]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame_incremental - fs/btrfs/super.c
Btrfs: check UUID tree during mount if required
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / super.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/blkdev.h>
20#include <linux/module.h>
21#include <linux/buffer_head.h>
22#include <linux/fs.h>
23#include <linux/pagemap.h>
24#include <linux/highmem.h>
25#include <linux/time.h>
26#include <linux/init.h>
27#include <linux/seq_file.h>
28#include <linux/string.h>
29#include <linux/backing-dev.h>
30#include <linux/mount.h>
31#include <linux/mpage.h>
32#include <linux/swap.h>
33#include <linux/writeback.h>
34#include <linux/statfs.h>
35#include <linux/compat.h>
36#include <linux/parser.h>
37#include <linux/ctype.h>
38#include <linux/namei.h>
39#include <linux/miscdevice.h>
40#include <linux/magic.h>
41#include <linux/slab.h>
42#include <linux/cleancache.h>
43#include <linux/ratelimit.h>
44#include <linux/btrfs.h>
45#include "compat.h"
46#include "delayed-inode.h"
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
51#include "print-tree.h"
52#include "xattr.h"
53#include "volumes.h"
54#include "export.h"
55#include "compression.h"
56#include "rcu-string.h"
57#include "dev-replace.h"
58#include "free-space-cache.h"
59#include "tests/btrfs-tests.h"
60
61#define CREATE_TRACE_POINTS
62#include <trace/events/btrfs.h>
63
64static const struct super_operations btrfs_super_ops;
65static struct file_system_type btrfs_fs_type;
66
67static const char *btrfs_decode_error(int errno)
68{
69 char *errstr = "unknown";
70
71 switch (errno) {
72 case -EIO:
73 errstr = "IO failure";
74 break;
75 case -ENOMEM:
76 errstr = "Out of memory";
77 break;
78 case -EROFS:
79 errstr = "Readonly filesystem";
80 break;
81 case -EEXIST:
82 errstr = "Object already exists";
83 break;
84 case -ENOSPC:
85 errstr = "No space left";
86 break;
87 case -ENOENT:
88 errstr = "No such entry";
89 break;
90 }
91
92 return errstr;
93}
94
95static void save_error_info(struct btrfs_fs_info *fs_info)
96{
97 /*
98 * today we only save the error info into ram. Long term we'll
99 * also send it down to the disk
100 */
101 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
102}
103
104/* btrfs handle error by forcing the filesystem readonly */
105static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
106{
107 struct super_block *sb = fs_info->sb;
108
109 if (sb->s_flags & MS_RDONLY)
110 return;
111
112 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
113 sb->s_flags |= MS_RDONLY;
114 btrfs_info(fs_info, "forced readonly");
115 /*
116 * Note that a running device replace operation is not
117 * canceled here although there is no way to update
118 * the progress. It would add the risk of a deadlock,
119 * therefore the canceling is ommited. The only penalty
120 * is that some I/O remains active until the procedure
121 * completes. The next time when the filesystem is
122 * mounted writeable again, the device replace
123 * operation continues.
124 */
125 }
126}
127
128#ifdef CONFIG_PRINTK
129/*
130 * __btrfs_std_error decodes expected errors from the caller and
131 * invokes the approciate error response.
132 */
133void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
134 unsigned int line, int errno, const char *fmt, ...)
135{
136 struct super_block *sb = fs_info->sb;
137 const char *errstr;
138
139 /*
140 * Special case: if the error is EROFS, and we're already
141 * under MS_RDONLY, then it is safe here.
142 */
143 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
144 return;
145
146 errstr = btrfs_decode_error(errno);
147 if (fmt) {
148 struct va_format vaf;
149 va_list args;
150
151 va_start(args, fmt);
152 vaf.fmt = fmt;
153 vaf.va = &args;
154
155 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n",
156 sb->s_id, function, line, errno, errstr, &vaf);
157 va_end(args);
158 } else {
159 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n",
160 sb->s_id, function, line, errno, errstr);
161 }
162
163 /* Don't go through full error handling during mount */
164 save_error_info(fs_info);
165 if (sb->s_flags & MS_BORN)
166 btrfs_handle_error(fs_info);
167}
168
169static const char * const logtypes[] = {
170 "emergency",
171 "alert",
172 "critical",
173 "error",
174 "warning",
175 "notice",
176 "info",
177 "debug",
178};
179
180void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
181{
182 struct super_block *sb = fs_info->sb;
183 char lvl[4];
184 struct va_format vaf;
185 va_list args;
186 const char *type = logtypes[4];
187 int kern_level;
188
189 va_start(args, fmt);
190
191 kern_level = printk_get_level(fmt);
192 if (kern_level) {
193 size_t size = printk_skip_level(fmt) - fmt;
194 memcpy(lvl, fmt, size);
195 lvl[size] = '\0';
196 fmt += size;
197 type = logtypes[kern_level - '0'];
198 } else
199 *lvl = '\0';
200
201 vaf.fmt = fmt;
202 vaf.va = &args;
203
204 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
205
206 va_end(args);
207}
208
209#else
210
211void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
212 unsigned int line, int errno, const char *fmt, ...)
213{
214 struct super_block *sb = fs_info->sb;
215
216 /*
217 * Special case: if the error is EROFS, and we're already
218 * under MS_RDONLY, then it is safe here.
219 */
220 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
221 return;
222
223 /* Don't go through full error handling during mount */
224 if (sb->s_flags & MS_BORN) {
225 save_error_info(fs_info);
226 btrfs_handle_error(fs_info);
227 }
228}
229#endif
230
231/*
232 * We only mark the transaction aborted and then set the file system read-only.
233 * This will prevent new transactions from starting or trying to join this
234 * one.
235 *
236 * This means that error recovery at the call site is limited to freeing
237 * any local memory allocations and passing the error code up without
238 * further cleanup. The transaction should complete as it normally would
239 * in the call path but will return -EIO.
240 *
241 * We'll complete the cleanup in btrfs_end_transaction and
242 * btrfs_commit_transaction.
243 */
244void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
245 struct btrfs_root *root, const char *function,
246 unsigned int line, int errno)
247{
248 /*
249 * Report first abort since mount
250 */
251 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
252 &root->fs_info->fs_state)) {
253 WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n",
254 errno);
255 }
256 trans->aborted = errno;
257 /* Nothing used. The other threads that have joined this
258 * transaction may be able to continue. */
259 if (!trans->blocks_used) {
260 const char *errstr;
261
262 errstr = btrfs_decode_error(errno);
263 btrfs_warn(root->fs_info,
264 "%s:%d: Aborting unused transaction(%s).",
265 function, line, errstr);
266 return;
267 }
268 ACCESS_ONCE(trans->transaction->aborted) = errno;
269 /* Wake up anybody who may be waiting on this transaction */
270 wake_up(&root->fs_info->transaction_wait);
271 wake_up(&root->fs_info->transaction_blocked_wait);
272 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
273}
274/*
275 * __btrfs_panic decodes unexpected, fatal errors from the caller,
276 * issues an alert, and either panics or BUGs, depending on mount options.
277 */
278void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
279 unsigned int line, int errno, const char *fmt, ...)
280{
281 char *s_id = "<unknown>";
282 const char *errstr;
283 struct va_format vaf = { .fmt = fmt };
284 va_list args;
285
286 if (fs_info)
287 s_id = fs_info->sb->s_id;
288
289 va_start(args, fmt);
290 vaf.va = &args;
291
292 errstr = btrfs_decode_error(errno);
293 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
294 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
295 s_id, function, line, &vaf, errno, errstr);
296
297 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
298 s_id, function, line, &vaf, errno, errstr);
299 va_end(args);
300 /* Caller calls BUG() */
301}
302
303static void btrfs_put_super(struct super_block *sb)
304{
305 (void)close_ctree(btrfs_sb(sb)->tree_root);
306 /* FIXME: need to fix VFS to return error? */
307 /* AV: return it _where_? ->put_super() can be triggered by any number
308 * of async events, up to and including delivery of SIGKILL to the
309 * last process that kept it busy. Or segfault in the aforementioned
310 * process... Whom would you report that to?
311 */
312}
313
314enum {
315 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
316 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
317 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
318 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
319 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
320 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
321 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
322 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
323 Opt_check_integrity, Opt_check_integrity_including_extent_data,
324 Opt_check_integrity_print_mask, Opt_fatal_errors,
325 Opt_commit_interval,
326 Opt_err,
327};
328
329static match_table_t tokens = {
330 {Opt_degraded, "degraded"},
331 {Opt_subvol, "subvol=%s"},
332 {Opt_subvolid, "subvolid=%s"},
333 {Opt_device, "device=%s"},
334 {Opt_nodatasum, "nodatasum"},
335 {Opt_nodatacow, "nodatacow"},
336 {Opt_nobarrier, "nobarrier"},
337 {Opt_max_inline, "max_inline=%s"},
338 {Opt_alloc_start, "alloc_start=%s"},
339 {Opt_thread_pool, "thread_pool=%d"},
340 {Opt_compress, "compress"},
341 {Opt_compress_type, "compress=%s"},
342 {Opt_compress_force, "compress-force"},
343 {Opt_compress_force_type, "compress-force=%s"},
344 {Opt_ssd, "ssd"},
345 {Opt_ssd_spread, "ssd_spread"},
346 {Opt_nossd, "nossd"},
347 {Opt_noacl, "noacl"},
348 {Opt_notreelog, "notreelog"},
349 {Opt_flushoncommit, "flushoncommit"},
350 {Opt_ratio, "metadata_ratio=%d"},
351 {Opt_discard, "discard"},
352 {Opt_space_cache, "space_cache"},
353 {Opt_clear_cache, "clear_cache"},
354 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
355 {Opt_enospc_debug, "enospc_debug"},
356 {Opt_subvolrootid, "subvolrootid=%d"},
357 {Opt_defrag, "autodefrag"},
358 {Opt_inode_cache, "inode_cache"},
359 {Opt_no_space_cache, "nospace_cache"},
360 {Opt_recovery, "recovery"},
361 {Opt_skip_balance, "skip_balance"},
362 {Opt_check_integrity, "check_int"},
363 {Opt_check_integrity_including_extent_data, "check_int_data"},
364 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
365 {Opt_fatal_errors, "fatal_errors=%s"},
366 {Opt_commit_interval, "commit=%d"},
367 {Opt_err, NULL},
368};
369
370/*
371 * Regular mount options parser. Everything that is needed only when
372 * reading in a new superblock is parsed here.
373 * XXX JDM: This needs to be cleaned up for remount.
374 */
375int btrfs_parse_options(struct btrfs_root *root, char *options)
376{
377 struct btrfs_fs_info *info = root->fs_info;
378 substring_t args[MAX_OPT_ARGS];
379 char *p, *num, *orig = NULL;
380 u64 cache_gen;
381 int intarg;
382 int ret = 0;
383 char *compress_type;
384 bool compress_force = false;
385
386 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
387 if (cache_gen)
388 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
389
390 if (!options)
391 goto out;
392
393 /*
394 * strsep changes the string, duplicate it because parse_options
395 * gets called twice
396 */
397 options = kstrdup(options, GFP_NOFS);
398 if (!options)
399 return -ENOMEM;
400
401 orig = options;
402
403 while ((p = strsep(&options, ",")) != NULL) {
404 int token;
405 if (!*p)
406 continue;
407
408 token = match_token(p, tokens, args);
409 switch (token) {
410 case Opt_degraded:
411 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
412 btrfs_set_opt(info->mount_opt, DEGRADED);
413 break;
414 case Opt_subvol:
415 case Opt_subvolid:
416 case Opt_subvolrootid:
417 case Opt_device:
418 /*
419 * These are parsed by btrfs_parse_early_options
420 * and can be happily ignored here.
421 */
422 break;
423 case Opt_nodatasum:
424 printk(KERN_INFO "btrfs: setting nodatasum\n");
425 btrfs_set_opt(info->mount_opt, NODATASUM);
426 break;
427 case Opt_nodatacow:
428 if (!btrfs_test_opt(root, COMPRESS) ||
429 !btrfs_test_opt(root, FORCE_COMPRESS)) {
430 printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
431 } else {
432 printk(KERN_INFO "btrfs: setting nodatacow\n");
433 }
434 info->compress_type = BTRFS_COMPRESS_NONE;
435 btrfs_clear_opt(info->mount_opt, COMPRESS);
436 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
437 btrfs_set_opt(info->mount_opt, NODATACOW);
438 btrfs_set_opt(info->mount_opt, NODATASUM);
439 break;
440 case Opt_compress_force:
441 case Opt_compress_force_type:
442 compress_force = true;
443 /* Fallthrough */
444 case Opt_compress:
445 case Opt_compress_type:
446 if (token == Opt_compress ||
447 token == Opt_compress_force ||
448 strcmp(args[0].from, "zlib") == 0) {
449 compress_type = "zlib";
450 info->compress_type = BTRFS_COMPRESS_ZLIB;
451 btrfs_set_opt(info->mount_opt, COMPRESS);
452 btrfs_clear_opt(info->mount_opt, NODATACOW);
453 btrfs_clear_opt(info->mount_opt, NODATASUM);
454 } else if (strcmp(args[0].from, "lzo") == 0) {
455 compress_type = "lzo";
456 info->compress_type = BTRFS_COMPRESS_LZO;
457 btrfs_set_opt(info->mount_opt, COMPRESS);
458 btrfs_clear_opt(info->mount_opt, NODATACOW);
459 btrfs_clear_opt(info->mount_opt, NODATASUM);
460 btrfs_set_fs_incompat(info, COMPRESS_LZO);
461 } else if (strncmp(args[0].from, "no", 2) == 0) {
462 compress_type = "no";
463 info->compress_type = BTRFS_COMPRESS_NONE;
464 btrfs_clear_opt(info->mount_opt, COMPRESS);
465 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
466 compress_force = false;
467 } else {
468 ret = -EINVAL;
469 goto out;
470 }
471
472 if (compress_force) {
473 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
474 pr_info("btrfs: force %s compression\n",
475 compress_type);
476 } else
477 pr_info("btrfs: use %s compression\n",
478 compress_type);
479 break;
480 case Opt_ssd:
481 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
482 btrfs_set_opt(info->mount_opt, SSD);
483 break;
484 case Opt_ssd_spread:
485 printk(KERN_INFO "btrfs: use spread ssd "
486 "allocation scheme\n");
487 btrfs_set_opt(info->mount_opt, SSD);
488 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
489 break;
490 case Opt_nossd:
491 printk(KERN_INFO "btrfs: not using ssd allocation "
492 "scheme\n");
493 btrfs_set_opt(info->mount_opt, NOSSD);
494 btrfs_clear_opt(info->mount_opt, SSD);
495 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
496 break;
497 case Opt_nobarrier:
498 printk(KERN_INFO "btrfs: turning off barriers\n");
499 btrfs_set_opt(info->mount_opt, NOBARRIER);
500 break;
501 case Opt_thread_pool:
502 ret = match_int(&args[0], &intarg);
503 if (ret) {
504 goto out;
505 } else if (intarg > 0) {
506 info->thread_pool_size = intarg;
507 } else {
508 ret = -EINVAL;
509 goto out;
510 }
511 break;
512 case Opt_max_inline:
513 num = match_strdup(&args[0]);
514 if (num) {
515 info->max_inline = memparse(num, NULL);
516 kfree(num);
517
518 if (info->max_inline) {
519 info->max_inline = max_t(u64,
520 info->max_inline,
521 root->sectorsize);
522 }
523 printk(KERN_INFO "btrfs: max_inline at %llu\n",
524 (unsigned long long)info->max_inline);
525 } else {
526 ret = -ENOMEM;
527 goto out;
528 }
529 break;
530 case Opt_alloc_start:
531 num = match_strdup(&args[0]);
532 if (num) {
533 mutex_lock(&info->chunk_mutex);
534 info->alloc_start = memparse(num, NULL);
535 mutex_unlock(&info->chunk_mutex);
536 kfree(num);
537 printk(KERN_INFO
538 "btrfs: allocations start at %llu\n",
539 (unsigned long long)info->alloc_start);
540 } else {
541 ret = -ENOMEM;
542 goto out;
543 }
544 break;
545 case Opt_noacl:
546 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
547 break;
548 case Opt_notreelog:
549 printk(KERN_INFO "btrfs: disabling tree log\n");
550 btrfs_set_opt(info->mount_opt, NOTREELOG);
551 break;
552 case Opt_flushoncommit:
553 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
554 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
555 break;
556 case Opt_ratio:
557 ret = match_int(&args[0], &intarg);
558 if (ret) {
559 goto out;
560 } else if (intarg >= 0) {
561 info->metadata_ratio = intarg;
562 printk(KERN_INFO "btrfs: metadata ratio %d\n",
563 info->metadata_ratio);
564 } else {
565 ret = -EINVAL;
566 goto out;
567 }
568 break;
569 case Opt_discard:
570 btrfs_set_opt(info->mount_opt, DISCARD);
571 break;
572 case Opt_space_cache:
573 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
574 break;
575 case Opt_no_space_cache:
576 printk(KERN_INFO "btrfs: disabling disk space caching\n");
577 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
578 break;
579 case Opt_inode_cache:
580 printk(KERN_INFO "btrfs: enabling inode map caching\n");
581 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
582 break;
583 case Opt_clear_cache:
584 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
585 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
586 break;
587 case Opt_user_subvol_rm_allowed:
588 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
589 break;
590 case Opt_enospc_debug:
591 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
592 break;
593 case Opt_defrag:
594 printk(KERN_INFO "btrfs: enabling auto defrag\n");
595 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
596 break;
597 case Opt_recovery:
598 printk(KERN_INFO "btrfs: enabling auto recovery\n");
599 btrfs_set_opt(info->mount_opt, RECOVERY);
600 break;
601 case Opt_skip_balance:
602 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
603 break;
604#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
605 case Opt_check_integrity_including_extent_data:
606 printk(KERN_INFO "btrfs: enabling check integrity"
607 " including extent data\n");
608 btrfs_set_opt(info->mount_opt,
609 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
610 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
611 break;
612 case Opt_check_integrity:
613 printk(KERN_INFO "btrfs: enabling check integrity\n");
614 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
615 break;
616 case Opt_check_integrity_print_mask:
617 ret = match_int(&args[0], &intarg);
618 if (ret) {
619 goto out;
620 } else if (intarg >= 0) {
621 info->check_integrity_print_mask = intarg;
622 printk(KERN_INFO "btrfs:"
623 " check_integrity_print_mask 0x%x\n",
624 info->check_integrity_print_mask);
625 } else {
626 ret = -EINVAL;
627 goto out;
628 }
629 break;
630#else
631 case Opt_check_integrity_including_extent_data:
632 case Opt_check_integrity:
633 case Opt_check_integrity_print_mask:
634 printk(KERN_ERR "btrfs: support for check_integrity*"
635 " not compiled in!\n");
636 ret = -EINVAL;
637 goto out;
638#endif
639 case Opt_fatal_errors:
640 if (strcmp(args[0].from, "panic") == 0)
641 btrfs_set_opt(info->mount_opt,
642 PANIC_ON_FATAL_ERROR);
643 else if (strcmp(args[0].from, "bug") == 0)
644 btrfs_clear_opt(info->mount_opt,
645 PANIC_ON_FATAL_ERROR);
646 else {
647 ret = -EINVAL;
648 goto out;
649 }
650 break;
651 case Opt_commit_interval:
652 intarg = 0;
653 ret = match_int(&args[0], &intarg);
654 if (ret < 0) {
655 printk(KERN_ERR
656 "btrfs: invalid commit interval\n");
657 ret = -EINVAL;
658 goto out;
659 }
660 if (intarg > 0) {
661 if (intarg > 300) {
662 printk(KERN_WARNING
663 "btrfs: excessive commit interval %d\n",
664 intarg);
665 }
666 info->commit_interval = intarg;
667 } else {
668 printk(KERN_INFO
669 "btrfs: using default commit interval %ds\n",
670 BTRFS_DEFAULT_COMMIT_INTERVAL);
671 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
672 }
673 break;
674 case Opt_err:
675 printk(KERN_INFO "btrfs: unrecognized mount option "
676 "'%s'\n", p);
677 ret = -EINVAL;
678 goto out;
679 default:
680 break;
681 }
682 }
683out:
684 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
685 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
686 kfree(orig);
687 return ret;
688}
689
690/*
691 * Parse mount options that are required early in the mount process.
692 *
693 * All other options will be parsed on much later in the mount process and
694 * only when we need to allocate a new super block.
695 */
696static int btrfs_parse_early_options(const char *options, fmode_t flags,
697 void *holder, char **subvol_name, u64 *subvol_objectid,
698 struct btrfs_fs_devices **fs_devices)
699{
700 substring_t args[MAX_OPT_ARGS];
701 char *device_name, *opts, *orig, *p;
702 char *num = NULL;
703 int error = 0;
704
705 if (!options)
706 return 0;
707
708 /*
709 * strsep changes the string, duplicate it because parse_options
710 * gets called twice
711 */
712 opts = kstrdup(options, GFP_KERNEL);
713 if (!opts)
714 return -ENOMEM;
715 orig = opts;
716
717 while ((p = strsep(&opts, ",")) != NULL) {
718 int token;
719 if (!*p)
720 continue;
721
722 token = match_token(p, tokens, args);
723 switch (token) {
724 case Opt_subvol:
725 kfree(*subvol_name);
726 *subvol_name = match_strdup(&args[0]);
727 if (!*subvol_name) {
728 error = -ENOMEM;
729 goto out;
730 }
731 break;
732 case Opt_subvolid:
733 num = match_strdup(&args[0]);
734 if (num) {
735 *subvol_objectid = memparse(num, NULL);
736 kfree(num);
737 /* we want the original fs_tree */
738 if (!*subvol_objectid)
739 *subvol_objectid =
740 BTRFS_FS_TREE_OBJECTID;
741 } else {
742 error = -EINVAL;
743 goto out;
744 }
745 break;
746 case Opt_subvolrootid:
747 printk(KERN_WARNING
748 "btrfs: 'subvolrootid' mount option is deprecated and has no effect\n");
749 break;
750 case Opt_device:
751 device_name = match_strdup(&args[0]);
752 if (!device_name) {
753 error = -ENOMEM;
754 goto out;
755 }
756 error = btrfs_scan_one_device(device_name,
757 flags, holder, fs_devices);
758 kfree(device_name);
759 if (error)
760 goto out;
761 break;
762 default:
763 break;
764 }
765 }
766
767out:
768 kfree(orig);
769 return error;
770}
771
772static struct dentry *get_default_root(struct super_block *sb,
773 u64 subvol_objectid)
774{
775 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
776 struct btrfs_root *root = fs_info->tree_root;
777 struct btrfs_root *new_root;
778 struct btrfs_dir_item *di;
779 struct btrfs_path *path;
780 struct btrfs_key location;
781 struct inode *inode;
782 u64 dir_id;
783 int new = 0;
784
785 /*
786 * We have a specific subvol we want to mount, just setup location and
787 * go look up the root.
788 */
789 if (subvol_objectid) {
790 location.objectid = subvol_objectid;
791 location.type = BTRFS_ROOT_ITEM_KEY;
792 location.offset = (u64)-1;
793 goto find_root;
794 }
795
796 path = btrfs_alloc_path();
797 if (!path)
798 return ERR_PTR(-ENOMEM);
799 path->leave_spinning = 1;
800
801 /*
802 * Find the "default" dir item which points to the root item that we
803 * will mount by default if we haven't been given a specific subvolume
804 * to mount.
805 */
806 dir_id = btrfs_super_root_dir(fs_info->super_copy);
807 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
808 if (IS_ERR(di)) {
809 btrfs_free_path(path);
810 return ERR_CAST(di);
811 }
812 if (!di) {
813 /*
814 * Ok the default dir item isn't there. This is weird since
815 * it's always been there, but don't freak out, just try and
816 * mount to root most subvolume.
817 */
818 btrfs_free_path(path);
819 dir_id = BTRFS_FIRST_FREE_OBJECTID;
820 new_root = fs_info->fs_root;
821 goto setup_root;
822 }
823
824 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
825 btrfs_free_path(path);
826
827find_root:
828 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
829 if (IS_ERR(new_root))
830 return ERR_CAST(new_root);
831
832 dir_id = btrfs_root_dirid(&new_root->root_item);
833setup_root:
834 location.objectid = dir_id;
835 location.type = BTRFS_INODE_ITEM_KEY;
836 location.offset = 0;
837
838 inode = btrfs_iget(sb, &location, new_root, &new);
839 if (IS_ERR(inode))
840 return ERR_CAST(inode);
841
842 /*
843 * If we're just mounting the root most subvol put the inode and return
844 * a reference to the dentry. We will have already gotten a reference
845 * to the inode in btrfs_fill_super so we're good to go.
846 */
847 if (!new && sb->s_root->d_inode == inode) {
848 iput(inode);
849 return dget(sb->s_root);
850 }
851
852 return d_obtain_alias(inode);
853}
854
855static int btrfs_fill_super(struct super_block *sb,
856 struct btrfs_fs_devices *fs_devices,
857 void *data, int silent)
858{
859 struct inode *inode;
860 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
861 struct btrfs_key key;
862 int err;
863
864 sb->s_maxbytes = MAX_LFS_FILESIZE;
865 sb->s_magic = BTRFS_SUPER_MAGIC;
866 sb->s_op = &btrfs_super_ops;
867 sb->s_d_op = &btrfs_dentry_operations;
868 sb->s_export_op = &btrfs_export_ops;
869 sb->s_xattr = btrfs_xattr_handlers;
870 sb->s_time_gran = 1;
871#ifdef CONFIG_BTRFS_FS_POSIX_ACL
872 sb->s_flags |= MS_POSIXACL;
873#endif
874 sb->s_flags |= MS_I_VERSION;
875 err = open_ctree(sb, fs_devices, (char *)data);
876 if (err) {
877 printk("btrfs: open_ctree failed\n");
878 return err;
879 }
880
881 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
882 key.type = BTRFS_INODE_ITEM_KEY;
883 key.offset = 0;
884 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
885 if (IS_ERR(inode)) {
886 err = PTR_ERR(inode);
887 goto fail_close;
888 }
889
890 sb->s_root = d_make_root(inode);
891 if (!sb->s_root) {
892 err = -ENOMEM;
893 goto fail_close;
894 }
895
896 save_mount_options(sb, data);
897 cleancache_init_fs(sb);
898 sb->s_flags |= MS_ACTIVE;
899 return 0;
900
901fail_close:
902 close_ctree(fs_info->tree_root);
903 return err;
904}
905
906int btrfs_sync_fs(struct super_block *sb, int wait)
907{
908 struct btrfs_trans_handle *trans;
909 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
910 struct btrfs_root *root = fs_info->tree_root;
911
912 trace_btrfs_sync_fs(wait);
913
914 if (!wait) {
915 filemap_flush(fs_info->btree_inode->i_mapping);
916 return 0;
917 }
918
919 btrfs_wait_all_ordered_extents(fs_info, 1);
920
921 trans = btrfs_attach_transaction_barrier(root);
922 if (IS_ERR(trans)) {
923 /* no transaction, don't bother */
924 if (PTR_ERR(trans) == -ENOENT)
925 return 0;
926 return PTR_ERR(trans);
927 }
928 return btrfs_commit_transaction(trans, root);
929}
930
931static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
932{
933 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
934 struct btrfs_root *root = info->tree_root;
935 char *compress_type;
936
937 if (btrfs_test_opt(root, DEGRADED))
938 seq_puts(seq, ",degraded");
939 if (btrfs_test_opt(root, NODATASUM))
940 seq_puts(seq, ",nodatasum");
941 if (btrfs_test_opt(root, NODATACOW))
942 seq_puts(seq, ",nodatacow");
943 if (btrfs_test_opt(root, NOBARRIER))
944 seq_puts(seq, ",nobarrier");
945 if (info->max_inline != 8192 * 1024)
946 seq_printf(seq, ",max_inline=%llu",
947 (unsigned long long)info->max_inline);
948 if (info->alloc_start != 0)
949 seq_printf(seq, ",alloc_start=%llu",
950 (unsigned long long)info->alloc_start);
951 if (info->thread_pool_size != min_t(unsigned long,
952 num_online_cpus() + 2, 8))
953 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
954 if (btrfs_test_opt(root, COMPRESS)) {
955 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
956 compress_type = "zlib";
957 else
958 compress_type = "lzo";
959 if (btrfs_test_opt(root, FORCE_COMPRESS))
960 seq_printf(seq, ",compress-force=%s", compress_type);
961 else
962 seq_printf(seq, ",compress=%s", compress_type);
963 }
964 if (btrfs_test_opt(root, NOSSD))
965 seq_puts(seq, ",nossd");
966 if (btrfs_test_opt(root, SSD_SPREAD))
967 seq_puts(seq, ",ssd_spread");
968 else if (btrfs_test_opt(root, SSD))
969 seq_puts(seq, ",ssd");
970 if (btrfs_test_opt(root, NOTREELOG))
971 seq_puts(seq, ",notreelog");
972 if (btrfs_test_opt(root, FLUSHONCOMMIT))
973 seq_puts(seq, ",flushoncommit");
974 if (btrfs_test_opt(root, DISCARD))
975 seq_puts(seq, ",discard");
976 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
977 seq_puts(seq, ",noacl");
978 if (btrfs_test_opt(root, SPACE_CACHE))
979 seq_puts(seq, ",space_cache");
980 else
981 seq_puts(seq, ",nospace_cache");
982 if (btrfs_test_opt(root, CLEAR_CACHE))
983 seq_puts(seq, ",clear_cache");
984 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
985 seq_puts(seq, ",user_subvol_rm_allowed");
986 if (btrfs_test_opt(root, ENOSPC_DEBUG))
987 seq_puts(seq, ",enospc_debug");
988 if (btrfs_test_opt(root, AUTO_DEFRAG))
989 seq_puts(seq, ",autodefrag");
990 if (btrfs_test_opt(root, INODE_MAP_CACHE))
991 seq_puts(seq, ",inode_cache");
992 if (btrfs_test_opt(root, SKIP_BALANCE))
993 seq_puts(seq, ",skip_balance");
994 if (btrfs_test_opt(root, RECOVERY))
995 seq_puts(seq, ",recovery");
996#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
997 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
998 seq_puts(seq, ",check_int_data");
999 else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1000 seq_puts(seq, ",check_int");
1001 if (info->check_integrity_print_mask)
1002 seq_printf(seq, ",check_int_print_mask=%d",
1003 info->check_integrity_print_mask);
1004#endif
1005 if (info->metadata_ratio)
1006 seq_printf(seq, ",metadata_ratio=%d",
1007 info->metadata_ratio);
1008 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1009 seq_puts(seq, ",fatal_errors=panic");
1010 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1011 seq_printf(seq, ",commit=%d", info->commit_interval);
1012 return 0;
1013}
1014
1015static int btrfs_test_super(struct super_block *s, void *data)
1016{
1017 struct btrfs_fs_info *p = data;
1018 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1019
1020 return fs_info->fs_devices == p->fs_devices;
1021}
1022
1023static int btrfs_set_super(struct super_block *s, void *data)
1024{
1025 int err = set_anon_super(s, data);
1026 if (!err)
1027 s->s_fs_info = data;
1028 return err;
1029}
1030
1031/*
1032 * subvolumes are identified by ino 256
1033 */
1034static inline int is_subvolume_inode(struct inode *inode)
1035{
1036 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1037 return 1;
1038 return 0;
1039}
1040
1041/*
1042 * This will strip out the subvol=%s argument for an argument string and add
1043 * subvolid=0 to make sure we get the actual tree root for path walking to the
1044 * subvol we want.
1045 */
1046static char *setup_root_args(char *args)
1047{
1048 unsigned len = strlen(args) + 2 + 1;
1049 char *src, *dst, *buf;
1050
1051 /*
1052 * We need the same args as before, but with this substitution:
1053 * s!subvol=[^,]+!subvolid=0!
1054 *
1055 * Since the replacement string is up to 2 bytes longer than the
1056 * original, allocate strlen(args) + 2 + 1 bytes.
1057 */
1058
1059 src = strstr(args, "subvol=");
1060 /* This shouldn't happen, but just in case.. */
1061 if (!src)
1062 return NULL;
1063
1064 buf = dst = kmalloc(len, GFP_NOFS);
1065 if (!buf)
1066 return NULL;
1067
1068 /*
1069 * If the subvol= arg is not at the start of the string,
1070 * copy whatever precedes it into buf.
1071 */
1072 if (src != args) {
1073 *src++ = '\0';
1074 strcpy(buf, args);
1075 dst += strlen(args);
1076 }
1077
1078 strcpy(dst, "subvolid=0");
1079 dst += strlen("subvolid=0");
1080
1081 /*
1082 * If there is a "," after the original subvol=... string,
1083 * copy that suffix into our buffer. Otherwise, we're done.
1084 */
1085 src = strchr(src, ',');
1086 if (src)
1087 strcpy(dst, src);
1088
1089 return buf;
1090}
1091
1092static struct dentry *mount_subvol(const char *subvol_name, int flags,
1093 const char *device_name, char *data)
1094{
1095 struct dentry *root;
1096 struct vfsmount *mnt;
1097 char *newargs;
1098
1099 newargs = setup_root_args(data);
1100 if (!newargs)
1101 return ERR_PTR(-ENOMEM);
1102 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1103 newargs);
1104 kfree(newargs);
1105 if (IS_ERR(mnt))
1106 return ERR_CAST(mnt);
1107
1108 root = mount_subtree(mnt, subvol_name);
1109
1110 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1111 struct super_block *s = root->d_sb;
1112 dput(root);
1113 root = ERR_PTR(-EINVAL);
1114 deactivate_locked_super(s);
1115 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1116 subvol_name);
1117 }
1118
1119 return root;
1120}
1121
1122/*
1123 * Find a superblock for the given device / mount point.
1124 *
1125 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1126 * for multiple device setup. Make sure to keep it in sync.
1127 */
1128static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1129 const char *device_name, void *data)
1130{
1131 struct block_device *bdev = NULL;
1132 struct super_block *s;
1133 struct dentry *root;
1134 struct btrfs_fs_devices *fs_devices = NULL;
1135 struct btrfs_fs_info *fs_info = NULL;
1136 fmode_t mode = FMODE_READ;
1137 char *subvol_name = NULL;
1138 u64 subvol_objectid = 0;
1139 int error = 0;
1140
1141 if (!(flags & MS_RDONLY))
1142 mode |= FMODE_WRITE;
1143
1144 error = btrfs_parse_early_options(data, mode, fs_type,
1145 &subvol_name, &subvol_objectid,
1146 &fs_devices);
1147 if (error) {
1148 kfree(subvol_name);
1149 return ERR_PTR(error);
1150 }
1151
1152 if (subvol_name) {
1153 root = mount_subvol(subvol_name, flags, device_name, data);
1154 kfree(subvol_name);
1155 return root;
1156 }
1157
1158 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1159 if (error)
1160 return ERR_PTR(error);
1161
1162 /*
1163 * Setup a dummy root and fs_info for test/set super. This is because
1164 * we don't actually fill this stuff out until open_ctree, but we need
1165 * it for searching for existing supers, so this lets us do that and
1166 * then open_ctree will properly initialize everything later.
1167 */
1168 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1169 if (!fs_info)
1170 return ERR_PTR(-ENOMEM);
1171
1172 fs_info->fs_devices = fs_devices;
1173
1174 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1175 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1176 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1177 error = -ENOMEM;
1178 goto error_fs_info;
1179 }
1180
1181 error = btrfs_open_devices(fs_devices, mode, fs_type);
1182 if (error)
1183 goto error_fs_info;
1184
1185 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1186 error = -EACCES;
1187 goto error_close_devices;
1188 }
1189
1190 bdev = fs_devices->latest_bdev;
1191 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1192 fs_info);
1193 if (IS_ERR(s)) {
1194 error = PTR_ERR(s);
1195 goto error_close_devices;
1196 }
1197
1198 if (s->s_root) {
1199 btrfs_close_devices(fs_devices);
1200 free_fs_info(fs_info);
1201 if ((flags ^ s->s_flags) & MS_RDONLY)
1202 error = -EBUSY;
1203 } else {
1204 char b[BDEVNAME_SIZE];
1205
1206 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1207 btrfs_sb(s)->bdev_holder = fs_type;
1208 error = btrfs_fill_super(s, fs_devices, data,
1209 flags & MS_SILENT ? 1 : 0);
1210 }
1211
1212 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1213 if (IS_ERR(root))
1214 deactivate_locked_super(s);
1215
1216 return root;
1217
1218error_close_devices:
1219 btrfs_close_devices(fs_devices);
1220error_fs_info:
1221 free_fs_info(fs_info);
1222 return ERR_PTR(error);
1223}
1224
1225static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1226{
1227 spin_lock_irq(&workers->lock);
1228 workers->max_workers = new_limit;
1229 spin_unlock_irq(&workers->lock);
1230}
1231
1232static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1233 int new_pool_size, int old_pool_size)
1234{
1235 if (new_pool_size == old_pool_size)
1236 return;
1237
1238 fs_info->thread_pool_size = new_pool_size;
1239
1240 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1241 old_pool_size, new_pool_size);
1242
1243 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1244 btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1245 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1246 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1247 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1248 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1249 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1250 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1251 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1252 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1253 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1254 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1255 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1256 btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1257 new_pool_size);
1258}
1259
1260static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1261{
1262 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1263}
1264
1265static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1266 unsigned long old_opts, int flags)
1267{
1268 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1269 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1270 (flags & MS_RDONLY))) {
1271 /* wait for any defraggers to finish */
1272 wait_event(fs_info->transaction_wait,
1273 (atomic_read(&fs_info->defrag_running) == 0));
1274 if (flags & MS_RDONLY)
1275 sync_filesystem(fs_info->sb);
1276 }
1277}
1278
1279static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1280 unsigned long old_opts)
1281{
1282 /*
1283 * We need cleanup all defragable inodes if the autodefragment is
1284 * close or the fs is R/O.
1285 */
1286 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1287 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1288 (fs_info->sb->s_flags & MS_RDONLY))) {
1289 btrfs_cleanup_defrag_inodes(fs_info);
1290 }
1291
1292 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1293}
1294
1295static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1296{
1297 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1298 struct btrfs_root *root = fs_info->tree_root;
1299 unsigned old_flags = sb->s_flags;
1300 unsigned long old_opts = fs_info->mount_opt;
1301 unsigned long old_compress_type = fs_info->compress_type;
1302 u64 old_max_inline = fs_info->max_inline;
1303 u64 old_alloc_start = fs_info->alloc_start;
1304 int old_thread_pool_size = fs_info->thread_pool_size;
1305 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1306 int ret;
1307
1308 btrfs_remount_prepare(fs_info);
1309
1310 ret = btrfs_parse_options(root, data);
1311 if (ret) {
1312 ret = -EINVAL;
1313 goto restore;
1314 }
1315
1316 btrfs_remount_begin(fs_info, old_opts, *flags);
1317 btrfs_resize_thread_pool(fs_info,
1318 fs_info->thread_pool_size, old_thread_pool_size);
1319
1320 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1321 goto out;
1322
1323 if (*flags & MS_RDONLY) {
1324 /*
1325 * this also happens on 'umount -rf' or on shutdown, when
1326 * the filesystem is busy.
1327 */
1328 sb->s_flags |= MS_RDONLY;
1329
1330 btrfs_dev_replace_suspend_for_unmount(fs_info);
1331 btrfs_scrub_cancel(fs_info);
1332 btrfs_pause_balance(fs_info);
1333
1334 ret = btrfs_commit_super(root);
1335 if (ret)
1336 goto restore;
1337 } else {
1338 if (fs_info->fs_devices->rw_devices == 0) {
1339 ret = -EACCES;
1340 goto restore;
1341 }
1342
1343 if (fs_info->fs_devices->missing_devices >
1344 fs_info->num_tolerated_disk_barrier_failures &&
1345 !(*flags & MS_RDONLY)) {
1346 printk(KERN_WARNING
1347 "Btrfs: too many missing devices, writeable remount is not allowed\n");
1348 ret = -EACCES;
1349 goto restore;
1350 }
1351
1352 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1353 ret = -EINVAL;
1354 goto restore;
1355 }
1356
1357 ret = btrfs_cleanup_fs_roots(fs_info);
1358 if (ret)
1359 goto restore;
1360
1361 /* recover relocation */
1362 ret = btrfs_recover_relocation(root);
1363 if (ret)
1364 goto restore;
1365
1366 ret = btrfs_resume_balance_async(fs_info);
1367 if (ret)
1368 goto restore;
1369
1370 ret = btrfs_resume_dev_replace_async(fs_info);
1371 if (ret) {
1372 pr_warn("btrfs: failed to resume dev_replace\n");
1373 goto restore;
1374 }
1375 sb->s_flags &= ~MS_RDONLY;
1376 }
1377out:
1378 btrfs_remount_cleanup(fs_info, old_opts);
1379 return 0;
1380
1381restore:
1382 /* We've hit an error - don't reset MS_RDONLY */
1383 if (sb->s_flags & MS_RDONLY)
1384 old_flags |= MS_RDONLY;
1385 sb->s_flags = old_flags;
1386 fs_info->mount_opt = old_opts;
1387 fs_info->compress_type = old_compress_type;
1388 fs_info->max_inline = old_max_inline;
1389 mutex_lock(&fs_info->chunk_mutex);
1390 fs_info->alloc_start = old_alloc_start;
1391 mutex_unlock(&fs_info->chunk_mutex);
1392 btrfs_resize_thread_pool(fs_info,
1393 old_thread_pool_size, fs_info->thread_pool_size);
1394 fs_info->metadata_ratio = old_metadata_ratio;
1395 btrfs_remount_cleanup(fs_info, old_opts);
1396 return ret;
1397}
1398
1399/* Used to sort the devices by max_avail(descending sort) */
1400static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1401 const void *dev_info2)
1402{
1403 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1404 ((struct btrfs_device_info *)dev_info2)->max_avail)
1405 return -1;
1406 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1407 ((struct btrfs_device_info *)dev_info2)->max_avail)
1408 return 1;
1409 else
1410 return 0;
1411}
1412
1413/*
1414 * sort the devices by max_avail, in which max free extent size of each device
1415 * is stored.(Descending Sort)
1416 */
1417static inline void btrfs_descending_sort_devices(
1418 struct btrfs_device_info *devices,
1419 size_t nr_devices)
1420{
1421 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1422 btrfs_cmp_device_free_bytes, NULL);
1423}
1424
1425/*
1426 * The helper to calc the free space on the devices that can be used to store
1427 * file data.
1428 */
1429static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1430{
1431 struct btrfs_fs_info *fs_info = root->fs_info;
1432 struct btrfs_device_info *devices_info;
1433 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1434 struct btrfs_device *device;
1435 u64 skip_space;
1436 u64 type;
1437 u64 avail_space;
1438 u64 used_space;
1439 u64 min_stripe_size;
1440 int min_stripes = 1, num_stripes = 1;
1441 int i = 0, nr_devices;
1442 int ret;
1443
1444 nr_devices = fs_info->fs_devices->open_devices;
1445 BUG_ON(!nr_devices);
1446
1447 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1448 GFP_NOFS);
1449 if (!devices_info)
1450 return -ENOMEM;
1451
1452 /* calc min stripe number for data space alloction */
1453 type = btrfs_get_alloc_profile(root, 1);
1454 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1455 min_stripes = 2;
1456 num_stripes = nr_devices;
1457 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1458 min_stripes = 2;
1459 num_stripes = 2;
1460 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1461 min_stripes = 4;
1462 num_stripes = 4;
1463 }
1464
1465 if (type & BTRFS_BLOCK_GROUP_DUP)
1466 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1467 else
1468 min_stripe_size = BTRFS_STRIPE_LEN;
1469
1470 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1471 if (!device->in_fs_metadata || !device->bdev ||
1472 device->is_tgtdev_for_dev_replace)
1473 continue;
1474
1475 avail_space = device->total_bytes - device->bytes_used;
1476
1477 /* align with stripe_len */
1478 do_div(avail_space, BTRFS_STRIPE_LEN);
1479 avail_space *= BTRFS_STRIPE_LEN;
1480
1481 /*
1482 * In order to avoid overwritting the superblock on the drive,
1483 * btrfs starts at an offset of at least 1MB when doing chunk
1484 * allocation.
1485 */
1486 skip_space = 1024 * 1024;
1487
1488 /* user can set the offset in fs_info->alloc_start. */
1489 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1490 device->total_bytes)
1491 skip_space = max(fs_info->alloc_start, skip_space);
1492
1493 /*
1494 * btrfs can not use the free space in [0, skip_space - 1],
1495 * we must subtract it from the total. In order to implement
1496 * it, we account the used space in this range first.
1497 */
1498 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1499 &used_space);
1500 if (ret) {
1501 kfree(devices_info);
1502 return ret;
1503 }
1504
1505 /* calc the free space in [0, skip_space - 1] */
1506 skip_space -= used_space;
1507
1508 /*
1509 * we can use the free space in [0, skip_space - 1], subtract
1510 * it from the total.
1511 */
1512 if (avail_space && avail_space >= skip_space)
1513 avail_space -= skip_space;
1514 else
1515 avail_space = 0;
1516
1517 if (avail_space < min_stripe_size)
1518 continue;
1519
1520 devices_info[i].dev = device;
1521 devices_info[i].max_avail = avail_space;
1522
1523 i++;
1524 }
1525
1526 nr_devices = i;
1527
1528 btrfs_descending_sort_devices(devices_info, nr_devices);
1529
1530 i = nr_devices - 1;
1531 avail_space = 0;
1532 while (nr_devices >= min_stripes) {
1533 if (num_stripes > nr_devices)
1534 num_stripes = nr_devices;
1535
1536 if (devices_info[i].max_avail >= min_stripe_size) {
1537 int j;
1538 u64 alloc_size;
1539
1540 avail_space += devices_info[i].max_avail * num_stripes;
1541 alloc_size = devices_info[i].max_avail;
1542 for (j = i + 1 - num_stripes; j <= i; j++)
1543 devices_info[j].max_avail -= alloc_size;
1544 }
1545 i--;
1546 nr_devices--;
1547 }
1548
1549 kfree(devices_info);
1550 *free_bytes = avail_space;
1551 return 0;
1552}
1553
1554static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1555{
1556 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1557 struct btrfs_super_block *disk_super = fs_info->super_copy;
1558 struct list_head *head = &fs_info->space_info;
1559 struct btrfs_space_info *found;
1560 u64 total_used = 0;
1561 u64 total_free_data = 0;
1562 int bits = dentry->d_sb->s_blocksize_bits;
1563 __be32 *fsid = (__be32 *)fs_info->fsid;
1564 int ret;
1565
1566 /* holding chunk_muext to avoid allocating new chunks */
1567 mutex_lock(&fs_info->chunk_mutex);
1568 rcu_read_lock();
1569 list_for_each_entry_rcu(found, head, list) {
1570 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1571 total_free_data += found->disk_total - found->disk_used;
1572 total_free_data -=
1573 btrfs_account_ro_block_groups_free_space(found);
1574 }
1575
1576 total_used += found->disk_used;
1577 }
1578 rcu_read_unlock();
1579
1580 buf->f_namelen = BTRFS_NAME_LEN;
1581 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1582 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1583 buf->f_bsize = dentry->d_sb->s_blocksize;
1584 buf->f_type = BTRFS_SUPER_MAGIC;
1585 buf->f_bavail = total_free_data;
1586 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1587 if (ret) {
1588 mutex_unlock(&fs_info->chunk_mutex);
1589 return ret;
1590 }
1591 buf->f_bavail += total_free_data;
1592 buf->f_bavail = buf->f_bavail >> bits;
1593 mutex_unlock(&fs_info->chunk_mutex);
1594
1595 /* We treat it as constant endianness (it doesn't matter _which_)
1596 because we want the fsid to come out the same whether mounted
1597 on a big-endian or little-endian host */
1598 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1599 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1600 /* Mask in the root object ID too, to disambiguate subvols */
1601 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1602 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1603
1604 return 0;
1605}
1606
1607static void btrfs_kill_super(struct super_block *sb)
1608{
1609 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1610 kill_anon_super(sb);
1611 free_fs_info(fs_info);
1612}
1613
1614static struct file_system_type btrfs_fs_type = {
1615 .owner = THIS_MODULE,
1616 .name = "btrfs",
1617 .mount = btrfs_mount,
1618 .kill_sb = btrfs_kill_super,
1619 .fs_flags = FS_REQUIRES_DEV,
1620};
1621MODULE_ALIAS_FS("btrfs");
1622
1623/*
1624 * used by btrfsctl to scan devices when no FS is mounted
1625 */
1626static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1627 unsigned long arg)
1628{
1629 struct btrfs_ioctl_vol_args *vol;
1630 struct btrfs_fs_devices *fs_devices;
1631 int ret = -ENOTTY;
1632
1633 if (!capable(CAP_SYS_ADMIN))
1634 return -EPERM;
1635
1636 vol = memdup_user((void __user *)arg, sizeof(*vol));
1637 if (IS_ERR(vol))
1638 return PTR_ERR(vol);
1639
1640 switch (cmd) {
1641 case BTRFS_IOC_SCAN_DEV:
1642 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1643 &btrfs_fs_type, &fs_devices);
1644 break;
1645 case BTRFS_IOC_DEVICES_READY:
1646 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1647 &btrfs_fs_type, &fs_devices);
1648 if (ret)
1649 break;
1650 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1651 break;
1652 }
1653
1654 kfree(vol);
1655 return ret;
1656}
1657
1658static int btrfs_freeze(struct super_block *sb)
1659{
1660 struct btrfs_trans_handle *trans;
1661 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1662
1663 trans = btrfs_attach_transaction_barrier(root);
1664 if (IS_ERR(trans)) {
1665 /* no transaction, don't bother */
1666 if (PTR_ERR(trans) == -ENOENT)
1667 return 0;
1668 return PTR_ERR(trans);
1669 }
1670 return btrfs_commit_transaction(trans, root);
1671}
1672
1673static int btrfs_unfreeze(struct super_block *sb)
1674{
1675 return 0;
1676}
1677
1678static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1679{
1680 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1681 struct btrfs_fs_devices *cur_devices;
1682 struct btrfs_device *dev, *first_dev = NULL;
1683 struct list_head *head;
1684 struct rcu_string *name;
1685
1686 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1687 cur_devices = fs_info->fs_devices;
1688 while (cur_devices) {
1689 head = &cur_devices->devices;
1690 list_for_each_entry(dev, head, dev_list) {
1691 if (dev->missing)
1692 continue;
1693 if (!first_dev || dev->devid < first_dev->devid)
1694 first_dev = dev;
1695 }
1696 cur_devices = cur_devices->seed;
1697 }
1698
1699 if (first_dev) {
1700 rcu_read_lock();
1701 name = rcu_dereference(first_dev->name);
1702 seq_escape(m, name->str, " \t\n\\");
1703 rcu_read_unlock();
1704 } else {
1705 WARN_ON(1);
1706 }
1707 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1708 return 0;
1709}
1710
1711static const struct super_operations btrfs_super_ops = {
1712 .drop_inode = btrfs_drop_inode,
1713 .evict_inode = btrfs_evict_inode,
1714 .put_super = btrfs_put_super,
1715 .sync_fs = btrfs_sync_fs,
1716 .show_options = btrfs_show_options,
1717 .show_devname = btrfs_show_devname,
1718 .write_inode = btrfs_write_inode,
1719 .alloc_inode = btrfs_alloc_inode,
1720 .destroy_inode = btrfs_destroy_inode,
1721 .statfs = btrfs_statfs,
1722 .remount_fs = btrfs_remount,
1723 .freeze_fs = btrfs_freeze,
1724 .unfreeze_fs = btrfs_unfreeze,
1725};
1726
1727static const struct file_operations btrfs_ctl_fops = {
1728 .unlocked_ioctl = btrfs_control_ioctl,
1729 .compat_ioctl = btrfs_control_ioctl,
1730 .owner = THIS_MODULE,
1731 .llseek = noop_llseek,
1732};
1733
1734static struct miscdevice btrfs_misc = {
1735 .minor = BTRFS_MINOR,
1736 .name = "btrfs-control",
1737 .fops = &btrfs_ctl_fops
1738};
1739
1740MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1741MODULE_ALIAS("devname:btrfs-control");
1742
1743static int btrfs_interface_init(void)
1744{
1745 return misc_register(&btrfs_misc);
1746}
1747
1748static void btrfs_interface_exit(void)
1749{
1750 if (misc_deregister(&btrfs_misc) < 0)
1751 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1752}
1753
1754static void btrfs_print_info(void)
1755{
1756 printk(KERN_INFO "Btrfs loaded"
1757#ifdef CONFIG_BTRFS_DEBUG
1758 ", debug=on"
1759#endif
1760#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1761 ", integrity-checker=on"
1762#endif
1763 "\n");
1764}
1765
1766static int btrfs_run_sanity_tests(void)
1767{
1768 return btrfs_test_free_space_cache();
1769}
1770
1771static int __init init_btrfs_fs(void)
1772{
1773 int err;
1774
1775 err = btrfs_init_sysfs();
1776 if (err)
1777 return err;
1778
1779 btrfs_init_compress();
1780
1781 err = btrfs_init_cachep();
1782 if (err)
1783 goto free_compress;
1784
1785 err = extent_io_init();
1786 if (err)
1787 goto free_cachep;
1788
1789 err = extent_map_init();
1790 if (err)
1791 goto free_extent_io;
1792
1793 err = ordered_data_init();
1794 if (err)
1795 goto free_extent_map;
1796
1797 err = btrfs_delayed_inode_init();
1798 if (err)
1799 goto free_ordered_data;
1800
1801 err = btrfs_auto_defrag_init();
1802 if (err)
1803 goto free_delayed_inode;
1804
1805 err = btrfs_delayed_ref_init();
1806 if (err)
1807 goto free_auto_defrag;
1808
1809 err = btrfs_interface_init();
1810 if (err)
1811 goto free_delayed_ref;
1812
1813 btrfs_init_lockdep();
1814
1815 btrfs_print_info();
1816
1817 err = btrfs_run_sanity_tests();
1818 if (err)
1819 goto unregister_ioctl;
1820
1821 err = register_filesystem(&btrfs_fs_type);
1822 if (err)
1823 goto unregister_ioctl;
1824
1825 return 0;
1826
1827unregister_ioctl:
1828 btrfs_interface_exit();
1829free_delayed_ref:
1830 btrfs_delayed_ref_exit();
1831free_auto_defrag:
1832 btrfs_auto_defrag_exit();
1833free_delayed_inode:
1834 btrfs_delayed_inode_exit();
1835free_ordered_data:
1836 ordered_data_exit();
1837free_extent_map:
1838 extent_map_exit();
1839free_extent_io:
1840 extent_io_exit();
1841free_cachep:
1842 btrfs_destroy_cachep();
1843free_compress:
1844 btrfs_exit_compress();
1845 btrfs_exit_sysfs();
1846 return err;
1847}
1848
1849static void __exit exit_btrfs_fs(void)
1850{
1851 btrfs_destroy_cachep();
1852 btrfs_delayed_ref_exit();
1853 btrfs_auto_defrag_exit();
1854 btrfs_delayed_inode_exit();
1855 ordered_data_exit();
1856 extent_map_exit();
1857 extent_io_exit();
1858 btrfs_interface_exit();
1859 unregister_filesystem(&btrfs_fs_type);
1860 btrfs_exit_sysfs();
1861 btrfs_cleanup_fs_uuids();
1862 btrfs_exit_compress();
1863}
1864
1865module_init(init_btrfs_fs)
1866module_exit(exit_btrfs_fs)
1867
1868MODULE_LICENSE("GPL");