
4565 trans = btrfs_join_transaction(rc->extent_root);
4566 if (IS_ERR(trans)) {
4567 err = PTR_ERR(trans);
4568 goto out_free;
4569 }
4570 err = btrfs_commit_transaction(trans, rc->extent_root);
4571out_free:
4572 kfree(rc);
4573out:
4574 if (!list_empty(&reloc_roots))
4575 free_reloc_roots(&reloc_roots);
4576
4577 btrfs_free_path(path);
4578
4579 if (err == 0) {
4580 /* cleanup orphan inode in data relocation tree */
4581 fs_root = read_fs_root(root->fs_info,
4582 BTRFS_DATA_RELOC_TREE_OBJECTID);
4583 if (IS_ERR(fs_root))
4584 err = PTR_ERR(fs_root);
4585 else
4586 err = btrfs_orphan_cleanup(fs_root);
4587 }
4588 return err;
4589}
4590
4591/*
4592 * helper to add ordered checksum for data relocation.
4593 *
4594 * cloning checksum properly handles the nodatasum extents.
4595 * it also saves CPU time to re-calculate the checksum.
4596 */
4597int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4598{
4599 struct btrfs_ordered_sum *sums;
4600 struct btrfs_ordered_extent *ordered;
4601 struct btrfs_root *root = BTRFS_I(inode)->root;
4602 int ret;
4603 u64 disk_bytenr;
4604 u64 new_bytenr;
4605 LIST_HEAD(list);
4606
4607 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4608 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4609
4610 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4611 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4612 disk_bytenr + len - 1, &list, 0);
4613 if (ret)
4614 goto out;
4615
4616 while (!list_empty(&list)) {
4617 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4618 list_del_init(&sums->list);
4619
4620 /*
4621 * We need to offset the new_bytenr based on where the csum is.
4622 * We need to do this because we will read in entire prealloc
4623 * extents but we may have written to say the middle of the
4624 * prealloc extent, so we need to make sure the csum goes with
4625 * the right disk offset.
4626 *
4627 * We can do this because the data reloc inode refers strictly
4628 * to the on disk bytes, so we don't have to worry about
4629 * disk_len vs real len like with real inodes since it's all
4630 * disk length.
4631 */
4632 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4633 sums->bytenr = new_bytenr;
4634
4635 btrfs_add_ordered_sum(inode, ordered, sums);
4636 }
4637out:
4638 btrfs_put_ordered_extent(ordered);
4639 return ret;
4640}
4641
4642int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4643 struct btrfs_root *root, struct extent_buffer *buf,
4644 struct extent_buffer *cow)
4645{
4646 struct reloc_control *rc;
4647 struct backref_node *node;
4648 int first_cow = 0;
4649 int level;
4650 int ret = 0;
4651
4652 rc = root->fs_info->reloc_ctl;
4653 if (!rc)
4654 return 0;
4655
4656 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4657 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4658
4659 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4660 if (buf == root->node)
4661 __update_reloc_root(root, cow->start);
4662 }
4663
4664 level = btrfs_header_level(buf);
4665 if (btrfs_header_generation(buf) <=
4666 btrfs_root_last_snapshot(&root->root_item))
4667 first_cow = 1;
4668
4669 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4670 rc->create_reloc_tree) {
4671 WARN_ON(!first_cow && level == 0);
4672
4673 node = rc->backref_cache.path[level];
4674 BUG_ON(node->bytenr != buf->start &&
4675 node->new_bytenr != buf->start);
4676
4677 drop_node_buffer(node);
4678 extent_buffer_get(cow);
4679 node->eb = cow;
4680 node->new_bytenr = cow->start;
4681
4682 if (!node->pending) {
4683 list_move_tail(&node->list,
4684 &rc->backref_cache.pending[level]);
4685 node->pending = 1;
4686 }
4687
4688 if (first_cow)
4689 __mark_block_processed(rc, node);
4690
4691 if (first_cow && level > 0)
4692 rc->nodes_relocated += buf->len;
4693 }
4694
4695 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4696 ret = replace_file_extents(trans, rc, root, cow);
4697 return ret;
4698}
4699
4700/*
4701 * called before creating snapshot. it calculates metadata reservation
4702 * required for relocating tree blocks in the snapshot
4703 */
4704void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4705 u64 *bytes_to_reserve)
4706{
4707 struct btrfs_root *root;
4708 struct reloc_control *rc;
4709
4710 root = pending->root;
4711 if (!root->reloc_root)
4712 return;
4713
4714 rc = root->fs_info->reloc_ctl;
4715 if (!rc->merge_reloc_tree)
4716 return;
4717
4718 root = root->reloc_root;
4719 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4720 /*
4721 * relocation is in the stage of merging trees. the space
4722 * used by merging a reloc tree is twice the size of
4723 * relocated tree nodes in the worst case. half for cowing
4724 * the reloc tree, half for cowing the fs tree. the space
4725 * used by cowing the reloc tree will be freed after the
4726 * tree is dropped. if we create snapshot, cowing the fs
4727 * tree may use more space than it frees. so we need
4728 * reserve extra space.
4729 */
4730 *bytes_to_reserve += rc->nodes_relocated;
4731}
4732
4733/*
4734 * called after snapshot is created. migrate block reservation
4735 * and create reloc root for the newly created snapshot
4736 */
4737int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4738 struct btrfs_pending_snapshot *pending)
4739{
4740 struct btrfs_root *root = pending->root;
4741 struct btrfs_root *reloc_root;
4742 struct btrfs_root *new_root;
4743 struct reloc_control *rc;
4744 int ret;
4745
4746 if (!root->reloc_root)
4747 return 0;
4748
4749 rc = root->fs_info->reloc_ctl;
4750 rc->merging_rsv_size += rc->nodes_relocated;
4751
4752 if (rc->merge_reloc_tree) {
4753 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4754 rc->block_rsv,
4755 rc->nodes_relocated, 1);
4756 if (ret)
4757 return ret;
4758 }
4759
4760 new_root = pending->snap;
4761 reloc_root = create_reloc_root(trans, root->reloc_root,
4762 new_root->root_key.objectid);
4763 if (IS_ERR(reloc_root))
4764 return PTR_ERR(reloc_root);
4765
4766 ret = __add_reloc_root(reloc_root);
4767 BUG_ON(ret < 0);
4768 new_root->reloc_root = reloc_root;
4769
4770 if (rc->create_reloc_tree)
4771 ret = clone_backref_node(trans, rc, root, reloc_root);
4772 return ret;
4773}